tg3: Update version to 3.95
[linux-2.6] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #ifdef CONFIG_IGB_DCA
46 #include <linux/dca.h>
47 #endif
48 #include "igb.h"
49
50 #define DRV_VERSION "1.2.45-k2"
51 char igb_driver_name[] = "igb";
52 char igb_driver_version[] = DRV_VERSION;
53 static const char igb_driver_string[] =
54                                 "Intel(R) Gigabit Ethernet Network Driver";
55 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
56
57 static const struct e1000_info *igb_info_tbl[] = {
58         [board_82575] = &e1000_82575_info,
59 };
60
61 static struct pci_device_id igb_pci_tbl[] = {
62         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
63         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
68         /* required last entry */
69         {0, }
70 };
71
72 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
73
74 void igb_reset(struct igb_adapter *);
75 static int igb_setup_all_tx_resources(struct igb_adapter *);
76 static int igb_setup_all_rx_resources(struct igb_adapter *);
77 static void igb_free_all_tx_resources(struct igb_adapter *);
78 static void igb_free_all_rx_resources(struct igb_adapter *);
79 static void igb_free_tx_resources(struct igb_ring *);
80 static void igb_free_rx_resources(struct igb_ring *);
81 void igb_update_stats(struct igb_adapter *);
82 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
83 static void __devexit igb_remove(struct pci_dev *pdev);
84 static int igb_sw_init(struct igb_adapter *);
85 static int igb_open(struct net_device *);
86 static int igb_close(struct net_device *);
87 static void igb_configure_tx(struct igb_adapter *);
88 static void igb_configure_rx(struct igb_adapter *);
89 static void igb_setup_rctl(struct igb_adapter *);
90 static void igb_clean_all_tx_rings(struct igb_adapter *);
91 static void igb_clean_all_rx_rings(struct igb_adapter *);
92 static void igb_clean_tx_ring(struct igb_ring *);
93 static void igb_clean_rx_ring(struct igb_ring *);
94 static void igb_set_multi(struct net_device *);
95 static void igb_update_phy_info(unsigned long);
96 static void igb_watchdog(unsigned long);
97 static void igb_watchdog_task(struct work_struct *);
98 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
99                                   struct igb_ring *);
100 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
101 static struct net_device_stats *igb_get_stats(struct net_device *);
102 static int igb_change_mtu(struct net_device *, int);
103 static int igb_set_mac(struct net_device *, void *);
104 static irqreturn_t igb_intr(int irq, void *);
105 static irqreturn_t igb_intr_msi(int irq, void *);
106 static irqreturn_t igb_msix_other(int irq, void *);
107 static irqreturn_t igb_msix_rx(int irq, void *);
108 static irqreturn_t igb_msix_tx(int irq, void *);
109 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
110 #ifdef CONFIG_IGB_DCA
111 static void igb_update_rx_dca(struct igb_ring *);
112 static void igb_update_tx_dca(struct igb_ring *);
113 static void igb_setup_dca(struct igb_adapter *);
114 #endif /* CONFIG_IGB_DCA */
115 static bool igb_clean_tx_irq(struct igb_ring *);
116 static int igb_poll(struct napi_struct *, int);
117 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
118 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
119 #ifdef CONFIG_IGB_LRO
120 static int igb_get_skb_hdr(struct sk_buff *skb, void **, void **, u64 *, void *);
121 #endif
122 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
123 static void igb_tx_timeout(struct net_device *);
124 static void igb_reset_task(struct work_struct *);
125 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
126 static void igb_vlan_rx_add_vid(struct net_device *, u16);
127 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
128 static void igb_restore_vlan(struct igb_adapter *);
129
130 static int igb_suspend(struct pci_dev *, pm_message_t);
131 #ifdef CONFIG_PM
132 static int igb_resume(struct pci_dev *);
133 #endif
134 static void igb_shutdown(struct pci_dev *);
135 #ifdef CONFIG_IGB_DCA
136 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
137 static struct notifier_block dca_notifier = {
138         .notifier_call  = igb_notify_dca,
139         .next           = NULL,
140         .priority       = 0
141 };
142 #endif
143
144 #ifdef CONFIG_NET_POLL_CONTROLLER
145 /* for netdump / net console */
146 static void igb_netpoll(struct net_device *);
147 #endif
148
149 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
150                      pci_channel_state_t);
151 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
152 static void igb_io_resume(struct pci_dev *);
153
154 static struct pci_error_handlers igb_err_handler = {
155         .error_detected = igb_io_error_detected,
156         .slot_reset = igb_io_slot_reset,
157         .resume = igb_io_resume,
158 };
159
160
161 static struct pci_driver igb_driver = {
162         .name     = igb_driver_name,
163         .id_table = igb_pci_tbl,
164         .probe    = igb_probe,
165         .remove   = __devexit_p(igb_remove),
166 #ifdef CONFIG_PM
167         /* Power Managment Hooks */
168         .suspend  = igb_suspend,
169         .resume   = igb_resume,
170 #endif
171         .shutdown = igb_shutdown,
172         .err_handler = &igb_err_handler
173 };
174
175 static int global_quad_port_a; /* global quad port a indication */
176
177 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
178 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
179 MODULE_LICENSE("GPL");
180 MODULE_VERSION(DRV_VERSION);
181
182 #ifdef DEBUG
183 /**
184  * igb_get_hw_dev_name - return device name string
185  * used by hardware layer to print debugging information
186  **/
187 char *igb_get_hw_dev_name(struct e1000_hw *hw)
188 {
189         struct igb_adapter *adapter = hw->back;
190         return adapter->netdev->name;
191 }
192 #endif
193
194 /**
195  * igb_init_module - Driver Registration Routine
196  *
197  * igb_init_module is the first routine called when the driver is
198  * loaded. All it does is register with the PCI subsystem.
199  **/
200 static int __init igb_init_module(void)
201 {
202         int ret;
203         printk(KERN_INFO "%s - version %s\n",
204                igb_driver_string, igb_driver_version);
205
206         printk(KERN_INFO "%s\n", igb_copyright);
207
208         global_quad_port_a = 0;
209
210         ret = pci_register_driver(&igb_driver);
211 #ifdef CONFIG_IGB_DCA
212         dca_register_notify(&dca_notifier);
213 #endif
214         return ret;
215 }
216
217 module_init(igb_init_module);
218
219 /**
220  * igb_exit_module - Driver Exit Cleanup Routine
221  *
222  * igb_exit_module is called just before the driver is removed
223  * from memory.
224  **/
225 static void __exit igb_exit_module(void)
226 {
227 #ifdef CONFIG_IGB_DCA
228         dca_unregister_notify(&dca_notifier);
229 #endif
230         pci_unregister_driver(&igb_driver);
231 }
232
233 module_exit(igb_exit_module);
234
235 /**
236  * igb_alloc_queues - Allocate memory for all rings
237  * @adapter: board private structure to initialize
238  *
239  * We allocate one ring per queue at run-time since we don't know the
240  * number of queues at compile-time.
241  **/
242 static int igb_alloc_queues(struct igb_adapter *adapter)
243 {
244         int i;
245
246         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
247                                    sizeof(struct igb_ring), GFP_KERNEL);
248         if (!adapter->tx_ring)
249                 return -ENOMEM;
250
251         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
252                                    sizeof(struct igb_ring), GFP_KERNEL);
253         if (!adapter->rx_ring) {
254                 kfree(adapter->tx_ring);
255                 return -ENOMEM;
256         }
257
258         adapter->rx_ring->buddy = adapter->tx_ring;
259
260         for (i = 0; i < adapter->num_tx_queues; i++) {
261                 struct igb_ring *ring = &(adapter->tx_ring[i]);
262                 ring->adapter = adapter;
263                 ring->queue_index = i;
264         }
265         for (i = 0; i < adapter->num_rx_queues; i++) {
266                 struct igb_ring *ring = &(adapter->rx_ring[i]);
267                 ring->adapter = adapter;
268                 ring->queue_index = i;
269                 ring->itr_register = E1000_ITR;
270
271                 /* set a default napi handler for each rx_ring */
272                 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
273         }
274         return 0;
275 }
276
277 static void igb_free_queues(struct igb_adapter *adapter)
278 {
279         int i;
280
281         for (i = 0; i < adapter->num_rx_queues; i++)
282                 netif_napi_del(&adapter->rx_ring[i].napi);
283
284         kfree(adapter->tx_ring);
285         kfree(adapter->rx_ring);
286 }
287
288 #define IGB_N0_QUEUE -1
289 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
290                               int tx_queue, int msix_vector)
291 {
292         u32 msixbm = 0;
293         struct e1000_hw *hw = &adapter->hw;
294         u32 ivar, index;
295
296         switch (hw->mac.type) {
297         case e1000_82575:
298                 /* The 82575 assigns vectors using a bitmask, which matches the
299                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
300                    or more queues to a vector, we write the appropriate bits
301                    into the MSIXBM register for that vector. */
302                 if (rx_queue > IGB_N0_QUEUE) {
303                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
304                         adapter->rx_ring[rx_queue].eims_value = msixbm;
305                 }
306                 if (tx_queue > IGB_N0_QUEUE) {
307                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
308                         adapter->tx_ring[tx_queue].eims_value =
309                                   E1000_EICR_TX_QUEUE0 << tx_queue;
310                 }
311                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
312                 break;
313         case e1000_82576:
314                 /* The 82576 uses a table-based method for assigning vectors.
315                    Each queue has a single entry in the table to which we write
316                    a vector number along with a "valid" bit.  Sadly, the layout
317                    of the table is somewhat counterintuitive. */
318                 if (rx_queue > IGB_N0_QUEUE) {
319                         index = (rx_queue & 0x7);
320                         ivar = array_rd32(E1000_IVAR0, index);
321                         if (rx_queue < 8) {
322                                 /* vector goes into low byte of register */
323                                 ivar = ivar & 0xFFFFFF00;
324                                 ivar |= msix_vector | E1000_IVAR_VALID;
325                         } else {
326                                 /* vector goes into third byte of register */
327                                 ivar = ivar & 0xFF00FFFF;
328                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
329                         }
330                         adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
331                         array_wr32(E1000_IVAR0, index, ivar);
332                 }
333                 if (tx_queue > IGB_N0_QUEUE) {
334                         index = (tx_queue & 0x7);
335                         ivar = array_rd32(E1000_IVAR0, index);
336                         if (tx_queue < 8) {
337                                 /* vector goes into second byte of register */
338                                 ivar = ivar & 0xFFFF00FF;
339                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
340                         } else {
341                                 /* vector goes into high byte of register */
342                                 ivar = ivar & 0x00FFFFFF;
343                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
344                         }
345                         adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
346                         array_wr32(E1000_IVAR0, index, ivar);
347                 }
348                 break;
349         default:
350                 BUG();
351                 break;
352         }
353 }
354
355 /**
356  * igb_configure_msix - Configure MSI-X hardware
357  *
358  * igb_configure_msix sets up the hardware to properly
359  * generate MSI-X interrupts.
360  **/
361 static void igb_configure_msix(struct igb_adapter *adapter)
362 {
363         u32 tmp;
364         int i, vector = 0;
365         struct e1000_hw *hw = &adapter->hw;
366
367         adapter->eims_enable_mask = 0;
368         if (hw->mac.type == e1000_82576)
369                 /* Turn on MSI-X capability first, or our settings
370                  * won't stick.  And it will take days to debug. */
371                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
372                                    E1000_GPIE_PBA | E1000_GPIE_EIAME | 
373                                    E1000_GPIE_NSICR);
374
375         for (i = 0; i < adapter->num_tx_queues; i++) {
376                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
377                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
378                 adapter->eims_enable_mask |= tx_ring->eims_value;
379                 if (tx_ring->itr_val)
380                         writel(tx_ring->itr_val,
381                                hw->hw_addr + tx_ring->itr_register);
382                 else
383                         writel(1, hw->hw_addr + tx_ring->itr_register);
384         }
385
386         for (i = 0; i < adapter->num_rx_queues; i++) {
387                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
388                 rx_ring->buddy = NULL;
389                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
390                 adapter->eims_enable_mask |= rx_ring->eims_value;
391                 if (rx_ring->itr_val)
392                         writel(rx_ring->itr_val,
393                                hw->hw_addr + rx_ring->itr_register);
394                 else
395                         writel(1, hw->hw_addr + rx_ring->itr_register);
396         }
397
398
399         /* set vector for other causes, i.e. link changes */
400         switch (hw->mac.type) {
401         case e1000_82575:
402                 array_wr32(E1000_MSIXBM(0), vector++,
403                                       E1000_EIMS_OTHER);
404
405                 tmp = rd32(E1000_CTRL_EXT);
406                 /* enable MSI-X PBA support*/
407                 tmp |= E1000_CTRL_EXT_PBA_CLR;
408
409                 /* Auto-Mask interrupts upon ICR read. */
410                 tmp |= E1000_CTRL_EXT_EIAME;
411                 tmp |= E1000_CTRL_EXT_IRCA;
412
413                 wr32(E1000_CTRL_EXT, tmp);
414                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
415                 adapter->eims_other = E1000_EIMS_OTHER;
416
417                 break;
418
419         case e1000_82576:
420                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
421                 wr32(E1000_IVAR_MISC, tmp);
422
423                 adapter->eims_enable_mask = (1 << (vector)) - 1;
424                 adapter->eims_other = 1 << (vector - 1);
425                 break;
426         default:
427                 /* do nothing, since nothing else supports MSI-X */
428                 break;
429         } /* switch (hw->mac.type) */
430         wrfl();
431 }
432
433 /**
434  * igb_request_msix - Initialize MSI-X interrupts
435  *
436  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
437  * kernel.
438  **/
439 static int igb_request_msix(struct igb_adapter *adapter)
440 {
441         struct net_device *netdev = adapter->netdev;
442         int i, err = 0, vector = 0;
443
444         vector = 0;
445
446         for (i = 0; i < adapter->num_tx_queues; i++) {
447                 struct igb_ring *ring = &(adapter->tx_ring[i]);
448                 sprintf(ring->name, "%s-tx%d", netdev->name, i);
449                 err = request_irq(adapter->msix_entries[vector].vector,
450                                   &igb_msix_tx, 0, ring->name,
451                                   &(adapter->tx_ring[i]));
452                 if (err)
453                         goto out;
454                 ring->itr_register = E1000_EITR(0) + (vector << 2);
455                 ring->itr_val = 976; /* ~4000 ints/sec */
456                 vector++;
457         }
458         for (i = 0; i < adapter->num_rx_queues; i++) {
459                 struct igb_ring *ring = &(adapter->rx_ring[i]);
460                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
461                         sprintf(ring->name, "%s-rx%d", netdev->name, i);
462                 else
463                         memcpy(ring->name, netdev->name, IFNAMSIZ);
464                 err = request_irq(adapter->msix_entries[vector].vector,
465                                   &igb_msix_rx, 0, ring->name,
466                                   &(adapter->rx_ring[i]));
467                 if (err)
468                         goto out;
469                 ring->itr_register = E1000_EITR(0) + (vector << 2);
470                 ring->itr_val = adapter->itr;
471                 /* overwrite the poll routine for MSIX, we've already done
472                  * netif_napi_add */
473                 ring->napi.poll = &igb_clean_rx_ring_msix;
474                 vector++;
475         }
476
477         err = request_irq(adapter->msix_entries[vector].vector,
478                           &igb_msix_other, 0, netdev->name, netdev);
479         if (err)
480                 goto out;
481
482         igb_configure_msix(adapter);
483         return 0;
484 out:
485         return err;
486 }
487
488 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
489 {
490         if (adapter->msix_entries) {
491                 pci_disable_msix(adapter->pdev);
492                 kfree(adapter->msix_entries);
493                 adapter->msix_entries = NULL;
494         } else if (adapter->flags & IGB_FLAG_HAS_MSI)
495                 pci_disable_msi(adapter->pdev);
496         return;
497 }
498
499
500 /**
501  * igb_set_interrupt_capability - set MSI or MSI-X if supported
502  *
503  * Attempt to configure interrupts using the best available
504  * capabilities of the hardware and kernel.
505  **/
506 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
507 {
508         int err;
509         int numvecs, i;
510
511         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
512         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
513                                         GFP_KERNEL);
514         if (!adapter->msix_entries)
515                 goto msi_only;
516
517         for (i = 0; i < numvecs; i++)
518                 adapter->msix_entries[i].entry = i;
519
520         err = pci_enable_msix(adapter->pdev,
521                               adapter->msix_entries,
522                               numvecs);
523         if (err == 0)
524                 goto out;
525
526         igb_reset_interrupt_capability(adapter);
527
528         /* If we can't do MSI-X, try MSI */
529 msi_only:
530         adapter->num_rx_queues = 1;
531         adapter->num_tx_queues = 1;
532         if (!pci_enable_msi(adapter->pdev))
533                 adapter->flags |= IGB_FLAG_HAS_MSI;
534 out:
535         /* Notify the stack of the (possibly) reduced Tx Queue count. */
536         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
537         return;
538 }
539
540 /**
541  * igb_request_irq - initialize interrupts
542  *
543  * Attempts to configure interrupts using the best available
544  * capabilities of the hardware and kernel.
