4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
52 #include <asm/byteorder.h>
54 #include <asm/uaccess.h>
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58 int uptodate, unsigned int nr_bytes, int dequeue)
63 * if failfast is set on a request, override number of sectors and
64 * complete the whole request right now
66 if (blk_noretry_request(rq) && end_io_error(uptodate))
67 nr_bytes = rq->hard_nr_sectors << 9;
69 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
73 * decide whether to reenable DMA -- 3 is a random magic for now,
74 * if we DMA timeout more than 3 times, just stay in PIO
76 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
78 HWGROUP(drive)->hwif->ide_dma_on(drive);
81 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82 add_disk_randomness(rq->rq_disk);
84 if (!list_empty(&rq->queuelist))
85 blkdev_dequeue_request(rq);
86 HWGROUP(drive)->rq = NULL;
88 end_that_request_last(rq, uptodate);
96 * ide_end_request - complete an IDE I/O
97 * @drive: IDE device for the I/O
99 * @nr_sectors: number of sectors completed
101 * This is our end_request wrapper function. We complete the I/O
102 * update random number input and dequeue the request, which if
103 * it was tagged may be out of order.
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 unsigned int nr_bytes = nr_sectors << 9;
114 * room for locking improvements here, the calls below don't
115 * need the queue lock held at all
117 spin_lock_irqsave(&ide_lock, flags);
118 rq = HWGROUP(drive)->rq;
121 if (blk_pc_request(rq))
122 nr_bytes = rq->data_len;
124 nr_bytes = rq->hard_cur_sectors << 9;
127 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
129 spin_unlock_irqrestore(&ide_lock, flags);
132 EXPORT_SYMBOL(ide_end_request);
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
141 ide_pm_flush_cache = ide_pm_state_start_suspend,
144 idedisk_pm_restore_pio = ide_pm_state_start_resume,
149 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
151 struct request_pm_state *pm = rq->data;
153 if (drive->media != ide_disk)
156 switch (pm->pm_step) {
157 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
158 if (pm->pm_state == PM_EVENT_FREEZE)
159 pm->pm_step = ide_pm_state_completed;
161 pm->pm_step = idedisk_pm_standby;
163 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
164 pm->pm_step = ide_pm_state_completed;
166 case idedisk_pm_restore_pio: /* Resume step 1 complete */
167 pm->pm_step = idedisk_pm_idle;
169 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
170 pm->pm_step = ide_pm_restore_dma;
175 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
177 struct request_pm_state *pm = rq->data;
178 ide_task_t *args = rq->special;
180 memset(args, 0, sizeof(*args));
182 switch (pm->pm_step) {
183 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
184 if (drive->media != ide_disk)
186 /* Not supported? Switch to next step now. */
187 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188 ide_complete_power_step(drive, rq, 0, 0);
191 if (ide_id_has_flush_cache_ext(drive->id))
192 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
194 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
195 args->command_type = IDE_DRIVE_TASK_NO_DATA;
196 args->handler = &task_no_data_intr;
197 return do_rw_taskfile(drive, args);
199 case idedisk_pm_standby: /* Suspend step 2 (standby) */
200 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
201 args->command_type = IDE_DRIVE_TASK_NO_DATA;
202 args->handler = &task_no_data_intr;
203 return do_rw_taskfile(drive, args);
205 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
206 ide_set_max_pio(drive);
208 * skip idedisk_pm_idle for ATAPI devices
210 if (drive->media != ide_disk)
211 pm->pm_step = ide_pm_restore_dma;
213 ide_complete_power_step(drive, rq, 0, 0);
216 case idedisk_pm_idle: /* Resume step 2 (idle) */
217 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
218 args->command_type = IDE_DRIVE_TASK_NO_DATA;
219 args->handler = task_no_data_intr;
220 return do_rw_taskfile(drive, args);
222 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
224 * Right now, all we do is call ide_set_dma(drive),
225 * we could be smarter and check for current xfer_speed
226 * in struct drive etc...
228 if (drive->hwif->ide_dma_on == NULL)
230 drive->hwif->dma_off_quietly(drive);
232 * TODO: respect ->using_dma setting
237 pm->pm_step = ide_pm_state_completed;
242 * ide_end_dequeued_request - complete an IDE I/O
243 * @drive: IDE device for the I/O
245 * @nr_sectors: number of sectors completed
247 * Complete an I/O that is no longer on the request queue. This
248 * typically occurs when we pull the request and issue a REQUEST_SENSE.
249 * We must still finish the old request but we must not tamper with the
250 * queue in the meantime.
252 * NOTE: This path does not handle barrier, but barrier is not supported
256 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
257 int uptodate, int nr_sectors)
262 spin_lock_irqsave(&ide_lock, flags);
263 BUG_ON(!blk_rq_started(rq));
264 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
265 spin_unlock_irqrestore(&ide_lock, flags);
269 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
273 * ide_complete_pm_request - end the current Power Management request
274 * @drive: target drive
277 * This function cleans up the current PM request and stops the queue
280 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
285 printk("%s: completing PM request, %s\n", drive->name,
286 blk_pm_suspend_request(rq) ? "suspend" : "resume");
288 spin_lock_irqsave(&ide_lock, flags);
289 if (blk_pm_suspend_request(rq)) {
290 blk_stop_queue(drive->queue);
293 blk_start_queue(drive->queue);
295 blkdev_dequeue_request(rq);
296 HWGROUP(drive)->rq = NULL;
297 end_that_request_last(rq, 1);
298 spin_unlock_irqrestore(&ide_lock, flags);
302 * ide_end_drive_cmd - end an explicit drive command
307 * Clean up after success/failure of an explicit drive command.
