5 #include <linux/types.h>
6 #include <linux/init.h>
7 #include <linux/stringify.h>
8 #include <linux/lguest.h>
9 #include <linux/lguest_launcher.h>
10 #include <linux/wait.h>
11 #include <linux/hrtimer.h>
12 #include <linux/err.h>
14 #include <asm/lguest.h>
16 void free_pagetables(void);
17 int init_pagetables(struct page **switcher_page, unsigned int pages);
25 /* We have two pages shared with guests, per cpu. */
28 /* This is the stack page mapped rw in guest */
29 char spare[PAGE_SIZE - sizeof(struct lguest_regs)];
30 struct lguest_regs regs;
32 /* This is the host state & guest descriptor page, ro in guest */
33 struct lguest_ro_state state;
34 } __attribute__((aligned(PAGE_SIZE)));
38 #define CHANGED_GDT_TLS 4 /* Actually a subset of CHANGED_GDT */
46 struct task_struct *tsk;
47 struct mm_struct *mm; /* == tsk->mm, but that becomes NULL on exit */
54 /* Bitmap of what has changed: see CHANGED_* above. */
57 unsigned long pending_notify; /* pfn from LHCALL_NOTIFY */
59 /* At end of a page shared mapped over lguest_pages in guest. */
60 unsigned long regs_page;
61 struct lguest_regs *regs;
63 struct lguest_pages *last_pages;
65 int cpu_pgd; /* which pgd this cpu is currently using */
67 /* If a hypercall was asked for, this points to the arguments. */
68 struct hcall_args *hcall;
71 /* Virtual clock device */
74 /* Did the Guest tell us to halt? */
77 /* Pending virtual interrupts */
78 DECLARE_BITMAP(irqs_pending, LGUEST_IRQS);
80 struct lg_cpu_arch arch;
88 struct lg_eventfd_map {
90 struct lg_eventfd map[];
93 /* The private info the thread maintains about the guest. */
96 struct lguest_data __user *lguest_data;
97 struct lg_cpu cpus[NR_CPUS];
101 /* This provides the offset to the base of guest-physical
102 * memory in the Launcher. */
103 void __user *mem_base;
104 unsigned long kernel_address;
106 struct pgdir pgdirs[4];
108 unsigned long noirq_start, noirq_end;
110 unsigned int stack_pages;
113 struct lg_eventfd_map *eventfds;
119 extern struct mutex lguest_lock;
122 bool lguest_address_ok(const struct lguest *lg,
123 unsigned long addr, unsigned long len);
124 void __lgread(struct lg_cpu *, void *, unsigned long, unsigned);
125 void __lgwrite(struct lg_cpu *, unsigned long, const void *, unsigned);
127 /*H:035 Using memory-copy operations like that is usually inconvient, so we
128 * have the following helper macros which read and write a specific type (often
131 * This reads into a variable of the given type then returns that. */
132 #define lgread(cpu, addr, type) \
133 ({ type _v; __lgread((cpu), &_v, (addr), sizeof(_v)); _v; })
135 /* This checks that the variable is of the given type, then writes it out. */
136 #define lgwrite(cpu, addr, type, val) \
138 typecheck(type, val); \
139 __lgwrite((cpu), (addr), &(val), sizeof(val)); \
141 /* (end of memory access helper routines) :*/
143 int run_guest(struct lg_cpu *cpu, unsigned long __user *user);
145 /* Helper macros to obtain the first 12 or the last 20 bits, this is only the
146 * first step in the migration to the kernel types. pte_pfn is already defined
148 #define pgd_flags(x) (pgd_val(x) & ~PAGE_MASK)
149 #define pgd_pfn(x) (pgd_val(x) >> PAGE_SHIFT)
150 #define pmd_flags(x) (pmd_val(x) & ~PAGE_MASK)
151 #define pmd_pfn(x) (pmd_val(x) >> PAGE_SHIFT)
153 /* interrupts_and_traps.c: */
154 unsigned int interrupt_pending(struct lg_cpu *cpu, bool *more);
155 void try_deliver_interrupt(struct lg_cpu *cpu, unsigned int irq, bool more);
156 void set_interrupt(struct lg_cpu *cpu, unsigned int irq);
157 bool deliver_trap(struct lg_cpu *cpu, unsigned int num);
158 void load_guest_idt_entry(struct lg_cpu *cpu, unsigned int i,
160 void guest_set_stack(struct lg_cpu *cpu, u32 seg, u32 esp, unsigned int pages);
161 void pin_stack_pages(struct lg_cpu *cpu);