545  **/
546 static int igb_request_irq(struct igb_adapter *adapter)
547 {
548         struct net_device *netdev = adapter->netdev;
549         struct e1000_hw *hw = &adapter->hw;
550         int err = 0;
551
552         if (adapter->msix_entries) {
553                 err = igb_request_msix(adapter);
554                 if (!err)
555                         goto request_done;
556                 /* fall back to MSI */
557                 igb_reset_interrupt_capability(adapter);
558                 if (!pci_enable_msi(adapter->pdev))
559                         adapter->flags |= IGB_FLAG_HAS_MSI;
560                 igb_free_all_tx_resources(adapter);
561                 igb_free_all_rx_resources(adapter);
562                 adapter->num_rx_queues = 1;
563                 igb_alloc_queues(adapter);
564         } else {
565                 switch (hw->mac.type) {
566                 case e1000_82575:
567                         wr32(E1000_MSIXBM(0),
568                              (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
569                         break;
570                 case e1000_82576:
571                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
572                         break;
573                 default:
574                         break;
575                 }
576         }
577
578         if (adapter->flags & IGB_FLAG_HAS_MSI) {
579                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
580                                   netdev->name, netdev);
581                 if (!err)
582                         goto request_done;
583                 /* fall back to legacy interrupts */
584                 igb_reset_interrupt_capability(adapter);
585                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
586         }
587
588         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
589                           netdev->name, netdev);
590
591         if (err)
592                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
593                         err);
594
595 request_done:
596         return err;
597 }
598
599 static void igb_free_irq(struct igb_adapter *adapter)
600 {
601         struct net_device *netdev = adapter->netdev;
602
603         if (adapter->msix_entries) {
604                 int vector = 0, i;
605
606                 for (i = 0; i < adapter->num_tx_queues; i++)
607                         free_irq(adapter->msix_entries[vector++].vector,
608                                 &(adapter->tx_ring[i]));
609                 for (i = 0; i < adapter->num_rx_queues; i++)
610                         free_irq(adapter->msix_entries[vector++].vector,
611                                 &(adapter->rx_ring[i]));
612
613                 free_irq(adapter->msix_entries[vector++].vector, netdev);
614                 return;
615         }
616
617         free_irq(adapter->pdev->irq, netdev);
618 }
619
620 /**
621  * igb_irq_disable - Mask off interrupt generation on the NIC
622  * @adapter: board private structure
623  **/
624 static void igb_irq_disable(struct igb_adapter *adapter)
625 {
626         struct e1000_hw *hw = &adapter->hw;
627
628         if (adapter->msix_entries) {
629                 wr32(E1000_EIAM, 0);
630                 wr32(E1000_EIMC, ~0);
631                 wr32(E1000_EIAC, 0);
632         }
633
634         wr32(E1000_IAM, 0);
635         wr32(E1000_IMC, ~0);
636         wrfl();
637         synchronize_irq(adapter->pdev->irq);
638 }
639
640 /**
641  * igb_irq_enable - Enable default interrupt generation settings
642  * @adapter: board private structure
643  **/
644 static void igb_irq_enable(struct igb_adapter *adapter)
645 {
646         struct e1000_hw *hw = &adapter->hw;
647
648         if (adapter->msix_entries) {
649                 wr32(E1000_EIAC, adapter->eims_enable_mask);
650                 wr32(E1000_EIAM, adapter->eims_enable_mask);
651                 wr32(E1000_EIMS, adapter->eims_enable_mask);
652                 wr32(E1000_IMS, E1000_IMS_LSC);
653         } else {
654                 wr32(E1000_IMS, IMS_ENABLE_MASK);
655                 wr32(E1000_IAM, IMS_ENABLE_MASK);
656         }
657 }
658
659 static void igb_update_mng_vlan(struct igb_adapter *adapter)
660 {
661         struct net_device *netdev = adapter->netdev;
662         u16 vid = adapter->hw.mng_cookie.vlan_id;
663         u16 old_vid = adapter->mng_vlan_id;
664         if (adapter->vlgrp) {
665                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
666                         if (adapter->hw.mng_cookie.status &
667                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
668                                 igb_vlan_rx_add_vid(netdev, vid);
669                                 adapter->mng_vlan_id = vid;
670                         } else
671                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
672
673                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
674                                         (vid != old_vid) &&
675                             !vlan_group_get_device(adapter->vlgrp, old_vid))
676                                 igb_vlan_rx_kill_vid(netdev, old_vid);
677                 } else
678                         adapter->mng_vlan_id = vid;
679         }
680 }
681
682 /**
683  * igb_release_hw_control - release control of the h/w to f/w
684  * @adapter: address of board private structure
685  *
686  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
687  * For ASF and Pass Through versions of f/w this means that the
688  * driver is no longer loaded.
689  *
690  **/
691 static void igb_release_hw_control(struct igb_adapter *adapter)
692 {
693         struct e1000_hw *hw = &adapter->hw;
694         u32 ctrl_ext;
695
696         /* Let firmware take over control of h/w */
697         ctrl_ext = rd32(E1000_CTRL_EXT);
698         wr32(E1000_CTRL_EXT,
699                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
700 }
701
702
703 /**
704  * igb_get_hw_control - get control of the h/w from f/w
705  * @adapter: address of board private structure
706  *
707  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
708  * For ASF and Pass Through versions of f/w this means that
709  * the driver is loaded.
710  *
711  **/
712 static void igb_get_hw_control(struct igb_adapter *adapter)
713 {
714         struct e1000_hw *hw = &adapter->hw;
715         u32 ctrl_ext;
716
717         /* Let firmware know the driver has taken over */
718         ctrl_ext = rd32(E1000_CTRL_EXT);
719         wr32(E1000_CTRL_EXT,
720                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
721 }
722
723 /**
724  * igb_configure - configure the hardware for RX and TX
725  * @adapter: private board structure
726  **/
727 static void igb_configure(struct igb_adapter *adapter)
728 {
729         struct net_device *netdev = adapter->netdev;
730         int i;
731
732         igb_get_hw_control(adapter);
733         igb_set_multi(netdev);
734
735         igb_restore_vlan(adapter);
736
737         igb_configure_tx(adapter);
738         igb_setup_rctl(adapter);
739         igb_configure_rx(adapter);
740
741         igb_rx_fifo_flush_82575(&adapter->hw);
742
743         /* call IGB_DESC_UNUSED which always leaves
744          * at least 1 descriptor unused to make sure
745          * next_to_use != next_to_clean */
746         for (i = 0; i < adapter->num_rx_queues; i++) {
747                 struct igb_ring *ring = &adapter->rx_ring[i];
748                 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
749         }
750
751
752         adapter->tx_queue_len = netdev->tx_queue_len;
753 }
754
755
756 /**
757  * igb_up - Open the interface and prepare it to handle traffic
758  * @adapter: board private structure
759  **/
760
761 int igb_up(struct igb_adapter *adapter)
762 {
763         struct e1000_hw *hw = &adapter->hw;
764         int i;
765
766         /* hardware has been reset, we need to reload some things */
767         igb_configure(adapter);
768
769         clear_bit(__IGB_DOWN, &adapter->state);
770
771         for (i = 0; i < adapter->num_rx_queues; i++)
772                 napi_enable(&adapter->rx_ring[i].napi);
773         if (adapter->msix_entries)
774                 igb_configure_msix(adapter);
775
776         /* Clear any pending interrupts. */
777         rd32(E1000_ICR);
778         igb_irq_enable(adapter);
779
780         /* Fire a link change interrupt to start the watchdog. */
781         wr32(E1000_ICS, E1000_ICS_LSC);
782         return 0;
783 }
784
785 void igb_down(struct igb_adapter *adapter)
786 {
787         struct e1000_hw *hw = &adapter->hw;
788         struct net_device *netdev = adapter->netdev;
789         u32 tctl, rctl;
790         int i;
791
792         /* signal that we're down so the interrupt handler does not
793          * reschedule our watchdog timer */
794         set_bit(__IGB_DOWN, &adapter->state);
795
796         /* disable receives in the hardware */
797         rctl = rd32(E1000_RCTL);
798         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
799         /* flush and sleep below */
800
801         netif_tx_stop_all_queues(netdev);
802
803         /* disable transmits in the hardware */
804         tctl = rd32(E1000_TCTL);
805         tctl &= ~E1000_TCTL_EN;
806         wr32(E1000_TCTL, tctl);
807         /* flush both disables and wait for them to finish */
808         wrfl();
809         msleep(10);
810
811         for (i = 0; i < adapter->num_rx_queues; i++)
812                 napi_disable(&adapter->rx_ring[i].napi);
813
814         igb_irq_disable(adapter);
815
816         del_timer_sync(&adapter->watchdog_timer);
817         del_timer_sync(&adapter->phy_info_timer);
818
819         netdev->tx_queue_len = adapter->tx_queue_len;
820         netif_carrier_off(netdev);
821         adapter->link_speed = 0;
822         adapter->link_duplex = 0;
823
824         if (!pci_channel_offline(adapter->pdev))
825                 igb_reset(adapter);
826         igb_clean_all_tx_rings(adapter);
827         igb_clean_all_rx_rings(adapter);
828 }
829
830 void igb_reinit_locked(struct igb_adapter *adapter)
831 {
832         WARN_ON(in_interrupt());
833         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
834                 msleep(1);
835         igb_down(adapter);
836         igb_up(adapter);
837         clear_bit(__IGB_RESETTING, &adapter->state);
838 }
839
840 void igb_reset(struct igb_adapter *adapter)
841 {
842         struct e1000_hw *hw = &adapter->hw;
843         struct e1000_mac_info *mac = &hw->mac;
844         struct e1000_fc_info *fc = &hw->fc;
845         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
846         u16 hwm;
847
848         /* Repartition Pba for greater than 9k mtu
849          * To take effect CTRL.RST is required.
850          */
851         if (mac->type != e1000_82576) {
852         pba = E1000_PBA_34K;
853         }
854         else {
855                 pba = E1000_PBA_64K;
856         }
857
858         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
859             (mac->type < e1000_82576)) {
860                 /* adjust PBA for jumbo frames */
861                 wr32(E1000_PBA, pba);
862
863                 /* To maintain wire speed transmits, the Tx FIFO should be
864                  * large enough to accommodate two full transmit packets,
865                  * rounded up to the next 1KB and expressed in KB.  Likewise,
866                  * the Rx FIFO should be large enough to accommodate at least
867                  * one full receive packet and is similarly rounded up and
868                  * expressed in KB. */
869                 pba = rd32(E1000_PBA);
870                 /* upper 16 bits has Tx packet buffer allocation size in KB */
871                 tx_space = pba >> 16;
872                 /* lower 16 bits has Rx packet buffer allocation size in KB */
873                 pba &= 0xffff;
874                 /* the tx fifo also stores 16 bytes of information about the tx
875                  * but don't include ethernet FCS because hardware appends it */
876                 min_tx_space = (adapter->max_frame_size +
877                                 sizeof(struct e1000_tx_desc) -
878                                 ETH_FCS_LEN) * 2;
879                 min_tx_space = ALIGN(min_tx_space, 1024);
880                 min_tx_space >>= 10;
881                 /* software strips receive CRC, so leave room for it */
882                 min_rx_space = adapter->max_frame_size;
883                 min_rx_space = ALIGN(min_rx_space, 1024);
884                 min_rx_space >>= 10;
885
886                 /* If current Tx allocation is less than the min Tx FIFO size,
887                  * and the min Tx FIFO size is less than the current Rx FIFO
888                  * allocation, take space away from current Rx allocation */
889                 if (tx_space < min_tx_space &&
890                     ((min_tx_space - tx_space) < pba)) {
891                         pba = pba - (min_tx_space - tx_space);
892
893                         /* if short on rx space, rx wins and must trump tx
894                          * adjustment */
895                         if (pba < min_rx_space)
896                                 pba = min_rx_space;
897                 }
898                 wr32(E1000_PBA, pba);
899         }
900
901         /* flow control settings */
902         /* The high water mark must be low enough to fit one full frame
903          * (or the size used for early receive) above it in the Rx FIFO.
904          * Set it to the lower of:
905          * - 90% of the Rx FIFO size, or
906          * - the full Rx FIFO size minus one full frame */
907         hwm = min(((pba << 10) * 9 / 10),
908                         ((pba << 10) - 2 * adapter->max_frame_size));
909
910         if (mac->type < e1000_82576) {
911                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
912                 fc->low_water = fc->high_water - 8;
913         } else {
914                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
915                 fc->low_water = fc->high_water - 16;
916         }
917         fc->pause_time = 0xFFFF;
918         fc->send_xon = 1;
919         fc->type = fc->original_type;
920
921         /* Allow time for pending master requests to run */
922         adapter->hw.mac.ops.reset_hw(&adapter->hw);
923         wr32(E1000_WUC, 0);
924
925         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
926                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
927
928         igb_update_mng_vlan(adapter);
929
930         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
931         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
932
933         igb_reset_adaptive(&adapter->hw);
934         if (adapter->hw.phy.ops.get_phy_info)
935                 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
936 }
937
938 /**
939  * igb_is_need_ioport - determine if an adapter needs ioport resources or not
940  * @pdev: PCI device information struct
941  *
942  * Returns true if an adapter needs ioport resources
943  **/
944 static int igb_is_need_ioport(struct pci_dev *pdev)
945 {
946         switch (pdev->device) {
947         /* Currently there are no adapters that need ioport resources */
948         default:
949                 return false;
950         }
951 }
952
953 /**
954  * igb_probe - Device Initialization Routine
955  * @pdev: PCI device information struct
956  * @ent: entry in igb_pci_tbl
957  *
958  * Returns 0 on success, negative on failure
959  *
960  * igb_probe initializes an adapter identified by a pci_dev structure.
961  * The OS initialization, configuring of the adapter private structure,
962  * and a hardware reset occur.
963  **/
964 static int __devinit igb_probe(struct pci_dev *pdev,
965                                const struct pci_device_id *ent)
966 {
967         struct net_device *netdev;
968         struct igb_adapter *adapter;
969         struct e1000_hw *hw;
970         struct pci_dev *us_dev;
971         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
972         unsigned long mmio_start, mmio_len;
973         int i, err, pci_using_dac, pos;
974         u16 eeprom_data = 0, state = 0;
975         u16 eeprom_apme_mask = IGB_EEPROM_APME;
976         u32 part_num;
977         int bars, need_ioport;
978
979         /* do not allocate ioport bars when not needed */
980         need_ioport = igb_is_need_ioport(pdev);
981         if (need_ioport) {
982                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
983                 err = pci_enable_device(pdev);
984         } else {
985                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
986                 err = pci_enable_device_mem(pdev);
987         }
988         if (err)
989                 return err;
990
991         pci_using_dac = 0;
992         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
993         if (!err) {
994                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
995                 if (!err)
996                         pci_using_dac = 1;
997         } else {
998                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
999                 if (err) {
1000                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1001                         if (err) {
1002                                 dev_err(&pdev->dev, "No usable DMA "
1003                                         "configuration, aborting\n");
1004                                 goto err_dma;
1005                         }
1006                 }
1007         }
1008
1009         /* 82575 requires that the pci-e link partner disable the L0s state */
1010         switch (pdev->device) {
1011         case E1000_DEV_ID_82575EB_COPPER:
1012         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1013         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1014                 us_dev = pdev->bus->self;
1015                 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1016                 if (pos) {
1017                         pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1018                                              &state);
1019                         state &= ~PCIE_LINK_STATE_L0S;
1020                         pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1021                                               state);
1022                         printk(KERN_INFO "Disabling ASPM L0s upstream switch "
1023                                "port %x:%x.%x\n", us_dev->bus->number,
1024                                PCI_SLOT(us_dev->devfn),
1025                                PCI_FUNC(us_dev->devfn));
1026                 }
1027         default:
1028                 break;
1029         }
1030
1031         err = pci_request_selected_regions(pdev, bars, igb_driver_name);
1032         if (err)
1033                 goto err_pci_reg;
1034
1035         pci_set_master(pdev);
1036         pci_save_state(pdev);
1037
1038         err = -ENOMEM;
1039         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1040         if (!netdev)
1041                 goto err_alloc_etherdev;
1042
1043         SET_NETDEV_DEV(netdev, &pdev->dev);
1044
1045         pci_set_drvdata(pdev, netdev);
1046         adapter = netdev_priv(netdev);
1047         adapter->netdev = netdev;
1048         adapter->pdev = pdev;
1049         hw = &adapter->hw;
1050         hw->back = adapter;
1051         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1052         adapter->bars = bars;
1053         adapter->need_ioport = need_ioport;
1054
1055         mmio_start = pci_resource_start(pdev, 0);
1056         mmio_len = pci_resource_len(pdev, 0);
1057
1058         err = -EIO;
1059         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1060         if (!adapter->hw.hw_addr)
1061                 goto err_ioremap;
1062
1063         netdev->open = &igb_open;
1064         netdev->stop = &igb_close;
1065         netdev->get_stats = &igb_get_stats;
1066         netdev->set_multicast_list = &igb_set_multi;
1067         netdev->set_mac_address = &igb_set_mac;
1068         netdev->change_mtu = &igb_change_mtu;
1069         netdev->do_ioctl = &igb_ioctl;
1070         igb_set_ethtool_ops(netdev);
1071         netdev->tx_timeout = &igb_tx_timeout;
1072         netdev->watchdog_timeo = 5 * HZ;
1073         netdev->vlan_rx_register = igb_vlan_rx_register;
1074         netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
1075         netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
1076 #ifdef CONFIG_NET_POLL_CONTROLLER
1077         netdev->poll_controller = igb_netpoll;
1078 #endif
1079         netdev->hard_start_xmit = &igb_xmit_frame_adv;
1080
1081         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1082
1083         netdev->mem_start = mmio_start;
1084         netdev->mem_end = mmio_start + mmio_len;
1085
1086         /* PCI config space info */
1087         hw->vendor_id = pdev->vendor;
1088         hw->device_id = pdev->device;
1089         hw->revision_id = pdev->revision;
1090         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1091         hw->subsystem_device_id = pdev->subsystem_device;
1092
1093         /* setup the private structure */
1094         hw->back = adapter;
1095         /* Copy the default MAC, PHY and NVM function pointers */
1096         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1097         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1098         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1099         /* Initialize skew-specific constants */
1100         err = ei->get_invariants(hw);
1101         if (err)
1102                 goto err_hw_init;
1103
1104         err = igb_sw_init(adapter);
1105         if (err)
1106                 goto err_sw_init;
1107
1108         igb_get_bus_info_pcie(hw);
1109
1110         /* set flags */
1111         switch (hw->mac.type) {
1112         case e1000_82576:
1113         case e1000_82575:
1114                 adapter->flags |= IGB_FLAG_HAS_DCA;
1115                 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1116                 break;
1117         default:
1118                 break;
1119         }
1120
1121         hw->phy.autoneg_wait_to_complete = false;
1122         hw->mac.adaptive_ifs = true;
1123
1124         /* Copper options */
1125         if (hw->phy.media_type == e1000_media_type_copper) {
1126                 hw->phy.mdix = AUTO_ALL_MODES;
1127                 hw->phy.disable_polarity_correction = false;
1128                 hw->phy.ms_type = e1000_ms_hw_default;
1129         }
1130
1131         if (igb_check_reset_block(hw))
1132                 dev_info(&pdev->dev,
1133                         "PHY reset is blocked due to SOL/IDER session.\n");
1134
1135         netdev->features = NETIF_F_SG |
1136                            NETIF_F_HW_CSUM |
1137                            NETIF_F_HW_VLAN_TX |
1138                            NETIF_F_HW_VLAN_RX |
1139                            NETIF_F_HW_VLAN_FILTER;
1140
1141         netdev->features |= NETIF_F_TSO;
1142         netdev->features |= NETIF_F_TSO6;
1143
1144 #ifdef CONFIG_IGB_LRO
1145         netdev->features |= NETIF_F_LRO;
1146 #endif
1147
1148         netdev->vlan_features |= NETIF_F_TSO;
1149         netdev->vlan_features |= NETIF_F_TSO6;
1150         netdev->vlan_features |= NETIF_F_HW_CSUM;
1151         netdev->vlan_features |= NETIF_F_SG;
1152
1153         if (pci_using_dac)
1154                 netdev->features |= NETIF_F_HIGHDMA;
1155
1156         netdev->features |= NETIF_F_LLTX;
1157         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1158
1159         /* before reading the NVM, reset the controller to put the device in a