308 * These get thrown onto the queue so they are synchronized with
309 * real I/O operations on the drive.
311 * In LBA48 mode we have to read the register set twice to get
312 * all the extra information out.
315 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
317 ide_hwif_t *hwif = HWIF(drive);
321 spin_lock_irqsave(&ide_lock, flags);
322 rq = HWGROUP(drive)->rq;
323 spin_unlock_irqrestore(&ide_lock, flags);
325 if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
326 u8 *args = (u8 *) rq->buffer;
328 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
333 args[2] = hwif->INB(IDE_NSECTOR_REG);
335 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
336 u8 *args = (u8 *) rq->buffer;
338 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
343 /* be sure we're looking at the low order bits */
344 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
345 args[2] = hwif->INB(IDE_NSECTOR_REG);
346 args[3] = hwif->INB(IDE_SECTOR_REG);
347 args[4] = hwif->INB(IDE_LCYL_REG);
348 args[5] = hwif->INB(IDE_HCYL_REG);
349 args[6] = hwif->INB(IDE_SELECT_REG);
351 } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
352 ide_task_t *args = (ide_task_t *) rq->special;
354 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
357 if (args->tf_in_flags.b.data) {
358 u16 data = hwif->INW(IDE_DATA_REG);
359 args->tfRegister[IDE_DATA_OFFSET] = (data) & 0xFF;
360 args->hobRegister[IDE_DATA_OFFSET] = (data >> 8) & 0xFF;
362 args->tfRegister[IDE_ERROR_OFFSET] = err;
363 /* be sure we're looking at the low order bits */
364 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
365 args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
366 args->tfRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
367 args->tfRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
368 args->tfRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
369 args->tfRegister[IDE_SELECT_OFFSET] = hwif->INB(IDE_SELECT_REG);
370 args->tfRegister[IDE_STATUS_OFFSET] = stat;
372 if (drive->addressing == 1) {
373 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
374 args->hobRegister[IDE_FEATURE_OFFSET] = hwif->INB(IDE_FEATURE_REG);
375 args->hobRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
376 args->hobRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
377 args->hobRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
378 args->hobRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
381 } else if (blk_pm_request(rq)) {
382 struct request_pm_state *pm = rq->data;
384 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
385 drive->name, rq->pm->pm_step, stat, err);
387 ide_complete_power_step(drive, rq, stat, err);
388 if (pm->pm_step == ide_pm_state_completed)
389 ide_complete_pm_request(drive, rq);
393 spin_lock_irqsave(&ide_lock, flags);
394 blkdev_dequeue_request(rq);
395 HWGROUP(drive)->rq = NULL;
397 end_that_request_last(rq, !rq->errors);
398 spin_unlock_irqrestore(&ide_lock, flags);
401 EXPORT_SYMBOL(ide_end_drive_cmd);
404 * try_to_flush_leftover_data - flush junk
405 * @drive: drive to flush
407 * try_to_flush_leftover_data() is invoked in response to a drive
408 * unexpectedly having its DRQ_STAT bit set. As an alternative to
409 * resetting the drive, this routine tries to clear the condition
410 * by read a sector's worth of data from the drive. Of course,
411 * this may not help if the drive is *waiting* for data from *us*.
413 static void try_to_flush_leftover_data (ide_drive_t *drive)
415 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
417 if (drive->media != ide_disk)
421 u32 wcount = (i > 16) ? 16 : i;
424 HWIF(drive)->ata_input_data(drive, buffer, wcount);
428 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
433 drv = *(ide_driver_t **)rq->rq_disk->private_data;
434 drv->end_request(drive, 0, 0);
436 ide_end_request(drive, 0, 0);
439 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
441 ide_hwif_t *hwif = drive->hwif;
443 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
444 /* other bits are useless when BUSY */
445 rq->errors |= ERROR_RESET;
446 } else if (stat & ERR_STAT) {
447 /* err has different meaning on cdrom and tape */
448 if (err == ABRT_ERR) {
449 if (drive->select.b.lba &&
450 /* some newer drives don't support WIN_SPECIFY */
451 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
453 } else if ((err & BAD_CRC) == BAD_CRC) {
454 /* UDMA crc error, just retry the operation */
456 } else if (err & (BBD_ERR | ECC_ERR)) {
457 /* retries won't help these */
458 rq->errors = ERROR_MAX;
459 } else if (err & TRK0_ERR) {
460 /* help it find track zero */
461 rq->errors |= ERROR_RECAL;
465 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
466 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
467 try_to_flush_leftover_data(drive);
469 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
470 ide_kill_rq(drive, rq);
474 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
475 rq->errors |= ERROR_RESET;
477 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
479 return ide_do_reset(drive);
482 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
483 drive->special.b.recalibrate = 1;
490 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
492 ide_hwif_t *hwif = drive->hwif;
494 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
495 /* other bits are useless when BUSY */
496 rq->errors |= ERROR_RESET;
498 /* add decoding error stuff */
501 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
503 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
505 if (rq->errors >= ERROR_MAX) {
506 ide_kill_rq(drive, rq);
508 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
510 return ide_do_reset(drive);
519 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
521 if (drive->media == ide_disk)
522 return ide_ata_error(drive, rq, stat, err);
523 return ide_atapi_error(drive, rq, stat, err);
526 EXPORT_SYMBOL_GPL(__ide_error);
529 * ide_error - handle an error on the IDE
530 * @drive: drive the error occurred on
531 * @msg: message to report
534 * ide_error() takes action based on the error returned by the drive.
