1 /* linux/net/ipv4/arp.c
3 * Copyright (C) 1994 by Florian La Roche
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
16 * Alan Cox : Removed the Ethernet assumptions in
18 * Alan Cox : Fixed some small errors in the ARP
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
75 #include <linux/module.h>
76 #include <linux/types.h>
77 #include <linux/string.h>
78 #include <linux/kernel.h>
79 #include <linux/capability.h>
80 #include <linux/socket.h>
81 #include <linux/sockios.h>
82 #include <linux/errno.h>
85 #include <linux/inet.h>
86 #include <linux/inetdevice.h>
87 #include <linux/netdevice.h>
88 #include <linux/etherdevice.h>
89 #include <linux/fddidevice.h>
90 #include <linux/if_arp.h>
91 #include <linux/trdevice.h>
92 #include <linux/skbuff.h>
93 #include <linux/proc_fs.h>
94 #include <linux/seq_file.h>
95 #include <linux/stat.h>
96 #include <linux/init.h>
97 #include <linux/net.h>
98 #include <linux/rcupdate.h>
99 #include <linux/jhash.h>
101 #include <linux/sysctl.h>
104 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/route.h>
108 #include <net/protocol.h>
110 #include <net/sock.h>
112 #include <net/ax25.h>
113 #include <net/netrom.h>
114 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
115 #include <net/atmclip.h>
116 struct neigh_table *clip_tbl_hook;
119 #include <asm/system.h>
120 #include <asm/uaccess.h>
122 #include <linux/netfilter_arp.h>
125 * Interface to generic neighbour cache.
127 static u32 arp_hash(const void *pkey, const struct net_device *dev);
128 static int arp_constructor(struct neighbour *neigh);
129 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
130 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
131 static void parp_redo(struct sk_buff *skb);
133 static struct neigh_ops arp_generic_ops = {
135 .solicit = arp_solicit,
136 .error_report = arp_error_report,
137 .output = neigh_resolve_output,
138 .connected_output = neigh_connected_output,
139 .hh_output = dev_queue_xmit,
140 .queue_xmit = dev_queue_xmit,
143 static struct neigh_ops arp_hh_ops = {
145 .solicit = arp_solicit,
146 .error_report = arp_error_report,
147 .output = neigh_resolve_output,
148 .connected_output = neigh_resolve_output,
149 .hh_output = dev_queue_xmit,
150 .queue_xmit = dev_queue_xmit,
153 static struct neigh_ops arp_direct_ops = {
155 .output = dev_queue_xmit,
156 .connected_output = dev_queue_xmit,
157 .hh_output = dev_queue_xmit,
158 .queue_xmit = dev_queue_xmit,
161 struct neigh_ops arp_broken_ops = {
163 .solicit = arp_solicit,
164 .error_report = arp_error_report,
165 .output = neigh_compat_output,
166 .connected_output = neigh_compat_output,
167 .hh_output = dev_queue_xmit,
168 .queue_xmit = dev_queue_xmit,
171 struct neigh_table arp_tbl = {
173 .entry_size = sizeof(struct neighbour) + 4,
176 .constructor = arp_constructor,
177 .proxy_redo = parp_redo,
181 .base_reachable_time = 30 * HZ,
182 .retrans_time = 1 * HZ,
183 .gc_staletime = 60 * HZ,
184 .reachable_time = 30 * HZ,
185 .delay_probe_time = 5 * HZ,
189 .anycast_delay = 1 * HZ,
190 .proxy_delay = (8 * HZ) / 10,
194 .gc_interval = 30 * HZ,
200 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
206 ip_eth_mc_map(addr, haddr);
208 case ARPHRD_IEEE802_TR:
209 ip_tr_mc_map(addr, haddr);
211 case ARPHRD_INFINIBAND:
212 ip_ib_mc_map(addr, dev->broadcast, haddr);
216 memcpy(haddr, dev->broadcast, dev->addr_len);
224 static u32 arp_hash(const void *pkey, const struct net_device *dev)
226 return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
229 static int arp_constructor(struct neighbour *neigh)
231 __be32 addr = *(__be32*)neigh->primary_key;
232 struct net_device *dev = neigh->dev;
233 struct in_device *in_dev;
234 struct neigh_parms *parms;
237 in_dev = __in_dev_get_rcu(dev);
238 if (in_dev == NULL) {
243 neigh->type = inet_addr_type(dev_net(dev), addr);
245 parms = in_dev->arp_parms;
246 __neigh_parms_put(neigh->parms);
247 neigh->parms = neigh_parms_clone(parms);
250 if (!dev->header_ops) {
251 neigh->nud_state = NUD_NOARP;
252 neigh->ops = &arp_direct_ops;
253 neigh->output = neigh->ops->queue_xmit;
