2 * Definitions for the 'struct sk_buff' memory handlers.
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/config.h>
18 #include <linux/kernel.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
27 #include <linux/highmem.h>
28 #include <linux/poll.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
33 #define HAVE_ALLOC_SKB /* For the drivers to know */
34 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
36 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 2
40 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
43 sizeof(struct skb_shared_info)) & \
44 ~(SMP_CACHE_BYTES - 1))
45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
48 /* A. Checksumming of received packets by device.
50 * NONE: device failed to checksum this packet.
51 * skb->csum is undefined.
53 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
54 * skb->csum is undefined.
55 * It is bad option, but, unfortunately, many of vendors do this.
56 * Apparently with secret goal to sell you new device, when you
57 * will add new protocol to your host. F.e. IPv6. 8)
59 * HW: the most generic way. Device supplied checksum of _all_
60 * the packet as seen by netif_rx in skb->csum.
61 * NOTE: Even if device supports only some protocols, but
62 * is able to produce some skb->csum, it MUST use HW,
65 * B. Checksumming on output.
67 * NONE: skb is checksummed by protocol or csum is not required.
69 * HW: device is required to csum packet as seen by hard_start_xmit
70 * from skb->h.raw to the end and to record the checksum
71 * at skb->h.raw+skb->csum.
73 * Device must show its capabilities in dev->features, set
74 * at device setup time.
75 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
77 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
78 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
79 * TCP/UDP over IPv4. Sigh. Vendors like this
80 * way by an unknown reason. Though, see comment above
81 * about CHECKSUM_UNNECESSARY. 8)
83 * Any questions? No questions, good. --ANK
88 #ifdef CONFIG_NETFILTER
91 void (*destroy)(struct nf_conntrack *);
94 #ifdef CONFIG_BRIDGE_NETFILTER
95 struct nf_bridge_info {
97 struct net_device *physindev;
98 struct net_device *physoutdev;
99 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
100 struct net_device *netoutdev;
103 unsigned long data[32 / sizeof(unsigned long)];
109 struct sk_buff_head {
110 /* These two members must be first. */
111 struct sk_buff *next;
112 struct sk_buff *prev;
120 /* To allow 64K frame to be packed as single skb without frag_list */
121 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
123 typedef struct skb_frag_struct skb_frag_t;
125 struct skb_frag_struct {
131 /* This data is invariant across clones and lives at
132 * the end of the header data, ie. at skb->end.
134 struct skb_shared_info {
136 unsigned short nr_frags;
137 unsigned short tso_size;
138 unsigned short tso_segs;
139 unsigned short ufo_size;
140 unsigned int ip6_frag_id;
141 struct sk_buff *frag_list;
142 skb_frag_t frags[MAX_SKB_FRAGS];
145 /* We divide dataref into two halves. The higher 16 bits hold references
146 * to the payload part of skb->data. The lower 16 bits hold references to
147 * the entire skb->data. It is up to the users of the skb to agree on
148 * where the payload starts.
150 * All users must obey the rule that the skb->data reference count must be
151 * greater than or equal to the payload reference count.
153 * Holding a reference to the payload part means that the user does not
154 * care about modifications to the header part of skb->data.
