1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
34 #define MLOG_MASK_PREFIX ML_JOURNAL
35 #include <cluster/masklog.h>
40 #include "blockcheck.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
47 #include "localalloc.h"
53 #include "buffer_head_io.h"
55 DEFINE_SPINLOCK(trans_inc_lock);
57 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
59 static int ocfs2_force_read_journal(struct inode *inode);
60 static int ocfs2_recover_node(struct ocfs2_super *osb,
61 int node_num, int slot_num);
62 static int __ocfs2_recovery_thread(void *arg);
63 static int ocfs2_commit_cache(struct ocfs2_super *osb);
64 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
65 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
66 int dirty, int replayed);
67 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
69 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
71 static int ocfs2_commit_thread(void *arg);
72 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
74 struct ocfs2_dinode *la_dinode,
75 struct ocfs2_dinode *tl_dinode,
76 struct ocfs2_quota_recovery *qrec);
78 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
80 return __ocfs2_wait_on_mount(osb, 0);
83 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
85 return __ocfs2_wait_on_mount(osb, 1);
89 * This replay_map is to track online/offline slots, so we could recover
90 * offline slots during recovery and mount
93 enum ocfs2_replay_state {
94 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
95 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
96 REPLAY_DONE /* Replay was already queued */
99 struct ocfs2_replay_map {
100 unsigned int rm_slots;
101 enum ocfs2_replay_state rm_state;
102 unsigned char rm_replay_slots[0];
105 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
107 if (!osb->replay_map)
110 /* If we've already queued the replay, we don't have any more to do */
111 if (osb->replay_map->rm_state == REPLAY_DONE)
114 osb->replay_map->rm_state = state;
117 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
119 struct ocfs2_replay_map *replay_map;
122 /* If replay map is already set, we don't do it again */
126 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
127 (osb->max_slots * sizeof(char)), GFP_KERNEL);
134 spin_lock(&osb->osb_lock);
136 replay_map->rm_slots = osb->max_slots;
137 replay_map->rm_state = REPLAY_UNNEEDED;
139 /* set rm_replay_slots for offline slot(s) */
140 for (i = 0; i < replay_map->rm_slots; i++) {
141 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
142 replay_map->rm_replay_slots[i] = 1;
145 osb->replay_map = replay_map;
146 spin_unlock(&osb->osb_lock);
150 void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
152 struct ocfs2_replay_map *replay_map = osb->replay_map;
158 if (replay_map->rm_state != REPLAY_NEEDED)
161 for (i = 0; i < replay_map->rm_slots; i++)
162 if (replay_map->rm_replay_slots[i])
163 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
165 replay_map->rm_state = REPLAY_DONE;
168 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
170 struct ocfs2_replay_map *replay_map = osb->replay_map;
172 if (!osb->replay_map)
176 osb->replay_map = NULL;
179 int ocfs2_recovery_init(struct ocfs2_super *osb)
181 struct ocfs2_recovery_map *rm;
183 mutex_init(&osb->recovery_lock);
184 osb->disable_recovery = 0;
185 osb->recovery_thread_task = NULL;
186 init_waitqueue_head(&osb->recovery_event);
188 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
189 osb->max_slots * sizeof(unsigned int),
196 rm->rm_entries = (unsigned int *)((char *)rm +
197 sizeof(struct ocfs2_recovery_map));
198 osb->recovery_map = rm;
203 /* we can't grab the goofy sem lock from inside wait_event, so we use
204 * memory barriers to make sure that we'll see the null task before
206 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
209 return osb->recovery_thread_task != NULL;
212 void ocfs2_recovery_exit(struct ocfs2_super *osb)
214 struct ocfs2_recovery_map *rm;
216 /* disable any new recovery threads and wait for any currently
217 * running ones to exit. Do this before setting the vol_state. */
218 mutex_lock(&osb->recovery_lock);
219 osb->disable_recovery = 1;
220 mutex_unlock(&osb->recovery_lock);
221 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
223 /* At this point, we know that no more recovery threads can be
224 * launched, so wait for any recovery completion work to
226 flush_workqueue(ocfs2_wq);
229 * Now that recovery is shut down, and the osb is about to be
230 * freed, the osb_lock is not taken here.
