2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2007 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007 Matthew W. S. Bell <mentor@madwifi.org>
5 * Copyright (c) 2007 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6 * Copyright (c) 2007 Pavel Roskin <proski@gnu.org>
7 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
24 * HW related functions for Atheros Wireless LAN devices.
27 #include <linux/pci.h>
28 #include <linux/delay.h>
35 static const struct ath5k_rate_table ath5k_rt_11a = AR5K_RATES_11A;
36 static const struct ath5k_rate_table ath5k_rt_11b = AR5K_RATES_11B;
37 static const struct ath5k_rate_table ath5k_rt_11g = AR5K_RATES_11G;
38 static const struct ath5k_rate_table ath5k_rt_turbo = AR5K_RATES_TURBO;
39 static const struct ath5k_rate_table ath5k_rt_xr = AR5K_RATES_XR;
42 static int ath5k_hw_nic_reset(struct ath5k_hw *, u32);
43 static int ath5k_hw_nic_wakeup(struct ath5k_hw *, int, bool);
44 static int ath5k_hw_setup_4word_tx_desc(struct ath5k_hw *, struct ath5k_desc *,
45 unsigned int, unsigned int, enum ath5k_pkt_type, unsigned int,
46 unsigned int, unsigned int, unsigned int, unsigned int, unsigned int,
47 unsigned int, unsigned int);
48 static bool ath5k_hw_setup_xr_tx_desc(struct ath5k_hw *, struct ath5k_desc *,
49 unsigned int, unsigned int, unsigned int, unsigned int, unsigned int,
51 static int ath5k_hw_proc_4word_tx_status(struct ath5k_hw *, struct ath5k_desc *);
52 static int ath5k_hw_setup_2word_tx_desc(struct ath5k_hw *, struct ath5k_desc *,
53 unsigned int, unsigned int, enum ath5k_pkt_type, unsigned int,
54 unsigned int, unsigned int, unsigned int, unsigned int, unsigned int,
55 unsigned int, unsigned int);
56 static int ath5k_hw_proc_2word_tx_status(struct ath5k_hw *, struct ath5k_desc *);
57 static int ath5k_hw_proc_new_rx_status(struct ath5k_hw *, struct ath5k_desc *);
58 static int ath5k_hw_proc_old_rx_status(struct ath5k_hw *, struct ath5k_desc *);
59 static int ath5k_hw_get_capabilities(struct ath5k_hw *);
61 static int ath5k_eeprom_init(struct ath5k_hw *);
62 static int ath5k_eeprom_read_mac(struct ath5k_hw *, u8 *);
64 static int ath5k_hw_enable_pspoll(struct ath5k_hw *, u8 *, u16);
65 static int ath5k_hw_disable_pspoll(struct ath5k_hw *);
68 * Enable to overwrite the country code (use "00" for debug)
71 #define COUNTRYCODE "00"
79 * Functions used internaly
82 static inline unsigned int ath5k_hw_htoclock(unsigned int usec, bool turbo)
84 return turbo == true ? (usec * 80) : (usec * 40);
87 static inline unsigned int ath5k_hw_clocktoh(unsigned int clock, bool turbo)
89 return turbo == true ? (clock / 80) : (clock / 40);
93 * Check if a register write has been completed
95 int ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val,
101 for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
102 data = ath5k_hw_reg_read(ah, reg);
103 if ((is_set == true) && (data & flag))
105 else if ((data & flag) == val)
110 return (i <= 0) ? -EAGAIN : 0;
114 /***************************************\
115 Attach/Detach Functions
116 \***************************************/
119 * Check if the device is supported and initialize the needed structs
121 struct ath5k_hw *ath5k_hw_attach(struct ath5k_softc *sc, u8 mac_version)
128 /*If we passed the test malloc a ath5k_hw struct*/
129 ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
132 ATH5K_ERR(sc, "out of memory\n");
137 ah->ah_iobase = sc->iobase;
143 /* Get reg domain from eeprom */
144 ath5k_get_regdomain(ah);
146 ah->ah_op_mode = IEEE80211_IF_TYPE_STA;
147 ah->ah_radar.r_enabled = AR5K_TUNE_RADAR_ALERT;
148 ah->ah_turbo = false;
149 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
151 ah->ah_atim_window = 0;
152 ah->ah_aifs = AR5K_TUNE_AIFS;
153 ah->ah_cw_min = AR5K_TUNE_CWMIN;
154 ah->ah_limit_tx_retries = AR5K_INIT_TX_RETRY;
155 ah->ah_software_retry = false;
156 ah->ah_ant_diversity = AR5K_TUNE_ANT_DIVERSITY;
159 * Set the mac revision based on the pci id
161 ah->ah_version = mac_version;
163 /*Fill the ath5k_hw struct with the needed functions*/
164 if (ah->ah_version == AR5K_AR5212)
165 ah->ah_magic = AR5K_EEPROM_MAGIC_5212;
166 else if (ah->ah_version == AR5K_AR5211)
167 ah->ah_magic = AR5K_EEPROM_MAGIC_5211;
169 if (ah->ah_version == AR5K_AR5212) {
170 ah->ah_setup_tx_desc = ath5k_hw_setup_4word_tx_desc;
171 ah->ah_setup_xtx_desc = ath5k_hw_setup_xr_tx_desc;
172 ah->ah_proc_tx_desc = ath5k_hw_proc_4word_tx_status;
174 ah->ah_setup_tx_desc = ath5k_hw_setup_2word_tx_desc;
175 ah->ah_setup_xtx_desc = ath5k_hw_setup_xr_tx_desc;
176 ah->ah_proc_tx_desc = ath5k_hw_proc_2word_tx_status;
179 if (ah->ah_version == AR5K_AR5212)
180 ah->ah_proc_rx_desc = ath5k_hw_proc_new_rx_status;
181 else if (ah->ah_version <= AR5K_AR5211)
182 ah->ah_proc_rx_desc = ath5k_hw_proc_old_rx_status;
184 /* Bring device out of sleep and reset it's units */
185 ret = ath5k_hw_nic_wakeup(ah, AR5K_INIT_MODE, true);
189 /* Get MAC, PHY and RADIO revisions */
190 srev = ath5k_hw_reg_read(ah, AR5K_SREV);
191 ah->ah_mac_srev = srev;
192 ah->ah_mac_version = AR5K_REG_MS(srev, AR5K_SREV_VER);
193 ah->ah_mac_revision = AR5K_REG_MS(srev, AR5K_SREV_REV);
194 ah->ah_phy_revision = ath5k_hw_reg_read(ah, AR5K_PHY_CHIP_ID) &
196 ah->ah_radio_5ghz_revision = ath5k_hw_radio_revision(ah,
199 if (ah->ah_version == AR5K_AR5210)
200 ah->ah_radio_2ghz_revision = 0;
202 ah->ah_radio_2ghz_revision = ath5k_hw_radio_revision(ah,
205 /* Return on unsuported chips (unsupported eeprom etc) */
206 if(srev >= AR5K_SREV_VER_AR5416){
207 ATH5K_ERR(sc, "Device not yet supported.\n");
212 /* Identify single chip solutions */
213 if((srev <= AR5K_SREV_VER_AR5414) &&
214 (srev >= AR5K_SREV_VER_AR2424)) {
215 ah->ah_single_chip = true;
217 ah->ah_single_chip = false;
220 /* Single chip radio */
221 if (ah->ah_radio_2ghz_revision == ah->ah_radio_5ghz_revision)
222 ah->ah_radio_2ghz_revision = 0;
224 /* Identify the radio chip*/
225 if (ah->ah_version == AR5K_AR5210) {
226 ah->ah_radio = AR5K_RF5110;
227 } else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112) {
228 ah->ah_radio = AR5K_RF5111;
229 } else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_SC1) {
230 ah->ah_radio = AR5K_RF5112;
232 ah->ah_radio = AR5K_RF5413;
235 ah->ah_phy = AR5K_PHY(0);
238 * Get card capabilities, values, ...
241 ret = ath5k_eeprom_init(ah);
243 ATH5K_ERR(sc, "unable to init EEPROM\n");
247 /* Get misc capabilities */
248 ret = ath5k_hw_get_capabilities(ah);
250 ATH5K_ERR(sc, "unable to get device capabilities: 0x%04x\n",
255 /* Get MAC address */
256 ret = ath5k_eeprom_read_mac(ah, mac);
258 ATH5K_ERR(sc, "unable to read address from EEPROM: 0x%04x\n",
263 ath5k_hw_set_lladdr(ah, mac);
264 /* Set BSSID to bcast address: ff:ff:ff:ff:ff:ff for now */
265 memset(ah->ah_bssid, 0xff, ETH_ALEN);
266 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
267 ath5k_hw_set_opmode(ah);
269 ath5k_hw_set_rfgain_opt(ah);
279 * Bring up MAC + PHY Chips
281 static int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
283 u32 turbo, mode, clock;
290 ATH5K_TRACE(ah->ah_sc);
292 /* Wakeup the device */
293 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
295 ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
299 if (ah->ah_version != AR5K_AR5210) {
301 * Get channel mode flags
304 if (ah->ah_radio >= AR5K_RF5112) {
305 mode = AR5K_PHY_MODE_RAD_RF5112;
306 clock = AR5K_PHY_PLL_RF5112;
308 mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
309 clock = AR5K_PHY_PLL_RF5111; /*Zero*/
312 if (flags & CHANNEL_2GHZ) {
313 mode |= AR5K_PHY_MODE_FREQ_2GHZ;
314 clock |= AR5K_PHY_PLL_44MHZ;
316 if (flags & CHANNEL_CCK) {
317 mode |= AR5K_PHY_MODE_MOD_CCK;
318 } else if (flags & CHANNEL_OFDM) {
319 /* XXX Dynamic OFDM/CCK is not supported by the
320 * AR5211 so we set MOD_OFDM for plain g (no
321 * CCK headers) operation. We need to test
322 * this, 5211 might support ofdm-only g after
323 * all, there are also initial register values
324 * in the code for g mode (see initvals.c). */
325 if (ah->ah_version == AR5K_AR5211)
326 mode |= AR5K_PHY_MODE_MOD_OFDM;
328 mode |= AR5K_PHY_MODE_MOD_DYN;
331 "invalid radio modulation mode\n");
334 } else if (flags & CHANNEL_5GHZ) {
335 mode |= AR5K_PHY_MODE_FREQ_5GHZ;
336 clock |= AR5K_PHY_PLL_40MHZ;
338 if (flags & CHANNEL_OFDM)
339 mode |= AR5K_PHY_MODE_MOD_OFDM;
342 "invalid radio modulation mode\n");
346 ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n");
350 if (flags & CHANNEL_TURBO)
351 turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
352 } else { /* Reset the device */
354 /* ...enable Atheros turbo mode if requested */
355 if (flags & CHANNEL_TURBO)
356 ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
360 /* ...reset chipset and PCI device */
361 if (ah->ah_single_chip == false && ath5k_hw_nic_reset(ah,
362 AR5K_RESET_CTL_CHIP | AR5K_RESET_CTL_PCI)) {
363 ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip + PCI\n");
367 if (ah->ah_version == AR5K_AR5210)
370 /* ...wakeup again!*/
371 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
373 ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n");
377 /* ...final warm reset */
378 if (ath5k_hw_nic_reset(ah, 0)) {
379 ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n");
383 if (ah->ah_version != AR5K_AR5210) {
384 /* ...set the PHY operating mode */
385 ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
388 ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
389 ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
396 * Get the rate table for a specific operation mode
398 const struct ath5k_rate_table *ath5k_hw_get_rate_table(struct ath5k_hw *ah,
401 ATH5K_TRACE(ah->ah_sc);
403 if (!test_bit(mode, ah->ah_capabilities.cap_mode))
406 /* Get rate tables */
408 case MODE_IEEE80211A:
409 return &ath5k_rt_11a;
410 case MODE_ATHEROS_TURBO:
411 return &ath5k_rt_turbo;
412 case MODE_IEEE80211B:
413 return &ath5k_rt_11b;
414 case MODE_IEEE80211G:
415 return &ath5k_rt_11g;
416 case MODE_ATHEROS_TURBOG:
424 * Free the ath5k_hw struct
426 void ath5k_hw_detach(struct ath5k_hw *ah)
428 ATH5K_TRACE(ah->ah_sc);
430 if (ah->ah_rf_banks != NULL)
431 kfree(ah->ah_rf_banks);
433 /* assume interrupts are down */
437 /****************************\
438 Reset function and helpers
439 \****************************/
442 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
444 * @ah: the &struct ath5k_hw
445 * @channel: the currently set channel upon reset
447 * Write the OFDM timings for the AR5212 upon reset. This is a helper for
448 * ath5k_hw_reset(). This seems to tune the PLL a specified frequency
449 * depending on the bandwidth of the channel.