156 #define SKB_DATAREF_SHIFT 16
157 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
166 SKB_FCLONE_UNAVAILABLE,
172 * struct sk_buff - socket buffer
173 * @next: Next buffer in list
174 * @prev: Previous buffer in list
175 * @sk: Socket we are owned by
176 * @tstamp: Time we arrived
177 * @dev: Device we arrived on/are leaving by
178 * @input_dev: Device we arrived on
179 * @h: Transport layer header
180 * @nh: Network layer header
181 * @mac: Link layer header
182 * @dst: destination entry
183 * @sp: the security path, used for xfrm
184 * @cb: Control buffer. Free for use by every layer. Put private vars here
185 * @len: Length of actual data
186 * @data_len: Data length
187 * @mac_len: Length of link layer header
189 * @local_df: allow local fragmentation
190 * @cloned: Head may be cloned (check refcnt to be sure)
191 * @nohdr: Payload reference only, must not modify header
192 * @pkt_type: Packet class
193 * @fclone: skbuff clone status
194 * @ip_summed: Driver fed us an IP checksum
195 * @priority: Packet queueing priority
196 * @users: User count - see {datagram,tcp}.c
197 * @protocol: Packet protocol from driver
198 * @truesize: Buffer size
199 * @head: Head of buffer
200 * @data: Data head pointer
201 * @tail: Tail pointer
203 * @destructor: Destruct function
204 * @nfmark: Can be used for communication between hooks
205 * @nfct: Associated connection, if any
206 * @ipvs_property: skbuff is owned by ipvs
207 * @nfctinfo: Relationship of this skb to the connection
208 * @nfct_reasm: netfilter conntrack re-assembly pointer
209 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
210 * @tc_index: Traffic control index
211 * @tc_verd: traffic control verdict
215 /* These two members must be first. */
216 struct sk_buff *next;
217 struct sk_buff *prev;
220 struct skb_timeval tstamp;
221 struct net_device *dev;
222 struct net_device *input_dev;
227 struct icmphdr *icmph;
228 struct igmphdr *igmph;
230 struct ipv6hdr *ipv6h;
236 struct ipv6hdr *ipv6h;
245 struct dst_entry *dst;
249 * This is the control buffer. It is free to use for every
250 * layer. Please put your private variables there. If you
251 * want to keep them across layers you have to do a skb_clone()
252 * first. This is owned by whoever has the skb queued ATM.
271 void (*destructor)(struct sk_buff *skb);
272 #ifdef CONFIG_NETFILTER
274 struct nf_conntrack *nfct;
275 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
276 struct sk_buff *nfct_reasm;
278 #ifdef CONFIG_BRIDGE_NETFILTER
279 struct nf_bridge_info *nf_bridge;
281 #endif /* CONFIG_NETFILTER */
282 #ifdef CONFIG_NET_SCHED
283 __u16 tc_index; /* traffic control index */
284 #ifdef CONFIG_NET_CLS_ACT
285 __u16 tc_verd; /* traffic control verdict */
290 /* These elements must be at the end, see alloc_skb() for details. */
291 unsigned int truesize;
301 * Handling routines are only of interest to the kernel
303 #include <linux/slab.h>
305 #include <asm/system.h>
307 extern void __kfree_skb(struct sk_buff *skb);
308 extern struct sk_buff *__alloc_skb(unsigned int size,
309 gfp_t priority, int fclone);
310 static inline struct sk_buff *alloc_skb(unsigned int size,
313 return __alloc_skb(size, priority, 0);
316 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
319 return __alloc_skb(size, priority, 1);
322 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
325 extern void kfree_skbmem(struct sk_buff *skb);
326 extern struct sk_buff *skb_clone(struct sk_buff *skb,
328 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
330 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
332 extern int pskb_expand_head(struct sk_buff *skb,
333 int nhead, int ntail,
335 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
336 unsigned int headroom);
337 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
338 int newheadroom, int newtailroom,
340 extern struct sk_buff * skb_pad(struct sk_buff *skb, int pad);
341 #define dev_kfree_skb(a) kfree_skb(a)
342 extern void skb_over_panic(struct sk_buff *skb, int len,
344 extern void skb_under_panic(struct sk_buff *skb, int len,
347 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
348 int getfrag(void *from, char *to, int offset,
349 int len,int odd, struct sk_buff *skb),
350 void *from, int length);
357 __u32 stepped_offset;
358 struct sk_buff *root_skb;
359 struct sk_buff *cur_skb;
363 extern void skb_prepare_seq_read(struct sk_buff *skb,
364 unsigned int from, unsigned int to,
365 struct skb_seq_state *st);
366 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
367 struct skb_seq_state *st);
368 extern void skb_abort_seq_read(struct skb_seq_state *st);
370 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
371 unsigned int to, struct ts_config *config,
372 struct ts_state *state);
375 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
378 * skb_queue_empty - check if a queue is empty
381 * Returns true if the queue is empty, false otherwise.
