2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
57 #include <asm/processor.h>
58 #include <asm/nvram.h>
59 #include <asm/cache.h>
60 #include <asm/machdep.h>
61 #include <asm/uaccess.h>
65 #include <asm/div64.h>
67 #include <asm/vdso_datapage.h>
68 #include <asm/firmware.h>
69 #ifdef CONFIG_PPC_ISERIES
70 #include <asm/iseries/it_lp_queue.h>
71 #include <asm/iseries/hv_call_xm.h>
74 /* powerpc clocksource/clockevent code */
76 #include <linux/clockchips.h>
77 #include <linux/clocksource.h>
79 static cycle_t rtc_read(void);
80 static struct clocksource clocksource_rtc = {
83 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
84 .mask = CLOCKSOURCE_MASK(64),
86 .mult = 0, /* To be filled in */
90 static cycle_t timebase_read(void);
91 static struct clocksource clocksource_timebase = {
94 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
95 .mask = CLOCKSOURCE_MASK(64),
97 .mult = 0, /* To be filled in */
98 .read = timebase_read,
101 #define DECREMENTER_MAX 0x7fffffff
103 static int decrementer_set_next_event(unsigned long evt,
104 struct clock_event_device *dev);
105 static void decrementer_set_mode(enum clock_event_mode mode,
106 struct clock_event_device *dev);
108 static struct clock_event_device decrementer_clockevent = {
109 .name = "decrementer",
112 .mult = 0, /* To be filled in */
114 .set_next_event = decrementer_set_next_event,
115 .set_mode = decrementer_set_mode,
116 .features = CLOCK_EVT_FEAT_ONESHOT,
119 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
120 void init_decrementer_clockevent(void);
121 static DEFINE_PER_CPU(u64, decrementer_next_tb);
123 #ifdef CONFIG_PPC_ISERIES
124 static unsigned long __initdata iSeries_recal_titan;
125 static signed long __initdata iSeries_recal_tb;
127 /* Forward declaration is only needed for iSereis compiles */
128 void __init clocksource_init(void);
131 #define XSEC_PER_SEC (1024*1024)
134 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
136 /* compute ((xsec << 12) * max) >> 32 */
137 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
140 unsigned long tb_ticks_per_jiffy;
141 unsigned long tb_ticks_per_usec = 100; /* sane default */
142 EXPORT_SYMBOL(tb_ticks_per_usec);
143 unsigned long tb_ticks_per_sec;
144 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
148 #define TICKLEN_SCALE TICK_LENGTH_SHIFT
149 u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
150 u64 ticklen_to_xs; /* 0.64 fraction */
152 /* If last_tick_len corresponds to about 1/HZ seconds, then
153 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
154 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
156 DEFINE_SPINLOCK(rtc_lock);
157 EXPORT_SYMBOL_GPL(rtc_lock);
159 static u64 tb_to_ns_scale __read_mostly;
160 static unsigned tb_to_ns_shift __read_mostly;
161 static unsigned long boot_tb __read_mostly;
163 struct gettimeofday_struct do_gtod;
165 extern struct timezone sys_tz;
166 static long timezone_offset;
168 unsigned long ppc_proc_freq;
169 EXPORT_SYMBOL(ppc_proc_freq);
170 unsigned long ppc_tb_freq;
172 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
173 static DEFINE_PER_CPU(u64, last_jiffy);
175 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
177 * Factors for converting from cputime_t (timebase ticks) to
178 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
179 * These are all stored as 0.64 fixed-point binary fractions.
181 u64 __cputime_jiffies_factor;
182 EXPORT_SYMBOL(__cputime_jiffies_factor);
183 u64 __cputime_msec_factor;
184 EXPORT_SYMBOL(__cputime_msec_factor);
185 u64 __cputime_sec_factor;
186 EXPORT_SYMBOL(__cputime_sec_factor);
187 u64 __cputime_clockt_factor;
188 EXPORT_SYMBOL(__cputime_clockt_factor);
190 static void calc_cputime_factors(void)
192 struct div_result res;
194 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
195 __cputime_jiffies_factor = res.result_low;
196 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
197 __cputime_msec_factor = res.result_low;
198 div128_by_32(1, 0, tb_ticks_per_sec, &res);
199 __cputime_sec_factor = res.result_low;
200 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
201 __cputime_clockt_factor = res.result_low;
205 * Read the PURR on systems that have it, otherwise the timebase.