255 /* Good devices (checked by reading texts, but only Ethernet is
258 ARPHRD_ETHER: (ethernet, apfddi)
261 ARPHRD_METRICOM: (strip)
265 ARPHRD_IPDDP will also work, if author repairs it.
266 I did not it, because this driver does not work even
271 /* So... these "amateur" devices are hopeless.
272 The only thing, that I can say now:
273 It is very sad that we need to keep ugly obsolete
274 code to make them happy.
276 They should be moved to more reasonable state, now
277 they use rebuild_header INSTEAD OF hard_start_xmit!!!
278 Besides that, they are sort of out of date
279 (a lot of redundant clones/copies, useless in 2.1),
280 I wonder why people believe that they work.
286 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
288 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
291 neigh->ops = &arp_broken_ops;
292 neigh->output = neigh->ops->output;
297 if (neigh->type == RTN_MULTICAST) {
298 neigh->nud_state = NUD_NOARP;
299 arp_mc_map(addr, neigh->ha, dev, 1);
300 } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
301 neigh->nud_state = NUD_NOARP;
302 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
303 } else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
304 neigh->nud_state = NUD_NOARP;
305 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
308 if (dev->header_ops->cache)
309 neigh->ops = &arp_hh_ops;
311 neigh->ops = &arp_generic_ops;
313 if (neigh->nud_state&NUD_VALID)
314 neigh->output = neigh->ops->connected_output;
316 neigh->output = neigh->ops->output;
321 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
323 dst_link_failure(skb);
327 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
331 struct net_device *dev = neigh->dev;
332 __be32 target = *(__be32*)neigh->primary_key;
333 int probes = atomic_read(&neigh->probes);
334 struct in_device *in_dev = in_dev_get(dev);
339 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
341 case 0: /* By default announce any local IP */
342 if (skb && inet_addr_type(dev_net(dev), ip_hdr(skb)->saddr) == RTN_LOCAL)
343 saddr = ip_hdr(skb)->saddr;
345 case 1: /* Restrict announcements of saddr in same subnet */
348 saddr = ip_hdr(skb)->saddr;
349 if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
350 /* saddr should be known to target */
351 if (inet_addr_onlink(in_dev, target, saddr))
356 case 2: /* Avoid secondary IPs, get a primary/preferred one */
363 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
365 if ((probes -= neigh->parms->ucast_probes) < 0) {
366 if (!(neigh->nud_state&NUD_VALID))
367 printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
369 read_lock_bh(&neigh->lock);
370 } else if ((probes -= neigh->parms->app_probes) < 0) {
377 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
378 dst_ha, dev->dev_addr, NULL);
380 read_unlock_bh(&neigh->lock);
383 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
387 switch (IN_DEV_ARP_IGNORE(in_dev)) {
388 case 0: /* Reply, the tip is already validated */
390 case 1: /* Reply only if tip is configured on the incoming interface */
392 scope = RT_SCOPE_HOST;
395 * Reply only if tip is configured on the incoming interface
396 * and is in same subnet as sip
398 scope = RT_SCOPE_HOST;
400 case 3: /* Do not reply for scope host addresses */
402 scope = RT_SCOPE_LINK;
404 case 4: /* Reserved */
409 case 8: /* Do not reply */
414 return !inet_confirm_addr(in_dev, sip, tip, scope);
417 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
419 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
423 /*unsigned long now; */
424 struct net *net = dev_net(dev);
426 if (ip_route_output_key(net, &rt, &fl) < 0)
428 if (rt->u.dst.dev != dev) {
429 NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
436 /* OBSOLETE FUNCTIONS */
439 * Find an arp mapping in the cache. If not found, post a request.