1160          * known good starting state */
1161         hw->mac.ops.reset_hw(hw);
1162
1163         /* make sure the NVM is good */
1164         if (igb_validate_nvm_checksum(hw) < 0) {
1165                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1166                 err = -EIO;
1167                 goto err_eeprom;
1168         }
1169
1170         /* copy the MAC address out of the NVM */
1171         if (hw->mac.ops.read_mac_addr(hw))
1172                 dev_err(&pdev->dev, "NVM Read Error\n");
1173
1174         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1175         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1176
1177         if (!is_valid_ether_addr(netdev->perm_addr)) {
1178                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1179                 err = -EIO;
1180                 goto err_eeprom;
1181         }
1182
1183         init_timer(&adapter->watchdog_timer);
1184         adapter->watchdog_timer.function = &igb_watchdog;
1185         adapter->watchdog_timer.data = (unsigned long) adapter;
1186
1187         init_timer(&adapter->phy_info_timer);
1188         adapter->phy_info_timer.function = &igb_update_phy_info;
1189         adapter->phy_info_timer.data = (unsigned long) adapter;
1190
1191         INIT_WORK(&adapter->reset_task, igb_reset_task);
1192         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1193
1194         /* Initialize link & ring properties that are user-changeable */
1195         adapter->tx_ring->count = 256;
1196         for (i = 0; i < adapter->num_tx_queues; i++)
1197                 adapter->tx_ring[i].count = adapter->tx_ring->count;
1198         adapter->rx_ring->count = 256;
1199         for (i = 0; i < adapter->num_rx_queues; i++)
1200                 adapter->rx_ring[i].count = adapter->rx_ring->count;
1201
1202         adapter->fc_autoneg = true;
1203         hw->mac.autoneg = true;
1204         hw->phy.autoneg_advertised = 0x2f;
1205
1206         hw->fc.original_type = e1000_fc_default;
1207         hw->fc.type = e1000_fc_default;
1208
1209         adapter->itr_setting = 3;
1210         adapter->itr = IGB_START_ITR;
1211
1212         igb_validate_mdi_setting(hw);
1213
1214         adapter->rx_csum = 1;
1215
1216         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1217          * enable the ACPI Magic Packet filter
1218          */
1219
1220         if (hw->bus.func == 0 ||
1221             hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1222                 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1223                                      &eeprom_data);
1224
1225         if (eeprom_data & eeprom_apme_mask)
1226                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1227
1228         /* now that we have the eeprom settings, apply the special cases where
1229          * the eeprom may be wrong or the board simply won't support wake on
1230          * lan on a particular port */
1231         switch (pdev->device) {
1232         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1233                 adapter->eeprom_wol = 0;
1234                 break;
1235         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1236         case E1000_DEV_ID_82576_FIBER:
1237         case E1000_DEV_ID_82576_SERDES:
1238                 /* Wake events only supported on port A for dual fiber
1239                  * regardless of eeprom setting */
1240                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1241                         adapter->eeprom_wol = 0;
1242                 break;
1243         }
1244
1245         /* initialize the wol settings based on the eeprom settings */
1246         adapter->wol = adapter->eeprom_wol;
1247
1248         /* reset the hardware with the new settings */
1249         igb_reset(adapter);
1250
1251         /* let the f/w know that the h/w is now under the control of the
1252          * driver. */
1253         igb_get_hw_control(adapter);
1254
1255         /* tell the stack to leave us alone until igb_open() is called */
1256         netif_carrier_off(netdev);
1257         netif_tx_stop_all_queues(netdev);
1258
1259         strcpy(netdev->name, "eth%d");
1260         err = register_netdev(netdev);
1261         if (err)
1262                 goto err_register;
1263
1264 #ifdef CONFIG_IGB_DCA
1265         if ((adapter->flags & IGB_FLAG_HAS_DCA) &&
1266             (dca_add_requester(&pdev->dev) == 0)) {
1267                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1268                 dev_info(&pdev->dev, "DCA enabled\n");
1269                 /* Always use CB2 mode, difference is masked
1270                  * in the CB driver. */
1271                 wr32(E1000_DCA_CTRL, 2);
1272                 igb_setup_dca(adapter);
1273         }
1274 #endif
1275
1276         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1277         /* print bus type/speed/width info */
1278         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1279                  netdev->name,
1280                  ((hw->bus.speed == e1000_bus_speed_2500)
1281                   ? "2.5Gb/s" : "unknown"),
1282                  ((hw->bus.width == e1000_bus_width_pcie_x4)
1283                   ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1284                   ? "Width x1" : "unknown"),
1285                  netdev->dev_addr);
1286
1287         igb_read_part_num(hw, &part_num);
1288         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1289                 (part_num >> 8), (part_num & 0xff));
1290
1291         dev_info(&pdev->dev,
1292                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1293                 adapter->msix_entries ? "MSI-X" :
1294                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1295                 adapter->num_rx_queues, adapter->num_tx_queues);
1296
1297         return 0;
1298
1299 err_register:
1300         igb_release_hw_control(adapter);
1301 err_eeprom:
1302         if (!igb_check_reset_block(hw))
1303                 hw->phy.ops.reset_phy(hw);
1304
1305         if (hw->flash_address)
1306                 iounmap(hw->flash_address);
1307
1308         igb_remove_device(hw);
1309         igb_free_queues(adapter);
1310 err_sw_init:
1311 err_hw_init:
1312         iounmap(hw->hw_addr);
1313 err_ioremap:
1314         free_netdev(netdev);
1315 err_alloc_etherdev:
1316         pci_release_selected_regions(pdev, bars);
1317 err_pci_reg:
1318 err_dma:
1319         pci_disable_device(pdev);
1320         return err;
1321 }
1322
1323 /**
1324  * igb_remove - Device Removal Routine
1325  * @pdev: PCI device information struct
1326  *
1327  * igb_remove is called by the PCI subsystem to alert the driver
1328  * that it should release a PCI device.  The could be caused by a
1329  * Hot-Plug event, or because the driver is going to be removed from
1330  * memory.
1331  **/
1332 static void __devexit igb_remove(struct pci_dev *pdev)
1333 {
1334         struct net_device *netdev = pci_get_drvdata(pdev);
1335         struct igb_adapter *adapter = netdev_priv(netdev);
1336 #ifdef CONFIG_IGB_DCA
1337         struct e1000_hw *hw = &adapter->hw;
1338 #endif
1339
1340         /* flush_scheduled work may reschedule our watchdog task, so
1341          * explicitly disable watchdog tasks from being rescheduled  */
1342         set_bit(__IGB_DOWN, &adapter->state);
1343         del_timer_sync(&adapter->watchdog_timer);
1344         del_timer_sync(&adapter->phy_info_timer);
1345
1346         flush_scheduled_work();
1347
1348 #ifdef CONFIG_IGB_DCA
1349         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1350                 dev_info(&pdev->dev, "DCA disabled\n");
1351                 dca_remove_requester(&pdev->dev);
1352                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1353                 wr32(E1000_DCA_CTRL, 1);
1354         }
1355 #endif
1356
1357         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1358          * would have already happened in close and is redundant. */
1359         igb_release_hw_control(adapter);
1360
1361         unregister_netdev(netdev);
1362
1363         if (adapter->hw.phy.ops.reset_phy &&
1364             !igb_check_reset_block(&adapter->hw))
1365                 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1366
1367         igb_remove_device(&adapter->hw);
1368         igb_reset_interrupt_capability(adapter);
1369
1370         igb_free_queues(adapter);
1371
1372         iounmap(adapter->hw.hw_addr);
1373         if (adapter->hw.flash_address)
1374                 iounmap(adapter->hw.flash_address);
1375         pci_release_selected_regions(pdev, adapter->bars);
1376
1377         free_netdev(netdev);
1378
1379         pci_disable_device(pdev);
1380 }
1381
1382 /**
1383  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1384  * @adapter: board private structure to initialize
1385  *
1386  * igb_sw_init initializes the Adapter private data structure.
1387  * Fields are initialized based on PCI device information and
1388  * OS network device settings (MTU size).
1389  **/
1390 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1391 {
1392         struct e1000_hw *hw = &adapter->hw;
1393         struct net_device *netdev = adapter->netdev;
1394         struct pci_dev *pdev = adapter->pdev;
1395
1396         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1397
1398         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1399         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1400         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1401         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1402
1403         /* Number of supported queues. */
1404         /* Having more queues than CPUs doesn't make sense. */
1405         adapter->num_rx_queues = min((u32)IGB_MAX_RX_QUEUES, (u32)num_online_cpus());
1406         adapter->num_tx_queues = min(IGB_MAX_TX_QUEUES, num_online_cpus());
1407
1408         /* This call may decrease the number of queues depending on
1409          * interrupt mode. */
1410         igb_set_interrupt_capability(adapter);
1411
1412         if (igb_alloc_queues(adapter)) {
1413                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1414                 return -ENOMEM;
1415         }
1416
1417         /* Explicitly disable IRQ since the NIC can be in any state. */
1418         igb_irq_disable(adapter);
1419
1420         set_bit(__IGB_DOWN, &adapter->state);
1421         return 0;
1422 }
1423
1424 /**
1425  * igb_open - Called when a network interface is made active
1426  * @netdev: network interface device structure
1427  *
1428  * Returns 0 on success, negative value on failure
1429  *
1430  * The open entry point is called when a network interface is made
1431  * active by the system (IFF_UP).  At this point all resources needed
1432  * for transmit and receive operations are allocated, the interrupt
1433  * handler is registered with the OS, the watchdog timer is started,
1434  * and the stack is notified that the interface is ready.
1435  **/
1436 static int igb_open(struct net_device *netdev)
1437 {
1438         struct igb_adapter *adapter = netdev_priv(netdev);
1439         struct e1000_hw *hw = &adapter->hw;
1440         int err;
1441         int i;
1442
1443         /* disallow open during test */
1444         if (test_bit(__IGB_TESTING, &adapter->state))
1445                 return -EBUSY;
1446
1447         /* allocate transmit descriptors */
1448         err = igb_setup_all_tx_resources(adapter);
1449         if (err)
1450                 goto err_setup_tx;
1451
1452         /* allocate receive descriptors */
1453         err = igb_setup_all_rx_resources(adapter);
1454         if (err)
1455                 goto err_setup_rx;
1456
1457         /* e1000_power_up_phy(adapter); */
1458
1459         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1460         if ((adapter->hw.mng_cookie.status &
1461              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1462                 igb_update_mng_vlan(adapter);
1463
1464         /* before we allocate an interrupt, we must be ready to handle it.
1465          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1466          * as soon as we call pci_request_irq, so we have to setup our
1467          * clean_rx handler before we do so.  */
1468         igb_configure(adapter);
1469
1470         err = igb_request_irq(adapter);
1471         if (err)
1472                 goto err_req_irq;
1473
1474         /* From here on the code is the same as igb_up() */
1475         clear_bit(__IGB_DOWN, &adapter->state);
1476
1477         for (i = 0; i < adapter->num_rx_queues; i++)
1478                 napi_enable(&adapter->rx_ring[i].napi);
1479
1480         /* Clear any pending interrupts. */
1481         rd32(E1000_ICR);
1482
1483         igb_irq_enable(adapter);
1484
1485         netif_tx_start_all_queues(netdev);
1486
1487         /* Fire a link status change interrupt to start the watchdog. */
1488         wr32(E1000_ICS, E1000_ICS_LSC);
1489
1490         return 0;
1491
1492 err_req_irq:
1493         igb_release_hw_control(adapter);
1494         /* e1000_power_down_phy(adapter); */
1495         igb_free_all_rx_resources(adapter);
1496 err_setup_rx:
1497         igb_free_all_tx_resources(adapter);
1498 err_setup_tx:
1499         igb_reset(adapter);
1500
1501         return err;
1502 }
1503
1504 /**
1505  * igb_close - Disables a network interface
1506  * @netdev: network interface device structure
1507  *
1508  * Returns 0, this is not allowed to fail
1509  *
1510  * The close entry point is called when an interface is de-activated
1511  * by the OS.  The hardware is still under the driver's control, but
1512  * needs to be disabled.  A global MAC reset is issued to stop the
1513  * hardware, and all transmit and receive resources are freed.
1514  **/
1515 static int igb_close(struct net_device *netdev)
1516 {
1517         struct igb_adapter *adapter = netdev_priv(netdev);
1518
1519         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1520         igb_down(adapter);
1521
1522         igb_free_irq(adapter);
1523
1524         igb_free_all_tx_resources(adapter);
1525         igb_free_all_rx_resources(adapter);
1526
1527         /* kill manageability vlan ID if supported, but not if a vlan with
1528          * the same ID is registered on the host OS (let 8021q kill it) */
1529         if ((adapter->hw.mng_cookie.status &
1530                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1531              !(adapter->vlgrp &&
1532                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1533                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1534
1535         return 0;
1536 }
1537
1538 /**
1539  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1540  * @adapter: board private structure
1541  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1542  *
1543  * Return 0 on success, negative on failure
1544  **/
1545
1546 int igb_setup_tx_resources(struct igb_adapter *adapter,
1547                            struct igb_ring *tx_ring)
1548 {
1549         struct pci_dev *pdev = adapter->pdev;
1550         int size;
1551
1552         size = sizeof(struct igb_buffer) * tx_ring->count;
1553         tx_ring->buffer_info = vmalloc(size);
1554         if (!tx_ring->buffer_info)
1555                 goto err;
1556         memset(tx_ring->buffer_info, 0, size);
1557
1558         /* round up to nearest 4K */
1559         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1560                         + sizeof(u32);
1561         tx_ring->size = ALIGN(tx_ring->size, 4096);
1562
1563         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1564                                              &tx_ring->dma);
1565
1566         if (!tx_ring->desc)
1567                 goto err;
1568
1569         tx_ring->adapter = adapter;
1570         tx_ring->next_to_use = 0;
1571         tx_ring->next_to_clean = 0;
1572         return 0;
1573
1574 err:
1575         vfree(tx_ring->buffer_info);
1576         dev_err(&adapter->pdev->dev,
1577                 "Unable to allocate memory for the transmit descriptor ring\n");
1578         return -ENOMEM;
1579 }
1580
1581 /**
1582  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1583  *                                (Descriptors) for all queues
1584  * @adapter: board private structure
1585  *
1586  * Return 0 on success, negative on failure
1587  **/
1588 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1589 {
1590         int i, err = 0;
1591         int r_idx;
1592
1593         for (i = 0; i < adapter->num_tx_queues; i++) {
1594                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1595                 if (err) {
1596                         dev_err(&adapter->pdev->dev,
1597                                 "Allocation for Tx Queue %u failed\n", i);
1598                         for (i--; i >= 0; i--)
1599                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1600                         break;
1601                 }
1602         }
1603
1604         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1605                 r_idx = i % adapter->num_tx_queues;
1606                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1607         }       
1608         return err;
1609 }
1610
1611 /**
1612  * igb_configure_tx - Configure transmit Unit after Reset
1613  * @adapter: board private structure
1614  *
1615  * Configure the Tx unit of the MAC after a reset.
1616  **/
1617 static void igb_configure_tx(struct igb_adapter *adapter)
1618 {
1619         u64 tdba, tdwba;
1620         struct e1000_hw *hw = &adapter->hw;
1621         u32 tctl;
1622         u32 txdctl, txctrl;
1623         int i;
1624
1625         for (i = 0; i < adapter->num_tx_queues; i++) {
1626                 struct igb_ring *ring = &(adapter->tx_ring[i]);
1627
1628                 wr32(E1000_TDLEN(i),
1629                                 ring->count * sizeof(struct e1000_tx_desc));
1630                 tdba = ring->dma;
1631                 wr32(E1000_TDBAL(i),
1632                                 tdba & 0x00000000ffffffffULL);
1633                 wr32(E1000_TDBAH(i), tdba >> 32);
1634
1635                 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1636                 tdwba |= 1; /* enable head wb */
1637                 wr32(E1000_TDWBAL(i),
1638                                 tdwba & 0x00000000ffffffffULL);
1639                 wr32(E1000_TDWBAH(i), tdwba >> 32);
1640
1641                 ring->head = E1000_TDH(i);
1642                 ring->tail = E1000_TDT(i);
1643                 writel(0, hw->hw_addr + ring->tail);
1644                 writel(0, hw->hw_addr + ring->head);
1645                 txdctl = rd32(E1000_TXDCTL(i));
1646                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1647                 wr32(E1000_TXDCTL(i), txdctl);
1648
1649                 /* Turn off Relaxed Ordering on head write-backs.  The
1650                  * writebacks MUST be delivered in order or it will
1651                  * completely screw up our bookeeping.
1652                  */
1653                 txctrl = rd32(E1000_DCA_TXCTRL(i));
1654                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1655                 wr32(E1000_DCA_TXCTRL(i), txctrl);
1656         }
1657
1658
1659
1660         /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1661
1662         /* Program the Transmit Control Register */
1663
1664         tctl = rd32(E1000_TCTL);
1665         tctl &= ~E1000_TCTL_CT;
1666         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1667                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1668
1669         igb_config_collision_dist(hw);
1670
1671         /* Setup Transmit Descriptor Settings for eop descriptor */
1672         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1673
1674         /* Enable transmits */
1675         tctl |= E1000_TCTL_EN;
1676
1677         wr32(E1000_TCTL, tctl);
1678 }
1679
1680 /**
1681  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1682  * @adapter: board private structure
1683  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1684  *
1685  * Returns 0 on success, negative on failure
1686  **/
1687
1688 int igb_setup_rx_resources(struct igb_adapter *adapter,
1689                            struct igb_ring *rx_ring)
1690 {
1691         struct pci_dev *pdev = adapter->pdev;
1692         int size, desc_len;
1693
1694 #ifdef CONFIG_IGB_LRO
1695         size = sizeof(struct net_lro_desc) * MAX_LRO_DESCRIPTORS;
1696         rx_ring->lro_mgr.lro_arr = vmalloc(size);
1697         if (!rx_ring->lro_mgr.lro_arr)
1698                 goto err;
1699         memset(rx_ring->lro_mgr.lro_arr, 0, size);
1700 #endif
1701
1702         size = sizeof(struct igb_buffer) * rx_ring->count;
1703         rx_ring->buffer_info = vmalloc(size);
1704         if (!rx_ring->buffer_info)
1705                 goto err;
1706         memset(rx_ring->buffer_info, 0, size);
1707
1708         desc_len = sizeof(union e1000_adv_rx_desc);
1709
1710         /* Round up to nearest 4K */
1711         rx_ring->size = rx_ring->count * desc_len;
1712         rx_ring->size = ALIGN(rx_ring->size, 4096);
1713
1714         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1715                                              &rx_ring->dma);
1716
1717         if (!rx_ring->desc)
1718                 goto err;
1719
1720         rx_ring->next_to_clean = 0;
1721         rx_ring->next_to_use = 0;
1722
1723         rx_ring->adapter = adapter;
1724
1725         return 0;
1726
1727 err:
1728 #ifdef CONFIG_IGB_LRO
1729         vfree(rx_ring->lro_mgr.lro_arr);
1730         rx_ring->lro_mgr.lro_arr = NULL;
1731 #endif
1732         vfree(rx_ring->buffer_info);
1733         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1734                 "the receive descriptor ring\n");
1735         return -ENOMEM;
1736 }
1737
1738 /**
1739  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1740  *                                (Descriptors) for all queues
1741  * @adapter: board private structure
1742  *
1743  * Return 0 on success, negative on failure
1744  **/
1745 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1746 {
1747         int i, err = 0;
1748
1749         for (i = 0; i < adapter->num_rx_queues; i++) {
1750                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1751                 if (err) {
1752                         dev_err(&adapter->pdev->dev,
1753                                 "Allocation for Rx Queue %u failed\n", i);
1754                         for (i--; i >= 0; i--)
1755                                 igb_free_rx_resources(&adapter->rx_ring[i]);
1756                         break;
1757                 }
1758         }
1759
1760         return err;
1761 }
1762
1763 /**
1764  * igb_setup_rctl - configure the receive control registers
1765  * @adapter: Board private structure
1766  **/
1767 static void igb_setup_rctl(struct igb_adapter *adapter)
1768 {
1769         struct e1000_hw *hw = &adapter->hw;
1770         u32 rctl;
1771         u32 srrctl = 0;
1772         int i;
1773
1774         rctl = rd32(E1000_RCTL);
1775
1776         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1777
1778         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1779                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1780                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1781
1782         /*
1783          * enable stripping of CRC. It's unlikely this will break BMC
1784          * redirection as it did with e1000. Newer features require
1785          * that the HW strips the CRC.
