1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #include <linux/aer.h>
47 #include <linux/dca.h>
51 #define DRV_VERSION "1.2.45-k2"
52 char igb_driver_name[] = "igb";
53 char igb_driver_version[] = DRV_VERSION;
54 static const char igb_driver_string[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
58 static const struct e1000_info *igb_info_tbl[] = {
59 [board_82575] = &e1000_82575_info,
62 static struct pci_device_id igb_pci_tbl[] = {
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
69 /* required last entry */
73 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
75 void igb_reset(struct igb_adapter *);
76 static int igb_setup_all_tx_resources(struct igb_adapter *);
77 static int igb_setup_all_rx_resources(struct igb_adapter *);
78 static void igb_free_all_tx_resources(struct igb_adapter *);
79 static void igb_free_all_rx_resources(struct igb_adapter *);
80 void igb_update_stats(struct igb_adapter *);
81 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
82 static void __devexit igb_remove(struct pci_dev *pdev);
83 static int igb_sw_init(struct igb_adapter *);
84 static int igb_open(struct net_device *);
85 static int igb_close(struct net_device *);
86 static void igb_configure_tx(struct igb_adapter *);
87 static void igb_configure_rx(struct igb_adapter *);
88 static void igb_setup_rctl(struct igb_adapter *);
89 static void igb_clean_all_tx_rings(struct igb_adapter *);
90 static void igb_clean_all_rx_rings(struct igb_adapter *);
91 static void igb_clean_tx_ring(struct igb_ring *);
92 static void igb_clean_rx_ring(struct igb_ring *);
93 static void igb_set_multi(struct net_device *);
94 static void igb_update_phy_info(unsigned long);
95 static void igb_watchdog(unsigned long);
96 static void igb_watchdog_task(struct work_struct *);
97 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
99 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
100 static struct net_device_stats *igb_get_stats(struct net_device *);
101 static int igb_change_mtu(struct net_device *, int);
102 static int igb_set_mac(struct net_device *, void *);
103 static irqreturn_t igb_intr(int irq, void *);
104 static irqreturn_t igb_intr_msi(int irq, void *);
105 static irqreturn_t igb_msix_other(int irq, void *);
106 static irqreturn_t igb_msix_rx(int irq, void *);
107 static irqreturn_t igb_msix_tx(int irq, void *);
108 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
109 #ifdef CONFIG_IGB_DCA
110 static void igb_update_rx_dca(struct igb_ring *);
111 static void igb_update_tx_dca(struct igb_ring *);
112 static void igb_setup_dca(struct igb_adapter *);
113 #endif /* CONFIG_IGB_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring *);
115 static int igb_poll(struct napi_struct *, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
118 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119 static void igb_tx_timeout(struct net_device *);
120 static void igb_reset_task(struct work_struct *);
121 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122 static void igb_vlan_rx_add_vid(struct net_device *, u16);
123 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124 static void igb_restore_vlan(struct igb_adapter *);
126 static int igb_suspend(struct pci_dev *, pm_message_t);
128 static int igb_resume(struct pci_dev *);
130 static void igb_shutdown(struct pci_dev *);
131 #ifdef CONFIG_IGB_DCA
132 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
133 static struct notifier_block dca_notifier = {
134 .notifier_call = igb_notify_dca,
140 #ifdef CONFIG_NET_POLL_CONTROLLER
141 /* for netdump / net console */
142 static void igb_netpoll(struct net_device *);
145 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
146 pci_channel_state_t);
147 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
148 static void igb_io_resume(struct pci_dev *);
150 static struct pci_error_handlers igb_err_handler = {
151 .error_detected = igb_io_error_detected,
152 .slot_reset = igb_io_slot_reset,
153 .resume = igb_io_resume,
157 static struct pci_driver igb_driver = {
158 .name = igb_driver_name,
159 .id_table = igb_pci_tbl,
161 .remove = __devexit_p(igb_remove),
163 /* Power Managment Hooks */
164 .suspend = igb_suspend,
165 .resume = igb_resume,
167 .shutdown = igb_shutdown,
168 .err_handler = &igb_err_handler
171 static int global_quad_port_a; /* global quad port a indication */
173 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
174 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION);
180 * igb_get_hw_dev_name - return device name string
181 * used by hardware layer to print debugging information
183 char *igb_get_hw_dev_name(struct e1000_hw *hw)
185 struct igb_adapter *adapter = hw->back;
186 return adapter->netdev->name;
191 * igb_init_module - Driver Registration Routine
193 * igb_init_module is the first routine called when the driver is
194 * loaded. All it does is register with the PCI subsystem.
196 static int __init igb_init_module(void)
199 printk(KERN_INFO "%s - version %s\n",
200 igb_driver_string, igb_driver_version);
202 printk(KERN_INFO "%s\n", igb_copyright);
204 global_quad_port_a = 0;
206 #ifdef CONFIG_IGB_DCA
207 dca_register_notify(&dca_notifier);
210 ret = pci_register_driver(&igb_driver);
214 module_init(igb_init_module);
217 * igb_exit_module - Driver Exit Cleanup Routine
219 * igb_exit_module is called just before the driver is removed
222 static void __exit igb_exit_module(void)
224 #ifdef CONFIG_IGB_DCA
225 dca_unregister_notify(&dca_notifier);
227 pci_unregister_driver(&igb_driver);
230 module_exit(igb_exit_module);
232 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
234 * igb_cache_ring_register - Descriptor ring to register mapping
235 * @adapter: board private structure to initialize
237 * Once we know the feature-set enabled for the device, we'll cache
238 * the register offset the descriptor ring is assigned to.
240 static void igb_cache_ring_register(struct igb_adapter *adapter)
244 switch (adapter->hw.mac.type) {
246 /* The queues are allocated for virtualization such that VF 0
247 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
248 * In order to avoid collision we start at the first free queue
249 * and continue consuming queues in the same sequence
251 for (i = 0; i < adapter->num_rx_queues; i++)
252 adapter->rx_ring[i].reg_idx = Q_IDX_82576(i);
253 for (i = 0; i < adapter->num_tx_queues; i++)
254 adapter->tx_ring[i].reg_idx = Q_IDX_82576(i);
258 for (i = 0; i < adapter->num_rx_queues; i++)
259 adapter->rx_ring[i].reg_idx = i;
260 for (i = 0; i < adapter->num_tx_queues; i++)
261 adapter->tx_ring[i].reg_idx = i;
267 * igb_alloc_queues - Allocate memory for all rings
268 * @adapter: board private structure to initialize
270 * We allocate one ring per queue at run-time since we don't know the
271 * number of queues at compile-time.
273 static int igb_alloc_queues(struct igb_adapter *adapter)
277 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
278 sizeof(struct igb_ring), GFP_KERNEL);
279 if (!adapter->tx_ring)
282 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
283 sizeof(struct igb_ring), GFP_KERNEL);
284 if (!adapter->rx_ring) {
285 kfree(adapter->tx_ring);
289 adapter->rx_ring->buddy = adapter->tx_ring;
291 for (i = 0; i < adapter->num_tx_queues; i++) {
292 struct igb_ring *ring = &(adapter->tx_ring[i]);
293 ring->count = adapter->tx_ring_count;
294 ring->adapter = adapter;
295 ring->queue_index = i;
297 for (i = 0; i < adapter->num_rx_queues; i++) {
298 struct igb_ring *ring = &(adapter->rx_ring[i]);
299 ring->count = adapter->rx_ring_count;
300 ring->adapter = adapter;
301 ring->queue_index = i;
302 ring->itr_register = E1000_ITR;
304 /* set a default napi handler for each rx_ring */
305 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
308 igb_cache_ring_register(adapter);
312 static void igb_free_queues(struct igb_adapter *adapter)
316 for (i = 0; i < adapter->num_rx_queues; i++)
317 netif_napi_del(&adapter->rx_ring[i].napi);
319 kfree(adapter->tx_ring);
320 kfree(adapter->rx_ring);
323 #define IGB_N0_QUEUE -1
324 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
325 int tx_queue, int msix_vector)
328 struct e1000_hw *hw = &adapter->hw;
331 switch (hw->mac.type) {
333 /* The 82575 assigns vectors using a bitmask, which matches the
334 bitmask for the EICR/EIMS/EIMC registers. To assign one
335 or more queues to a vector, we write the appropriate bits
336 into the MSIXBM register for that vector. */
337 if (rx_queue > IGB_N0_QUEUE) {
338 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
339 adapter->rx_ring[rx_queue].eims_value = msixbm;
341 if (tx_queue > IGB_N0_QUEUE) {
342 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
343 adapter->tx_ring[tx_queue].eims_value =
344 E1000_EICR_TX_QUEUE0 << tx_queue;
346 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
349 /* 82576 uses a table-based method for assigning vectors.
350 Each queue has a single entry in the table to which we write
351 a vector number along with a "valid" bit. Sadly, the layout
352 of the table is somewhat counterintuitive. */
353 if (rx_queue > IGB_N0_QUEUE) {
354 index = (rx_queue >> 1);
355 ivar = array_rd32(E1000_IVAR0, index);
356 if (rx_queue & 0x1) {
357 /* vector goes into third byte of register */
358 ivar = ivar & 0xFF00FFFF;
359 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
361 /* vector goes into low byte of register */
362 ivar = ivar & 0xFFFFFF00;
363 ivar |= msix_vector | E1000_IVAR_VALID;
365 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
366 array_wr32(E1000_IVAR0, index, ivar);
368 if (tx_queue > IGB_N0_QUEUE) {
369 index = (tx_queue >> 1);
370 ivar = array_rd32(E1000_IVAR0, index);
371 if (tx_queue & 0x1) {
372 /* vector goes into high byte of register */
373 ivar = ivar & 0x00FFFFFF;
374 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
376 /* vector goes into second byte of register */
377 ivar = ivar & 0xFFFF00FF;
378 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
380 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
381 array_wr32(E1000_IVAR0, index, ivar);
391 * igb_configure_msix - Configure MSI-X hardware
393 * igb_configure_msix sets up the hardware to properly
394 * generate MSI-X interrupts.
396 static void igb_configure_msix(struct igb_adapter *adapter)
400 struct e1000_hw *hw = &adapter->hw;
402 adapter->eims_enable_mask = 0;
403 if (hw->mac.type == e1000_82576)
404 /* Turn on MSI-X capability first, or our settings
405 * won't stick. And it will take days to debug. */
406 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
407 E1000_GPIE_PBA | E1000_GPIE_EIAME |
410 for (i = 0; i < adapter->num_tx_queues; i++) {
411 struct igb_ring *tx_ring = &adapter->tx_ring[i];
412 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
413 adapter->eims_enable_mask |= tx_ring->eims_value;
414 if (tx_ring->itr_val)
415 writel(tx_ring->itr_val,
416 hw->hw_addr + tx_ring->itr_register);
418 writel(1, hw->hw_addr + tx_ring->itr_register);
421 for (i = 0; i < adapter->num_rx_queues; i++) {
422 struct igb_ring *rx_ring = &adapter->rx_ring[i];
423 rx_ring->buddy = NULL;
424 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
425 adapter->eims_enable_mask |= rx_ring->eims_value;
426 if (rx_ring->itr_val)
427 writel(rx_ring->itr_val,
428 hw->hw_addr + rx_ring->itr_register);
430 writel(1, hw->hw_addr + rx_ring->itr_register);
434 /* set vector for other causes, i.e. link changes */
435 switch (hw->mac.type) {
437 array_wr32(E1000_MSIXBM(0), vector++,
440 tmp = rd32(E1000_CTRL_EXT);
441 /* enable MSI-X PBA support*/
442 tmp |= E1000_CTRL_EXT_PBA_CLR;
444 /* Auto-Mask interrupts upon ICR read. */
445 tmp |= E1000_CTRL_EXT_EIAME;
446 tmp |= E1000_CTRL_EXT_IRCA;
448 wr32(E1000_CTRL_EXT, tmp);
449 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
450 adapter->eims_other = E1000_EIMS_OTHER;
455 tmp = (vector++ | E1000_IVAR_VALID) << 8;
456 wr32(E1000_IVAR_MISC, tmp);
458 adapter->eims_enable_mask = (1 << (vector)) - 1;
459 adapter->eims_other = 1 << (vector - 1);
462 /* do nothing, since nothing else supports MSI-X */
464 } /* switch (hw->mac.type) */
469 * igb_request_msix - Initialize MSI-X interrupts
471 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
474 static int igb_request_msix(struct igb_adapter *adapter)
476 struct net_device *netdev = adapter->netdev;
477 int i, err = 0, vector = 0;
481 for (i = 0; i < adapter->num_tx_queues; i++) {
482 struct igb_ring *ring = &(adapter->tx_ring[i]);
483 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
484 err = request_irq(adapter->msix_entries[vector].vector,
485 &igb_msix_tx, 0, ring->name,
486 &(adapter->tx_ring[i]));
489 ring->itr_register = E1000_EITR(0) + (vector << 2);
490 ring->itr_val = 976; /* ~4000 ints/sec */
493 for (i = 0; i < adapter->num_rx_queues; i++) {
494 struct igb_ring *ring = &(adapter->rx_ring[i]);
495 if (strlen(netdev->name) < (IFNAMSIZ - 5))
496 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
498 memcpy(ring->name, netdev->name, IFNAMSIZ);
499 err = request_irq(adapter->msix_entries[vector].vector,
500 &igb_msix_rx, 0, ring->name,
501 &(adapter->rx_ring[i]));
504 ring->itr_register = E1000_EITR(0) + (vector << 2);
505 ring->itr_val = adapter->itr;
506 /* overwrite the poll routine for MSIX, we've already done
508 ring->napi.poll = &igb_clean_rx_ring_msix;
512 err = request_irq(adapter->msix_entries[vector].vector,
513 &igb_msix_other, 0, netdev->name, netdev);
517 igb_configure_msix(adapter);
523 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
525 if (adapter->msix_entries) {
526 pci_disable_msix(adapter->pdev);
527 kfree(adapter->msix_entries);
528 adapter->msix_entries = NULL;
529 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
530 pci_disable_msi(adapter->pdev);
536 * igb_set_interrupt_capability - set MSI or MSI-X if supported
538 * Attempt to configure interrupts using the best available
539 * capabilities of the hardware and kernel.