207 static u64 read_purr(void)
209 if (cpu_has_feature(CPU_FTR_PURR))
210 return mfspr(SPRN_PURR);
215 * Read the SPURR on systems that have it, otherwise the purr
217 static u64 read_spurr(u64 purr)
219 if (cpu_has_feature(CPU_FTR_SPURR))
220 return mfspr(SPRN_SPURR);
225 * Account time for a transition between system, hard irq
228 void account_system_vtime(struct task_struct *tsk)
230 u64 now, nowscaled, delta, deltascaled;
233 local_irq_save(flags);
235 delta = now - get_paca()->startpurr;
236 get_paca()->startpurr = now;
237 nowscaled = read_spurr(now);
238 deltascaled = nowscaled - get_paca()->startspurr;
239 get_paca()->startspurr = nowscaled;
240 if (!in_interrupt()) {
241 /* deltascaled includes both user and system time.
242 * Hence scale it based on the purr ratio to estimate
244 deltascaled = deltascaled * get_paca()->system_time /
245 (get_paca()->system_time + get_paca()->user_time);
246 delta += get_paca()->system_time;
247 get_paca()->system_time = 0;
249 account_system_time(tsk, 0, delta);
250 get_paca()->purrdelta = delta;
251 account_system_time_scaled(tsk, deltascaled);
252 get_paca()->spurrdelta = deltascaled;
253 local_irq_restore(flags);
257 * Transfer the user and system times accumulated in the paca
258 * by the exception entry and exit code to the generic process
259 * user and system time records.
260 * Must be called with interrupts disabled.
262 void account_process_tick(struct task_struct *tsk, int user_tick)
264 cputime_t utime, utimescaled;
266 utime = get_paca()->user_time;
267 get_paca()->user_time = 0;
268 account_user_time(tsk, utime);
270 /* Estimate the scaled utime by scaling the real utime based
271 * on the last spurr to purr ratio */
272 utimescaled = utime * get_paca()->spurrdelta / get_paca()->purrdelta;
273 get_paca()->spurrdelta = get_paca()->purrdelta = 0;
274 account_user_time_scaled(tsk, utimescaled);
278 * Stuff for accounting stolen time.
280 struct cpu_purr_data {
281 int initialized; /* thread is running */
282 u64 tb; /* last TB value read */
283 u64 purr; /* last PURR value read */
284 u64 spurr; /* last SPURR value read */
288 * Each entry in the cpu_purr_data array is manipulated only by its
289 * "owner" cpu -- usually in the timer interrupt but also occasionally
290 * in process context for cpu online. As long as cpus do not touch
291 * each others' cpu_purr_data, disabling local interrupts is
292 * sufficient to serialize accesses.
294 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
296 static void snapshot_tb_and_purr(void *data)
299 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
301 local_irq_save(flags);
302 p->tb = get_tb_or_rtc();
303 p->purr = mfspr(SPRN_PURR);
306 local_irq_restore(flags);
310 * Called during boot when all cpus have come up.
312 void snapshot_timebases(void)
314 if (!cpu_has_feature(CPU_FTR_PURR))
316 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
320 * Must be called with interrupts disabled.
322 void calculate_steal_time(void)
326 struct cpu_purr_data *pme;
328 if (!cpu_has_feature(CPU_FTR_PURR))
330 pme = &per_cpu(cpu_purr_data, smp_processor_id());
331 if (!pme->initialized)
332 return; /* this can happen in early boot */
334 purr = mfspr(SPRN_PURR);
335 stolen = (tb - pme->tb) - (purr - pme->purr);
337 account_steal_time(current, stolen);
342 #ifdef CONFIG_PPC_SPLPAR
344 * Must be called before the cpu is added to the online map when
345 * a cpu is being brought up at runtime.
347 static void snapshot_purr(void)
349 struct cpu_purr_data *pme;
352 if (!cpu_has_feature(CPU_FTR_PURR))
354 local_irq_save(flags);
355 pme = &per_cpu(cpu_purr_data, smp_processor_id());
357 pme->purr = mfspr(SPRN_PURR);
358 pme->initialized = 1;
359 local_irq_restore(flags);
362 #endif /* CONFIG_PPC_SPLPAR */
364 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
365 #define calc_cputime_factors()
366 #define calculate_steal_time() do { } while (0)
369 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
370 #define snapshot_purr() do { } while (0)
374 * Called when a cpu comes up after the system has finished booting,
375 * i.e. as a result of a hotplug cpu action.