1786         */
1787         rctl |= E1000_RCTL_SECRC;
1788
1789         rctl &= ~E1000_RCTL_SBP;
1790
1791         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1792                 rctl &= ~E1000_RCTL_LPE;
1793         else
1794                 rctl |= E1000_RCTL_LPE;
1795         if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1796                 /* Setup buffer sizes */
1797                 rctl &= ~E1000_RCTL_SZ_4096;
1798                 rctl |= E1000_RCTL_BSEX;
1799                 switch (adapter->rx_buffer_len) {
1800                 case IGB_RXBUFFER_256:
1801                         rctl |= E1000_RCTL_SZ_256;
1802                         rctl &= ~E1000_RCTL_BSEX;
1803                         break;
1804                 case IGB_RXBUFFER_512:
1805                         rctl |= E1000_RCTL_SZ_512;
1806                         rctl &= ~E1000_RCTL_BSEX;
1807                         break;
1808                 case IGB_RXBUFFER_1024:
1809                         rctl |= E1000_RCTL_SZ_1024;
1810                         rctl &= ~E1000_RCTL_BSEX;
1811                         break;
1812                 case IGB_RXBUFFER_2048:
1813                 default:
1814                         rctl |= E1000_RCTL_SZ_2048;
1815                         rctl &= ~E1000_RCTL_BSEX;
1816                         break;
1817                 }
1818         } else {
1819                 rctl &= ~E1000_RCTL_BSEX;
1820                 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1821         }
1822
1823         /* 82575 and greater support packet-split where the protocol
1824          * header is placed in skb->data and the packet data is
1825          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1826          * In the case of a non-split, skb->data is linearly filled,
1827          * followed by the page buffers.  Therefore, skb->data is
1828          * sized to hold the largest protocol header.
1829          */
1830         /* allocations using alloc_page take too long for regular MTU
1831          * so only enable packet split for jumbo frames */
1832         if (rctl & E1000_RCTL_LPE) {
1833                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1834                 srrctl |= adapter->rx_ps_hdr_size <<
1835                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1836                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1837         } else {
1838                 adapter->rx_ps_hdr_size = 0;
1839                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1840         }
1841
1842         for (i = 0; i < adapter->num_rx_queues; i++)
1843                 wr32(E1000_SRRCTL(i), srrctl);
1844
1845         wr32(E1000_RCTL, rctl);
1846 }
1847
1848 /**
1849  * igb_configure_rx - Configure receive Unit after Reset
1850  * @adapter: board private structure
1851  *
1852  * Configure the Rx unit of the MAC after a reset.
1853  **/
1854 static void igb_configure_rx(struct igb_adapter *adapter)
1855 {
1856         u64 rdba;
1857         struct e1000_hw *hw = &adapter->hw;
1858         u32 rctl, rxcsum;
1859         u32 rxdctl;
1860         int i;
1861
1862         /* disable receives while setting up the descriptors */
1863         rctl = rd32(E1000_RCTL);
1864         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1865         wrfl();
1866         mdelay(10);
1867
1868         if (adapter->itr_setting > 3)
1869                 wr32(E1000_ITR, adapter->itr);
1870
1871         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1872          * the Base and Length of the Rx Descriptor Ring */
1873         for (i = 0; i < adapter->num_rx_queues; i++) {
1874                 struct igb_ring *ring = &(adapter->rx_ring[i]);
1875                 rdba = ring->dma;
1876                 wr32(E1000_RDBAL(i),
1877                                 rdba & 0x00000000ffffffffULL);
1878                 wr32(E1000_RDBAH(i), rdba >> 32);
1879                 wr32(E1000_RDLEN(i),
1880                                ring->count * sizeof(union e1000_adv_rx_desc));
1881
1882                 ring->head = E1000_RDH(i);
1883                 ring->tail = E1000_RDT(i);
1884                 writel(0, hw->hw_addr + ring->tail);
1885                 writel(0, hw->hw_addr + ring->head);
1886
1887                 rxdctl = rd32(E1000_RXDCTL(i));
1888                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1889                 rxdctl &= 0xFFF00000;
1890                 rxdctl |= IGB_RX_PTHRESH;
1891                 rxdctl |= IGB_RX_HTHRESH << 8;
1892                 rxdctl |= IGB_RX_WTHRESH << 16;
1893                 wr32(E1000_RXDCTL(i), rxdctl);
1894 #ifdef CONFIG_IGB_LRO
1895                 /* Intitial LRO Settings */
1896                 ring->lro_mgr.max_aggr = MAX_LRO_AGGR;
1897                 ring->lro_mgr.max_desc = MAX_LRO_DESCRIPTORS;
1898                 ring->lro_mgr.get_skb_header = igb_get_skb_hdr;
1899                 ring->lro_mgr.features = LRO_F_NAPI | LRO_F_EXTRACT_VLAN_ID;
1900                 ring->lro_mgr.dev = adapter->netdev;
1901                 ring->lro_mgr.ip_summed = CHECKSUM_UNNECESSARY;
1902                 ring->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY;
1903 #endif
1904         }
1905
1906         if (adapter->num_rx_queues > 1) {
1907                 u32 random[10];
1908                 u32 mrqc;
1909                 u32 j, shift;
1910                 union e1000_reta {
1911                         u32 dword;
1912                         u8  bytes[4];
1913                 } reta;
1914
1915                 get_random_bytes(&random[0], 40);
1916
1917                 if (hw->mac.type >= e1000_82576)
1918                         shift = 0;
1919                 else
1920                         shift = 6;
1921                 for (j = 0; j < (32 * 4); j++) {
1922                         reta.bytes[j & 3] =
1923                                 (j % adapter->num_rx_queues) << shift;
1924                         if ((j & 3) == 3)
1925                                 writel(reta.dword,
1926                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
1927                 }
1928                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1929
1930                 /* Fill out hash function seeds */
1931                 for (j = 0; j < 10; j++)
1932                         array_wr32(E1000_RSSRK(0), j, random[j]);
1933
1934                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1935                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1936                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1937                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
1938                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1939                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
1940                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1941                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1942
1943
1944                 wr32(E1000_MRQC, mrqc);
1945
1946                 /* Multiqueue and raw packet checksumming are mutually
1947                  * exclusive.  Note that this not the same as TCP/IP
1948                  * checksumming, which works fine. */
1949                 rxcsum = rd32(E1000_RXCSUM);
1950                 rxcsum |= E1000_RXCSUM_PCSD;
1951                 wr32(E1000_RXCSUM, rxcsum);
1952         } else {
1953                 /* Enable Receive Checksum Offload for TCP and UDP */
1954                 rxcsum = rd32(E1000_RXCSUM);
1955                 if (adapter->rx_csum) {
1956                         rxcsum |= E1000_RXCSUM_TUOFL;
1957
1958                         /* Enable IPv4 payload checksum for UDP fragments
1959                          * Must be used in conjunction with packet-split. */
1960                         if (adapter->rx_ps_hdr_size)
1961                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1962                 } else {
1963                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1964                         /* don't need to clear IPPCSE as it defaults to 0 */
1965                 }
1966                 wr32(E1000_RXCSUM, rxcsum);
1967         }
1968
1969         if (adapter->vlgrp)
1970                 wr32(E1000_RLPML,
1971                                 adapter->max_frame_size + VLAN_TAG_SIZE);
1972         else
1973                 wr32(E1000_RLPML, adapter->max_frame_size);
1974
1975         /* Enable Receives */
1976         wr32(E1000_RCTL, rctl);
1977 }
1978
1979 /**
1980  * igb_free_tx_resources - Free Tx Resources per Queue
1981  * @adapter: board private structure
1982  * @tx_ring: Tx descriptor ring for a specific queue
1983  *
1984  * Free all transmit software resources
1985  **/
1986 static void igb_free_tx_resources(struct igb_ring *tx_ring)
1987 {
1988         struct pci_dev *pdev = tx_ring->adapter->pdev;
1989
1990         igb_clean_tx_ring(tx_ring);
1991
1992         vfree(tx_ring->buffer_info);
1993         tx_ring->buffer_info = NULL;
1994
1995         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1996
1997         tx_ring->desc = NULL;
1998 }
1999
2000 /**
2001  * igb_free_all_tx_resources - Free Tx Resources for All Queues
2002  * @adapter: board private structure
2003  *
2004  * Free all transmit software resources
2005  **/
2006 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2007 {
2008         int i;
2009
2010         for (i = 0; i < adapter->num_tx_queues; i++)
2011                 igb_free_tx_resources(&adapter->tx_ring[i]);
2012 }
2013
2014 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2015                                            struct igb_buffer *buffer_info)
2016 {
2017         if (buffer_info->dma) {
2018                 pci_unmap_page(adapter->pdev,
2019                                 buffer_info->dma,
2020                                 buffer_info->length,
2021                                 PCI_DMA_TODEVICE);
2022                 buffer_info->dma = 0;
2023         }
2024         if (buffer_info->skb) {
2025                 dev_kfree_skb_any(buffer_info->skb);
2026                 buffer_info->skb = NULL;
2027         }
2028         buffer_info->time_stamp = 0;
2029         /* buffer_info must be completely set up in the transmit path */
2030 }
2031
2032 /**
2033  * igb_clean_tx_ring - Free Tx Buffers
2034  * @adapter: board private structure
2035  * @tx_ring: ring to be cleaned
2036  **/
2037 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2038 {
2039         struct igb_adapter *adapter = tx_ring->adapter;
2040         struct igb_buffer *buffer_info;
2041         unsigned long size;
2042         unsigned int i;
2043
2044         if (!tx_ring->buffer_info)
2045                 return;
2046         /* Free all the Tx ring sk_buffs */
2047
2048         for (i = 0; i < tx_ring->count; i++) {
2049                 buffer_info = &tx_ring->buffer_info[i];
2050                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2051         }
2052
2053         size = sizeof(struct igb_buffer) * tx_ring->count;
2054         memset(tx_ring->buffer_info, 0, size);
2055
2056         /* Zero out the descriptor ring */
2057
2058         memset(tx_ring->desc, 0, tx_ring->size);
2059
2060         tx_ring->next_to_use = 0;
2061         tx_ring->next_to_clean = 0;
2062
2063         writel(0, adapter->hw.hw_addr + tx_ring->head);
2064         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2065 }
2066
2067 /**
2068  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2069  * @adapter: board private structure
2070  **/
2071 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2072 {
2073         int i;
2074
2075         for (i = 0; i < adapter->num_tx_queues; i++)
2076                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2077 }
2078
2079 /**
2080  * igb_free_rx_resources - Free Rx Resources
2081  * @adapter: board private structure
2082  * @rx_ring: ring to clean the resources from
2083  *
2084  * Free all receive software resources
2085  **/
2086 static void igb_free_rx_resources(struct igb_ring *rx_ring)
2087 {
2088         struct pci_dev *pdev = rx_ring->adapter->pdev;
2089
2090         igb_clean_rx_ring(rx_ring);
2091
2092         vfree(rx_ring->buffer_info);
2093         rx_ring->buffer_info = NULL;
2094
2095 #ifdef CONFIG_IGB_LRO
2096         vfree(rx_ring->lro_mgr.lro_arr);
2097         rx_ring->lro_mgr.lro_arr = NULL;
2098 #endif 
2099
2100         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2101
2102         rx_ring->desc = NULL;
2103 }
2104
2105 /**
2106  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2107  * @adapter: board private structure
2108  *
2109  * Free all receive software resources
2110  **/
2111 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2112 {
2113         int i;
2114
2115         for (i = 0; i < adapter->num_rx_queues; i++)
2116                 igb_free_rx_resources(&adapter->rx_ring[i]);
2117 }
2118
2119 /**
2120  * igb_clean_rx_ring - Free Rx Buffers per Queue
2121  * @adapter: board private structure
2122  * @rx_ring: ring to free buffers from
2123  **/
2124 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2125 {
2126         struct igb_adapter *adapter = rx_ring->adapter;
2127         struct igb_buffer *buffer_info;
2128         struct pci_dev *pdev = adapter->pdev;
2129         unsigned long size;
2130         unsigned int i;
2131
2132         if (!rx_ring->buffer_info)
2133                 return;
2134         /* Free all the Rx ring sk_buffs */
2135         for (i = 0; i < rx_ring->count; i++) {
2136                 buffer_info = &rx_ring->buffer_info[i];
2137                 if (buffer_info->dma) {
2138                         if (adapter->rx_ps_hdr_size)
2139                                 pci_unmap_single(pdev, buffer_info->dma,
2140                                                  adapter->rx_ps_hdr_size,
2141                                                  PCI_DMA_FROMDEVICE);
2142                         else
2143                                 pci_unmap_single(pdev, buffer_info->dma,
2144                                                  adapter->rx_buffer_len,
2145                                                  PCI_DMA_FROMDEVICE);
2146                         buffer_info->dma = 0;
2147                 }
2148
2149                 if (buffer_info->skb) {
2150                         dev_kfree_skb(buffer_info->skb);
2151                         buffer_info->skb = NULL;
2152                 }
2153                 if (buffer_info->page) {
2154                         if (buffer_info->page_dma)
2155                                 pci_unmap_page(pdev, buffer_info->page_dma,
2156                                                PAGE_SIZE / 2,
2157                                                PCI_DMA_FROMDEVICE);
2158                         put_page(buffer_info->page);
2159                         buffer_info->page = NULL;
2160                         buffer_info->page_dma = 0;
2161                         buffer_info->page_offset = 0;
2162                 }
2163         }
2164
2165         size = sizeof(struct igb_buffer) * rx_ring->count;
2166         memset(rx_ring->buffer_info, 0, size);
2167
2168         /* Zero out the descriptor ring */
2169         memset(rx_ring->desc, 0, rx_ring->size);
2170
2171         rx_ring->next_to_clean = 0;
2172         rx_ring->next_to_use = 0;
2173
2174         writel(0, adapter->hw.hw_addr + rx_ring->head);
2175         writel(0, adapter->hw.hw_addr + rx_ring->tail);
2176 }
2177
2178 /**
2179  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2180  * @adapter: board private structure
2181  **/
2182 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2183 {
2184         int i;
2185
2186         for (i = 0; i < adapter->num_rx_queues; i++)
2187                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2188 }
2189
2190 /**
2191  * igb_set_mac - Change the Ethernet Address of the NIC
2192  * @netdev: network interface device structure
2193  * @p: pointer to an address structure
2194  *
2195  * Returns 0 on success, negative on failure
2196  **/
2197 static int igb_set_mac(struct net_device *netdev, void *p)
2198 {
2199         struct igb_adapter *adapter = netdev_priv(netdev);
2200         struct sockaddr *addr = p;
2201
2202         if (!is_valid_ether_addr(addr->sa_data))
2203                 return -EADDRNOTAVAIL;
2204
2205         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2206         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2207
2208         adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2209
2210         return 0;
2211 }
2212
2213 /**
2214  * igb_set_multi - Multicast and Promiscuous mode set
2215  * @netdev: network interface device structure
2216  *
2217  * The set_multi entry point is called whenever the multicast address
2218  * list or the network interface flags are updated.  This routine is
2219  * responsible for configuring the hardware for proper multicast,
2220  * promiscuous mode, and all-multi behavior.