541 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
546 /* Number of supported queues. */
547 /* Having more queues than CPUs doesn't make sense. */
548 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
549 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
551 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
552 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
554 if (!adapter->msix_entries)
557 for (i = 0; i < numvecs; i++)
558 adapter->msix_entries[i].entry = i;
560 err = pci_enable_msix(adapter->pdev,
561 adapter->msix_entries,
566 igb_reset_interrupt_capability(adapter);
568 /* If we can't do MSI-X, try MSI */
570 adapter->num_rx_queues = 1;
571 adapter->num_tx_queues = 1;
572 if (!pci_enable_msi(adapter->pdev))
573 adapter->flags |= IGB_FLAG_HAS_MSI;
575 /* Notify the stack of the (possibly) reduced Tx Queue count. */
576 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
581 * igb_request_irq - initialize interrupts
583 * Attempts to configure interrupts using the best available
584 * capabilities of the hardware and kernel.
586 static int igb_request_irq(struct igb_adapter *adapter)
588 struct net_device *netdev = adapter->netdev;
589 struct e1000_hw *hw = &adapter->hw;
592 if (adapter->msix_entries) {
593 err = igb_request_msix(adapter);
596 /* fall back to MSI */
597 igb_reset_interrupt_capability(adapter);
598 if (!pci_enable_msi(adapter->pdev))
599 adapter->flags |= IGB_FLAG_HAS_MSI;
600 igb_free_all_tx_resources(adapter);
601 igb_free_all_rx_resources(adapter);
602 adapter->num_rx_queues = 1;
603 igb_alloc_queues(adapter);
605 switch (hw->mac.type) {
607 wr32(E1000_MSIXBM(0),
608 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
611 wr32(E1000_IVAR0, E1000_IVAR_VALID);
618 if (adapter->flags & IGB_FLAG_HAS_MSI) {
619 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
620 netdev->name, netdev);
623 /* fall back to legacy interrupts */
624 igb_reset_interrupt_capability(adapter);
625 adapter->flags &= ~IGB_FLAG_HAS_MSI;
628 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
629 netdev->name, netdev);
632 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
639 static void igb_free_irq(struct igb_adapter *adapter)
641 struct net_device *netdev = adapter->netdev;
643 if (adapter->msix_entries) {
646 for (i = 0; i < adapter->num_tx_queues; i++)
647 free_irq(adapter->msix_entries[vector++].vector,
648 &(adapter->tx_ring[i]));
649 for (i = 0; i < adapter->num_rx_queues; i++)
650 free_irq(adapter->msix_entries[vector++].vector,
651 &(adapter->rx_ring[i]));
653 free_irq(adapter->msix_entries[vector++].vector, netdev);
657 free_irq(adapter->pdev->irq, netdev);
661 * igb_irq_disable - Mask off interrupt generation on the NIC
662 * @adapter: board private structure
664 static void igb_irq_disable(struct igb_adapter *adapter)
666 struct e1000_hw *hw = &adapter->hw;
668 if (adapter->msix_entries) {
670 wr32(E1000_EIMC, ~0);
677 synchronize_irq(adapter->pdev->irq);
681 * igb_irq_enable - Enable default interrupt generation settings
682 * @adapter: board private structure
684 static void igb_irq_enable(struct igb_adapter *adapter)
686 struct e1000_hw *hw = &adapter->hw;
688 if (adapter->msix_entries) {
689 wr32(E1000_EIAC, adapter->eims_enable_mask);
690 wr32(E1000_EIAM, adapter->eims_enable_mask);
691 wr32(E1000_EIMS, adapter->eims_enable_mask);
692 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
694 wr32(E1000_IMS, IMS_ENABLE_MASK);
695 wr32(E1000_IAM, IMS_ENABLE_MASK);
699 static void igb_update_mng_vlan(struct igb_adapter *adapter)
701 struct net_device *netdev = adapter->netdev;
702 u16 vid = adapter->hw.mng_cookie.vlan_id;
703 u16 old_vid = adapter->mng_vlan_id;
704 if (adapter->vlgrp) {
705 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
706 if (adapter->hw.mng_cookie.status &
707 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
708 igb_vlan_rx_add_vid(netdev, vid);
709 adapter->mng_vlan_id = vid;
711 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
713 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
715 !vlan_group_get_device(adapter->vlgrp, old_vid))
716 igb_vlan_rx_kill_vid(netdev, old_vid);
718 adapter->mng_vlan_id = vid;
723 * igb_release_hw_control - release control of the h/w to f/w
724 * @adapter: address of board private structure
726 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
727 * For ASF and Pass Through versions of f/w this means that the
728 * driver is no longer loaded.
731 static void igb_release_hw_control(struct igb_adapter *adapter)
733 struct e1000_hw *hw = &adapter->hw;
736 /* Let firmware take over control of h/w */
737 ctrl_ext = rd32(E1000_CTRL_EXT);
739 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
744 * igb_get_hw_control - get control of the h/w from f/w
745 * @adapter: address of board private structure
747 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
748 * For ASF and Pass Through versions of f/w this means that
749 * the driver is loaded.
752 static void igb_get_hw_control(struct igb_adapter *adapter)
754 struct e1000_hw *hw = &adapter->hw;
757 /* Let firmware know the driver has taken over */
758 ctrl_ext = rd32(E1000_CTRL_EXT);
760 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
764 * igb_configure - configure the hardware for RX and TX
765 * @adapter: private board structure
767 static void igb_configure(struct igb_adapter *adapter)
769 struct net_device *netdev = adapter->netdev;
772 igb_get_hw_control(adapter);
773 igb_set_multi(netdev);
775 igb_restore_vlan(adapter);
777 igb_configure_tx(adapter);
778 igb_setup_rctl(adapter);
779 igb_configure_rx(adapter);
781 igb_rx_fifo_flush_82575(&adapter->hw);
783 /* call IGB_DESC_UNUSED which always leaves
784 * at least 1 descriptor unused to make sure
785 * next_to_use != next_to_clean */
786 for (i = 0; i < adapter->num_rx_queues; i++) {
787 struct igb_ring *ring = &adapter->rx_ring[i];
788 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
792 adapter->tx_queue_len = netdev->tx_queue_len;
797 * igb_up - Open the interface and prepare it to handle traffic
798 * @adapter: board private structure
801 int igb_up(struct igb_adapter *adapter)
803 struct e1000_hw *hw = &adapter->hw;
806 /* hardware has been reset, we need to reload some things */
807 igb_configure(adapter);
809 clear_bit(__IGB_DOWN, &adapter->state);
811 for (i = 0; i < adapter->num_rx_queues; i++)
812 napi_enable(&adapter->rx_ring[i].napi);
813 if (adapter->msix_entries)
814 igb_configure_msix(adapter);
816 /* Clear any pending interrupts. */
818 igb_irq_enable(adapter);
820 /* Fire a link change interrupt to start the watchdog. */
821 wr32(E1000_ICS, E1000_ICS_LSC);
825 void igb_down(struct igb_adapter *adapter)
827 struct e1000_hw *hw = &adapter->hw;
828 struct net_device *netdev = adapter->netdev;
832 /* signal that we're down so the interrupt handler does not
833 * reschedule our watchdog timer */
834 set_bit(__IGB_DOWN, &adapter->state);
836 /* disable receives in the hardware */
837 rctl = rd32(E1000_RCTL);
838 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
839 /* flush and sleep below */
841 netif_tx_stop_all_queues(netdev);
843 /* disable transmits in the hardware */
844 tctl = rd32(E1000_TCTL);
845 tctl &= ~E1000_TCTL_EN;
846 wr32(E1000_TCTL, tctl);
847 /* flush both disables and wait for them to finish */
851 for (i = 0; i < adapter->num_rx_queues; i++)
852 napi_disable(&adapter->rx_ring[i].napi);
854 igb_irq_disable(adapter);
856 del_timer_sync(&adapter->watchdog_timer);
857 del_timer_sync(&adapter->phy_info_timer);
859 netdev->tx_queue_len = adapter->tx_queue_len;
860 netif_carrier_off(netdev);
861 adapter->link_speed = 0;
862 adapter->link_duplex = 0;
864 if (!pci_channel_offline(adapter->pdev))
866 igb_clean_all_tx_rings(adapter);
867 igb_clean_all_rx_rings(adapter);
870 void igb_reinit_locked(struct igb_adapter *adapter)
872 WARN_ON(in_interrupt());
873 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
877 clear_bit(__IGB_RESETTING, &adapter->state);
880 void igb_reset(struct igb_adapter *adapter)
882 struct e1000_hw *hw = &adapter->hw;
883 struct e1000_mac_info *mac = &hw->mac;
884 struct e1000_fc_info *fc = &hw->fc;
885 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
888 /* Repartition Pba for greater than 9k mtu
889 * To take effect CTRL.RST is required.
901 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
902 (mac->type < e1000_82576)) {
903 /* adjust PBA for jumbo frames */
904 wr32(E1000_PBA, pba);
906 /* To maintain wire speed transmits, the Tx FIFO should be
907 * large enough to accommodate two full transmit packets,
908 * rounded up to the next 1KB and expressed in KB. Likewise,
909 * the Rx FIFO should be large enough to accommodate at least
910 * one full receive packet and is similarly rounded up and
911 * expressed in KB. */
912 pba = rd32(E1000_PBA);
913 /* upper 16 bits has Tx packet buffer allocation size in KB */
914 tx_space = pba >> 16;
915 /* lower 16 bits has Rx packet buffer allocation size in KB */
917 /* the tx fifo also stores 16 bytes of information about the tx
918 * but don't include ethernet FCS because hardware appends it */
919 min_tx_space = (adapter->max_frame_size +
920 sizeof(struct e1000_tx_desc) -
922 min_tx_space = ALIGN(min_tx_space, 1024);
924 /* software strips receive CRC, so leave room for it */
925 min_rx_space = adapter->max_frame_size;
926 min_rx_space = ALIGN(min_rx_space, 1024);
929 /* If current Tx allocation is less than the min Tx FIFO size,
930 * and the min Tx FIFO size is less than the current Rx FIFO
931 * allocation, take space away from current Rx allocation */
932 if (tx_space < min_tx_space &&
933 ((min_tx_space - tx_space) < pba)) {
934 pba = pba - (min_tx_space - tx_space);
936 /* if short on rx space, rx wins and must trump tx
938 if (pba < min_rx_space)
941 wr32(E1000_PBA, pba);
944 /* flow control settings */
945 /* The high water mark must be low enough to fit one full frame
946 * (or the size used for early receive) above it in the Rx FIFO.
947 * Set it to the lower of:
948 * - 90% of the Rx FIFO size, or
949 * - the full Rx FIFO size minus one full frame */
950 hwm = min(((pba << 10) * 9 / 10),
951 ((pba << 10) - 2 * adapter->max_frame_size));
953 if (mac->type < e1000_82576) {
954 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
955 fc->low_water = fc->high_water - 8;
957 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
958 fc->low_water = fc->high_water - 16;
960 fc->pause_time = 0xFFFF;
962 fc->type = fc->original_type;
964 /* Allow time for pending master requests to run */
965 adapter->hw.mac.ops.reset_hw(&adapter->hw);
968 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
969 dev_err(&adapter->pdev->dev, "Hardware Error\n");
971 igb_update_mng_vlan(adapter);
973 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
974 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
976 igb_reset_adaptive(&adapter->hw);
977 igb_get_phy_info(&adapter->hw);
980 static const struct net_device_ops igb_netdev_ops = {
981 .ndo_open = igb_open,
982 .ndo_stop = igb_close,
983 .ndo_start_xmit = igb_xmit_frame_adv,
984 .ndo_get_stats = igb_get_stats,
985 .ndo_set_multicast_list = igb_set_multi,
986 .ndo_set_mac_address = igb_set_mac,
987 .ndo_change_mtu = igb_change_mtu,
988 .ndo_do_ioctl = igb_ioctl,
989 .ndo_tx_timeout = igb_tx_timeout,
990 .ndo_validate_addr = eth_validate_addr,
991 .ndo_vlan_rx_register = igb_vlan_rx_register,
992 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
993 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
994 #ifdef CONFIG_NET_POLL_CONTROLLER
995 .ndo_poll_controller = igb_netpoll,
1000 * igb_probe - Device Initialization Routine
1001 * @pdev: PCI device information struct
1002 * @ent: entry in igb_pci_tbl
1004 * Returns 0 on success, negative on failure
1006 * igb_probe initializes an adapter identified by a pci_dev structure.
1007 * The OS initialization, configuring of the adapter private structure,
1008 * and a hardware reset occur.