535 * For normal I/O that may well include retries. We deal with
536 * both new-style (taskfile) and old style command handling here.
537 * In the case of taskfile command handling there is work left to
541 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
546 err = ide_dump_status(drive, msg, stat);
548 if ((rq = HWGROUP(drive)->rq) == NULL)
551 /* retry only "normal" I/O: */
552 if (!blk_fs_request(rq)) {
554 ide_end_drive_cmd(drive, stat, err);
561 drv = *(ide_driver_t **)rq->rq_disk->private_data;
562 return drv->error(drive, rq, stat, err);
564 return __ide_error(drive, rq, stat, err);
567 EXPORT_SYMBOL_GPL(ide_error);
569 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
571 if (drive->media != ide_disk)
572 rq->errors |= ERROR_RESET;
574 ide_kill_rq(drive, rq);
579 EXPORT_SYMBOL_GPL(__ide_abort);
582 * ide_abort - abort pending IDE operations
583 * @drive: drive the error occurred on
584 * @msg: message to report
586 * ide_abort kills and cleans up when we are about to do a
587 * host initiated reset on active commands. Longer term we
588 * want handlers to have sensible abort handling themselves
590 * This differs fundamentally from ide_error because in
591 * this case the command is doing just fine when we
595 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
599 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
602 /* retry only "normal" I/O: */
603 if (!blk_fs_request(rq)) {
605 ide_end_drive_cmd(drive, BUSY_STAT, 0);
612 drv = *(ide_driver_t **)rq->rq_disk->private_data;
613 return drv->abort(drive, rq);
615 return __ide_abort(drive, rq);
619 * ide_cmd - issue a simple drive command
620 * @drive: drive the command is for
622 * @nsect: sector byte
623 * @handler: handler for the command completion
625 * Issue a simple drive command with interrupts.
626 * The drive must be selected beforehand.
629 static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
630 ide_handler_t *handler)
632 ide_hwif_t *hwif = HWIF(drive);
634 hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
635 SELECT_MASK(drive,0);
636 hwif->OUTB(nsect,IDE_NSECTOR_REG);
637 ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
641 * drive_cmd_intr - drive command completion interrupt
642 * @drive: drive the completion interrupt occurred on
644 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
645 * We do any necessary data reading and then wait for the drive to
646 * go non busy. At that point we may read the error data and complete
650 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
652 struct request *rq = HWGROUP(drive)->rq;
653 ide_hwif_t *hwif = HWIF(drive);
654 u8 *args = (u8 *) rq->buffer;
655 u8 stat = hwif->INB(IDE_STATUS_REG);
658 local_irq_enable_in_hardirq();
659 if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
660 (stat & DRQ_STAT) && args && args[3]) {
661 u8 io_32bit = drive->io_32bit;
663 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
664 drive->io_32bit = io_32bit;
665 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
669 if (!OK_STAT(stat, READY_STAT, BAD_STAT))
670 return ide_error(drive, "drive_cmd", stat);
671 /* calls ide_end_drive_cmd */
672 ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
676 static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
678 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
679 task->tfRegister[IDE_SECTOR_OFFSET] = drive->sect;
680 task->tfRegister[IDE_LCYL_OFFSET] = drive->cyl;
681 task->tfRegister[IDE_HCYL_OFFSET] = drive->cyl>>8;
682 task->tfRegister[IDE_SELECT_OFFSET] = ((drive->head-1)|drive->select.all)&0xBF;
683 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
685 task->handler = &set_geometry_intr;
688 static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
690 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
691 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
693 task->handler = &recal_intr;
696 static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
698 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
699 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
701 task->handler = &set_multmode_intr;
704 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
706 special_t *s = &drive->special;
709 memset(&args, 0, sizeof(ide_task_t));
710 args.command_type = IDE_DRIVE_TASK_NO_DATA;
712 if (s->b.set_geometry) {
713 s->b.set_geometry = 0;
714 ide_init_specify_cmd(drive, &args);
715 } else if (s->b.recalibrate) {
716 s->b.recalibrate = 0;
717 ide_init_restore_cmd(drive, &args);
718 } else if (s->b.set_multmode) {
719 s->b.set_multmode = 0;
720 if (drive->mult_req > drive->id->max_multsect)
721 drive->mult_req = drive->id->max_multsect;
722 ide_init_setmult_cmd(drive, &args);
724 int special = s->all;
726 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
730 do_rw_taskfile(drive, &args);
736 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
738 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
747 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
750 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
753 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
760 * do_special - issue some special commands
761 * @drive: drive the command is for
763 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
764 * commands to a drive. It used to do much more, but has been scaled
768 static ide_startstop_t do_special (ide_drive_t *drive)
770 special_t *s = &drive->special;
773 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
776 ide_hwif_t *hwif = drive->hwif;
777 u8 req_pio = drive->tune_req;
781 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
783 if (hwif->set_pio_mode == NULL)
787 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
789 if (req_pio == 8 || req_pio == 9) {
792 spin_lock_irqsave(&ide_lock, flags);
793 hwif->set_pio_mode(drive, req_pio);
