2 * arch/sh/kernel/setup.c
4 * This file handles the architecture-dependent parts of initialization
6 * Copyright (C) 1999 Niibe Yutaka
7 * Copyright (C) 2002 - 2007 Paul Mundt
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <linux/mmzone.h>
30 #include <asm/uaccess.h>
34 #include <asm/sections.h>
36 #include <asm/setup.h>
37 #include <asm/clock.h>
38 #include <asm/mmu_context.h>
41 * Initialize loops_per_jiffy as 10000000 (1000MIPS).
42 * This value will be used at the very early stage of serial setup.
43 * The bigger value means no problem.
45 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
48 .loops_per_jiffy = 10000000,
51 EXPORT_SYMBOL(cpu_data);
54 * The machine vector. First entry in .machvec.init, or clobbered by
55 * sh_mv= on the command line, prior to .machvec.init teardown.
57 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
61 struct screen_info screen_info;
64 extern int root_mountflags;
66 #define RAMDISK_IMAGE_START_MASK 0x07FF
67 #define RAMDISK_PROMPT_FLAG 0x8000
68 #define RAMDISK_LOAD_FLAG 0x4000
70 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
72 static struct resource code_resource = {
73 .name = "Kernel code",
74 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
77 static struct resource data_resource = {
78 .name = "Kernel data",
79 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
82 static struct resource bss_resource = {
84 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
87 unsigned long memory_start;
88 EXPORT_SYMBOL(memory_start);
89 unsigned long memory_end = 0;
90 EXPORT_SYMBOL(memory_end);
92 static struct resource mem_resources[MAX_NUMNODES];
94 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
96 static int __init early_parse_mem(char *p)
100 memory_start = (unsigned long)__va(__MEMORY_START);
101 size = memparse(p, &p);
103 if (size > __MEMORY_SIZE) {
104 static char msg[] __initdata = KERN_ERR
105 "Using mem= to increase the size of kernel memory "
107 " Recompile the kernel with the correct value for "
108 "CONFIG_MEMORY_SIZE.\n";
113 memory_end = memory_start + size;
117 early_param("mem", early_parse_mem);
120 * Register fully available low RAM pages with the bootmem allocator.
122 static void __init register_bootmem_low_pages(void)
124 unsigned long curr_pfn, last_pfn, pages;
127 * We are rounding up the start address of usable memory:
129 curr_pfn = PFN_UP(__MEMORY_START);
132 * ... and at the end of the usable range downwards:
134 last_pfn = PFN_DOWN(__pa(memory_end));
136 if (last_pfn > max_low_pfn)
137 last_pfn = max_low_pfn;
139 pages = last_pfn - curr_pfn;
140 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
144 static void __init reserve_crashkernel(void)
146 unsigned long long free_mem;
147 unsigned long long crash_size, crash_base;
150 free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
152 ret = parse_crashkernel(boot_command_line, free_mem,
153 &crash_size, &crash_base);
154 if (ret == 0 && crash_size) {
155 if (crash_base <= 0) {
156 printk(KERN_INFO "crashkernel reservation failed - "
157 "you have to specify a base address\n");
161 if (reserve_bootmem(crash_base, crash_size,
162 BOOTMEM_EXCLUSIVE) < 0) {
163 printk(KERN_INFO "crashkernel reservation failed - "
164 "memory is in use\n");
168 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
169 "for crashkernel (System RAM: %ldMB)\n",
170 (unsigned long)(crash_size >> 20),
171 (unsigned long)(crash_base >> 20),
172 (unsigned long)(free_mem >> 20));
173 crashk_res.start = crash_base;
174 crashk_res.end = crash_base + crash_size - 1;
175 insert_resource(&iomem_resource, &crashk_res);
179 static inline void __init reserve_crashkernel(void)
183 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
184 unsigned long end_pfn)
186 struct resource *res = &mem_resources[nid];
188 WARN_ON(res->name); /* max one active range per node for now */
190 res->name = "System RAM";
191 res->start = start_pfn << PAGE_SHIFT;
192 res->end = (end_pfn << PAGE_SHIFT) - 1;
193 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
194 if (request_resource(&iomem_resource, res)) {
195 pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
201 * We don't know which RAM region contains kernel data,
202 * so we try it repeatedly and let the resource manager
205 request_resource(res, &code_resource);
206 request_resource(res, &data_resource);
207 request_resource(res, &bss_resource);
209 add_active_range(nid, start_pfn, end_pfn);
212 void __init setup_bootmem_allocator(unsigned long free_pfn)
214 unsigned long bootmap_size;
217 * Find a proper area for the bootmem bitmap. After this
218 * bootstrap step all allocations (until the page allocator
219 * is intact) must be done via bootmem_alloc().