1010 static int __devinit igb_probe(struct pci_dev *pdev,
1011 const struct pci_device_id *ent)
1013 struct net_device *netdev;
1014 struct igb_adapter *adapter;
1015 struct e1000_hw *hw;
1016 struct pci_dev *us_dev;
1017 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1018 unsigned long mmio_start, mmio_len;
1019 int i, err, pci_using_dac, pos;
1020 u16 eeprom_data = 0, state = 0;
1021 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1024 err = pci_enable_device_mem(pdev);
1029 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1031 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1035 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1037 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1039 dev_err(&pdev->dev, "No usable DMA "
1040 "configuration, aborting\n");
1046 /* 82575 requires that the pci-e link partner disable the L0s state */
1047 switch (pdev->device) {
1048 case E1000_DEV_ID_82575EB_COPPER:
1049 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1050 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1051 us_dev = pdev->bus->self;
1052 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1054 pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1056 state &= ~PCIE_LINK_STATE_L0S;
1057 pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1059 dev_info(&pdev->dev,
1060 "Disabling ASPM L0s upstream switch port %s\n",
1067 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1073 err = pci_enable_pcie_error_reporting(pdev);
1075 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1077 /* non-fatal, continue */
1080 pci_set_master(pdev);
1081 pci_save_state(pdev);
1084 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1086 goto err_alloc_etherdev;
1088 SET_NETDEV_DEV(netdev, &pdev->dev);
1090 pci_set_drvdata(pdev, netdev);
1091 adapter = netdev_priv(netdev);
1092 adapter->netdev = netdev;
1093 adapter->pdev = pdev;
1096 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1098 mmio_start = pci_resource_start(pdev, 0);
1099 mmio_len = pci_resource_len(pdev, 0);
1102 hw->hw_addr = ioremap(mmio_start, mmio_len);
1106 netdev->netdev_ops = &igb_netdev_ops;
1107 igb_set_ethtool_ops(netdev);
1108 netdev->watchdog_timeo = 5 * HZ;
1110 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1112 netdev->mem_start = mmio_start;
1113 netdev->mem_end = mmio_start + mmio_len;
1115 /* PCI config space info */
1116 hw->vendor_id = pdev->vendor;
1117 hw->device_id = pdev->device;
1118 hw->revision_id = pdev->revision;
1119 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1120 hw->subsystem_device_id = pdev->subsystem_device;
1122 /* setup the private structure */
1124 /* Copy the default MAC, PHY and NVM function pointers */
1125 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1126 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1127 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1128 /* Initialize skew-specific constants */
1129 err = ei->get_invariants(hw);
1133 err = igb_sw_init(adapter);
1137 igb_get_bus_info_pcie(hw);
1140 switch (hw->mac.type) {
1142 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1149 hw->phy.autoneg_wait_to_complete = false;
1150 hw->mac.adaptive_ifs = true;
1152 /* Copper options */
1153 if (hw->phy.media_type == e1000_media_type_copper) {
1154 hw->phy.mdix = AUTO_ALL_MODES;
1155 hw->phy.disable_polarity_correction = false;
1156 hw->phy.ms_type = e1000_ms_hw_default;
1159 if (igb_check_reset_block(hw))
1160 dev_info(&pdev->dev,
1161 "PHY reset is blocked due to SOL/IDER session.\n");
1163 netdev->features = NETIF_F_SG |
1165 NETIF_F_HW_VLAN_TX |
1166 NETIF_F_HW_VLAN_RX |
1167 NETIF_F_HW_VLAN_FILTER;
1169 netdev->features |= NETIF_F_IPV6_CSUM;
1170 netdev->features |= NETIF_F_TSO;
1171 netdev->features |= NETIF_F_TSO6;
1173 #ifdef CONFIG_IGB_LRO
1174 netdev->features |= NETIF_F_GRO;
1177 netdev->vlan_features |= NETIF_F_TSO;
1178 netdev->vlan_features |= NETIF_F_TSO6;
1179 netdev->vlan_features |= NETIF_F_IP_CSUM;
1180 netdev->vlan_features |= NETIF_F_SG;
1183 netdev->features |= NETIF_F_HIGHDMA;
1185 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1187 /* before reading the NVM, reset the controller to put the device in a
1188 * known good starting state */
1189 hw->mac.ops.reset_hw(hw);
1191 /* make sure the NVM is good */
1192 if (igb_validate_nvm_checksum(hw) < 0) {
1193 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1198 /* copy the MAC address out of the NVM */
1199 if (hw->mac.ops.read_mac_addr(hw))
1200 dev_err(&pdev->dev, "NVM Read Error\n");
1202 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1203 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1205 if (!is_valid_ether_addr(netdev->perm_addr)) {
1206 dev_err(&pdev->dev, "Invalid MAC Address\n");
1211 init_timer(&adapter->watchdog_timer);
1212 adapter->watchdog_timer.function = &igb_watchdog;
1213 adapter->watchdog_timer.data = (unsigned long) adapter;
1215 init_timer(&adapter->phy_info_timer);
1216 adapter->phy_info_timer.function = &igb_update_phy_info;
1217 adapter->phy_info_timer.data = (unsigned long) adapter;
1219 INIT_WORK(&adapter->reset_task, igb_reset_task);
1220 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1222 /* Initialize link & ring properties that are user-changeable */
1223 adapter->tx_ring->count = 256;
1224 for (i = 0; i < adapter->num_tx_queues; i++)
1225 adapter->tx_ring[i].count = adapter->tx_ring->count;
1226 adapter->rx_ring->count = 256;
1227 for (i = 0; i < adapter->num_rx_queues; i++)
1228 adapter->rx_ring[i].count = adapter->rx_ring->count;
1230 adapter->fc_autoneg = true;
1231 hw->mac.autoneg = true;
1232 hw->phy.autoneg_advertised = 0x2f;
1234 hw->fc.original_type = e1000_fc_default;
1235 hw->fc.type = e1000_fc_default;
1237 adapter->itr_setting = 3;
1238 adapter->itr = IGB_START_ITR;
1240 igb_validate_mdi_setting(hw);
1242 adapter->rx_csum = 1;
1244 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1245 * enable the ACPI Magic Packet filter
1248 if (hw->bus.func == 0 ||
1249 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1250 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1252 if (eeprom_data & eeprom_apme_mask)
1253 adapter->eeprom_wol |= E1000_WUFC_MAG;
1255 /* now that we have the eeprom settings, apply the special cases where
1256 * the eeprom may be wrong or the board simply won't support wake on
1257 * lan on a particular port */
1258 switch (pdev->device) {
1259 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1260 adapter->eeprom_wol = 0;
1262 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1263 case E1000_DEV_ID_82576_FIBER:
1264 case E1000_DEV_ID_82576_SERDES:
1265 /* Wake events only supported on port A for dual fiber
1266 * regardless of eeprom setting */
1267 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1268 adapter->eeprom_wol = 0;
1272 /* initialize the wol settings based on the eeprom settings */
1273 adapter->wol = adapter->eeprom_wol;
1274 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1276 /* reset the hardware with the new settings */
1279 /* let the f/w know that the h/w is now under the control of the
1281 igb_get_hw_control(adapter);
1283 /* tell the stack to leave us alone until igb_open() is called */
1284 netif_carrier_off(netdev);
1285 netif_tx_stop_all_queues(netdev);
1287 strcpy(netdev->name, "eth%d");
1288 err = register_netdev(netdev);
1292 #ifdef CONFIG_IGB_DCA
1293 if (dca_add_requester(&pdev->dev) == 0) {
1294 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1295 dev_info(&pdev->dev, "DCA enabled\n");
1296 /* Always use CB2 mode, difference is masked
1297 * in the CB driver. */
1298 wr32(E1000_DCA_CTRL, 2);
1299 igb_setup_dca(adapter);
1303 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1304 /* print bus type/speed/width info */
1305 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1307 ((hw->bus.speed == e1000_bus_speed_2500)
1308 ? "2.5Gb/s" : "unknown"),
1309 ((hw->bus.width == e1000_bus_width_pcie_x4)
1310 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1311 ? "Width x1" : "unknown"),
1314 igb_read_part_num(hw, &part_num);
1315 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1316 (part_num >> 8), (part_num & 0xff));
1318 dev_info(&pdev->dev,
1319 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1320 adapter->msix_entries ? "MSI-X" :
1321 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1322 adapter->num_rx_queues, adapter->num_tx_queues);
1327 igb_release_hw_control(adapter);
1329 if (!igb_check_reset_block(hw))
1332 if (hw->flash_address)
1333 iounmap(hw->flash_address);
1335 igb_free_queues(adapter);
1338 iounmap(hw->hw_addr);
1340 free_netdev(netdev);
1342 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1346 pci_disable_device(pdev);
1351 * igb_remove - Device Removal Routine
1352 * @pdev: PCI device information struct
1354 * igb_remove is called by the PCI subsystem to alert the driver
1355 * that it should release a PCI device. The could be caused by a
1356 * Hot-Plug event, or because the driver is going to be removed from
1359 static void __devexit igb_remove(struct pci_dev *pdev)
1361 struct net_device *netdev = pci_get_drvdata(pdev);
1362 struct igb_adapter *adapter = netdev_priv(netdev);
1363 struct e1000_hw *hw = &adapter->hw;
1366 /* flush_scheduled work may reschedule our watchdog task, so
1367 * explicitly disable watchdog tasks from being rescheduled */
1368 set_bit(__IGB_DOWN, &adapter->state);
1369 del_timer_sync(&adapter->watchdog_timer);
1370 del_timer_sync(&adapter->phy_info_timer);
1372 flush_scheduled_work();
1374 #ifdef CONFIG_IGB_DCA
1375 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1376 dev_info(&pdev->dev, "DCA disabled\n");
1377 dca_remove_requester(&pdev->dev);
1378 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1379 wr32(E1000_DCA_CTRL, 1);
1383 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1384 * would have already happened in close and is redundant. */
1385 igb_release_hw_control(adapter);
1387 unregister_netdev(netdev);
1389 if (!igb_check_reset_block(&adapter->hw))
1390 igb_reset_phy(&adapter->hw);
1392 igb_reset_interrupt_capability(adapter);
1394 igb_free_queues(adapter);
1396 iounmap(hw->hw_addr);
1397 if (hw->flash_address)
1398 iounmap(hw->flash_address);
1399 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1402 free_netdev(netdev);
1404 err = pci_disable_pcie_error_reporting(pdev);
1407 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1409 pci_disable_device(pdev);
1413 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1414 * @adapter: board private structure to initialize
1416 * igb_sw_init initializes the Adapter private data structure.
1417 * Fields are initialized based on PCI device information and
1418 * OS network device settings (MTU size).
1420 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1422 struct e1000_hw *hw = &adapter->hw;
1423 struct net_device *netdev = adapter->netdev;
1424 struct pci_dev *pdev = adapter->pdev;
1426 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1428 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1429 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1430 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1431 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1432 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1433 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1435 /* This call may decrease the number of queues depending on
1436 * interrupt mode. */
1437 igb_set_interrupt_capability(adapter);
1439 if (igb_alloc_queues(adapter)) {
1440 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1444 /* Explicitly disable IRQ since the NIC can be in any state. */
1445 igb_irq_disable(adapter);
1447 set_bit(__IGB_DOWN, &adapter->state);
1452 * igb_open - Called when a network interface is made active
1453 * @netdev: network interface device structure
1455 * Returns 0 on success, negative value on failure
1457 * The open entry point is called when a network interface is made
1458 * active by the system (IFF_UP). At this point all resources needed
1459 * for transmit and receive operations are allocated, the interrupt
1460 * handler is registered with the OS, the watchdog timer is started,
1461 * and the stack is notified that the interface is ready.
1463 static int igb_open(struct net_device *netdev)
1465 struct igb_adapter *adapter = netdev_priv(netdev);
1466 struct e1000_hw *hw = &adapter->hw;
1470 /* disallow open during test */
1471 if (test_bit(__IGB_TESTING, &adapter->state))
1474 /* allocate transmit descriptors */
1475 err = igb_setup_all_tx_resources(adapter);
1479 /* allocate receive descriptors */
1480 err = igb_setup_all_rx_resources(adapter);
1484 /* e1000_power_up_phy(adapter); */
1486 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1487 if ((adapter->hw.mng_cookie.status &
1488 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1489 igb_update_mng_vlan(adapter);
1491 /* before we allocate an interrupt, we must be ready to handle it.
1492 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1493 * as soon as we call pci_request_irq, so we have to setup our
1494 * clean_rx handler before we do so. */
1495 igb_configure(adapter);
1497 err = igb_request_irq(adapter);
1501 /* From here on the code is the same as igb_up() */
1502 clear_bit(__IGB_DOWN, &adapter->state);
1504 for (i = 0; i < adapter->num_rx_queues; i++)
1505 napi_enable(&adapter->rx_ring[i].napi);
1507 /* Clear any pending interrupts. */
1510 igb_irq_enable(adapter);
1512 netif_tx_start_all_queues(netdev);
1514 /* Fire a link status change interrupt to start the watchdog. */
1515 wr32(E1000_ICS, E1000_ICS_LSC);
1520 igb_release_hw_control(adapter);
1521 /* e1000_power_down_phy(adapter); */
1522 igb_free_all_rx_resources(adapter);
1524 igb_free_all_tx_resources(adapter);
1532 * igb_close - Disables a network interface
1533 * @netdev: network interface device structure
1535 * Returns 0, this is not allowed to fail
1537 * The close entry point is called when an interface is de-activated
1538 * by the OS. The hardware is still under the driver's control, but
1539 * needs to be disabled. A global MAC reset is issued to stop the
1540 * hardware, and all transmit and receive resources are freed.
1542 static int igb_close(struct net_device *netdev)
1544 struct igb_adapter *adapter = netdev_priv(netdev);
1546 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1549 igb_free_irq(adapter);
1551 igb_free_all_tx_resources(adapter);
1552 igb_free_all_rx_resources(adapter);
1554 /* kill manageability vlan ID if supported, but not if a vlan with
1555 * the same ID is registered on the host OS (let 8021q kill it) */
1556 if ((adapter->hw.mng_cookie.status &
1557 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1559 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1560 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1566 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1567 * @adapter: board private structure
1568 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1570 * Return 0 on success, negative on failure
1573 int igb_setup_tx_resources(struct igb_adapter *adapter,
1574 struct igb_ring *tx_ring)
1576 struct pci_dev *pdev = adapter->pdev;
1579 size = sizeof(struct igb_buffer) * tx_ring->count;
1580 tx_ring->buffer_info = vmalloc(size);
1581 if (!tx_ring->buffer_info)
1583 memset(tx_ring->buffer_info, 0, size);
1585 /* round up to nearest 4K */
1586 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1587 tx_ring->size = ALIGN(tx_ring->size, 4096);
1589 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1595 tx_ring->adapter = adapter;
1596 tx_ring->next_to_use = 0;
1597 tx_ring->next_to_clean = 0;
1601 vfree(tx_ring->buffer_info);
1602 dev_err(&adapter->pdev->dev,
1603 "Unable to allocate memory for the transmit descriptor ring\n");
1608 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1609 * (Descriptors) for all queues
1610 * @adapter: board private structure
1612 * Return 0 on success, negative on failure
1614 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1619 for (i = 0; i < adapter->num_tx_queues; i++) {
1620 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1622 dev_err(&adapter->pdev->dev,
1623 "Allocation for Tx Queue %u failed\n", i);
1624 for (i--; i >= 0; i--)
1625 igb_free_tx_resources(&adapter->tx_ring[i]);
1630 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1631 r_idx = i % adapter->num_tx_queues;
1632 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1638 * igb_configure_tx - Configure transmit Unit after Reset
1639 * @adapter: board private structure
1641 * Configure the Tx unit of the MAC after a reset.
