[PATCH] sky2: clear irq race
[linux-2.6] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
37
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
44
45 /*
46  * Number of guaranteed r1bios in case of extreme VM load:
47  */
48 #define NR_RAID1_BIOS 256
49
50
51 static void unplug_slaves(mddev_t *mddev);
52
53 static void allow_barrier(conf_t *conf);
54 static void lower_barrier(conf_t *conf);
55
56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
57 {
58         struct pool_info *pi = data;
59         r1bio_t *r1_bio;
60         int size = offsetof(r1bio_t, bios[pi->raid_disks]);
61
62         /* allocate a r1bio with room for raid_disks entries in the bios array */
63         r1_bio = kzalloc(size, gfp_flags);
64         if (!r1_bio)
65                 unplug_slaves(pi->mddev);
66
67         return r1_bio;
68 }
69
70 static void r1bio_pool_free(void *r1_bio, void *data)
71 {
72         kfree(r1_bio);
73 }
74
75 #define RESYNC_BLOCK_SIZE (64*1024)
76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
79 #define RESYNC_WINDOW (2048*1024)
80
81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
82 {
83         struct pool_info *pi = data;
84         struct page *page;
85         r1bio_t *r1_bio;
86         struct bio *bio;
87         int i, j;
88
89         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
90         if (!r1_bio) {
91                 unplug_slaves(pi->mddev);
92                 return NULL;
93         }
94
95         /*
96          * Allocate bios : 1 for reading, n-1 for writing
97          */
98         for (j = pi->raid_disks ; j-- ; ) {
99                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
100                 if (!bio)
101                         goto out_free_bio;
102                 r1_bio->bios[j] = bio;
103         }
104         /*
105          * Allocate RESYNC_PAGES data pages and attach them to
106          * the first bio.
107          * If this is a user-requested check/repair, allocate
108          * RESYNC_PAGES for each bio.
109          */
110         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
111                 j = pi->raid_disks;
112         else
113                 j = 1;
114         while(j--) {
115                 bio = r1_bio->bios[j];
116                 for (i = 0; i < RESYNC_PAGES; i++) {
117                         page = alloc_page(gfp_flags);
118                         if (unlikely(!page))
119                                 goto out_free_pages;
120
121                         bio->bi_io_vec[i].bv_page = page;
122                 }
123         }
124         /* If not user-requests, copy the page pointers to all bios */
125         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
126                 for (i=0; i<RESYNC_PAGES ; i++)
127                         for (j=1; j<pi->raid_disks; j++)
128                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
129                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
130         }
131
132         r1_bio->master_bio = NULL;
133
134         return r1_bio;
135
136 out_free_pages:
137         for (i=0; i < RESYNC_PAGES ; i++)
138                 for (j=0 ; j < pi->raid_disks; j++)
139                         safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
140         j = -1;
141 out_free_bio:
142         while ( ++j < pi->raid_disks )
143                 bio_put(r1_bio->bios[j]);
144         r1bio_pool_free(r1_bio, data);
145         return NULL;
146 }
147
148 static void r1buf_pool_free(void *__r1_bio, void *data)
149 {
150         struct pool_info *pi = data;
151         int i,j;
152         r1bio_t *r1bio = __r1_bio;
153
154         for (i = 0; i < RESYNC_PAGES; i++)
155                 for (j = pi->raid_disks; j-- ;) {
156                         if (j == 0 ||
157                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
158                             r1bio->bios[0]->bi_io_vec[i].bv_page)
159                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
160                 }
161         for (i=0 ; i < pi->raid_disks; i++)
162                 bio_put(r1bio->bios[i]);
163
164         r1bio_pool_free(r1bio, data);
165 }
166
167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
168 {
169         int i;
170
171         for (i = 0; i < conf->raid_disks; i++) {
172                 struct bio **bio = r1_bio->bios + i;
173                 if (*bio && *bio != IO_BLOCKED)
174                         bio_put(*bio);
175                 *bio = NULL;
176         }
177 }
178
179 static void free_r1bio(r1bio_t *r1_bio)
180 {
181         conf_t *conf = mddev_to_conf(r1_bio->mddev);
182
183         /*
184          * Wake up any possible resync thread that waits for the device
185          * to go idle.
186          */
187         allow_barrier(conf);
188
189         put_all_bios(conf, r1_bio);
190         mempool_free(r1_bio, conf->r1bio_pool);
191 }
192
193 static void put_buf(r1bio_t *r1_bio)
194 {
195         conf_t *conf = mddev_to_conf(r1_bio->mddev);
196         int i;
197
198         for (i=0; i<conf->raid_disks; i++) {
199                 struct bio *bio = r1_bio->bios[i];
200                 if (bio->bi_end_io)
201                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
202         }
203
204         mempool_free(r1_bio, conf->r1buf_pool);
205
206         lower_barrier(conf);
207 }
208
209 static void reschedule_retry(r1bio_t *r1_bio)
210 {
211         unsigned long flags;
212         mddev_t *mddev = r1_bio->mddev;
213         conf_t *conf = mddev_to_conf(mddev);
214
215         spin_lock_irqsave(&conf->device_lock, flags);
216         list_add(&r1_bio->retry_list, &conf->retry_list);
217         conf->nr_queued ++;
218         spin_unlock_irqrestore(&conf->device_lock, flags);
219
220         wake_up(&conf->wait_barrier);
221         md_wakeup_thread(mddev->thread);
222 }
223
224 /*
225  * raid_end_bio_io() is called when we have finished servicing a mirrored
226  * operation and are ready to return a success/failure code to the buffer
227  * cache layer.
228  */
229 static void raid_end_bio_io(r1bio_t *r1_bio)
230 {
231         struct bio *bio = r1_bio->master_bio;
232
233         /* if nobody has done the final endio yet, do it now */
234         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
235                 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
236                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
237                         (unsigned long long) bio->bi_sector,
238                         (unsigned long long) bio->bi_sector +
239                                 (bio->bi_size >> 9) - 1);
240
241                 bio_endio(bio, bio->bi_size,
242                         test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
243         }
244         free_r1bio(r1_bio);
245 }
246
247 /*
248  * Update disk head position estimator based on IRQ completion info.
249  */
250 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
251 {
252         conf_t *conf = mddev_to_conf(r1_bio->mddev);
253
254         conf->mirrors[disk].head_position =
255                 r1_bio->sector + (r1_bio->sectors);
256 }
257
258 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
259 {
260         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
261         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
262         int mirror;
263         conf_t *conf = mddev_to_conf(r1_bio->mddev);
264
265         if (bio->bi_size)
266                 return 1;
267         
268         mirror = r1_bio->read_disk;
269         /*
270          * this branch is our 'one mirror IO has finished' event handler:
271          */
272         update_head_pos(mirror, r1_bio);
273
274         if (uptodate || conf->working_disks <= 1) {
275                 /*
276                  * Set R1BIO_Uptodate in our master bio, so that
277                  * we will return a good error code for to the higher
278                  * levels even if IO on some other mirrored buffer fails.
279                  *
280                  * The 'master' represents the composite IO operation to
281                  * user-side. So if something waits for IO, then it will
282                  * wait for the 'master' bio.
283                  */
284                 if (uptodate)
285                         set_bit(R1BIO_Uptodate, &r1_bio->state);
286
287                 raid_end_bio_io(r1_bio);
288         } else {
289                 /*
290                  * oops, read error:
291                  */
292                 char b[BDEVNAME_SIZE];
293                 if (printk_ratelimit())
294                         printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
295                                bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
296                 reschedule_retry(r1_bio);
297         }
298
299         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
300         return 0;
301 }
302
303 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
304 {
305         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
306         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
307         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
308         conf_t *conf = mddev_to_conf(r1_bio->mddev);
309
310         if (bio->bi_size)
311                 return 1;
312
313         for (mirror = 0; mirror < conf->raid_disks; mirror++)
314                 if (r1_bio->bios[mirror] == bio)
315                         break;
316
317         if (error == -ENOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
318                 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
319                 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
320                 r1_bio->mddev->barriers_work = 0;
321         } else {
322                 /*
323                  * this branch is our 'one mirror IO has finished' event handler:
324                  */
325                 r1_bio->bios[mirror] = NULL;
326                 if (!uptodate) {
327                         md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
328                         /* an I/O failed, we can't clear the bitmap */
329                         set_bit(R1BIO_Degraded, &r1_bio->state);
330                 } else
331                         /*
332                          * Set R1BIO_Uptodate in our master bio, so that
333                          * we will return a good error code for to the higher
334                          * levels even if IO on some other mirrored buffer fails.