452 static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
453 struct ieee80211_channel *channel)
455 /* Get exponent and mantissa and set it */
456 u32 coef_scaled, coef_exp, coef_man,
457 ds_coef_exp, ds_coef_man, clock;
459 if (!(ah->ah_version == AR5K_AR5212) ||
460 !(channel->val & CHANNEL_OFDM))
463 /* Seems there are two PLLs, one for baseband sampling and one
464 * for tuning. Tuning basebands are 40 MHz or 80MHz when in
466 clock = channel->val & CHANNEL_TURBO ? 80 : 40;
467 coef_scaled = ((5 * (clock << 24)) / 2) /
470 for (coef_exp = 31; coef_exp > 0; coef_exp--)
471 if ((coef_scaled >> coef_exp) & 0x1)
477 coef_exp = 14 - (coef_exp - 24);
478 coef_man = coef_scaled +
479 (1 << (24 - coef_exp - 1));
480 ds_coef_man = coef_man >> (24 - coef_exp);
481 ds_coef_exp = coef_exp - 16;
483 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
484 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
485 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
486 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
492 * ath5k_hw_write_rate_duration - set rate duration during hw resets
494 * @ah: the &struct ath5k_hw
495 * @driver_mode: one of enum ieee80211_phymode or our one of our own
498 * Write the rate duration table for the current mode upon hw reset. This
499 * is a helper for ath5k_hw_reset(). It seems all this is doing is setting
500 * an ACK timeout for the hardware for the current mode for each rate. The
501 * rates which are capable of short preamble (802.11b rates 2Mbps, 5.5Mbps,
502 * and 11Mbps) have another register for the short preamble ACK timeout
506 static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
507 unsigned int driver_mode)
509 struct ath5k_softc *sc = ah->ah_sc;
510 const struct ath5k_rate_table *rt;
513 /* Get rate table for the current operating mode */
514 rt = ath5k_hw_get_rate_table(ah,
517 /* Write rate duration table */
518 for (i = 0; i < rt->rate_count; i++) {
519 const struct ath5k_rate *rate, *control_rate;
523 rate = &rt->rates[i];
524 control_rate = &rt->rates[rate->control_rate];
526 /* Set ACK timeout */
527 reg = AR5K_RATE_DUR(rate->rate_code);
529 /* An ACK frame consists of 10 bytes. If you add the FCS,
530 * which ieee80211_generic_frame_duration() adds,
531 * its 14 bytes. Note we use the control rate and not the
532 * actual rate for this rate. See mac80211 tx.c
533 * ieee80211_duration() for a brief description of
534 * what rate we should choose to TX ACKs. */
535 tx_time = ieee80211_generic_frame_duration(sc->hw,
536 sc->iface_id, 10, control_rate->rate_kbps/100);
538 ath5k_hw_reg_write(ah, tx_time, reg);
540 if (!HAS_SHPREAMBLE(i))
544 * We're not distinguishing short preamble here,
545 * This is true, all we'll get is a longer value here
546 * which is not necessarilly bad. We could use
547 * export ieee80211_frame_duration() but that needs to be
548 * fixed first to be properly used by mac802111 drivers:
550 * - remove erp stuff and let the routine figure ofdm
552 * - remove passing argument ieee80211_local as
553 * drivers don't have access to it
554 * - move drivers using ieee80211_generic_frame_duration()
557 ath5k_hw_reg_write(ah, tx_time,
558 reg + (AR5K_SET_SHORT_PREAMBLE << 2));
563 * Main reset function
565 int ath5k_hw_reset(struct ath5k_hw *ah, enum ieee80211_if_types op_mode,
566 struct ieee80211_channel *channel, bool change_channel)
568 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
569 u32 data, s_seq, s_ant, s_led[3];
570 unsigned int i, mode, freq, ee_mode, ant[2], driver_mode = -1;
573 ATH5K_TRACE(ah->ah_sc);
582 * Save some registers before a reset
584 /*DCU/Antenna selection not available on 5210*/
585 if (ah->ah_version != AR5K_AR5210) {
586 if (change_channel == true) {
587 /* Seq number for queue 0 -do this for all queues ? */
588 s_seq = ath5k_hw_reg_read(ah,
589 AR5K_QUEUE_DFS_SEQNUM(0));
591 s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
596 s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) & AR5K_PCICFG_LEDSTATE;
597 s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
598 s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
600 if (change_channel == true && ah->ah_rf_banks != NULL)
601 ath5k_hw_get_rf_gain(ah);
604 /*Wakeup the device*/
605 ret = ath5k_hw_nic_wakeup(ah, channel->val, false);
610 * Initialize operating mode
612 ah->ah_op_mode = op_mode;
616 * 5210 only comes with RF5110
618 if (ah->ah_version != AR5K_AR5210) {
619 if (ah->ah_radio != AR5K_RF5111 &&
620 ah->ah_radio != AR5K_RF5112 &&
621 ah->ah_radio != AR5K_RF5413) {
623 "invalid phy radio: %u\n", ah->ah_radio);
627 switch (channel->val & CHANNEL_MODES) {
629 mode = AR5K_INI_VAL_11A;
630 freq = AR5K_INI_RFGAIN_5GHZ;
631 ee_mode = AR5K_EEPROM_MODE_11A;
632 driver_mode = MODE_IEEE80211A;
635 mode = AR5K_INI_VAL_11G;
636 freq = AR5K_INI_RFGAIN_2GHZ;
637 ee_mode = AR5K_EEPROM_MODE_11G;
638 driver_mode = MODE_IEEE80211G;
641 mode = AR5K_INI_VAL_11B;
642 freq = AR5K_INI_RFGAIN_2GHZ;
643 ee_mode = AR5K_EEPROM_MODE_11B;
644 driver_mode = MODE_IEEE80211B;
647 mode = AR5K_INI_VAL_11A_TURBO;
648 freq = AR5K_INI_RFGAIN_5GHZ;
649 ee_mode = AR5K_EEPROM_MODE_11A;
650 driver_mode = MODE_ATHEROS_TURBO;
652 /*Is this ok on 5211 too ?*/
654 mode = AR5K_INI_VAL_11G_TURBO;
655 freq = AR5K_INI_RFGAIN_2GHZ;
656 ee_mode = AR5K_EEPROM_MODE_11G;
657 driver_mode = MODE_ATHEROS_TURBOG;
660 if (ah->ah_version == AR5K_AR5211) {
662 "XR mode not available on 5211");
665 mode = AR5K_INI_VAL_XR;
666 freq = AR5K_INI_RFGAIN_5GHZ;
667 ee_mode = AR5K_EEPROM_MODE_11A;
668 driver_mode = MODE_IEEE80211A;
672 "invalid channel: %d\n", channel->freq);
676 /* PHY access enable */
677 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
681 ret = ath5k_hw_write_initvals(ah, mode, change_channel);
688 if (ah->ah_version != AR5K_AR5210) {
690 * Write initial RF gain settings
691 * This should work for both 5111/5112
693 ret = ath5k_hw_rfgain(ah, freq);
700 * Write some more initial register settings
702 if (ah->ah_version > AR5K_AR5211){ /* found on 5213+ */
703 ath5k_hw_reg_write(ah, 0x0002a002, AR5K_PHY(11));
705 if (channel->val == CHANNEL_G)
706 ath5k_hw_reg_write(ah, 0x00f80d80, AR5K_PHY(83)); /* 0x00fc0ec0 */
708 ath5k_hw_reg_write(ah, 0x00000000, AR5K_PHY(83));
710 ath5k_hw_reg_write(ah, 0x000001b5, 0xa228); /* 0x000009b5 */
711 ath5k_hw_reg_write(ah, 0x000009b5, 0xa228);
712 ath5k_hw_reg_write(ah, 0x0000000f, 0x8060);
713 ath5k_hw_reg_write(ah, 0x00000000, 0xa254);
714 ath5k_hw_reg_write(ah, 0x0000000e, AR5K_PHY_SCAL);
717 /* Fix for first revision of the RF5112 RF chipset */
718 if (ah->ah_radio >= AR5K_RF5112 &&
719 ah->ah_radio_5ghz_revision <
720 AR5K_SREV_RAD_5112A) {
721 ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
723 if (channel->val & CHANNEL_5GHZ)
727 ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
731 * Set TX power (FIXME)
733 ret = ath5k_hw_txpower(ah, channel, AR5K_TUNE_DEFAULT_TXPOWER);
737 /* Write rate duration table */
738 if (ah->ah_version == AR5K_AR5212)
739 ath5k_hw_write_rate_duration(ah, driver_mode);
743 * TODO:Does this work on 5211 (5111) ?
745 ret = ath5k_hw_rfregs(ah, channel, mode);
750 * Configure additional registers
753 /* Write OFDM timings on 5212*/
754 if (ah->ah_version == AR5K_AR5212 &&
755 channel->val & CHANNEL_OFDM) {
756 ret = ath5k_hw_write_ofdm_timings(ah, channel);
761 /*Enable/disable 802.11b mode on 5111
762 (enable 2111 frequency converter + CCK)*/
763 if (ah->ah_radio == AR5K_RF5111) {
764 if (driver_mode == MODE_IEEE80211B)
765 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
768 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
773 * Set channel and calibrate the PHY
775 ret = ath5k_hw_channel(ah, channel);
779 /* Set antenna mode */
780 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x44),
781 ah->ah_antenna[ee_mode][0], 0xfffffc06);
784 * In case a fixed antenna was set as default
785 * write the same settings on both AR5K_PHY_ANT_SWITCH_TABLE
789 if (s_ant == AR5K_ANT_FIXED_A) /* 1 - Main */
790 ant[0] = ant[1] = AR5K_ANT_FIXED_A;
792 ant[0] = ant[1] = AR5K_ANT_FIXED_B;
794 ant[0] = AR5K_ANT_FIXED_A;
795 ant[1] = AR5K_ANT_FIXED_B;
798 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[0]],
799 AR5K_PHY_ANT_SWITCH_TABLE_0);
800 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[1]],
801 AR5K_PHY_ANT_SWITCH_TABLE_1);
803 /* Commit values from EEPROM */
804 if (ah->ah_radio == AR5K_RF5111)
805 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
806 AR5K_PHY_FRAME_CTL_TX_CLIP, ee->ee_tx_clip);
808 ath5k_hw_reg_write(ah,
809 AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
812 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x11),
813 (ee->ee_switch_settling[ee_mode] << 7) & 0x3f80,
815 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x12),
816 (ee->ee_ant_tx_rx[ee_mode] << 12) & 0x3f000,
818 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x14),
819 (ee->ee_adc_desired_size[ee_mode] & 0x00ff) |
820 ((ee->ee_pga_desired_size[ee_mode] << 8) & 0xff00),
823 ath5k_hw_reg_write(ah,
824 (ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
825 (ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
826 (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
827 (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY(0x0d));
829 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x0a),
830 ee->ee_tx_end2xlna_enable[ee_mode] << 8, 0xffff00ff);
831 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x19),
832 (ee->ee_thr_62[ee_mode] << 12) & 0x7f000, 0xfff80fff);
833 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x49), 4, 0xffffff01);
835 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
836 AR5K_PHY_IQ_CORR_ENABLE |
837 (ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) |
838 ee->ee_q_cal[ee_mode]);
840 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
841 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
842 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
843 ee->ee_margin_tx_rx[ee_mode]);
847 /* Disable phy and wait */
848 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
853 * Restore saved values
855 /*DCU/Antenna selection not available on 5210*/
856 if (ah->ah_version != AR5K_AR5210) {
857 ath5k_hw_reg_write(ah, s_seq, AR5K_QUEUE_DFS_SEQNUM(0));
858 ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA);
860 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
861 ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
862 ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
867 /* XXX: add ah->aid once mac80211 gives this to us */
868 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
870 ath5k_hw_set_opmode(ah);
871 /*PISR/SISR Not available on 5210*/
872 if (ah->ah_version != AR5K_AR5210) {
873 ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
874 /* If we later allow tuning for this, store into sc structure */
875 data = AR5K_TUNE_RSSI_THRES |
876 AR5K_TUNE_BMISS_THRES << AR5K_RSSI_THR_BMISS_S;
877 ath5k_hw_reg_write(ah, data, AR5K_RSSI_THR);
881 * Set Rx/Tx DMA Configuration
882 *(passing dma size not available on 5210)
884 if (ah->ah_version != AR5K_AR5210) {
885 AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_SDMAMR,
886 AR5K_DMASIZE_512B | AR5K_TXCFG_DMASIZE);
887 AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_SDMAMW,
892 * Enable the PHY and wait until completion
894 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
899 if (ah->ah_version != AR5K_AR5210) {
900 data = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
902 data = (channel->val & CHANNEL_CCK) ?
903 ((data << 2) / 22) : (data / 10);
911 * Enable calibration and wait until completion
913 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
914 AR5K_PHY_AGCCTL_CAL);
916 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
917 AR5K_PHY_AGCCTL_CAL, 0, false)) {
918 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
923 ret = ath5k_hw_noise_floor_calibration(ah, channel->freq);
927 ah->ah_calibration = false;
929 /* A and G modes can use QAM modulation which requires enabling
930 * I and Q calibration. Don't bother in B mode. */
931 if (!(driver_mode == MODE_IEEE80211B)) {
932 ah->ah_calibration = true;
933 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
934 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
935 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
940 * Reset queues and start beacon timers at the end of the reset routine
942 for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
944 if (ah->ah_version != AR5K_AR5210)
945 AR5K_REG_WRITE_Q(ah, AR5K_QUEUE_QCUMASK(i), i);
947 ret = ath5k_hw_reset_tx_queue(ah, i);
950 "failed to reset TX queue #%d\n", i);
955 /* Pre-enable interrupts on 5211/5212*/
956 if (ah->ah_version != AR5K_AR5210)
957 ath5k_hw_set_intr(ah, AR5K_INT_RX | AR5K_INT_TX |
961 * Set RF kill flags if supported by the device (read from the EEPROM)
962 * Disable gpio_intr for now since it results system hang.
963 * TODO: Handle this in ath5k_intr
966 if (AR5K_EEPROM_HDR_RFKILL(ah->ah_capabilities.cap_eeprom.ee_header)) {
967 ath5k_hw_set_gpio_input(ah, 0);
968 ah->ah_gpio[0] = ath5k_hw_get_gpio(ah, 0);
969 if (ah->ah_gpio[0] == 0)
970 ath5k_hw_set_gpio_intr(ah, 0, 1);
972 ath5k_hw_set_gpio_intr(ah, 0, 0);
977 * Set the 32MHz reference clock on 5212 phy clock sleep register
979 if (ah->ah_version == AR5K_AR5212) {
980 ath5k_hw_reg_write(ah, AR5K_PHY_SCR_32MHZ, AR5K_PHY_SCR);
981 ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
982 ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ, AR5K_PHY_SCAL);
983 ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
984 ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
985 ath5k_hw_reg_write(ah, ah->ah_radio == AR5K_RF5111 ?