1643 static void igb_configure_tx(struct igb_adapter *adapter)
1646 struct e1000_hw *hw = &adapter->hw;
1651 for (i = 0; i < adapter->num_tx_queues; i++) {
1652 struct igb_ring *ring = &(adapter->tx_ring[i]);
1654 wr32(E1000_TDLEN(j),
1655 ring->count * sizeof(struct e1000_tx_desc));
1657 wr32(E1000_TDBAL(j),
1658 tdba & 0x00000000ffffffffULL);
1659 wr32(E1000_TDBAH(j), tdba >> 32);
1661 ring->head = E1000_TDH(j);
1662 ring->tail = E1000_TDT(j);
1663 writel(0, hw->hw_addr + ring->tail);
1664 writel(0, hw->hw_addr + ring->head);
1665 txdctl = rd32(E1000_TXDCTL(j));
1666 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1667 wr32(E1000_TXDCTL(j), txdctl);
1669 /* Turn off Relaxed Ordering on head write-backs. The
1670 * writebacks MUST be delivered in order or it will
1671 * completely screw up our bookeeping.
1673 txctrl = rd32(E1000_DCA_TXCTRL(j));
1674 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1675 wr32(E1000_DCA_TXCTRL(j), txctrl);
1680 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1682 /* Program the Transmit Control Register */
1684 tctl = rd32(E1000_TCTL);
1685 tctl &= ~E1000_TCTL_CT;
1686 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1687 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1689 igb_config_collision_dist(hw);
1691 /* Setup Transmit Descriptor Settings for eop descriptor */
1692 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1694 /* Enable transmits */
1695 tctl |= E1000_TCTL_EN;
1697 wr32(E1000_TCTL, tctl);
1701 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1702 * @adapter: board private structure
1703 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1705 * Returns 0 on success, negative on failure
1708 int igb_setup_rx_resources(struct igb_adapter *adapter,
1709 struct igb_ring *rx_ring)
1711 struct pci_dev *pdev = adapter->pdev;
1714 size = sizeof(struct igb_buffer) * rx_ring->count;
1715 rx_ring->buffer_info = vmalloc(size);
1716 if (!rx_ring->buffer_info)
1718 memset(rx_ring->buffer_info, 0, size);
1720 desc_len = sizeof(union e1000_adv_rx_desc);
1722 /* Round up to nearest 4K */
1723 rx_ring->size = rx_ring->count * desc_len;
1724 rx_ring->size = ALIGN(rx_ring->size, 4096);
1726 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1732 rx_ring->next_to_clean = 0;
1733 rx_ring->next_to_use = 0;
1735 rx_ring->adapter = adapter;
1740 vfree(rx_ring->buffer_info);
1741 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1742 "the receive descriptor ring\n");
1747 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1748 * (Descriptors) for all queues
1749 * @adapter: board private structure
1751 * Return 0 on success, negative on failure
1753 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1757 for (i = 0; i < adapter->num_rx_queues; i++) {
1758 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1760 dev_err(&adapter->pdev->dev,
1761 "Allocation for Rx Queue %u failed\n", i);
1762 for (i--; i >= 0; i--)
1763 igb_free_rx_resources(&adapter->rx_ring[i]);
1772 * igb_setup_rctl - configure the receive control registers
1773 * @adapter: Board private structure
1775 static void igb_setup_rctl(struct igb_adapter *adapter)
1777 struct e1000_hw *hw = &adapter->hw;
1782 rctl = rd32(E1000_RCTL);
1784 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1785 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1787 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1788 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1791 * enable stripping of CRC. It's unlikely this will break BMC
1792 * redirection as it did with e1000. Newer features require
1793 * that the HW strips the CRC.
1795 rctl |= E1000_RCTL_SECRC;
1798 * disable store bad packets and clear size bits.
1800 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
1802 /* enable LPE when to prevent packets larger than max_frame_size */
1803 rctl |= E1000_RCTL_LPE;
1805 /* Setup buffer sizes */
1806 switch (adapter->rx_buffer_len) {
1807 case IGB_RXBUFFER_256:
1808 rctl |= E1000_RCTL_SZ_256;
1810 case IGB_RXBUFFER_512:
1811 rctl |= E1000_RCTL_SZ_512;
1814 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
1815 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1819 /* 82575 and greater support packet-split where the protocol
1820 * header is placed in skb->data and the packet data is
1821 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1822 * In the case of a non-split, skb->data is linearly filled,
1823 * followed by the page buffers. Therefore, skb->data is
1824 * sized to hold the largest protocol header.
1826 /* allocations using alloc_page take too long for regular MTU
1827 * so only enable packet split for jumbo frames */
1828 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1829 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1830 srrctl |= adapter->rx_ps_hdr_size <<
1831 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1832 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1834 adapter->rx_ps_hdr_size = 0;
1835 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1838 for (i = 0; i < adapter->num_rx_queues; i++) {
1839 j = adapter->rx_ring[i].reg_idx;
1840 wr32(E1000_SRRCTL(j), srrctl);
1843 wr32(E1000_RCTL, rctl);
1847 * igb_configure_rx - Configure receive Unit after Reset
1848 * @adapter: board private structure
1850 * Configure the Rx unit of the MAC after a reset.
1852 static void igb_configure_rx(struct igb_adapter *adapter)
1855 struct e1000_hw *hw = &adapter->hw;
1860 /* disable receives while setting up the descriptors */
1861 rctl = rd32(E1000_RCTL);
1862 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1866 if (adapter->itr_setting > 3)
1867 wr32(E1000_ITR, adapter->itr);
1869 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1870 * the Base and Length of the Rx Descriptor Ring */
1871 for (i = 0; i < adapter->num_rx_queues; i++) {
1872 struct igb_ring *ring = &(adapter->rx_ring[i]);
1875 wr32(E1000_RDBAL(j),
1876 rdba & 0x00000000ffffffffULL);
1877 wr32(E1000_RDBAH(j), rdba >> 32);
1878 wr32(E1000_RDLEN(j),
1879 ring->count * sizeof(union e1000_adv_rx_desc));
1881 ring->head = E1000_RDH(j);
1882 ring->tail = E1000_RDT(j);
1883 writel(0, hw->hw_addr + ring->tail);
1884 writel(0, hw->hw_addr + ring->head);
1886 rxdctl = rd32(E1000_RXDCTL(j));
1887 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1888 rxdctl &= 0xFFF00000;
1889 rxdctl |= IGB_RX_PTHRESH;
1890 rxdctl |= IGB_RX_HTHRESH << 8;
1891 rxdctl |= IGB_RX_WTHRESH << 16;
1892 wr32(E1000_RXDCTL(j), rxdctl);
1895 if (adapter->num_rx_queues > 1) {
1904 get_random_bytes(&random[0], 40);
1906 if (hw->mac.type >= e1000_82576)
1910 for (j = 0; j < (32 * 4); j++) {
1912 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
1915 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1917 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1919 /* Fill out hash function seeds */
1920 for (j = 0; j < 10; j++)
1921 array_wr32(E1000_RSSRK(0), j, random[j]);
1923 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1924 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1925 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1926 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1927 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1928 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1929 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1930 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1933 wr32(E1000_MRQC, mrqc);
1935 /* Multiqueue and raw packet checksumming are mutually
1936 * exclusive. Note that this not the same as TCP/IP
1937 * checksumming, which works fine. */
1938 rxcsum = rd32(E1000_RXCSUM);
1939 rxcsum |= E1000_RXCSUM_PCSD;
1940 wr32(E1000_RXCSUM, rxcsum);
1942 /* Enable Receive Checksum Offload for TCP and UDP */
1943 rxcsum = rd32(E1000_RXCSUM);
1944 if (adapter->rx_csum) {
1945 rxcsum |= E1000_RXCSUM_TUOFL;
1947 /* Enable IPv4 payload checksum for UDP fragments
1948 * Must be used in conjunction with packet-split. */
1949 if (adapter->rx_ps_hdr_size)
1950 rxcsum |= E1000_RXCSUM_IPPCSE;
1952 rxcsum &= ~E1000_RXCSUM_TUOFL;
1953 /* don't need to clear IPPCSE as it defaults to 0 */
1955 wr32(E1000_RXCSUM, rxcsum);
1960 adapter->max_frame_size + VLAN_TAG_SIZE);
1962 wr32(E1000_RLPML, adapter->max_frame_size);
1964 /* Enable Receives */
1965 wr32(E1000_RCTL, rctl);
1969 * igb_free_tx_resources - Free Tx Resources per Queue
1970 * @tx_ring: Tx descriptor ring for a specific queue
1972 * Free all transmit software resources
1974 void igb_free_tx_resources(struct igb_ring *tx_ring)
1976 struct pci_dev *pdev = tx_ring->adapter->pdev;
1978 igb_clean_tx_ring(tx_ring);
1980 vfree(tx_ring->buffer_info);
1981 tx_ring->buffer_info = NULL;
1983 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1985 tx_ring->desc = NULL;
1989 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1990 * @adapter: board private structure
1992 * Free all transmit software resources
1994 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1998 for (i = 0; i < adapter->num_tx_queues; i++)
1999 igb_free_tx_resources(&adapter->tx_ring[i]);
2002 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2003 struct igb_buffer *buffer_info)
2005 if (buffer_info->dma) {
2006 pci_unmap_page(adapter->pdev,
2008 buffer_info->length,
2010 buffer_info->dma = 0;
2012 if (buffer_info->skb) {
2013 dev_kfree_skb_any(buffer_info->skb);
2014 buffer_info->skb = NULL;
2016 buffer_info->time_stamp = 0;
2017 /* buffer_info must be completely set up in the transmit path */
2021 * igb_clean_tx_ring - Free Tx Buffers
2022 * @tx_ring: ring to be cleaned
2024 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2026 struct igb_adapter *adapter = tx_ring->adapter;
2027 struct igb_buffer *buffer_info;
2031 if (!tx_ring->buffer_info)
2033 /* Free all the Tx ring sk_buffs */
2035 for (i = 0; i < tx_ring->count; i++) {
2036 buffer_info = &tx_ring->buffer_info[i];
2037 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2040 size = sizeof(struct igb_buffer) * tx_ring->count;
2041 memset(tx_ring->buffer_info, 0, size);
2043 /* Zero out the descriptor ring */
2045 memset(tx_ring->desc, 0, tx_ring->size);
2047 tx_ring->next_to_use = 0;
2048 tx_ring->next_to_clean = 0;
2050 writel(0, adapter->hw.hw_addr + tx_ring->head);
2051 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2055 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2056 * @adapter: board private structure
2058 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2062 for (i = 0; i < adapter->num_tx_queues; i++)
2063 igb_clean_tx_ring(&adapter->tx_ring[i]);
2067 * igb_free_rx_resources - Free Rx Resources
2068 * @rx_ring: ring to clean the resources from
2070 * Free all receive software resources
2072 void igb_free_rx_resources(struct igb_ring *rx_ring)
2074 struct pci_dev *pdev = rx_ring->adapter->pdev;
2076 igb_clean_rx_ring(rx_ring);
2078 vfree(rx_ring->buffer_info);
2079 rx_ring->buffer_info = NULL;
2081 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2083 rx_ring->desc = NULL;
2087 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2088 * @adapter: board private structure
2090 * Free all receive software resources
2092 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2096 for (i = 0; i < adapter->num_rx_queues; i++)
2097 igb_free_rx_resources(&adapter->rx_ring[i]);
2101 * igb_clean_rx_ring - Free Rx Buffers per Queue
2102 * @rx_ring: ring to free buffers from
2104 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2106 struct igb_adapter *adapter = rx_ring->adapter;
2107 struct igb_buffer *buffer_info;
2108 struct pci_dev *pdev = adapter->pdev;
2112 if (!rx_ring->buffer_info)
2114 /* Free all the Rx ring sk_buffs */
2115 for (i = 0; i < rx_ring->count; i++) {
2116 buffer_info = &rx_ring->buffer_info[i];
2117 if (buffer_info->dma) {
2118 if (adapter->rx_ps_hdr_size)
2119 pci_unmap_single(pdev, buffer_info->dma,
2120 adapter->rx_ps_hdr_size,
2121 PCI_DMA_FROMDEVICE);
2123 pci_unmap_single(pdev, buffer_info->dma,
2124 adapter->rx_buffer_len,
2125 PCI_DMA_FROMDEVICE);
2126 buffer_info->dma = 0;
2129 if (buffer_info->skb) {
2130 dev_kfree_skb(buffer_info->skb);
2131 buffer_info->skb = NULL;
2133 if (buffer_info->page) {
2134 if (buffer_info->page_dma)
2135 pci_unmap_page(pdev, buffer_info->page_dma,
2137 PCI_DMA_FROMDEVICE);
2138 put_page(buffer_info->page);
2139 buffer_info->page = NULL;
2140 buffer_info->page_dma = 0;
2141 buffer_info->page_offset = 0;
2145 size = sizeof(struct igb_buffer) * rx_ring->count;
2146 memset(rx_ring->buffer_info, 0, size);
2148 /* Zero out the descriptor ring */
2149 memset(rx_ring->desc, 0, rx_ring->size);
2151 rx_ring->next_to_clean = 0;
2152 rx_ring->next_to_use = 0;
2154 writel(0, adapter->hw.hw_addr + rx_ring->head);
2155 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2159 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2160 * @adapter: board private structure
2162 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2166 for (i = 0; i < adapter->num_rx_queues; i++)
2167 igb_clean_rx_ring(&adapter->rx_ring[i]);
2171 * igb_set_mac - Change the Ethernet Address of the NIC
2172 * @netdev: network interface device structure
2173 * @p: pointer to an address structure
2175 * Returns 0 on success, negative on failure
2177 static int igb_set_mac(struct net_device *netdev, void *p)
2179 struct igb_adapter *adapter = netdev_priv(netdev);
2180 struct e1000_hw *hw = &adapter->hw;
2181 struct sockaddr *addr = p;
2183 if (!is_valid_ether_addr(addr->sa_data))
2184 return -EADDRNOTAVAIL;
2186 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2187 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2189 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
2195 * igb_set_multi - Multicast and Promiscuous mode set
2196 * @netdev: network interface device structure
2198 * The set_multi entry point is called whenever the multicast address
2199 * list or the network interface flags are updated. This routine is
2200 * responsible for configuring the hardware for proper multicast,
2201 * promiscuous mode, and all-multi behavior.