221 bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
222 min_low_pfn, max_low_pfn);
224 __add_active_range(0, min_low_pfn, max_low_pfn);
225 register_bootmem_low_pages();
230 * Reserve the kernel text and
231 * Reserve the bootmem bitmap. We do this in two steps (first step
232 * was init_bootmem()), because this catches the (definitely buggy)
233 * case of us accidentally initializing the bootmem allocator with
234 * an invalid RAM area.
236 reserve_bootmem(__MEMORY_START+PAGE_SIZE,
237 (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START,
241 * reserve physical page 0 - it's a special BIOS page on many boxes,
242 * enabling clean reboots, SMP operation, laptop functions.
244 reserve_bootmem(__MEMORY_START, PAGE_SIZE, BOOTMEM_DEFAULT);
246 sparse_memory_present_with_active_regions(0);
248 #ifdef CONFIG_BLK_DEV_INITRD
249 ROOT_DEV = Root_RAM0;
251 if (LOADER_TYPE && INITRD_START) {
252 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
253 reserve_bootmem(INITRD_START + __MEMORY_START,
254 INITRD_SIZE, BOOTMEM_DEFAULT);
255 initrd_start = INITRD_START + PAGE_OFFSET +
257 initrd_end = initrd_start + INITRD_SIZE;
259 printk("initrd extends beyond end of memory "
260 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
261 INITRD_START + INITRD_SIZE,
262 max_low_pfn << PAGE_SHIFT);
268 reserve_crashkernel();
271 #ifndef CONFIG_NEED_MULTIPLE_NODES
272 static void __init setup_memory(void)
274 unsigned long start_pfn;
277 * Partially used pages are not usable - thus
278 * we are rounding upwards:
280 start_pfn = PFN_UP(__pa(_end));
281 setup_bootmem_allocator(start_pfn);
284 extern void __init setup_memory(void);
288 * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
289 * is_kdump_kernel() to determine if we are booting after a panic. Hence
290 * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
292 #ifdef CONFIG_CRASH_DUMP
293 /* elfcorehdr= specifies the location of elf core header
294 * stored by the crashed kernel.
296 static int __init parse_elfcorehdr(char *arg)
300 elfcorehdr_addr = memparse(arg, &arg);
303 early_param("elfcorehdr", parse_elfcorehdr);
306 void __init setup_arch(char **cmdline_p)
310 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
312 printk(KERN_NOTICE "Boot params:\n"
313 "... MOUNT_ROOT_RDONLY - %08lx\n"
314 "... RAMDISK_FLAGS - %08lx\n"
315 "... ORIG_ROOT_DEV - %08lx\n"
316 "... LOADER_TYPE - %08lx\n"
317 "... INITRD_START - %08lx\n"
318 "... INITRD_SIZE - %08lx\n",
319 MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
320 ORIG_ROOT_DEV, LOADER_TYPE,
321 INITRD_START, INITRD_SIZE);
323 #ifdef CONFIG_BLK_DEV_RAM
324 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
325 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
326 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
329 if (!MOUNT_ROOT_RDONLY)
330 root_mountflags &= ~MS_RDONLY;
331 init_mm.start_code = (unsigned long) _text;
332 init_mm.end_code = (unsigned long) _etext;
333 init_mm.end_data = (unsigned long) _edata;
334 init_mm.brk = (unsigned long) _end;
336 code_resource.start = virt_to_phys(_text);
337 code_resource.end = virt_to_phys(_etext)-1;
338 data_resource.start = virt_to_phys(_etext);
339 data_resource.end = virt_to_phys(_edata)-1;
340 bss_resource.start = virt_to_phys(__bss_start);
341 bss_resource.end = virt_to_phys(_ebss)-1;
343 memory_start = (unsigned long)__va(__MEMORY_START);
345 memory_end = memory_start + __MEMORY_SIZE;
347 #ifdef CONFIG_CMDLINE_BOOL
348 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
350 strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
353 /* Save unparsed command line copy for /proc/cmdline */
354 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
355 *cmdline_p = command_line;
362 * Find the highest page frame number we have available
364 max_pfn = PFN_DOWN(__pa(memory_end));
367 * Determine low and high memory ranges:
369 max_low_pfn = max_pfn;
370 min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
372 nodes_clear(node_online_map);
374 /* Setup bootmem with available RAM */
378 #ifdef CONFIG_DUMMY_CONSOLE