794 spin_unlock_irqrestore(&ide_lock, flags);
796 hwif->set_pio_mode(drive, req_pio);
798 int keep_dma = drive->using_dma;
800 ide_set_pio(drive, req_pio);
802 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
804 hwif->ide_dma_on(drive);
810 if (drive->media == ide_disk)
811 return ide_disk_special(drive);
819 void ide_map_sg(ide_drive_t *drive, struct request *rq)
821 ide_hwif_t *hwif = drive->hwif;
822 struct scatterlist *sg = hwif->sg_table;
824 if (hwif->sg_mapped) /* needed by ide-scsi */
827 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
828 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
830 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
835 EXPORT_SYMBOL_GPL(ide_map_sg);
837 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
839 ide_hwif_t *hwif = drive->hwif;
841 hwif->nsect = hwif->nleft = rq->nr_sectors;
846 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
849 * execute_drive_command - issue special drive command
850 * @drive: the drive to issue the command on
851 * @rq: the request structure holding the command
853 * execute_drive_cmd() issues a special drive command, usually
854 * initiated by ioctl() from the external hdparm program. The
855 * command can be a drive command, drive task or taskfile
856 * operation. Weirdly you can call it with NULL to wait for
857 * all commands to finish. Don't do this as that is due to change
860 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
863 ide_hwif_t *hwif = HWIF(drive);
864 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
865 ide_task_t *args = rq->special;
870 hwif->data_phase = args->data_phase;
872 switch (hwif->data_phase) {
873 case TASKFILE_MULTI_OUT:
875 case TASKFILE_MULTI_IN:
877 ide_init_sg_cmd(drive, rq);
878 ide_map_sg(drive, rq);
883 if (args->tf_out_flags.all != 0)
884 return flagged_taskfile(drive, args);
885 return do_rw_taskfile(drive, args);
886 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
887 u8 *args = rq->buffer;
893 printk("%s: DRIVE_TASK_CMD ", drive->name);
894 printk("cmd=0x%02x ", args[0]);
895 printk("fr=0x%02x ", args[1]);
896 printk("ns=0x%02x ", args[2]);
897 printk("sc=0x%02x ", args[3]);
898 printk("lcyl=0x%02x ", args[4]);
899 printk("hcyl=0x%02x ", args[5]);
900 printk("sel=0x%02x\n", args[6]);
902 hwif->OUTB(args[1], IDE_FEATURE_REG);
903 hwif->OUTB(args[3], IDE_SECTOR_REG);
904 hwif->OUTB(args[4], IDE_LCYL_REG);
905 hwif->OUTB(args[5], IDE_HCYL_REG);
906 sel = (args[6] & ~0x10);
907 if (drive->select.b.unit)
909 hwif->OUTB(sel, IDE_SELECT_REG);
910 ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
912 } else if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
913 u8 *args = rq->buffer;
918 printk("%s: DRIVE_CMD ", drive->name);
919 printk("cmd=0x%02x ", args[0]);
920 printk("sc=0x%02x ", args[1]);
921 printk("fr=0x%02x ", args[2]);
922 printk("xx=0x%02x\n", args[3]);
924 if (args[0] == WIN_SMART) {
925 hwif->OUTB(0x4f, IDE_LCYL_REG);
926 hwif->OUTB(0xc2, IDE_HCYL_REG);
927 hwif->OUTB(args[2],IDE_FEATURE_REG);
928 hwif->OUTB(args[1],IDE_SECTOR_REG);
929 ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
932 hwif->OUTB(args[2],IDE_FEATURE_REG);
933 ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
939 * NULL is actually a valid way of waiting for
940 * all current requests to be flushed from the queue.
943 printk("%s: DRIVE_CMD (null)\n", drive->name);
945 ide_end_drive_cmd(drive,
946 hwif->INB(IDE_STATUS_REG),
947 hwif->INB(IDE_ERROR_REG));
951 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
953 struct request_pm_state *pm = rq->data;
955 if (blk_pm_suspend_request(rq) &&
956 pm->pm_step == ide_pm_state_start_suspend)
957 /* Mark drive blocked when starting the suspend sequence. */
959 else if (blk_pm_resume_request(rq) &&
960 pm->pm_step == ide_pm_state_start_resume) {
962 * The first thing we do on wakeup is to wait for BSY bit to
963 * go away (with a looong timeout) as a drive on this hwif may
964 * just be POSTing itself.
965 * We do that before even selecting as the "other" device on
966 * the bus may be broken enough to walk on our toes at this
971 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
973 rc = ide_wait_not_busy(HWIF(drive), 35000);
975 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
977 HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
978 rc = ide_wait_not_busy(HWIF(drive), 100000);
980 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
985 * start_request - start of I/O and command issuing for IDE
987 * start_request() initiates handling of a new I/O request. It
988 * accepts commands and I/O (read/write) requests. It also does
989 * the final remapping for weird stuff like EZDrive. Once
990 * device mapper can work sector level the EZDrive stuff can go away
992 * FIXME: this function needs a rename
995 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
997 ide_startstop_t startstop;
1000 BUG_ON(!blk_rq_started(rq));
1003 printk("%s: start_request: current=0x%08lx\n",
1004 HWIF(drive)->name, (unsigned long) rq);
1007 /* bail early if we've exceeded max_failures */
1008 if (drive->max_failures && (drive->failures > drive->max_failures)) {
1013 if (blk_fs_request(rq) &&
1014 (drive->media == ide_disk || drive->media == ide_floppy)) {
1015 block += drive->sect0;
1017 /* Yecch - this will shift the entire interval,
1018 possibly killing some innocent following sector */
1019 if (block == 0 && drive->remap_0_to_1 == 1)
1020 block = 1; /* redirect MBR access to EZ-Drive partn table */
1022 if (blk_pm_request(rq))
1023 ide_check_pm_state(drive, rq);
1025 SELECT_DRIVE(drive);
1026 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1027 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1030 if (!drive->special.all) {
1034 * We reset the drive so we need to issue a SETFEATURES.