2203 static void igb_set_multi(struct net_device *netdev)
2205 struct igb_adapter *adapter = netdev_priv(netdev);
2206 struct e1000_hw *hw = &adapter->hw;
2207 struct e1000_mac_info *mac = &hw->mac;
2208 struct dev_mc_list *mc_ptr;
2213 /* Check for Promiscuous and All Multicast modes */
2215 rctl = rd32(E1000_RCTL);
2217 if (netdev->flags & IFF_PROMISC) {
2218 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2219 rctl &= ~E1000_RCTL_VFE;
2221 if (netdev->flags & IFF_ALLMULTI) {
2222 rctl |= E1000_RCTL_MPE;
2223 rctl &= ~E1000_RCTL_UPE;
2225 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2226 rctl |= E1000_RCTL_VFE;
2228 wr32(E1000_RCTL, rctl);
2230 if (!netdev->mc_count) {
2231 /* nothing to program, so clear mc list */
2232 igb_update_mc_addr_list(hw, NULL, 0, 1,
2233 mac->rar_entry_count);
2237 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2241 /* The shared function expects a packed array of only addresses. */
2242 mc_ptr = netdev->mc_list;
2244 for (i = 0; i < netdev->mc_count; i++) {
2247 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2248 mc_ptr = mc_ptr->next;
2250 igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2254 /* Need to wait a few seconds after link up to get diagnostic information from
2256 static void igb_update_phy_info(unsigned long data)
2258 struct igb_adapter *adapter = (struct igb_adapter *) data;
2259 igb_get_phy_info(&adapter->hw);
2263 * igb_has_link - check shared code for link and determine up/down
2264 * @adapter: pointer to driver private info
2266 static bool igb_has_link(struct igb_adapter *adapter)
2268 struct e1000_hw *hw = &adapter->hw;
2269 bool link_active = false;
2272 /* get_link_status is set on LSC (link status) interrupt or
2273 * rx sequence error interrupt. get_link_status will stay
2274 * false until the e1000_check_for_link establishes link
2275 * for copper adapters ONLY
2277 switch (hw->phy.media_type) {
2278 case e1000_media_type_copper:
2279 if (hw->mac.get_link_status) {
2280 ret_val = hw->mac.ops.check_for_link(hw);
2281 link_active = !hw->mac.get_link_status;
2286 case e1000_media_type_fiber:
2287 ret_val = hw->mac.ops.check_for_link(hw);
2288 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2290 case e1000_media_type_internal_serdes:
2291 ret_val = hw->mac.ops.check_for_link(hw);
2292 link_active = hw->mac.serdes_has_link;
2295 case e1000_media_type_unknown:
2303 * igb_watchdog - Timer Call-back
2304 * @data: pointer to adapter cast into an unsigned long
2306 static void igb_watchdog(unsigned long data)
2308 struct igb_adapter *adapter = (struct igb_adapter *)data;
2309 /* Do the rest outside of interrupt context */
2310 schedule_work(&adapter->watchdog_task);
2313 static void igb_watchdog_task(struct work_struct *work)
2315 struct igb_adapter *adapter = container_of(work,
2316 struct igb_adapter, watchdog_task);
2317 struct e1000_hw *hw = &adapter->hw;
2318 struct net_device *netdev = adapter->netdev;
2319 struct igb_ring *tx_ring = adapter->tx_ring;
2324 link = igb_has_link(adapter);
2325 if ((netif_carrier_ok(netdev)) && link)
2329 if (!netif_carrier_ok(netdev)) {
2331 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2332 &adapter->link_speed,
2333 &adapter->link_duplex);
2335 ctrl = rd32(E1000_CTRL);
2336 /* Links status message must follow this format */
2337 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2338 "Flow Control: %s\n",
2340 adapter->link_speed,
2341 adapter->link_duplex == FULL_DUPLEX ?
2342 "Full Duplex" : "Half Duplex",
2343 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2344 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2345 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2346 E1000_CTRL_TFCE) ? "TX" : "None")));
2348 /* tweak tx_queue_len according to speed/duplex and
2349 * adjust the timeout factor */
2350 netdev->tx_queue_len = adapter->tx_queue_len;
2351 adapter->tx_timeout_factor = 1;
2352 switch (adapter->link_speed) {
2354 netdev->tx_queue_len = 10;
2355 adapter->tx_timeout_factor = 14;
2358 netdev->tx_queue_len = 100;
2359 /* maybe add some timeout factor ? */
2363 netif_carrier_on(netdev);
2364 netif_tx_wake_all_queues(netdev);
2366 /* link state has changed, schedule phy info update */
2367 if (!test_bit(__IGB_DOWN, &adapter->state))
2368 mod_timer(&adapter->phy_info_timer,
2369 round_jiffies(jiffies + 2 * HZ));
2372 if (netif_carrier_ok(netdev)) {
2373 adapter->link_speed = 0;
2374 adapter->link_duplex = 0;
2375 /* Links status message must follow this format */
2376 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2378 netif_carrier_off(netdev);
2379 netif_tx_stop_all_queues(netdev);
2381 /* link state has changed, schedule phy info update */
2382 if (!test_bit(__IGB_DOWN, &adapter->state))
2383 mod_timer(&adapter->phy_info_timer,
2384 round_jiffies(jiffies + 2 * HZ));
2389 igb_update_stats(adapter);
2391 hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2392 adapter->tpt_old = adapter->stats.tpt;
2393 hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2394 adapter->colc_old = adapter->stats.colc;
2396 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2397 adapter->gorc_old = adapter->stats.gorc;
2398 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2399 adapter->gotc_old = adapter->stats.gotc;
2401 igb_update_adaptive(&adapter->hw);
2403 if (!netif_carrier_ok(netdev)) {
2404 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2405 /* We've lost link, so the controller stops DMA,
2406 * but we've got queued Tx work that's never going
2407 * to get done, so reset controller to flush Tx.
2408 * (Do the reset outside of interrupt context). */
2409 adapter->tx_timeout_count++;
2410 schedule_work(&adapter->reset_task);
2414 /* Cause software interrupt to ensure rx ring is cleaned */
2415 if (adapter->msix_entries) {
2416 for (i = 0; i < adapter->num_rx_queues; i++)
2417 eics |= adapter->rx_ring[i].eims_value;
2418 wr32(E1000_EICS, eics);
2420 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2423 /* Force detection of hung controller every watchdog period */
2424 tx_ring->detect_tx_hung = true;
2426 /* Reset the timer */
2427 if (!test_bit(__IGB_DOWN, &adapter->state))
2428 mod_timer(&adapter->watchdog_timer,
2429 round_jiffies(jiffies + 2 * HZ));
2432 enum latency_range {
2436 latency_invalid = 255
2441 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2443 * Stores a new ITR value based on strictly on packet size. This
2444 * algorithm is less sophisticated than that used in igb_update_itr,
2445 * due to the difficulty of synchronizing statistics across multiple
2446 * receive rings. The divisors and thresholds used by this fuction
2447 * were determined based on theoretical maximum wire speed and testing
2448 * data, in order to minimize response time while increasing bulk
2450 * This functionality is controlled by the InterruptThrottleRate module
2451 * parameter (see igb_param.c)
2452 * NOTE: This function is called only when operating in a multiqueue
2453 * receive environment.
2454 * @rx_ring: pointer to ring
2456 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2458 int new_val = rx_ring->itr_val;
2459 int avg_wire_size = 0;
2460 struct igb_adapter *adapter = rx_ring->adapter;
2462 if (!rx_ring->total_packets)
2463 goto clear_counts; /* no packets, so don't do anything */
2465 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2466 * ints/sec - ITR timer value of 120 ticks.
2468 if (adapter->link_speed != SPEED_1000) {
2472 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2474 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2475 avg_wire_size += 24;
2477 /* Don't starve jumbo frames */
2478 avg_wire_size = min(avg_wire_size, 3000);
2480 /* Give a little boost to mid-size frames */
2481 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2482 new_val = avg_wire_size / 3;
2484 new_val = avg_wire_size / 2;
2487 if (new_val != rx_ring->itr_val) {
2488 rx_ring->itr_val = new_val;
2489 rx_ring->set_itr = 1;
2492 rx_ring->total_bytes = 0;
2493 rx_ring->total_packets = 0;
2497 * igb_update_itr - update the dynamic ITR value based on statistics
2498 * Stores a new ITR value based on packets and byte
2499 * counts during the last interrupt. The advantage of per interrupt
2500 * computation is faster updates and more accurate ITR for the current
2501 * traffic pattern. Constants in this function were computed
2502 * based on theoretical maximum wire speed and thresholds were set based
2503 * on testing data as well as attempting to minimize response time
2504 * while increasing bulk throughput.
2505 * this functionality is controlled by the InterruptThrottleRate module
2506 * parameter (see igb_param.c)
2507 * NOTE: These calculations are only valid when operating in a single-
2508 * queue environment.
2509 * @adapter: pointer to adapter
2510 * @itr_setting: current adapter->itr
2511 * @packets: the number of packets during this measurement interval
2512 * @bytes: the number of bytes during this measurement interval
2514 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2515 int packets, int bytes)
2517 unsigned int retval = itr_setting;
2520 goto update_itr_done;
2522 switch (itr_setting) {
2523 case lowest_latency:
2524 /* handle TSO and jumbo frames */
2525 if (bytes/packets > 8000)
2526 retval = bulk_latency;
2527 else if ((packets < 5) && (bytes > 512))
2528 retval = low_latency;
2530 case low_latency: /* 50 usec aka 20000 ints/s */
2531 if (bytes > 10000) {
2532 /* this if handles the TSO accounting */
2533 if (bytes/packets > 8000) {
2534 retval = bulk_latency;
2535 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2536 retval = bulk_latency;
2537 } else if ((packets > 35)) {
2538 retval = lowest_latency;
2540 } else if (bytes/packets > 2000) {
2541 retval = bulk_latency;
2542 } else if (packets <= 2 && bytes < 512) {
2543 retval = lowest_latency;
2546 case bulk_latency: /* 250 usec aka 4000 ints/s */
2547 if (bytes > 25000) {
2549 retval = low_latency;
2550 } else if (bytes < 6000) {
2551 retval = low_latency;
2560 static void igb_set_itr(struct igb_adapter *adapter)
2563 u32 new_itr = adapter->itr;
2565 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2566 if (adapter->link_speed != SPEED_1000) {
2572 adapter->rx_itr = igb_update_itr(adapter,
2574 adapter->rx_ring->total_packets,
2575 adapter->rx_ring->total_bytes);
2577 if (adapter->rx_ring->buddy) {
2578 adapter->tx_itr = igb_update_itr(adapter,
2580 adapter->tx_ring->total_packets,
2581 adapter->tx_ring->total_bytes);
2583 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2585 current_itr = adapter->rx_itr;
2588 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2589 if (adapter->itr_setting == 3 &&
2590 current_itr == lowest_latency)
2591 current_itr = low_latency;
2593 switch (current_itr) {
2594 /* counts and packets in update_itr are dependent on these numbers */
2595 case lowest_latency:
2599 new_itr = 20000; /* aka hwitr = ~200 */
2609 adapter->rx_ring->total_bytes = 0;
2610 adapter->rx_ring->total_packets = 0;
2611 if (adapter->rx_ring->buddy) {
2612 adapter->rx_ring->buddy->total_bytes = 0;
2613 adapter->rx_ring->buddy->total_packets = 0;
2616 if (new_itr != adapter->itr) {
2617 /* this attempts to bias the interrupt rate towards Bulk
2618 * by adding intermediate steps when interrupt rate is
2620 new_itr = new_itr > adapter->itr ?
2621 min(adapter->itr + (new_itr >> 2), new_itr) :
2623 /* Don't write the value here; it resets the adapter's
2624 * internal timer, and causes us to delay far longer than
2625 * we should between interrupts. Instead, we write the ITR
2626 * value at the beginning of the next interrupt so the timing
2627 * ends up being correct.