2221  **/
2222 static void igb_set_multi(struct net_device *netdev)
2223 {
2224         struct igb_adapter *adapter = netdev_priv(netdev);
2225         struct e1000_hw *hw = &adapter->hw;
2226         struct e1000_mac_info *mac = &hw->mac;
2227         struct dev_mc_list *mc_ptr;
2228         u8  *mta_list;
2229         u32 rctl;
2230         int i;
2231
2232         /* Check for Promiscuous and All Multicast modes */
2233
2234         rctl = rd32(E1000_RCTL);
2235
2236         if (netdev->flags & IFF_PROMISC) {
2237                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2238                 rctl &= ~E1000_RCTL_VFE;
2239         } else {
2240                 if (netdev->flags & IFF_ALLMULTI) {
2241                         rctl |= E1000_RCTL_MPE;
2242                         rctl &= ~E1000_RCTL_UPE;
2243                 } else
2244                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2245                 rctl |= E1000_RCTL_VFE;
2246         }
2247         wr32(E1000_RCTL, rctl);
2248
2249         if (!netdev->mc_count) {
2250                 /* nothing to program, so clear mc list */
2251                 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2252                                           mac->rar_entry_count);
2253                 return;
2254         }
2255
2256         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2257         if (!mta_list)
2258                 return;
2259
2260         /* The shared function expects a packed array of only addresses. */
2261         mc_ptr = netdev->mc_list;
2262
2263         for (i = 0; i < netdev->mc_count; i++) {
2264                 if (!mc_ptr)
2265                         break;
2266                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2267                 mc_ptr = mc_ptr->next;
2268         }
2269         igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2270                                       mac->rar_entry_count);
2271         kfree(mta_list);
2272 }
2273
2274 /* Need to wait a few seconds after link up to get diagnostic information from
2275  * the phy */
2276 static void igb_update_phy_info(unsigned long data)
2277 {
2278         struct igb_adapter *adapter = (struct igb_adapter *) data;
2279         if (adapter->hw.phy.ops.get_phy_info)
2280                 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
2281 }
2282
2283 /**
2284  * igb_watchdog - Timer Call-back
2285  * @data: pointer to adapter cast into an unsigned long
2286  **/
2287 static void igb_watchdog(unsigned long data)
2288 {
2289         struct igb_adapter *adapter = (struct igb_adapter *)data;
2290         /* Do the rest outside of interrupt context */
2291         schedule_work(&adapter->watchdog_task);
2292 }
2293
2294 static void igb_watchdog_task(struct work_struct *work)
2295 {
2296         struct igb_adapter *adapter = container_of(work,
2297                                         struct igb_adapter, watchdog_task);
2298         struct e1000_hw *hw = &adapter->hw;
2299
2300         struct net_device *netdev = adapter->netdev;
2301         struct igb_ring *tx_ring = adapter->tx_ring;
2302         struct e1000_mac_info *mac = &adapter->hw.mac;
2303         u32 link;
2304         u32 eics = 0;
2305         s32 ret_val;
2306         int i;
2307
2308         if ((netif_carrier_ok(netdev)) &&
2309             (rd32(E1000_STATUS) & E1000_STATUS_LU))
2310                 goto link_up;
2311
2312         ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2313         if ((ret_val == E1000_ERR_PHY) &&
2314             (hw->phy.type == e1000_phy_igp_3) &&
2315             (rd32(E1000_CTRL) &
2316              E1000_PHY_CTRL_GBE_DISABLE))
2317                 dev_info(&adapter->pdev->dev,
2318                          "Gigabit has been disabled, downgrading speed\n");
2319
2320         if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2321             !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2322                 link = mac->serdes_has_link;
2323         else
2324                 link = rd32(E1000_STATUS) &
2325                                       E1000_STATUS_LU;
2326
2327         if (link) {
2328                 if (!netif_carrier_ok(netdev)) {
2329                         u32 ctrl;
2330                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2331                                                    &adapter->link_speed,
2332                                                    &adapter->link_duplex);
2333
2334                         ctrl = rd32(E1000_CTRL);
2335                         dev_info(&adapter->pdev->dev,
2336                                  "NIC Link is Up %d Mbps %s, "
2337                                  "Flow Control: %s\n",
2338                                  adapter->link_speed,
2339                                  adapter->link_duplex == FULL_DUPLEX ?
2340                                  "Full Duplex" : "Half Duplex",
2341                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2342                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2343                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2344                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2345
2346                         /* tweak tx_queue_len according to speed/duplex and
2347                          * adjust the timeout factor */
2348                         netdev->tx_queue_len = adapter->tx_queue_len;
2349                         adapter->tx_timeout_factor = 1;
2350                         switch (adapter->link_speed) {
2351                         case SPEED_10:
2352                                 netdev->tx_queue_len = 10;
2353                                 adapter->tx_timeout_factor = 14;
2354                                 break;
2355                         case SPEED_100:
2356                                 netdev->tx_queue_len = 100;
2357                                 /* maybe add some timeout factor ? */
2358                                 break;
2359                         }
2360
2361                         netif_carrier_on(netdev);
2362                         netif_tx_wake_all_queues(netdev);
2363
2364                         if (!test_bit(__IGB_DOWN, &adapter->state))
2365                                 mod_timer(&adapter->phy_info_timer,
2366                                           round_jiffies(jiffies + 2 * HZ));
2367                 }
2368         } else {
2369                 if (netif_carrier_ok(netdev)) {
2370                         adapter->link_speed = 0;
2371                         adapter->link_duplex = 0;
2372                         dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2373                         netif_carrier_off(netdev);
2374                         netif_tx_stop_all_queues(netdev);
2375                         if (!test_bit(__IGB_DOWN, &adapter->state))
2376                                 mod_timer(&adapter->phy_info_timer,
2377                                           round_jiffies(jiffies + 2 * HZ));
2378                 }
2379         }
2380
2381 link_up:
2382         igb_update_stats(adapter);
2383
2384         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2385         adapter->tpt_old = adapter->stats.tpt;
2386         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2387         adapter->colc_old = adapter->stats.colc;
2388
2389         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2390         adapter->gorc_old = adapter->stats.gorc;
2391         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2392         adapter->gotc_old = adapter->stats.gotc;
2393
2394         igb_update_adaptive(&adapter->hw);
2395
2396         if (!netif_carrier_ok(netdev)) {
2397                 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2398                         /* We've lost link, so the controller stops DMA,
2399                          * but we've got queued Tx work that's never going
2400                          * to get done, so reset controller to flush Tx.
2401                          * (Do the reset outside of interrupt context). */
2402                         adapter->tx_timeout_count++;
2403                         schedule_work(&adapter->reset_task);
2404                 }
2405         }
2406
2407         /* Cause software interrupt to ensure rx ring is cleaned */
2408         if (adapter->msix_entries) {
2409                 for (i = 0; i < adapter->num_rx_queues; i++)
2410                         eics |= adapter->rx_ring[i].eims_value;
2411                 wr32(E1000_EICS, eics);
2412         } else {
2413                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2414         }
2415
2416         /* Force detection of hung controller every watchdog period */
2417         tx_ring->detect_tx_hung = true;
2418
2419         /* Reset the timer */
2420         if (!test_bit(__IGB_DOWN, &adapter->state))
2421                 mod_timer(&adapter->watchdog_timer,
2422                           round_jiffies(jiffies + 2 * HZ));
2423 }
2424
2425 enum latency_range {
2426         lowest_latency = 0,
2427         low_latency = 1,
2428         bulk_latency = 2,
2429         latency_invalid = 255
2430 };
2431
2432
2433 /**
2434  * igb_update_ring_itr - update the dynamic ITR value based on packet size
2435  *
2436  *      Stores a new ITR value based on strictly on packet size.  This
2437  *      algorithm is less sophisticated than that used in igb_update_itr,
2438  *      due to the difficulty of synchronizing statistics across multiple
2439  *      receive rings.  The divisors and thresholds used by this fuction
2440  *      were determined based on theoretical maximum wire speed and testing
2441  *      data, in order to minimize response time while increasing bulk
2442  *      throughput.
2443  *      This functionality is controlled by the InterruptThrottleRate module
2444  *      parameter (see igb_param.c)
2445  *      NOTE:  This function is called only when operating in a multiqueue
2446  *             receive environment.
2447  * @rx_ring: pointer to ring
2448  **/
2449 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2450 {
2451         int new_val = rx_ring->itr_val;
2452         int avg_wire_size = 0;
2453         struct igb_adapter *adapter = rx_ring->adapter;
2454
2455         if (!rx_ring->total_packets)
2456                 goto clear_counts; /* no packets, so don't do anything */
2457
2458         /* For non-gigabit speeds, just fix the interrupt rate at 4000
2459          * ints/sec - ITR timer value of 120 ticks.
2460          */
2461         if (adapter->link_speed != SPEED_1000) {
2462                 new_val = 120;
2463                 goto set_itr_val;
2464         }
2465         avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2466
2467         /* Add 24 bytes to size to account for CRC, preamble, and gap */
2468         avg_wire_size += 24;
2469
2470         /* Don't starve jumbo frames */
2471         avg_wire_size = min(avg_wire_size, 3000);
2472
2473         /* Give a little boost to mid-size frames */
2474         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2475                 new_val = avg_wire_size / 3;
2476         else
2477                 new_val = avg_wire_size / 2;
2478
2479 set_itr_val:
2480         if (new_val != rx_ring->itr_val) {
2481                 rx_ring->itr_val = new_val;
2482                 rx_ring->set_itr = 1;
2483         }
2484 clear_counts:
2485         rx_ring->total_bytes = 0;
2486         rx_ring->total_packets = 0;
2487 }
2488
2489 /**
2490  * igb_update_itr - update the dynamic ITR value based on statistics
2491  *      Stores a new ITR value based on packets and byte
2492  *      counts during the last interrupt.  The advantage of per interrupt
2493  *      computation is faster updates and more accurate ITR for the current
2494  *      traffic pattern.  Constants in this function were computed
2495  *      based on theoretical maximum wire speed and thresholds were set based
2496  *      on testing data as well as attempting to minimize response time
2497  *      while increasing bulk throughput.
2498  *      this functionality is controlled by the InterruptThrottleRate module
2499  *      parameter (see igb_param.c)
2500  *      NOTE:  These calculations are only valid when operating in a single-
2501  *             queue environment.
2502  * @adapter: pointer to adapter
2503  * @itr_setting: current adapter->itr
2504  * @packets: the number of packets during this measurement interval
2505  * @bytes: the number of bytes during this measurement interval
2506  **/
2507 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2508                                    int packets, int bytes)
2509 {
2510         unsigned int retval = itr_setting;
2511
2512         if (packets == 0)
2513                 goto update_itr_done;
2514
2515         switch (itr_setting) {
2516         case lowest_latency:
2517                 /* handle TSO and jumbo frames */
2518                 if (bytes/packets > 8000)
2519                         retval = bulk_latency;
2520                 else if ((packets < 5) && (bytes > 512))
2521                         retval = low_latency;
2522                 break;
2523         case low_latency:  /* 50 usec aka 20000 ints/s */
2524                 if (bytes > 10000) {
2525                         /* this if handles the TSO accounting */
2526                         if (bytes/packets > 8000) {
2527                                 retval = bulk_latency;
2528                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2529                                 retval = bulk_latency;
2530                         } else if ((packets > 35)) {
2531                                 retval = lowest_latency;
2532                         }
2533                 } else if (bytes/packets > 2000) {
2534                         retval = bulk_latency;
2535                 } else if (packets <= 2 && bytes < 512) {
2536                         retval = lowest_latency;
2537                 }
2538                 break;
2539         case bulk_latency: /* 250 usec aka 4000 ints/s */
2540                 if (bytes > 25000) {
2541                         if (packets > 35)
2542                                 retval = low_latency;
2543                 } else if (bytes < 6000) {
2544                         retval = low_latency;
2545                 }
2546                 break;
2547         }
2548
2549 update_itr_done:
2550         return retval;
2551 }
2552
2553 static void igb_set_itr(struct igb_adapter *adapter)
2554 {
2555         u16 current_itr;
2556         u32 new_itr = adapter->itr;
2557
2558         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2559         if (adapter->link_speed != SPEED_1000) {
2560                 current_itr = 0;
2561                 new_itr = 4000;
2562                 goto set_itr_now;
2563         }
2564
2565         adapter->rx_itr = igb_update_itr(adapter,
2566                                     adapter->rx_itr,
2567                                     adapter->rx_ring->total_packets,
2568                                     adapter->rx_ring->total_bytes);
2569
2570         if (adapter->rx_ring->buddy) {
2571                 adapter->tx_itr = igb_update_itr(adapter,
2572                                             adapter->tx_itr,
2573                                             adapter->tx_ring->total_packets,
2574                                             adapter->tx_ring->total_bytes);
2575
2576                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2577         } else {
2578                 current_itr = adapter->rx_itr;
2579         }
2580
2581         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2582         if (adapter->itr_setting == 3 &&
2583             current_itr == lowest_latency)
2584                 current_itr = low_latency;
2585
2586         switch (current_itr) {
2587         /* counts and packets in update_itr are dependent on these numbers */
2588         case lowest_latency:
2589                 new_itr = 70000;
2590                 break;
2591         case low_latency:
2592                 new_itr = 20000; /* aka hwitr = ~200 */
2593                 break;
2594         case bulk_latency:
2595                 new_itr = 4000;
2596                 break;
2597         default:
2598                 break;
2599         }
2600
2601 set_itr_now:
2602         adapter->rx_ring->total_bytes = 0;
2603         adapter->rx_ring->total_packets = 0;
2604         if (adapter->rx_ring->buddy) {
2605                 adapter->rx_ring->buddy->total_bytes = 0;
2606                 adapter->rx_ring->buddy->total_packets = 0;
2607         }
2608
2609         if (new_itr != adapter->itr) {
2610                 /* this attempts to bias the interrupt rate towards Bulk
2611                  * by adding intermediate steps when interrupt rate is
2612                  * increasing */
2613                 new_itr = new_itr > adapter->itr ?
2614                              min(adapter->itr + (new_itr >> 2), new_itr) :
2615                              new_itr;
2616                 /* Don't write the value here; it resets the adapter's
2617                  * internal timer, and causes us to delay far longer than
2618                  * we should between interrupts.  Instead, we write the ITR
2619                  * value at the beginning of the next interrupt so the timing
2620                  * ends up being correct.
2621                  */
2622                 adapter->itr = new_itr;
2623                 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2624                 adapter->rx_ring->set_itr = 1;
2625         }
2626
2627         return;
2628 }
2629
2630
2631 #define IGB_TX_FLAGS_CSUM               0x00000001
2632 #define IGB_TX_FLAGS_VLAN               0x00000002
2633 #define IGB_TX_FLAGS_TSO                0x00000004
2634 #define IGB_TX_FLAGS_IPV4               0x00000008
2635 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2636 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2637
2638 static inline int igb_tso_adv(struct igb_adapter *adapter,
2639                               struct igb_ring *tx_ring,
2640                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2641 {
2642         struct e1000_adv_tx_context_desc *context_desc;
2643         unsigned int i;
2644         int err;
2645         struct igb_buffer *buffer_info;
2646         u32 info = 0, tu_cmd = 0;
2647         u32 mss_l4len_idx, l4len;
2648         *hdr_len = 0;
2649
2650         if (skb_header_cloned(skb)) {
2651                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2652                 if (err)
2653                         return err;
2654         }
2655
2656         l4len = tcp_hdrlen(skb);
2657         *hdr_len += l4len;
2658
2659         if (skb->protocol == htons(ETH_P_IP)) {
2660                 struct iphdr *iph = ip_hdr(skb);
2661                 iph->tot_len = 0;
2662                 iph->check = 0;
2663                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2664                                                          iph->daddr, 0,
2665                                                          IPPROTO_TCP,
2666                                                          0);
2667         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2668                 ipv6_hdr(skb)->payload_len = 0;
2669                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2670                                                        &ipv6_hdr(skb)->daddr,
2671                                                        0, IPPROTO_TCP, 0);
2672         }
2673
2674         i = tx_ring->next_to_use;
2675
2676         buffer_info = &tx_ring->buffer_info[i];
2677         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2678         /* VLAN MACLEN IPLEN */
2679         if (tx_flags & IGB_TX_FLAGS_VLAN)
2680                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2681         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2682         *hdr_len += skb_network_offset(skb);
2683         info |= skb_network_header_len(skb);
2684         *hdr_len += skb_network_header_len(skb);
2685         context_desc->vlan_macip_lens = cpu_to_le32(info);
2686
2687         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2688         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2689
2690         if (skb->protocol == htons(ETH_P_IP))
2691                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2692         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2693
2694         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2695
2696         /* MSS L4LEN IDX */
2697         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2698         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2699
2700         /* Context index must be unique per ring. */
2701         if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2702                 mss_l4len_idx |= tx_ring->queue_index << 4;
2703
2704         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2705         context_desc->seqnum_seed = 0;
2706
2707         buffer_info->time_stamp = jiffies;
2708         buffer_info->dma = 0;
2709         i++;
2710         if (i == tx_ring->count)
2711                 i = 0;
2712
2713         tx_ring->next_to_use = i;
2714
2715         return true;
2716 }
2717
2718 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2719                                         struct igb_ring *tx_ring,
2720                                         struct sk_buff *skb, u32 tx_flags)
2721 {
2722         struct e1000_adv_tx_context_desc *context_desc;
2723         unsigned int i;
2724         struct igb_buffer *buffer_info;
2725         u32 info = 0, tu_cmd = 0;
2726
2727         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2728             (tx_flags & IGB_TX_FLAGS_VLAN)) {
2729                 i = tx_ring->next_to_use;
2730                 buffer_info = &tx_ring->buffer_info[i];
2731                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2732
2733                 if (tx_flags & IGB_TX_FLAGS_VLAN)
2734                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2735                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2736                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2737                         info |= skb_network_header_len(skb);
2738
2739                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2740
2741                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2742
2743                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2744                         switch (skb->protocol) {
2745                         case __constant_htons(ETH_P_IP):
2746                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2747                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2748                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2749                                 break;
2750                         case __constant_htons(ETH_P_IPV6):
2751                                 /* XXX what about other V6 headers?? */
2752                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2753                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2754                                 break;
2755                         default:
2756                                 if (unlikely(net_ratelimit()))
2757                                         dev_warn(&adapter->pdev->dev,
2758                                             "partial checksum but proto=%x!\n",
2759                                             skb->protocol);
2760                                 break;