335                          *
336                          * The 'master' represents the composite IO operation to
337                          * user-side. So if something waits for IO, then it will
338                          * wait for the 'master' bio.
339                          */
340                         set_bit(R1BIO_Uptodate, &r1_bio->state);
341
342                 update_head_pos(mirror, r1_bio);
343
344                 if (behind) {
345                         if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
346                                 atomic_dec(&r1_bio->behind_remaining);
347
348                         /* In behind mode, we ACK the master bio once the I/O has safely
349                          * reached all non-writemostly disks. Setting the Returned bit
350                          * ensures that this gets done only once -- we don't ever want to
351                          * return -EIO here, instead we'll wait */
352
353                         if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
354                             test_bit(R1BIO_Uptodate, &r1_bio->state)) {
355                                 /* Maybe we can return now */
356                                 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
357                                         struct bio *mbio = r1_bio->master_bio;
358                                         PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
359                                                (unsigned long long) mbio->bi_sector,
360                                                (unsigned long long) mbio->bi_sector +
361                                                (mbio->bi_size >> 9) - 1);
362                                         bio_endio(mbio, mbio->bi_size, 0);
363                                 }
364                         }
365                 }
366         }
367         /*
368          *
369          * Let's see if all mirrored write operations have finished
370          * already.
371          */
372         if (atomic_dec_and_test(&r1_bio->remaining)) {
373                 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
374                         reschedule_retry(r1_bio);
375                         /* Don't dec_pending yet, we want to hold
376                          * the reference over the retry
377                          */
378                         return 0;
379                 }
380                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
381                         /* free extra copy of the data pages */
382                         int i = bio->bi_vcnt;
383                         while (i--)
384                                 safe_put_page(bio->bi_io_vec[i].bv_page);
385                 }
386                 /* clear the bitmap if all writes complete successfully */
387                 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
388                                 r1_bio->sectors,
389                                 !test_bit(R1BIO_Degraded, &r1_bio->state),
390                                 behind);
391                 md_write_end(r1_bio->mddev);
392                 raid_end_bio_io(r1_bio);
393         }
394
395         if (r1_bio->bios[mirror]==NULL)
396                 bio_put(bio);
397
398         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
399         return 0;
400 }
401
402
403 /*
404  * This routine returns the disk from which the requested read should
405  * be done. There is a per-array 'next expected sequential IO' sector
406  * number - if this matches on the next IO then we use the last disk.
407  * There is also a per-disk 'last know head position' sector that is
408  * maintained from IRQ contexts, both the normal and the resync IO
409  * completion handlers update this position correctly. If there is no
410  * perfect sequential match then we pick the disk whose head is closest.
411  *
412  * If there are 2 mirrors in the same 2 devices, performance degrades
413  * because position is mirror, not device based.
414  *
415  * The rdev for the device selected will have nr_pending incremented.
416  */
417 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
418 {
419         const unsigned long this_sector = r1_bio->sector;
420         int new_disk = conf->last_used, disk = new_disk;
421         int wonly_disk = -1;
422         const int sectors = r1_bio->sectors;
423         sector_t new_distance, current_distance;
424         mdk_rdev_t *rdev;
425
426         rcu_read_lock();
427         /*
428          * Check if we can balance. We can balance on the whole
429          * device if no resync is going on, or below the resync window.
430          * We take the first readable disk when above the resync window.
431          */
432  retry:
433         if (conf->mddev->recovery_cp < MaxSector &&
434             (this_sector + sectors >= conf->next_resync)) {
435                 /* Choose the first operation device, for consistancy */
436                 new_disk = 0;
437
438                 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
439                      r1_bio->bios[new_disk] == IO_BLOCKED ||
440                      !rdev || !test_bit(In_sync, &rdev->flags)
441                              || test_bit(WriteMostly, &rdev->flags);
442                      rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
443
444                         if (rdev && test_bit(In_sync, &rdev->flags) &&
445                                 r1_bio->bios[new_disk] != IO_BLOCKED)
446                                 wonly_disk = new_disk;
447
448                         if (new_disk == conf->raid_disks - 1) {
449                                 new_disk = wonly_disk;
450                                 break;
451                         }
452                 }
453                 goto rb_out;
454         }
455
456
457         /* make sure the disk is operational */
458         for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
459              r1_bio->bios[new_disk] == IO_BLOCKED ||
460              !rdev || !test_bit(In_sync, &rdev->flags) ||
461                      test_bit(WriteMostly, &rdev->flags);
462              rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
463
464                 if (rdev && test_bit(In_sync, &rdev->flags) &&
465                     r1_bio->bios[new_disk] != IO_BLOCKED)
466                         wonly_disk = new_disk;
467
468                 if (new_disk <= 0)
469                         new_disk = conf->raid_disks;
470                 new_disk--;
471                 if (new_disk == disk) {
472                         new_disk = wonly_disk;
473                         break;
474                 }
475         }
476
477         if (new_disk < 0)
478                 goto rb_out;
479
480         disk = new_disk;
481         /* now disk == new_disk == starting point for search */
482
483         /*
484          * Don't change to another disk for sequential reads:
485          */
486         if (conf->next_seq_sect == this_sector)
487                 goto rb_out;
488         if (this_sector == conf->mirrors[new_disk].head_position)
489                 goto rb_out;
490
491         current_distance = abs(this_sector - conf->mirrors[disk].head_position);
492
493         /* Find the disk whose head is closest */
494
495         do {
496                 if (disk <= 0)
497                         disk = conf->raid_disks;
498                 disk--;
499
500                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
501
502                 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
503                     !test_bit(In_sync, &rdev->flags) ||
504                     test_bit(WriteMostly, &rdev->flags))
505                         continue;
506
507                 if (!atomic_read(&rdev->nr_pending)) {
508                         new_disk = disk;
509                         break;
510                 }
511                 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
512                 if (new_distance < current_distance) {
513                         current_distance = new_distance;
514                         new_disk = disk;
515                 }
516         } while (disk != conf->last_used);
517
518  rb_out:
519
520
521         if (new_disk >= 0) {
522                 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
523                 if (!rdev)
524                         goto retry;
525                 atomic_inc(&rdev->nr_pending);
526                 if (!test_bit(In_sync, &rdev->flags)) {
527                         /* cannot risk returning a device that failed
528                          * before we inc'ed nr_pending
529                          */
530                         rdev_dec_pending(rdev, conf->mddev);
531                         goto retry;
532                 }
533                 conf->next_seq_sect = this_sector + sectors;
534                 conf->last_used = new_disk;
535         }
536         rcu_read_unlock();
537
538         return new_disk;
539 }
540
541 static void unplug_slaves(mddev_t *mddev)
542 {
543         conf_t *conf = mddev_to_conf(mddev);
544         int i;
545
546         rcu_read_lock();
547         for (i=0; i<mddev->raid_disks; i++) {
548                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
549                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
550                         request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
551
552                         atomic_inc(&rdev->nr_pending);
553                         rcu_read_unlock();
554
555                         if (r_queue->unplug_fn)
556                                 r_queue->unplug_fn(r_queue);
557
558                         rdev_dec_pending(rdev, mddev);
559                         rcu_read_lock();
560                 }
561         }
562         rcu_read_unlock();
563 }
564
565 static void raid1_unplug(request_queue_t *q)
566 {
567         mddev_t *mddev = q->queuedata;
568
569         unplug_slaves(mddev);
570         md_wakeup_thread(mddev->thread);
571 }
572
573 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
574                              sector_t *error_sector)
575 {
576         mddev_t *mddev = q->queuedata;
577         conf_t *conf = mddev_to_conf(mddev);
578         int i, ret = 0;
579
580         rcu_read_lock();
581         for (i=0; i<mddev->raid_disks && ret == 0; i++) {
582                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
583                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
584                         struct block_device *bdev = rdev->bdev;
585                         request_queue_t *r_queue = bdev_get_queue(bdev);
586
587                         if (!r_queue->issue_flush_fn)
588                                 ret = -EOPNOTSUPP;
589                         else {
590                                 atomic_inc(&rdev->nr_pending);
591                                 rcu_read_unlock();
592                                 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
593                                                               error_sector);
594                                 rdev_dec_pending(rdev, mddev);
595                                 rcu_read_lock();
596                         }
597                 }
598         }
599         rcu_read_unlock();
600         return ret;
601 }
602
603 /* Barriers....
604  * Sometimes we need to suspend IO while we do something else,
605  * either some resync/recovery, or reconfigure the array.
606  * To do this we raise a 'barrier'.