986 AR5K_PHY_SPENDING_RF5111 : AR5K_PHY_SPENDING_RF5112,
991 * Disable beacons and reset the register
993 AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE |
994 AR5K_BEACON_RESET_TSF);
1002 static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
1005 u32 mask = val ? val : ~0U;
1007 ATH5K_TRACE(ah->ah_sc);
1009 /* Read-and-clear RX Descriptor Pointer*/
1010 ath5k_hw_reg_read(ah, AR5K_RXDP);
1013 * Reset the device and wait until success
1015 ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
1017 /* Wait at least 128 PCI clocks */
1020 if (ah->ah_version == AR5K_AR5210) {
1021 val &= AR5K_RESET_CTL_CHIP;
1022 mask &= AR5K_RESET_CTL_CHIP;
1024 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
1025 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
1028 ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
1031 * Reset configuration register (for hw byte-swap). Note that this
1032 * is only set for big endian. We do the necessary magic in
1035 if ((val & AR5K_RESET_CTL_PCU) == 0)
1036 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
1042 * Power management functions
1048 int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
1049 bool set_chip, u16 sleep_duration)
1054 ATH5K_TRACE(ah->ah_sc);
1055 staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
1059 staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
1061 case AR5K_PM_NETWORK_SLEEP:
1062 if (set_chip == true)
1063 ath5k_hw_reg_write(ah,
1064 AR5K_SLEEP_CTL_SLE | sleep_duration,
1067 staid |= AR5K_STA_ID1_PWR_SV;
1070 case AR5K_PM_FULL_SLEEP:
1071 if (set_chip == true)
1072 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
1075 staid |= AR5K_STA_ID1_PWR_SV;
1079 if (set_chip == false)
1082 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_WAKE,
1085 for (i = 5000; i > 0; i--) {
1086 /* Check if the chip did wake up */
1087 if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
1088 AR5K_PCICFG_SPWR_DN) == 0)
1091 /* Wait a bit and retry */
1093 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_WAKE,
1097 /* Fail if the chip didn't wake up */
1101 staid &= ~AR5K_STA_ID1_PWR_SV;
1109 ah->ah_power_mode = mode;
1110 ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
1115 /***********************\
1116 DMA Related Functions
1117 \***********************/
1126 void ath5k_hw_start_rx(struct ath5k_hw *ah)
1128 ATH5K_TRACE(ah->ah_sc);
1129 ath5k_hw_reg_write(ah, AR5K_CR_RXE, AR5K_CR);
1135 int ath5k_hw_stop_rx_dma(struct ath5k_hw *ah)
1139 ATH5K_TRACE(ah->ah_sc);
1140 ath5k_hw_reg_write(ah, AR5K_CR_RXD, AR5K_CR);
1143 * It may take some time to disable the DMA receive unit
1145 for (i = 2000; i > 0 &&
1146 (ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_CR_RXE) != 0;
1150 return i ? 0 : -EBUSY;
1154 * Get the address of the RX Descriptor
1156 u32 ath5k_hw_get_rx_buf(struct ath5k_hw *ah)
1158 return ath5k_hw_reg_read(ah, AR5K_RXDP);
1162 * Set the address of the RX Descriptor
1164 void ath5k_hw_put_rx_buf(struct ath5k_hw *ah, u32 phys_addr)
1166 ATH5K_TRACE(ah->ah_sc);
1168 /*TODO:Shouldn't we check if RX is enabled first ?*/
1169 ath5k_hw_reg_write(ah, phys_addr, AR5K_RXDP);
1173 * Transmit functions
1177 * Start DMA transmit for a specific queue
1178 * (see also QCU/DCU functions)
1180 int ath5k_hw_tx_start(struct ath5k_hw *ah, unsigned int queue)
1184 ATH5K_TRACE(ah->ah_sc);
1185 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
1187 /* Return if queue is declared inactive */
1188 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
1191 if (ah->ah_version == AR5K_AR5210) {
1192 tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
1195 * Set the queue by type on 5210
1197 switch (ah->ah_txq[queue].tqi_type) {
1198 case AR5K_TX_QUEUE_DATA:
1199 tx_queue |= AR5K_CR_TXE0 & ~AR5K_CR_TXD0;
1201 case AR5K_TX_QUEUE_BEACON:
1202 tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
1203 ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
1206 case AR5K_TX_QUEUE_CAB:
1207 tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
1208 ath5k_hw_reg_write(ah, AR5K_BCR_TQ1FV | AR5K_BCR_TQ1V |
1209 AR5K_BCR_BDMAE, AR5K_BSR);
1215 ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
1217 /* Return if queue is disabled */
1218 if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXD, queue))
1222 AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXE, queue);
1229 * Stop DMA transmit for a specific queue
1230 * (see also QCU/DCU functions)
1232 int ath5k_hw_stop_tx_dma(struct ath5k_hw *ah, unsigned int queue)
1234 unsigned int i = 100;
1235 u32 tx_queue, pending;
1237 ATH5K_TRACE(ah->ah_sc);
1238 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
1240 /* Return if queue is declared inactive */
1241 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
1244 if (ah->ah_version == AR5K_AR5210) {
1245 tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
1250 switch (ah->ah_txq[queue].tqi_type) {
1251 case AR5K_TX_QUEUE_DATA:
1252 tx_queue |= AR5K_CR_TXD0 & ~AR5K_CR_TXE0;
1254 case AR5K_TX_QUEUE_BEACON:
1255 case AR5K_TX_QUEUE_CAB:
1257 tx_queue |= AR5K_CR_TXD1 & ~AR5K_CR_TXD1;
1258 ath5k_hw_reg_write(ah, 0, AR5K_BSR);
1265 ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
1268 * Schedule TX disable and wait until queue is empty
1270 AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXD, queue);
1272 /*Check for pending frames*/
1274 pending = ath5k_hw_reg_read(ah,
1275 AR5K_QUEUE_STATUS(queue)) &
1276 AR5K_QCU_STS_FRMPENDCNT;
1278 } while (--i && pending);
1280 /* Clear register */
1281 ath5k_hw_reg_write(ah, 0, AR5K_QCU_TXD);
1284 /* TODO: Check for success else return error */
1289 * Get the address of the TX Descriptor for a specific queue
1290 * (see also QCU/DCU functions)
1292 u32 ath5k_hw_get_tx_buf(struct ath5k_hw *ah, unsigned int queue)
1296 ATH5K_TRACE(ah->ah_sc);
1297 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
1300 * Get the transmit queue descriptor pointer from the selected queue
1302 /*5210 doesn't have QCU*/
1303 if (ah->ah_version == AR5K_AR5210) {
1304 switch (ah->ah_txq[queue].tqi_type) {
1305 case AR5K_TX_QUEUE_DATA:
1306 tx_reg = AR5K_NOQCU_TXDP0;
1308 case AR5K_TX_QUEUE_BEACON:
1309 case AR5K_TX_QUEUE_CAB:
1310 tx_reg = AR5K_NOQCU_TXDP1;
1316 tx_reg = AR5K_QUEUE_TXDP(queue);
1319 return ath5k_hw_reg_read(ah, tx_reg);
1323 * Set the address of the TX Descriptor for a specific queue
1324 * (see also QCU/DCU functions)
1326 int ath5k_hw_put_tx_buf(struct ath5k_hw *ah, unsigned int queue, u32 phys_addr)
1330 ATH5K_TRACE(ah->ah_sc);
1331 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
1334 * Set the transmit queue descriptor pointer register by type
1337 if (ah->ah_version == AR5K_AR5210) {
1338 switch (ah->ah_txq[queue].tqi_type) {
1339 case AR5K_TX_QUEUE_DATA:
1340 tx_reg = AR5K_NOQCU_TXDP0;
1342 case AR5K_TX_QUEUE_BEACON:
1343 case AR5K_TX_QUEUE_CAB:
1344 tx_reg = AR5K_NOQCU_TXDP1;
1351 * Set the transmit queue descriptor pointer for
1352 * the selected queue on QCU for 5211+
1353 * (this won't work if the queue is still active)
1355 if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, queue))
1358 tx_reg = AR5K_QUEUE_TXDP(queue);
1361 /* Set descriptor pointer */
1362 ath5k_hw_reg_write(ah, phys_addr, tx_reg);
1368 * Update tx trigger level
1370 int ath5k_hw_update_tx_triglevel(struct ath5k_hw *ah, bool increase)
1372 u32 trigger_level, imr;
1375 ATH5K_TRACE(ah->ah_sc);
1378 * Disable interrupts by setting the mask
1380 imr = ath5k_hw_set_intr(ah, ah->ah_imr & ~AR5K_INT_GLOBAL);
1382 /*TODO: Boundary check on trigger_level*/
1383 trigger_level = AR5K_REG_MS(ath5k_hw_reg_read(ah, AR5K_TXCFG),
1386 if (increase == false) {
1387 if (--trigger_level < AR5K_TUNE_MIN_TX_FIFO_THRES)
1391 ((AR5K_TUNE_MAX_TX_FIFO_THRES - trigger_level) / 2);
1394 * Update trigger level on success
1396 if (ah->ah_version == AR5K_AR5210)
1397 ath5k_hw_reg_write(ah, trigger_level, AR5K_TRIG_LVL);
1399 AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
1400 AR5K_TXCFG_TXFULL, trigger_level);
1406 * Restore interrupt mask
1408 ath5k_hw_set_intr(ah, imr);
1414 * Interrupt handling
1418 * Check if we have pending interrupts
1420 bool ath5k_hw_is_intr_pending(struct ath5k_hw *ah)
1422 ATH5K_TRACE(ah->ah_sc);
1423 return ath5k_hw_reg_read(ah, AR5K_INTPEND);
1427 * Get interrupt mask (ISR)
1429 int ath5k_hw_get_isr(struct ath5k_hw *ah, enum ath5k_int *interrupt_mask)
1433 ATH5K_TRACE(ah->ah_sc);
1436 * Read interrupt status from the Interrupt Status register
1439 if (ah->ah_version == AR5K_AR5210) {
1440 data = ath5k_hw_reg_read(ah, AR5K_ISR);
1441 if (unlikely(data == AR5K_INT_NOCARD)) {
1442 *interrupt_mask = data;
1447 * Read interrupt status from the Read-And-Clear shadow register
1448 * Note: PISR/SISR Not available on 5210
1450 data = ath5k_hw_reg_read(ah, AR5K_RAC_PISR);
1454 * Get abstract interrupt mask (driver-compatible)
1456 *interrupt_mask = (data & AR5K_INT_COMMON) & ah->ah_imr;
1458 if (unlikely(data == AR5K_INT_NOCARD))
1461 if (data & (AR5K_ISR_RXOK | AR5K_ISR_RXERR))
1462 *interrupt_mask |= AR5K_INT_RX;
1464 if (data & (AR5K_ISR_TXOK | AR5K_ISR_TXERR
1465 | AR5K_ISR_TXDESC | AR5K_ISR_TXEOL))
1466 *interrupt_mask |= AR5K_INT_TX;
1468 if (ah->ah_version != AR5K_AR5210) {
1469 /*HIU = Host Interface Unit (PCI etc)*/
1470 if (unlikely(data & (AR5K_ISR_HIUERR)))
1471 *interrupt_mask |= AR5K_INT_FATAL;
1473 /*Beacon Not Ready*/
1474 if (unlikely(data & (AR5K_ISR_BNR)))
1475 *interrupt_mask |= AR5K_INT_BNR;
1479 * XXX: BMISS interrupts may occur after association.
1480 * I found this on 5210 code but it needs testing. If this is
1481 * true we should disable them before assoc and re-enable them
1482 * after a successfull assoc + some jiffies.
1485 interrupt_mask &= ~AR5K_INT_BMISS;
1489 * In case we didn't handle anything,
1490 * print the register value.
1492 if (unlikely(*interrupt_mask == 0 && net_ratelimit()))
1493 ATH5K_PRINTF("0x%08x\n", data);
1499 * Set interrupt mask
1501 enum ath5k_int ath5k_hw_set_intr(struct ath5k_hw *ah, enum ath5k_int new_mask)
1503 enum ath5k_int old_mask, int_mask;
1506 * Disable card interrupts to prevent any race conditions
1507 * (they will be re-enabled afterwards).
1509 ath5k_hw_reg_write(ah, AR5K_IER_DISABLE, AR5K_IER);
1511 old_mask = ah->ah_imr;
1514 * Add additional, chipset-dependent interrupt mask flags
1515 * and write them to the IMR (interrupt mask register).
1517 int_mask = new_mask & AR5K_INT_COMMON;
1519 if (new_mask & AR5K_INT_RX)
1520 int_mask |= AR5K_IMR_RXOK | AR5K_IMR_RXERR | AR5K_IMR_RXORN |
1523 if (new_mask & AR5K_INT_TX)
1524 int_mask |= AR5K_IMR_TXOK | AR5K_IMR_TXERR | AR5K_IMR_TXDESC |
1527 if (ah->ah_version != AR5K_AR5210) {
1528 if (new_mask & AR5K_INT_FATAL) {
1529 int_mask |= AR5K_IMR_HIUERR;
1530 AR5K_REG_ENABLE_BITS(ah, AR5K_SIMR2, AR5K_SIMR2_MCABT |
1531 AR5K_SIMR2_SSERR | AR5K_SIMR2_DPERR);
1535 ath5k_hw_reg_write(ah, int_mask, AR5K_PIMR);
1537 /* Store new interrupt mask */
1538 ah->ah_imr = new_mask;
1540 /* ..re-enable interrupts */
1541 ath5k_hw_reg_write(ah, AR5K_IER_ENABLE, AR5K_IER);
1547 /*************************\
1548 EEPROM access functions
1549 \*************************/
1554 static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
1556 u32 status, timeout;
1558 ATH5K_TRACE(ah->ah_sc);
1560 * Initialize EEPROM access
1562 if (ah->ah_version == AR5K_AR5210) {
1563 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
1564 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
1566 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
1567 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
1568 AR5K_EEPROM_CMD_READ);
1571 for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
1572 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
1573 if (status & AR5K_EEPROM_STAT_RDDONE) {
1574 if (status & AR5K_EEPROM_STAT_RDERR)
1576 *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
1587 * Write to eeprom - currently disabled, use at your own risk
1589 static int ath5k_hw_eeprom_write(struct ath5k_hw *ah, u32 offset, u16 data)
1592 u32 status, timeout;
1594 ATH5K_TRACE(ah->ah_sc);
1597 * Initialize eeprom access
1600 if (ah->ah_version == AR5K_AR5210) {
1601 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
1603 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
1604 AR5K_EEPROM_CMD_RESET);
1608 * Write data to data register
1611 if (ah->ah_version == AR5K_AR5210) {
1612 ath5k_hw_reg_write(ah, data, AR5K_EEPROM_BASE + (4 * offset));
1614 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
1615 ath5k_hw_reg_write(ah, data, AR5K_EEPROM_DATA);
1616 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
1617 AR5K_EEPROM_CMD_WRITE);
1624 for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
1625 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
1626 if (status & AR5K_EEPROM_STAT_WRDONE) {
1627 if (status & AR5K_EEPROM_STAT_WRERR)
1634 ATH5K_ERR(ah->ah_sc, "EEPROM Write is disabled!");
1639 * Translate binary channel representation in EEPROM to frequency
1641 static u16 ath5k_eeprom_bin2freq(struct ath5k_hw *ah, u16 bin, unsigned int mode)
1645 if (bin == AR5K_EEPROM_CHANNEL_DIS)
1648 if (mode == AR5K_EEPROM_MODE_11A) {
1649 if (ah->ah_ee_version > AR5K_EEPROM_VERSION_3_2)
1650 val = (5 * bin) + 4800;
1652 val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
1655 if (ah->ah_ee_version > AR5K_EEPROM_VERSION_3_2)
1665 * Read antenna infos from eeprom
1667 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
1670 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1675 AR5K_EEPROM_READ(o++, val);
1676 ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
1677 ee->ee_ant_tx_rx[mode] = (val >> 2) & 0x3f;
1678 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
1680 AR5K_EEPROM_READ(o++, val);
1681 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
1682 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
1683 ee->ee_ant_control[mode][i++] = val & 0x3f;
1685 AR5K_EEPROM_READ(o++, val);
1686 ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
1687 ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
1688 ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
1690 AR5K_EEPROM_READ(o++, val);
1691 ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
1692 ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
1693 ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
1694 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
1696 AR5K_EEPROM_READ(o++, val);
1697 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
1698 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
1699 ee->ee_ant_control[mode][i++] = val & 0x3f;
1701 /* Get antenna modes */
1702 ah->ah_antenna[mode][0] =
1703 (ee->ee_ant_control[mode][0] << 4) | 0x1;
1704 ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
1705 ee->ee_ant_control[mode][1] |
1706 (ee->ee_ant_control[mode][2] << 6) |
1707 (ee->ee_ant_control[mode][3] << 12) |
1708 (ee->ee_ant_control[mode][4] << 18) |
1709 (ee->ee_ant_control[mode][5] << 24);
1710 ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
1711 ee->ee_ant_control[mode][6] |
1712 (ee->ee_ant_control[mode][7] << 6) |
1713 (ee->ee_ant_control[mode][8] << 12) |
1714 (ee->ee_ant_control[mode][9] << 18) |
1715 (ee->ee_ant_control[mode][10] << 24);
1717 /* return new offset */
1724 * Read supported modes from eeprom
1726 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
1729 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1734 AR5K_EEPROM_READ(o++, val);
1735 ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
1736 ee->ee_thr_62[mode] = val & 0xff;
1738 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
1739 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
1741 AR5K_EEPROM_READ(o++, val);
1742 ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
1743 ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
1745 AR5K_EEPROM_READ(o++, val);
1746 ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
1748 if ((val & 0xff) & 0x80)
1749 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
1751 ee->ee_noise_floor_thr[mode] = val & 0xff;
1753 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
1754 ee->ee_noise_floor_thr[mode] =
1755 mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
1757 AR5K_EEPROM_READ(o++, val);
1758 ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
1759 ee->ee_x_gain[mode] = (val >> 1) & 0xf;
1760 ee->ee_xpd[mode] = val & 0x1;
1762 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
1763 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
1765 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
1766 AR5K_EEPROM_READ(o++, val);
1767 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
1769 if (mode == AR5K_EEPROM_MODE_11A)
1770 ee->ee_xr_power[mode] = val & 0x3f;
1772 ee->ee_ob[mode][0] = val & 0x7;
1773 ee->ee_db[mode][0] = (val >> 3) & 0x7;
1777 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
1778 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
1779 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
1781 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
1783 AR5K_EEPROM_READ(o++, val);
1784 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
1786 if (mode == AR5K_EEPROM_MODE_11G)
1787 ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
1790 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
1791 mode == AR5K_EEPROM_MODE_11A) {
1792 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
1793 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
1796 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6 &&
1797 mode == AR5K_EEPROM_MODE_11G)
1798 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
1800 /* return new offset */
1807 * Initialize eeprom & capabilities structs
1809 static int ath5k_eeprom_init(struct ath5k_hw *ah)
1811 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1812 unsigned int mode, i;
1817 /* Initial TX thermal adjustment values */
1819 ee->ee_pwd_84 = ee->ee_pwd_90 = 1;
1820 ee->ee_gain_select = 1;
1823 * Read values from EEPROM and store them in the capability structure
1825 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
1826 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
1827 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
1828 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
1829 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
1831 /* Return if we have an old EEPROM */
1832 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
1837 * Validate the checksum of the EEPROM date. There are some
1838 * devices with invalid EEPROMs.