1035 * Do it _after_ do_special() restored device parameters.
1037 if (drive->current_speed == 0xff)
1038 ide_config_drive_speed(drive, drive->desired_speed);
1040 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1041 rq->cmd_type == REQ_TYPE_ATA_TASK ||
1042 rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1043 return execute_drive_cmd(drive, rq);
1044 else if (blk_pm_request(rq)) {
1045 struct request_pm_state *pm = rq->data;
1047 printk("%s: start_power_step(step: %d)\n",
1048 drive->name, rq->pm->pm_step);
1050 startstop = ide_start_power_step(drive, rq);
1051 if (startstop == ide_stopped &&
1052 pm->pm_step == ide_pm_state_completed)
1053 ide_complete_pm_request(drive, rq);
1057 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1058 return drv->do_request(drive, rq, block);
1060 return do_special(drive);
1062 ide_kill_rq(drive, rq);
1067 * ide_stall_queue - pause an IDE device
1068 * @drive: drive to stall
1069 * @timeout: time to stall for (jiffies)
1071 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1072 * to the hwgroup by sleeping for timeout jiffies.
1075 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1077 if (timeout > WAIT_WORSTCASE)
1078 timeout = WAIT_WORSTCASE;
1079 drive->sleep = timeout + jiffies;
1080 drive->sleeping = 1;
1083 EXPORT_SYMBOL(ide_stall_queue);
1085 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1088 * choose_drive - select a drive to service
1089 * @hwgroup: hardware group to select on
1091 * choose_drive() selects the next drive which will be serviced.
1092 * This is necessary because the IDE layer can't issue commands
1093 * to both drives on the same cable, unlike SCSI.
1096 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1098 ide_drive_t *drive, *best;
1102 drive = hwgroup->drive;
1105 * drive is doing pre-flush, ordered write, post-flush sequence. even
1106 * though that is 3 requests, it must be seen as a single transaction.
1107 * we must not preempt this drive until that is complete
1109 if (blk_queue_flushing(drive->queue)) {
1111 * small race where queue could get replugged during
1112 * the 3-request flush cycle, just yank the plug since
1113 * we want it to finish asap
1115 blk_remove_plug(drive->queue);
1120 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1121 && !elv_queue_empty(drive->queue)) {
1123 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1124 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1126 if (!blk_queue_plugged(drive->queue))
1130 } while ((drive = drive->next) != hwgroup->drive);
1131 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1132 long t = (signed long)(WAKEUP(best) - jiffies);
1133 if (t >= WAIT_MIN_SLEEP) {
1135 * We *may* have some time to spare, but first let's see if
1136 * someone can potentially benefit from our nice mood today..
1140 if (!drive->sleeping
1141 && time_before(jiffies - best->service_time, WAKEUP(drive))
1142 && time_before(WAKEUP(drive), jiffies + t))
1144 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1147 } while ((drive = drive->next) != best);
1154 * Issue a new request to a drive from hwgroup
1155 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1157 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1158 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1159 * may have both interfaces in a single hwgroup to "serialize" access.
1160 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1161 * together into one hwgroup for serialized access.
1163 * Note also that several hwgroups can end up sharing a single IRQ,
1164 * possibly along with many other devices. This is especially common in
1165 * PCI-based systems with off-board IDE controller cards.
1167 * The IDE driver uses the single global ide_lock spinlock to protect
1168 * access to the request queues, and to protect the hwgroup->busy flag.
1170 * The first thread into the driver for a particular hwgroup sets the
1171 * hwgroup->busy flag to indicate that this hwgroup is now active,
1172 * and then initiates processing of the top request from the request queue.
1174 * Other threads attempting entry notice the busy setting, and will simply
1175 * queue their new requests and exit immediately. Note that hwgroup->busy
1176 * remains set even when the driver is merely awaiting the next interrupt.
1177 * Thus, the meaning is "this hwgroup is busy processing a request".
1179 * When processing of a request completes, the completing thread or IRQ-handler
1180 * will start the next request from the queue. If no more work remains,
1181 * the driver will clear the hwgroup->busy flag and exit.
1183 * The ide_lock (spinlock) is used to protect all access to the
1184 * hwgroup->busy flag, but is otherwise not needed for most processing in
1185 * the driver. This makes the driver much more friendlier to shared IRQs
1186 * than previous designs, while remaining 100% (?) SMP safe and capable.
1188 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1193 ide_startstop_t startstop;
1196 /* for atari only: POSSIBLY BROKEN HERE(?) */
1197 ide_get_lock(ide_intr, hwgroup);
1199 /* caller must own ide_lock */
1200 BUG_ON(!irqs_disabled());
1202 while (!hwgroup->busy) {
1204 drive = choose_drive(hwgroup);
1205 if (drive == NULL) {
1207 unsigned long sleep = 0; /* shut up, gcc */
1209 drive = hwgroup->drive;
1211 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1213 sleep = drive->sleep;
1215 } while ((drive = drive->next) != hwgroup->drive);
1218 * Take a short snooze, and then wake up this hwgroup again.
1219 * This gives other hwgroups on the same a chance to
1220 * play fairly with us, just in case there are big differences
1221 * in relative throughputs.. don't want to hog the cpu too much.