607  * The 'barrier' is a counter that can be raised multiple times
608  * to count how many activities are happening which preclude
609  * normal IO.
610  * We can only raise the barrier if there is no pending IO.
611  * i.e. if nr_pending == 0.
612  * We choose only to raise the barrier if no-one is waiting for the
613  * barrier to go down.  This means that as soon as an IO request
614  * is ready, no other operations which require a barrier will start
615  * until the IO request has had a chance.
616  *
617  * So: regular IO calls 'wait_barrier'.  When that returns there
618  *    is no backgroup IO happening,  It must arrange to call
619  *    allow_barrier when it has finished its IO.
620  * backgroup IO calls must call raise_barrier.  Once that returns
621  *    there is no normal IO happeing.  It must arrange to call
622  *    lower_barrier when the particular background IO completes.
623  */
624 #define RESYNC_DEPTH 32
625
626 static void raise_barrier(conf_t *conf)
627 {
628         spin_lock_irq(&conf->resync_lock);
629
630         /* Wait until no block IO is waiting */
631         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
632                             conf->resync_lock,
633                             raid1_unplug(conf->mddev->queue));
634
635         /* block any new IO from starting */
636         conf->barrier++;
637
638         /* No wait for all pending IO to complete */
639         wait_event_lock_irq(conf->wait_barrier,
640                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
641                             conf->resync_lock,
642                             raid1_unplug(conf->mddev->queue));
643
644         spin_unlock_irq(&conf->resync_lock);
645 }
646
647 static void lower_barrier(conf_t *conf)
648 {
649         unsigned long flags;
650         spin_lock_irqsave(&conf->resync_lock, flags);
651         conf->barrier--;
652         spin_unlock_irqrestore(&conf->resync_lock, flags);
653         wake_up(&conf->wait_barrier);
654 }
655
656 static void wait_barrier(conf_t *conf)
657 {
658         spin_lock_irq(&conf->resync_lock);
659         if (conf->barrier) {
660                 conf->nr_waiting++;
661                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
662                                     conf->resync_lock,
663                                     raid1_unplug(conf->mddev->queue));
664                 conf->nr_waiting--;
665         }
666         conf->nr_pending++;
667         spin_unlock_irq(&conf->resync_lock);
668 }
669
670 static void allow_barrier(conf_t *conf)
671 {
672         unsigned long flags;
673         spin_lock_irqsave(&conf->resync_lock, flags);
674         conf->nr_pending--;
675         spin_unlock_irqrestore(&conf->resync_lock, flags);
676         wake_up(&conf->wait_barrier);
677 }
678
679 static void freeze_array(conf_t *conf)
680 {
681         /* stop syncio and normal IO and wait for everything to
682          * go quite.
683          * We increment barrier and nr_waiting, and then
684          * wait until barrier+nr_pending match nr_queued+2
685          */
686         spin_lock_irq(&conf->resync_lock);
687         conf->barrier++;
688         conf->nr_waiting++;
689         wait_event_lock_irq(conf->wait_barrier,
690                             conf->barrier+conf->nr_pending == conf->nr_queued+2,
691                             conf->resync_lock,
692                             raid1_unplug(conf->mddev->queue));
693         spin_unlock_irq(&conf->resync_lock);
694 }
695 static void unfreeze_array(conf_t *conf)
696 {
697         /* reverse the effect of the freeze */
698         spin_lock_irq(&conf->resync_lock);
699         conf->barrier--;
700         conf->nr_waiting--;
701         wake_up(&conf->wait_barrier);
702         spin_unlock_irq(&conf->resync_lock);
703 }
704
705
706 /* duplicate the data pages for behind I/O */
707 static struct page **alloc_behind_pages(struct bio *bio)
708 {
709         int i;
710         struct bio_vec *bvec;
711         struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
712                                         GFP_NOIO);
713         if (unlikely(!pages))
714                 goto do_sync_io;
715
716         bio_for_each_segment(bvec, bio, i) {
717                 pages[i] = alloc_page(GFP_NOIO);
718                 if (unlikely(!pages[i]))
719                         goto do_sync_io;
720                 memcpy(kmap(pages[i]) + bvec->bv_offset,
721                         kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
722                 kunmap(pages[i]);
723                 kunmap(bvec->bv_page);
724         }
725
726         return pages;
727
728 do_sync_io:
729         if (pages)
730                 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
731                         put_page(pages[i]);
732         kfree(pages);
733         PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
734         return NULL;
735 }
736
737 static int make_request(request_queue_t *q, struct bio * bio)
738 {
739         mddev_t *mddev = q->queuedata;
740         conf_t *conf = mddev_to_conf(mddev);
741         mirror_info_t *mirror;
742         r1bio_t *r1_bio;
743         struct bio *read_bio;
744         int i, targets = 0, disks;
745         mdk_rdev_t *rdev;
746         struct bitmap *bitmap = mddev->bitmap;
747         unsigned long flags;
748         struct bio_list bl;
749         struct page **behind_pages = NULL;
750         const int rw = bio_data_dir(bio);
751         int do_barriers;
752
753         if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
754                 bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
755                 return 0;
756         }
757
758         /*
759          * Register the new request and wait if the reconstruction
760          * thread has put up a bar for new requests.
761          * Continue immediately if no resync is active currently.
762          */
763         md_write_start(mddev, bio); /* wait on superblock update early */
764
765         wait_barrier(conf);
766
767         disk_stat_inc(mddev->gendisk, ios[rw]);
768         disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
769
770         /*
771          * make_request() can abort the operation when READA is being
772          * used and no empty request is available.
773          *
774          */
775         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
776
777         r1_bio->master_bio = bio;
778         r1_bio->sectors = bio->bi_size >> 9;
779         r1_bio->state = 0;
780         r1_bio->mddev = mddev;
781         r1_bio->sector = bio->bi_sector;
782
783         if (rw == READ) {
784                 /*
785                  * read balancing logic:
786                  */
787                 int rdisk = read_balance(conf, r1_bio);
788
789                 if (rdisk < 0) {
790                         /* couldn't find anywhere to read from */
791                         raid_end_bio_io(r1_bio);
792                         return 0;
793                 }
794                 mirror = conf->mirrors + rdisk;
795
796                 r1_bio->read_disk = rdisk;
797
798                 read_bio = bio_clone(bio, GFP_NOIO);
799
800                 r1_bio->bios[rdisk] = read_bio;
801
802                 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
803                 read_bio->bi_bdev = mirror->rdev->bdev;
804                 read_bio->bi_end_io = raid1_end_read_request;
805                 read_bio->bi_rw = READ;
806                 read_bio->bi_private = r1_bio;
807
808                 generic_make_request(read_bio);
809                 return 0;
810         }
811
812         /*
813          * WRITE:
814          */
815         /* first select target devices under spinlock and
816          * inc refcount on their rdev.  Record them by setting
817          * bios[x] to bio
818          */
819         disks = conf->raid_disks;
820 #if 0
821         { static int first=1;
822         if (first) printk("First Write sector %llu disks %d\n",
823                           (unsigned long long)r1_bio->sector, disks);
824         first = 0;
825         }
826 #endif
827         rcu_read_lock();
828         for (i = 0;  i < disks; i++) {
829                 if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
830                     !test_bit(Faulty, &rdev->flags)) {
831                         atomic_inc(&rdev->nr_pending);
832                         if (test_bit(Faulty, &rdev->flags)) {
833                                 rdev_dec_pending(rdev, mddev);
834                                 r1_bio->bios[i] = NULL;
835                         } else
836                                 r1_bio->bios[i] = bio;
837                         targets++;
838                 } else
839                         r1_bio->bios[i] = NULL;
840         }
841         rcu_read_unlock();
842
843         BUG_ON(targets == 0); /* we never fail the last device */
844
845         if (targets < conf->raid_disks) {
846                 /* array is degraded, we will not clear the bitmap
847                  * on I/O completion (see raid1_end_write_request) */
848                 set_bit(R1BIO_Degraded, &r1_bio->state);
849         }
850
851         /* do behind I/O ? */
852         if (bitmap &&
853             atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
854             (behind_pages = alloc_behind_pages(bio)) != NULL)
855                 set_bit(R1BIO_BehindIO, &r1_bio->state);
856
857         atomic_set(&r1_bio->remaining, 0);
858         atomic_set(&r1_bio->behind_remaining, 0);
859
860         do_barriers = bio->bi_rw & BIO_RW_BARRIER;
861         if (do_barriers)
862                 set_bit(R1BIO_Barrier, &r1_bio->state);
863
864         bio_list_init(&bl);
865         for (i = 0; i < disks; i++) {
866                 struct bio *mbio;
867                 if (!r1_bio->bios[i])
868                         continue;
869
870                 mbio = bio_clone(bio, GFP_NOIO);
871                 r1_bio->bios[i] = mbio;
872
873                 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
874                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
875                 mbio->bi_end_io = raid1_end_write_request;
876                 mbio->bi_rw = WRITE | do_barriers;
877                 mbio->bi_private = r1_bio;
878
879                 if (behind_pages) {
880                         struct bio_vec *bvec;
881                         int j;
882
883                         /* Yes, I really want the '__' version so that
884                          * we clear any unused pointer in the io_vec, rather
885                          * than leave them unchanged.  This is important
886                          * because when we come to free the pages, we won't
887                          * know the originial bi_idx, so we just free
888                          * them all
889                          */
890                         __bio_for_each_segment(bvec, mbio, j, 0)
891                                 bvec->bv_page = behind_pages[j];
892                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
893                                 atomic_inc(&r1_bio->behind_remaining);
894                 }
895
896                 atomic_inc(&r1_bio->remaining);
897
898                 bio_list_add(&bl, mbio);
899         }
900         kfree(behind_pages); /* the behind pages are attached to the bios now */
901
902         bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
903                                 test_bit(R1BIO_BehindIO, &r1_bio->state));
904         spin_lock_irqsave(&conf->device_lock, flags);
905         bio_list_merge(&conf->pending_bio_list, &bl);
906         bio_list_init(&bl);
907
908         blk_plug_device(mddev->queue);
909         spin_unlock_irqrestore(&conf->device_lock, flags);
910
911 #if 0
912         while ((bio = bio_list_pop(&bl)) != NULL)
913                 generic_make_request(bio);
914 #endif
915
916         return 0;
917 }
918
919 static void status(struct seq_file *seq, mddev_t *mddev)
920 {
921         conf_t *conf = mddev_to_conf(mddev);
922         int i;
923
924         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
925                                                 conf->working_disks);
926         for (i = 0; i < conf->raid_disks; i++)
927                 seq_printf(seq, "%s",
928                               conf->mirrors[i].rdev &&
929                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
930         seq_printf(seq, "]");
931 }
932
933
934 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
935 {
936         char b[BDEVNAME_SIZE];
937         conf_t *conf = mddev_to_conf(mddev);
938
939         /*
940          * If it is not operational, then we have already marked it as dead
941          * else if it is the last working disks, ignore the error, let the
942          * next level up know.
