HID: fix inverted wheel for bluetooth version of apple mighty mouse
[linux-2.6] / drivers / sbus / char / bbc_envctrl.c
1 /* bbc_envctrl.c: UltraSPARC-III environment control driver.
2  *
3  * Copyright (C) 2001, 2008 David S. Miller (davem@davemloft.net)
4  */
5
6 #include <linux/kthread.h>
7 #include <linux/delay.h>
8 #include <linux/kmod.h>
9 #include <linux/reboot.h>
10 #include <linux/of.h>
11 #include <linux/of_device.h>
12 #include <asm/oplib.h>
13
14 #include "bbc_i2c.h"
15 #include "max1617.h"
16
17 #undef ENVCTRL_TRACE
18
19 /* WARNING: Making changes to this driver is very dangerous.
20  *          If you misprogram the sensor chips they can
21  *          cut the power on you instantly.
22  */
23
24 /* Two temperature sensors exist in the SunBLADE-1000 enclosure.
25  * Both are implemented using max1617 i2c devices.  Each max1617
26  * monitors 2 temperatures, one for one of the cpu dies and the other
27  * for the ambient temperature.
28  *
29  * The max1617 is capable of being programmed with power-off
30  * temperature values, one low limit and one high limit.  These
31  * can be controlled independently for the cpu or ambient temperature.
32  * If a limit is violated, the power is simply shut off.  The frequency
33  * with which the max1617 does temperature sampling can be controlled
34  * as well.
35  *
36  * Three fans exist inside the machine, all three are controlled with
37  * an i2c digital to analog converter.  There is a fan directed at the
38  * two processor slots, another for the rest of the enclosure, and the
39  * third is for the power supply.  The first two fans may be speed
40  * controlled by changing the voltage fed to them.  The third fan may
41  * only be completely off or on.  The third fan is meant to only be
42  * disabled/enabled when entering/exiting the lowest power-saving
43  * mode of the machine.
44  *
45  * An environmental control kernel thread periodically monitors all
46  * temperature sensors.  Based upon the samples it will adjust the
47  * fan speeds to try and keep the system within a certain temperature
48  * range (the goal being to make the fans as quiet as possible without
49  * allowing the system to get too hot).
50  *
51  * If the temperature begins to rise/fall outside of the acceptable
52  * operating range, a periodic warning will be sent to the kernel log.
53  * The fans will be put on full blast to attempt to deal with this
54  * situation.  After exceeding the acceptable operating range by a
55  * certain threshold, the kernel thread will shut down the system.
56  * Here, the thread is attempting to shut the machine down cleanly
57  * before the hardware based power-off event is triggered.
58  */
59
60 /* These settings are in Celsius.  We use these defaults only
61  * if we cannot interrogate the cpu-fru SEEPROM.
62  */
63 struct temp_limits {
64         s8 high_pwroff, high_shutdown, high_warn;
65         s8 low_warn, low_shutdown, low_pwroff;
66 };
67
68 static struct temp_limits cpu_temp_limits[2] = {
69         { 100, 85, 80, 5, -5, -10 },
70         { 100, 85, 80, 5, -5, -10 },
71 };
72
73 static struct temp_limits amb_temp_limits[2] = {
74         { 65, 55, 40, 5, -5, -10 },
75         { 65, 55, 40, 5, -5, -10 },
76 };
77
78 static LIST_HEAD(all_temps);
79 static LIST_HEAD(all_fans);
80
81 #define CPU_FAN_REG     0xf0
82 #define SYS_FAN_REG     0xf2
83 #define PSUPPLY_FAN_REG 0xf4
84
85 #define FAN_SPEED_MIN   0x0c
86 #define FAN_SPEED_MAX   0x3f
87
88 #define PSUPPLY_FAN_ON  0x1f
89 #define PSUPPLY_FAN_OFF 0x00
90
91 static void set_fan_speeds(struct bbc_fan_control *fp)
92 {
93         /* Put temperatures into range so we don't mis-program
94          * the hardware.