232 rm = osb->recovery_map;
233 /* XXX: Should we bug if there are dirty entries? */
238 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
239 unsigned int node_num)
242 struct ocfs2_recovery_map *rm = osb->recovery_map;
244 assert_spin_locked(&osb->osb_lock);
246 for (i = 0; i < rm->rm_used; i++) {
247 if (rm->rm_entries[i] == node_num)
254 /* Behaves like test-and-set. Returns the previous value */
255 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
256 unsigned int node_num)
258 struct ocfs2_recovery_map *rm = osb->recovery_map;
260 spin_lock(&osb->osb_lock);
261 if (__ocfs2_recovery_map_test(osb, node_num)) {
262 spin_unlock(&osb->osb_lock);
266 /* XXX: Can this be exploited? Not from o2dlm... */
267 BUG_ON(rm->rm_used >= osb->max_slots);
269 rm->rm_entries[rm->rm_used] = node_num;
271 spin_unlock(&osb->osb_lock);
276 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
277 unsigned int node_num)
280 struct ocfs2_recovery_map *rm = osb->recovery_map;
282 spin_lock(&osb->osb_lock);
284 for (i = 0; i < rm->rm_used; i++) {
285 if (rm->rm_entries[i] == node_num)
289 if (i < rm->rm_used) {
290 /* XXX: be careful with the pointer math */
291 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
292 (rm->rm_used - i - 1) * sizeof(unsigned int));
296 spin_unlock(&osb->osb_lock);
299 static int ocfs2_commit_cache(struct ocfs2_super *osb)
302 unsigned int flushed;
303 unsigned long old_id;
304 struct ocfs2_journal *journal = NULL;
308 journal = osb->journal;
310 /* Flush all pending commits and checkpoint the journal. */
311 down_write(&journal->j_trans_barrier);
313 if (atomic_read(&journal->j_num_trans) == 0) {
314 up_write(&journal->j_trans_barrier);
315 mlog(0, "No transactions for me to flush!\n");
319 jbd2_journal_lock_updates(journal->j_journal);
320 status = jbd2_journal_flush(journal->j_journal);
321 jbd2_journal_unlock_updates(journal->j_journal);
323 up_write(&journal->j_trans_barrier);
328 old_id = ocfs2_inc_trans_id(journal);
330 flushed = atomic_read(&journal->j_num_trans);
331 atomic_set(&journal->j_num_trans, 0);
332 up_write(&journal->j_trans_barrier);
334 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
335 journal->j_trans_id, flushed);
337 ocfs2_wake_downconvert_thread(osb);
338 wake_up(&journal->j_checkpointed);
344 /* pass it NULL and it will allocate a new handle object for you. If
345 * you pass it a handle however, it may still return error, in which
346 * case it has free'd the passed handle for you. */
347 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
349 journal_t *journal = osb->journal->j_journal;
352 BUG_ON(!osb || !osb->journal->j_journal);
354 if (ocfs2_is_hard_readonly(osb))
355 return ERR_PTR(-EROFS);
357 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
358 BUG_ON(max_buffs <= 0);
360 /* Nested transaction? Just return the handle... */
361 if (journal_current_handle())
362 return jbd2_journal_start(journal, max_buffs);
364 down_read(&osb->journal->j_trans_barrier);
366 handle = jbd2_journal_start(journal, max_buffs);
367 if (IS_ERR(handle)) {
368 up_read(&osb->journal->j_trans_barrier);
370 mlog_errno(PTR_ERR(handle));
372 if (is_journal_aborted(journal)) {
373 ocfs2_abort(osb->sb, "Detected aborted journal");
374 handle = ERR_PTR(-EROFS);
377 if (!ocfs2_mount_local(osb))
378 atomic_inc(&(osb->journal->j_num_trans));
384 int ocfs2_commit_trans(struct ocfs2_super *osb,
388 struct ocfs2_journal *journal = osb->journal;
392 nested = handle->h_ref > 1;
393 ret = jbd2_journal_stop(handle);
398 up_read(&journal->j_trans_barrier);
404 * 'nblocks' is what you want to add to the current
405 * transaction. extend_trans will either extend the current handle by
406 * nblocks, or commit it and start a new one with nblocks credits.
408 * This might call jbd2_journal_restart() which will commit dirty buffers
409 * and then restart the transaction. Before calling
410 * ocfs2_extend_trans(), any changed blocks should have been
411 * dirtied. After calling it, all blocks which need to be changed must
412 * go through another set of journal_access/journal_dirty calls.
414 * WARNING: This will not release any semaphores or disk locks taken
415 * during the transaction, so make sure they were taken *before*
416 * start_trans or we'll have ordering deadlocks.
418 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
419 * good because transaction ids haven't yet been recorded on the
420 * cluster locks associated with this handle.
422 int ocfs2_extend_trans(handle_t *handle, int nblocks)
431 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
433 #ifdef CONFIG_OCFS2_DEBUG_FS
436 status = jbd2_journal_extend(handle, nblocks);
445 "jbd2_journal_extend failed, trying "
446 "jbd2_journal_restart\n");
447 status = jbd2_journal_restart(handle, nblocks);
461 struct ocfs2_triggers {
462 struct jbd2_buffer_trigger_type ot_triggers;
466 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
468 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
471 static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
472 struct buffer_head *bh,
473 void *data, size_t size)
475 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
478 * We aren't guaranteed to have the superblock here, so we
479 * must unconditionally compute the ecc data.
480 * __ocfs2_journal_access() will only set the triggers if
481 * metaecc is enabled.
483 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
487 * Quota blocks have their own trigger because the struct ocfs2_block_check
488 * offset depends on the blocksize.
490 static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
491 struct buffer_head *bh,
492 void *data, size_t size)
494 struct ocfs2_disk_dqtrailer *dqt =
495 ocfs2_block_dqtrailer(size, data);
498 * We aren't guaranteed to have the superblock here, so we
499 * must unconditionally compute the ecc data.
500 * __ocfs2_journal_access() will only set the triggers if
501 * metaecc is enabled.
503 ocfs2_block_check_compute(data, size, &dqt->dq_check);
507 * Directory blocks also have their own trigger because the
508 * struct ocfs2_block_check offset depends on the blocksize.
510 static void ocfs2_db_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
511 struct buffer_head *bh,
512 void *data, size_t size)
514 struct ocfs2_dir_block_trailer *trailer =
515 ocfs2_dir_trailer_from_size(size, data);
518 * We aren't guaranteed to have the superblock here, so we
519 * must unconditionally compute the ecc data.
520 * __ocfs2_journal_access() will only set the triggers if
521 * metaecc is enabled.