2629 adapter->itr = new_itr;
2630 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2631 adapter->rx_ring->set_itr = 1;
2638 #define IGB_TX_FLAGS_CSUM 0x00000001
2639 #define IGB_TX_FLAGS_VLAN 0x00000002
2640 #define IGB_TX_FLAGS_TSO 0x00000004
2641 #define IGB_TX_FLAGS_IPV4 0x00000008
2642 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2643 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2645 static inline int igb_tso_adv(struct igb_adapter *adapter,
2646 struct igb_ring *tx_ring,
2647 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2649 struct e1000_adv_tx_context_desc *context_desc;
2652 struct igb_buffer *buffer_info;
2653 u32 info = 0, tu_cmd = 0;
2654 u32 mss_l4len_idx, l4len;
2657 if (skb_header_cloned(skb)) {
2658 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2663 l4len = tcp_hdrlen(skb);
2666 if (skb->protocol == htons(ETH_P_IP)) {
2667 struct iphdr *iph = ip_hdr(skb);
2670 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2674 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2675 ipv6_hdr(skb)->payload_len = 0;
2676 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2677 &ipv6_hdr(skb)->daddr,
2681 i = tx_ring->next_to_use;
2683 buffer_info = &tx_ring->buffer_info[i];
2684 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2685 /* VLAN MACLEN IPLEN */
2686 if (tx_flags & IGB_TX_FLAGS_VLAN)
2687 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2688 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2689 *hdr_len += skb_network_offset(skb);
2690 info |= skb_network_header_len(skb);
2691 *hdr_len += skb_network_header_len(skb);
2692 context_desc->vlan_macip_lens = cpu_to_le32(info);
2694 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2695 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2697 if (skb->protocol == htons(ETH_P_IP))
2698 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2699 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2701 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2704 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2705 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2707 /* Context index must be unique per ring. */
2708 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2709 mss_l4len_idx |= tx_ring->queue_index << 4;
2711 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2712 context_desc->seqnum_seed = 0;
2714 buffer_info->time_stamp = jiffies;
2715 buffer_info->next_to_watch = i;
2716 buffer_info->dma = 0;
2718 if (i == tx_ring->count)
2721 tx_ring->next_to_use = i;
2726 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2727 struct igb_ring *tx_ring,
2728 struct sk_buff *skb, u32 tx_flags)
2730 struct e1000_adv_tx_context_desc *context_desc;
2732 struct igb_buffer *buffer_info;
2733 u32 info = 0, tu_cmd = 0;
2735 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2736 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2737 i = tx_ring->next_to_use;
2738 buffer_info = &tx_ring->buffer_info[i];
2739 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2741 if (tx_flags & IGB_TX_FLAGS_VLAN)
2742 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2743 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2744 if (skb->ip_summed == CHECKSUM_PARTIAL)
2745 info |= skb_network_header_len(skb);
2747 context_desc->vlan_macip_lens = cpu_to_le32(info);
2749 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2751 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2752 switch (skb->protocol) {
2753 case cpu_to_be16(ETH_P_IP):
2754 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2755 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2756 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2758 case cpu_to_be16(ETH_P_IPV6):
2759 /* XXX what about other V6 headers?? */
2760 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2761 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2764 if (unlikely(net_ratelimit()))
2765 dev_warn(&adapter->pdev->dev,
2766 "partial checksum but proto=%x!\n",
2772 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2773 context_desc->seqnum_seed = 0;
2774 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2775 context_desc->mss_l4len_idx =
2776 cpu_to_le32(tx_ring->queue_index << 4);
2778 buffer_info->time_stamp = jiffies;
2779 buffer_info->next_to_watch = i;
2780 buffer_info->dma = 0;
2783 if (i == tx_ring->count)
2785 tx_ring->next_to_use = i;
2794 #define IGB_MAX_TXD_PWR 16
2795 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2797 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2798 struct igb_ring *tx_ring, struct sk_buff *skb,
2801 struct igb_buffer *buffer_info;
2802 unsigned int len = skb_headlen(skb);
2803 unsigned int count = 0, i;
2806 i = tx_ring->next_to_use;
2808 buffer_info = &tx_ring->buffer_info[i];
2809 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2810 buffer_info->length = len;
2811 /* set time_stamp *before* dma to help avoid a possible race */
2812 buffer_info->time_stamp = jiffies;
2813 buffer_info->next_to_watch = i;
2814 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2818 if (i == tx_ring->count)
2821 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2822 struct skb_frag_struct *frag;
2824 frag = &skb_shinfo(skb)->frags[f];
2827 buffer_info = &tx_ring->buffer_info[i];
2828 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2829 buffer_info->length = len;
2830 buffer_info->time_stamp = jiffies;
2831 buffer_info->next_to_watch = i;
2832 buffer_info->dma = pci_map_page(adapter->pdev,
2840 if (i == tx_ring->count)
2844 i = ((i == 0) ? tx_ring->count - 1 : i - 1);
2845 tx_ring->buffer_info[i].skb = skb;
2846 tx_ring->buffer_info[first].next_to_watch = i;
2851 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2852 struct igb_ring *tx_ring,
2853 int tx_flags, int count, u32 paylen,
2856 union e1000_adv_tx_desc *tx_desc = NULL;
2857 struct igb_buffer *buffer_info;
2858 u32 olinfo_status = 0, cmd_type_len;
2861 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2862 E1000_ADVTXD_DCMD_DEXT);
2864 if (tx_flags & IGB_TX_FLAGS_VLAN)
2865 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2867 if (tx_flags & IGB_TX_FLAGS_TSO) {
2868 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2870 /* insert tcp checksum */
2871 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2873 /* insert ip checksum */
2874 if (tx_flags & IGB_TX_FLAGS_IPV4)
2875 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2877 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2878 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2881 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2882 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2883 IGB_TX_FLAGS_VLAN)))
2884 olinfo_status |= tx_ring->queue_index << 4;
2886 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2888 i = tx_ring->next_to_use;
2890 buffer_info = &tx_ring->buffer_info[i];
2891 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2892 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2893 tx_desc->read.cmd_type_len =
2894 cpu_to_le32(cmd_type_len | buffer_info->length);
2895 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2897 if (i == tx_ring->count)
2901 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2902 /* Force memory writes to complete before letting h/w
2903 * know there are new descriptors to fetch. (Only
2904 * applicable for weak-ordered memory model archs,
2905 * such as IA-64). */
2908 tx_ring->next_to_use = i;
2909 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2910 /* we need this if more than one processor can write to our tail
2911 * at a time, it syncronizes IO on IA64/Altix systems */
2915 static int __igb_maybe_stop_tx(struct net_device *netdev,
2916 struct igb_ring *tx_ring, int size)
2918 struct igb_adapter *adapter = netdev_priv(netdev);
2920 netif_stop_subqueue(netdev, tx_ring->queue_index);
2922 /* Herbert's original patch had:
2923 * smp_mb__after_netif_stop_queue();
2924 * but since that doesn't exist yet, just open code it. */
2927 /* We need to check again in a case another CPU has just
2928 * made room available. */
2929 if (IGB_DESC_UNUSED(tx_ring) < size)
2933 netif_wake_subqueue(netdev, tx_ring->queue_index);
2934 ++adapter->restart_queue;
2938 static int igb_maybe_stop_tx(struct net_device *netdev,
2939 struct igb_ring *tx_ring, int size)
2941 if (IGB_DESC_UNUSED(tx_ring) >= size)
2943 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2946 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2948 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2949 struct net_device *netdev,
2950 struct igb_ring *tx_ring)
2952 struct igb_adapter *adapter = netdev_priv(netdev);
2954 unsigned int tx_flags = 0;
2959 len = skb_headlen(skb);
2961 if (test_bit(__IGB_DOWN, &adapter->state)) {
2962 dev_kfree_skb_any(skb);
2963 return NETDEV_TX_OK;
2966 if (skb->len <= 0) {
2967 dev_kfree_skb_any(skb);
2968 return NETDEV_TX_OK;
2971 /* need: 1 descriptor per page,
2972 * + 2 desc gap to keep tail from touching head,
2973 * + 1 desc for skb->data,
2974 * + 1 desc for context descriptor,
2975 * otherwise try next time */
2976 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2977 /* this is a hard error */
2978 return NETDEV_TX_BUSY;
2982 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2983 tx_flags |= IGB_TX_FLAGS_VLAN;
2984 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2987 if (skb->protocol == htons(ETH_P_IP))
2988 tx_flags |= IGB_TX_FLAGS_IPV4;
2990 first = tx_ring->next_to_use;
2992 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2996 dev_kfree_skb_any(skb);
2997 return NETDEV_TX_OK;
3001 tx_flags |= IGB_TX_FLAGS_TSO;
3002 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
3003 if (skb->ip_summed == CHECKSUM_PARTIAL)
3004 tx_flags |= IGB_TX_FLAGS_CSUM;
3006 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3007 igb_tx_map_adv(adapter, tx_ring, skb, first),
3010 netdev->trans_start = jiffies;
3012 /* Make sure there is space in the ring for the next send. */
3013 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3015 return NETDEV_TX_OK;
3018 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3020 struct igb_adapter *adapter = netdev_priv(netdev);
3021 struct igb_ring *tx_ring;
3024 r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3025 tx_ring = adapter->multi_tx_table[r_idx];
3027 /* This goes back to the question of how to logically map a tx queue
3028 * to a flow. Right now, performance is impacted slightly negatively
3029 * if using multiple tx queues. If the stack breaks away from a
3030 * single qdisc implementation, we can look at this again. */
3031 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3035 * igb_tx_timeout - Respond to a Tx Hang
3036 * @netdev: network interface device structure
3038 static void igb_tx_timeout(struct net_device *netdev)
3040 struct igb_adapter *adapter = netdev_priv(netdev);
3041 struct e1000_hw *hw = &adapter->hw;
3043 /* Do the reset outside of interrupt context */
3044 adapter->tx_timeout_count++;
3045 schedule_work(&adapter->reset_task);
3046 wr32(E1000_EICS, adapter->eims_enable_mask &
3047 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3050 static void igb_reset_task(struct work_struct *work)
3052 struct igb_adapter *adapter;
3053 adapter = container_of(work, struct igb_adapter, reset_task);
3055 igb_reinit_locked(adapter);
3059 * igb_get_stats - Get System Network Statistics
3060 * @netdev: network interface device structure
3062 * Returns the address of the device statistics structure.
3063 * The statistics are actually updated from the timer callback.
3065 static struct net_device_stats *
3066 igb_get_stats(struct net_device *netdev)
3068 struct igb_adapter *adapter = netdev_priv(netdev);
3070 /* only return the current stats */
3071 return &adapter->net_stats;
3075 * igb_change_mtu - Change the Maximum Transfer Unit
3076 * @netdev: network interface device structure
3077 * @new_mtu: new value for maximum frame size
3079 * Returns 0 on success, negative on failure
3081 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3083 struct igb_adapter *adapter = netdev_priv(netdev);
3084 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3086 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3087 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3088 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3092 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3093 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3094 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3098 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3100 /* igb_down has a dependency on max_frame_size */
3101 adapter->max_frame_size = max_frame;
3102 if (netif_running(netdev))
3105 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3106 * means we reserve 2 more, this pushes us to allocate from the next
3108 * i.e. RXBUFFER_2048 --> size-4096 slab
3111 if (max_frame <= IGB_RXBUFFER_256)
3112 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3113 else if (max_frame <= IGB_RXBUFFER_512)
3114 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3115 else if (max_frame <= IGB_RXBUFFER_1024)
3116 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3117 else if (max_frame <= IGB_RXBUFFER_2048)
3118 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3120 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3121 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3123 adapter->rx_buffer_len = PAGE_SIZE / 2;
3125 /* adjust allocation if LPE protects us, and we aren't using SBP */
3126 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3127 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3128 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3130 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3131 netdev->mtu, new_mtu);
3132 netdev->mtu = new_mtu;
3134 if (netif_running(netdev))
3139 clear_bit(__IGB_RESETTING, &adapter->state);
3145 * igb_update_stats - Update the board statistics counters
3146 * @adapter: board private structure
3149 void igb_update_stats(struct igb_adapter *adapter)
3151 struct e1000_hw *hw = &adapter->hw;
3152 struct pci_dev *pdev = adapter->pdev;
3155 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3158 * Prevent stats update while adapter is being reset, or if the pci
3159 * connection is down.
3161 if (adapter->link_speed == 0)
3163 if (pci_channel_offline(pdev))
3166 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3167 adapter->stats.gprc += rd32(E1000_GPRC);
3168 adapter->stats.gorc += rd32(E1000_GORCL);
3169 rd32(E1000_GORCH); /* clear GORCL */
3170 adapter->stats.bprc += rd32(E1000_BPRC);
3171 adapter->stats.mprc += rd32(E1000_MPRC);
3172 adapter->stats.roc += rd32(E1000_ROC);
3174 adapter->stats.prc64 += rd32(E1000_PRC64);
3175 adapter->stats.prc127 += rd32(E1000_PRC127);
3176 adapter->stats.prc255 += rd32(E1000_PRC255);
3177 adapter->stats.prc511 += rd32(E1000_PRC511);
3178 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3179 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3180 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3181 adapter->stats.sec += rd32(E1000_SEC);
3183 adapter->stats.mpc += rd32(E1000_MPC);
3184 adapter->stats.scc += rd32(E1000_SCC);
3185 adapter->stats.ecol += rd32(E1000_ECOL);
3186 adapter->stats.mcc += rd32(E1000_MCC);
3187 adapter->stats.latecol += rd32(E1000_LATECOL);
3188 adapter->stats.dc += rd32(E1000_DC);
3189 adapter->stats.rlec += rd32(E1000_RLEC);
3190 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3191 adapter->stats.xontxc += rd32(E1000_XONTXC);
3192 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3193 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3194 adapter->stats.fcruc += rd32(E1000_FCRUC);
3195 adapter->stats.gptc += rd32(E1000_GPTC);
3196 adapter->stats.gotc += rd32(E1000_GOTCL);
3197 rd32(E1000_GOTCH); /* clear GOTCL */
3198 adapter->stats.rnbc += rd32(E1000_RNBC);
3199 adapter->stats.ruc += rd32(E1000_RUC);
3200 adapter->stats.rfc += rd32(E1000_RFC);
3201 adapter->stats.rjc += rd32(E1000_RJC);
3202 adapter->stats.tor += rd32(E1000_TORH);
3203 adapter->stats.tot += rd32(E1000_TOTH);
3204 adapter->stats.tpr += rd32(E1000_TPR);
3206 adapter->stats.ptc64 += rd32(E1000_PTC64);
3207 adapter->stats.ptc127 += rd32(E1000_PTC127);
3208 adapter->stats.ptc255 += rd32(E1000_PTC255);
3209 adapter->stats.ptc511 += rd32(E1000_PTC511);
3210 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3211 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3213 adapter->stats.mptc += rd32(E1000_MPTC);
3214 adapter->stats.bptc += rd32(E1000_BPTC);
3216 /* used for adaptive IFS */
3218 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3219 adapter->stats.tpt += hw->mac.tx_packet_delta;
3220 hw->mac.collision_delta = rd32(E1000_COLC);
3221 adapter->stats.colc += hw->mac.collision_delta;
3223 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3224 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3225 adapter->stats.tncrs += rd32(E1000_TNCRS);
3226 adapter->stats.tsctc += rd32(E1000_TSCTC);
3227 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3229 adapter->stats.iac += rd32(E1000_IAC);
3230 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3231 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3232 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3233 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3234 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3235 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3236 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3237 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3239 /* Fill out the OS statistics structure */
3240 adapter->net_stats.multicast = adapter->stats.mprc;
3241 adapter->net_stats.collisions = adapter->stats.colc;
3245 /* RLEC on some newer hardware can be incorrect so build
3246 * our own version based on RUC and ROC */
3247 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3248 adapter->stats.crcerrs + adapter->stats.algnerrc +
3249 adapter->stats.ruc + adapter->stats.roc +
3250 adapter->stats.cexterr;
3251 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3253 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3254 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3255 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3258 adapter->net_stats.tx_errors = adapter->stats.ecol +
3259 adapter->stats.latecol;
3260 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3261 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3262 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3264 /* Tx Dropped needs to be maintained elsewhere */
3267 if (hw->phy.media_type == e1000_media_type_copper) {
3268 if ((adapter->link_speed == SPEED_1000) &&
3269 (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
3271 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3272 adapter->phy_stats.idle_errors += phy_tmp;
3276 /* Management Stats */
3277 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3278 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3279 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3283 static irqreturn_t igb_msix_other(int irq, void *data)
3285 struct net_device *netdev = data;
3286 struct igb_adapter *adapter = netdev_priv(netdev);
3287 struct e1000_hw *hw = &adapter->hw;
3288 u32 icr = rd32(E1000_ICR);
3290 /* reading ICR causes bit 31 of EICR to be cleared */
3292 if(icr & E1000_ICR_DOUTSYNC) {
3293 /* HW is reporting DMA is out of sync */
3294 adapter->stats.doosync++;
3296 if (!(icr & E1000_ICR_LSC))
3297 goto no_link_interrupt;
3298 hw->mac.get_link_status = 1;
3299 /* guard against interrupt when we're going down */
3300 if (!test_bit(__IGB_DOWN, &adapter->state))
3301 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3304 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
3305 wr32(E1000_EIMS, adapter->eims_other);
3310 static irqreturn_t igb_msix_tx(int irq, void *data)
3312 struct igb_ring *tx_ring = data;
3313 struct igb_adapter *adapter = tx_ring->adapter;
3314 struct e1000_hw *hw = &adapter->hw;
3316 #ifdef CONFIG_IGB_DCA
3317 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3318 igb_update_tx_dca(tx_ring);
3320 tx_ring->total_bytes = 0;
3321 tx_ring->total_packets = 0;
3323 /* auto mask will automatically reenable the interrupt when we write
3325 if (!igb_clean_tx_irq(tx_ring))
3326 /* Ring was not completely cleaned, so fire another interrupt */
3327 wr32(E1000_EICS, tx_ring->eims_value);
3329 wr32(E1000_EIMS, tx_ring->eims_value);
3334 static void igb_write_itr(struct igb_ring *ring)
3336 struct e1000_hw *hw = &ring->adapter->hw;
3337 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3338 switch (hw->mac.type) {
3340 wr32(ring->itr_register,
3345 wr32(ring->itr_register,
3347 (ring->itr_val << 16));
3354 static irqreturn_t igb_msix_rx(int irq, void *data)
3356 struct igb_ring *rx_ring = data;
3358 /* Write the ITR value calculated at the end of the
3359 * previous interrupt.