383 static inline int skb_queue_empty(const struct sk_buff_head *list)
385 return list->next == (struct sk_buff *)list;
389 * skb_get - reference buffer
390 * @skb: buffer to reference
392 * Makes another reference to a socket buffer and returns a pointer
395 static inline struct sk_buff *skb_get(struct sk_buff *skb)
397 atomic_inc(&skb->users);
402 * If users == 1, we are the only owner and are can avoid redundant
407 * kfree_skb - free an sk_buff
408 * @skb: buffer to free
410 * Drop a reference to the buffer and free it if the usage count has
413 static inline void kfree_skb(struct sk_buff *skb)
415 if (likely(atomic_read(&skb->users) == 1))
417 else if (likely(!atomic_dec_and_test(&skb->users)))
423 * skb_cloned - is the buffer a clone
424 * @skb: buffer to check
426 * Returns true if the buffer was generated with skb_clone() and is
427 * one of multiple shared copies of the buffer. Cloned buffers are
428 * shared data so must not be written to under normal circumstances.
430 static inline int skb_cloned(const struct sk_buff *skb)
432 return skb->cloned &&
433 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
437 * skb_header_cloned - is the header a clone
438 * @skb: buffer to check
440 * Returns true if modifying the header part of the buffer requires
441 * the data to be copied.
443 static inline int skb_header_cloned(const struct sk_buff *skb)
450 dataref = atomic_read(&skb_shinfo(skb)->dataref);
451 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
456 * skb_header_release - release reference to header
457 * @skb: buffer to operate on
459 * Drop a reference to the header part of the buffer. This is done
460 * by acquiring a payload reference. You must not read from the header
461 * part of skb->data after this.
463 static inline void skb_header_release(struct sk_buff *skb)
467 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
471 * skb_shared - is the buffer shared
472 * @skb: buffer to check
474 * Returns true if more than one person has a reference to this
477 static inline int skb_shared(const struct sk_buff *skb)
479 return atomic_read(&skb->users) != 1;
483 * skb_share_check - check if buffer is shared and if so clone it
484 * @skb: buffer to check
485 * @pri: priority for memory allocation
487 * If the buffer is shared the buffer is cloned and the old copy
488 * drops a reference. A new clone with a single reference is returned.
489 * If the buffer is not shared the original buffer is returned. When
490 * being called from interrupt status or with spinlocks held pri must
493 * NULL is returned on a memory allocation failure.
495 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
498 might_sleep_if(pri & __GFP_WAIT);
499 if (skb_shared(skb)) {
500 struct sk_buff *nskb = skb_clone(skb, pri);
508 * Copy shared buffers into a new sk_buff. We effectively do COW on
509 * packets to handle cases where we have a local reader and forward
510 * and a couple of other messy ones. The normal one is tcpdumping
511 * a packet thats being forwarded.
515 * skb_unshare - make a copy of a shared buffer
516 * @skb: buffer to check
517 * @pri: priority for memory allocation
519 * If the socket buffer is a clone then this function creates a new
520 * copy of the data, drops a reference count on the old copy and returns
521 * the new copy with the reference count at 1. If the buffer is not a clone
522 * the original buffer is returned. When called with a spinlock held or
523 * from interrupt state @pri must be %GFP_ATOMIC
525 * %NULL is returned on a memory allocation failure.
527 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
530 might_sleep_if(pri & __GFP_WAIT);
531 if (skb_cloned(skb)) {
532 struct sk_buff *nskb = skb_copy(skb, pri);
533 kfree_skb(skb); /* Free our shared copy */
541 * @list_: list to peek at
543 * Peek an &sk_buff. Unlike most other operations you _MUST_
544 * be careful with this one. A peek leaves the buffer on the
545 * list and someone else may run off with it. You must hold
546 * the appropriate locks or have a private queue to do this.
548 * Returns %NULL for an empty list or a pointer to the head element.
549 * The reference count is not incremented and the reference is therefore
550 * volatile. Use with caution.
552 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
554 struct sk_buff *list = ((struct sk_buff *)list_)->next;
555 if (list == (struct sk_buff *)list_)
562 * @list_: list to peek at
564 * Peek an &sk_buff. Unlike most other operations you _MUST_
565 * be careful with this one. A peek leaves the buffer on the
566 * list and someone else may run off with it. You must hold
567 * the appropriate locks or have a private queue to do this.
569 * Returns %NULL for an empty list or a pointer to the tail element.