1223 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1224 sleep = jiffies + WAIT_MIN_SLEEP;
1226 if (timer_pending(&hwgroup->timer))
1227 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1229 /* so that ide_timer_expiry knows what to do */
1230 hwgroup->sleeping = 1;
1231 hwgroup->req_gen_timer = hwgroup->req_gen;
1232 mod_timer(&hwgroup->timer, sleep);
1233 /* we purposely leave hwgroup->busy==1
1236 /* Ugly, but how can we sleep for the lock
1237 * otherwise? perhaps from tq_disk?
1240 /* for atari only */
1245 /* no more work for this hwgroup (for now) */
1250 if (hwgroup->hwif->sharing_irq &&
1251 hwif != hwgroup->hwif &&
1252 hwif->io_ports[IDE_CONTROL_OFFSET]) {
1253 /* set nIEN for previous hwif */
1254 SELECT_INTERRUPT(drive);
1256 hwgroup->hwif = hwif;
1257 hwgroup->drive = drive;
1258 drive->sleeping = 0;
1259 drive->service_start = jiffies;
1261 if (blk_queue_plugged(drive->queue)) {
1262 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1267 * we know that the queue isn't empty, but this can happen
1268 * if the q->prep_rq_fn() decides to kill a request
1270 rq = elv_next_request(drive->queue);
1277 * Sanity: don't accept a request that isn't a PM request
1278 * if we are currently power managed. This is very important as
1279 * blk_stop_queue() doesn't prevent the elv_next_request()
1280 * above to return us whatever is in the queue. Since we call
1281 * ide_do_request() ourselves, we end up taking requests while
1282 * the queue is blocked...
1284 * We let requests forced at head of queue with ide-preempt
1285 * though. I hope that doesn't happen too much, hopefully not
1286 * unless the subdriver triggers such a thing in its own PM
1289 * We count how many times we loop here to make sure we service
1290 * all drives in the hwgroup without looping for ever
1292 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1293 drive = drive->next ? drive->next : hwgroup->drive;
1294 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1296 /* We clear busy, there should be no pending ATA command at this point. */
1304 * Some systems have trouble with IDE IRQs arriving while
1305 * the driver is still setting things up. So, here we disable
1306 * the IRQ used by this interface while the request is being started.
1307 * This may look bad at first, but pretty much the same thing
1308 * happens anyway when any interrupt comes in, IDE or otherwise
1309 * -- the kernel masks the IRQ while it is being handled.
1311 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1312 disable_irq_nosync(hwif->irq);
1313 spin_unlock(&ide_lock);
1314 local_irq_enable_in_hardirq();
1315 /* allow other IRQs while we start this request */
1316 startstop = start_request(drive, rq);
1317 spin_lock_irq(&ide_lock);
1318 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1319 enable_irq(hwif->irq);
1320 if (startstop == ide_stopped)
1326 * Passes the stuff to ide_do_request
1328 void do_ide_request(struct request_queue *q)
1330 ide_drive_t *drive = q->queuedata;
1332 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1336 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1337 * retry the current request in pio mode instead of risking tossing it
1340 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1342 ide_hwif_t *hwif = HWIF(drive);
1344 ide_startstop_t ret = ide_stopped;
1347 * end current dma transaction
1351 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1352 (void)HWIF(drive)->ide_dma_end(drive);
1353 ret = ide_error(drive, "dma timeout error",
1354 hwif->INB(IDE_STATUS_REG));
1356 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1357 hwif->dma_timeout(drive);
1361 * disable dma for now, but remember that we did so because of
1362 * a timeout -- we'll reenable after we finish this next request
1363 * (or rather the first chunk of it) in pio.
1366 drive->state = DMA_PIO_RETRY;
1367 hwif->dma_off_quietly(drive);
1370 * un-busy drive etc (hwgroup->busy is cleared on return) and
1371 * make sure request is sane
1373 rq = HWGROUP(drive)->rq;
1378 HWGROUP(drive)->rq = NULL;
1385 rq->sector = rq->bio->bi_sector;
1386 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1387 rq->hard_cur_sectors = rq->current_nr_sectors;
1388 rq->buffer = bio_data(rq->bio);
1394 * ide_timer_expiry - handle lack of an IDE interrupt
1395 * @data: timer callback magic (hwgroup)
1397 * An IDE command has timed out before the expected drive return
1398 * occurred. At this point we attempt to clean up the current
1399 * mess. If the current handler includes an expiry handler then
1400 * we invoke the expiry handler, and providing it is happy the
1401 * work is done. If that fails we apply generic recovery rules
1402 * invoking the handler and checking the drive DMA status. We
1403 * have an excessively incestuous relationship with the DMA
1404 * logic that wants cleaning up.
1407 void ide_timer_expiry (unsigned long data)
1409 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1410 ide_handler_t *handler;
1411 ide_expiry_t *expiry;
1412 unsigned long flags;
1413 unsigned long wait = -1;
1415 spin_lock_irqsave(&ide_lock, flags);
1417 if (((handler = hwgroup->handler) == NULL) ||
1418 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1420 * Either a marginal timeout occurred
1421 * (got the interrupt just as timer expired),
1422 * or we were "sleeping" to give other devices a chance.
1423 * Either way, we don't really want to complain about anything.