943          * else mark the drive as failed
944          */
945         if (test_bit(In_sync, &rdev->flags)
946             && conf->working_disks == 1)
947                 /*
948                  * Don't fail the drive, act as though we were just a
949                  * normal single drive
950                  */
951                 return;
952         if (test_bit(In_sync, &rdev->flags)) {
953                 mddev->degraded++;
954                 conf->working_disks--;
955                 /*
956                  * if recovery is running, make sure it aborts.
957                  */
958                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
959         }
960         clear_bit(In_sync, &rdev->flags);
961         set_bit(Faulty, &rdev->flags);
962         mddev->sb_dirty = 1;
963         printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
964                 "       Operation continuing on %d devices\n",
965                 bdevname(rdev->bdev,b), conf->working_disks);
966 }
967
968 static void print_conf(conf_t *conf)
969 {
970         int i;
971         mirror_info_t *tmp;
972
973         printk("RAID1 conf printout:\n");
974         if (!conf) {
975                 printk("(!conf)\n");
976                 return;
977         }
978         printk(" --- wd:%d rd:%d\n", conf->working_disks,
979                 conf->raid_disks);
980
981         for (i = 0; i < conf->raid_disks; i++) {
982                 char b[BDEVNAME_SIZE];
983                 tmp = conf->mirrors + i;
984                 if (tmp->rdev)
985                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
986                                 i, !test_bit(In_sync, &tmp->rdev->flags), !test_bit(Faulty, &tmp->rdev->flags),
987                                 bdevname(tmp->rdev->bdev,b));
988         }
989 }
990
991 static void close_sync(conf_t *conf)
992 {
993         wait_barrier(conf);
994         allow_barrier(conf);
995
996         mempool_destroy(conf->r1buf_pool);
997         conf->r1buf_pool = NULL;
998 }
999
1000 static int raid1_spare_active(mddev_t *mddev)
1001 {
1002         int i;
1003         conf_t *conf = mddev->private;
1004         mirror_info_t *tmp;
1005
1006         /*
1007          * Find all failed disks within the RAID1 configuration 
1008          * and mark them readable
1009          */
1010         for (i = 0; i < conf->raid_disks; i++) {
1011                 tmp = conf->mirrors + i;
1012                 if (tmp->rdev 
1013                     && !test_bit(Faulty, &tmp->rdev->flags)
1014                     && !test_bit(In_sync, &tmp->rdev->flags)) {
1015                         conf->working_disks++;
1016                         mddev->degraded--;
1017                         set_bit(In_sync, &tmp->rdev->flags);
1018                 }
1019         }
1020
1021         print_conf(conf);
1022         return 0;
1023 }
1024
1025
1026 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1027 {
1028         conf_t *conf = mddev->private;
1029         int found = 0;
1030         int mirror = 0;
1031         mirror_info_t *p;
1032
1033         for (mirror=0; mirror < mddev->raid_disks; mirror++)
1034                 if ( !(p=conf->mirrors+mirror)->rdev) {
1035
1036                         blk_queue_stack_limits(mddev->queue,
1037                                                rdev->bdev->bd_disk->queue);
1038                         /* as we don't honour merge_bvec_fn, we must never risk
1039                          * violating it, so limit ->max_sector to one PAGE, as
1040                          * a one page request is never in violation.
1041                          */
1042                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1043                             mddev->queue->max_sectors > (PAGE_SIZE>>9))
1044                                 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1045
1046                         p->head_position = 0;
1047                         rdev->raid_disk = mirror;
1048                         found = 1;
1049                         /* As all devices are equivalent, we don't need a full recovery
1050                          * if this was recently any drive of the array
1051                          */
1052                         if (rdev->saved_raid_disk < 0)
1053                                 conf->fullsync = 1;
1054                         rcu_assign_pointer(p->rdev, rdev);
1055                         break;
1056                 }
1057
1058         print_conf(conf);
1059         return found;
1060 }
1061
1062 static int raid1_remove_disk(mddev_t *mddev, int number)
1063 {
1064         conf_t *conf = mddev->private;
1065         int err = 0;
1066         mdk_rdev_t *rdev;
1067         mirror_info_t *p = conf->mirrors+ number;
1068
1069         print_conf(conf);
1070         rdev = p->rdev;
1071         if (rdev) {
1072                 if (test_bit(In_sync, &rdev->flags) ||
1073                     atomic_read(&rdev->nr_pending)) {
1074                         err = -EBUSY;
1075                         goto abort;
1076                 }
1077                 p->rdev = NULL;
1078                 synchronize_rcu();
1079                 if (atomic_read(&rdev->nr_pending)) {
1080                         /* lost the race, try later */
1081                         err = -EBUSY;
1082                         p->rdev = rdev;
1083                 }
1084         }
1085 abort:
1086
1087         print_conf(conf);
1088         return err;
1089 }
1090
1091
1092 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1093 {
1094         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1095         int i;
1096
1097         if (bio->bi_size)
1098                 return 1;
1099
1100         for (i=r1_bio->mddev->raid_disks; i--; )
1101                 if (r1_bio->bios[i] == bio)
1102                         break;
1103         BUG_ON(i < 0);
1104         update_head_pos(i, r1_bio);
1105         /*
1106          * we have read a block, now it needs to be re-written,
1107          * or re-read if the read failed.
1108          * We don't do much here, just schedule handling by raid1d
1109          */
1110         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1111                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1112
1113         if (atomic_dec_and_test(&r1_bio->remaining))
1114                 reschedule_retry(r1_bio);
1115         return 0;
1116 }
1117
1118 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1119 {
1120         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1121         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1122         mddev_t *mddev = r1_bio->mddev;
1123         conf_t *conf = mddev_to_conf(mddev);
1124         int i;
1125         int mirror=0;
1126
1127         if (bio->bi_size)
1128                 return 1;
1129
1130         for (i = 0; i < conf->raid_disks; i++)
1131                 if (r1_bio->bios[i] == bio) {
1132                         mirror = i;
1133                         break;
1134                 }
1135         if (!uptodate)
1136                 md_error(mddev, conf->mirrors[mirror].rdev);
1137
1138         update_head_pos(mirror, r1_bio);
1139
1140         if (atomic_dec_and_test(&r1_bio->remaining)) {
1141                 md_done_sync(mddev, r1_bio->sectors, uptodate);
1142                 put_buf(r1_bio);
1143         }
1144         return 0;
1145 }
1146
1147 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1148 {
1149         conf_t *conf = mddev_to_conf(mddev);
1150         int i;
1151         int disks = conf->raid_disks;
1152         struct bio *bio, *wbio;
1153
1154         bio = r1_bio->bios[r1_bio->read_disk];
1155
1156
1157         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1158                 /* We have read all readable devices.  If we haven't
1159                  * got the block, then there is no hope left.