570 * The reference count is not incremented and the reference is therefore
571 * volatile. Use with caution.
573 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
575 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
576 if (list == (struct sk_buff *)list_)
582 * skb_queue_len - get queue length
583 * @list_: list to measure
585 * Return the length of an &sk_buff queue.
587 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
592 static inline void skb_queue_head_init(struct sk_buff_head *list)
594 spin_lock_init(&list->lock);
595 list->prev = list->next = (struct sk_buff *)list;
600 * Insert an sk_buff at the start of a list.
602 * The "__skb_xxxx()" functions are the non-atomic ones that
603 * can only be called with interrupts disabled.
607 * __skb_queue_after - queue a buffer at the list head
609 * @prev: place after this buffer
610 * @newsk: buffer to queue
612 * Queue a buffer int the middle of a list. This function takes no locks
613 * and you must therefore hold required locks before calling it.
615 * A buffer cannot be placed on two lists at the same time.
617 static inline void __skb_queue_after(struct sk_buff_head *list,
618 struct sk_buff *prev,
619 struct sk_buff *newsk)
621 struct sk_buff *next;
627 next->prev = prev->next = newsk;
631 * __skb_queue_head - queue a buffer at the list head
633 * @newsk: buffer to queue
635 * Queue a buffer at the start of a list. This function takes no locks
636 * and you must therefore hold required locks before calling it.
638 * A buffer cannot be placed on two lists at the same time.
640 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
641 static inline void __skb_queue_head(struct sk_buff_head *list,
642 struct sk_buff *newsk)
644 __skb_queue_after(list, (struct sk_buff *)list, newsk);
648 * __skb_queue_tail - queue a buffer at the list tail
650 * @newsk: buffer to queue
652 * Queue a buffer at the end of a list. This function takes no locks
653 * and you must therefore hold required locks before calling it.
655 * A buffer cannot be placed on two lists at the same time.
657 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
658 static inline void __skb_queue_tail(struct sk_buff_head *list,
659 struct sk_buff *newsk)
661 struct sk_buff *prev, *next;
664 next = (struct sk_buff *)list;
668 next->prev = prev->next = newsk;
673 * __skb_dequeue - remove from the head of the queue
674 * @list: list to dequeue from
676 * Remove the head of the list. This function does not take any locks
677 * so must be used with appropriate locks held only. The head item is
678 * returned or %NULL if the list is empty.
680 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
681 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
683 struct sk_buff *next, *prev, *result;
685 prev = (struct sk_buff *) list;
694 result->next = result->prev = NULL;
701 * Insert a packet on a list.
703 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
704 static inline void __skb_insert(struct sk_buff *newsk,
705 struct sk_buff *prev, struct sk_buff *next,
706 struct sk_buff_head *list)
710 next->prev = prev->next = newsk;
715 * Place a packet after a given packet in a list.
717 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
718 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
720 __skb_insert(newsk, old, old->next, list);
724 * remove sk_buff from list. _Must_ be called atomically, and with
727 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
728 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
730 struct sk_buff *next, *prev;
735 skb->next = skb->prev = NULL;
741 /* XXX: more streamlined implementation */
744 * __skb_dequeue_tail - remove from the tail of the queue
745 * @list: list to dequeue from
747 * Remove the tail of the list. This function does not take any locks
748 * so must be used with appropriate locks held only. The tail item is
749 * returned or %NULL if the list is empty.
751 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
752 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
754 struct sk_buff *skb = skb_peek_tail(list);
756 __skb_unlink(skb, list);
761 static inline int skb_is_nonlinear(const struct sk_buff *skb)
763 return skb->data_len;
766 static inline unsigned int skb_headlen(const struct sk_buff *skb)
768 return skb->len - skb->data_len;
771 static inline int skb_pagelen(const struct sk_buff *skb)
775 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
776 len += skb_shinfo(skb)->frags[i].size;
777 return len + skb_headlen(skb);
780 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
781 struct page *page, int off, int size)
783 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
786 frag->page_offset = off;
788 skb_shinfo(skb)->nr_frags = i + 1;
791 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
792 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
793 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
796 * Add data to an sk_buff
798 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
800 unsigned char *tmp = skb->tail;
801 SKB_LINEAR_ASSERT(skb);
808 * skb_put - add data to a buffer
809 * @skb: buffer to use
810 * @len: amount of data to add
812 * This function extends the used data area of the buffer. If this would
813 * exceed the total buffer size the kernel will panic. A pointer to the
814 * first byte of the extra data is returned.