377 void snapshot_timebase(void)
379 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
383 void __delay(unsigned long loops)
391 /* the RTCL register wraps at 1000000000 */
392 diff = get_rtcl() - start;
395 } while (diff < loops);
398 while (get_tbl() - start < loops)
403 EXPORT_SYMBOL(__delay);
405 void udelay(unsigned long usecs)
407 __delay(tb_ticks_per_usec * usecs);
409 EXPORT_SYMBOL(udelay);
413 * There are two copies of tb_to_xs and stamp_xsec so that no
414 * lock is needed to access and use these values in
415 * do_gettimeofday. We alternate the copies and as long as a
416 * reasonable time elapses between changes, there will never
417 * be inconsistent values. ntpd has a minimum of one minute
420 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
424 struct gettimeofday_vars *temp_varp;
426 temp_idx = (do_gtod.var_idx == 0);
427 temp_varp = &do_gtod.vars[temp_idx];
429 temp_varp->tb_to_xs = new_tb_to_xs;
430 temp_varp->tb_orig_stamp = new_tb_stamp;
431 temp_varp->stamp_xsec = new_stamp_xsec;
433 do_gtod.varp = temp_varp;
434 do_gtod.var_idx = temp_idx;
437 * tb_update_count is used to allow the userspace gettimeofday code
438 * to assure itself that it sees a consistent view of the tb_to_xs and
439 * stamp_xsec variables. It reads the tb_update_count, then reads
440 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
441 * the two values of tb_update_count match and are even then the
442 * tb_to_xs and stamp_xsec values are consistent. If not, then it
443 * loops back and reads them again until this criteria is met.
444 * We expect the caller to have done the first increment of
445 * vdso_data->tb_update_count already.
447 vdso_data->tb_orig_stamp = new_tb_stamp;
448 vdso_data->stamp_xsec = new_stamp_xsec;
449 vdso_data->tb_to_xs = new_tb_to_xs;
450 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
451 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
453 ++(vdso_data->tb_update_count);
457 unsigned long profile_pc(struct pt_regs *regs)
459 unsigned long pc = instruction_pointer(regs);
461 if (in_lock_functions(pc))
466 EXPORT_SYMBOL(profile_pc);
469 #ifdef CONFIG_PPC_ISERIES
472 * This function recalibrates the timebase based on the 49-bit time-of-day
473 * value in the Titan chip. The Titan is much more accurate than the value
474 * returned by the service processor for the timebase frequency.
477 static int __init iSeries_tb_recal(void)
479 struct div_result divres;
480 unsigned long titan, tb;
482 /* Make sure we only run on iSeries */
483 if (!firmware_has_feature(FW_FEATURE_ISERIES))
487 titan = HvCallXm_loadTod();
488 if ( iSeries_recal_titan ) {
489 unsigned long tb_ticks = tb - iSeries_recal_tb;
490 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
491 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
492 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
493 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
495 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
496 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
498 if ( tick_diff < 0 ) {
499 tick_diff = -tick_diff;
503 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
504 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
505 new_tb_ticks_per_jiffy, sign, tick_diff );
506 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
507 tb_ticks_per_sec = new_tb_ticks_per_sec;
508 calc_cputime_factors();
509 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
510 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
511 tb_to_xs = divres.result_low;
512 do_gtod.varp->tb_to_xs = tb_to_xs;
513 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
514 vdso_data->tb_to_xs = tb_to_xs;
517 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
518 " new tb_ticks_per_jiffy = %lu\n"
519 " old tb_ticks_per_jiffy = %lu\n",
520 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
524 iSeries_recal_titan = titan;
525 iSeries_recal_tb = tb;
527 /* Called here as now we know accurate values for the timebase */
531 late_initcall(iSeries_tb_recal);
533 /* Called from platform early init */
534 void __init iSeries_time_init_early(void)
536 iSeries_recal_tb = get_tb();
537 iSeries_recal_titan = HvCallXm_loadTod();
539 #endif /* CONFIG_PPC_ISERIES */
542 * For iSeries shared processors, we have to let the hypervisor
543 * set the hardware decrementer. We set a virtual decrementer
544 * in the lppaca and call the hypervisor if the virtual
545 * decrementer is less than the current value in the hardware
546 * decrementer. (almost always the new decrementer value will
547 * be greater than the current hardware decementer so the hypervisor
548 * call will not be needed)
552 * timer_interrupt - gets called when the decrementer overflows,
553 * with interrupts disabled.