523 ocfs2_block_check_compute(data, size, &trailer->db_check);
526 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
527 struct buffer_head *bh)
530 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
531 "bh->b_blocknr = %llu\n",
533 (unsigned long long)bh->b_blocknr);
535 /* We aren't guaranteed to have the superblock here - but if we
536 * don't, it'll just crash. */
537 ocfs2_error(bh->b_assoc_map->host->i_sb,
538 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
541 static struct ocfs2_triggers di_triggers = {
543 .t_commit = ocfs2_commit_trigger,
544 .t_abort = ocfs2_abort_trigger,
546 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
549 static struct ocfs2_triggers eb_triggers = {
551 .t_commit = ocfs2_commit_trigger,
552 .t_abort = ocfs2_abort_trigger,
554 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
557 static struct ocfs2_triggers gd_triggers = {
559 .t_commit = ocfs2_commit_trigger,
560 .t_abort = ocfs2_abort_trigger,
562 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
565 static struct ocfs2_triggers db_triggers = {
567 .t_commit = ocfs2_db_commit_trigger,
568 .t_abort = ocfs2_abort_trigger,
572 static struct ocfs2_triggers xb_triggers = {
574 .t_commit = ocfs2_commit_trigger,
575 .t_abort = ocfs2_abort_trigger,
577 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
580 static struct ocfs2_triggers dq_triggers = {
582 .t_commit = ocfs2_dq_commit_trigger,
583 .t_abort = ocfs2_abort_trigger,
587 static struct ocfs2_triggers dr_triggers = {
589 .t_commit = ocfs2_commit_trigger,
590 .t_abort = ocfs2_abort_trigger,
592 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
595 static struct ocfs2_triggers dl_triggers = {
597 .t_commit = ocfs2_commit_trigger,
598 .t_abort = ocfs2_abort_trigger,
600 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
603 static int __ocfs2_journal_access(handle_t *handle,
605 struct buffer_head *bh,
606 struct ocfs2_triggers *triggers,
615 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
616 (unsigned long long)bh->b_blocknr, type,
617 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
618 "OCFS2_JOURNAL_ACCESS_CREATE" :
619 "OCFS2_JOURNAL_ACCESS_WRITE",
622 /* we can safely remove this assertion after testing. */
623 if (!buffer_uptodate(bh)) {
624 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
625 mlog(ML_ERROR, "b_blocknr=%llu\n",
626 (unsigned long long)bh->b_blocknr);
630 /* Set the current transaction information on the inode so
631 * that the locking code knows whether it can drop it's locks
632 * on this inode or not. We're protected from the commit
633 * thread updating the current transaction id until
634 * ocfs2_commit_trans() because ocfs2_start_trans() took
635 * j_trans_barrier for us. */
636 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
638 mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
640 case OCFS2_JOURNAL_ACCESS_CREATE:
641 case OCFS2_JOURNAL_ACCESS_WRITE:
642 status = jbd2_journal_get_write_access(handle, bh);
645 case OCFS2_JOURNAL_ACCESS_UNDO:
646 status = jbd2_journal_get_undo_access(handle, bh);
651 mlog(ML_ERROR, "Uknown access type!\n");
653 if (!status && ocfs2_meta_ecc(OCFS2_SB(inode->i_sb)) && triggers)
654 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
655 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
658 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
665 int ocfs2_journal_access_di(handle_t *handle, struct inode *inode,
666 struct buffer_head *bh, int type)
668 return __ocfs2_journal_access(handle, inode, bh, &di_triggers,
672 int ocfs2_journal_access_eb(handle_t *handle, struct inode *inode,
673 struct buffer_head *bh, int type)
675 return __ocfs2_journal_access(handle, inode, bh, &eb_triggers,
679 int ocfs2_journal_access_gd(handle_t *handle, struct inode *inode,
680 struct buffer_head *bh, int type)
682 return __ocfs2_journal_access(handle, inode, bh, &gd_triggers,
686 int ocfs2_journal_access_db(handle_t *handle, struct inode *inode,
687 struct buffer_head *bh, int type)
689 return __ocfs2_journal_access(handle, inode, bh, &db_triggers,
693 int ocfs2_journal_access_xb(handle_t *handle, struct inode *inode,
694 struct buffer_head *bh, int type)
696 return __ocfs2_journal_access(handle, inode, bh, &xb_triggers,
700 int ocfs2_journal_access_dq(handle_t *handle, struct inode *inode,
701 struct buffer_head *bh, int type)
703 return __ocfs2_journal_access(handle, inode, bh, &dq_triggers,
707 int ocfs2_journal_access_dr(handle_t *handle, struct inode *inode,
708 struct buffer_head *bh, int type)
710 return __ocfs2_journal_access(handle, inode, bh, &dr_triggers,
714 int ocfs2_journal_access_dl(handle_t *handle, struct inode *inode,
715 struct buffer_head *bh, int type)
717 return __ocfs2_journal_access(handle, inode, bh, &dl_triggers,
721 int ocfs2_journal_access(handle_t *handle, struct inode *inode,
722 struct buffer_head *bh, int type)
724 return __ocfs2_journal_access(handle, inode, bh, NULL, type);
727 int ocfs2_journal_dirty(handle_t *handle,
728 struct buffer_head *bh)
732 mlog_entry("(bh->b_blocknr=%llu)\n",
733 (unsigned long long)bh->b_blocknr);
735 status = jbd2_journal_dirty_metadata(handle, bh);
737 mlog(ML_ERROR, "Could not dirty metadata buffer. "
738 "(bh->b_blocknr=%llu)\n",
739 (unsigned long long)bh->b_blocknr);
745 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
747 void ocfs2_set_journal_params(struct ocfs2_super *osb)
749 journal_t *journal = osb->journal->j_journal;
750 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
752 if (osb->osb_commit_interval)
753 commit_interval = osb->osb_commit_interval;
755 spin_lock(&journal->j_state_lock);
756 journal->j_commit_interval = commit_interval;
757 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
758 journal->j_flags |= JBD2_BARRIER;
760 journal->j_flags &= ~JBD2_BARRIER;
761 spin_unlock(&journal->j_state_lock);
764 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
767 struct inode *inode = NULL; /* the journal inode */
768 journal_t *j_journal = NULL;
769 struct ocfs2_dinode *di = NULL;
770 struct buffer_head *bh = NULL;
771 struct ocfs2_super *osb;
778 osb = journal->j_osb;
780 /* already have the inode for our journal */
781 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
788 if (is_bad_inode(inode)) {
789 mlog(ML_ERROR, "access error (bad inode)\n");
796 SET_INODE_JOURNAL(inode);
797 OCFS2_I(inode)->ip_open_count++;
799 /* Skip recovery waits here - journal inode metadata never
800 * changes in a live cluster so it can be considered an
801 * exception to the rule. */
802 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
804 if (status != -ERESTARTSYS)
805 mlog(ML_ERROR, "Could not get lock on journal!\n");
810 di = (struct ocfs2_dinode *)bh->b_data;
812 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
813 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
819 mlog(0, "inode->i_size = %lld\n", inode->i_size);
820 mlog(0, "inode->i_blocks = %llu\n",
821 (unsigned long long)inode->i_blocks);
822 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
824 /* call the kernels journal init function now */
825 j_journal = jbd2_journal_init_inode(inode);
826 if (j_journal == NULL) {