816 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
818 unsigned char *tmp = skb->tail;
819 SKB_LINEAR_ASSERT(skb);
822 if (unlikely(skb->tail>skb->end))
823 skb_over_panic(skb, len, current_text_addr());
827 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
835 * skb_push - add data to the start of a buffer
836 * @skb: buffer to use
837 * @len: amount of data to add
839 * This function extends the used data area of the buffer at the buffer
840 * start. If this would exceed the total buffer headroom the kernel will
841 * panic. A pointer to the first byte of the extra data is returned.
843 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
847 if (unlikely(skb->data<skb->head))
848 skb_under_panic(skb, len, current_text_addr());
852 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
855 BUG_ON(skb->len < skb->data_len);
856 return skb->data += len;
860 * skb_pull - remove data from the start of a buffer
861 * @skb: buffer to use
862 * @len: amount of data to remove
864 * This function removes data from the start of a buffer, returning
865 * the memory to the headroom. A pointer to the next data in the buffer
866 * is returned. Once the data has been pulled future pushes will overwrite
869 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
871 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
874 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
876 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
878 if (len > skb_headlen(skb) &&
879 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
882 return skb->data += len;
885 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
887 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
890 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
892 if (likely(len <= skb_headlen(skb)))
894 if (unlikely(len > skb->len))
896 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
900 * skb_headroom - bytes at buffer head
901 * @skb: buffer to check
903 * Return the number of bytes of free space at the head of an &sk_buff.
905 static inline int skb_headroom(const struct sk_buff *skb)
907 return skb->data - skb->head;
911 * skb_tailroom - bytes at buffer end
912 * @skb: buffer to check
914 * Return the number of bytes of free space at the tail of an sk_buff
916 static inline int skb_tailroom(const struct sk_buff *skb)
918 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
922 * skb_reserve - adjust headroom
923 * @skb: buffer to alter
924 * @len: bytes to move
926 * Increase the headroom of an empty &sk_buff by reducing the tail
927 * room. This is only allowed for an empty buffer.
929 static inline void skb_reserve(struct sk_buff *skb, unsigned int len)
936 * CPUs often take a performance hit when accessing unaligned memory
937 * locations. The actual performance hit varies, it can be small if the
938 * hardware handles it or large if we have to take an exception and fix it
941 * Since an ethernet header is 14 bytes network drivers often end up with
942 * the IP header at an unaligned offset. The IP header can be aligned by
943 * shifting the start of the packet by 2 bytes. Drivers should do this
946 * skb_reserve(NET_IP_ALIGN);
948 * The downside to this alignment of the IP header is that the DMA is now
949 * unaligned. On some architectures the cost of an unaligned DMA is high
950 * and this cost outweighs the gains made by aligning the IP header.
952 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
956 #define NET_IP_ALIGN 2
959 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
961 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
963 if (!skb->data_len) {
965 skb->tail = skb->data + len;
967 ___pskb_trim(skb, len, 0);
971 * skb_trim - remove end from a buffer
972 * @skb: buffer to alter
975 * Cut the length of a buffer down by removing data from the tail. If
976 * the buffer is already under the length specified it is not modified.
978 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
981 __skb_trim(skb, len);
985 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
987 if (!skb->data_len) {
989 skb->tail = skb->data+len;
992 return ___pskb_trim(skb, len, 1);
995 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
997 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1001 * skb_orphan - orphan a buffer
1002 * @skb: buffer to orphan
1004 * If a buffer currently has an owner then we call the owner's
1005 * destructor function and make the @skb unowned. The buffer continues
1006 * to exist but is no longer charged to its former owner.
1008 static inline void skb_orphan(struct sk_buff *skb)
1010 if (skb->destructor)
1011 skb->destructor(skb);
1012 skb->destructor = NULL;
1017 * __skb_queue_purge - empty a list
1018 * @list: list to empty
1020 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1021 * the list and one reference dropped. This function does not take the
1022 * list lock and the caller must hold the relevant locks to use it.