1840 for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
1841 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
1844 if (cksum != AR5K_EEPROM_INFO_CKSUM) {
1845 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
1850 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
1853 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
1854 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
1855 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
1858 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
1859 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
1860 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
1861 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
1863 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
1864 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
1865 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
1869 * Get conformance test limit values
1871 offset = AR5K_EEPROM_CTL(ah->ah_ee_version);
1872 ee->ee_ctls = AR5K_EEPROM_N_CTLS(ah->ah_ee_version);
1874 for (i = 0; i < ee->ee_ctls; i++) {
1875 AR5K_EEPROM_READ(offset++, val);
1876 ee->ee_ctl[i] = (val >> 8) & 0xff;
1877 ee->ee_ctl[i + 1] = val & 0xff;
1881 * Get values for 802.11a (5GHz)
1883 mode = AR5K_EEPROM_MODE_11A;
1885 ee->ee_turbo_max_power[mode] =
1886 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
1888 offset = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
1890 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
1894 AR5K_EEPROM_READ(offset++, val);
1895 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
1896 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
1897 ee->ee_db[mode][3] = (val >> 2) & 0x7;
1898 ee->ee_ob[mode][2] = (val << 1) & 0x7;
1900 AR5K_EEPROM_READ(offset++, val);
1901 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
1902 ee->ee_db[mode][2] = (val >> 12) & 0x7;
1903 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
1904 ee->ee_db[mode][1] = (val >> 6) & 0x7;
1905 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
1906 ee->ee_db[mode][0] = val & 0x7;
1908 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
1912 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) {
1913 AR5K_EEPROM_READ(offset++, val);
1914 ee->ee_margin_tx_rx[mode] = val & 0x3f;
1918 * Get values for 802.11b (2.4GHz)
1920 mode = AR5K_EEPROM_MODE_11B;
1921 offset = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
1923 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
1927 AR5K_EEPROM_READ(offset++, val);
1928 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
1929 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
1930 ee->ee_db[mode][1] = val & 0x7;
1932 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
1936 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
1937 AR5K_EEPROM_READ(offset++, val);
1938 ee->ee_cal_pier[mode][0] =
1939 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
1940 ee->ee_cal_pier[mode][1] =
1941 ath5k_eeprom_bin2freq(ah, (val >> 8) & 0xff, mode);
1943 AR5K_EEPROM_READ(offset++, val);
1944 ee->ee_cal_pier[mode][2] =
1945 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
1948 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
1949 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
1952 * Get values for 802.11g (2.4GHz)
1954 mode = AR5K_EEPROM_MODE_11G;
1955 offset = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
1957 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
1961 AR5K_EEPROM_READ(offset++, val);
1962 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
1963 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
1964 ee->ee_db[mode][1] = val & 0x7;
1966 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
1970 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
1971 AR5K_EEPROM_READ(offset++, val);
1972 ee->ee_cal_pier[mode][0] =
1973 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
1974 ee->ee_cal_pier[mode][1] =
1975 ath5k_eeprom_bin2freq(ah, (val >> 8) & 0xff, mode);
1977 AR5K_EEPROM_READ(offset++, val);
1978 ee->ee_turbo_max_power[mode] = val & 0x7f;
1979 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
1981 AR5K_EEPROM_READ(offset++, val);
1982 ee->ee_cal_pier[mode][2] =
1983 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
1985 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
1986 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
1988 AR5K_EEPROM_READ(offset++, val);
1989 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
1990 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
1992 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
1993 AR5K_EEPROM_READ(offset++, val);
1994 ee->ee_cck_ofdm_gain_delta = val & 0xff;
1999 * Read 5GHz EEPROM channels
2006 * Read the MAC address from eeprom
2008 static int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
2015 memset(mac, 0, ETH_ALEN);
2016 memset(mac_d, 0, ETH_ALEN);
2018 ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
2022 for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
2023 ret = ath5k_hw_eeprom_read(ah, offset, &data);
2028 mac_d[octet + 1] = data & 0xff;
2029 mac_d[octet] = data >> 8;
2033 memcpy(mac, mac_d, ETH_ALEN);
2035 if (!total || total == 3 * 0xffff)
2042 * Read/Write regulatory domain
2044 static bool ath5k_eeprom_regulation_domain(struct ath5k_hw *ah, bool write,
2045 enum ath5k_regdom *regdomain)
2049 /* Read current value */
2050 if (write != true) {
2051 ee_regdomain = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2052 *regdomain = ath5k_regdom_to_ieee(ee_regdomain);
2056 ee_regdomain = ath5k_regdom_from_ieee(*regdomain);
2058 /* Try to write a new value */
2059 if (ah->ah_capabilities.cap_eeprom.ee_protect &
2060 AR5K_EEPROM_PROTECT_WR_128_191)
2062 if (ath5k_hw_eeprom_write(ah, AR5K_EEPROM_REG_DOMAIN, ee_regdomain)!=0)
2065 ah->ah_capabilities.cap_eeprom.ee_regdomain = ee_regdomain;
2071 * Use the above to write a new regulatory domain
2073 int ath5k_hw_set_regdomain(struct ath5k_hw *ah, u16 regdomain)
2075 enum ath5k_regdom ieee_regdomain;
2077 ieee_regdomain = ath5k_regdom_to_ieee(regdomain);
2079 if (ath5k_eeprom_regulation_domain(ah, true, &ieee_regdomain) == true)
2086 * Fill the capabilities struct
2088 static int ath5k_hw_get_capabilities(struct ath5k_hw *ah)
2092 ATH5K_TRACE(ah->ah_sc);
2093 /* Capabilities stored in the EEPROM */
2094 ee_header = ah->ah_capabilities.cap_eeprom.ee_header;
2096 if (ah->ah_version == AR5K_AR5210) {
2098 * Set radio capabilities
2099 * (The AR5110 only supports the middle 5GHz band)
2101 ah->ah_capabilities.cap_range.range_5ghz_min = 5120;
2102 ah->ah_capabilities.cap_range.range_5ghz_max = 5430;
2103 ah->ah_capabilities.cap_range.range_2ghz_min = 0;
2104 ah->ah_capabilities.cap_range.range_2ghz_max = 0;
2106 /* Set supported modes */
2107 __set_bit(MODE_IEEE80211A, ah->ah_capabilities.cap_mode);
2108 __set_bit(MODE_ATHEROS_TURBO, ah->ah_capabilities.cap_mode);
2111 * XXX The tranceiver supports frequencies from 4920 to 6100GHz
2112 * XXX and from 2312 to 2732GHz. There are problems with the
2113 * XXX current ieee80211 implementation because the IEEE
2114 * XXX channel mapping does not support negative channel
2115 * XXX numbers (2312MHz is channel -19). Of course, this
2116 * XXX doesn't matter because these channels are out of range
2117 * XXX but some regulation domains like MKK (Japan) will
2118 * XXX support frequencies somewhere around 4.8GHz.
2122 * Set radio capabilities
2125 if (AR5K_EEPROM_HDR_11A(ee_header)) {
2126 ah->ah_capabilities.cap_range.range_5ghz_min = 5005; /* 4920 */
2127 ah->ah_capabilities.cap_range.range_5ghz_max = 6100;
2129 /* Set supported modes */
2130 __set_bit(MODE_IEEE80211A,
2131 ah->ah_capabilities.cap_mode);
2132 __set_bit(MODE_ATHEROS_TURBO,
2133 ah->ah_capabilities.cap_mode);
2134 if (ah->ah_version == AR5K_AR5212)
2135 __set_bit(MODE_ATHEROS_TURBOG,
2136 ah->ah_capabilities.cap_mode);
2139 /* Enable 802.11b if a 2GHz capable radio (2111/5112) is
2141 if (AR5K_EEPROM_HDR_11B(ee_header) ||
2142 AR5K_EEPROM_HDR_11G(ee_header)) {
2143 ah->ah_capabilities.cap_range.range_2ghz_min = 2412; /* 2312 */
2144 ah->ah_capabilities.cap_range.range_2ghz_max = 2732;
2146 if (AR5K_EEPROM_HDR_11B(ee_header))
2147 __set_bit(MODE_IEEE80211B,
2148 ah->ah_capabilities.cap_mode);
2150 if (AR5K_EEPROM_HDR_11G(ee_header))
2151 __set_bit(MODE_IEEE80211G,
2152 ah->ah_capabilities.cap_mode);
2157 ah->ah_gpio_npins = AR5K_NUM_GPIO;
2159 /* Set number of supported TX queues */
2160 if (ah->ah_version == AR5K_AR5210)
2161 ah->ah_capabilities.cap_queues.q_tx_num =
2162 AR5K_NUM_TX_QUEUES_NOQCU;
2164 ah->ah_capabilities.cap_queues.q_tx_num = AR5K_NUM_TX_QUEUES;
2169 /*********************************\
2170 Protocol Control Unit Functions
2171 \*********************************/
2174 * Set Operation mode
2176 int ath5k_hw_set_opmode(struct ath5k_hw *ah)
2178 u32 pcu_reg, beacon_reg, low_id, high_id;
2183 ATH5K_TRACE(ah->ah_sc);
2185 switch (ah->ah_op_mode) {
2186 case IEEE80211_IF_TYPE_IBSS:
2187 pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_DESC_ANTENNA |
2188 (ah->ah_version == AR5K_AR5210 ?
2189 AR5K_STA_ID1_NO_PSPOLL : 0);
2190 beacon_reg |= AR5K_BCR_ADHOC;
2193 case IEEE80211_IF_TYPE_AP:
2194 pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_RTS_DEF_ANTENNA |
2195 (ah->ah_version == AR5K_AR5210 ?
2196 AR5K_STA_ID1_NO_PSPOLL : 0);
2197 beacon_reg |= AR5K_BCR_AP;
2200 case IEEE80211_IF_TYPE_STA:
2201 pcu_reg |= AR5K_STA_ID1_DEFAULT_ANTENNA |
2202 (ah->ah_version == AR5K_AR5210 ?
2203 AR5K_STA_ID1_PWR_SV : 0);
2204 case IEEE80211_IF_TYPE_MNTR:
2205 pcu_reg |= AR5K_STA_ID1_DEFAULT_ANTENNA |
2206 (ah->ah_version == AR5K_AR5210 ?
2207 AR5K_STA_ID1_NO_PSPOLL : 0);
2217 low_id = AR5K_LOW_ID(ah->ah_sta_id);
2218 high_id = AR5K_HIGH_ID(ah->ah_sta_id);
2219 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
2220 ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
2223 * Set Beacon Control Register on 5210
2225 if (ah->ah_version == AR5K_AR5210)
2226 ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
2238 void ath5k_hw_get_lladdr(struct ath5k_hw *ah, u8 *mac)
2240 ATH5K_TRACE(ah->ah_sc);
2241 memcpy(mac, ah->ah_sta_id, ETH_ALEN);
2247 int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
2249 u32 low_id, high_id;
2251 ATH5K_TRACE(ah->ah_sc);
2252 /* Set new station ID */
2253 memcpy(ah->ah_sta_id, mac, ETH_ALEN);
2255 low_id = AR5K_LOW_ID(mac);
2256 high_id = AR5K_HIGH_ID(mac);
2258 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
2259 ath5k_hw_reg_write(ah, high_id, AR5K_STA_ID1);
2267 void ath5k_hw_set_associd(struct ath5k_hw *ah, const u8 *bssid, u16 assoc_id)
2269 u32 low_id, high_id;
2273 * Set simple BSSID mask on 5212
2275 if (ah->ah_version == AR5K_AR5212) {
2276 ath5k_hw_reg_write(ah, 0xfffffff, AR5K_BSS_IDM0);
2277 ath5k_hw_reg_write(ah, 0xfffffff, AR5K_BSS_IDM1);
2281 * Set BSSID which triggers the "SME Join" operation
2283 low_id = AR5K_LOW_ID(bssid);
2284 high_id = AR5K_HIGH_ID(bssid);
2285 ath5k_hw_reg_write(ah, low_id, AR5K_BSS_ID0);
2286 ath5k_hw_reg_write(ah, high_id | ((assoc_id & 0x3fff) <<
2287 AR5K_BSS_ID1_AID_S), AR5K_BSS_ID1);
2289 if (assoc_id == 0) {
2290 ath5k_hw_disable_pspoll(ah);
2294 AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
2295 tim_offset ? tim_offset + 4 : 0);
2297 ath5k_hw_enable_pspoll(ah, NULL, 0);
2300 * ath5k_hw_set_bssid_mask - set common bits we should listen to
2302 * The bssid_mask is a utility used by AR5212 hardware to inform the hardware
2303 * which bits of the interface's MAC address should be looked at when trying
2304 * to decide which packets to ACK. In station mode every bit matters. In AP
2305 * mode with a single BSS every bit matters as well. In AP mode with
2306 * multiple BSSes not every bit matters.
2308 * @ah: the &struct ath5k_hw
2309 * @mask: the bssid_mask, a u8 array of size ETH_ALEN
2311 * Note that this is a simple filter and *does* not filter out all
2312 * relevant frames. Some non-relevant frames will get through, probability
2313 * jocks are welcomed to compute.
2315 * When handling multiple BSSes (or VAPs) you can get the BSSID mask by
2316 * computing the set of:
2318 * ~ ( MAC XOR BSSID )
2320 * When you do this you are essentially computing the common bits. Later it
2321 * is assumed the harware will "and" (&) the BSSID mask with the MAC address
2322 * to obtain the relevant bits which should match on the destination frame.
2324 * Simple example: on your card you have have two BSSes you have created with
2325 * BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address.
2326 * There is another BSSID-03 but you are not part of it. For simplicity's sake,
2327 * assuming only 4 bits for a mac address and for BSSIDs you can then have:
2331 * BSSID-01: 0100 | --> Belongs to us
2334 * -------------------
2335 * BSSID-03: 0110 | --> External
2336 * -------------------
2338 * Our bssid_mask would then be:
2340 * On loop iteration for BSSID-01:
2341 * ~(0001 ^ 0100) -> ~(0101)
2345 * On loop iteration for BSSID-02:
2346 * bssid_mask &= ~(0001 ^ 1001)
2347 * bssid_mask = (1010) & ~(0001 ^ 1001)
2348 * bssid_mask = (1010) & ~(1001)
2349 * bssid_mask = (1010) & (0110)
2352 * A bssid_mask of 0010 means "only pay attention to the second least
2353 * significant bit". This is because its the only bit common
2354 * amongst the MAC and all BSSIDs we support. To findout what the real
2355 * common bit is we can simply "&" the bssid_mask now with any BSSID we have
2356 * or our MAC address (we assume the hardware uses the MAC address).
2358 * Now, suppose there's an incoming frame for BSSID-03:
2362 * An easy eye-inspeciton of this already should tell you that this frame
2363 * will not pass our check. This is beacuse the bssid_mask tells the
2364 * hardware to only look at the second least significant bit and the
2365 * common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB
2366 * as 1, which does not match 0.
2368 * So with IFRAME-01 we *assume* the hardware will do:
2370 * allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
2371 * --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0;
2372 * --> allow = (0010) == 0000 ? 1 : 0;
2375 * Lets now test a frame that should work:
2377 * IFRAME-02: 0001 (we should allow)
2379 * allow = (0001 & 1010) == 1010
2381 * allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
2382 * --> allow = (0001 & 0010) == (0010 & 0001) ? 1 :0;
2383 * --> allow = (0010) == (0010)
2388 * IFRAME-03: 0100 --> allowed
2389 * IFRAME-04: 1001 --> allowed
2390 * IFRAME-05: 1101 --> allowed but its not for us!!!