95          */
96         if (fp->cpu_fan_speed < FAN_SPEED_MIN)
97                 fp->cpu_fan_speed = FAN_SPEED_MIN;
98         if (fp->cpu_fan_speed > FAN_SPEED_MAX)
99                 fp->cpu_fan_speed = FAN_SPEED_MAX;
100         if (fp->system_fan_speed < FAN_SPEED_MIN)
101                 fp->system_fan_speed = FAN_SPEED_MIN;
102         if (fp->system_fan_speed > FAN_SPEED_MAX)
103                 fp->system_fan_speed = FAN_SPEED_MAX;
104 #ifdef ENVCTRL_TRACE
105         printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
106                fp->index,
107                fp->cpu_fan_speed, fp->system_fan_speed);
108 #endif
109
110         bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG);
111         bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG);
112         bbc_i2c_writeb(fp->client,
113                        (fp->psupply_fan_on ?
114                         PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF),
115                        PSUPPLY_FAN_REG);
116 }
117
118 static void get_current_temps(struct bbc_cpu_temperature *tp)
119 {
120         tp->prev_amb_temp = tp->curr_amb_temp;
121         bbc_i2c_readb(tp->client,
122                       (unsigned char *) &tp->curr_amb_temp,
123                       MAX1617_AMB_TEMP);
124         tp->prev_cpu_temp = tp->curr_cpu_temp;
125         bbc_i2c_readb(tp->client,
126                       (unsigned char *) &tp->curr_cpu_temp,
127                       MAX1617_CPU_TEMP);
128 #ifdef ENVCTRL_TRACE
129         printk("temp%d: cpu(%d C) amb(%d C)\n",
130                tp->index,
131                (int) tp->curr_cpu_temp, (int) tp->curr_amb_temp);
132 #endif
133 }
134
135
136 static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp)
137 {
138         static int shutting_down = 0;
139         char *type = "???";
140         s8 val = -1;
141
142         if (shutting_down != 0)
143                 return;
144
145         if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
146             tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
147                 type = "ambient";
148                 val = tp->curr_amb_temp;
149         } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
150                    tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
151                 type = "CPU";
152                 val = tp->curr_cpu_temp;
153         }
154
155         printk(KERN_CRIT "temp%d: Outside of safe %s "
156                "operating temperature, %d C.\n",
157                tp->index, type, val);
158
159         printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n");
160
161         shutting_down = 1;
162         if (orderly_poweroff(true) < 0)
163                 printk(KERN_CRIT "envctrl: shutdown execution failed\n");
164 }
165
166 #define WARN_INTERVAL   (30 * HZ)
167
168 static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
169 {
170         int ret = 0;
171
172         if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
173                 if (tp->curr_amb_temp >=
174                     amb_temp_limits[tp->index].high_warn) {
175                         printk(KERN_WARNING "temp%d: "
176                                "Above safe ambient operating temperature, %d C.\n",
177                                tp->index, (int) tp->curr_amb_temp);
178                         ret = 1;
179                 } else if (tp->curr_amb_temp <
180                            amb_temp_limits[tp->index].low_warn) {
181                         printk(KERN_WARNING "temp%d: "
182                                "Below safe ambient operating temperature, %d C.\n",
183                                tp->index, (int) tp->curr_amb_temp);
184                         ret = 1;
185                 }
186                 if (ret)
187                         *last_warn = jiffies;
188         } else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn ||
189                    tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn)
190                 ret = 1;
191
192         /* Now check the shutdown limits. */
193         if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
194             tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
195                 do_envctrl_shutdown(tp);
196                 ret = 1;
197         }
198
199         if (ret) {
200                 tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST;
201         } else if ((tick & (8 - 1)) == 0) {
202                 s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10;
203                 s8 amb_goal_lo;
204
205                 amb_goal_lo = amb_goal_hi - 3;
206
207                 /* We do not try to avoid 'too cold' events.  Basically we
208                  * only try to deal with over-heating and fan noise reduction.