1024 extern void skb_queue_purge(struct sk_buff_head *list);
1025 static inline void __skb_queue_purge(struct sk_buff_head *list)
1027 struct sk_buff *skb;
1028 while ((skb = __skb_dequeue(list)) != NULL)
1032 #ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
1034 * __dev_alloc_skb - allocate an skbuff for sending
1035 * @length: length to allocate
1036 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1038 * Allocate a new &sk_buff and assign it a usage count of one. The
1039 * buffer has unspecified headroom built in. Users should allocate
1040 * the headroom they think they need without accounting for the
1041 * built in space. The built in space is used for optimisations.
1043 * %NULL is returned in there is no free memory.
1045 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1048 struct sk_buff *skb = alloc_skb(length + 16, gfp_mask);
1050 skb_reserve(skb, 16);
1054 extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
1058 * dev_alloc_skb - allocate an skbuff for sending
1059 * @length: length to allocate
1061 * Allocate a new &sk_buff and assign it a usage count of one. The
1062 * buffer has unspecified headroom built in. Users should allocate
1063 * the headroom they think they need without accounting for the
1064 * built in space. The built in space is used for optimisations.
1066 * %NULL is returned in there is no free memory. Although this function
1067 * allocates memory it can be called from an interrupt.
1069 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1071 return __dev_alloc_skb(length, GFP_ATOMIC);
1075 * skb_cow - copy header of skb when it is required
1076 * @skb: buffer to cow
1077 * @headroom: needed headroom
1079 * If the skb passed lacks sufficient headroom or its data part
1080 * is shared, data is reallocated. If reallocation fails, an error
1081 * is returned and original skb is not changed.
1083 * The result is skb with writable area skb->head...skb->tail
1084 * and at least @headroom of space at head.
1086 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1088 int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb);
1093 if (delta || skb_cloned(skb))
1094 return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC);
1099 * skb_padto - pad an skbuff up to a minimal size
1100 * @skb: buffer to pad
1101 * @len: minimal length
1103 * Pads up a buffer to ensure the trailing bytes exist and are
1104 * blanked. If the buffer already contains sufficient data it
1105 * is untouched. Returns the buffer, which may be a replacement
1106 * for the original, or NULL for out of memory - in which case
1107 * the original buffer is still freed.
1110 static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
1112 unsigned int size = skb->len;
1113 if (likely(size >= len))
1115 return skb_pad(skb, len-size);
1118 static inline int skb_add_data(struct sk_buff *skb,
1119 char __user *from, int copy)
1121 const int off = skb->len;
1123 if (skb->ip_summed == CHECKSUM_NONE) {
1125 unsigned int csum = csum_and_copy_from_user(from,
1129 skb->csum = csum_block_add(skb->csum, csum, off);
1132 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1135 __skb_trim(skb, off);
1139 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1140 struct page *page, int off)
1143 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1145 return page == frag->page &&
1146 off == frag->page_offset + frag->size;
1152 * skb_linearize - convert paged skb to linear one
1153 * @skb: buffer to linarize
1154 * @gfp: allocation mode
1156 * If there is no free memory -ENOMEM is returned, otherwise zero
1157 * is returned and the old skb data released.
1159 extern int __skb_linearize(struct sk_buff *skb, gfp_t gfp);
1160 static inline int skb_linearize(struct sk_buff *skb, gfp_t gfp)
1162 return __skb_linearize(skb, gfp);
1166 * skb_postpull_rcsum - update checksum for received skb after pull
1167 * @skb: buffer to update
1168 * @start: start of data before pull
1169 * @len: length of data pulled
1171 * After doing a pull on a received packet, you need to call this to
1172 * update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1173 * so that it can be recomputed from scratch.
1176 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1177 const void *start, int len)
1179 if (skb->ip_summed == CHECKSUM_HW)
1180 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1184 * pskb_trim_rcsum - trim received skb and update checksum
1185 * @skb: buffer to trim
1188 * This is exactly the same as pskb_trim except that it ensures the
1189 * checksum of received packets are still valid after the operation.