441 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
442 * even if it exists. It is supposed that skb->dev was mangled
443 * by a virtual device (eql, shaper). Nobody but broken devices
444 * is allowed to use this function, it is scheduled to be removed. --ANK
447 static int arp_set_predefined(int addr_hint, unsigned char * haddr, __be32 paddr, struct net_device * dev)
451 printk(KERN_DEBUG "ARP: arp called for own IP address\n");
452 memcpy(haddr, dev->dev_addr, dev->addr_len);
455 arp_mc_map(paddr, haddr, dev, 1);
458 memcpy(haddr, dev->broadcast, dev->addr_len);
465 int arp_find(unsigned char *haddr, struct sk_buff *skb)
467 struct net_device *dev = skb->dev;
472 printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
477 paddr = skb->rtable->rt_gateway;
479 if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr, paddr, dev))
482 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
486 if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
487 read_lock_bh(&n->lock);
488 memcpy(haddr, n->ha, dev->addr_len);
489 read_unlock_bh(&n->lock);
499 /* END OF OBSOLETE FUNCTIONS */
501 int arp_bind_neighbour(struct dst_entry *dst)
503 struct net_device *dev = dst->dev;
504 struct neighbour *n = dst->neighbour;
509 __be32 nexthop = ((struct rtable *)dst)->rt_gateway;
510 if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
512 n = __neigh_lookup_errno(
513 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
514 dev->type == ARPHRD_ATM ? clip_tbl_hook :
516 &arp_tbl, &nexthop, dev);
525 * Check if we can use proxy ARP for this path
528 static inline int arp_fwd_proxy(struct in_device *in_dev, struct rtable *rt)
530 struct in_device *out_dev;
533 if (!IN_DEV_PROXY_ARP(in_dev))
536 if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
541 /* place to check for proxy_arp for routes */
543 if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
544 omi = IN_DEV_MEDIUM_ID(out_dev);
547 return (omi != imi && omi != -1);
551 * Interface to link layer: send routine and receive handler.
555 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
558 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
559 struct net_device *dev, __be32 src_ip,
560 const unsigned char *dest_hw,
561 const unsigned char *src_hw,
562 const unsigned char *target_hw)
566 unsigned char *arp_ptr;
572 skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
576 skb_reserve(skb, LL_RESERVED_SPACE(dev));
577 skb_reset_network_header(skb);
578 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
580 skb->protocol = htons(ETH_P_ARP);
582 src_hw = dev->dev_addr;
584 dest_hw = dev->broadcast;
587 * Fill the device header for the ARP frame
589 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
593 * Fill out the arp protocol part.
595 * The arp hardware type should match the device type, except for FDDI,
596 * which (according to RFC 1390) should always equal 1 (Ethernet).
599 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
600 * DIX code for the protocol. Make these device structure fields.
604 arp->ar_hrd = htons(dev->type);
605 arp->ar_pro = htons(ETH_P_IP);
608 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
610 arp->ar_hrd = htons(ARPHRD_AX25);
611 arp->ar_pro = htons(AX25_P_IP);
614 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
616 arp->ar_hrd = htons(ARPHRD_NETROM);
617 arp->ar_pro = htons(AX25_P_IP);
624 arp->ar_hrd = htons(ARPHRD_ETHER);
625 arp->ar_pro = htons(ETH_P_IP);
629 case ARPHRD_IEEE802_TR:
630 arp->ar_hrd = htons(ARPHRD_IEEE802);
631 arp->ar_pro = htons(ETH_P_IP);
636 arp->ar_hln = dev->addr_len;
638 arp->ar_op = htons(type);
640 arp_ptr=(unsigned char *)(arp+1);
642 memcpy(arp_ptr, src_hw, dev->addr_len);
643 arp_ptr += dev->addr_len;
644 memcpy(arp_ptr, &src_ip, 4);
646 if (target_hw != NULL)
647 memcpy(arp_ptr, target_hw, dev->addr_len);
649 memset(arp_ptr, 0, dev->addr_len);
650 arp_ptr += dev->addr_len;
651 memcpy(arp_ptr, &dest_ip, 4);
661 * Send an arp packet.