555 void timer_interrupt(struct pt_regs * regs)
557 struct pt_regs *old_regs;
558 int cpu = smp_processor_id();
559 struct clock_event_device *evt = &per_cpu(decrementers, cpu);
562 /* Ensure a positive value is written to the decrementer, or else
563 * some CPUs will continuue to take decrementer exceptions */
564 set_dec(DECREMENTER_MAX);
567 if (atomic_read(&ppc_n_lost_interrupts) != 0)
571 now = get_tb_or_rtc();
572 if (now < per_cpu(decrementer_next_tb, cpu)) {
573 /* not time for this event yet */
574 now = per_cpu(decrementer_next_tb, cpu) - now;
575 if (now <= DECREMENTER_MAX)
576 set_dec((unsigned int)now - 1);
579 old_regs = set_irq_regs(regs);
582 calculate_steal_time();
584 #ifdef CONFIG_PPC_ISERIES
585 if (firmware_has_feature(FW_FEATURE_ISERIES))
586 get_lppaca()->int_dword.fields.decr_int = 0;
589 if (evt->event_handler)
590 evt->event_handler(evt);
592 evt->set_next_event(DECREMENTER_MAX, evt);
594 #ifdef CONFIG_PPC_ISERIES
595 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
596 process_hvlpevents();
600 /* collect purr register values often, for accurate calculations */
601 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
602 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
603 cu->current_tb = mfspr(SPRN_PURR);
608 set_irq_regs(old_regs);
611 void wakeup_decrementer(void)
616 * The timebase gets saved on sleep and restored on wakeup,
617 * so all we need to do is to reset the decrementer.
619 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
620 if (ticks < tb_ticks_per_jiffy)
621 ticks = tb_ticks_per_jiffy - ticks;
628 void __init smp_space_timers(unsigned int max_cpus)
631 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
633 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
634 previous_tb -= tb_ticks_per_jiffy;
636 for_each_possible_cpu(i) {
639 per_cpu(last_jiffy, i) = previous_tb;
645 * Scheduler clock - returns current time in nanosec units.
647 * Note: mulhdu(a, b) (multiply high double unsigned) returns
648 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
649 * are 64-bit unsigned numbers.
651 unsigned long long sched_clock(void)
655 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
658 static int __init get_freq(char *name, int cells, unsigned long *val)
660 struct device_node *cpu;
661 const unsigned int *fp;
664 /* The cpu node should have timebase and clock frequency properties */
665 cpu = of_find_node_by_type(NULL, "cpu");
668 fp = of_get_property(cpu, name, NULL);
671 *val = of_read_ulong(fp, cells);
680 void __init generic_calibrate_decr(void)
682 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
684 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
685 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
687 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
691 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
693 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
694 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
696 printk(KERN_ERR "WARNING: Estimating processor frequency "
700 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
701 /* Set the time base to zero */
705 /* Clear any pending timer interrupts */
706 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
708 /* Enable decrementer interrupt */
709 mtspr(SPRN_TCR, TCR_DIE);
713 int update_persistent_clock(struct timespec now)
717 if (!ppc_md.set_rtc_time)
720 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
724 return ppc_md.set_rtc_time(&tm);
727 unsigned long read_persistent_clock(void)
730 static int first = 1;
732 /* XXX this is a litle fragile but will work okay in the short term */
735 if (ppc_md.time_init)
736 timezone_offset = ppc_md.time_init();
738 /* get_boot_time() isn't guaranteed to be safe to call late */
739 if (ppc_md.get_boot_time)
740 return ppc_md.get_boot_time() -timezone_offset;
742 if (!ppc_md.get_rtc_time)
744 ppc_md.get_rtc_time(&tm);
745 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
746 tm.tm_hour, tm.tm_min, tm.tm_sec);
749 /* clocksource code */
750 static cycle_t rtc_read(void)
752 return (cycle_t)get_rtc();
755 static cycle_t timebase_read(void)
757 return (cycle_t)get_tb();
760 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
764 if (clock != &clocksource_timebase)
767 /* Make userspace gettimeofday spin until we're done. */
768 ++vdso_data->tb_update_count;
771 /* XXX this assumes clock->shift == 22 */
772 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
773 t2x = (u64) clock->mult * 4611686018ULL;