2393 int ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
2395 u32 low_id, high_id;
2396 ATH5K_TRACE(ah->ah_sc);
2398 if (ah->ah_version == AR5K_AR5212) {
2399 low_id = AR5K_LOW_ID(mask);
2400 high_id = AR5K_HIGH_ID(mask);
2402 ath5k_hw_reg_write(ah, low_id, AR5K_BSS_IDM0);
2403 ath5k_hw_reg_write(ah, high_id, AR5K_BSS_IDM1);
2412 * Receive start/stop functions
2416 * Start receive on PCU
2418 void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
2420 ATH5K_TRACE(ah->ah_sc);
2421 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
2425 * Stop receive on PCU
2427 void ath5k_hw_stop_pcu_recv(struct ath5k_hw *ah)
2429 ATH5K_TRACE(ah->ah_sc);
2430 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
2434 * RX Filter functions
2438 * Set multicast filter
2440 void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
2442 ATH5K_TRACE(ah->ah_sc);
2443 /* Set the multicat filter */
2444 ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
2445 ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
2449 * Set multicast filter by index
2451 int ath5k_hw_set_mcast_filterindex(struct ath5k_hw *ah, u32 index)
2454 ATH5K_TRACE(ah->ah_sc);
2457 else if (index >= 32)
2458 AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER1,
2459 (1 << (index - 32)));
2461 AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
2467 * Clear Multicast filter by index
2469 int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
2472 ATH5K_TRACE(ah->ah_sc);
2475 else if (index >= 32)
2476 AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER1,
2477 (1 << (index - 32)));
2479 AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
2485 * Get current rx filter
2487 u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
2489 u32 data, filter = 0;
2491 ATH5K_TRACE(ah->ah_sc);
2492 filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
2494 /*Radar detection for 5212*/
2495 if (ah->ah_version == AR5K_AR5212) {
2496 data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
2498 if (data & AR5K_PHY_ERR_FIL_RADAR)
2499 filter |= AR5K_RX_FILTER_RADARERR;
2500 if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
2501 filter |= AR5K_RX_FILTER_PHYERR;
2510 void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
2514 ATH5K_TRACE(ah->ah_sc);
2516 /* Set PHY error filter register on 5212*/
2517 if (ah->ah_version == AR5K_AR5212) {
2518 if (filter & AR5K_RX_FILTER_RADARERR)
2519 data |= AR5K_PHY_ERR_FIL_RADAR;
2520 if (filter & AR5K_RX_FILTER_PHYERR)
2521 data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
2525 * The AR5210 uses promiscous mode to detect radar activity
2527 if (ah->ah_version == AR5K_AR5210 &&
2528 (filter & AR5K_RX_FILTER_RADARERR)) {
2529 filter &= ~AR5K_RX_FILTER_RADARERR;
2530 filter |= AR5K_RX_FILTER_PROM;
2535 AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
2537 AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
2539 /*Write RX Filter register*/
2540 ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
2542 /*Write PHY error filter register on 5212*/
2543 if (ah->ah_version == AR5K_AR5212)
2544 ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
2549 * Beacon related functions
2555 u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah)
2557 ATH5K_TRACE(ah->ah_sc);
2558 return ath5k_hw_reg_read(ah, AR5K_TSF_L32);
2562 * Get the full 64bit TSF
2564 u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
2566 u64 tsf = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
2567 ATH5K_TRACE(ah->ah_sc);
2569 return ath5k_hw_reg_read(ah, AR5K_TSF_L32) | (tsf << 32);
2575 void ath5k_hw_reset_tsf(struct ath5k_hw *ah)
2577 ATH5K_TRACE(ah->ah_sc);
2578 AR5K_REG_ENABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_RESET_TSF);
2582 * Initialize beacon timers
2584 void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
2586 u32 timer1, timer2, timer3;
2588 ATH5K_TRACE(ah->ah_sc);
2590 * Set the additional timers by mode
2592 switch (ah->ah_op_mode) {
2593 case IEEE80211_IF_TYPE_STA:
2594 if (ah->ah_version == AR5K_AR5210) {
2595 timer1 = 0xffffffff;
2596 timer2 = 0xffffffff;
2598 timer1 = 0x0000ffff;
2599 timer2 = 0x0007ffff;
2604 timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) <<
2606 timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) <<
2610 timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1);
2613 * Set the beacon register and enable all timers.
2614 * (next beacon, DMA beacon, software beacon, ATIM window time)
2616 ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
2617 ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
2618 ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
2619 ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
2621 ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
2622 AR5K_BEACON_RESET_TSF | AR5K_BEACON_ENABLE),
2630 int ath5k_hw_set_beacon_timers(struct ath5k_hw *ah,
2631 const struct ath5k_beacon_state *state)
2633 u32 cfp_period, next_cfp, dtim, interval, next_beacon;
2636 * TODO: should be changed through *state
2637 * review struct ath5k_beacon_state struct
2639 * XXX: These are used for cfp period bellow, are they
2640 * ok ? Is it O.K. for tsf here to be 0 or should we use
2643 u32 dtim_count = 0; /* XXX */
2644 u32 cfp_count = 0; /* XXX */
2645 u32 tsf = 0; /* XXX */
2647 ATH5K_TRACE(ah->ah_sc);
2648 /* Return on an invalid beacon state */
2649 if (state->bs_interval < 1)
2652 interval = state->bs_interval;
2653 dtim = state->bs_dtim_period;
2658 if (state->bs_cfp_period > 0) {
2660 * Enable PCF mode and set the CFP
2661 * (Contention Free Period) and timer registers
2663 cfp_period = state->bs_cfp_period * state->bs_dtim_period *
2665 next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) *
2668 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
2669 AR5K_STA_ID1_DEFAULT_ANTENNA |
2671 ath5k_hw_reg_write(ah, cfp_period, AR5K_CFP_PERIOD);
2672 ath5k_hw_reg_write(ah, state->bs_cfp_max_duration,
2674 ath5k_hw_reg_write(ah, (tsf + (next_cfp == 0 ? cfp_period :
2675 next_cfp)) << 3, AR5K_TIMER2);
2677 /* Disable PCF mode */
2678 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
2679 AR5K_STA_ID1_DEFAULT_ANTENNA |
2684 * Enable the beacon timer register
2686 ath5k_hw_reg_write(ah, state->bs_next_beacon, AR5K_TIMER0);
2689 * Start the beacon timers
2691 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_BEACON) &~
2692 (AR5K_BEACON_PERIOD | AR5K_BEACON_TIM)) |
2693 AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0,
2694 AR5K_BEACON_TIM) | AR5K_REG_SM(state->bs_interval,
2695 AR5K_BEACON_PERIOD), AR5K_BEACON);
2698 * Write new beacon miss threshold, if it appears to be valid
2699 * XXX: Figure out right values for min <= bs_bmiss_threshold <= max
2700 * and return if its not in range. We can test this by reading value and
2701 * setting value to a largest value and seeing which values register.
2704 AR5K_REG_WRITE_BITS(ah, AR5K_RSSI_THR, AR5K_RSSI_THR_BMISS,
2705 state->bs_bmiss_threshold);
2708 * Set sleep control register
2709 * XXX: Didn't find this in 5210 code but since this register
2710 * exists also in ar5k's 5210 headers i leave it as common code.
2712 AR5K_REG_WRITE_BITS(ah, AR5K_SLEEP_CTL, AR5K_SLEEP_CTL_SLDUR,
2713 (state->bs_sleep_duration - 3) << 3);
2716 * Set enhanced sleep registers on 5212
2718 if (ah->ah_version == AR5K_AR5212) {
2719 if (state->bs_sleep_duration > state->bs_interval &&
2720 roundup(state->bs_sleep_duration, interval) ==
2721 state->bs_sleep_duration)
2722 interval = state->bs_sleep_duration;
2724 if (state->bs_sleep_duration > dtim && (dtim == 0 ||
2725 roundup(state->bs_sleep_duration, dtim) ==
2726 state->bs_sleep_duration))
2727 dtim = state->bs_sleep_duration;
2729 if (interval > dtim)
2732 next_beacon = interval == dtim ? state->bs_next_dtim :
2733 state->bs_next_beacon;
2735 ath5k_hw_reg_write(ah,
2736 AR5K_REG_SM((state->bs_next_dtim - 3) << 3,
2737 AR5K_SLEEP0_NEXT_DTIM) |
2738 AR5K_REG_SM(10, AR5K_SLEEP0_CABTO) |
2739 AR5K_SLEEP0_ENH_SLEEP_EN |
2740 AR5K_SLEEP0_ASSUME_DTIM, AR5K_SLEEP0);
2742 ath5k_hw_reg_write(ah, AR5K_REG_SM((next_beacon - 3) << 3,
2743 AR5K_SLEEP1_NEXT_TIM) |
2744 AR5K_REG_SM(10, AR5K_SLEEP1_BEACON_TO), AR5K_SLEEP1);
2746 ath5k_hw_reg_write(ah,
2747 AR5K_REG_SM(interval, AR5K_SLEEP2_TIM_PER) |
2748 AR5K_REG_SM(dtim, AR5K_SLEEP2_DTIM_PER), AR5K_SLEEP2);
2755 * Reset beacon timers
2757 void ath5k_hw_reset_beacon(struct ath5k_hw *ah)
2759 ATH5K_TRACE(ah->ah_sc);
2761 * Disable beacon timer
2763 ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
2766 * Disable some beacon register values
2768 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
2769 AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF);
2770 ath5k_hw_reg_write(ah, AR5K_BEACON_PERIOD, AR5K_BEACON);
2774 * Wait for beacon queue to finish
2776 int ath5k_hw_beaconq_finish(struct ath5k_hw *ah, unsigned long phys_addr)
2781 ATH5K_TRACE(ah->ah_sc);
2783 /* 5210 doesn't have QCU*/
2784 if (ah->ah_version == AR5K_AR5210) {
2786 * Wait for beaconn queue to finish by checking
2787 * Control Register and Beacon Status Register.
2789 for (i = AR5K_TUNE_BEACON_INTERVAL / 2; i > 0; i--) {
2790 if (!(ath5k_hw_reg_read(ah, AR5K_BSR) & AR5K_BSR_TXQ1F)
2792 !(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_BSR_TXQ1F))
2800 * Re-schedule the beacon queue
2802 ath5k_hw_reg_write(ah, phys_addr, AR5K_NOQCU_TXDP1);
2803 ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
2811 ret = ath5k_hw_register_timeout(ah,
2812 AR5K_QUEUE_STATUS(AR5K_TX_QUEUE_ID_BEACON),
2813 AR5K_QCU_STS_FRMPENDCNT, 0, false);
2815 if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, AR5K_TX_QUEUE_ID_BEACON))
2824 * Update mib counters (statistics)
2826 void ath5k_hw_update_mib_counters(struct ath5k_hw *ah,
2827 struct ath5k_mib_stats *statistics)
2829 ATH5K_TRACE(ah->ah_sc);
2830 /* Read-And-Clear */
2831 statistics->ackrcv_bad += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
2832 statistics->rts_bad += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
2833 statistics->rts_good += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
2834 statistics->fcs_bad += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
2835 statistics->beacons += ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
2837 /* Reset profile count registers on 5212*/
2838 if (ah->ah_version == AR5K_AR5212) {
2839 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_TX);
2840 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RX);
2841 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RXCLR);
2842 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_CYCLE);
2846 /** ath5k_hw_set_ack_bitrate - set bitrate for ACKs
2848 * @ah: the &struct ath5k_hw
2849 * @high: determines if to use low bit rate or now
2851 void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high)
2853 if (ah->ah_version != AR5K_AR5212)
2856 u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
2858 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
2860 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
2870 * Set ACK timeout on PCU
2872 int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
2874 ATH5K_TRACE(ah->ah_sc);
2875 if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK),
2876 ah->ah_turbo) <= timeout)
2879 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
2880 ath5k_hw_htoclock(timeout, ah->ah_turbo));
2886 * Read the ACK timeout from PCU
2888 unsigned int ath5k_hw_get_ack_timeout(struct ath5k_hw *ah)
2890 ATH5K_TRACE(ah->ah_sc);
2892 return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
2893 AR5K_TIME_OUT), AR5K_TIME_OUT_ACK), ah->ah_turbo);
2897 * Set CTS timeout on PCU
2899 int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
2901 ATH5K_TRACE(ah->ah_sc);
2902 if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS),
2903 ah->ah_turbo) <= timeout)
2906 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
2907 ath5k_hw_htoclock(timeout, ah->ah_turbo));
2913 * Read CTS timeout from PCU
2915 unsigned int ath5k_hw_get_cts_timeout(struct ath5k_hw *ah)
2917 ATH5K_TRACE(ah->ah_sc);
2918 return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
2919 AR5K_TIME_OUT), AR5K_TIME_OUT_CTS), ah->ah_turbo);
2923 * Key table (WEP) functions
2926 int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry)
2930 ATH5K_TRACE(ah->ah_sc);
2931 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
2933 for (i = 0; i < AR5K_KEYCACHE_SIZE; i++)
2934 ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i));
2936 /* Set NULL encryption on non-5210*/
2937 if (ah->ah_version != AR5K_AR5210)
2938 ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
2939 AR5K_KEYTABLE_TYPE(entry));
2944 int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry)
2946 ATH5K_TRACE(ah->ah_sc);
2947 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
2949 /* Check the validation flag at the end of the entry */
2950 return ath5k_hw_reg_read(ah, AR5K_KEYTABLE_MAC1(entry)) &
2951 AR5K_KEYTABLE_VALID;
2954 int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry,
2955 const struct ieee80211_key_conf *key, const u8 *mac)
2958 __le32 key_v[5] = {};
2961 ATH5K_TRACE(ah->ah_sc);
2963 /* key->keylen comes in from mac80211 in bytes */
2965 if (key->keylen > AR5K_KEYTABLE_SIZE / 8)
2968 switch (key->keylen) {
2969 /* WEP 40-bit = 40-bit entered key + 24 bit IV = 64-bit */
2971 memcpy(&key_v[0], key->key, 5);
2972 keytype = AR5K_KEYTABLE_TYPE_40;
2975 /* WEP 104-bit = 104-bit entered key + 24-bit IV = 128-bit */
2977 memcpy(&key_v[0], &key->key[0], 6);
2978 memcpy(&key_v[2], &key->key[6], 6);
2979 memcpy(&key_v[4], &key->key[12], 1);
2980 keytype = AR5K_KEYTABLE_TYPE_104;
2982 /* WEP 128-bit = 128-bit entered key + 24 bit IV = 152-bit */
2984 memcpy(&key_v[0], &key->key[0], 6);
2985 memcpy(&key_v[2], &key->key[6], 6);
2986 memcpy(&key_v[4], &key->key[12], 4);
2987 keytype = AR5K_KEYTABLE_TYPE_128;
2991 return -EINVAL; /* shouldn't happen */
2994 for (i = 0; i < ARRAY_SIZE(key_v); i++)
2995 ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
2996 AR5K_KEYTABLE_OFF(entry, i));
2998 ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry));
3000 return ath5k_hw_set_key_lladdr(ah, entry, mac);
3003 int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac)
3005 u32 low_id, high_id;
3007 ATH5K_TRACE(ah->ah_sc);
3008 /* Invalid entry (key table overflow) */