827 mlog(ML_ERROR, "Linux journal layer error\n");
832 mlog(0, "Returned from jbd2_journal_init_inode\n");
833 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
835 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
836 OCFS2_JOURNAL_DIRTY_FL);
838 journal->j_journal = j_journal;
839 journal->j_inode = inode;
842 ocfs2_set_journal_params(osb);
844 journal->j_state = OCFS2_JOURNAL_LOADED;
850 ocfs2_inode_unlock(inode, 1);
853 OCFS2_I(inode)->ip_open_count--;
862 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
864 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
867 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
869 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
872 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
873 int dirty, int replayed)
877 struct ocfs2_journal *journal = osb->journal;
878 struct buffer_head *bh = journal->j_bh;
879 struct ocfs2_dinode *fe;
883 fe = (struct ocfs2_dinode *)bh->b_data;
885 /* The journal bh on the osb always comes from ocfs2_journal_init()
886 * and was validated there inside ocfs2_inode_lock_full(). It's a
887 * code bug if we mess it up. */
888 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
890 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
892 flags |= OCFS2_JOURNAL_DIRTY_FL;
894 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
895 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
898 ocfs2_bump_recovery_generation(fe);
900 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
901 status = ocfs2_write_block(osb, bh, journal->j_inode);
910 * If the journal has been kmalloc'd it needs to be freed after this
913 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
915 struct ocfs2_journal *journal = NULL;
917 struct inode *inode = NULL;
918 int num_running_trans = 0;
924 journal = osb->journal;
928 inode = journal->j_inode;
930 if (journal->j_state != OCFS2_JOURNAL_LOADED)
933 /* need to inc inode use count - jbd2_journal_destroy will iput. */
937 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
938 if (num_running_trans > 0)
939 mlog(0, "Shutting down journal: must wait on %d "
940 "running transactions!\n",
943 /* Do a commit_cache here. It will flush our journal, *and*
944 * release any locks that are still held.
945 * set the SHUTDOWN flag and release the trans lock.
946 * the commit thread will take the trans lock for us below. */
947 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
949 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
950 * drop the trans_lock (which we want to hold until we
951 * completely destroy the journal. */
952 if (osb->commit_task) {
953 /* Wait for the commit thread */
954 mlog(0, "Waiting for ocfs2commit to exit....\n");
955 kthread_stop(osb->commit_task);
956 osb->commit_task = NULL;
959 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
961 if (ocfs2_mount_local(osb)) {
962 jbd2_journal_lock_updates(journal->j_journal);
963 status = jbd2_journal_flush(journal->j_journal);
964 jbd2_journal_unlock_updates(journal->j_journal);
971 * Do not toggle if flush was unsuccessful otherwise
972 * will leave dirty metadata in a "clean" journal
974 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
979 /* Shutdown the kernel journal system */
980 jbd2_journal_destroy(journal->j_journal);
981 journal->j_journal = NULL;
983 OCFS2_I(inode)->ip_open_count--;
985 /* unlock our journal */
986 ocfs2_inode_unlock(inode, 1);
988 brelse(journal->j_bh);
989 journal->j_bh = NULL;
991 journal->j_state = OCFS2_JOURNAL_FREE;
993 // up_write(&journal->j_trans_barrier);
1000 static void ocfs2_clear_journal_error(struct super_block *sb,
1006 olderr = jbd2_journal_errno(journal);
1008 mlog(ML_ERROR, "File system error %d recorded in "
1009 "journal %u.\n", olderr, slot);
1010 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1013 jbd2_journal_ack_err(journal);
1014 jbd2_journal_clear_err(journal);
1018 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1021 struct ocfs2_super *osb;
1027 osb = journal->j_osb;
1029 status = jbd2_journal_load(journal->j_journal);
1031 mlog(ML_ERROR, "Failed to load journal!\n");
1035 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1037 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1043 /* Launch the commit thread */
1045 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1047 if (IS_ERR(osb->commit_task)) {
1048 status = PTR_ERR(osb->commit_task);
1049 osb->commit_task = NULL;
1050 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1051 "error=%d", status);
1055 osb->commit_task = NULL;
1063 /* 'full' flag tells us whether we clear out all blocks or if we just
1064 * mark the journal clean */
1065 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1073 status = jbd2_journal_wipe(journal->j_journal, full);
1079 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1088 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1091 struct ocfs2_recovery_map *rm = osb->recovery_map;
1093 spin_lock(&osb->osb_lock);
1094 empty = (rm->rm_used == 0);
1095 spin_unlock(&osb->osb_lock);
1100 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1102 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1106 * JBD Might read a cached version of another nodes journal file. We
1107 * don't want this as this file changes often and we get no
1108 * notification on those changes. The only way to be sure that we've
1109 * got the most up to date version of those blocks then is to force
1110 * read them off disk. Just searching through the buffer cache won't
1111 * work as there may be pages backing this file which are still marked
1112 * up to date. We know things can't change on this file underneath us
1113 * as we have the lock by now :)
1115 static int ocfs2_force_read_journal(struct inode *inode)
1119 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1120 #define CONCURRENT_JOURNAL_FILL 32ULL
1121 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1125 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1127 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1129 while (v_blkno < num_blocks) {
1130 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1131 &p_blkno, &p_blocks, NULL);
1137 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1138 p_blocks = CONCURRENT_JOURNAL_FILL;
1140 /* We are reading journal data which should not
1141 * be put in the uptodate cache */
1142 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1143 p_blkno, p_blocks, bhs);
1149 for(i = 0; i < p_blocks; i++) {
1154 v_blkno += p_blocks;
1158 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1164 struct ocfs2_la_recovery_item {
1165 struct list_head lri_list;
1167 struct ocfs2_dinode *lri_la_dinode;
1168 struct ocfs2_dinode *lri_tl_dinode;
1169 struct ocfs2_quota_recovery *lri_qrec;
1172 /* Does the second half of the recovery process. By this point, the
1173 * node is marked clean and can actually be considered recovered,
1174 * hence it's no longer in the recovery map, but there's still some
1175 * cleanup we can do which shouldn't happen within the recovery thread
1176 * as locking in that context becomes very difficult if we are to take
1177 * recovering nodes into account.