1425 if (hwgroup->sleeping) {
1426 hwgroup->sleeping = 0;
1430 ide_drive_t *drive = hwgroup->drive;
1432 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1433 hwgroup->handler = NULL;
1436 ide_startstop_t startstop = ide_stopped;
1437 if (!hwgroup->busy) {
1438 hwgroup->busy = 1; /* paranoia */
1439 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1441 if ((expiry = hwgroup->expiry) != NULL) {
1443 if ((wait = expiry(drive)) > 0) {
1445 hwgroup->timer.expires = jiffies + wait;
1446 hwgroup->req_gen_timer = hwgroup->req_gen;
1447 add_timer(&hwgroup->timer);
1448 spin_unlock_irqrestore(&ide_lock, flags);
1452 hwgroup->handler = NULL;
1454 * We need to simulate a real interrupt when invoking
1455 * the handler() function, which means we need to
1456 * globally mask the specific IRQ:
1458 spin_unlock(&ide_lock);
1460 #if DISABLE_IRQ_NOSYNC
1461 disable_irq_nosync(hwif->irq);
1463 /* disable_irq_nosync ?? */
1464 disable_irq(hwif->irq);
1465 #endif /* DISABLE_IRQ_NOSYNC */
1467 * as if we were handling an interrupt */
1468 local_irq_disable();
1469 if (hwgroup->polling) {
1470 startstop = handler(drive);
1471 } else if (drive_is_ready(drive)) {
1472 if (drive->waiting_for_dma)
1473 hwgroup->hwif->dma_lost_irq(drive);
1474 (void)ide_ack_intr(hwif);
1475 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1476 startstop = handler(drive);
1478 if (drive->waiting_for_dma) {
1479 startstop = ide_dma_timeout_retry(drive, wait);
1482 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1484 drive->service_time = jiffies - drive->service_start;
1485 spin_lock_irq(&ide_lock);
1486 enable_irq(hwif->irq);
1487 if (startstop == ide_stopped)
1491 ide_do_request(hwgroup, IDE_NO_IRQ);
1492 spin_unlock_irqrestore(&ide_lock, flags);
1496 * unexpected_intr - handle an unexpected IDE interrupt
1497 * @irq: interrupt line
1498 * @hwgroup: hwgroup being processed
1500 * There's nothing really useful we can do with an unexpected interrupt,
1501 * other than reading the status register (to clear it), and logging it.
1502 * There should be no way that an irq can happen before we're ready for it,
1503 * so we needn't worry much about losing an "important" interrupt here.
1505 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1506 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1507 * looks "good", we just ignore the interrupt completely.
1509 * This routine assumes __cli() is in effect when called.
1511 * If an unexpected interrupt happens on irq15 while we are handling irq14
1512 * and if the two interfaces are "serialized" (CMD640), then it looks like
1513 * we could screw up by interfering with a new request being set up for
1516 * In reality, this is a non-issue. The new command is not sent unless
1517 * the drive is ready to accept one, in which case we know the drive is
1518 * not trying to interrupt us. And ide_set_handler() is always invoked
1519 * before completing the issuance of any new drive command, so we will not
1520 * be accidentally invoked as a result of any valid command completion
1523 * Note that we must walk the entire hwgroup here. We know which hwif
1524 * is doing the current command, but we don't know which hwif burped
1528 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1531 ide_hwif_t *hwif = hwgroup->hwif;
1534 * handle the unexpected interrupt
1537 if (hwif->irq == irq) {
1538 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1539 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1540 /* Try to not flood the console with msgs */
1541 static unsigned long last_msgtime, count;
1543 if (time_after(jiffies, last_msgtime + HZ)) {
1544 last_msgtime = jiffies;
1545 printk(KERN_ERR "%s%s: unexpected interrupt, "
1546 "status=0x%02x, count=%ld\n",
1548 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1552 } while ((hwif = hwif->next) != hwgroup->hwif);
1556 * ide_intr - default IDE interrupt handler
1557 * @irq: interrupt number
1558 * @dev_id: hwif group
1559 * @regs: unused weirdness from the kernel irq layer
1561 * This is the default IRQ handler for the IDE layer. You should
1562 * not need to override it. If you do be aware it is subtle in
1565 * hwgroup->hwif is the interface in the group currently performing
1566 * a command. hwgroup->drive is the drive and hwgroup->handler is
1567 * the IRQ handler to call. As we issue a command the handlers
1568 * step through multiple states, reassigning the handler to the
1569 * next step in the process. Unlike a smart SCSI controller IDE
1570 * expects the main processor to sequence the various transfer
1571 * stages. We also manage a poll timer to catch up with most
1572 * timeout situations. There are still a few where the handlers
1573 * don't ever decide to give up.
1575 * The handler eventually returns ide_stopped to indicate the
1576 * request completed. At this point we issue the next request
1577 * on the hwgroup and the process begins again.
1580 irqreturn_t ide_intr (int irq, void *dev_id)
1582 unsigned long flags;
1583 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1586 ide_handler_t *handler;
1587 ide_startstop_t startstop;
1589 spin_lock_irqsave(&ide_lock, flags);
1590 hwif = hwgroup->hwif;
1592 if (!ide_ack_intr(hwif)) {
1593 spin_unlock_irqrestore(&ide_lock, flags);
1597 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1599 * Not expecting an interrupt from this drive.
1600 * That means this could be:
1601 * (1) an interrupt from another PCI device
1602 * sharing the same PCI INT# as us.
1603 * or (2) a drive just entered sleep or standby mode,
1604 * and is interrupting to let us know.
1605 * or (3) a spurious interrupt of unknown origin.