774 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
775 do_div(stamp_xsec, 1000000000);
776 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
777 update_gtod(clock->cycle_last, stamp_xsec, t2x);
780 void update_vsyscall_tz(void)
782 /* Make userspace gettimeofday spin until we're done. */
783 ++vdso_data->tb_update_count;
785 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
786 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
788 ++vdso_data->tb_update_count;
791 void __init clocksource_init(void)
793 struct clocksource *clock;
796 clock = &clocksource_rtc;
798 clock = &clocksource_timebase;
800 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
802 if (clocksource_register(clock)) {
803 printk(KERN_ERR "clocksource: %s is already registered\n",
808 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
809 clock->name, clock->mult, clock->shift);
812 static int decrementer_set_next_event(unsigned long evt,
813 struct clock_event_device *dev)
815 __get_cpu_var(decrementer_next_tb) = get_tb_or_rtc() + evt;
816 /* The decrementer interrupts on the 0 -> -1 transition */
823 static void decrementer_set_mode(enum clock_event_mode mode,
824 struct clock_event_device *dev)
826 if (mode != CLOCK_EVT_MODE_ONESHOT)
827 decrementer_set_next_event(DECREMENTER_MAX, dev);
830 static void register_decrementer_clockevent(int cpu)
832 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
834 *dec = decrementer_clockevent;
835 dec->cpumask = cpumask_of_cpu(cpu);
837 printk(KERN_INFO "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
838 dec->name, dec->mult, dec->shift, cpu);
840 clockevents_register_device(dec);
843 void init_decrementer_clockevent(void)
845 int cpu = smp_processor_id();
847 decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
848 decrementer_clockevent.shift);
849 decrementer_clockevent.max_delta_ns =
850 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
851 decrementer_clockevent.min_delta_ns = 1000;
853 register_decrementer_clockevent(cpu);
856 void secondary_cpu_time_init(void)
858 /* FIME: Should make unrelatred change to move snapshot_timebase
860 register_decrementer_clockevent(smp_processor_id());
863 /* This function is only called on the boot processor */
864 void __init time_init(void)
867 struct div_result res;
872 /* 601 processor: dec counts down by 128 every 128ns */
873 ppc_tb_freq = 1000000000;
874 tb_last_jiffy = get_rtcl();
876 /* Normal PowerPC with timebase register */
877 ppc_md.calibrate_decr();
878 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
879 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
880 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
881 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
882 tb_last_jiffy = get_tb();
885 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
886 tb_ticks_per_sec = ppc_tb_freq;
887 tb_ticks_per_usec = ppc_tb_freq / 1000000;
888 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
889 calc_cputime_factors();
892 * Calculate the length of each tick in ns. It will not be
893 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
894 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
897 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
898 do_div(x, ppc_tb_freq);
900 last_tick_len = x << TICKLEN_SCALE;
903 * Compute ticklen_to_xs, which is a factor which gets multiplied
904 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
906 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
907 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
908 * which turns out to be N = 51 - SHIFT_HZ.
909 * This gives the result as a 0.64 fixed-point fraction.
910 * That value is reduced by an offset amounting to 1 xsec per
911 * 2^31 timebase ticks to avoid problems with time going backwards
912 * by 1 xsec when we do timer_recalc_offset due to losing the
913 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
914 * since there are 2^20 xsec in a second.
916 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
917 tb_ticks_per_jiffy << SHIFT_HZ, &res);
918 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
919 ticklen_to_xs = res.result_low;
921 /* Compute tb_to_xs from tick_nsec */
922 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
925 * Compute scale factor for sched_clock.
926 * The calibrate_decr() function has set tb_ticks_per_sec,
927 * which is the timebase frequency.
928 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
929 * the 128-bit result as a 64.64 fixed-point number.