1179 * NOTE: This function can and will sleep on recovery of other nodes
1180 * during cluster locking, just like any other ocfs2 process.
1182 void ocfs2_complete_recovery(struct work_struct *work)
1185 struct ocfs2_journal *journal =
1186 container_of(work, struct ocfs2_journal, j_recovery_work);
1187 struct ocfs2_super *osb = journal->j_osb;
1188 struct ocfs2_dinode *la_dinode, *tl_dinode;
1189 struct ocfs2_la_recovery_item *item, *n;
1190 struct ocfs2_quota_recovery *qrec;
1191 LIST_HEAD(tmp_la_list);
1195 mlog(0, "completing recovery from keventd\n");
1197 spin_lock(&journal->j_lock);
1198 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1199 spin_unlock(&journal->j_lock);
1201 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1202 list_del_init(&item->lri_list);
1204 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
1206 ocfs2_wait_on_quotas(osb);
1208 la_dinode = item->lri_la_dinode;
1210 mlog(0, "Clean up local alloc %llu\n",
1211 (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
1213 ret = ocfs2_complete_local_alloc_recovery(osb,
1221 tl_dinode = item->lri_tl_dinode;
1223 mlog(0, "Clean up truncate log %llu\n",
1224 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
1226 ret = ocfs2_complete_truncate_log_recovery(osb,
1234 ret = ocfs2_recover_orphans(osb, item->lri_slot);
1238 qrec = item->lri_qrec;
1240 mlog(0, "Recovering quota files");
1241 ret = ocfs2_finish_quota_recovery(osb, qrec,
1245 /* Recovery info is already freed now */
1251 mlog(0, "Recovery completion\n");
1255 /* NOTE: This function always eats your references to la_dinode and
1256 * tl_dinode, either manually on error, or by passing them to
1257 * ocfs2_complete_recovery */
1258 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1260 struct ocfs2_dinode *la_dinode,
1261 struct ocfs2_dinode *tl_dinode,
1262 struct ocfs2_quota_recovery *qrec)
1264 struct ocfs2_la_recovery_item *item;
1266 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1268 /* Though we wish to avoid it, we are in fact safe in
1269 * skipping local alloc cleanup as fsck.ocfs2 is more
1270 * than capable of reclaiming unused space. */
1278 ocfs2_free_quota_recovery(qrec);
1280 mlog_errno(-ENOMEM);
1284 INIT_LIST_HEAD(&item->lri_list);
1285 item->lri_la_dinode = la_dinode;
1286 item->lri_slot = slot_num;
1287 item->lri_tl_dinode = tl_dinode;
1288 item->lri_qrec = qrec;
1290 spin_lock(&journal->j_lock);
1291 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1292 queue_work(ocfs2_wq, &journal->j_recovery_work);
1293 spin_unlock(&journal->j_lock);
1296 /* Called by the mount code to queue recovery the last part of
1297 * recovery for it's own and offline slot(s). */
1298 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1300 struct ocfs2_journal *journal = osb->journal;
1302 /* No need to queue up our truncate_log as regular cleanup will catch
1304 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1305 osb->local_alloc_copy, NULL, NULL);
1306 ocfs2_schedule_truncate_log_flush(osb, 0);
1308 osb->local_alloc_copy = NULL;
1311 /* queue to recover orphan slots for all offline slots */
1312 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1313 ocfs2_queue_replay_slots(osb);
1314 ocfs2_free_replay_slots(osb);
1317 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1319 if (osb->quota_rec) {
1320 ocfs2_queue_recovery_completion(osb->journal,
1325 osb->quota_rec = NULL;
1329 static int __ocfs2_recovery_thread(void *arg)
1331 int status, node_num, slot_num;
1332 struct ocfs2_super *osb = arg;
1333 struct ocfs2_recovery_map *rm = osb->recovery_map;
1334 int *rm_quota = NULL;
1335 int rm_quota_used = 0, i;
1336 struct ocfs2_quota_recovery *qrec;
1340 status = ocfs2_wait_on_mount(osb);
1345 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1351 status = ocfs2_super_lock(osb, 1);
1357 status = ocfs2_compute_replay_slots(osb);
1361 /* queue recovery for our own slot */
1362 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1365 spin_lock(&osb->osb_lock);
1366 while (rm->rm_used) {
1367 /* It's always safe to remove entry zero, as we won't
1368 * clear it until ocfs2_recover_node() has succeeded. */
1369 node_num = rm->rm_entries[0];
1370 spin_unlock(&osb->osb_lock);
1371 mlog(0, "checking node %d\n", node_num);
1372 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1373 if (slot_num == -ENOENT) {
1375 mlog(0, "no slot for this node, so no recovery"
1379 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1381 /* It is a bit subtle with quota recovery. We cannot do it
1382 * immediately because we have to obtain cluster locks from
1383 * quota files and we also don't want to just skip it because
1384 * then quota usage would be out of sync until some node takes
1385 * the slot. So we remember which nodes need quota recovery
1386 * and when everything else is done, we recover quotas. */
1387 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1388 if (i == rm_quota_used)
1389 rm_quota[rm_quota_used++] = slot_num;
1391 status = ocfs2_recover_node(osb, node_num, slot_num);
1394 ocfs2_recovery_map_clear(osb, node_num);
1397 "Error %d recovering node %d on device (%u,%u)!\n",
1399 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1400 mlog(ML_ERROR, "Volume requires unmount.\n");
1403 spin_lock(&osb->osb_lock);
1405 spin_unlock(&osb->osb_lock);
1406 mlog(0, "All nodes recovered\n");
1408 /* Refresh all journal recovery generations from disk */
1409 status = ocfs2_check_journals_nolocks(osb);
1410 status = (status == -EROFS) ? 0 : status;
1414 /* Now it is right time to recover quotas... We have to do this under
1415 * superblock lock so that noone can start using the slot (and crash)
1416 * before we recover it */
1417 for (i = 0; i < rm_quota_used; i++) {