2761                         }
2762                 }
2763
2764                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2765                 context_desc->seqnum_seed = 0;
2766                 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2767                         context_desc->mss_l4len_idx =
2768                                 cpu_to_le32(tx_ring->queue_index << 4);
2769
2770                 buffer_info->time_stamp = jiffies;
2771                 buffer_info->dma = 0;
2772
2773                 i++;
2774                 if (i == tx_ring->count)
2775                         i = 0;
2776                 tx_ring->next_to_use = i;
2777
2778                 return true;
2779         }
2780
2781
2782         return false;
2783 }
2784
2785 #define IGB_MAX_TXD_PWR 16
2786 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
2787
2788 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2789                                  struct igb_ring *tx_ring,
2790                                  struct sk_buff *skb)
2791 {
2792         struct igb_buffer *buffer_info;
2793         unsigned int len = skb_headlen(skb);
2794         unsigned int count = 0, i;
2795         unsigned int f;
2796
2797         i = tx_ring->next_to_use;
2798
2799         buffer_info = &tx_ring->buffer_info[i];
2800         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2801         buffer_info->length = len;
2802         /* set time_stamp *before* dma to help avoid a possible race */
2803         buffer_info->time_stamp = jiffies;
2804         buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2805                                           PCI_DMA_TODEVICE);
2806         count++;
2807         i++;
2808         if (i == tx_ring->count)
2809                 i = 0;
2810
2811         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2812                 struct skb_frag_struct *frag;
2813
2814                 frag = &skb_shinfo(skb)->frags[f];
2815                 len = frag->size;
2816
2817                 buffer_info = &tx_ring->buffer_info[i];
2818                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2819                 buffer_info->length = len;
2820                 buffer_info->time_stamp = jiffies;
2821                 buffer_info->dma = pci_map_page(adapter->pdev,
2822                                                 frag->page,
2823                                                 frag->page_offset,
2824                                                 len,
2825                                                 PCI_DMA_TODEVICE);
2826
2827                 count++;
2828                 i++;
2829                 if (i == tx_ring->count)
2830                         i = 0;
2831         }
2832
2833         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2834         tx_ring->buffer_info[i].skb = skb;
2835
2836         return count;
2837 }
2838
2839 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2840                                     struct igb_ring *tx_ring,
2841                                     int tx_flags, int count, u32 paylen,
2842                                     u8 hdr_len)
2843 {
2844         union e1000_adv_tx_desc *tx_desc = NULL;
2845         struct igb_buffer *buffer_info;
2846         u32 olinfo_status = 0, cmd_type_len;
2847         unsigned int i;
2848
2849         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2850                         E1000_ADVTXD_DCMD_DEXT);
2851
2852         if (tx_flags & IGB_TX_FLAGS_VLAN)
2853                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2854
2855         if (tx_flags & IGB_TX_FLAGS_TSO) {
2856                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2857
2858                 /* insert tcp checksum */
2859                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2860
2861                 /* insert ip checksum */
2862                 if (tx_flags & IGB_TX_FLAGS_IPV4)
2863                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2864
2865         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2866                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2867         }
2868
2869         if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2870             (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2871                          IGB_TX_FLAGS_VLAN)))
2872                 olinfo_status |= tx_ring->queue_index << 4;
2873
2874         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2875
2876         i = tx_ring->next_to_use;
2877         while (count--) {
2878                 buffer_info = &tx_ring->buffer_info[i];
2879                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2880                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2881                 tx_desc->read.cmd_type_len =
2882                         cpu_to_le32(cmd_type_len | buffer_info->length);
2883                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2884                 i++;
2885                 if (i == tx_ring->count)
2886                         i = 0;
2887         }
2888
2889         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2890         /* Force memory writes to complete before letting h/w
2891          * know there are new descriptors to fetch.  (Only
2892          * applicable for weak-ordered memory model archs,
2893          * such as IA-64). */
2894         wmb();
2895
2896         tx_ring->next_to_use = i;
2897         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2898         /* we need this if more than one processor can write to our tail
2899          * at a time, it syncronizes IO on IA64/Altix systems */
2900         mmiowb();
2901 }
2902
2903 static int __igb_maybe_stop_tx(struct net_device *netdev,
2904                                struct igb_ring *tx_ring, int size)
2905 {
2906         struct igb_adapter *adapter = netdev_priv(netdev);
2907
2908         netif_stop_subqueue(netdev, tx_ring->queue_index);
2909
2910         /* Herbert's original patch had:
2911          *  smp_mb__after_netif_stop_queue();
2912          * but since that doesn't exist yet, just open code it. */
2913         smp_mb();
2914
2915         /* We need to check again in a case another CPU has just
2916          * made room available. */
2917         if (IGB_DESC_UNUSED(tx_ring) < size)
2918                 return -EBUSY;
2919
2920         /* A reprieve! */
2921         netif_wake_subqueue(netdev, tx_ring->queue_index);
2922         ++adapter->restart_queue;
2923         return 0;
2924 }
2925
2926 static int igb_maybe_stop_tx(struct net_device *netdev,
2927                              struct igb_ring *tx_ring, int size)
2928 {
2929         if (IGB_DESC_UNUSED(tx_ring) >= size)
2930                 return 0;
2931         return __igb_maybe_stop_tx(netdev, tx_ring, size);
2932 }
2933
2934 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2935
2936 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2937                                    struct net_device *netdev,
2938                                    struct igb_ring *tx_ring)
2939 {
2940         struct igb_adapter *adapter = netdev_priv(netdev);
2941         unsigned int tx_flags = 0;
2942         unsigned int len;
2943         u8 hdr_len = 0;
2944         int tso = 0;
2945
2946         len = skb_headlen(skb);
2947
2948         if (test_bit(__IGB_DOWN, &adapter->state)) {
2949                 dev_kfree_skb_any(skb);
2950                 return NETDEV_TX_OK;
2951         }
2952
2953         if (skb->len <= 0) {
2954                 dev_kfree_skb_any(skb);
2955                 return NETDEV_TX_OK;
2956         }
2957
2958         /* need: 1 descriptor per page,
2959          *       + 2 desc gap to keep tail from touching head,
2960          *       + 1 desc for skb->data,
2961          *       + 1 desc for context descriptor,
2962          * otherwise try next time */
2963         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2964                 /* this is a hard error */
2965                 return NETDEV_TX_BUSY;
2966         }
2967         skb_orphan(skb);
2968
2969         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2970                 tx_flags |= IGB_TX_FLAGS_VLAN;
2971                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2972         }
2973
2974         if (skb->protocol == htons(ETH_P_IP))
2975                 tx_flags |= IGB_TX_FLAGS_IPV4;
2976
2977         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2978                                               &hdr_len) : 0;
2979
2980         if (tso < 0) {
2981                 dev_kfree_skb_any(skb);
2982                 return NETDEV_TX_OK;
2983         }
2984
2985         if (tso)
2986                 tx_flags |= IGB_TX_FLAGS_TSO;
2987         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2988                         if (skb->ip_summed == CHECKSUM_PARTIAL)
2989                                 tx_flags |= IGB_TX_FLAGS_CSUM;
2990
2991         igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2992                          igb_tx_map_adv(adapter, tx_ring, skb),
2993                          skb->len, hdr_len);
2994
2995         netdev->trans_start = jiffies;
2996
2997         /* Make sure there is space in the ring for the next send. */
2998         igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
2999
3000         return NETDEV_TX_OK;
3001 }
3002
3003 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3004 {
3005         struct igb_adapter *adapter = netdev_priv(netdev);
3006         struct igb_ring *tx_ring;
3007
3008         int r_idx = 0;
3009         r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3010         tx_ring = adapter->multi_tx_table[r_idx];
3011
3012         /* This goes back to the question of how to logically map a tx queue
3013          * to a flow.  Right now, performance is impacted slightly negatively
3014          * if using multiple tx queues.  If the stack breaks away from a
3015          * single qdisc implementation, we can look at this again. */
3016         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3017 }
3018
3019 /**
3020  * igb_tx_timeout - Respond to a Tx Hang
3021  * @netdev: network interface device structure
3022  **/
3023 static void igb_tx_timeout(struct net_device *netdev)
3024 {
3025         struct igb_adapter *adapter = netdev_priv(netdev);
3026         struct e1000_hw *hw = &adapter->hw;
3027
3028         /* Do the reset outside of interrupt context */
3029         adapter->tx_timeout_count++;
3030         schedule_work(&adapter->reset_task);
3031         wr32(E1000_EICS, adapter->eims_enable_mask &
3032                 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3033 }
3034
3035 static void igb_reset_task(struct work_struct *work)
3036 {
3037         struct igb_adapter *adapter;
3038         adapter = container_of(work, struct igb_adapter, reset_task);
3039
3040         igb_reinit_locked(adapter);
3041 }
3042
3043 /**
3044  * igb_get_stats - Get System Network Statistics
3045  * @netdev: network interface device structure
3046  *
3047  * Returns the address of the device statistics structure.
3048  * The statistics are actually updated from the timer callback.
3049  **/
3050 static struct net_device_stats *
3051 igb_get_stats(struct net_device *netdev)
3052 {
3053         struct igb_adapter *adapter = netdev_priv(netdev);
3054
3055         /* only return the current stats */
3056         return &adapter->net_stats;
3057 }
3058
3059 /**
3060  * igb_change_mtu - Change the Maximum Transfer Unit
3061  * @netdev: network interface device structure
3062  * @new_mtu: new value for maximum frame size
3063  *
3064  * Returns 0 on success, negative on failure
3065  **/
3066 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3067 {
3068         struct igb_adapter *adapter = netdev_priv(netdev);
3069         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3070
3071         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3072             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3073                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3074                 return -EINVAL;
3075         }
3076
3077 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3078         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3079                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3080                 return -EINVAL;
3081         }
3082
3083         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3084                 msleep(1);
3085         /* igb_down has a dependency on max_frame_size */
3086         adapter->max_frame_size = max_frame;
3087         if (netif_running(netdev))
3088                 igb_down(adapter);
3089
3090         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3091          * means we reserve 2 more, this pushes us to allocate from the next
3092          * larger slab size.
3093          * i.e. RXBUFFER_2048 --> size-4096 slab
3094          */
3095
3096         if (max_frame <= IGB_RXBUFFER_256)
3097                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3098         else if (max_frame <= IGB_RXBUFFER_512)
3099                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3100         else if (max_frame <= IGB_RXBUFFER_1024)
3101                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3102         else if (max_frame <= IGB_RXBUFFER_2048)
3103                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3104         else
3105 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3106                 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3107 #else
3108                 adapter->rx_buffer_len = PAGE_SIZE / 2;
3109 #endif
3110         /* adjust allocation if LPE protects us, and we aren't using SBP */
3111         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3112              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3113                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3114
3115         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3116                  netdev->mtu, new_mtu);
3117         netdev->mtu = new_mtu;
3118
3119         if (netif_running(netdev))
3120                 igb_up(adapter);
3121         else
3122                 igb_reset(adapter);
3123
3124         clear_bit(__IGB_RESETTING, &adapter->state);
3125
3126         return 0;
3127 }
3128
3129 /**
3130  * igb_update_stats - Update the board statistics counters
3131  * @adapter: board private structure
3132  **/
3133
3134 void igb_update_stats(struct igb_adapter *adapter)
3135 {
3136         struct e1000_hw *hw = &adapter->hw;
3137         struct pci_dev *pdev = adapter->pdev;
3138         u16 phy_tmp;
3139
3140 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3141
3142         /*
3143          * Prevent stats update while adapter is being reset, or if the pci
3144          * connection is down.
3145          */
3146         if (adapter->link_speed == 0)
3147                 return;
3148         if (pci_channel_offline(pdev))
3149                 return;
3150
3151         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3152         adapter->stats.gprc += rd32(E1000_GPRC);
3153         adapter->stats.gorc += rd32(E1000_GORCL);
3154         rd32(E1000_GORCH); /* clear GORCL */
3155         adapter->stats.bprc += rd32(E1000_BPRC);
3156         adapter->stats.mprc += rd32(E1000_MPRC);
3157         adapter->stats.roc += rd32(E1000_ROC);
3158
3159         adapter->stats.prc64 += rd32(E1000_PRC64);
3160         adapter->stats.prc127 += rd32(E1000_PRC127);
3161         adapter->stats.prc255 += rd32(E1000_PRC255);
3162         adapter->stats.prc511 += rd32(E1000_PRC511);
3163         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3164         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3165         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3166         adapter->stats.sec += rd32(E1000_SEC);
3167
3168         adapter->stats.mpc += rd32(E1000_MPC);
3169         adapter->stats.scc += rd32(E1000_SCC);
3170         adapter->stats.ecol += rd32(E1000_ECOL);
3171         adapter->stats.mcc += rd32(E1000_MCC);
3172         adapter->stats.latecol += rd32(E1000_LATECOL);
3173         adapter->stats.dc += rd32(E1000_DC);
3174         adapter->stats.rlec += rd32(E1000_RLEC);
3175         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3176         adapter->stats.xontxc += rd32(E1000_XONTXC);
3177         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3178         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3179         adapter->stats.fcruc += rd32(E1000_FCRUC);
3180         adapter->stats.gptc += rd32(E1000_GPTC);
3181         adapter->stats.gotc += rd32(E1000_GOTCL);
3182         rd32(E1000_GOTCH); /* clear GOTCL */
3183         adapter->stats.rnbc += rd32(E1000_RNBC);
3184         adapter->stats.ruc += rd32(E1000_RUC);
3185         adapter->stats.rfc += rd32(E1000_RFC);
3186         adapter->stats.rjc += rd32(E1000_RJC);
3187         adapter->stats.tor += rd32(E1000_TORH);
3188         adapter->stats.tot += rd32(E1000_TOTH);
3189         adapter->stats.tpr += rd32(E1000_TPR);
3190
3191         adapter->stats.ptc64 += rd32(E1000_PTC64);
3192         adapter->stats.ptc127 += rd32(E1000_PTC127);
3193         adapter->stats.ptc255 += rd32(E1000_PTC255);
3194         adapter->stats.ptc511 += rd32(E1000_PTC511);
3195         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3196         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3197
3198         adapter->stats.mptc += rd32(E1000_MPTC);
3199         adapter->stats.bptc += rd32(E1000_BPTC);
3200
3201         /* used for adaptive IFS */
3202
3203         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3204         adapter->stats.tpt += hw->mac.tx_packet_delta;
3205         hw->mac.collision_delta = rd32(E1000_COLC);
3206         adapter->stats.colc += hw->mac.collision_delta;
3207
3208         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3209         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3210         adapter->stats.tncrs += rd32(E1000_TNCRS);
3211         adapter->stats.tsctc += rd32(E1000_TSCTC);
3212         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3213
3214         adapter->stats.iac += rd32(E1000_IAC);
3215         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3216         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3217         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3218         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3219         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3220         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3221         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3222         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3223
3224         /* Fill out the OS statistics structure */
3225         adapter->net_stats.multicast = adapter->stats.mprc;
3226         adapter->net_stats.collisions = adapter->stats.colc;
3227
3228         /* Rx Errors */
3229
3230         /* RLEC on some newer hardware can be incorrect so build
3231         * our own version based on RUC and ROC */
3232         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3233                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3234                 adapter->stats.ruc + adapter->stats.roc +
3235                 adapter->stats.cexterr;
3236         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3237                                               adapter->stats.roc;
3238         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3239         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3240         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3241
3242         /* Tx Errors */
3243         adapter->net_stats.tx_errors = adapter->stats.ecol +
3244                                        adapter->stats.latecol;
3245         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3246         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3247         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3248
3249         /* Tx Dropped needs to be maintained elsewhere */
3250
3251         /* Phy Stats */
3252         if (hw->phy.media_type == e1000_media_type_copper) {
3253                 if ((adapter->link_speed == SPEED_1000) &&
3254                    (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
3255                                               &phy_tmp))) {
3256                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3257                         adapter->phy_stats.idle_errors += phy_tmp;
3258                 }
3259         }
3260
3261         /* Management Stats */
3262         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3263         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3264         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3265 }
3266
3267
3268 static irqreturn_t igb_msix_other(int irq, void *data)
3269 {
3270         struct net_device *netdev = data;
3271         struct igb_adapter *adapter = netdev_priv(netdev);
3272         struct e1000_hw *hw = &adapter->hw;
3273         u32 icr = rd32(E1000_ICR);
3274
3275         /* reading ICR causes bit 31 of EICR to be cleared */
3276         if (!(icr & E1000_ICR_LSC))
3277                 goto no_link_interrupt;
3278         hw->mac.get_link_status = 1;
3279         /* guard against interrupt when we're going down */
3280         if (!test_bit(__IGB_DOWN, &adapter->state))
3281                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3282         
3283 no_link_interrupt:
3284         wr32(E1000_IMS, E1000_IMS_LSC);
3285         wr32(E1000_EIMS, adapter->eims_other);
3286
3287         return IRQ_HANDLED;
3288 }
3289
3290 static irqreturn_t igb_msix_tx(int irq, void *data)
3291 {
3292         struct igb_ring *tx_ring = data;
3293         struct igb_adapter *adapter = tx_ring->adapter;
3294         struct e1000_hw *hw = &adapter->hw;
3295
3296 #ifdef CONFIG_IGB_DCA
3297         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3298                 igb_update_tx_dca(tx_ring);
3299 #endif
3300         tx_ring->total_bytes = 0;
3301         tx_ring->total_packets = 0;
3302
3303         /* auto mask will automatically reenable the interrupt when we write
3304          * EICS */
3305         if (!igb_clean_tx_irq(tx_ring))
3306                 /* Ring was not completely cleaned, so fire another interrupt */
3307                 wr32(E1000_EICS, tx_ring->eims_value);
3308         else
3309                 wr32(E1000_EIMS, tx_ring->eims_value);
3310
3311         return IRQ_HANDLED;
3312 }
3313
3314 static void igb_write_itr(struct igb_ring *ring)
3315 {
3316         struct e1000_hw *hw = &ring->adapter->hw;
3317         if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3318                 switch (hw->mac.type) {
3319                 case e1000_82576:
3320                         wr32(ring->itr_register,
3321                              ring->itr_val |
3322                              0x80000000);
3323                         break;
3324                 default:
3325                         wr32(ring->itr_register,
3326                              ring->itr_val |
3327                              (ring->itr_val << 16));
3328                         break;
3329                 }
3330                 ring->set_itr = 0;
3331         }
3332 }
3333
3334 static irqreturn_t igb_msix_rx(int irq, void *data)
3335 {
3336         struct igb_ring *rx_ring = data;
3337         struct igb_adapter *adapter = rx_ring->adapter;
3338
3339         /* Write the ITR value calculated at the end of the
3340          * previous interrupt.