930 * We then shift that number right until it is less than 1.0,
931 * giving us the scale factor and shift count to use in
934 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
935 scale = res.result_low;
936 for (shift = 0; res.result_high != 0; ++shift) {
937 scale = (scale >> 1) | (res.result_high << 63);
938 res.result_high >>= 1;
940 tb_to_ns_scale = scale;
941 tb_to_ns_shift = shift;
942 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
943 boot_tb = get_tb_or_rtc();
945 write_seqlock_irqsave(&xtime_lock, flags);
947 /* If platform provided a timezone (pmac), we correct the time */
948 if (timezone_offset) {
949 sys_tz.tz_minuteswest = -timezone_offset / 60;
950 sys_tz.tz_dsttime = 0;
953 do_gtod.varp = &do_gtod.vars[0];
955 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
956 __get_cpu_var(last_jiffy) = tb_last_jiffy;
957 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
958 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
959 do_gtod.varp->tb_to_xs = tb_to_xs;
960 do_gtod.tb_to_us = tb_to_us;
962 vdso_data->tb_orig_stamp = tb_last_jiffy;
963 vdso_data->tb_update_count = 0;
964 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
965 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
966 vdso_data->tb_to_xs = tb_to_xs;
970 write_sequnlock_irqrestore(&xtime_lock, flags);
972 /* Register the clocksource, if we're not running on iSeries */
973 if (!firmware_has_feature(FW_FEATURE_ISERIES))
976 init_decrementer_clockevent();
981 #define STARTOFTIME 1970
982 #define SECDAY 86400L
983 #define SECYR (SECDAY * 365)
984 #define leapyear(year) ((year) % 4 == 0 && \
985 ((year) % 100 != 0 || (year) % 400 == 0))
986 #define days_in_year(a) (leapyear(a) ? 366 : 365)
987 #define days_in_month(a) (month_days[(a) - 1])
989 static int month_days[12] = {
990 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
994 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
996 void GregorianDay(struct rtc_time * tm)
1001 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1003 lastYear = tm->tm_year - 1;
1006 * Number of leap corrections to apply up to end of last year
1008 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1011 * This year is a leap year if it is divisible by 4 except when it is
1012 * divisible by 100 unless it is divisible by 400
1014 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1016 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1018 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1021 tm->tm_wday = day % 7;
1024 void to_tm(int tim, struct rtc_time * tm)
1027 register long hms, day;
1032 /* Hours, minutes, seconds are easy */
1033 tm->tm_hour = hms / 3600;
1034 tm->tm_min = (hms % 3600) / 60;
1035 tm->tm_sec = (hms % 3600) % 60;
1037 /* Number of years in days */
1038 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1039 day -= days_in_year(i);
1042 /* Number of months in days left */
1043 if (leapyear(tm->tm_year))
1044 days_in_month(FEBRUARY) = 29;
1045 for (i = 1; day >= days_in_month(i); i++)
1046 day -= days_in_month(i);
1047 days_in_month(FEBRUARY) = 28;
1050 /* Days are what is left over (+1) from all that. */
1051 tm->tm_mday = day + 1;
1054 * Determine the day of week
1059 /* Auxiliary function to compute scaling factors */
1060 /* Actually the choice of a timebase running at 1/4 the of the bus
1061 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1062 * It makes this computation very precise (27-28 bits typically) which
1063 * is optimistic considering the stability of most processor clock
1064 * oscillators and the precision with which the timebase frequency
1065 * is measured but does not harm.
1067 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1069 unsigned mlt=0, tmp, err;
1070 /* No concern for performance, it's done once: use a stupid
1071 * but safe and compact method to find the multiplier.
1074 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1075 if (mulhwu(inscale, mlt|tmp) < outscale)
1079 /* We might still be off by 1 for the best approximation.
1080 * A side effect of this is that if outscale is too large
1081 * the returned value will be zero.
1082 * Many corner cases have been checked and seem to work,
1083 * some might have been forgotten in the test however.
1086 err = inscale * (mlt+1);
1087 if (err <= inscale/2)
1093 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1096 void div128_by_32(u64 dividend_high, u64 dividend_low,
1097 unsigned divisor, struct div_result *dr)
1099 unsigned long a, b, c, d;
1100 unsigned long w, x, y, z;
1103 a = dividend_high >> 32;
1104 b = dividend_high & 0xffffffff;
1105 c = dividend_low >> 32;
1106 d = dividend_low & 0xffffffff;
1109 ra = ((u64)(a - (w * divisor)) << 32) + b;
1111 rb = ((u64) do_div(ra, divisor) << 32) + c;
1114 rc = ((u64) do_div(rb, divisor) << 32) + d;
1117 do_div(rc, divisor);
1120 dr->result_high = ((u64)w << 32) + x;
1121 dr->result_low = ((u64)y << 32) + z;