1160                  * If we have, then we want to do a comparison
1161                  * and skip the write if everything is the same.
1162                  * If any blocks failed to read, then we need to
1163                  * attempt an over-write
1164                  */
1165                 int primary;
1166                 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1167                         for (i=0; i<mddev->raid_disks; i++)
1168                                 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1169                                         md_error(mddev, conf->mirrors[i].rdev);
1170
1171                         md_done_sync(mddev, r1_bio->sectors, 1);
1172                         put_buf(r1_bio);
1173                         return;
1174                 }
1175                 for (primary=0; primary<mddev->raid_disks; primary++)
1176                         if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1177                             test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1178                                 r1_bio->bios[primary]->bi_end_io = NULL;
1179                                 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1180                                 break;
1181                         }
1182                 r1_bio->read_disk = primary;
1183                 for (i=0; i<mddev->raid_disks; i++)
1184                         if (r1_bio->bios[i]->bi_end_io == end_sync_read &&
1185                             test_bit(BIO_UPTODATE, &r1_bio->bios[i]->bi_flags)) {
1186                                 int j;
1187                                 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1188                                 struct bio *pbio = r1_bio->bios[primary];
1189                                 struct bio *sbio = r1_bio->bios[i];
1190                                 for (j = vcnt; j-- ; )
1191                                         if (memcmp(page_address(pbio->bi_io_vec[j].bv_page),
1192                                                    page_address(sbio->bi_io_vec[j].bv_page),
1193                                                    PAGE_SIZE))
1194                                                 break;
1195                                 if (j >= 0)
1196                                         mddev->resync_mismatches += r1_bio->sectors;
1197                                 if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
1198                                         sbio->bi_end_io = NULL;
1199                                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1200                                 } else {
1201                                         /* fixup the bio for reuse */
1202                                         sbio->bi_vcnt = vcnt;
1203                                         sbio->bi_size = r1_bio->sectors << 9;
1204                                         sbio->bi_idx = 0;
1205                                         sbio->bi_phys_segments = 0;
1206                                         sbio->bi_hw_segments = 0;
1207                                         sbio->bi_hw_front_size = 0;
1208                                         sbio->bi_hw_back_size = 0;
1209                                         sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1210                                         sbio->bi_flags |= 1 << BIO_UPTODATE;
1211                                         sbio->bi_next = NULL;
1212                                         sbio->bi_sector = r1_bio->sector +
1213                                                 conf->mirrors[i].rdev->data_offset;
1214                                         sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1215                                 }
1216                         }
1217         }
1218         if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1219                 /* ouch - failed to read all of that.
1220                  * Try some synchronous reads of other devices to get
1221                  * good data, much like with normal read errors.  Only
1222                  * read into the pages we already have so they we don't
1223                  * need to re-issue the read request.
1224                  * We don't need to freeze the array, because being in an
1225                  * active sync request, there is no normal IO, and
1226                  * no overlapping syncs.
1227                  */
1228                 sector_t sect = r1_bio->sector;
1229                 int sectors = r1_bio->sectors;
1230                 int idx = 0;
1231
1232                 while(sectors) {
1233                         int s = sectors;
1234                         int d = r1_bio->read_disk;
1235                         int success = 0;
1236                         mdk_rdev_t *rdev;
1237
1238                         if (s > (PAGE_SIZE>>9))
1239                                 s = PAGE_SIZE >> 9;
1240                         do {
1241                                 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1242                                         rdev = conf->mirrors[d].rdev;
1243                                         if (sync_page_io(rdev->bdev,
1244                                                          sect + rdev->data_offset,
1245                                                          s<<9,
1246                                                          bio->bi_io_vec[idx].bv_page,
1247                                                          READ)) {
1248                                                 success = 1;
1249                                                 break;
1250                                         }
1251                                 }
1252                                 d++;
1253                                 if (d == conf->raid_disks)
1254                                         d = 0;
1255                         } while (!success && d != r1_bio->read_disk);
1256
1257                         if (success) {
1258                                 int start = d;
1259                                 /* write it back and re-read */
1260                                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1261                                 while (d != r1_bio->read_disk) {
1262                                         if (d == 0)
1263                                                 d = conf->raid_disks;
1264                                         d--;
1265                                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1266                                                 continue;
1267                                         rdev = conf->mirrors[d].rdev;
1268                                         atomic_add(s, &rdev->corrected_errors);
1269                                         if (sync_page_io(rdev->bdev,
1270                                                          sect + rdev->data_offset,
1271                                                          s<<9,
1272                                                          bio->bi_io_vec[idx].bv_page,
1273                                                          WRITE) == 0)
1274                                                 md_error(mddev, rdev);
1275                                 }
1276                                 d = start;
1277                                 while (d != r1_bio->read_disk) {
1278                                         if (d == 0)
1279                                                 d = conf->raid_disks;
1280                                         d--;
1281                                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1282                                                 continue;
1283                                         rdev = conf->mirrors[d].rdev;
1284                                         if (sync_page_io(rdev->bdev,
1285                                                          sect + rdev->data_offset,
1286                                                          s<<9,
1287                                                          bio->bi_io_vec[idx].bv_page,
1288                                                          READ) == 0)
1289                                                 md_error(mddev, rdev);
1290                                 }
1291                         } else {
1292                                 char b[BDEVNAME_SIZE];
1293                                 /* Cannot read from anywhere, array is toast */
1294                                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1295                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1296                                        " for block %llu\n",
1297                                        bdevname(bio->bi_bdev,b),
1298                                        (unsigned long long)r1_bio->sector);
1299                                 md_done_sync(mddev, r1_bio->sectors, 0);
1300                                 put_buf(r1_bio);
1301                                 return;
1302                         }
1303                         sectors -= s;
1304                         sect += s;
1305                         idx ++;
1306                 }
1307         }
1308
1309         /*
1310          * schedule writes
1311          */
1312         atomic_set(&r1_bio->remaining, 1);
1313         for (i = 0; i < disks ; i++) {
1314                 wbio = r1_bio->bios[i];
1315                 if (wbio->bi_end_io == NULL ||
1316                     (wbio->bi_end_io == end_sync_read &&
1317                      (i == r1_bio->read_disk ||
1318                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1319                         continue;
1320
1321                 wbio->bi_rw = WRITE;
1322                 wbio->bi_end_io = end_sync_write;
1323                 atomic_inc(&r1_bio->remaining);
1324                 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1325
1326                 generic_make_request(wbio);
1327         }
1328
1329         if (atomic_dec_and_test(&r1_bio->remaining)) {
1330                 /* if we're here, all write(s) have completed, so clean up */
1331                 md_done_sync(mddev, r1_bio->sectors, 1);
1332                 put_buf(r1_bio);
1333         }
1334 }
1335
1336 /*
1337  * This is a kernel thread which:
1338  *
1339  *      1.      Retries failed read operations on working mirrors.
1340  *      2.      Updates the raid superblock when problems encounter.
1341  *      3.      Performs writes following reads for array syncronising.