3341          */
3342
3343         igb_write_itr(rx_ring);
3344
3345         if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi))
3346                 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3347
3348 #ifdef CONFIG_IGB_DCA
3349         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3350                 igb_update_rx_dca(rx_ring);
3351 #endif
3352                 return IRQ_HANDLED;
3353 }
3354
3355 #ifdef CONFIG_IGB_DCA
3356 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3357 {
3358         u32 dca_rxctrl;
3359         struct igb_adapter *adapter = rx_ring->adapter;
3360         struct e1000_hw *hw = &adapter->hw;
3361         int cpu = get_cpu();
3362         int q = rx_ring - adapter->rx_ring;
3363
3364         if (rx_ring->cpu != cpu) {
3365                 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3366                 if (hw->mac.type == e1000_82576) {
3367                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3368                         dca_rxctrl |= dca_get_tag(cpu) <<
3369                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
3370                 } else {
3371                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3372                         dca_rxctrl |= dca_get_tag(cpu);
3373                 }
3374                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3375                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3376                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3377                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3378                 rx_ring->cpu = cpu;
3379         }
3380         put_cpu();
3381 }
3382
3383 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3384 {
3385         u32 dca_txctrl;
3386         struct igb_adapter *adapter = tx_ring->adapter;
3387         struct e1000_hw *hw = &adapter->hw;
3388         int cpu = get_cpu();
3389         int q = tx_ring - adapter->tx_ring;
3390
3391         if (tx_ring->cpu != cpu) {
3392                 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3393                 if (hw->mac.type == e1000_82576) {
3394                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3395                         dca_txctrl |= dca_get_tag(cpu) <<
3396                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
3397                 } else {
3398                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3399                         dca_txctrl |= dca_get_tag(cpu);
3400                 }
3401                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3402                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3403                 tx_ring->cpu = cpu;
3404         }
3405         put_cpu();
3406 }
3407
3408 static void igb_setup_dca(struct igb_adapter *adapter)
3409 {
3410         int i;
3411
3412         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3413                 return;
3414
3415         for (i = 0; i < adapter->num_tx_queues; i++) {
3416                 adapter->tx_ring[i].cpu = -1;
3417                 igb_update_tx_dca(&adapter->tx_ring[i]);
3418         }
3419         for (i = 0; i < adapter->num_rx_queues; i++) {
3420                 adapter->rx_ring[i].cpu = -1;
3421                 igb_update_rx_dca(&adapter->rx_ring[i]);
3422         }
3423 }
3424
3425 static int __igb_notify_dca(struct device *dev, void *data)
3426 {
3427         struct net_device *netdev = dev_get_drvdata(dev);
3428         struct igb_adapter *adapter = netdev_priv(netdev);
3429         struct e1000_hw *hw = &adapter->hw;
3430         unsigned long event = *(unsigned long *)data;
3431
3432         if (!(adapter->flags & IGB_FLAG_HAS_DCA))
3433                 goto out;
3434
3435         switch (event) {
3436         case DCA_PROVIDER_ADD:
3437                 /* if already enabled, don't do it again */
3438                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3439                         break;
3440                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3441                 /* Always use CB2 mode, difference is masked
3442                  * in the CB driver. */
3443                 wr32(E1000_DCA_CTRL, 2);
3444                 if (dca_add_requester(dev) == 0) {
3445                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
3446                         igb_setup_dca(adapter);
3447                         break;
3448                 }
3449                 /* Fall Through since DCA is disabled. */
3450         case DCA_PROVIDER_REMOVE:
3451                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3452                         /* without this a class_device is left
3453                          * hanging around in the sysfs model */
3454                         dca_remove_requester(dev);
3455                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
3456                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3457                         wr32(E1000_DCA_CTRL, 1);
3458                 }
3459                 break;
3460         }
3461 out:
3462         return 0;
3463 }
3464
3465 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3466                           void *p)
3467 {
3468         int ret_val;
3469
3470         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3471                                          __igb_notify_dca);
3472
3473         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3474 }
3475 #endif /* CONFIG_IGB_DCA */
3476
3477 /**
3478  * igb_intr_msi - Interrupt Handler
3479  * @irq: interrupt number
3480  * @data: pointer to a network interface device structure
3481  **/
3482 static irqreturn_t igb_intr_msi(int irq, void *data)
3483 {
3484         struct net_device *netdev = data;
3485         struct igb_adapter *adapter = netdev_priv(netdev);
3486         struct e1000_hw *hw = &adapter->hw;
3487         /* read ICR disables interrupts using IAM */
3488         u32 icr = rd32(E1000_ICR);
3489
3490         igb_write_itr(adapter->rx_ring);
3491
3492         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3493                 hw->mac.get_link_status = 1;
3494                 if (!test_bit(__IGB_DOWN, &adapter->state))
3495                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3496         }
3497
3498         netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3499
3500         return IRQ_HANDLED;
3501 }
3502
3503 /**
3504  * igb_intr - Interrupt Handler
3505  * @irq: interrupt number
3506  * @data: pointer to a network interface device structure
3507  **/
3508 static irqreturn_t igb_intr(int irq, void *data)
3509 {
3510         struct net_device *netdev = data;
3511         struct igb_adapter *adapter = netdev_priv(netdev);
3512         struct e1000_hw *hw = &adapter->hw;
3513         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3514          * need for the IMC write */
3515         u32 icr = rd32(E1000_ICR);
3516         u32 eicr = 0;
3517         if (!icr)
3518                 return IRQ_NONE;  /* Not our interrupt */
3519
3520         igb_write_itr(adapter->rx_ring);
3521
3522         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3523          * not set, then the adapter didn't send an interrupt */
3524         if (!(icr & E1000_ICR_INT_ASSERTED))
3525                 return IRQ_NONE;
3526
3527         eicr = rd32(E1000_EICR);
3528
3529         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3530                 hw->mac.get_link_status = 1;
3531                 /* guard against interrupt when we're going down */
3532                 if (!test_bit(__IGB_DOWN, &adapter->state))
3533                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3534         }
3535
3536         netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3537
3538         return IRQ_HANDLED;
3539 }
3540
3541 /**
3542  * igb_poll - NAPI Rx polling callback
3543  * @napi: napi polling structure
3544  * @budget: count of how many packets we should handle
3545  **/
3546 static int igb_poll(struct napi_struct *napi, int budget)
3547 {
3548         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3549         struct igb_adapter *adapter = rx_ring->adapter;
3550         struct net_device *netdev = adapter->netdev;
3551         int tx_clean_complete, work_done = 0;
3552
3553         /* this poll routine only supports one tx and one rx queue */
3554 #ifdef CONFIG_IGB_DCA
3555         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3556                 igb_update_tx_dca(&adapter->tx_ring[0]);
3557 #endif
3558         tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3559
3560 #ifdef CONFIG_IGB_DCA
3561         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3562                 igb_update_rx_dca(&adapter->rx_ring[0]);
3563 #endif
3564         igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3565
3566         /* If no Tx and not enough Rx work done, exit the polling mode */
3567         if ((tx_clean_complete && (work_done < budget)) ||
3568             !netif_running(netdev)) {
3569                 if (adapter->itr_setting & 3)
3570                         igb_set_itr(adapter);
3571                 netif_rx_complete(netdev, napi);
3572                 if (!test_bit(__IGB_DOWN, &adapter->state))
3573                         igb_irq_enable(adapter);
3574                 return 0;
3575         }
3576
3577         return 1;
3578 }
3579
3580 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3581 {
3582         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3583         struct igb_adapter *adapter = rx_ring->adapter;
3584         struct e1000_hw *hw = &adapter->hw;
3585         struct net_device *netdev = adapter->netdev;
3586         int work_done = 0;
3587
3588 #ifdef CONFIG_IGB_DCA
3589         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3590                 igb_update_rx_dca(rx_ring);
3591 #endif
3592         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3593
3594
3595         /* If not enough Rx work done, exit the polling mode */
3596         if ((work_done == 0) || !netif_running(netdev)) {
3597                 netif_rx_complete(netdev, napi);
3598
3599                 if (adapter->itr_setting & 3) {
3600                         if (adapter->num_rx_queues == 1)
3601                                 igb_set_itr(adapter);
3602                         else
3603                                 igb_update_ring_itr(rx_ring);
3604                 }
3605
3606                 if (!test_bit(__IGB_DOWN, &adapter->state))
3607                         wr32(E1000_EIMS, rx_ring->eims_value);
3608
3609                 return 0;
3610         }
3611
3612         return 1;
3613 }
3614
3615 static inline u32 get_head(struct igb_ring *tx_ring)
3616 {
3617         void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3618         return le32_to_cpu(*(volatile __le32 *)end);
3619 }
3620
3621 /**
3622  * igb_clean_tx_irq - Reclaim resources after transmit completes
3623  * @adapter: board private structure
3624  * returns true if ring is completely cleaned
3625  **/
3626 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3627 {
3628         struct igb_adapter *adapter = tx_ring->adapter;
3629         struct e1000_hw *hw = &adapter->hw;
3630         struct net_device *netdev = adapter->netdev;
3631         struct e1000_tx_desc *tx_desc;
3632         struct igb_buffer *buffer_info;
3633         struct sk_buff *skb;
3634         unsigned int i;
3635         u32 head, oldhead;
3636         unsigned int count = 0;
3637         unsigned int total_bytes = 0, total_packets = 0;
3638         bool retval = true;
3639
3640         rmb();
3641         head = get_head(tx_ring);
3642         i = tx_ring->next_to_clean;
3643         while (1) {
3644                 while (i != head) {
3645                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3646                         buffer_info = &tx_ring->buffer_info[i];
3647                         skb = buffer_info->skb;
3648
3649                         if (skb) {
3650                                 unsigned int segs, bytecount;
3651                                 /* gso_segs is currently only valid for tcp */
3652                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3653                                 /* multiply data chunks by size of headers */
3654                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3655                                             skb->len;
3656                                 total_packets += segs;
3657                                 total_bytes += bytecount;
3658                         }
3659
3660                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
3661
3662                         i++;
3663                         if (i == tx_ring->count)
3664                                 i = 0;
3665
3666                         count++;
3667                         if (count == IGB_MAX_TX_CLEAN) {
3668                                 retval = false;
3669                                 goto done_cleaning;
3670                         }
3671                 }
3672                 oldhead = head;
3673                 rmb();
3674                 head = get_head(tx_ring);
3675                 if (head == oldhead)
3676                         goto done_cleaning;
3677         }  /* while (1) */
3678
3679 done_cleaning:
3680         tx_ring->next_to_clean = i;
3681
3682         if (unlikely(count &&
3683                      netif_carrier_ok(netdev) &&
3684                      IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3685                 /* Make sure that anybody stopping the queue after this
3686                  * sees the new next_to_clean.
3687                  */
3688                 smp_mb();
3689                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3690                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3691                         netif_wake_subqueue(netdev, tx_ring->queue_index);
3692                         ++adapter->restart_queue;
3693                 }
3694         }
3695
3696         if (tx_ring->detect_tx_hung) {
3697                 /* Detect a transmit hang in hardware, this serializes the
3698                  * check with the clearing of time_stamp and movement of i */
3699                 tx_ring->detect_tx_hung = false;
3700                 if (tx_ring->buffer_info[i].time_stamp &&
3701                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3702                                (adapter->tx_timeout_factor * HZ))
3703                     && !(rd32(E1000_STATUS) &
3704                          E1000_STATUS_TXOFF)) {
3705
3706                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3707                         /* detected Tx unit hang */
3708                         dev_err(&adapter->pdev->dev,
3709                                 "Detected Tx Unit Hang\n"
3710                                 "  Tx Queue             <%d>\n"
3711                                 "  TDH                  <%x>\n"
3712                                 "  TDT                  <%x>\n"
3713                                 "  next_to_use          <%x>\n"
3714                                 "  next_to_clean        <%x>\n"
3715                                 "  head (WB)            <%x>\n"
3716                                 "buffer_info[next_to_clean]\n"
3717                                 "  time_stamp           <%lx>\n"
3718                                 "  jiffies              <%lx>\n"
3719                                 "  desc.status          <%x>\n",
3720                                 tx_ring->queue_index,
3721                                 readl(adapter->hw.hw_addr + tx_ring->head),
3722                                 readl(adapter->hw.hw_addr + tx_ring->tail),
3723                                 tx_ring->next_to_use,
3724                                 tx_ring->next_to_clean,
3725                                 head,
3726                                 tx_ring->buffer_info[i].time_stamp,
3727                                 jiffies,
3728                                 tx_desc->upper.fields.status);
3729                         netif_stop_subqueue(netdev, tx_ring->queue_index);
3730                 }
3731         }
3732         tx_ring->total_bytes += total_bytes;
3733         tx_ring->total_packets += total_packets;
3734         tx_ring->tx_stats.bytes += total_bytes;
3735         tx_ring->tx_stats.packets += total_packets;
3736         adapter->net_stats.tx_bytes += total_bytes;
3737         adapter->net_stats.tx_packets += total_packets;
3738         return retval;
3739 }
3740
3741 #ifdef CONFIG_IGB_LRO
3742  /**
3743  * igb_get_skb_hdr - helper function for LRO header processing
3744  * @skb: pointer to sk_buff to be added to LRO packet
3745  * @iphdr: pointer to ip header structure
3746  * @tcph: pointer to tcp header structure
3747  * @hdr_flags: pointer to header flags
3748  * @priv: pointer to the receive descriptor for the current sk_buff
3749  **/
3750 static int igb_get_skb_hdr(struct sk_buff *skb, void **iphdr, void **tcph,
3751                            u64 *hdr_flags, void *priv)
3752 {
3753         union e1000_adv_rx_desc *rx_desc = priv;
3754         u16 pkt_type = rx_desc->wb.lower.lo_dword.pkt_info &
3755                        (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP);
3756
3757         /* Verify that this is a valid IPv4 TCP packet */
3758         if (pkt_type != (E1000_RXDADV_PKTTYPE_IPV4 |
3759                           E1000_RXDADV_PKTTYPE_TCP))
3760                 return -1;
3761
3762         /* Set network headers */
3763         skb_reset_network_header(skb);
3764         skb_set_transport_header(skb, ip_hdrlen(skb));
3765         *iphdr = ip_hdr(skb);
3766         *tcph = tcp_hdr(skb);
3767         *hdr_flags = LRO_IPV4 | LRO_TCP;
3768
3769         return 0;
3770
3771 }
3772 #endif /* CONFIG_IGB_LRO */
3773
3774 /**
3775  * igb_receive_skb - helper function to handle rx indications
3776  * @ring: pointer to receive ring receving this packet 
3777  * @status: descriptor status field as written by hardware
3778  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3779  * @skb: pointer to sk_buff to be indicated to stack
3780  **/
3781 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3782                             union e1000_adv_rx_desc * rx_desc,
3783                             struct sk_buff *skb)
3784 {
3785         struct igb_adapter * adapter = ring->adapter;
3786         bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3787
3788 #ifdef CONFIG_IGB_LRO
3789         if (adapter->netdev->features & NETIF_F_LRO &&
3790             skb->ip_summed == CHECKSUM_UNNECESSARY) {
3791                 if (vlan_extracted)
3792                         lro_vlan_hwaccel_receive_skb(&ring->lro_mgr, skb,
3793                                            adapter->vlgrp,
3794                                            le16_to_cpu(rx_desc->wb.upper.vlan),
3795                                            rx_desc);
3796                 else
3797                         lro_receive_skb(&ring->lro_mgr,skb, rx_desc);
3798                 ring->lro_used = 1;
3799         } else {
3800 #endif
3801                 if (vlan_extracted)
3802                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3803                                           le16_to_cpu(rx_desc->wb.upper.vlan));
3804                 else
3805
3806                         netif_receive_skb(skb);
3807 #ifdef CONFIG_IGB_LRO
3808         }
3809 #endif
3810 }
3811
3812
3813 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3814                                        u32 status_err, struct sk_buff *skb)
3815 {
3816         skb->ip_summed = CHECKSUM_NONE;
3817
3818         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3819         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3820                 return;
3821         /* TCP/UDP checksum error bit is set */
3822         if (status_err &
3823             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3824                 /* let the stack verify checksum errors */
3825                 adapter->hw_csum_err++;
3826                 return;
3827         }
3828         /* It must be a TCP or UDP packet with a valid checksum */
3829         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3830                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3831
3832         adapter->hw_csum_good++;
3833 }
3834
3835 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3836                                  int *work_done, int budget)
3837 {
3838         struct igb_adapter *adapter = rx_ring->adapter;
3839         struct net_device *netdev = adapter->netdev;
3840         struct pci_dev *pdev = adapter->pdev;
3841         union e1000_adv_rx_desc *rx_desc , *next_rxd;
3842         struct igb_buffer *buffer_info , *next_buffer;
3843         struct sk_buff *skb;
3844         unsigned int i;
3845         u32 length, hlen, staterr;
3846         bool cleaned = false;
3847         int cleaned_count = 0;
3848         unsigned int total_bytes = 0, total_packets = 0;
3849
3850         i = rx_ring->next_to_clean;
3851         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3852         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3853
3854         while (staterr & E1000_RXD_STAT_DD) {
3855                 if (*work_done >= budget)
3856                         break;
3857                 (*work_done)++;
3858                 buffer_info = &rx_ring->buffer_info[i];
3859
3860                 /* HW will not DMA in data larger than the given buffer, even
3861                  * if it parses the (NFS, of course) header to be larger.  In
3862                  * that case, it fills the header buffer and spills the rest
3863                  * into the page.