1418 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1420 status = PTR_ERR(qrec);
1424 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1428 ocfs2_super_unlock(osb, 1);
1430 /* queue recovery for offline slots */
1431 ocfs2_queue_replay_slots(osb);
1434 mutex_lock(&osb->recovery_lock);
1435 if (!status && !ocfs2_recovery_completed(osb)) {
1436 mutex_unlock(&osb->recovery_lock);
1440 ocfs2_free_replay_slots(osb);
1441 osb->recovery_thread_task = NULL;
1442 mb(); /* sync with ocfs2_recovery_thread_running */
1443 wake_up(&osb->recovery_event);
1445 mutex_unlock(&osb->recovery_lock);
1451 /* no one is callint kthread_stop() for us so the kthread() api
1452 * requires that we call do_exit(). And it isn't exported, but
1453 * complete_and_exit() seems to be a minimal wrapper around it. */
1454 complete_and_exit(NULL, status);
1458 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1460 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1461 node_num, osb->node_num);
1463 mutex_lock(&osb->recovery_lock);
1464 if (osb->disable_recovery)
1467 /* People waiting on recovery will wait on
1468 * the recovery map to empty. */
1469 if (ocfs2_recovery_map_set(osb, node_num))
1470 mlog(0, "node %d already in recovery map.\n", node_num);
1472 mlog(0, "starting recovery thread...\n");
1474 if (osb->recovery_thread_task)
1477 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1479 if (IS_ERR(osb->recovery_thread_task)) {
1480 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1481 osb->recovery_thread_task = NULL;
1485 mutex_unlock(&osb->recovery_lock);
1486 wake_up(&osb->recovery_event);
1491 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1493 struct buffer_head **bh,
1494 struct inode **ret_inode)
1496 int status = -EACCES;
1497 struct inode *inode = NULL;
1499 BUG_ON(slot_num >= osb->max_slots);
1501 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1503 if (!inode || is_bad_inode(inode)) {
1507 SET_INODE_JOURNAL(inode);
1509 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1519 if (status || !ret_inode)
1527 /* Does the actual journal replay and marks the journal inode as
1528 * clean. Will only replay if the journal inode is marked dirty. */
1529 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1536 struct inode *inode = NULL;
1537 struct ocfs2_dinode *fe;
1538 journal_t *journal = NULL;
1539 struct buffer_head *bh = NULL;
1542 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1548 fe = (struct ocfs2_dinode *)bh->b_data;
1549 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1554 * As the fs recovery is asynchronous, there is a small chance that
1555 * another node mounted (and recovered) the slot before the recovery
1556 * thread could get the lock. To handle that, we dirty read the journal
1557 * inode for that slot to get the recovery generation. If it is
1558 * different than what we expected, the slot has been recovered.
1559 * If not, it needs recovery.
1561 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1562 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1563 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1564 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1569 /* Continue with recovery as the journal has not yet been recovered */
1571 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1573 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
1574 if (status != -ERESTARTSYS)
1575 mlog(ML_ERROR, "Could not lock journal!\n");
1580 fe = (struct ocfs2_dinode *) bh->b_data;
1582 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1583 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1585 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1586 mlog(0, "No recovery required for node %d\n", node_num);
1587 /* Refresh recovery generation for the slot */
1588 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1592 /* we need to run complete recovery for offline orphan slots */
1593 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1595 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1597 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1599 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1601 status = ocfs2_force_read_journal(inode);
1607 mlog(0, "calling journal_init_inode\n");
1608 journal = jbd2_journal_init_inode(inode);
1609 if (journal == NULL) {
1610 mlog(ML_ERROR, "Linux journal layer error\n");
1615 status = jbd2_journal_load(journal);
1620 jbd2_journal_destroy(journal);
1624 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1626 /* wipe the journal */
1627 mlog(0, "flushing the journal.\n");
1628 jbd2_journal_lock_updates(journal);
1629 status = jbd2_journal_flush(journal);
1630 jbd2_journal_unlock_updates(journal);
1634 /* This will mark the node clean */
1635 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1636 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1637 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1639 /* Increment recovery generation to indicate successful recovery */
1640 ocfs2_bump_recovery_generation(fe);
1641 osb->slot_recovery_generations[slot_num] =
1642 ocfs2_get_recovery_generation(fe);
1644 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1645 status = ocfs2_write_block(osb, bh, inode);
1652 jbd2_journal_destroy(journal);
1655 /* drop the lock on this nodes journal */
1657 ocfs2_inode_unlock(inode, 1);
1669 * Do the most important parts of node recovery:
1670 * - Replay it's journal
1671 * - Stamp a clean local allocator file
1672 * - Stamp a clean truncate log
1673 * - Mark the node clean
1675 * If this function completes without error, a node in OCFS2 can be
1676 * said to have been safely recovered. As a result, failure during the
1677 * second part of a nodes recovery process (local alloc recovery) is
1678 * far less concerning.