663 void arp_xmit(struct sk_buff *skb)
665 /* Send it off, maybe filter it using firewalling first. */
666 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
670 * Create and send an arp packet.
672 void arp_send(int type, int ptype, __be32 dest_ip,
673 struct net_device *dev, __be32 src_ip,
674 const unsigned char *dest_hw, const unsigned char *src_hw,
675 const unsigned char *target_hw)
680 * No arp on this interface.
683 if (dev->flags&IFF_NOARP)
686 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
687 dest_hw, src_hw, target_hw);
696 * Process an arp request.
699 static int arp_process(struct sk_buff *skb)
701 struct net_device *dev = skb->dev;
702 struct in_device *in_dev = in_dev_get(dev);
704 unsigned char *arp_ptr;
708 u16 dev_type = dev->type;
711 struct net *net = dev_net(dev);
713 /* arp_rcv below verifies the ARP header and verifies the device
724 if (arp->ar_pro != htons(ETH_P_IP) ||
725 htons(dev_type) != arp->ar_hrd)
729 case ARPHRD_IEEE802_TR:
733 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
734 * devices, according to RFC 2625) devices will accept ARP
735 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
736 * This is the case also of FDDI, where the RFC 1390 says that
737 * FDDI devices should accept ARP hardware of (1) Ethernet,
738 * however, to be more robust, we'll accept both 1 (Ethernet)
741 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
742 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
743 arp->ar_pro != htons(ETH_P_IP))
747 if (arp->ar_pro != htons(AX25_P_IP) ||
748 arp->ar_hrd != htons(ARPHRD_AX25))
752 if (arp->ar_pro != htons(AX25_P_IP) ||
753 arp->ar_hrd != htons(ARPHRD_NETROM))
758 /* Understand only these message types */
760 if (arp->ar_op != htons(ARPOP_REPLY) &&
761 arp->ar_op != htons(ARPOP_REQUEST))
767 arp_ptr= (unsigned char *)(arp+1);
769 arp_ptr += dev->addr_len;
770 memcpy(&sip, arp_ptr, 4);
772 arp_ptr += dev->addr_len;
773 memcpy(&tip, arp_ptr, 4);
775 * Check for bad requests for 127.x.x.x and requests for multicast
776 * addresses. If this is one such, delete it.
778 if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
782 * Special case: We must set Frame Relay source Q.922 address
784 if (dev_type == ARPHRD_DLCI)
785 sha = dev->broadcast;
788 * Process entry. The idea here is we want to send a reply if it is a
789 * request for us or if it is a request for someone else that we hold
790 * a proxy for. We want to add an entry to our cache if it is a reply
791 * to us or if it is a request for our address.
792 * (The assumption for this last is that if someone is requesting our
793 * address, they are probably intending to talk to us, so it saves time
794 * if we cache their address. Their address is also probably not in
795 * our cache, since ours is not in their cache.)