1607 * For PCI, we cannot tell the difference,
1608 * so in that case we just ignore it and hope it goes away.
1610 * FIXME: unexpected_intr should be hwif-> then we can
1611 * remove all the ifdef PCI crap
1613 #ifdef CONFIG_BLK_DEV_IDEPCI
1614 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1615 #endif /* CONFIG_BLK_DEV_IDEPCI */
1618 * Probably not a shared PCI interrupt,
1619 * so we can safely try to do something about it:
1621 unexpected_intr(irq, hwgroup);
1622 #ifdef CONFIG_BLK_DEV_IDEPCI
1625 * Whack the status register, just in case
1626 * we have a leftover pending IRQ.
1628 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1629 #endif /* CONFIG_BLK_DEV_IDEPCI */
1631 spin_unlock_irqrestore(&ide_lock, flags);
1634 drive = hwgroup->drive;
1637 * This should NEVER happen, and there isn't much
1638 * we could do about it here.
1640 * [Note - this can occur if the drive is hot unplugged]
1642 spin_unlock_irqrestore(&ide_lock, flags);
1645 if (!drive_is_ready(drive)) {
1647 * This happens regularly when we share a PCI IRQ with
1648 * another device. Unfortunately, it can also happen
1649 * with some buggy drives that trigger the IRQ before
1650 * their status register is up to date. Hopefully we have
1651 * enough advance overhead that the latter isn't a problem.
1653 spin_unlock_irqrestore(&ide_lock, flags);
1656 if (!hwgroup->busy) {
1657 hwgroup->busy = 1; /* paranoia */
1658 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1660 hwgroup->handler = NULL;
1662 del_timer(&hwgroup->timer);
1663 spin_unlock(&ide_lock);
1665 /* Some controllers might set DMA INTR no matter DMA or PIO;
1666 * bmdma status might need to be cleared even for
1667 * PIO interrupts to prevent spurious/lost irq.
1669 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1670 /* ide_dma_end() needs bmdma status for error checking.
1671 * So, skip clearing bmdma status here and leave it
1672 * to ide_dma_end() if this is dma interrupt.
1674 hwif->ide_dma_clear_irq(drive);
1677 local_irq_enable_in_hardirq();
1678 /* service this interrupt, may set handler for next interrupt */
1679 startstop = handler(drive);
1680 spin_lock_irq(&ide_lock);
1683 * Note that handler() may have set things up for another
1684 * interrupt to occur soon, but it cannot happen until
1685 * we exit from this routine, because it will be the
1686 * same irq as is currently being serviced here, and Linux
1687 * won't allow another of the same (on any CPU) until we return.
1689 drive->service_time = jiffies - drive->service_start;
1690 if (startstop == ide_stopped) {
1691 if (hwgroup->handler == NULL) { /* paranoia */
1693 ide_do_request(hwgroup, hwif->irq);
1695 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1696 "on exit\n", drive->name);
1699 spin_unlock_irqrestore(&ide_lock, flags);
1704 * ide_init_drive_cmd - initialize a drive command request
1705 * @rq: request object
1707 * Initialize a request before we fill it in and send it down to
1708 * ide_do_drive_cmd. Commands must be set up by this function. Right
1709 * now it doesn't do a lot, but if that changes abusers will have a
1713 void ide_init_drive_cmd (struct request *rq)
1715 memset(rq, 0, sizeof(*rq));
1716 rq->cmd_type = REQ_TYPE_ATA_CMD;
1720 EXPORT_SYMBOL(ide_init_drive_cmd);
1723 * ide_do_drive_cmd - issue IDE special command
1724 * @drive: device to issue command
1725 * @rq: request to issue
1726 * @action: action for processing
1728 * This function issues a special IDE device request
1729 * onto the request queue.
1731 * If action is ide_wait, then the rq is queued at the end of the
1732 * request queue, and the function sleeps until it has been processed.
1733 * This is for use when invoked from an ioctl handler.
1735 * If action is ide_preempt, then the rq is queued at the head of
1736 * the request queue, displacing the currently-being-processed
1737 * request and this function returns immediately without waiting
1738 * for the new rq to be completed. This is VERY DANGEROUS, and is
1739 * intended for careful use by the ATAPI tape/cdrom driver code.
1741 * If action is ide_end, then the rq is queued at the end of the
1742 * request queue, and the function returns immediately without waiting
1743 * for the new rq to be completed. This is again intended for careful
1744 * use by the ATAPI tape/cdrom driver code.
1747 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1749 unsigned long flags;
1750 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1751 DECLARE_COMPLETION_ONSTACK(wait);
1752 int where = ELEVATOR_INSERT_BACK, err;
1753 int must_wait = (action == ide_wait || action == ide_head_wait);
1758 * we need to hold an extra reference to request for safe inspection
1763 rq->end_io_data = &wait;
1764 rq->end_io = blk_end_sync_rq;
1767 spin_lock_irqsave(&ide_lock, flags);
1768 if (action == ide_preempt)
1770 if (action == ide_preempt || action == ide_head_wait) {
1771 where = ELEVATOR_INSERT_FRONT;
1772 rq->cmd_flags |= REQ_PREEMPT;
1774 __elv_add_request(drive->queue, rq, where, 0);
1775 ide_do_request(hwgroup, IDE_NO_IRQ);
1776 spin_unlock_irqrestore(&ide_lock, flags);
1780 wait_for_completion(&wait);
1784 blk_put_request(rq);
1790 EXPORT_SYMBOL(ide_do_drive_cmd);