162 void setup_default_idt_entries(struct lguest_ro_state *state,
163 const unsigned long *def);
164 void copy_traps(const struct lg_cpu *cpu, struct desc_struct *idt,
165 const unsigned long *def);
166 void guest_set_clockevent(struct lg_cpu *cpu, unsigned long delta);
167 bool send_notify_to_eventfd(struct lg_cpu *cpu);
168 void init_clockdev(struct lg_cpu *cpu);
169 bool check_syscall_vector(struct lguest *lg);
170 int init_interrupts(void);
171 void free_interrupts(void);
174 void setup_default_gdt_entries(struct lguest_ro_state *state);
175 void setup_guest_gdt(struct lg_cpu *cpu);
176 void load_guest_gdt_entry(struct lg_cpu *cpu, unsigned int i,
178 void guest_load_tls(struct lg_cpu *cpu, unsigned long tls_array);
179 void copy_gdt(const struct lg_cpu *cpu, struct desc_struct *gdt);
180 void copy_gdt_tls(const struct lg_cpu *cpu, struct desc_struct *gdt);
183 int init_guest_pagetable(struct lguest *lg);
184 void free_guest_pagetable(struct lguest *lg);
185 void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable);
186 void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 i);
187 #ifdef CONFIG_X86_PAE
188 void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 i);
190 void guest_pagetable_clear_all(struct lg_cpu *cpu);
191 void guest_pagetable_flush_user(struct lg_cpu *cpu);
192 void guest_set_pte(struct lg_cpu *cpu, unsigned long gpgdir,
193 unsigned long vaddr, pte_t val);
194 void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages);
195 bool demand_page(struct lg_cpu *cpu, unsigned long cr2, int errcode);
196 void pin_page(struct lg_cpu *cpu, unsigned long vaddr);
197 unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr);
198 void page_table_guest_data_init(struct lg_cpu *cpu);
201 void lguest_arch_host_init(void);
202 void lguest_arch_host_fini(void);
203 void lguest_arch_run_guest(struct lg_cpu *cpu);
204 void lguest_arch_handle_trap(struct lg_cpu *cpu);
205 int lguest_arch_init_hypercalls(struct lg_cpu *cpu);
206 int lguest_arch_do_hcall(struct lg_cpu *cpu, struct hcall_args *args);
207 void lguest_arch_setup_regs(struct lg_cpu *cpu, unsigned long start);
209 /* <arch>/switcher.S: */
210 extern char start_switcher_text[], end_switcher_text[], switch_to_guest[];
213 int lguest_device_init(void);
214 void lguest_device_remove(void);
217 void do_hypercalls(struct lg_cpu *cpu);
218 void write_timestamp(struct lg_cpu *cpu);
221 * Let's step aside for the moment, to study one important routine that's used
222 * widely in the Host code.
224 * There are many cases where the Guest can do something invalid, like pass crap
225 * to a hypercall. Since only the Guest kernel can make hypercalls, it's quite
226 * acceptable to simply terminate the Guest and give the Launcher a nicely
227 * formatted reason. It's also simpler for the Guest itself, which doesn't
228 * need to check most hypercalls for "success"; if you're still running, it
231 * Once this is called, the Guest will never run again, so most Host code can
232 * call this then continue as if nothing had happened. This means many
233 * functions don't have to explicitly return an error code, which keeps the
236 * It also means that this can be called more than once: only the first one is
237 * remembered. The only trick is that we still need to kill the Guest even if
238 * we can't allocate memory to store the reason. Linux has a neat way of
239 * packing error codes into invalid pointers, so we use that here.
241 * Like any macro which uses an "if", it is safely wrapped in a run-once "do {
244 #define kill_guest(cpu, fmt...) \
246 if (!(cpu)->lg->dead) { \
247 (cpu)->lg->dead = kasprintf(GFP_ATOMIC, fmt); \
248 if (!(cpu)->lg->dead) \
249 (cpu)->lg->dead = ERR_PTR(-ENOMEM); \
252 /* (End of aside) :*/
254 #endif /* __ASSEMBLY__ */
255 #endif /* _LGUEST_H */