3362 igb_write_itr(rx_ring);
3364 if (napi_schedule_prep(&rx_ring->napi))
3365 __napi_schedule(&rx_ring->napi);
3367 #ifdef CONFIG_IGB_DCA
3368 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3369 igb_update_rx_dca(rx_ring);
3374 #ifdef CONFIG_IGB_DCA
3375 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3378 struct igb_adapter *adapter = rx_ring->adapter;
3379 struct e1000_hw *hw = &adapter->hw;
3380 int cpu = get_cpu();
3381 int q = rx_ring->reg_idx;
3383 if (rx_ring->cpu != cpu) {
3384 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3385 if (hw->mac.type == e1000_82576) {
3386 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3387 dca_rxctrl |= dca_get_tag(cpu) <<
3388 E1000_DCA_RXCTRL_CPUID_SHIFT;
3390 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3391 dca_rxctrl |= dca_get_tag(cpu);
3393 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3394 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3395 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3396 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3402 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3405 struct igb_adapter *adapter = tx_ring->adapter;
3406 struct e1000_hw *hw = &adapter->hw;
3407 int cpu = get_cpu();
3408 int q = tx_ring->reg_idx;
3410 if (tx_ring->cpu != cpu) {
3411 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3412 if (hw->mac.type == e1000_82576) {
3413 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3414 dca_txctrl |= dca_get_tag(cpu) <<
3415 E1000_DCA_TXCTRL_CPUID_SHIFT;
3417 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3418 dca_txctrl |= dca_get_tag(cpu);
3420 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3421 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3427 static void igb_setup_dca(struct igb_adapter *adapter)
3431 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3434 for (i = 0; i < adapter->num_tx_queues; i++) {
3435 adapter->tx_ring[i].cpu = -1;
3436 igb_update_tx_dca(&adapter->tx_ring[i]);
3438 for (i = 0; i < adapter->num_rx_queues; i++) {
3439 adapter->rx_ring[i].cpu = -1;
3440 igb_update_rx_dca(&adapter->rx_ring[i]);
3444 static int __igb_notify_dca(struct device *dev, void *data)
3446 struct net_device *netdev = dev_get_drvdata(dev);
3447 struct igb_adapter *adapter = netdev_priv(netdev);
3448 struct e1000_hw *hw = &adapter->hw;
3449 unsigned long event = *(unsigned long *)data;
3452 case DCA_PROVIDER_ADD:
3453 /* if already enabled, don't do it again */
3454 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3456 /* Always use CB2 mode, difference is masked
3457 * in the CB driver. */
3458 wr32(E1000_DCA_CTRL, 2);
3459 if (dca_add_requester(dev) == 0) {
3460 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3461 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3462 igb_setup_dca(adapter);
3465 /* Fall Through since DCA is disabled. */
3466 case DCA_PROVIDER_REMOVE:
3467 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3468 /* without this a class_device is left
3469 * hanging around in the sysfs model */
3470 dca_remove_requester(dev);
3471 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3472 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3473 wr32(E1000_DCA_CTRL, 1);
3481 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3486 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3489 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3491 #endif /* CONFIG_IGB_DCA */
3494 * igb_intr_msi - Interrupt Handler
3495 * @irq: interrupt number
3496 * @data: pointer to a network interface device structure
3498 static irqreturn_t igb_intr_msi(int irq, void *data)
3500 struct net_device *netdev = data;
3501 struct igb_adapter *adapter = netdev_priv(netdev);
3502 struct e1000_hw *hw = &adapter->hw;
3503 /* read ICR disables interrupts using IAM */
3504 u32 icr = rd32(E1000_ICR);
3506 igb_write_itr(adapter->rx_ring);
3508 if(icr & E1000_ICR_DOUTSYNC) {
3509 /* HW is reporting DMA is out of sync */
3510 adapter->stats.doosync++;
3513 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3514 hw->mac.get_link_status = 1;
3515 if (!test_bit(__IGB_DOWN, &adapter->state))
3516 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3519 napi_schedule(&adapter->rx_ring[0].napi);
3525 * igb_intr - Legacy Interrupt Handler
3526 * @irq: interrupt number
3527 * @data: pointer to a network interface device structure
3529 static irqreturn_t igb_intr(int irq, void *data)
3531 struct net_device *netdev = data;
3532 struct igb_adapter *adapter = netdev_priv(netdev);
3533 struct e1000_hw *hw = &adapter->hw;
3534 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3535 * need for the IMC write */
3536 u32 icr = rd32(E1000_ICR);
3538 return IRQ_NONE; /* Not our interrupt */
3540 igb_write_itr(adapter->rx_ring);
3542 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3543 * not set, then the adapter didn't send an interrupt */
3544 if (!(icr & E1000_ICR_INT_ASSERTED))
3547 if(icr & E1000_ICR_DOUTSYNC) {
3548 /* HW is reporting DMA is out of sync */
3549 adapter->stats.doosync++;
3552 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3553 hw->mac.get_link_status = 1;
3554 /* guard against interrupt when we're going down */
3555 if (!test_bit(__IGB_DOWN, &adapter->state))
3556 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3559 napi_schedule(&adapter->rx_ring[0].napi);
3565 * igb_poll - NAPI Rx polling callback
3566 * @napi: napi polling structure
3567 * @budget: count of how many packets we should handle
3569 static int igb_poll(struct napi_struct *napi, int budget)
3571 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3572 struct igb_adapter *adapter = rx_ring->adapter;
3573 struct net_device *netdev = adapter->netdev;
3574 int tx_clean_complete, work_done = 0;
3576 /* this poll routine only supports one tx and one rx queue */
3577 #ifdef CONFIG_IGB_DCA
3578 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3579 igb_update_tx_dca(&adapter->tx_ring[0]);
3581 tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3583 #ifdef CONFIG_IGB_DCA
3584 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3585 igb_update_rx_dca(&adapter->rx_ring[0]);
3587 igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3589 /* If no Tx and not enough Rx work done, exit the polling mode */
3590 if ((tx_clean_complete && (work_done < budget)) ||
3591 !netif_running(netdev)) {
3592 if (adapter->itr_setting & 3)
3593 igb_set_itr(adapter);
3594 napi_complete(napi);
3595 if (!test_bit(__IGB_DOWN, &adapter->state))
3596 igb_irq_enable(adapter);
3603 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3605 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3606 struct igb_adapter *adapter = rx_ring->adapter;
3607 struct e1000_hw *hw = &adapter->hw;
3608 struct net_device *netdev = adapter->netdev;
3611 #ifdef CONFIG_IGB_DCA
3612 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3613 igb_update_rx_dca(rx_ring);
3615 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3618 /* If not enough Rx work done, exit the polling mode */
3619 if ((work_done == 0) || !netif_running(netdev)) {
3620 napi_complete(napi);
3622 if (adapter->itr_setting & 3) {
3623 if (adapter->num_rx_queues == 1)
3624 igb_set_itr(adapter);
3626 igb_update_ring_itr(rx_ring);
3629 if (!test_bit(__IGB_DOWN, &adapter->state))
3630 wr32(E1000_EIMS, rx_ring->eims_value);
3639 * igb_clean_tx_irq - Reclaim resources after transmit completes
3640 * @adapter: board private structure
3641 * returns true if ring is completely cleaned
3643 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3645 struct igb_adapter *adapter = tx_ring->adapter;
3646 struct net_device *netdev = adapter->netdev;
3647 struct e1000_hw *hw = &adapter->hw;
3648 struct igb_buffer *buffer_info;
3649 struct sk_buff *skb;
3650 union e1000_adv_tx_desc *tx_desc, *eop_desc;
3651 unsigned int total_bytes = 0, total_packets = 0;
3652 unsigned int i, eop, count = 0;
3653 bool cleaned = false;
3655 i = tx_ring->next_to_clean;
3656 eop = tx_ring->buffer_info[i].next_to_watch;
3657 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3659 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3660 (count < tx_ring->count)) {
3661 for (cleaned = false; !cleaned; count++) {
3662 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3663 buffer_info = &tx_ring->buffer_info[i];
3664 cleaned = (i == eop);
3665 skb = buffer_info->skb;
3668 unsigned int segs, bytecount;
3669 /* gso_segs is currently only valid for tcp */
3670 segs = skb_shinfo(skb)->gso_segs ?: 1;
3671 /* multiply data chunks by size of headers */
3672 bytecount = ((segs - 1) * skb_headlen(skb)) +
3674 total_packets += segs;
3675 total_bytes += bytecount;
3678 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3679 tx_desc->wb.status = 0;
3682 if (i == tx_ring->count)
3686 eop = tx_ring->buffer_info[i].next_to_watch;
3687 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3690 tx_ring->next_to_clean = i;
3692 if (unlikely(count &&
3693 netif_carrier_ok(netdev) &&
3694 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3695 /* Make sure that anybody stopping the queue after this
3696 * sees the new next_to_clean.