209                  */
210                 if (tp->avg_amb_temp < amb_goal_hi) {
211                         if (tp->avg_amb_temp >= amb_goal_lo)
212                                 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
213                         else
214                                 tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER;
215                 } else {
216                         tp->fan_todo[FAN_AMBIENT] = FAN_FASTER;
217                 }
218         } else {
219                 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
220         }
221 }
222
223 static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
224 {
225         int ret = 0;
226
227         if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
228                 if (tp->curr_cpu_temp >=
229                     cpu_temp_limits[tp->index].high_warn) {
230                         printk(KERN_WARNING "temp%d: "
231                                "Above safe CPU operating temperature, %d C.\n",
232                                tp->index, (int) tp->curr_cpu_temp);
233                         ret = 1;
234                 } else if (tp->curr_cpu_temp <
235                            cpu_temp_limits[tp->index].low_warn) {
236                         printk(KERN_WARNING "temp%d: "
237                                "Below safe CPU operating temperature, %d C.\n",
238                                tp->index, (int) tp->curr_cpu_temp);
239                         ret = 1;
240                 }
241                 if (ret)
242                         *last_warn = jiffies;
243         } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn ||
244                    tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn)
245                 ret = 1;
246
247         /* Now check the shutdown limits. */
248         if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
249             tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
250                 do_envctrl_shutdown(tp);
251                 ret = 1;
252         }
253
254         if (ret) {
255                 tp->fan_todo[FAN_CPU] = FAN_FULLBLAST;
256         } else if ((tick & (8 - 1)) == 0) {
257                 s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10;
258                 s8 cpu_goal_lo;
259
260                 cpu_goal_lo = cpu_goal_hi - 3;
261
262                 /* We do not try to avoid 'too cold' events.  Basically we
263                  * only try to deal with over-heating and fan noise reduction.
264                  */
265                 if (tp->avg_cpu_temp < cpu_goal_hi) {
266                         if (tp->avg_cpu_temp >= cpu_goal_lo)
267                                 tp->fan_todo[FAN_CPU] = FAN_SAME;
268                         else
269                                 tp->fan_todo[FAN_CPU] = FAN_SLOWER;
270                 } else {
271                         tp->fan_todo[FAN_CPU] = FAN_FASTER;
272                 }
273         } else {
274                 tp->fan_todo[FAN_CPU] = FAN_SAME;
275         }
276 }
277
278 static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn)
279 {
280         tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2);
281         tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2);
282
283         analyze_ambient_temp(tp, last_warn, tp->sample_tick);
284         analyze_cpu_temp(tp, last_warn, tp->sample_tick);
285
286         tp->sample_tick++;
287 }
288
289 static enum fan_action prioritize_fan_action(int which_fan)
290 {
291         struct bbc_cpu_temperature *tp;
292         enum fan_action decision = FAN_STATE_MAX;
293
294         /* Basically, prioritize what the temperature sensors
295          * recommend we do, and perform that action on all the
296          * fans.