1342  */
1343
1344 static void raid1d(mddev_t *mddev)
1345 {
1346         r1bio_t *r1_bio;
1347         struct bio *bio;
1348         unsigned long flags;
1349         conf_t *conf = mddev_to_conf(mddev);
1350         struct list_head *head = &conf->retry_list;
1351         int unplug=0;
1352         mdk_rdev_t *rdev;
1353
1354         md_check_recovery(mddev);
1355         
1356         for (;;) {
1357                 char b[BDEVNAME_SIZE];
1358                 spin_lock_irqsave(&conf->device_lock, flags);
1359
1360                 if (conf->pending_bio_list.head) {
1361                         bio = bio_list_get(&conf->pending_bio_list);
1362                         blk_remove_plug(mddev->queue);
1363                         spin_unlock_irqrestore(&conf->device_lock, flags);
1364                         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1365                         if (bitmap_unplug(mddev->bitmap) != 0)
1366                                 printk("%s: bitmap file write failed!\n", mdname(mddev));
1367
1368                         while (bio) { /* submit pending writes */
1369                                 struct bio *next = bio->bi_next;
1370                                 bio->bi_next = NULL;
1371                                 generic_make_request(bio);
1372                                 bio = next;
1373                         }
1374                         unplug = 1;
1375
1376                         continue;
1377                 }
1378
1379                 if (list_empty(head))
1380                         break;
1381                 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1382                 list_del(head->prev);
1383                 conf->nr_queued--;
1384                 spin_unlock_irqrestore(&conf->device_lock, flags);
1385
1386                 mddev = r1_bio->mddev;
1387                 conf = mddev_to_conf(mddev);
1388                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1389                         sync_request_write(mddev, r1_bio);
1390                         unplug = 1;
1391                 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1392                         /* some requests in the r1bio were BIO_RW_BARRIER
1393                          * requests which failed with -ENOTSUPP.  Hohumm..
1394                          * Better resubmit without the barrier.
1395                          * We know which devices to resubmit for, because
1396                          * all others have had their bios[] entry cleared.
1397                          */
1398                         int i;
1399                         clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1400                         clear_bit(R1BIO_Barrier, &r1_bio->state);
1401                         for (i=0; i < conf->raid_disks; i++)
1402                                 if (r1_bio->bios[i]) {
1403                                         struct bio_vec *bvec;
1404                                         int j;
1405
1406                                         bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1407                                         /* copy pages from the failed bio, as
1408                                          * this might be a write-behind device */
1409                                         __bio_for_each_segment(bvec, bio, j, 0)
1410                                                 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1411                                         bio_put(r1_bio->bios[i]);
1412                                         bio->bi_sector = r1_bio->sector +
1413                                                 conf->mirrors[i].rdev->data_offset;
1414                                         bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1415                                         bio->bi_end_io = raid1_end_write_request;
1416                                         bio->bi_rw = WRITE;
1417                                         bio->bi_private = r1_bio;
1418                                         r1_bio->bios[i] = bio;
1419                                         generic_make_request(bio);
1420                                 }
1421                 } else {
1422                         int disk;
1423
1424                         /* we got a read error. Maybe the drive is bad.  Maybe just
1425                          * the block and we can fix it.
1426                          * We freeze all other IO, and try reading the block from
1427                          * other devices.  When we find one, we re-write
1428                          * and check it that fixes the read error.
1429                          * This is all done synchronously while the array is
1430                          * frozen
1431                          */
1432                         sector_t sect = r1_bio->sector;
1433                         int sectors = r1_bio->sectors;
1434                         freeze_array(conf);
1435                         if (mddev->ro == 0) while(sectors) {
1436                                 int s = sectors;
1437                                 int d = r1_bio->read_disk;
1438                                 int success = 0;
1439
1440                                 if (s > (PAGE_SIZE>>9))
1441                                         s = PAGE_SIZE >> 9;
1442
1443                                 do {
1444                                         rdev = conf->mirrors[d].rdev;
1445                                         if (rdev &&
1446                                             test_bit(In_sync, &rdev->flags) &&
1447                                             sync_page_io(rdev->bdev,
1448                                                          sect + rdev->data_offset,
1449                                                          s<<9,
1450                                                          conf->tmppage, READ))
1451                                                 success = 1;
1452                                         else {
1453                                                 d++;
1454                                                 if (d == conf->raid_disks)
1455                                                         d = 0;
1456                                         }
1457                                 } while (!success && d != r1_bio->read_disk);
1458
1459                                 if (success) {
1460                                         /* write it back and re-read */
1461                                         int start = d;
1462                                         while (d != r1_bio->read_disk) {
1463                                                 if (d==0)
1464                                                         d = conf->raid_disks;
1465                                                 d--;
1466                                                 rdev = conf->mirrors[d].rdev;
1467                                                 atomic_add(s, &rdev->corrected_errors);
1468                                                 if (rdev &&
1469                                                     test_bit(In_sync, &rdev->flags)) {
1470                                                         if (sync_page_io(rdev->bdev,
1471                                                                          sect + rdev->data_offset,
1472                                                                          s<<9, conf->tmppage, WRITE) == 0)
1473                                                                 /* Well, this device is dead */
1474                                                                 md_error(mddev, rdev);
1475                                                 }
1476                                         }
1477                                         d = start;
1478                                         while (d != r1_bio->read_disk) {
1479                                                 if (d==0)
1480                                                         d = conf->raid_disks;
1481                                                 d--;
1482                                                 rdev = conf->mirrors[d].rdev;
1483                                                 if (rdev &&
1484                                                     test_bit(In_sync, &rdev->flags)) {
1485                                                         if (sync_page_io(rdev->bdev,
1486                                                                          sect + rdev->data_offset,
1487                                                                          s<<9, conf->tmppage, READ) == 0)
1488                                                                 /* Well, this device is dead */
1489                                                                 md_error(mddev, rdev);
1490                                                 }
1491                                         }
1492                                 } else {
1493                                         /* Cannot read from anywhere -- bye bye array */
1494                                         md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1495                                         break;
1496                                 }
1497                                 sectors -= s;
1498                                 sect += s;
1499                         }
1500
1501                         unfreeze_array(conf);
1502
1503                         bio = r1_bio->bios[r1_bio->read_disk];
1504                         if ((disk=read_balance(conf, r1_bio)) == -1) {
1505                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1506                                        " read error for block %llu\n",
1507                                        bdevname(bio->bi_bdev,b),
1508                                        (unsigned long long)r1_bio->sector);
1509                                 raid_end_bio_io(r1_bio);
1510                         } else {
1511                                 r1_bio->bios[r1_bio->read_disk] =
1512                                         mddev->ro ? IO_BLOCKED : NULL;
1513                                 r1_bio->read_disk = disk;
1514                                 bio_put(bio);
1515                                 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1516                                 r1_bio->bios[r1_bio->read_disk] = bio;
1517                                 rdev = conf->mirrors[disk].rdev;
1518                                 if (printk_ratelimit())
1519                                         printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1520                                                " another mirror\n",
1521                                                bdevname(rdev->bdev,b),
1522                                                (unsigned long long)r1_bio->sector);
1523                                 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1524                                 bio->bi_bdev = rdev->bdev;
1525                                 bio->bi_end_io = raid1_end_read_request;
1526                                 bio->bi_rw = READ;
1527                                 bio->bi_private = r1_bio;
1528                                 unplug = 1;
1529                                 generic_make_request(bio);
1530                         }
1531                 }
1532         }
1533         spin_unlock_irqrestore(&conf->device_lock, flags);
1534         if (unplug)
1535                 unplug_slaves(mddev);
1536 }
1537
1538
1539 static int init_resync(conf_t *conf)
1540 {
1541         int buffs;
1542
1543         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1544         if (conf->r1buf_pool)
1545                 BUG();
1546         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1547                                           conf->poolinfo);
1548         if (!conf->r1buf_pool)
1549                 return -ENOMEM;
1550         conf->next_resync = 0;
1551         return 0;
1552 }
1553
1554 /*
1555  * perform a "sync" on one "block"
1556  *
1557  * We need to make sure that no normal I/O request - particularly write
1558  * requests - conflict with active sync requests.
1559  *
1560  * This is achieved by tracking pending requests and a 'barrier' concept
1561  * that can be installed to exclude normal IO requests.
1562  */
1563
1564 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1565 {
1566         conf_t *conf = mddev_to_conf(mddev);
1567         r1bio_t *r1_bio;
1568         struct bio *bio;
1569         sector_t max_sector, nr_sectors;
1570         int disk = -1;
1571         int i;
1572         int wonly = -1;
1573         int write_targets = 0, read_targets = 0;
1574         int sync_blocks;
1575         int still_degraded = 0;
1576
1577         if (!conf->r1buf_pool)
1578         {
1579 /*
1580                 printk("sync start - bitmap %p\n", mddev->bitmap);
1581 */
1582                 if (init_resync(conf))
1583                         return 0;
1584         }
1585
1586         max_sector = mddev->size << 1;
1587         if (sector_nr >= max_sector) {
1588                 /* If we aborted, we need to abort the
1589                  * sync on the 'current' bitmap chunk (there will
1590                  * only be one in raid1 resync.