1192 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1194 if (likely(len >= skb->len))
1196 if (skb->ip_summed == CHECKSUM_HW)
1197 skb->ip_summed = CHECKSUM_NONE;
1198 return __pskb_trim(skb, len);
1201 static inline void *kmap_skb_frag(const skb_frag_t *frag)
1203 #ifdef CONFIG_HIGHMEM
1208 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1211 static inline void kunmap_skb_frag(void *vaddr)
1213 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1214 #ifdef CONFIG_HIGHMEM
1219 #define skb_queue_walk(queue, skb) \
1220 for (skb = (queue)->next; \
1221 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1224 #define skb_queue_reverse_walk(queue, skb) \
1225 for (skb = (queue)->prev; \
1226 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1230 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1231 int noblock, int *err);
1232 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1233 struct poll_table_struct *wait);
1234 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1235 int offset, struct iovec *to,
1237 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1240 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1241 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1242 unsigned int flags);
1243 extern unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1244 int len, unsigned int csum);
1245 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1247 extern int skb_store_bits(const struct sk_buff *skb, int offset,
1248 void *from, int len);
1249 extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb,
1250 int offset, u8 *to, int len,
1252 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1253 extern void skb_split(struct sk_buff *skb,
1254 struct sk_buff *skb1, const u32 len);
1256 extern void skb_release_data(struct sk_buff *skb);
1258 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1259 int len, void *buffer)
1261 int hlen = skb_headlen(skb);
1263 if (hlen - offset >= len)
1264 return skb->data + offset;
1266 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1272 extern void skb_init(void);
1273 extern void skb_add_mtu(int mtu);
1276 * skb_get_timestamp - get timestamp from a skb
1277 * @skb: skb to get stamp from
1278 * @stamp: pointer to struct timeval to store stamp in
1280 * Timestamps are stored in the skb as offsets to a base timestamp.
1281 * This function converts the offset back to a struct timeval and stores
1284 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1286 stamp->tv_sec = skb->tstamp.off_sec;
1287 stamp->tv_usec = skb->tstamp.off_usec;
1291 * skb_set_timestamp - set timestamp of a skb
1292 * @skb: skb to set stamp of
1293 * @stamp: pointer to struct timeval to get stamp from
1295 * Timestamps are stored in the skb as offsets to a base timestamp.
1296 * This function converts a struct timeval to an offset and stores
1299 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1301 skb->tstamp.off_sec = stamp->tv_sec;
1302 skb->tstamp.off_usec = stamp->tv_usec;
1305 extern void __net_timestamp(struct sk_buff *skb);
1307 extern unsigned int __skb_checksum_complete(struct sk_buff *skb);
1310 * skb_checksum_complete - Calculate checksum of an entire packet
1311 * @skb: packet to process
1313 * This function calculates the checksum over the entire packet plus
1314 * the value of skb->csum. The latter can be used to supply the
1315 * checksum of a pseudo header as used by TCP/UDP. It returns the
1318 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1319 * this function can be used to verify that checksum on received
1320 * packets. In that case the function should return zero if the
1321 * checksum is correct. In particular, this function will return zero
1322 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1323 * hardware has already verified the correctness of the checksum.
1325 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1327 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1328 __skb_checksum_complete(skb);
1331 #ifdef CONFIG_NETFILTER
1332 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1334 if (nfct && atomic_dec_and_test(&nfct->use))
1335 nfct->destroy(nfct);
1337 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1340 atomic_inc(&nfct->use);
1342 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1343 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1346 atomic_inc(&skb->users);
1348 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1354 static inline void nf_reset(struct sk_buff *skb)
1356 nf_conntrack_put(skb->nfct);
1358 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1359 nf_conntrack_put_reasm(skb->nfct_reasm);
1360 skb->nfct_reasm = NULL;
1364 #ifdef CONFIG_BRIDGE_NETFILTER
1365 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1367 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1370 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1373 atomic_inc(&nf_bridge->use);
1375 #endif /* CONFIG_BRIDGE_NETFILTER */
1376 #else /* CONFIG_NETFILTER */
1377 static inline void nf_reset(struct sk_buff *skb) {}
1378 #endif /* CONFIG_NETFILTER */
1380 #endif /* __KERNEL__ */
1381 #endif /* _LINUX_SKBUFF_H */