797 * Putting this another way, we only care about replies if they are to
798 * us, in which case we add them to the cache. For requests, we care
799 * about those for us and those for our proxies. We reply to both,
800 * and in the case of requests for us we add the requester to the arp
805 * Special case: IPv4 duplicate address detection packet (RFC2131)
806 * and Gratuitous ARP/ARP Announce. (RFC3927, Section 2.4)
808 if (sip == 0 || tip == sip) {
809 if (arp->ar_op == htons(ARPOP_REQUEST) &&
810 inet_addr_type(net, tip) == RTN_LOCAL &&
811 !arp_ignore(in_dev, sip, tip))
812 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
817 if (arp->ar_op == htons(ARPOP_REQUEST) &&
818 ip_route_input(skb, tip, sip, 0, dev) == 0) {
821 addr_type = rt->rt_type;
823 if (addr_type == RTN_LOCAL) {
827 dont_send |= arp_ignore(in_dev,sip,tip);
828 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
829 dont_send |= arp_filter(sip,tip,dev);
831 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
833 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
838 } else if (IN_DEV_FORWARD(in_dev)) {
839 if (addr_type == RTN_UNICAST && rt->u.dst.dev != dev &&
840 (arp_fwd_proxy(in_dev, rt) || pneigh_lookup(&arp_tbl, net, &tip, dev, 0))) {
841 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
845 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
846 skb->pkt_type == PACKET_HOST ||
847 in_dev->arp_parms->proxy_delay == 0) {
848 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
850 pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
859 /* Update our ARP tables */
861 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
863 if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
864 /* Unsolicited ARP is not accepted by default.
865 It is possible, that this option should be enabled for some
866 devices (strip is candidate)
869 arp->ar_op == htons(ARPOP_REPLY) &&
870 inet_addr_type(net, sip) == RTN_UNICAST)
871 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
875 int state = NUD_REACHABLE;
878 /* If several different ARP replies follows back-to-back,
879 use the FIRST one. It is possible, if several proxy
880 agents are active. Taking the first reply prevents
881 arp trashing and chooses the fastest router.
883 override = time_after(jiffies, n->updated + n->parms->locktime);
885 /* Broadcast replies and request packets
886 do not assert neighbour reachability.
888 if (arp->ar_op != htons(ARPOP_REPLY) ||
889 skb->pkt_type != PACKET_HOST)
891 neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
902 static void parp_redo(struct sk_buff *skb)
909 * Receive an arp request from the device layer.
912 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
913 struct packet_type *pt, struct net_device *orig_dev)
917 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
918 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
922 if (arp->ar_hln != dev->addr_len ||
923 dev->flags & IFF_NOARP ||
924 skb->pkt_type == PACKET_OTHERHOST ||
925 skb->pkt_type == PACKET_LOOPBACK ||
929 if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
932 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
934 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
943 * User level interface (ioctl)
947 * Set (create) an ARP cache entry.
950 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
953 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
956 if (__in_dev_get_rtnl(dev)) {
957 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
963 static int arp_req_set_public(struct net *net, struct arpreq *r,
964 struct net_device *dev)
966 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
967 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
969 if (mask && mask != htonl(0xFFFFFFFF))
971 if (!dev && (r->arp_flags & ATF_COM)) {
972 dev = dev_getbyhwaddr(net, r->arp_ha.sa_family,
978 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
983 return arp_req_set_proxy(net, dev, 1);
986 static int arp_req_set(struct net *net, struct arpreq *r,
987 struct net_device * dev)
990 struct neighbour *neigh;
993 if (r->arp_flags & ATF_PUBL)
994 return arp_req_set_public(net, r, dev);
996 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
997 if (r->arp_flags & ATF_PERM)
998 r->arp_flags |= ATF_COM;
1000 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1001 .tos = RTO_ONLINK } } };
1003 if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
1005 dev = rt->u.dst.dev;
1010 switch (dev->type) {
1014 * According to RFC 1390, FDDI devices should accept ARP
1015 * hardware types of 1 (Ethernet). However, to be more
1016 * robust, we'll accept hardware types of either 1 (Ethernet)
1017 * or 6 (IEEE 802.2).