1591                  * We can find the current addess in mddev->curr_resync
1592                  */
1593                 if (mddev->curr_resync < max_sector) /* aborted */
1594                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1595                                                 &sync_blocks, 1);
1596                 else /* completed sync */
1597                         conf->fullsync = 0;
1598
1599                 bitmap_close_sync(mddev->bitmap);
1600                 close_sync(conf);
1601                 return 0;
1602         }
1603
1604         /* before building a request, check if we can skip these blocks..
1605          * This call the bitmap_start_sync doesn't actually record anything
1606          */
1607         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1608             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1609                 /* We can skip this block, and probably several more */
1610                 *skipped = 1;
1611                 return sync_blocks;
1612         }
1613         /*
1614          * If there is non-resync activity waiting for a turn,
1615          * and resync is going fast enough,
1616          * then let it though before starting on this new sync request.
1617          */
1618         if (!go_faster && conf->nr_waiting)
1619                 msleep_interruptible(1000);
1620
1621         raise_barrier(conf);
1622
1623         conf->next_resync = sector_nr;
1624
1625         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1626         rcu_read_lock();
1627         /*
1628          * If we get a correctably read error during resync or recovery,
1629          * we might want to read from a different device.  So we
1630          * flag all drives that could conceivably be read from for READ,
1631          * and any others (which will be non-In_sync devices) for WRITE.
1632          * If a read fails, we try reading from something else for which READ
1633          * is OK.
1634          */
1635
1636         r1_bio->mddev = mddev;
1637         r1_bio->sector = sector_nr;
1638         r1_bio->state = 0;
1639         set_bit(R1BIO_IsSync, &r1_bio->state);
1640
1641         for (i=0; i < conf->raid_disks; i++) {
1642                 mdk_rdev_t *rdev;
1643                 bio = r1_bio->bios[i];
1644
1645                 /* take from bio_init */
1646                 bio->bi_next = NULL;
1647                 bio->bi_flags |= 1 << BIO_UPTODATE;
1648                 bio->bi_rw = 0;
1649                 bio->bi_vcnt = 0;
1650                 bio->bi_idx = 0;
1651                 bio->bi_phys_segments = 0;
1652                 bio->bi_hw_segments = 0;
1653                 bio->bi_size = 0;
1654                 bio->bi_end_io = NULL;
1655                 bio->bi_private = NULL;
1656
1657                 rdev = rcu_dereference(conf->mirrors[i].rdev);
1658                 if (rdev == NULL ||
1659                            test_bit(Faulty, &rdev->flags)) {
1660                         still_degraded = 1;
1661                         continue;
1662                 } else if (!test_bit(In_sync, &rdev->flags)) {
1663                         bio->bi_rw = WRITE;
1664                         bio->bi_end_io = end_sync_write;
1665                         write_targets ++;
1666                 } else {
1667                         /* may need to read from here */
1668                         bio->bi_rw = READ;
1669                         bio->bi_end_io = end_sync_read;
1670                         if (test_bit(WriteMostly, &rdev->flags)) {
1671                                 if (wonly < 0)
1672                                         wonly = i;
1673                         } else {
1674                                 if (disk < 0)
1675                                         disk = i;
1676                         }
1677                         read_targets++;
1678                 }
1679                 atomic_inc(&rdev->nr_pending);
1680                 bio->bi_sector = sector_nr + rdev->data_offset;
1681                 bio->bi_bdev = rdev->bdev;
1682                 bio->bi_private = r1_bio;
1683         }
1684         rcu_read_unlock();
1685         if (disk < 0)
1686                 disk = wonly;
1687         r1_bio->read_disk = disk;
1688
1689         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1690                 /* extra read targets are also write targets */
1691                 write_targets += read_targets-1;
1692
1693         if (write_targets == 0 || read_targets == 0) {
1694                 /* There is nowhere to write, so all non-sync
1695                  * drives must be failed - so we are finished
1696                  */
1697                 sector_t rv = max_sector - sector_nr;
1698                 *skipped = 1;
1699                 put_buf(r1_bio);
1700                 return rv;
1701         }
1702
1703         nr_sectors = 0;
1704         sync_blocks = 0;
1705         do {
1706                 struct page *page;
1707                 int len = PAGE_SIZE;
1708                 if (sector_nr + (len>>9) > max_sector)
1709                         len = (max_sector - sector_nr) << 9;
1710                 if (len == 0)
1711                         break;
1712                 if (sync_blocks == 0) {
1713                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1714                                                &sync_blocks, still_degraded) &&
1715                             !conf->fullsync &&
1716                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1717                                 break;
1718                         if (sync_blocks < (PAGE_SIZE>>9))
1719                                 BUG();
1720                         if (len > (sync_blocks<<9))
1721                                 len = sync_blocks<<9;
1722                 }
1723
1724                 for (i=0 ; i < conf->raid_disks; i++) {
1725                         bio = r1_bio->bios[i];
1726                         if (bio->bi_end_io) {
1727                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1728                                 if (bio_add_page(bio, page, len, 0) == 0) {
1729                                         /* stop here */
1730                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1731                                         while (i > 0) {
1732                                                 i--;
1733                                                 bio = r1_bio->bios[i];
1734                                                 if (bio->bi_end_io==NULL)
1735                                                         continue;
1736                                                 /* remove last page from this bio */
1737                                                 bio->bi_vcnt--;
1738                                                 bio->bi_size -= len;
1739                                                 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1740                                         }
1741                                         goto bio_full;
1742                                 }
1743                         }
1744                 }
1745                 nr_sectors += len>>9;
1746                 sector_nr += len>>9;
1747                 sync_blocks -= (len>>9);
1748         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1749  bio_full:
1750         r1_bio->sectors = nr_sectors;
1751
1752         /* For a user-requested sync, we read all readable devices and do a
1753          * compare
1754          */
1755         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1756                 atomic_set(&r1_bio->remaining, read_targets);
1757                 for (i=0; i<conf->raid_disks; i++) {
1758                         bio = r1_bio->bios[i];
1759                         if (bio->bi_end_io == end_sync_read) {
1760                                 md_sync_acct(conf->mirrors[i].rdev->bdev, nr_sectors);
1761                                 generic_make_request(bio);
1762                         }
1763                 }
1764         } else {
1765                 atomic_set(&r1_bio->remaining, 1);
1766                 bio = r1_bio->bios[r1_bio->read_disk];
1767                 md_sync_acct(conf->mirrors[r1_bio->read_disk].rdev->bdev,
1768                              nr_sectors);
1769                 generic_make_request(bio);
1770
1771         }
1772
1773         return nr_sectors;
1774 }
1775
1776 static int run(mddev_t *mddev)
1777 {
1778         conf_t *conf;
1779         int i, j, disk_idx;
1780         mirror_info_t *disk;
1781         mdk_rdev_t *rdev;
1782         struct list_head *tmp;
1783
1784         if (mddev->level != 1) {
1785                 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1786                        mdname(mddev), mddev->level);
1787                 goto out;
1788         }
1789         /*
1790          * copy the already verified devices into our private RAID1
1791          * bookkeeping area. [whatever we allocate in run(),
1792          * should be freed in stop()]
1793          */
1794         conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1795         mddev->private = conf;
1796         if (!conf)
1797                 goto out_no_mem;
1798
1799         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1800                                  GFP_KERNEL);
1801         if (!conf->mirrors)
1802                 goto out_no_mem;
1803
1804         conf->tmppage = alloc_page(GFP_KERNEL);
1805         if (!conf->tmppage)
1806                 goto out_no_mem;
1807
1808         conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1809         if (!conf->poolinfo)
1810                 goto out_no_mem;
1811         conf->poolinfo->mddev = mddev;
1812         conf->poolinfo->raid_disks = mddev->raid_disks;
1813         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1814                                           r1bio_pool_free,
1815                                           conf->poolinfo);
1816         if (!conf->r1bio_pool)
1817                 goto out_no_mem;
1818
1819         ITERATE_RDEV(mddev, rdev, tmp) {
1820                 disk_idx = rdev->raid_disk;
1821                 if (disk_idx >= mddev->raid_disks
1822                     || disk_idx < 0)
1823                         continue;
1824                 disk = conf->mirrors + disk_idx;
1825
1826                 disk->rdev = rdev;
1827
1828                 blk_queue_stack_limits(mddev->queue,
1829                                        rdev->bdev->bd_disk->queue);
1830                 /* as we don't honour merge_bvec_fn, we must never risk
1831                  * violating it, so limit ->max_sector to one PAGE, as
1832                  * a one page request is never in violation.