379 conswitchp = &dummy_con;
382 /* Perform the machine specific initialisation */
383 if (likely(sh_mv.mv_setup))
384 sh_mv.mv_setup(cmdline_p);
393 static const char *cpu_name[] = {
394 [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263",
395 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
396 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
397 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
398 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
399 [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720",
400 [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729",
401 [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S",
402 [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751",
403 [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760",
404 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
405 [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770",
406 [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781",
407 [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785",
408 [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3",
409 [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103",
410 [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723",
411 [CPU_SH7366] = "SH7366", [CPU_SH_NONE] = "Unknown"
414 const char *get_cpu_subtype(struct sh_cpuinfo *c)
416 return cpu_name[c->type];
418 EXPORT_SYMBOL(get_cpu_subtype);
420 #ifdef CONFIG_PROC_FS
421 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
422 static const char *cpu_flags[] = {
423 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
424 "ptea", "llsc", "l2", "op32", NULL
427 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
431 seq_printf(m, "cpu flags\t:");
434 seq_printf(m, " %s\n", cpu_flags[0]);
438 for (i = 0; cpu_flags[i]; i++)
439 if ((c->flags & (1 << i)))
440 seq_printf(m, " %s", cpu_flags[i+1]);
445 static void show_cacheinfo(struct seq_file *m, const char *type,
446 struct cache_info info)
448 unsigned int cache_size;
450 cache_size = info.ways * info.sets * info.linesz;
452 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
453 type, cache_size >> 10, info.ways);
457 * Get CPU information for use by the procfs.
459 static int show_cpuinfo(struct seq_file *m, void *v)
461 struct sh_cpuinfo *c = v;
462 unsigned int cpu = c - cpu_data;
464 if (!cpu_online(cpu))
468 seq_printf(m, "machine\t\t: %s\n", get_system_type());
470 seq_printf(m, "processor\t: %d\n", cpu);
471 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
472 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
473 if (c->cut_major == -1)
474 seq_printf(m, "cut\t\t: unknown\n");
475 else if (c->cut_minor == -1)
476 seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
478 seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
482 seq_printf(m, "cache type\t: ");
485 * Check for what type of cache we have, we support both the
486 * unified cache on the SH-2 and SH-3, as well as the harvard
487 * style cache on the SH-4.
489 if (c->icache.flags & SH_CACHE_COMBINED) {
490 seq_printf(m, "unified\n");
491 show_cacheinfo(m, "cache", c->icache);
493 seq_printf(m, "split (harvard)\n");
494 show_cacheinfo(m, "icache", c->icache);
495 show_cacheinfo(m, "dcache", c->dcache);
498 /* Optional secondary cache */
499 if (c->flags & CPU_HAS_L2_CACHE)
500 show_cacheinfo(m, "scache", c->scache);
502 seq_printf(m, "bogomips\t: %lu.%02lu\n",
503 c->loops_per_jiffy/(500000/HZ),
504 (c->loops_per_jiffy/(5000/HZ)) % 100);
509 static void *c_start(struct seq_file *m, loff_t *pos)
511 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
513 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
516 return c_start(m, pos);
518 static void c_stop(struct seq_file *m, void *v)
521 const struct seq_operations cpuinfo_op = {
525 .show = show_cpuinfo,
527 #endif /* CONFIG_PROC_FS */
529 struct dentry *sh_debugfs_root;
531 static int __init sh_debugfs_init(void)
533 sh_debugfs_root = debugfs_create_dir("sh", NULL);
534 if (IS_ERR(sh_debugfs_root))
535 return PTR_ERR(sh_debugfs_root);
539 arch_initcall(sh_debugfs_init);