297          */
298         list_for_each_entry(tp, &all_temps, glob_list) {
299                 if (tp->fan_todo[which_fan] == FAN_FULLBLAST) {
300                         decision = FAN_FULLBLAST;
301                         break;
302                 }
303                 if (tp->fan_todo[which_fan] == FAN_SAME &&
304                     decision != FAN_FASTER)
305                         decision = FAN_SAME;
306                 else if (tp->fan_todo[which_fan] == FAN_FASTER)
307                         decision = FAN_FASTER;
308                 else if (decision != FAN_FASTER &&
309                          decision != FAN_SAME &&
310                          tp->fan_todo[which_fan] == FAN_SLOWER)
311                         decision = FAN_SLOWER;
312         }
313         if (decision == FAN_STATE_MAX)
314                 decision = FAN_SAME;
315
316         return decision;
317 }
318
319 static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp)
320 {
321         enum fan_action decision = prioritize_fan_action(FAN_AMBIENT);
322         int ret;
323
324         if (decision == FAN_SAME)
325                 return 0;
326
327         ret = 1;
328         if (decision == FAN_FULLBLAST) {
329                 if (fp->system_fan_speed >= FAN_SPEED_MAX)
330                         ret = 0;
331                 else
332                         fp->system_fan_speed = FAN_SPEED_MAX;
333         } else {
334                 if (decision == FAN_FASTER) {
335                         if (fp->system_fan_speed >= FAN_SPEED_MAX)
336                                 ret = 0;
337                         else
338                                 fp->system_fan_speed += 2;
339                 } else {
340                         int orig_speed = fp->system_fan_speed;
341
342                         if (orig_speed <= FAN_SPEED_MIN ||
343                             orig_speed <= (fp->cpu_fan_speed - 3))
344                                 ret = 0;
345                         else
346                                 fp->system_fan_speed -= 1;
347                 }
348         }
349
350         return ret;
351 }
352
353 static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp)
354 {
355         enum fan_action decision = prioritize_fan_action(FAN_CPU);
356         int ret;
357
358         if (decision == FAN_SAME)
359                 return 0;
360
361         ret = 1;
362         if (decision == FAN_FULLBLAST) {
363                 if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
364                         ret = 0;
365                 else
366                         fp->cpu_fan_speed = FAN_SPEED_MAX;
367         } else {
368                 if (decision == FAN_FASTER) {
369                         if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
370                                 ret = 0;
371                         else {
372                                 fp->cpu_fan_speed += 2;
373                                 if (fp->system_fan_speed <
374                                     (fp->cpu_fan_speed - 3))
375                                         fp->system_fan_speed =
376                                                 fp->cpu_fan_speed - 3;
377                         }
378                 } else {
379                         if (fp->cpu_fan_speed <= FAN_SPEED_MIN)
380                                 ret = 0;
381                         else
382                                 fp->cpu_fan_speed -= 1;
383                 }
384         }
385
386         return ret;
387 }
388
389 static void maybe_new_fan_speeds(struct bbc_fan_control *fp)
390 {
391         int new;
392
393         new  = maybe_new_ambient_fan_speed(fp);
394         new |= maybe_new_cpu_fan_speed(fp);
395
396         if (new)
397                 set_fan_speeds(fp);
398 }
399
400 static void fans_full_blast(void)
401 {
402         struct bbc_fan_control *fp;
403
404         /* Since we will not be monitoring things anymore, put
405          * the fans on full blast.
406          */
407         list_for_each_entry(fp, &all_fans, glob_list) {
408                 fp->cpu_fan_speed = FAN_SPEED_MAX;
409                 fp->system_fan_speed = FAN_SPEED_MAX;
410                 fp->psupply_fan_on = 1;
411                 set_fan_speeds(fp);
412         }
413 }
414
415 #define POLL_INTERVAL   (5 * 1000)
416 static unsigned long last_warning_jiffies;
417 static struct task_struct *kenvctrld_task;
418
419 static int kenvctrld(void *__unused)
420 {
421         printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n");
422         last_warning_jiffies = jiffies - WARN_INTERVAL;
423         for (;;) {
424                 struct bbc_cpu_temperature *tp;
425                 struct bbc_fan_control *fp;
426
427                 msleep_interruptible(POLL_INTERVAL);
428                 if (kthread_should_stop())
429                         break;
430
431                 list_for_each_entry(tp, &all_temps, glob_list) {
432                         get_current_temps(tp);
433                         analyze_temps(tp, &last_warning_jiffies);
434                 }
435                 list_for_each_entry(fp, &all_fans, glob_list)
436                         maybe_new_fan_speeds(fp);
437         }
438         printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n");
439
440         fans_full_blast();
441
442         return 0;
443 }
444
445 static void attach_one_temp(struct bbc_i2c_bus *bp, struct of_device *op,
446                             int temp_idx)
447 {
448         struct bbc_cpu_temperature *tp;
449
450         tp = kzalloc(sizeof(*tp), GFP_KERNEL);
451         if (!tp)
452                 return;
453
454         tp->client = bbc_i2c_attach(bp, op);
455         if (!tp->client) {
456                 kfree(tp);
457                 return;
458         }
459
460
461         tp->index = temp_idx;
462
463         list_add(&tp->glob_list, &all_temps);
464         list_add(&tp->bp_list, &bp->temps);
465
466         /* Tell it to convert once every 5 seconds, clear all cfg
467          * bits.