1019 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1020 r->arp_ha.sa_family != ARPHRD_ETHER &&
1021 r->arp_ha.sa_family != ARPHRD_IEEE802)
1026 if (r->arp_ha.sa_family != dev->type)
1031 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1032 err = PTR_ERR(neigh);
1033 if (!IS_ERR(neigh)) {
1034 unsigned state = NUD_STALE;
1035 if (r->arp_flags & ATF_PERM)
1036 state = NUD_PERMANENT;
1037 err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1038 r->arp_ha.sa_data : NULL, state,
1039 NEIGH_UPDATE_F_OVERRIDE|
1040 NEIGH_UPDATE_F_ADMIN);
1041 neigh_release(neigh);
1046 static unsigned arp_state_to_flags(struct neighbour *neigh)
1049 if (neigh->nud_state&NUD_PERMANENT)
1050 flags = ATF_PERM|ATF_COM;
1051 else if (neigh->nud_state&NUD_VALID)
1057 * Get an ARP cache entry.
1060 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1062 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1063 struct neighbour *neigh;
1066 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1068 read_lock_bh(&neigh->lock);
1069 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1070 r->arp_flags = arp_state_to_flags(neigh);
1071 read_unlock_bh(&neigh->lock);
1072 r->arp_ha.sa_family = dev->type;
1073 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1074 neigh_release(neigh);
1080 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1081 struct net_device *dev)
1083 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1084 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1086 if (mask == htonl(0xFFFFFFFF))
1087 return pneigh_delete(&arp_tbl, net, &ip, dev);
1092 return arp_req_set_proxy(net, dev, 0);
1095 static int arp_req_delete(struct net *net, struct arpreq *r,
1096 struct net_device * dev)
1100 struct neighbour *neigh;
1102 if (r->arp_flags & ATF_PUBL)
1103 return arp_req_delete_public(net, r, dev);
1105 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1107 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1108 .tos = RTO_ONLINK } } };
1110 if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
1112 dev = rt->u.dst.dev;
1118 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1120 if (neigh->nud_state&~NUD_NOARP)
1121 err = neigh_update(neigh, NULL, NUD_FAILED,
1122 NEIGH_UPDATE_F_OVERRIDE|
1123 NEIGH_UPDATE_F_ADMIN);
1124 neigh_release(neigh);
1130 * Handle an ARP layer I/O control request.
1133 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1137 struct net_device *dev = NULL;
1142 if (!capable(CAP_NET_ADMIN))
1145 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1153 if (r.arp_pa.sa_family != AF_INET)
1154 return -EPFNOSUPPORT;
1156 if (!(r.arp_flags & ATF_PUBL) &&
1157 (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1159 if (!(r.arp_flags & ATF_NETMASK))
1160 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1161 htonl(0xFFFFFFFFUL);
1165 if ((dev = __dev_get_by_name(net, r.arp_dev)) == NULL)
1168 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1169 if (!r.arp_ha.sa_family)
1170 r.arp_ha.sa_family = dev->type;
1172 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1174 } else if (cmd == SIOCGARP) {
1181 err = arp_req_delete(net, &r, dev);
1184 err = arp_req_set(net, &r, dev);
1187 err = arp_req_get(&r, dev);
1188 if (!err && copy_to_user(arg, &r, sizeof(r)))
1197 static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1199 struct net_device *dev = ptr;
1202 case NETDEV_CHANGEADDR:
1203 neigh_changeaddr(&arp_tbl, dev);
1204 rt_cache_flush(dev_net(dev), 0);
1213 static struct notifier_block arp_netdev_notifier = {
1214 .notifier_call = arp_netdev_event,
1217 /* Note, that it is not on notifier chain.
1218 It is necessary, that this routine was called after route cache will be
1221 void arp_ifdown(struct net_device *dev)
1223 neigh_ifdown(&arp_tbl, dev);
1228 * Called once on startup.