1680 static int ocfs2_recover_node(struct ocfs2_super *osb,
1681 int node_num, int slot_num)
1684 struct ocfs2_dinode *la_copy = NULL;
1685 struct ocfs2_dinode *tl_copy = NULL;
1687 mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1688 node_num, slot_num, osb->node_num);
1690 /* Should not ever be called to recover ourselves -- in that
1691 * case we should've called ocfs2_journal_load instead. */
1692 BUG_ON(osb->node_num == node_num);
1694 status = ocfs2_replay_journal(osb, node_num, slot_num);
1696 if (status == -EBUSY) {
1697 mlog(0, "Skipping recovery for slot %u (node %u) "
1698 "as another node has recovered it\n", slot_num,
1707 /* Stamp a clean local alloc file AFTER recovering the journal... */
1708 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1714 /* An error from begin_truncate_log_recovery is not
1715 * serious enough to warrant halting the rest of
1717 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1721 /* Likewise, this would be a strange but ultimately not so
1722 * harmful place to get an error... */
1723 status = ocfs2_clear_slot(osb, slot_num);
1727 /* This will kfree the memory pointed to by la_copy and tl_copy */
1728 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1738 /* Test node liveness by trylocking his journal. If we get the lock,
1739 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1740 * still alive (we couldn't get the lock) and < 0 on error. */
1741 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1745 struct inode *inode = NULL;
1747 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1749 if (inode == NULL) {
1750 mlog(ML_ERROR, "access error\n");
1754 if (is_bad_inode(inode)) {
1755 mlog(ML_ERROR, "access error (bad inode)\n");
1761 SET_INODE_JOURNAL(inode);
1763 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1764 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1766 if (status != -EAGAIN)
1771 ocfs2_inode_unlock(inode, 1);
1779 /* Call this underneath ocfs2_super_lock. It also assumes that the
1780 * slot info struct has been updated from disk. */
1781 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1783 unsigned int node_num;
1786 struct buffer_head *bh = NULL;
1787 struct ocfs2_dinode *di;
1789 /* This is called with the super block cluster lock, so we
1790 * know that the slot map can't change underneath us. */
1792 for (i = 0; i < osb->max_slots; i++) {
1793 /* Read journal inode to get the recovery generation */
1794 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1799 di = (struct ocfs2_dinode *)bh->b_data;
1800 gen = ocfs2_get_recovery_generation(di);
1804 spin_lock(&osb->osb_lock);
1805 osb->slot_recovery_generations[i] = gen;
1807 mlog(0, "Slot %u recovery generation is %u\n", i,
1808 osb->slot_recovery_generations[i]);
1810 if (i == osb->slot_num) {
1811 spin_unlock(&osb->osb_lock);
1815 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1816 if (status == -ENOENT) {
1817 spin_unlock(&osb->osb_lock);
1821 if (__ocfs2_recovery_map_test(osb, node_num)) {
1822 spin_unlock(&osb->osb_lock);
1825 spin_unlock(&osb->osb_lock);
1827 /* Ok, we have a slot occupied by another node which
1828 * is not in the recovery map. We trylock his journal
1829 * file here to test if he's alive. */
1830 status = ocfs2_trylock_journal(osb, i);
1832 /* Since we're called from mount, we know that
1833 * the recovery thread can't race us on
1834 * setting / checking the recovery bits. */
1835 ocfs2_recovery_thread(osb, node_num);
1836 } else if ((status < 0) && (status != -EAGAIN)) {
1849 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1850 * randomness to the timeout to minimize multple nodes firing the timer at the
1853 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1857 get_random_bytes(&time, sizeof(time));
1858 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1859 return msecs_to_jiffies(time);
1863 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1864 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1865 * is done to catch any orphans that are left over in orphan directories.
1867 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1868 * seconds. It gets an EX lock on os_lockres and checks sequence number
1869 * stored in LVB. If the sequence number has changed, it means some other
1870 * node has done the scan. This node skips the scan and tracks the
1871 * sequence number. If the sequence number didn't change, it means a scan
1872 * hasn't happened. The node queues a scan and increments the
1873 * sequence number in the LVB.
1875 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1877 struct ocfs2_orphan_scan *os;
1881 os = &osb->osb_orphan_scan;
1883 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1886 status = ocfs2_orphan_scan_lock(osb, &seqno);
1888 if (status != -EAGAIN)
1893 /* Do no queue the tasks if the volume is being umounted */
1894 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1897 if (os->os_seqno != seqno) {
1898 os->os_seqno = seqno;
1902 for (i = 0; i < osb->max_slots; i++)
1903 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1906 * We queued a recovery on orphan slots, increment the sequence
1907 * number and update LVB so other node will skip the scan for a while
1911 os->os_scantime = CURRENT_TIME;
1913 ocfs2_orphan_scan_unlock(osb, seqno);
1918 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1919 void ocfs2_orphan_scan_work(struct work_struct *work)
1921 struct ocfs2_orphan_scan *os;
1922 struct ocfs2_super *osb;
1924 os = container_of(work, struct ocfs2_orphan_scan,
1925 os_orphan_scan_work.work);
1928 mutex_lock(&os->os_lock);
1929 ocfs2_queue_orphan_scan(osb);
1930 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1931 schedule_delayed_work(&os->os_orphan_scan_work,
1932 ocfs2_orphan_scan_timeout());
1933 mutex_unlock(&os->os_lock);
1936 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1938 struct ocfs2_orphan_scan *os;
1940 os = &osb->osb_orphan_scan;
1941 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1942 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1943 mutex_lock(&os->os_lock);
1944 cancel_delayed_work(&os->os_orphan_scan_work);
1945 mutex_unlock(&os->os_lock);
1949 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1951 struct ocfs2_orphan_scan *os;
1953 os = &osb->osb_orphan_scan;
1957 os->os_scantime = CURRENT_TIME;
1958 mutex_init(&os->os_lock);
1959 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1961 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1962 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1964 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1965 schedule_delayed_work(&os->os_orphan_scan_work,