468          */
469         bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE);
470         bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE);
471
472         /* Program the hard temperature limits into the chip. */
473         bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff,
474                        MAX1617_WR_AMB_HIGHLIM);
475         bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff,
476                        MAX1617_WR_AMB_LOWLIM);
477         bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff,
478                        MAX1617_WR_CPU_HIGHLIM);
479         bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff,
480                        MAX1617_WR_CPU_LOWLIM);
481
482         get_current_temps(tp);
483         tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp;
484         tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp;
485
486         tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
487         tp->fan_todo[FAN_CPU] = FAN_SAME;
488 }
489
490 static void attach_one_fan(struct bbc_i2c_bus *bp, struct of_device *op,
491                            int fan_idx)
492 {
493         struct bbc_fan_control *fp;
494
495         fp = kzalloc(sizeof(*fp), GFP_KERNEL);
496         if (!fp)
497                 return;
498
499         fp->client = bbc_i2c_attach(bp, op);
500         if (!fp->client) {
501                 kfree(fp);
502                 return;
503         }
504
505         fp->index = fan_idx;
506
507         list_add(&fp->glob_list, &all_fans);
508         list_add(&fp->bp_list, &bp->fans);
509
510         /* The i2c device controlling the fans is write-only.
511          * So the only way to keep track of the current power
512          * level fed to the fans is via software.  Choose half
513          * power for cpu/system and 'on' fo the powersupply fan
514          * and set it now.
515          */
516         fp->psupply_fan_on = 1;
517         fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
518         fp->cpu_fan_speed += FAN_SPEED_MIN;
519         fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
520         fp->system_fan_speed += FAN_SPEED_MIN;
521
522         set_fan_speeds(fp);
523 }
524
525 int bbc_envctrl_init(struct bbc_i2c_bus *bp)
526 {
527         struct of_device *op;
528         int temp_index = 0;
529         int fan_index = 0;
530         int devidx = 0;
531
532         while ((op = bbc_i2c_getdev(bp, devidx++)) != NULL) {
533                 if (!strcmp(op->node->name, "temperature"))
534                         attach_one_temp(bp, op, temp_index++);
535                 if (!strcmp(op->node->name, "fan-control"))
536                         attach_one_fan(bp, op, fan_index++);
537         }
538         if (temp_index != 0 && fan_index != 0) {
539                 kenvctrld_task = kthread_run(kenvctrld, NULL, "kenvctrld");
540                 if (IS_ERR(kenvctrld_task))
541                         return PTR_ERR(kenvctrld_task);
542         }
543
544         return 0;
545 }
546
547 static void destroy_one_temp(struct bbc_cpu_temperature *tp)
548 {
549         bbc_i2c_detach(tp->client);
550         kfree(tp);
551 }
552
553 static void destroy_one_fan(struct bbc_fan_control *fp)
554 {
555         bbc_i2c_detach(fp->client);
556         kfree(fp);
557 }
558
559 void bbc_envctrl_cleanup(struct bbc_i2c_bus *bp)
560 {
561         struct bbc_cpu_temperature *tp, *tpos;
562         struct bbc_fan_control *fp, *fpos;
563
564         kthread_stop(kenvctrld_task);
565
566         list_for_each_entry_safe(tp, tpos, &bp->temps, bp_list) {
567                 list_del(&tp->bp_list);
568                 list_del(&tp->glob_list);
569                 destroy_one_temp(tp);
570         }
571
572         list_for_each_entry_safe(fp, fpos, &bp->fans, bp_list) {
573                 list_del(&fp->bp_list);
574                 list_del(&fp->glob_list);
575                 destroy_one_fan(fp);
576         }
577 }