3009 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
3011 /* MAC may be NULL if it's a broadcast key. In this case no need to
3012 * to compute AR5K_LOW_ID and AR5K_HIGH_ID as we already know it. */
3013 if (unlikely(mac == NULL)) {
3014 low_id = 0xffffffff;
3015 high_id = 0xffff | AR5K_KEYTABLE_VALID;
3017 low_id = AR5K_LOW_ID(mac);
3018 high_id = AR5K_HIGH_ID(mac) | AR5K_KEYTABLE_VALID;
3021 ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry));
3022 ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry));
3028 /********************************************\
3029 Queue Control Unit, DFS Control Unit Functions
3030 \********************************************/
3033 * Initialize a transmit queue
3035 int ath5k_hw_setup_tx_queue(struct ath5k_hw *ah, enum ath5k_tx_queue queue_type,
3036 struct ath5k_txq_info *queue_info)
3041 ATH5K_TRACE(ah->ah_sc);
3046 /*5210 only has 2 queues*/
3047 if (ah->ah_version == AR5K_AR5210) {
3048 switch (queue_type) {
3049 case AR5K_TX_QUEUE_DATA:
3050 queue = AR5K_TX_QUEUE_ID_NOQCU_DATA;
3052 case AR5K_TX_QUEUE_BEACON:
3053 case AR5K_TX_QUEUE_CAB:
3054 queue = AR5K_TX_QUEUE_ID_NOQCU_BEACON;
3060 switch (queue_type) {
3061 case AR5K_TX_QUEUE_DATA:
3062 for (queue = AR5K_TX_QUEUE_ID_DATA_MIN;
3063 ah->ah_txq[queue].tqi_type !=
3064 AR5K_TX_QUEUE_INACTIVE; queue++) {
3066 if (queue > AR5K_TX_QUEUE_ID_DATA_MAX)
3070 case AR5K_TX_QUEUE_UAPSD:
3071 queue = AR5K_TX_QUEUE_ID_UAPSD;
3073 case AR5K_TX_QUEUE_BEACON:
3074 queue = AR5K_TX_QUEUE_ID_BEACON;
3076 case AR5K_TX_QUEUE_CAB:
3077 queue = AR5K_TX_QUEUE_ID_CAB;
3079 case AR5K_TX_QUEUE_XR_DATA:
3080 if (ah->ah_version != AR5K_AR5212)
3081 ATH5K_ERR(ah->ah_sc,
3082 "XR data queues only supported in"
3084 queue = AR5K_TX_QUEUE_ID_XR_DATA;
3092 * Setup internal queue structure
3094 memset(&ah->ah_txq[queue], 0, sizeof(struct ath5k_txq_info));
3095 ah->ah_txq[queue].tqi_type = queue_type;
3097 if (queue_info != NULL) {
3098 queue_info->tqi_type = queue_type;
3099 ret = ath5k_hw_setup_tx_queueprops(ah, queue, queue_info);
3104 * We use ah_txq_status to hold a temp value for
3105 * the Secondary interrupt mask registers on 5211+
3106 * check out ath5k_hw_reset_tx_queue
3108 AR5K_Q_ENABLE_BITS(ah->ah_txq_status, queue);
3114 * Setup a transmit queue
3116 int ath5k_hw_setup_tx_queueprops(struct ath5k_hw *ah, int queue,
3117 const struct ath5k_txq_info *queue_info)
3119 ATH5K_TRACE(ah->ah_sc);
3120 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
3122 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
3125 memcpy(&ah->ah_txq[queue], queue_info, sizeof(struct ath5k_txq_info));
3127 /*XXX: Is this supported on 5210 ?*/
3128 if ((queue_info->tqi_type == AR5K_TX_QUEUE_DATA &&
3129 ((queue_info->tqi_subtype == AR5K_WME_AC_VI) ||
3130 (queue_info->tqi_subtype == AR5K_WME_AC_VO))) ||
3131 queue_info->tqi_type == AR5K_TX_QUEUE_UAPSD)
3132 ah->ah_txq[queue].tqi_flags |= AR5K_TXQ_FLAG_POST_FR_BKOFF_DIS;
3138 * Get properties for a specific transmit queue
3140 int ath5k_hw_get_tx_queueprops(struct ath5k_hw *ah, int queue,
3141 struct ath5k_txq_info *queue_info)
3143 ATH5K_TRACE(ah->ah_sc);
3144 memcpy(queue_info, &ah->ah_txq[queue], sizeof(struct ath5k_txq_info));
3149 * Set a transmit queue inactive
3151 void ath5k_hw_release_tx_queue(struct ath5k_hw *ah, unsigned int queue)
3153 ATH5K_TRACE(ah->ah_sc);
3154 if (WARN_ON(queue >= ah->ah_capabilities.cap_queues.q_tx_num))
3157 /* This queue will be skipped in further operations */
3158 ah->ah_txq[queue].tqi_type = AR5K_TX_QUEUE_INACTIVE;
3160 AR5K_Q_DISABLE_BITS(ah->ah_txq_status, queue);
3164 * Set DFS params for a transmit queue
3166 int ath5k_hw_reset_tx_queue(struct ath5k_hw *ah, unsigned int queue)
3168 u32 cw_min, cw_max, retry_lg, retry_sh;
3169 struct ath5k_txq_info *tq = &ah->ah_txq[queue];
3171 ATH5K_TRACE(ah->ah_sc);
3172 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
3174 tq = &ah->ah_txq[queue];
3176 if (tq->tqi_type == AR5K_TX_QUEUE_INACTIVE)
3179 if (ah->ah_version == AR5K_AR5210) {
3180 /* Only handle data queues, others will be ignored */
3181 if (tq->tqi_type != AR5K_TX_QUEUE_DATA)
3185 ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
3186 AR5K_INIT_SLOT_TIME_TURBO : AR5K_INIT_SLOT_TIME,
3188 /* Set ACK_CTS timeout */
3189 ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
3190 AR5K_INIT_ACK_CTS_TIMEOUT_TURBO :
3191 AR5K_INIT_ACK_CTS_TIMEOUT, AR5K_SLOT_TIME);
3192 /* Set Transmit Latency */
3193 ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
3194 AR5K_INIT_TRANSMIT_LATENCY_TURBO :
3195 AR5K_INIT_TRANSMIT_LATENCY, AR5K_USEC_5210);
3197 if (ah->ah_turbo == true)
3198 ath5k_hw_reg_write(ah, ((AR5K_INIT_SIFS_TURBO +
3199 (ah->ah_aifs + tq->tqi_aifs) *
3200 AR5K_INIT_SLOT_TIME_TURBO) <<
3201 AR5K_IFS0_DIFS_S) | AR5K_INIT_SIFS_TURBO,
3204 ath5k_hw_reg_write(ah, ((AR5K_INIT_SIFS +
3205 (ah->ah_aifs + tq->tqi_aifs) *
3206 AR5K_INIT_SLOT_TIME) << AR5K_IFS0_DIFS_S) |
3207 AR5K_INIT_SIFS, AR5K_IFS0);
3210 ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
3211 AR5K_INIT_PROTO_TIME_CNTRL_TURBO :
3212 AR5K_INIT_PROTO_TIME_CNTRL, AR5K_IFS1);
3213 /* Set PHY register 0x9844 (??) */
3214 ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
3215 (ath5k_hw_reg_read(ah, AR5K_PHY(17)) & ~0x7F) | 0x38 :
3216 (ath5k_hw_reg_read(ah, AR5K_PHY(17)) & ~0x7F) | 0x1C,
3218 /* Set Frame Control Register */
3219 ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
3220 (AR5K_PHY_FRAME_CTL_INI | AR5K_PHY_TURBO_MODE |
3221 AR5K_PHY_TURBO_SHORT | 0x2020) :
3222 (AR5K_PHY_FRAME_CTL_INI | 0x1020),
3223 AR5K_PHY_FRAME_CTL_5210);
3227 * Calculate cwmin/max by channel mode
3229 cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN;
3230 cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX;
3231 ah->ah_aifs = AR5K_TUNE_AIFS;
3232 /*XR is only supported on 5212*/
3233 if (IS_CHAN_XR(ah->ah_current_channel) &&
3234 ah->ah_version == AR5K_AR5212) {
3235 cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN_XR;
3236 cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX_XR;
3237 ah->ah_aifs = AR5K_TUNE_AIFS_XR;
3238 /*B mode is not supported on 5210*/
3239 } else if (IS_CHAN_B(ah->ah_current_channel) &&
3240 ah->ah_version != AR5K_AR5210) {
3241 cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN_11B;
3242 cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX_11B;
3243 ah->ah_aifs = AR5K_TUNE_AIFS_11B;
3247 while (cw_min < ah->ah_cw_min)
3248 cw_min = (cw_min << 1) | 1;
3250 cw_min = tq->tqi_cw_min < 0 ? (cw_min >> (-tq->tqi_cw_min)) :
3251 ((cw_min << tq->tqi_cw_min) + (1 << tq->tqi_cw_min) - 1);
3252 cw_max = tq->tqi_cw_max < 0 ? (cw_max >> (-tq->tqi_cw_max)) :
3253 ((cw_max << tq->tqi_cw_max) + (1 << tq->tqi_cw_max) - 1);
3256 * Calculate and set retry limits
3258 if (ah->ah_software_retry == true) {
3259 /* XXX Need to test this */
3260 retry_lg = ah->ah_limit_tx_retries;
3261 retry_sh = retry_lg = retry_lg > AR5K_DCU_RETRY_LMT_SH_RETRY ?
3262 AR5K_DCU_RETRY_LMT_SH_RETRY : retry_lg;
3264 retry_lg = AR5K_INIT_LG_RETRY;
3265 retry_sh = AR5K_INIT_SH_RETRY;
3268 /*No QCU/DCU [5210]*/
3269 if (ah->ah_version == AR5K_AR5210) {
3270 ath5k_hw_reg_write(ah,
3271 (cw_min << AR5K_NODCU_RETRY_LMT_CW_MIN_S)
3272 | AR5K_REG_SM(AR5K_INIT_SLG_RETRY,
3273 AR5K_NODCU_RETRY_LMT_SLG_RETRY)
3274 | AR5K_REG_SM(AR5K_INIT_SSH_RETRY,
3275 AR5K_NODCU_RETRY_LMT_SSH_RETRY)
3276 | AR5K_REG_SM(retry_lg, AR5K_NODCU_RETRY_LMT_LG_RETRY)
3277 | AR5K_REG_SM(retry_sh, AR5K_NODCU_RETRY_LMT_SH_RETRY),
3278 AR5K_NODCU_RETRY_LMT);
3281 ath5k_hw_reg_write(ah,
3282 AR5K_REG_SM(AR5K_INIT_SLG_RETRY,
3283 AR5K_DCU_RETRY_LMT_SLG_RETRY) |
3284 AR5K_REG_SM(AR5K_INIT_SSH_RETRY,
3285 AR5K_DCU_RETRY_LMT_SSH_RETRY) |
3286 AR5K_REG_SM(retry_lg, AR5K_DCU_RETRY_LMT_LG_RETRY) |
3287 AR5K_REG_SM(retry_sh, AR5K_DCU_RETRY_LMT_SH_RETRY),
3288 AR5K_QUEUE_DFS_RETRY_LIMIT(queue));
3290 /*===Rest is also for QCU/DCU only [5211+]===*/
3293 * Set initial content window (cw_min/cw_max)
3294 * and arbitrated interframe space (aifs)...
3296 ath5k_hw_reg_write(ah,
3297 AR5K_REG_SM(cw_min, AR5K_DCU_LCL_IFS_CW_MIN) |
3298 AR5K_REG_SM(cw_max, AR5K_DCU_LCL_IFS_CW_MAX) |
3299 AR5K_REG_SM(ah->ah_aifs + tq->tqi_aifs,
3300 AR5K_DCU_LCL_IFS_AIFS),
3301 AR5K_QUEUE_DFS_LOCAL_IFS(queue));
3304 * Set misc registers
3306 ath5k_hw_reg_write(ah, AR5K_QCU_MISC_DCU_EARLY,
3307 AR5K_QUEUE_MISC(queue));
3309 if (tq->tqi_cbr_period) {
3310 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_cbr_period,
3311 AR5K_QCU_CBRCFG_INTVAL) |
3312 AR5K_REG_SM(tq->tqi_cbr_overflow_limit,
3313 AR5K_QCU_CBRCFG_ORN_THRES),
3314 AR5K_QUEUE_CBRCFG(queue));
3315 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
3316 AR5K_QCU_MISC_FRSHED_CBR);
3317 if (tq->tqi_cbr_overflow_limit)
3318 AR5K_REG_ENABLE_BITS(ah,
3319 AR5K_QUEUE_MISC(queue),
3320 AR5K_QCU_MISC_CBR_THRES_ENABLE);
3323 if (tq->tqi_ready_time)
3324 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_ready_time,
3325 AR5K_QCU_RDYTIMECFG_INTVAL) |
3326 AR5K_QCU_RDYTIMECFG_ENABLE,
3327 AR5K_QUEUE_RDYTIMECFG(queue));
3329 if (tq->tqi_burst_time) {
3330 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_burst_time,
3331 AR5K_DCU_CHAN_TIME_DUR) |
3332 AR5K_DCU_CHAN_TIME_ENABLE,
3333 AR5K_QUEUE_DFS_CHANNEL_TIME(queue));
3335 if (tq->tqi_flags & AR5K_TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE)
3336 AR5K_REG_ENABLE_BITS(ah,
3337 AR5K_QUEUE_MISC(queue),
3341 if (tq->tqi_flags & AR5K_TXQ_FLAG_BACKOFF_DISABLE)
3342 ath5k_hw_reg_write(ah, AR5K_DCU_MISC_POST_FR_BKOFF_DIS,
3343 AR5K_QUEUE_DFS_MISC(queue));
3345 if (tq->tqi_flags & AR5K_TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
3346 ath5k_hw_reg_write(ah, AR5K_DCU_MISC_BACKOFF_FRAG,
3347 AR5K_QUEUE_DFS_MISC(queue));
3350 * Set registers by queue type
3352 switch (tq->tqi_type) {
3353 case AR5K_TX_QUEUE_BEACON:
3354 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
3355 AR5K_QCU_MISC_FRSHED_DBA_GT |
3356 AR5K_QCU_MISC_CBREXP_BCN |
3357 AR5K_QCU_MISC_BCN_ENABLE);
3359 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
3360 (AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
3361 AR5K_DCU_MISC_ARBLOCK_CTL_S) |
3362 AR5K_DCU_MISC_POST_FR_BKOFF_DIS |
3363 AR5K_DCU_MISC_BCN_ENABLE);
3365 ath5k_hw_reg_write(ah, ((AR5K_TUNE_BEACON_INTERVAL -
3366 (AR5K_TUNE_SW_BEACON_RESP -
3367 AR5K_TUNE_DMA_BEACON_RESP) -
3368 AR5K_TUNE_ADDITIONAL_SWBA_BACKOFF) * 1024) |
3369 AR5K_QCU_RDYTIMECFG_ENABLE,
3370 AR5K_QUEUE_RDYTIMECFG(queue));
3373 case AR5K_TX_QUEUE_CAB:
3374 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
3375 AR5K_QCU_MISC_FRSHED_DBA_GT |
3376 AR5K_QCU_MISC_CBREXP |
3377 AR5K_QCU_MISC_CBREXP_BCN);
3379 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
3380 (AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
3381 AR5K_DCU_MISC_ARBLOCK_CTL_S));
3384 case AR5K_TX_QUEUE_UAPSD:
3385 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
3386 AR5K_QCU_MISC_CBREXP);
3389 case AR5K_TX_QUEUE_DATA:
3395 * Enable interrupts for this tx queue
3396 * in the secondary interrupt mask registers
3398 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXOKINT_ENABLE)
3399 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txok, queue);
3401 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXERRINT_ENABLE)
3402 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txerr, queue);
3404 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXURNINT_ENABLE)
3405 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txurn, queue);
3407 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXDESCINT_ENABLE)
3408 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txdesc, queue);
3410 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXEOLINT_ENABLE)
3411 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txeol, queue);
3414 /* Update secondary interrupt mask registers */
3415 ah->ah_txq_imr_txok &= ah->ah_txq_status;
3416 ah->ah_txq_imr_txerr &= ah->ah_txq_status;
3417 ah->ah_txq_imr_txurn &= ah->ah_txq_status;
3418 ah->ah_txq_imr_txdesc &= ah->ah_txq_status;
3419 ah->ah_txq_imr_txeol &= ah->ah_txq_status;
3421 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txok,
3422 AR5K_SIMR0_QCU_TXOK) |
3423 AR5K_REG_SM(ah->ah_txq_imr_txdesc,
3424 AR5K_SIMR0_QCU_TXDESC), AR5K_SIMR0);
3425 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txerr,
3426 AR5K_SIMR1_QCU_TXERR) |
3427 AR5K_REG_SM(ah->ah_txq_imr_txeol,
3428 AR5K_SIMR1_QCU_TXEOL), AR5K_SIMR1);
3429 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txurn,
3430 AR5K_SIMR2_QCU_TXURN), AR5K_SIMR2);
3437 * Get number of pending frames
3438 * for a specific queue [5211+]
3440 u32 ath5k_hw_num_tx_pending(struct ath5k_hw *ah, unsigned int queue) {
3441 ATH5K_TRACE(ah->ah_sc);
3442 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
3444 /* Return if queue is declared inactive */
3445 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
3448 /* XXX: How about AR5K_CFG_TXCNT ? */
3449 if (ah->ah_version == AR5K_AR5210)
3452 return AR5K_QUEUE_STATUS(queue) & AR5K_QCU_STS_FRMPENDCNT;
3458 int ath5k_hw_set_slot_time(struct ath5k_hw *ah, unsigned int slot_time)
3460 ATH5K_TRACE(ah->ah_sc);
3461 if (slot_time < AR5K_SLOT_TIME_9 || slot_time > AR5K_SLOT_TIME_MAX)
3464 if (ah->ah_version == AR5K_AR5210)
3465 ath5k_hw_reg_write(ah, ath5k_hw_htoclock(slot_time,
3466 ah->ah_turbo), AR5K_SLOT_TIME);
3468 ath5k_hw_reg_write(ah, slot_time, AR5K_DCU_GBL_IFS_SLOT);
3476 unsigned int ath5k_hw_get_slot_time(struct ath5k_hw *ah)
3478 ATH5K_TRACE(ah->ah_sc);
3479 if (ah->ah_version == AR5K_AR5210)
3480 return ath5k_hw_clocktoh(ath5k_hw_reg_read(ah,
3481 AR5K_SLOT_TIME) & 0xffff, ah->ah_turbo);
3483 return ath5k_hw_reg_read(ah, AR5K_DCU_GBL_IFS_SLOT) & 0xffff;
3487 /******************************\
3488 Hardware Descriptor Functions
3489 \******************************/
3496 * Initialize the 2-word tx descriptor on 5210/5211
3499 ath5k_hw_setup_2word_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
3500 unsigned int pkt_len, unsigned int hdr_len, enum ath5k_pkt_type type,
3501 unsigned int tx_power, unsigned int tx_rate0, unsigned int tx_tries0,
3502 unsigned int key_index, unsigned int antenna_mode, unsigned int flags,
3503 unsigned int rtscts_rate, unsigned int rtscts_duration)
3506 struct ath5k_hw_2w_tx_desc *tx_desc;
3507 unsigned int buff_len;
3509 tx_desc = (struct ath5k_hw_2w_tx_desc *)&desc->ds_ctl0;
3513 * - Zero retries don't make sense.