1231 static struct packet_type arp_packet_type __read_mostly = {
1232 .type = cpu_to_be16(ETH_P_ARP),
1236 static int arp_proc_init(void);
1238 void __init arp_init(void)
1240 neigh_table_init(&arp_tbl);
1242 dev_add_pack(&arp_packet_type);
1244 #ifdef CONFIG_SYSCTL
1245 neigh_sysctl_register(NULL, &arp_tbl.parms, NET_IPV4,
1246 NET_IPV4_NEIGH, "ipv4", NULL, NULL);
1248 register_netdevice_notifier(&arp_netdev_notifier);
1251 #ifdef CONFIG_PROC_FS
1252 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1254 /* ------------------------------------------------------------------------ */
1256 * ax25 -> ASCII conversion
1258 static char *ax2asc2(ax25_address *a, char *buf)
1263 for (n = 0, s = buf; n < 6; n++) {
1264 c = (a->ax25_call[n] >> 1) & 0x7F;
1266 if (c != ' ') *s++ = c;
1271 if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1279 if (*buf == '\0' || *buf == '-')
1285 #endif /* CONFIG_AX25 */
1287 #define HBUFFERLEN 30
1289 static void arp_format_neigh_entry(struct seq_file *seq,
1290 struct neighbour *n)
1292 char hbuffer[HBUFFERLEN];
1295 struct net_device *dev = n->dev;
1296 int hatype = dev->type;
1298 read_lock(&n->lock);
1299 /* Convert hardware address to XX:XX:XX:XX ... form. */
1300 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1301 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1302 ax2asc2((ax25_address *)n->ha, hbuffer);
1305 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1306 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1307 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1311 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1314 sprintf(tbuf, "%pI4", n->primary_key);
1315 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1316 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1317 read_unlock(&n->lock);
1320 static void arp_format_pneigh_entry(struct seq_file *seq,
1321 struct pneigh_entry *n)
1323 struct net_device *dev = n->dev;
1324 int hatype = dev ? dev->type : 0;
1327 sprintf(tbuf, "%pI4", n->key);
1328 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1329 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1330 dev ? dev->name : "*");
1333 static int arp_seq_show(struct seq_file *seq, void *v)
1335 if (v == SEQ_START_TOKEN) {
1336 seq_puts(seq, "IP address HW type Flags "
1337 "HW address Mask Device\n");
1339 struct neigh_seq_state *state = seq->private;
1341 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1342 arp_format_pneigh_entry(seq, v);
1344 arp_format_neigh_entry(seq, v);
1350 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1352 /* Don't want to confuse "arp -a" w/ magic entries,
1353 * so we tell the generic iterator to skip NUD_NOARP.
1355 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1358 /* ------------------------------------------------------------------------ */
1360 static const struct seq_operations arp_seq_ops = {
1361 .start = arp_seq_start,
1362 .next = neigh_seq_next,
1363 .stop = neigh_seq_stop,
1364 .show = arp_seq_show,
1367 static int arp_seq_open(struct inode *inode, struct file *file)
1369 return seq_open_net(inode, file, &arp_seq_ops,
1370 sizeof(struct neigh_seq_state));
1373 static const struct file_operations arp_seq_fops = {
1374 .owner = THIS_MODULE,
1375 .open = arp_seq_open,
1377 .llseek = seq_lseek,
1378 .release = seq_release_net,
1382 static int __net_init arp_net_init(struct net *net)
1384 if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1389 static void __net_exit arp_net_exit(struct net *net)
1391 proc_net_remove(net, "arp");
1394 static struct pernet_operations arp_net_ops = {
1395 .init = arp_net_init,
1396 .exit = arp_net_exit,
1399 static int __init arp_proc_init(void)
1401 return register_pernet_subsys(&arp_net_ops);
1404 #else /* CONFIG_PROC_FS */
1406 static int __init arp_proc_init(void)
1411 #endif /* CONFIG_PROC_FS */
1413 EXPORT_SYMBOL(arp_broken_ops);
1414 EXPORT_SYMBOL(arp_find);
1415 EXPORT_SYMBOL(arp_create);
1416 EXPORT_SYMBOL(arp_xmit);
1417 EXPORT_SYMBOL(arp_send);
1418 EXPORT_SYMBOL(arp_tbl);
1420 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1421 EXPORT_SYMBOL(clip_tbl_hook);