1966 ocfs2_orphan_scan_timeout());
1970 struct ocfs2_orphan_filldir_priv {
1972 struct ocfs2_super *osb;
1975 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1976 loff_t pos, u64 ino, unsigned type)
1978 struct ocfs2_orphan_filldir_priv *p = priv;
1981 if (name_len == 1 && !strncmp(".", name, 1))
1983 if (name_len == 2 && !strncmp("..", name, 2))
1986 /* Skip bad inodes so that recovery can continue */
1987 iter = ocfs2_iget(p->osb, ino,
1988 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1992 mlog(0, "queue orphan %llu\n",
1993 (unsigned long long)OCFS2_I(iter)->ip_blkno);
1994 /* No locking is required for the next_orphan queue as there
1995 * is only ever a single process doing orphan recovery. */
1996 OCFS2_I(iter)->ip_next_orphan = p->head;
2002 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2004 struct inode **head)
2007 struct inode *orphan_dir_inode = NULL;
2008 struct ocfs2_orphan_filldir_priv priv;
2014 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2015 ORPHAN_DIR_SYSTEM_INODE,
2017 if (!orphan_dir_inode) {
2023 mutex_lock(&orphan_dir_inode->i_mutex);
2024 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2030 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
2031 ocfs2_orphan_filldir);
2040 ocfs2_inode_unlock(orphan_dir_inode, 0);
2042 mutex_unlock(&orphan_dir_inode->i_mutex);
2043 iput(orphan_dir_inode);
2047 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2052 spin_lock(&osb->osb_lock);
2053 ret = !osb->osb_orphan_wipes[slot];
2054 spin_unlock(&osb->osb_lock);
2058 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2061 spin_lock(&osb->osb_lock);
2062 /* Mark ourselves such that new processes in delete_inode()
2063 * know to quit early. */
2064 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2065 while (osb->osb_orphan_wipes[slot]) {
2066 /* If any processes are already in the middle of an
2067 * orphan wipe on this dir, then we need to wait for
2069 spin_unlock(&osb->osb_lock);
2070 wait_event_interruptible(osb->osb_wipe_event,
2071 ocfs2_orphan_recovery_can_continue(osb, slot));
2072 spin_lock(&osb->osb_lock);
2074 spin_unlock(&osb->osb_lock);
2077 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2080 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2084 * Orphan recovery. Each mounted node has it's own orphan dir which we
2085 * must run during recovery. Our strategy here is to build a list of
2086 * the inodes in the orphan dir and iget/iput them. The VFS does
2087 * (most) of the rest of the work.
2089 * Orphan recovery can happen at any time, not just mount so we have a
2090 * couple of extra considerations.
2092 * - We grab as many inodes as we can under the orphan dir lock -
2093 * doing iget() outside the orphan dir risks getting a reference on
2095 * - We must be sure not to deadlock with other processes on the
2096 * system wanting to run delete_inode(). This can happen when they go
2097 * to lock the orphan dir and the orphan recovery process attempts to
2098 * iget() inside the orphan dir lock. This can be avoided by
2099 * advertising our state to ocfs2_delete_inode().
2101 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2105 struct inode *inode = NULL;
2107 struct ocfs2_inode_info *oi;
2109 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
2111 ocfs2_mark_recovering_orphan_dir(osb, slot);
2112 ret = ocfs2_queue_orphans(osb, slot, &inode);
2113 ocfs2_clear_recovering_orphan_dir(osb, slot);
2115 /* Error here should be noted, but we want to continue with as
2116 * many queued inodes as we've got. */
2121 oi = OCFS2_I(inode);
2122 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
2124 iter = oi->ip_next_orphan;
2126 spin_lock(&oi->ip_lock);
2127 /* The remote delete code may have set these on the
2128 * assumption that the other node would wipe them
2129 * successfully. If they are still in the node's
2130 * orphan dir, we need to reset that state. */
2131 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2133 /* Set the proper information to get us going into
2134 * ocfs2_delete_inode. */
2135 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2136 spin_unlock(&oi->ip_lock);
2146 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2148 /* This check is good because ocfs2 will wait on our recovery
2149 * thread before changing it to something other than MOUNTED
2151 wait_event(osb->osb_mount_event,
2152 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2153 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2154 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2156 /* If there's an error on mount, then we may never get to the
2157 * MOUNTED flag, but this is set right before
2158 * dismount_volume() so we can trust it. */
2159 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2160 mlog(0, "mount error, exiting!\n");
2167 static int ocfs2_commit_thread(void *arg)
2170 struct ocfs2_super *osb = arg;
2171 struct ocfs2_journal *journal = osb->journal;
2173 /* we can trust j_num_trans here because _should_stop() is only set in
2174 * shutdown and nobody other than ourselves should be able to start
2175 * transactions. committing on shutdown might take a few iterations
2176 * as final transactions put deleted inodes on the list */
2177 while (!(kthread_should_stop() &&
2178 atomic_read(&journal->j_num_trans) == 0)) {
2180 wait_event_interruptible(osb->checkpoint_event,
2181 atomic_read(&journal->j_num_trans)
2182 || kthread_should_stop());
2184 status = ocfs2_commit_cache(osb);
2188 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2190 "commit_thread: %u transactions pending on "
2192 atomic_read(&journal->j_num_trans));
2199 /* Reads all the journal inodes without taking any cluster locks. Used
2200 * for hard readonly access to determine whether any journal requires
2201 * recovery. Also used to refresh the recovery generation numbers after
2202 * a journal has been recovered by another node.
2204 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2208 struct buffer_head *di_bh = NULL;
2209 struct ocfs2_dinode *di;
2210 int journal_dirty = 0;
2212 for(slot = 0; slot < osb->max_slots; slot++) {
2213 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2219 di = (struct ocfs2_dinode *) di_bh->b_data;
2221 osb->slot_recovery_generations[slot] =
2222 ocfs2_get_recovery_generation(di);
2224 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2225 OCFS2_JOURNAL_DIRTY_FL)