3514 * - A zero rate will put the HW into a mode where it continously sends
3515 * noise on the channel, so it is important to avoid this.
3517 if (unlikely(tx_tries0 == 0)) {
3518 ATH5K_ERR(ah->ah_sc, "zero retries\n");
3522 if (unlikely(tx_rate0 == 0)) {
3523 ATH5K_ERR(ah->ah_sc, "zero rate\n");
3528 /* Clear status descriptor */
3529 memset(desc->ds_hw, 0, sizeof(struct ath5k_hw_tx_status));
3531 /* Initialize control descriptor */
3532 tx_desc->tx_control_0 = 0;
3533 tx_desc->tx_control_1 = 0;
3535 /* Setup control descriptor */
3537 /* Verify and set frame length */
3538 if (pkt_len & ~AR5K_2W_TX_DESC_CTL0_FRAME_LEN)
3541 tx_desc->tx_control_0 = pkt_len & AR5K_2W_TX_DESC_CTL0_FRAME_LEN;
3543 /* Verify and set buffer length */
3544 buff_len = pkt_len - FCS_LEN;
3546 /* NB: beacon's BufLen must be a multiple of 4 bytes */
3547 if(type == AR5K_PKT_TYPE_BEACON)
3548 buff_len = roundup(buff_len, 4);
3550 if (buff_len & ~AR5K_2W_TX_DESC_CTL1_BUF_LEN)
3553 tx_desc->tx_control_1 = buff_len & AR5K_2W_TX_DESC_CTL1_BUF_LEN;
3556 * Verify and set header length
3557 * XXX: I only found that on 5210 code, does it work on 5211 ?
3559 if (ah->ah_version == AR5K_AR5210) {
3560 if (hdr_len & ~AR5K_2W_TX_DESC_CTL0_HEADER_LEN)
3562 tx_desc->tx_control_0 |=
3563 AR5K_REG_SM(hdr_len, AR5K_2W_TX_DESC_CTL0_HEADER_LEN);
3566 /*Diferences between 5210-5211*/
3567 if (ah->ah_version == AR5K_AR5210) {
3569 case AR5K_PKT_TYPE_BEACON:
3570 case AR5K_PKT_TYPE_PROBE_RESP:
3571 frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_NO_DELAY;
3572 case AR5K_PKT_TYPE_PIFS:
3573 frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_PIFS;
3575 frame_type = type /*<< 2 ?*/;
3578 tx_desc->tx_control_0 |=
3579 AR5K_REG_SM(frame_type, AR5K_2W_TX_DESC_CTL0_FRAME_TYPE) |
3580 AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE);
3582 tx_desc->tx_control_0 |=
3583 AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE) |
3584 AR5K_REG_SM(antenna_mode, AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT);
3585 tx_desc->tx_control_1 |=
3586 AR5K_REG_SM(type, AR5K_2W_TX_DESC_CTL1_FRAME_TYPE);
3588 #define _TX_FLAGS(_c, _flag) \
3589 if (flags & AR5K_TXDESC_##_flag) \
3590 tx_desc->tx_control_##_c |= \
3591 AR5K_2W_TX_DESC_CTL##_c##_##_flag
3593 _TX_FLAGS(0, CLRDMASK);
3595 _TX_FLAGS(0, INTREQ);
3596 _TX_FLAGS(0, RTSENA);
3597 _TX_FLAGS(1, NOACK);
3604 if (key_index != AR5K_TXKEYIX_INVALID) {
3605 tx_desc->tx_control_0 |=
3606 AR5K_2W_TX_DESC_CTL0_ENCRYPT_KEY_VALID;
3607 tx_desc->tx_control_1 |=
3608 AR5K_REG_SM(key_index,
3609 AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX);
3613 * RTS/CTS Duration [5210 ?]
3615 if ((ah->ah_version == AR5K_AR5210) &&
3616 (flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA)))
3617 tx_desc->tx_control_1 |= rtscts_duration &
3618 AR5K_2W_TX_DESC_CTL1_RTS_DURATION;
3624 * Initialize the 4-word tx descriptor on 5212
3626 static int ath5k_hw_setup_4word_tx_desc(struct ath5k_hw *ah,
3627 struct ath5k_desc *desc, unsigned int pkt_len, unsigned int hdr_len,
3628 enum ath5k_pkt_type type, unsigned int tx_power, unsigned int tx_rate0,
3629 unsigned int tx_tries0, unsigned int key_index,
3630 unsigned int antenna_mode, unsigned int flags, unsigned int rtscts_rate,
3631 unsigned int rtscts_duration)
3633 struct ath5k_hw_4w_tx_desc *tx_desc;
3634 struct ath5k_hw_tx_status *tx_status;
3635 unsigned int buff_len;
3637 ATH5K_TRACE(ah->ah_sc);
3638 tx_desc = (struct ath5k_hw_4w_tx_desc *)&desc->ds_ctl0;
3639 tx_status = (struct ath5k_hw_tx_status *)&desc->ds_hw[2];
3643 * - Zero retries don't make sense.
3644 * - A zero rate will put the HW into a mode where it continously sends
3645 * noise on the channel, so it is important to avoid this.
3647 if (unlikely(tx_tries0 == 0)) {
3648 ATH5K_ERR(ah->ah_sc, "zero retries\n");
3652 if (unlikely(tx_rate0 == 0)) {
3653 ATH5K_ERR(ah->ah_sc, "zero rate\n");
3658 /* Clear status descriptor */
3659 memset(tx_status, 0, sizeof(struct ath5k_hw_tx_status));
3661 /* Initialize control descriptor */
3662 tx_desc->tx_control_0 = 0;
3663 tx_desc->tx_control_1 = 0;
3664 tx_desc->tx_control_2 = 0;
3665 tx_desc->tx_control_3 = 0;
3667 /* Setup control descriptor */
3669 /* Verify and set frame length */
3670 if (pkt_len & ~AR5K_4W_TX_DESC_CTL0_FRAME_LEN)
3673 tx_desc->tx_control_0 = pkt_len & AR5K_4W_TX_DESC_CTL0_FRAME_LEN;
3675 /* Verify and set buffer length */
3676 buff_len = pkt_len - FCS_LEN;
3678 /* NB: beacon's BufLen must be a multiple of 4 bytes */
3679 if(type == AR5K_PKT_TYPE_BEACON)
3680 buff_len = roundup(buff_len, 4);
3682 if (buff_len & ~AR5K_4W_TX_DESC_CTL1_BUF_LEN)
3685 tx_desc->tx_control_1 = buff_len & AR5K_4W_TX_DESC_CTL1_BUF_LEN;
3687 tx_desc->tx_control_0 |=
3688 AR5K_REG_SM(tx_power, AR5K_4W_TX_DESC_CTL0_XMIT_POWER) |
3689 AR5K_REG_SM(antenna_mode, AR5K_4W_TX_DESC_CTL0_ANT_MODE_XMIT);
3690 tx_desc->tx_control_1 |= AR5K_REG_SM(type,
3691 AR5K_4W_TX_DESC_CTL1_FRAME_TYPE);
3692 tx_desc->tx_control_2 = AR5K_REG_SM(tx_tries0 + AR5K_TUNE_HWTXTRIES,
3693 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES0);
3694 tx_desc->tx_control_3 = tx_rate0 & AR5K_4W_TX_DESC_CTL3_XMIT_RATE0;
3696 #define _TX_FLAGS(_c, _flag) \
3697 if (flags & AR5K_TXDESC_##_flag) \
3698 tx_desc->tx_control_##_c |= \
3699 AR5K_4W_TX_DESC_CTL##_c##_##_flag
3701 _TX_FLAGS(0, CLRDMASK);
3703 _TX_FLAGS(0, INTREQ);
3704 _TX_FLAGS(0, RTSENA);
3705 _TX_FLAGS(0, CTSENA);
3706 _TX_FLAGS(1, NOACK);
3713 if (key_index != AR5K_TXKEYIX_INVALID) {
3714 tx_desc->tx_control_0 |= AR5K_4W_TX_DESC_CTL0_ENCRYPT_KEY_VALID;
3715 tx_desc->tx_control_1 |= AR5K_REG_SM(key_index,
3716 AR5K_4W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX);
3722 if (flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA)) {
3723 if ((flags & AR5K_TXDESC_RTSENA) &&
3724 (flags & AR5K_TXDESC_CTSENA))
3726 tx_desc->tx_control_2 |= rtscts_duration &
3727 AR5K_4W_TX_DESC_CTL2_RTS_DURATION;
3728 tx_desc->tx_control_3 |= AR5K_REG_SM(rtscts_rate,
3729 AR5K_4W_TX_DESC_CTL3_RTS_CTS_RATE);
3736 * Initialize a 4-word multirate tx descriptor on 5212
3739 ath5k_hw_setup_xr_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
3740 unsigned int tx_rate1, u_int tx_tries1, u_int tx_rate2, u_int tx_tries2,
3741 unsigned int tx_rate3, u_int tx_tries3)
3743 struct ath5k_hw_4w_tx_desc *tx_desc;
3746 * Rates can be 0 as long as the retry count is 0 too.
3747 * A zero rate and nonzero retry count will put the HW into a mode where
3748 * it continously sends noise on the channel, so it is important to
3751 if (unlikely((tx_rate1 == 0 && tx_tries1 != 0) ||
3752 (tx_rate2 == 0 && tx_tries2 != 0) ||
3753 (tx_rate3 == 0 && tx_tries3 != 0))) {
3754 ATH5K_ERR(ah->ah_sc, "zero rate\n");
3759 if (ah->ah_version == AR5K_AR5212) {
3760 tx_desc = (struct ath5k_hw_4w_tx_desc *)&desc->ds_ctl0;
3762 #define _XTX_TRIES(_n) \
3763 if (tx_tries##_n) { \
3764 tx_desc->tx_control_2 |= \
3765 AR5K_REG_SM(tx_tries##_n, \
3766 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES##_n); \
3767 tx_desc->tx_control_3 |= \
3768 AR5K_REG_SM(tx_rate##_n, \
3769 AR5K_4W_TX_DESC_CTL3_XMIT_RATE##_n); \
3785 * Proccess the tx status descriptor on 5210/5211
3787 static int ath5k_hw_proc_2word_tx_status(struct ath5k_hw *ah,
3788 struct ath5k_desc *desc)
3790 struct ath5k_hw_tx_status *tx_status;
3791 struct ath5k_hw_2w_tx_desc *tx_desc;
3793 tx_desc = (struct ath5k_hw_2w_tx_desc *)&desc->ds_ctl0;
3794 tx_status = (struct ath5k_hw_tx_status *)&desc->ds_hw[0];
3796 /* No frame has been send or error */
3797 if (unlikely((tx_status->tx_status_1 & AR5K_DESC_TX_STATUS1_DONE) == 0))
3798 return -EINPROGRESS;
3801 * Get descriptor status
3803 desc->ds_us.tx.ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0,
3804 AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP);
3805 desc->ds_us.tx.ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0,
3806 AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT);
3807 desc->ds_us.tx.ts_longretry = AR5K_REG_MS(tx_status->tx_status_0,
3808 AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT);
3809 /*TODO: desc->ds_us.tx.ts_virtcol + test*/
3810 desc->ds_us.tx.ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1,
3811 AR5K_DESC_TX_STATUS1_SEQ_NUM);
3812 desc->ds_us.tx.ts_rssi = AR5K_REG_MS(tx_status->tx_status_1,
3813 AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
3814 desc->ds_us.tx.ts_antenna = 1;
3815 desc->ds_us.tx.ts_status = 0;
3816 desc->ds_us.tx.ts_rate = AR5K_REG_MS(tx_desc->tx_control_0,
3817 AR5K_2W_TX_DESC_CTL0_XMIT_RATE);
3819 if ((tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK) == 0){
3820 if (tx_status->tx_status_0 &
3821 AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
3822 desc->ds_us.tx.ts_status |= AR5K_TXERR_XRETRY;
3824 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN)
3825 desc->ds_us.tx.ts_status |= AR5K_TXERR_FIFO;
3827 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FILTERED)
3828 desc->ds_us.tx.ts_status |= AR5K_TXERR_FILT;
3835 * Proccess a tx descriptor on 5212
3837 static int ath5k_hw_proc_4word_tx_status(struct ath5k_hw *ah,
3838 struct ath5k_desc *desc)
3840 struct ath5k_hw_tx_status *tx_status;
3841 struct ath5k_hw_4w_tx_desc *tx_desc;
3843 ATH5K_TRACE(ah->ah_sc);
3844 tx_desc = (struct ath5k_hw_4w_tx_desc *)&desc->ds_ctl0;
3845 tx_status = (struct ath5k_hw_tx_status *)&desc->ds_hw[2];
3847 /* No frame has been send or error */
3848 if (unlikely((tx_status->tx_status_1 & AR5K_DESC_TX_STATUS1_DONE) == 0))
3849 return -EINPROGRESS;
3852 * Get descriptor status
3854 desc->ds_us.tx.ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0,
3855 AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP);
3856 desc->ds_us.tx.ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0,
3857 AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT);
3858 desc->ds_us.tx.ts_longretry = AR5K_REG_MS(tx_status->tx_status_0,
3859 AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT);
3860 desc->ds_us.tx.ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1,
3861 AR5K_DESC_TX_STATUS1_SEQ_NUM);
3862 desc->ds_us.tx.ts_rssi = AR5K_REG_MS(tx_status->tx_status_1,
3863 AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
3864 desc->ds_us.tx.ts_antenna = (tx_status->tx_status_1 &
3865 AR5K_DESC_TX_STATUS1_XMIT_ANTENNA) ? 2 : 1;
3866 desc->ds_us.tx.ts_status = 0;
3868 switch (AR5K_REG_MS(tx_status->tx_status_1,
3869 AR5K_DESC_TX_STATUS1_FINAL_TS_INDEX)) {
3871 desc->ds_us.tx.ts_rate = tx_desc->tx_control_3 &
3872 AR5K_4W_TX_DESC_CTL3_XMIT_RATE0;
3875 desc->ds_us.tx.ts_rate = AR5K_REG_MS(tx_desc->tx_control_3,
3876 AR5K_4W_TX_DESC_CTL3_XMIT_RATE1);
3877 desc->ds_us.tx.ts_longretry +=AR5K_REG_MS(tx_desc->tx_control_2,
3878 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES1);
3881 desc->ds_us.tx.ts_rate = AR5K_REG_MS(tx_desc->tx_control_3,
3882 AR5K_4W_TX_DESC_CTL3_XMIT_RATE2);
3883 desc->ds_us.tx.ts_longretry +=AR5K_REG_MS(tx_desc->tx_control_2,
3884 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES2);
3887 desc->ds_us.tx.ts_rate = AR5K_REG_MS(tx_desc->tx_control_3,
3888 AR5K_4W_TX_DESC_CTL3_XMIT_RATE3);
3889 desc->ds_us.tx.ts_longretry +=AR5K_REG_MS(tx_desc->tx_control_2,
3890 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES3);
3894 if ((tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK) == 0){
3895 if (tx_status->tx_status_0 &
3896 AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
3897 desc->ds_us.tx.ts_status |= AR5K_TXERR_XRETRY;
3899 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN)
3900 desc->ds_us.tx.ts_status |= AR5K_TXERR_FIFO;
3902 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FILTERED)
3903 desc->ds_us.tx.ts_status |= AR5K_TXERR_FILT;
3914 * Initialize an rx descriptor
3916 int ath5k_hw_setup_rx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
3917 u32 size, unsigned int flags)
3919 struct ath5k_rx_desc *rx_desc;
3921 ATH5K_TRACE(ah->ah_sc);
3922 rx_desc = (struct ath5k_rx_desc *)&desc->ds_ctl0;
3926 * If we don't clean the status descriptor,
3927 * while scanning we get too many results,
3928 * most of them virtual, after some secs
3929 * of scanning system hangs. M.F.