3864                  */
3865                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3866                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3867                 if (hlen > adapter->rx_ps_hdr_size)
3868                         hlen = adapter->rx_ps_hdr_size;
3869
3870                 length = le16_to_cpu(rx_desc->wb.upper.length);
3871                 cleaned = true;
3872                 cleaned_count++;
3873
3874                 skb = buffer_info->skb;
3875                 prefetch(skb->data - NET_IP_ALIGN);
3876                 buffer_info->skb = NULL;
3877                 if (!adapter->rx_ps_hdr_size) {
3878                         pci_unmap_single(pdev, buffer_info->dma,
3879                                          adapter->rx_buffer_len +
3880                                            NET_IP_ALIGN,
3881                                          PCI_DMA_FROMDEVICE);
3882                         skb_put(skb, length);
3883                         goto send_up;
3884                 }
3885
3886                 if (!skb_shinfo(skb)->nr_frags) {
3887                         pci_unmap_single(pdev, buffer_info->dma,
3888                                          adapter->rx_ps_hdr_size +
3889                                            NET_IP_ALIGN,
3890                                          PCI_DMA_FROMDEVICE);
3891                         skb_put(skb, hlen);
3892                 }
3893
3894                 if (length) {
3895                         pci_unmap_page(pdev, buffer_info->page_dma,
3896                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3897                         buffer_info->page_dma = 0;
3898
3899                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3900                                                 buffer_info->page,
3901                                                 buffer_info->page_offset,
3902                                                 length);
3903
3904                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3905                             (page_count(buffer_info->page) != 1))
3906                                 buffer_info->page = NULL;
3907                         else
3908                                 get_page(buffer_info->page);
3909
3910                         skb->len += length;
3911                         skb->data_len += length;
3912
3913                         skb->truesize += length;
3914                 }
3915 send_up:
3916                 i++;
3917                 if (i == rx_ring->count)
3918                         i = 0;
3919                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3920                 prefetch(next_rxd);
3921                 next_buffer = &rx_ring->buffer_info[i];
3922
3923                 if (!(staterr & E1000_RXD_STAT_EOP)) {
3924                         buffer_info->skb = xchg(&next_buffer->skb, skb);
3925                         buffer_info->dma = xchg(&next_buffer->dma, 0);
3926                         goto next_desc;
3927                 }
3928
3929                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3930                         dev_kfree_skb_irq(skb);
3931                         goto next_desc;
3932                 }
3933
3934                 total_bytes += skb->len;
3935                 total_packets++;
3936
3937                 igb_rx_checksum_adv(adapter, staterr, skb);
3938
3939                 skb->protocol = eth_type_trans(skb, netdev);
3940
3941                 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3942
3943                 netdev->last_rx = jiffies;
3944
3945 next_desc:
3946                 rx_desc->wb.upper.status_error = 0;
3947
3948                 /* return some buffers to hardware, one at a time is too slow */
3949                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3950                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3951                         cleaned_count = 0;
3952                 }
3953
3954                 /* use prefetched values */
3955                 rx_desc = next_rxd;
3956                 buffer_info = next_buffer;
3957
3958                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3959         }
3960
3961         rx_ring->next_to_clean = i;
3962         cleaned_count = IGB_DESC_UNUSED(rx_ring);
3963
3964 #ifdef CONFIG_IGB_LRO
3965         if (rx_ring->lro_used) {
3966                 lro_flush_all(&rx_ring->lro_mgr);
3967                 rx_ring->lro_used = 0;
3968         }
3969 #endif
3970
3971         if (cleaned_count)
3972                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3973
3974         rx_ring->total_packets += total_packets;
3975         rx_ring->total_bytes += total_bytes;
3976         rx_ring->rx_stats.packets += total_packets;
3977         rx_ring->rx_stats.bytes += total_bytes;
3978         adapter->net_stats.rx_bytes += total_bytes;
3979         adapter->net_stats.rx_packets += total_packets;
3980         return cleaned;
3981 }
3982
3983
3984 /**
3985  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3986  * @adapter: address of board private structure
3987  **/
3988 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3989                                      int cleaned_count)
3990 {
3991         struct igb_adapter *adapter = rx_ring->adapter;
3992         struct net_device *netdev = adapter->netdev;
3993         struct pci_dev *pdev = adapter->pdev;
3994         union e1000_adv_rx_desc *rx_desc;
3995         struct igb_buffer *buffer_info;
3996         struct sk_buff *skb;
3997         unsigned int i;
3998
3999         i = rx_ring->next_to_use;
4000         buffer_info = &rx_ring->buffer_info[i];
4001
4002         while (cleaned_count--) {
4003                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4004
4005                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4006                         if (!buffer_info->page) {
4007                                 buffer_info->page = alloc_page(GFP_ATOMIC);
4008                                 if (!buffer_info->page) {
4009                                         adapter->alloc_rx_buff_failed++;
4010                                         goto no_buffers;
4011                                 }
4012                                 buffer_info->page_offset = 0;
4013                         } else {
4014                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
4015                         }
4016                         buffer_info->page_dma =
4017                                 pci_map_page(pdev,
4018                                              buffer_info->page,
4019                                              buffer_info->page_offset,
4020                                              PAGE_SIZE / 2,
4021                                              PCI_DMA_FROMDEVICE);
4022                 }
4023
4024                 if (!buffer_info->skb) {
4025                         int bufsz;
4026
4027                         if (adapter->rx_ps_hdr_size)
4028                                 bufsz = adapter->rx_ps_hdr_size;
4029                         else
4030                                 bufsz = adapter->rx_buffer_len;
4031                         bufsz += NET_IP_ALIGN;
4032                         skb = netdev_alloc_skb(netdev, bufsz);
4033
4034                         if (!skb) {
4035                                 adapter->alloc_rx_buff_failed++;
4036                                 goto no_buffers;
4037                         }
4038
4039                         /* Make buffer alignment 2 beyond a 16 byte boundary
4040                          * this will result in a 16 byte aligned IP header after
4041                          * the 14 byte MAC header is removed
4042                          */
4043                         skb_reserve(skb, NET_IP_ALIGN);
4044
4045                         buffer_info->skb = skb;
4046                         buffer_info->dma = pci_map_single(pdev, skb->data,
4047                                                           bufsz,
4048                                                           PCI_DMA_FROMDEVICE);
4049
4050                 }
4051                 /* Refresh the desc even if buffer_addrs didn't change because
4052                  * each write-back erases this info. */
4053                 if (adapter->rx_ps_hdr_size) {
4054                         rx_desc->read.pkt_addr =
4055                              cpu_to_le64(buffer_info->page_dma);
4056                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4057                 } else {
4058                         rx_desc->read.pkt_addr =
4059                              cpu_to_le64(buffer_info->dma);
4060                         rx_desc->read.hdr_addr = 0;
4061                 }
4062
4063                 i++;
4064                 if (i == rx_ring->count)
4065                         i = 0;
4066                 buffer_info = &rx_ring->buffer_info[i];
4067         }
4068
4069 no_buffers:
4070         if (rx_ring->next_to_use != i) {
4071                 rx_ring->next_to_use = i;
4072                 if (i == 0)
4073                         i = (rx_ring->count - 1);
4074                 else
4075                         i--;
4076
4077                 /* Force memory writes to complete before letting h/w
4078                  * know there are new descriptors to fetch.  (Only
4079                  * applicable for weak-ordered memory model archs,
4080                  * such as IA-64). */
4081                 wmb();
4082                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4083         }
4084 }
4085
4086 /**
4087  * igb_mii_ioctl -
4088  * @netdev:
4089  * @ifreq:
4090  * @cmd:
4091  **/
4092 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4093 {
4094         struct igb_adapter *adapter = netdev_priv(netdev);
4095         struct mii_ioctl_data *data = if_mii(ifr);
4096
4097         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4098                 return -EOPNOTSUPP;
4099
4100         switch (cmd) {
4101         case SIOCGMIIPHY:
4102                 data->phy_id = adapter->hw.phy.addr;
4103                 break;
4104         case SIOCGMIIREG:
4105                 if (!capable(CAP_NET_ADMIN))
4106                         return -EPERM;
4107                 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
4108                                                      data->reg_num
4109                                                      & 0x1F, &data->val_out))
4110                         return -EIO;
4111                 break;
4112         case SIOCSMIIREG:
4113         default:
4114                 return -EOPNOTSUPP;
4115         }
4116         return 0;
4117 }
4118
4119 /**
4120  * igb_ioctl -
4121  * @netdev:
4122  * @ifreq:
4123  * @cmd:
4124  **/
4125 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4126 {
4127         switch (cmd) {
4128         case SIOCGMIIPHY:
4129         case SIOCGMIIREG:
4130         case SIOCSMIIREG:
4131                 return igb_mii_ioctl(netdev, ifr, cmd);
4132         default:
4133                 return -EOPNOTSUPP;
4134         }
4135 }
4136
4137 static void igb_vlan_rx_register(struct net_device *netdev,
4138                                  struct vlan_group *grp)
4139 {
4140         struct igb_adapter *adapter = netdev_priv(netdev);
4141         struct e1000_hw *hw = &adapter->hw;
4142         u32 ctrl, rctl;
4143
4144         igb_irq_disable(adapter);
4145         adapter->vlgrp = grp;
4146
4147         if (grp) {
4148                 /* enable VLAN tag insert/strip */
4149                 ctrl = rd32(E1000_CTRL);
4150                 ctrl |= E1000_CTRL_VME;
4151                 wr32(E1000_CTRL, ctrl);
4152
4153                 /* enable VLAN receive filtering */
4154                 rctl = rd32(E1000_RCTL);
4155                 rctl &= ~E1000_RCTL_CFIEN;
4156                 wr32(E1000_RCTL, rctl);
4157                 igb_update_mng_vlan(adapter);
4158                 wr32(E1000_RLPML,
4159                                 adapter->max_frame_size + VLAN_TAG_SIZE);
4160         } else {
4161                 /* disable VLAN tag insert/strip */
4162                 ctrl = rd32(E1000_CTRL);
4163                 ctrl &= ~E1000_CTRL_VME;
4164                 wr32(E1000_CTRL, ctrl);
4165
4166                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4167                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4168                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4169                 }
4170                 wr32(E1000_RLPML,
4171                                 adapter->max_frame_size);
4172         }
4173
4174         if (!test_bit(__IGB_DOWN, &adapter->state))
4175                 igb_irq_enable(adapter);
4176 }
4177
4178 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4179 {
4180         struct igb_adapter *adapter = netdev_priv(netdev);
4181         struct e1000_hw *hw = &adapter->hw;
4182         u32 vfta, index;
4183
4184         if ((adapter->hw.mng_cookie.status &
4185              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4186             (vid == adapter->mng_vlan_id))
4187                 return;
4188         /* add VID to filter table */
4189         index = (vid >> 5) & 0x7F;
4190         vfta = array_rd32(E1000_VFTA, index);
4191         vfta |= (1 << (vid & 0x1F));
4192         igb_write_vfta(&adapter->hw, index, vfta);
4193 }
4194
4195 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4196 {
4197         struct igb_adapter *adapter = netdev_priv(netdev);
4198         struct e1000_hw *hw = &adapter->hw;
4199         u32 vfta, index;
4200
4201         igb_irq_disable(adapter);
4202         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4203
4204         if (!test_bit(__IGB_DOWN, &adapter->state))
4205                 igb_irq_enable(adapter);
4206
4207         if ((adapter->hw.mng_cookie.status &
4208              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4209             (vid == adapter->mng_vlan_id)) {
4210                 /* release control to f/w */
4211                 igb_release_hw_control(adapter);
4212                 return;
4213         }
4214
4215         /* remove VID from filter table */
4216         index = (vid >> 5) & 0x7F;
4217         vfta = array_rd32(E1000_VFTA, index);
4218         vfta &= ~(1 << (vid & 0x1F));
4219         igb_write_vfta(&adapter->hw, index, vfta);
4220 }
4221
4222 static void igb_restore_vlan(struct igb_adapter *adapter)
4223 {
4224         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4225
4226         if (adapter->vlgrp) {
4227                 u16 vid;
4228                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4229                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4230                                 continue;
4231                         igb_vlan_rx_add_vid(adapter->netdev, vid);
4232                 }
4233         }
4234 }
4235
4236 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4237 {
4238         struct e1000_mac_info *mac = &adapter->hw.mac;
4239
4240         mac->autoneg = 0;
4241
4242         /* Fiber NICs only allow 1000 gbps Full duplex */
4243         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4244                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4245                 dev_err(&adapter->pdev->dev,
4246                         "Unsupported Speed/Duplex configuration\n");
4247                 return -EINVAL;
4248         }
4249
4250         switch (spddplx) {
4251         case SPEED_10 + DUPLEX_HALF:
4252                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4253                 break;
4254         case SPEED_10 + DUPLEX_FULL:
4255                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4256                 break;
4257         case SPEED_100 + DUPLEX_HALF:
4258                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4259                 break;
4260         case SPEED_100 + DUPLEX_FULL:
4261                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4262                 break;
4263         case SPEED_1000 + DUPLEX_FULL:
4264                 mac->autoneg = 1;
4265                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4266                 break;
4267         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4268         default:
4269                 dev_err(&adapter->pdev->dev,
4270                         "Unsupported Speed/Duplex configuration\n");
4271                 return -EINVAL;
4272         }
4273         return 0;
4274 }
4275
4276
4277 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4278 {
4279         struct net_device *netdev = pci_get_drvdata(pdev);
4280         struct igb_adapter *adapter = netdev_priv(netdev);
4281         struct e1000_hw *hw = &adapter->hw;
4282         u32 ctrl, rctl, status;
4283         u32 wufc = adapter->wol;
4284 #ifdef CONFIG_PM
4285         int retval = 0;
4286 #endif
4287
4288         netif_device_detach(netdev);
4289
4290         if (netif_running(netdev))
4291                 igb_close(netdev);
4292
4293         igb_reset_interrupt_capability(adapter);
4294
4295         igb_free_queues(adapter);
4296
4297 #ifdef CONFIG_PM
4298         retval = pci_save_state(pdev);
4299         if (retval)
4300                 return retval;
4301 #endif
4302
4303         status = rd32(E1000_STATUS);
4304         if (status & E1000_STATUS_LU)
4305                 wufc &= ~E1000_WUFC_LNKC;
4306
4307         if (wufc) {
4308                 igb_setup_rctl(adapter);
4309                 igb_set_multi(netdev);
4310
4311                 /* turn on all-multi mode if wake on multicast is enabled */
4312                 if (wufc & E1000_WUFC_MC) {
4313                         rctl = rd32(E1000_RCTL);
4314                         rctl |= E1000_RCTL_MPE;
4315                         wr32(E1000_RCTL, rctl);
4316                 }
4317
4318                 ctrl = rd32(E1000_CTRL);
4319                 /* advertise wake from D3Cold */
4320                 #define E1000_CTRL_ADVD3WUC 0x00100000
4321                 /* phy power management enable */
4322                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4323                 ctrl |= E1000_CTRL_ADVD3WUC;
4324                 wr32(E1000_CTRL, ctrl);
4325
4326                 /* Allow time for pending master requests to run */
4327                 igb_disable_pcie_master(&adapter->hw);
4328
4329                 wr32(E1000_WUC, E1000_WUC_PME_EN);
4330                 wr32(E1000_WUFC, wufc);
4331         } else {
4332                 wr32(E1000_WUC, 0);
4333                 wr32(E1000_WUFC, 0);
4334         }
4335
4336         /* make sure adapter isn't asleep if manageability/wol is enabled */
4337         if (wufc || adapter->en_mng_pt) {
4338                 pci_enable_wake(pdev, PCI_D3hot, 1);
4339                 pci_enable_wake(pdev, PCI_D3cold, 1);
4340         } else {
4341                 igb_shutdown_fiber_serdes_link_82575(hw);
4342                 pci_enable_wake(pdev, PCI_D3hot, 0);
4343                 pci_enable_wake(pdev, PCI_D3cold, 0);
4344         }
4345
4346         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4347          * would have already happened in close and is redundant. */
4348         igb_release_hw_control(adapter);
4349
4350         pci_disable_device(pdev);
4351
4352         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4353
4354         return 0;
4355 }
4356
4357 #ifdef CONFIG_PM
4358 static int igb_resume(struct pci_dev *pdev)
4359 {
4360         struct net_device *netdev = pci_get_drvdata(pdev);
4361         struct igb_adapter *adapter = netdev_priv(netdev);
4362         struct e1000_hw *hw = &adapter->hw;
4363         u32 err;
4364
4365         pci_set_power_state(pdev, PCI_D0);
4366         pci_restore_state(pdev);
4367
4368         if (adapter->need_ioport)
4369                 err = pci_enable_device(pdev);
4370         else
4371                 err = pci_enable_device_mem(pdev);
4372         if (err) {
4373                 dev_err(&pdev->dev,
4374                         "igb: Cannot enable PCI device from suspend\n");
4375                 return err;
4376         }
4377         pci_set_master(pdev);
4378
4379         pci_enable_wake(pdev, PCI_D3hot, 0);
4380         pci_enable_wake(pdev, PCI_D3cold, 0);
4381
4382         igb_set_interrupt_capability(adapter);
4383
4384         if (igb_alloc_queues(adapter)) {
4385                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4386                 return -ENOMEM;
4387         }
4388
4389         /* e1000_power_up_phy(adapter); */
4390
4391         igb_reset(adapter);
4392         wr32(E1000_WUS, ~0);
4393
4394         if (netif_running(netdev)) {
4395                 err = igb_open(netdev);
4396                 if (err)
4397                         return err;
4398         }
4399
4400         netif_device_attach(netdev);
4401
4402         /* let the f/w know that the h/w is now under the control of the
4403          * driver. */
4404         igb_get_hw_control(adapter);
4405
4406         return 0;
4407 }
4408 #endif
4409
4410 static void igb_shutdown(struct pci_dev *pdev)
4411 {
4412         igb_suspend(pdev, PMSG_SUSPEND);
4413 }
4414
4415 #ifdef CONFIG_NET_POLL_CONTROLLER
4416 /*
4417  * Polling 'interrupt' - used by things like netconsole to send skbs
4418  * without having to re-enable interrupts. It's not called while
4419  * the interrupt routine is executing.
4420  */
4421 static void igb_netpoll(struct net_device *netdev)
4422 {
4423         struct igb_adapter *adapter = netdev_priv(netdev);
4424         int i;
4425         int work_done = 0;
4426
4427         igb_irq_disable(adapter);
4428         adapter->flags |= IGB_FLAG_IN_NETPOLL;
4429
4430         for (i = 0; i < adapter->num_tx_queues; i++)
4431                 igb_clean_tx_irq(&adapter->tx_ring[i]);
4432
4433         for (i = 0; i < adapter->num_rx_queues; i++)
4434                 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4435                                      &work_done,
4436                                      adapter->rx_ring[i].napi.weight);
4437
4438         adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
4439         igb_irq_enable(adapter);
4440 }
4441 #endif /* CONFIG_NET_POLL_CONTROLLER */
4442
4443 /**
4444  * igb_io_error_detected - called when PCI error is detected
4445  * @pdev: Pointer to PCI device
4446  * @state: The current pci connection state
4447  *
4448  * This function is called after a PCI bus error affecting
4449  * this device has been detected.
4450  */
4451 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4452                                               pci_channel_state_t state)
4453 {
4454         struct net_device *netdev = pci_get_drvdata(pdev);
4455         struct igb_adapter *adapter = netdev_priv(netdev);
4456
4457         netif_device_detach(netdev);
4458
4459         if (netif_running(netdev))
4460                 igb_down(adapter);
4461         pci_disable_device(pdev);
4462
4463         /* Request a slot slot reset. */
4464         return PCI_ERS_RESULT_NEED_RESET;
4465 }
4466
4467 /**
4468  * igb_io_slot_reset - called after the pci bus has been reset.
4469  * @pdev: Pointer to PCI device
4470  *
4471  * Restart the card from scratch, as if from a cold-boot. Implementation
4472  * resembles the first-half of the igb_resume routine.
4473  */
4474 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4475 {
4476         struct net_device *netdev = pci_get_drvdata(pdev);
4477         struct igb_adapter *adapter = netdev_priv(netdev);
4478         struct e1000_hw *hw = &adapter->hw;
4479         int err;
4480
4481         if (adapter->need_ioport)
4482                 err = pci_enable_device(pdev);
4483         else
4484                 err = pci_enable_device_mem(pdev);
4485         if (err) {
4486                 dev_err(&pdev->dev,
4487                         "Cannot re-enable PCI device after reset.\n");
4488                 return PCI_ERS_RESULT_DISCONNECT;
4489         }
4490         pci_set_master(pdev);
4491         pci_restore_state(pdev);
4492
4493         pci_enable_wake(pdev, PCI_D3hot, 0);
4494         pci_enable_wake(pdev, PCI_D3cold, 0);
4495
4496         igb_reset(adapter);
4497         wr32(E1000_WUS, ~0);
4498
4499         return PCI_ERS_RESULT_RECOVERED;
4500 }
4501
4502 /**
4503  * igb_io_resume - called when traffic can start flowing again.
4504  * @pdev: Pointer to PCI device
4505  *
4506  * This callback is called when the error recovery driver tells us that
4507  * its OK to resume normal operation. Implementation resembles the
4508  * second-half of the igb_resume routine.
4509  */
4510 static void igb_io_resume(struct pci_dev *pdev)
4511 {
4512         struct net_device *netdev = pci_get_drvdata(pdev);
4513         struct igb_adapter *adapter = netdev_priv(netdev);
4514
4515         if (netif_running(netdev)) {
4516                 if (igb_up(adapter)) {
4517                         dev_err(&pdev->dev, "igb_up failed after reset\n");
4518                         return;
4519                 }
4520         }
4521
4522         netif_device_attach(netdev);
4523
4524         /* let the f/w know that the h/w is now under the control of the
4525          * driver. */
4526         igb_get_hw_control(adapter);
4527
4528 }
4529
4530 /* igb_main.c */