1833                  */
1834                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1835                     mddev->queue->max_sectors > (PAGE_SIZE>>9))
1836                         blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1837
1838                 disk->head_position = 0;
1839                 if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags))
1840                         conf->working_disks++;
1841         }
1842         conf->raid_disks = mddev->raid_disks;
1843         conf->mddev = mddev;
1844         spin_lock_init(&conf->device_lock);
1845         INIT_LIST_HEAD(&conf->retry_list);
1846         if (conf->working_disks == 1)
1847                 mddev->recovery_cp = MaxSector;
1848
1849         spin_lock_init(&conf->resync_lock);
1850         init_waitqueue_head(&conf->wait_barrier);
1851
1852         bio_list_init(&conf->pending_bio_list);
1853         bio_list_init(&conf->flushing_bio_list);
1854
1855         if (!conf->working_disks) {
1856                 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1857                         mdname(mddev));
1858                 goto out_free_conf;
1859         }
1860
1861         mddev->degraded = 0;
1862         for (i = 0; i < conf->raid_disks; i++) {
1863
1864                 disk = conf->mirrors + i;
1865
1866                 if (!disk->rdev) {
1867                         disk->head_position = 0;
1868                         mddev->degraded++;
1869                 }
1870         }
1871
1872         /*
1873          * find the first working one and use it as a starting point
1874          * to read balancing.
1875          */
1876         for (j = 0; j < conf->raid_disks &&
1877                      (!conf->mirrors[j].rdev ||
1878                       !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
1879                 /* nothing */;
1880         conf->last_used = j;
1881
1882
1883         mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1884         if (!mddev->thread) {
1885                 printk(KERN_ERR
1886                        "raid1: couldn't allocate thread for %s\n",
1887                        mdname(mddev));
1888                 goto out_free_conf;
1889         }
1890
1891         printk(KERN_INFO 
1892                 "raid1: raid set %s active with %d out of %d mirrors\n",
1893                 mdname(mddev), mddev->raid_disks - mddev->degraded, 
1894                 mddev->raid_disks);
1895         /*
1896          * Ok, everything is just fine now
1897          */
1898         mddev->array_size = mddev->size;
1899
1900         mddev->queue->unplug_fn = raid1_unplug;
1901         mddev->queue->issue_flush_fn = raid1_issue_flush;
1902
1903         return 0;
1904
1905 out_no_mem:
1906         printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1907                mdname(mddev));
1908
1909 out_free_conf:
1910         if (conf) {
1911                 if (conf->r1bio_pool)
1912                         mempool_destroy(conf->r1bio_pool);
1913                 kfree(conf->mirrors);
1914                 safe_put_page(conf->tmppage);
1915                 kfree(conf->poolinfo);
1916                 kfree(conf);
1917                 mddev->private = NULL;
1918         }
1919 out:
1920         return -EIO;
1921 }
1922
1923 static int stop(mddev_t *mddev)
1924 {
1925         conf_t *conf = mddev_to_conf(mddev);
1926         struct bitmap *bitmap = mddev->bitmap;
1927         int behind_wait = 0;
1928
1929         /* wait for behind writes to complete */
1930         while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
1931                 behind_wait++;
1932                 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
1933                 set_current_state(TASK_UNINTERRUPTIBLE);
1934                 schedule_timeout(HZ); /* wait a second */
1935                 /* need to kick something here to make sure I/O goes? */
1936         }
1937
1938         md_unregister_thread(mddev->thread);
1939         mddev->thread = NULL;
1940         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1941         if (conf->r1bio_pool)
1942                 mempool_destroy(conf->r1bio_pool);
1943         kfree(conf->mirrors);
1944         kfree(conf->poolinfo);
1945         kfree(conf);
1946         mddev->private = NULL;
1947         return 0;
1948 }
1949
1950 static int raid1_resize(mddev_t *mddev, sector_t sectors)
1951 {
1952         /* no resync is happening, and there is enough space
1953          * on all devices, so we can resize.
1954          * We need to make sure resync covers any new space.
1955          * If the array is shrinking we should possibly wait until
1956          * any io in the removed space completes, but it hardly seems
1957          * worth it.
1958          */
1959         mddev->array_size = sectors>>1;
1960         set_capacity(mddev->gendisk, mddev->array_size << 1);
1961         mddev->changed = 1;
1962         if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
1963                 mddev->recovery_cp = mddev->size << 1;
1964                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1965         }
1966         mddev->size = mddev->array_size;
1967         mddev->resync_max_sectors = sectors;
1968         return 0;
1969 }
1970
1971 static int raid1_reshape(mddev_t *mddev, int raid_disks)
1972 {
1973         /* We need to:
1974          * 1/ resize the r1bio_pool
1975          * 2/ resize conf->mirrors
1976          *
1977          * We allocate a new r1bio_pool if we can.
1978          * Then raise a device barrier and wait until all IO stops.
1979          * Then resize conf->mirrors and swap in the new r1bio pool.
1980          *
1981          * At the same time, we "pack" the devices so that all the missing
1982          * devices have the higher raid_disk numbers.
1983          */
1984         mempool_t *newpool, *oldpool;
1985         struct pool_info *newpoolinfo;
1986         mirror_info_t *newmirrors;
1987         conf_t *conf = mddev_to_conf(mddev);
1988         int cnt;
1989
1990         int d, d2;
1991
1992         if (raid_disks < conf->raid_disks) {
1993                 cnt=0;
1994                 for (d= 0; d < conf->raid_disks; d++)
1995                         if (conf->mirrors[d].rdev)
1996                                 cnt++;
1997                 if (cnt > raid_disks)
1998                         return -EBUSY;
1999         }
2000
2001         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2002         if (!newpoolinfo)
2003                 return -ENOMEM;
2004         newpoolinfo->mddev = mddev;
2005         newpoolinfo->raid_disks = raid_disks;
2006
2007         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2008                                  r1bio_pool_free, newpoolinfo);
2009         if (!newpool) {
2010                 kfree(newpoolinfo);
2011                 return -ENOMEM;
2012         }
2013         newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2014         if (!newmirrors) {
2015                 kfree(newpoolinfo);
2016                 mempool_destroy(newpool);
2017                 return -ENOMEM;
2018         }
2019
2020         raise_barrier(conf);
2021
2022         /* ok, everything is stopped */
2023         oldpool = conf->r1bio_pool;
2024         conf->r1bio_pool = newpool;
2025
2026         for (d=d2=0; d < conf->raid_disks; d++)
2027                 if (conf->mirrors[d].rdev) {
2028                         conf->mirrors[d].rdev->raid_disk = d2;
2029                         newmirrors[d2++].rdev = conf->mirrors[d].rdev;
2030                 }
2031         kfree(conf->mirrors);
2032         conf->mirrors = newmirrors;
2033         kfree(conf->poolinfo);
2034         conf->poolinfo = newpoolinfo;
2035
2036         mddev->degraded += (raid_disks - conf->raid_disks);
2037         conf->raid_disks = mddev->raid_disks = raid_disks;
2038
2039         conf->last_used = 0; /* just make sure it is in-range */
2040         lower_barrier(conf);
2041
2042         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2043         md_wakeup_thread(mddev->thread);
2044
2045         mempool_destroy(oldpool);
2046         return 0;
2047 }
2048
2049 static void raid1_quiesce(mddev_t *mddev, int state)
2050 {
2051         conf_t *conf = mddev_to_conf(mddev);
2052
2053         switch(state) {
2054         case 1:
2055                 raise_barrier(conf);
2056                 break;
2057         case 0:
2058                 lower_barrier(conf);
2059                 break;
2060         }
2061 }
2062
2063
2064 static struct mdk_personality raid1_personality =
2065 {
2066         .name           = "raid1",
2067         .level          = 1,
2068         .owner          = THIS_MODULE,
2069         .make_request   = make_request,
2070         .run            = run,
2071         .stop           = stop,
2072         .status         = status,
2073         .error_handler  = error,
2074         .hot_add_disk   = raid1_add_disk,
2075         .hot_remove_disk= raid1_remove_disk,
2076         .spare_active   = raid1_spare_active,
2077         .sync_request   = sync_request,
2078         .resize         = raid1_resize,
2079         .reshape        = raid1_reshape,
2080         .quiesce        = raid1_quiesce,
2081 };
2082
2083 static int __init raid_init(void)
2084 {
2085         return register_md_personality(&raid1_personality);
2086 }
2087
2088 static void raid_exit(void)
2089 {
2090         unregister_md_personality(&raid1_personality);
2091 }
2092
2093 module_init(raid_init);
2094 module_exit(raid_exit);
2095 MODULE_LICENSE("GPL");
2096 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2097 MODULE_ALIAS("md-raid1");
2098 MODULE_ALIAS("md-level-1");