3931 memset(desc->ds_hw, 0, sizeof(desc->ds_hw));
3933 /*Initialize rx descriptor*/
3934 rx_desc->rx_control_0 = 0;
3935 rx_desc->rx_control_1 = 0;
3937 /* Setup descriptor */
3938 rx_desc->rx_control_1 = size & AR5K_DESC_RX_CTL1_BUF_LEN;
3939 if (unlikely(rx_desc->rx_control_1 != size))
3942 if (flags & AR5K_RXDESC_INTREQ)
3943 rx_desc->rx_control_1 |= AR5K_DESC_RX_CTL1_INTREQ;
3949 * Proccess the rx status descriptor on 5210/5211
3951 static int ath5k_hw_proc_old_rx_status(struct ath5k_hw *ah,
3952 struct ath5k_desc *desc)
3954 struct ath5k_hw_old_rx_status *rx_status;
3956 rx_status = (struct ath5k_hw_old_rx_status *)&desc->ds_hw[0];
3958 /* No frame received / not ready */
3959 if (unlikely((rx_status->rx_status_1 & AR5K_OLD_RX_DESC_STATUS1_DONE)
3961 return -EINPROGRESS;
3964 * Frame receive status
3966 desc->ds_us.rx.rs_datalen = rx_status->rx_status_0 &
3967 AR5K_OLD_RX_DESC_STATUS0_DATA_LEN;
3968 desc->ds_us.rx.rs_rssi = AR5K_REG_MS(rx_status->rx_status_0,
3969 AR5K_OLD_RX_DESC_STATUS0_RECEIVE_SIGNAL);
3970 desc->ds_us.rx.rs_rate = AR5K_REG_MS(rx_status->rx_status_0,
3971 AR5K_OLD_RX_DESC_STATUS0_RECEIVE_RATE);
3972 desc->ds_us.rx.rs_antenna = rx_status->rx_status_0 &
3973 AR5K_OLD_RX_DESC_STATUS0_RECEIVE_ANTENNA;
3974 desc->ds_us.rx.rs_more = rx_status->rx_status_0 &
3975 AR5K_OLD_RX_DESC_STATUS0_MORE;
3976 desc->ds_us.rx.rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1,
3977 AR5K_OLD_RX_DESC_STATUS1_RECEIVE_TIMESTAMP);
3978 desc->ds_us.rx.rs_status = 0;
3983 if (rx_status->rx_status_1 & AR5K_OLD_RX_DESC_STATUS1_KEY_INDEX_VALID)
3984 desc->ds_us.rx.rs_keyix = AR5K_REG_MS(rx_status->rx_status_1,
3985 AR5K_OLD_RX_DESC_STATUS1_KEY_INDEX);
3987 desc->ds_us.rx.rs_keyix = AR5K_RXKEYIX_INVALID;
3990 * Receive/descriptor errors
3992 if ((rx_status->rx_status_1 & AR5K_OLD_RX_DESC_STATUS1_FRAME_RECEIVE_OK)
3994 if (rx_status->rx_status_1 & AR5K_OLD_RX_DESC_STATUS1_CRC_ERROR)
3995 desc->ds_us.rx.rs_status |= AR5K_RXERR_CRC;
3997 if (rx_status->rx_status_1 &
3998 AR5K_OLD_RX_DESC_STATUS1_FIFO_OVERRUN)
3999 desc->ds_us.rx.rs_status |= AR5K_RXERR_FIFO;
4001 if (rx_status->rx_status_1 &
4002 AR5K_OLD_RX_DESC_STATUS1_PHY_ERROR) {
4003 desc->ds_us.rx.rs_status |= AR5K_RXERR_PHY;
4004 desc->ds_us.rx.rs_phyerr =
4005 AR5K_REG_MS(rx_status->rx_status_1,
4006 AR5K_OLD_RX_DESC_STATUS1_PHY_ERROR);
4009 if (rx_status->rx_status_1 &
4010 AR5K_OLD_RX_DESC_STATUS1_DECRYPT_CRC_ERROR)
4011 desc->ds_us.rx.rs_status |= AR5K_RXERR_DECRYPT;
4018 * Proccess the rx status descriptor on 5212
4020 static int ath5k_hw_proc_new_rx_status(struct ath5k_hw *ah,
4021 struct ath5k_desc *desc)
4023 struct ath5k_hw_new_rx_status *rx_status;
4024 struct ath5k_hw_rx_error *rx_err;
4026 ATH5K_TRACE(ah->ah_sc);
4027 rx_status = (struct ath5k_hw_new_rx_status *)&desc->ds_hw[0];
4029 /* Overlay on error */
4030 rx_err = (struct ath5k_hw_rx_error *)&desc->ds_hw[0];
4032 /* No frame received / not ready */
4033 if (unlikely((rx_status->rx_status_1 & AR5K_NEW_RX_DESC_STATUS1_DONE)
4035 return -EINPROGRESS;
4038 * Frame receive status
4040 desc->ds_us.rx.rs_datalen = rx_status->rx_status_0 &
4041 AR5K_NEW_RX_DESC_STATUS0_DATA_LEN;
4042 desc->ds_us.rx.rs_rssi = AR5K_REG_MS(rx_status->rx_status_0,
4043 AR5K_NEW_RX_DESC_STATUS0_RECEIVE_SIGNAL);
4044 desc->ds_us.rx.rs_rate = AR5K_REG_MS(rx_status->rx_status_0,
4045 AR5K_NEW_RX_DESC_STATUS0_RECEIVE_RATE);
4046 desc->ds_us.rx.rs_antenna = rx_status->rx_status_0 &
4047 AR5K_NEW_RX_DESC_STATUS0_RECEIVE_ANTENNA;
4048 desc->ds_us.rx.rs_more = rx_status->rx_status_0 &
4049 AR5K_NEW_RX_DESC_STATUS0_MORE;
4050 desc->ds_us.rx.rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1,
4051 AR5K_NEW_RX_DESC_STATUS1_RECEIVE_TIMESTAMP);
4052 desc->ds_us.rx.rs_status = 0;
4057 if (rx_status->rx_status_1 & AR5K_NEW_RX_DESC_STATUS1_KEY_INDEX_VALID)
4058 desc->ds_us.rx.rs_keyix = AR5K_REG_MS(rx_status->rx_status_1,
4059 AR5K_NEW_RX_DESC_STATUS1_KEY_INDEX);
4061 desc->ds_us.rx.rs_keyix = AR5K_RXKEYIX_INVALID;
4064 * Receive/descriptor errors
4066 if ((rx_status->rx_status_1 &
4067 AR5K_NEW_RX_DESC_STATUS1_FRAME_RECEIVE_OK) == 0) {
4068 if (rx_status->rx_status_1 & AR5K_NEW_RX_DESC_STATUS1_CRC_ERROR)
4069 desc->ds_us.rx.rs_status |= AR5K_RXERR_CRC;
4071 if (rx_status->rx_status_1 &
4072 AR5K_NEW_RX_DESC_STATUS1_PHY_ERROR) {
4073 desc->ds_us.rx.rs_status |= AR5K_RXERR_PHY;
4074 desc->ds_us.rx.rs_phyerr =
4075 AR5K_REG_MS(rx_err->rx_error_1,
4076 AR5K_RX_DESC_ERROR1_PHY_ERROR_CODE);
4079 if (rx_status->rx_status_1 &
4080 AR5K_NEW_RX_DESC_STATUS1_DECRYPT_CRC_ERROR)
4081 desc->ds_us.rx.rs_status |= AR5K_RXERR_DECRYPT;
4083 if (rx_status->rx_status_1 & AR5K_NEW_RX_DESC_STATUS1_MIC_ERROR)
4084 desc->ds_us.rx.rs_status |= AR5K_RXERR_MIC;
4098 void ath5k_hw_set_ledstate(struct ath5k_hw *ah, unsigned int state)
4101 /*5210 has different led mode handling*/
4104 ATH5K_TRACE(ah->ah_sc);
4106 /*Reset led status*/
4107 if (ah->ah_version != AR5K_AR5210)
4108 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
4109 AR5K_PCICFG_LEDMODE | AR5K_PCICFG_LED);
4111 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_LED);
4114 * Some blinking values, define at your wish
4119 led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_PEND;
4120 led_5210 = AR5K_PCICFG_LED_PEND | AR5K_PCICFG_LED_BCTL;
4124 led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_NONE;
4125 led_5210 = AR5K_PCICFG_LED_PEND;
4128 case AR5K_LED_ASSOC:
4130 led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_ASSOC;
4131 led_5210 = AR5K_PCICFG_LED_ASSOC;
4135 led = AR5K_PCICFG_LEDMODE_PROM | AR5K_PCICFG_LED_NONE;
4136 led_5210 = AR5K_PCICFG_LED_PEND;
4140 /*Write new status to the register*/
4141 if (ah->ah_version != AR5K_AR5210)
4142 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, led);
4144 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, led_5210);
4150 int ath5k_hw_set_gpio_output(struct ath5k_hw *ah, u32 gpio)
4152 ATH5K_TRACE(ah->ah_sc);
4153 if (gpio > AR5K_NUM_GPIO)
4156 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &~
4157 AR5K_GPIOCR_OUT(gpio)) | AR5K_GPIOCR_OUT(gpio), AR5K_GPIOCR);
4165 int ath5k_hw_set_gpio_input(struct ath5k_hw *ah, u32 gpio)
4167 ATH5K_TRACE(ah->ah_sc);
4168 if (gpio > AR5K_NUM_GPIO)
4171 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &~
4172 AR5K_GPIOCR_OUT(gpio)) | AR5K_GPIOCR_IN(gpio), AR5K_GPIOCR);
4180 u32 ath5k_hw_get_gpio(struct ath5k_hw *ah, u32 gpio)
4182 ATH5K_TRACE(ah->ah_sc);
4183 if (gpio > AR5K_NUM_GPIO)
4186 /* GPIO input magic */
4187 return ((ath5k_hw_reg_read(ah, AR5K_GPIODI) & AR5K_GPIODI_M) >> gpio) &
4194 int ath5k_hw_set_gpio(struct ath5k_hw *ah, u32 gpio, u32 val)
4197 ATH5K_TRACE(ah->ah_sc);
4199 if (gpio > AR5K_NUM_GPIO)
4202 /* GPIO output magic */
4203 data = ath5k_hw_reg_read(ah, AR5K_GPIODO);
4205 data &= ~(1 << gpio);
4206 data |= (val & 1) << gpio;
4208 ath5k_hw_reg_write(ah, data, AR5K_GPIODO);
4214 * Initialize the GPIO interrupt (RFKill switch)
4216 void ath5k_hw_set_gpio_intr(struct ath5k_hw *ah, unsigned int gpio,
4217 u32 interrupt_level)
4221 ATH5K_TRACE(ah->ah_sc);
4222 if (gpio > AR5K_NUM_GPIO)
4226 * Set the GPIO interrupt
4228 data = (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &
4229 ~(AR5K_GPIOCR_INT_SEL(gpio) | AR5K_GPIOCR_INT_SELH |
4230 AR5K_GPIOCR_INT_ENA | AR5K_GPIOCR_OUT(gpio))) |
4231 (AR5K_GPIOCR_INT_SEL(gpio) | AR5K_GPIOCR_INT_ENA);
4233 ath5k_hw_reg_write(ah, interrupt_level ? data :
4234 (data | AR5K_GPIOCR_INT_SELH), AR5K_GPIOCR);
4236 ah->ah_imr |= AR5K_IMR_GPIO;
4238 /* Enable GPIO interrupts */
4239 AR5K_REG_ENABLE_BITS(ah, AR5K_PIMR, AR5K_IMR_GPIO);
4243 /*********************************\
4244 Regulatory Domain/Channels Setup
4245 \*********************************/
4247 u16 ath5k_get_regdomain(struct ath5k_hw *ah)
4250 enum ath5k_regdom ieee_regdomain;
4255 ath5k_eeprom_regulation_domain(ah, false, &ieee_regdomain);
4256 ah->ah_capabilities.cap_regdomain.reg_hw = ieee_regdomain;
4260 * Get the regulation domain by country code. This will ignore
4261 * the settings found in the EEPROM.
4263 code = ieee80211_name2countrycode(COUNTRYCODE);
4264 ieee_regdomain = ieee80211_countrycode2regdomain(code);
4267 regdomain = ath5k_regdom_from_ieee(ieee_regdomain);
4268 ah->ah_capabilities.cap_regdomain.reg_current = regdomain;
4278 int ath5k_hw_get_capability(struct ath5k_hw *ah,
4279 enum ath5k_capability_type cap_type,
4280 u32 capability, u32 *result)
4282 ATH5K_TRACE(ah->ah_sc);
4285 case AR5K_CAP_NUM_TXQUEUES:
4287 if (ah->ah_version == AR5K_AR5210)
4288 *result = AR5K_NUM_TX_QUEUES_NOQCU;
4290 *result = AR5K_NUM_TX_QUEUES;
4295 case AR5K_CAP_COMPRESSION:
4296 if (ah->ah_version == AR5K_AR5212)
4300 case AR5K_CAP_BURST:
4304 case AR5K_CAP_BSSIDMASK:
4305 if (ah->ah_version == AR5K_AR5212)
4310 if (ah->ah_version == AR5K_AR5212)
4324 static int ath5k_hw_enable_pspoll(struct ath5k_hw *ah, u8 *bssid,
4327 ATH5K_TRACE(ah->ah_sc);
4329 if (ah->ah_version == AR5K_AR5210) {
4330 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
4331 AR5K_STA_ID1_NO_PSPOLL | AR5K_STA_ID1_DEFAULT_ANTENNA);
4338 static int ath5k_hw_disable_pspoll(struct ath5k_hw *ah)
4340 ATH5K_TRACE(ah->ah_sc);
4342 if (ah->ah_version == AR5K_AR5210) {
4343 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
4344 AR5K_STA_ID1_NO_PSPOLL | AR5K_STA_ID1_DEFAULT_ANTENNA);