3699 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3700 !(test_bit(__IGB_DOWN, &adapter->state))) {
3701 netif_wake_subqueue(netdev, tx_ring->queue_index);
3702 ++adapter->restart_queue;
3706 if (tx_ring->detect_tx_hung) {
3707 /* Detect a transmit hang in hardware, this serializes the
3708 * check with the clearing of time_stamp and movement of i */
3709 tx_ring->detect_tx_hung = false;
3710 if (tx_ring->buffer_info[i].time_stamp &&
3711 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3712 (adapter->tx_timeout_factor * HZ))
3713 && !(rd32(E1000_STATUS) &
3714 E1000_STATUS_TXOFF)) {
3716 /* detected Tx unit hang */
3717 dev_err(&adapter->pdev->dev,
3718 "Detected Tx Unit Hang\n"
3722 " next_to_use <%x>\n"
3723 " next_to_clean <%x>\n"
3724 "buffer_info[next_to_clean]\n"
3725 " time_stamp <%lx>\n"
3726 " next_to_watch <%x>\n"
3728 " desc.status <%x>\n",
3729 tx_ring->queue_index,
3730 readl(adapter->hw.hw_addr + tx_ring->head),
3731 readl(adapter->hw.hw_addr + tx_ring->tail),
3732 tx_ring->next_to_use,
3733 tx_ring->next_to_clean,
3734 tx_ring->buffer_info[i].time_stamp,
3737 eop_desc->wb.status);
3738 netif_stop_subqueue(netdev, tx_ring->queue_index);
3741 tx_ring->total_bytes += total_bytes;
3742 tx_ring->total_packets += total_packets;
3743 tx_ring->tx_stats.bytes += total_bytes;
3744 tx_ring->tx_stats.packets += total_packets;
3745 adapter->net_stats.tx_bytes += total_bytes;
3746 adapter->net_stats.tx_packets += total_packets;
3747 return (count < tx_ring->count);
3751 * igb_receive_skb - helper function to handle rx indications
3752 * @ring: pointer to receive ring receving this packet
3753 * @status: descriptor status field as written by hardware
3754 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3755 * @skb: pointer to sk_buff to be indicated to stack
3757 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3758 union e1000_adv_rx_desc * rx_desc,
3759 struct sk_buff *skb)
3761 struct igb_adapter * adapter = ring->adapter;
3762 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3764 skb_record_rx_queue(skb, ring->queue_index);
3765 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3767 vlan_gro_receive(&ring->napi, adapter->vlgrp,
3768 le16_to_cpu(rx_desc->wb.upper.vlan),
3771 napi_gro_receive(&ring->napi, skb);
3774 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3775 le16_to_cpu(rx_desc->wb.upper.vlan));
3777 netif_receive_skb(skb);
3782 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3783 u32 status_err, struct sk_buff *skb)
3785 skb->ip_summed = CHECKSUM_NONE;
3787 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3788 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3790 /* TCP/UDP checksum error bit is set */
3792 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3793 /* let the stack verify checksum errors */
3794 adapter->hw_csum_err++;
3797 /* It must be a TCP or UDP packet with a valid checksum */
3798 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3799 skb->ip_summed = CHECKSUM_UNNECESSARY;
3801 adapter->hw_csum_good++;
3804 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3805 int *work_done, int budget)
3807 struct igb_adapter *adapter = rx_ring->adapter;
3808 struct net_device *netdev = adapter->netdev;
3809 struct pci_dev *pdev = adapter->pdev;
3810 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3811 struct igb_buffer *buffer_info , *next_buffer;
3812 struct sk_buff *skb;
3814 u32 length, hlen, staterr;
3815 bool cleaned = false;
3816 int cleaned_count = 0;
3817 unsigned int total_bytes = 0, total_packets = 0;
3819 i = rx_ring->next_to_clean;
3820 buffer_info = &rx_ring->buffer_info[i];
3821 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3822 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3824 while (staterr & E1000_RXD_STAT_DD) {
3825 if (*work_done >= budget)
3829 skb = buffer_info->skb;
3830 prefetch(skb->data - NET_IP_ALIGN);
3831 buffer_info->skb = NULL;
3834 if (i == rx_ring->count)
3836 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3838 next_buffer = &rx_ring->buffer_info[i];
3840 length = le16_to_cpu(rx_desc->wb.upper.length);
3844 if (!adapter->rx_ps_hdr_size) {
3845 pci_unmap_single(pdev, buffer_info->dma,
3846 adapter->rx_buffer_len +
3848 PCI_DMA_FROMDEVICE);
3849 skb_put(skb, length);
3853 /* HW will not DMA in data larger than the given buffer, even
3854 * if it parses the (NFS, of course) header to be larger. In
3855 * that case, it fills the header buffer and spills the rest
3858 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3859 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3860 if (hlen > adapter->rx_ps_hdr_size)
3861 hlen = adapter->rx_ps_hdr_size;
3863 if (!skb_shinfo(skb)->nr_frags) {
3864 pci_unmap_single(pdev, buffer_info->dma,
3865 adapter->rx_ps_hdr_size +
3867 PCI_DMA_FROMDEVICE);
3872 pci_unmap_page(pdev, buffer_info->page_dma,
3873 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3874 buffer_info->page_dma = 0;
3876 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3878 buffer_info->page_offset,
3881 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3882 (page_count(buffer_info->page) != 1))
3883 buffer_info->page = NULL;
3885 get_page(buffer_info->page);
3888 skb->data_len += length;
3890 skb->truesize += length;
3893 if (!(staterr & E1000_RXD_STAT_EOP)) {
3894 buffer_info->skb = next_buffer->skb;
3895 buffer_info->dma = next_buffer->dma;
3896 next_buffer->skb = skb;
3897 next_buffer->dma = 0;
3901 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3902 dev_kfree_skb_irq(skb);
3906 total_bytes += skb->len;
3909 igb_rx_checksum_adv(adapter, staterr, skb);
3911 skb->protocol = eth_type_trans(skb, netdev);
3913 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3916 rx_desc->wb.upper.status_error = 0;
3918 /* return some buffers to hardware, one at a time is too slow */
3919 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3920 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3924 /* use prefetched values */
3926 buffer_info = next_buffer;
3927 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3930 rx_ring->next_to_clean = i;
3931 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3934 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3936 rx_ring->total_packets += total_packets;
3937 rx_ring->total_bytes += total_bytes;
3938 rx_ring->rx_stats.packets += total_packets;
3939 rx_ring->rx_stats.bytes += total_bytes;
3940 adapter->net_stats.rx_bytes += total_bytes;
3941 adapter->net_stats.rx_packets += total_packets;
3947 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3948 * @adapter: address of board private structure
3950 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3953 struct igb_adapter *adapter = rx_ring->adapter;
3954 struct net_device *netdev = adapter->netdev;
3955 struct pci_dev *pdev = adapter->pdev;
3956 union e1000_adv_rx_desc *rx_desc;
3957 struct igb_buffer *buffer_info;
3958 struct sk_buff *skb;
3962 i = rx_ring->next_to_use;
3963 buffer_info = &rx_ring->buffer_info[i];
3965 if (adapter->rx_ps_hdr_size)
3966 bufsz = adapter->rx_ps_hdr_size;
3968 bufsz = adapter->rx_buffer_len;
3969 bufsz += NET_IP_ALIGN;
3971 while (cleaned_count--) {
3972 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3974 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
3975 if (!buffer_info->page) {
3976 buffer_info->page = alloc_page(GFP_ATOMIC);
3977 if (!buffer_info->page) {
3978 adapter->alloc_rx_buff_failed++;
3981 buffer_info->page_offset = 0;
3983 buffer_info->page_offset ^= PAGE_SIZE / 2;
3985 buffer_info->page_dma =
3986 pci_map_page(pdev, buffer_info->page,
3987 buffer_info->page_offset,
3989 PCI_DMA_FROMDEVICE);
3992 if (!buffer_info->skb) {
3993 skb = netdev_alloc_skb(netdev, bufsz);
3995 adapter->alloc_rx_buff_failed++;
3999 /* Make buffer alignment 2 beyond a 16 byte boundary
4000 * this will result in a 16 byte aligned IP header after
4001 * the 14 byte MAC header is removed
4003 skb_reserve(skb, NET_IP_ALIGN);
4005 buffer_info->skb = skb;
4006 buffer_info->dma = pci_map_single(pdev, skb->data,
4008 PCI_DMA_FROMDEVICE);
4010 /* Refresh the desc even if buffer_addrs didn't change because
4011 * each write-back erases this info. */
4012 if (adapter->rx_ps_hdr_size) {
4013 rx_desc->read.pkt_addr =
4014 cpu_to_le64(buffer_info->page_dma);
4015 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4017 rx_desc->read.pkt_addr =
4018 cpu_to_le64(buffer_info->dma);
4019 rx_desc->read.hdr_addr = 0;
4023 if (i == rx_ring->count)
4025 buffer_info = &rx_ring->buffer_info[i];
4029 if (rx_ring->next_to_use != i) {
4030 rx_ring->next_to_use = i;
4032 i = (rx_ring->count - 1);
4036 /* Force memory writes to complete before letting h/w
4037 * know there are new descriptors to fetch. (Only
4038 * applicable for weak-ordered memory model archs,
4039 * such as IA-64). */
4041 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4051 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4053 struct igb_adapter *adapter = netdev_priv(netdev);
4054 struct mii_ioctl_data *data = if_mii(ifr);
4056 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4061 data->phy_id = adapter->hw.phy.addr;
4064 if (!capable(CAP_NET_ADMIN))
4066 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4083 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4089 return igb_mii_ioctl(netdev, ifr, cmd);
4095 static void igb_vlan_rx_register(struct net_device *netdev,
4096 struct vlan_group *grp)
4098 struct igb_adapter *adapter = netdev_priv(netdev);
4099 struct e1000_hw *hw = &adapter->hw;
4102 igb_irq_disable(adapter);
4103 adapter->vlgrp = grp;
4106 /* enable VLAN tag insert/strip */
4107 ctrl = rd32(E1000_CTRL);
4108 ctrl |= E1000_CTRL_VME;
4109 wr32(E1000_CTRL, ctrl);
4111 /* enable VLAN receive filtering */
4112 rctl = rd32(E1000_RCTL);
4113 rctl &= ~E1000_RCTL_CFIEN;
4114 wr32(E1000_RCTL, rctl);
4115 igb_update_mng_vlan(adapter);
4117 adapter->max_frame_size + VLAN_TAG_SIZE);
4119 /* disable VLAN tag insert/strip */
4120 ctrl = rd32(E1000_CTRL);
4121 ctrl &= ~E1000_CTRL_VME;
4122 wr32(E1000_CTRL, ctrl);
4124 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4125 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4126 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4129 adapter->max_frame_size);
4132 if (!test_bit(__IGB_DOWN, &adapter->state))
4133 igb_irq_enable(adapter);
4136 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4138 struct igb_adapter *adapter = netdev_priv(netdev);
4139 struct e1000_hw *hw = &adapter->hw;
4142 if ((hw->mng_cookie.status &
4143 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4144 (vid == adapter->mng_vlan_id))
4146 /* add VID to filter table */
4147 index = (vid >> 5) & 0x7F;
4148 vfta = array_rd32(E1000_VFTA, index);
4149 vfta |= (1 << (vid & 0x1F));
4150 igb_write_vfta(&adapter->hw, index, vfta);
4153 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4155 struct igb_adapter *adapter = netdev_priv(netdev);
4156 struct e1000_hw *hw = &adapter->hw;
4159 igb_irq_disable(adapter);
4160 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4162 if (!test_bit(__IGB_DOWN, &adapter->state))
4163 igb_irq_enable(adapter);
4165 if ((adapter->hw.mng_cookie.status &
4166 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4167 (vid == adapter->mng_vlan_id)) {
4168 /* release control to f/w */
4169 igb_release_hw_control(adapter);
4173 /* remove VID from filter table */
4174 index = (vid >> 5) & 0x7F;
4175 vfta = array_rd32(E1000_VFTA, index);
4176 vfta &= ~(1 << (vid & 0x1F));
4177 igb_write_vfta(&adapter->hw, index, vfta);
4180 static void igb_restore_vlan(struct igb_adapter *adapter)
4182 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4184 if (adapter->vlgrp) {
4186 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4187 if (!vlan_group_get_device(adapter->vlgrp, vid))
4189 igb_vlan_rx_add_vid(adapter->netdev, vid);
4194 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4196 struct e1000_mac_info *mac = &adapter->hw.mac;
4200 /* Fiber NICs only allow 1000 gbps Full duplex */
4201 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4202 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4203 dev_err(&adapter->pdev->dev,
4204 "Unsupported Speed/Duplex configuration\n");
4209 case SPEED_10 + DUPLEX_HALF:
4210 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4212 case SPEED_10 + DUPLEX_FULL:
4213 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4215 case SPEED_100 + DUPLEX_HALF:
4216 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4218 case SPEED_100 + DUPLEX_FULL:
4219 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4221 case SPEED_1000 + DUPLEX_FULL:
4223 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4225 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4227 dev_err(&adapter->pdev->dev,
4228 "Unsupported Speed/Duplex configuration\n");
4235 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4237 struct net_device *netdev = pci_get_drvdata(pdev);
4238 struct igb_adapter *adapter = netdev_priv(netdev);
4239 struct e1000_hw *hw = &adapter->hw;
4240 u32 ctrl, rctl, status;
4241 u32 wufc = adapter->wol;
4246 netif_device_detach(netdev);
4248 if (netif_running(netdev))
4251 igb_reset_interrupt_capability(adapter);
4253 igb_free_queues(adapter);
4256 retval = pci_save_state(pdev);
4261 status = rd32(E1000_STATUS);
4262 if (status & E1000_STATUS_LU)
4263 wufc &= ~E1000_WUFC_LNKC;
4266 igb_setup_rctl(adapter);
4267 igb_set_multi(netdev);
4269 /* turn on all-multi mode if wake on multicast is enabled */
4270 if (wufc & E1000_WUFC_MC) {
4271 rctl = rd32(E1000_RCTL);
4272 rctl |= E1000_RCTL_MPE;
4273 wr32(E1000_RCTL, rctl);
4276 ctrl = rd32(E1000_CTRL);
4277 /* advertise wake from D3Cold */
4278 #define E1000_CTRL_ADVD3WUC 0x00100000
4279 /* phy power management enable */
4280 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4281 ctrl |= E1000_CTRL_ADVD3WUC;
4282 wr32(E1000_CTRL, ctrl);
4284 /* Allow time for pending master requests to run */
4285 igb_disable_pcie_master(&adapter->hw);
4287 wr32(E1000_WUC, E1000_WUC_PME_EN);
4288 wr32(E1000_WUFC, wufc);
4291 wr32(E1000_WUFC, 0);
4294 /* make sure adapter isn't asleep if manageability/wol is enabled */
4295 if (wufc || adapter->en_mng_pt) {
4296 pci_enable_wake(pdev, PCI_D3hot, 1);
4297 pci_enable_wake(pdev, PCI_D3cold, 1);
4299 igb_shutdown_fiber_serdes_link_82575(hw);
4300 pci_enable_wake(pdev, PCI_D3hot, 0);
4301 pci_enable_wake(pdev, PCI_D3cold, 0);
4304 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4305 * would have already happened in close and is redundant. */
4306 igb_release_hw_control(adapter);
4308 pci_disable_device(pdev);
4310 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4316 static int igb_resume(struct pci_dev *pdev)
4318 struct net_device *netdev = pci_get_drvdata(pdev);
4319 struct igb_adapter *adapter = netdev_priv(netdev);
4320 struct e1000_hw *hw = &adapter->hw;
4323 pci_set_power_state(pdev, PCI_D0);
4324 pci_restore_state(pdev);
4326 err = pci_enable_device_mem(pdev);
4329 "igb: Cannot enable PCI device from suspend\n");
4332 pci_set_master(pdev);
4334 pci_enable_wake(pdev, PCI_D3hot, 0);
4335 pci_enable_wake(pdev, PCI_D3cold, 0);
4337 igb_set_interrupt_capability(adapter);
4339 if (igb_alloc_queues(adapter)) {
4340 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4344 /* e1000_power_up_phy(adapter); */
4348 /* let the f/w know that the h/w is now under the control of the
4350 igb_get_hw_control(adapter);
4352 wr32(E1000_WUS, ~0);
4354 if (netif_running(netdev)) {
4355 err = igb_open(netdev);
4360 netif_device_attach(netdev);
4366 static void igb_shutdown(struct pci_dev *pdev)
4368 igb_suspend(pdev, PMSG_SUSPEND);
4371 #ifdef CONFIG_NET_POLL_CONTROLLER
4373 * Polling 'interrupt' - used by things like netconsole to send skbs
4374 * without having to re-enable interrupts. It's not called while
4375 * the interrupt routine is executing.
4377 static void igb_netpoll(struct net_device *netdev)
4379 struct igb_adapter *adapter = netdev_priv(netdev);
4380 struct e1000_hw *hw = &adapter->hw;
4383 if (!adapter->msix_entries) {
4384 igb_irq_disable(adapter);
4385 napi_schedule(&adapter->rx_ring[0].napi);
4389 for (i = 0; i < adapter->num_tx_queues; i++) {
4390 struct igb_ring *tx_ring = &adapter->tx_ring[i];
4391 wr32(E1000_EIMC, tx_ring->eims_value);
4392 igb_clean_tx_irq(tx_ring);
4393 wr32(E1000_EIMS, tx_ring->eims_value);
4396 for (i = 0; i < adapter->num_rx_queues; i++) {
4397 struct igb_ring *rx_ring = &adapter->rx_ring[i];
4398 wr32(E1000_EIMC, rx_ring->eims_value);
4399 napi_schedule(&rx_ring->napi);
4402 #endif /* CONFIG_NET_POLL_CONTROLLER */
4405 * igb_io_error_detected - called when PCI error is detected
4406 * @pdev: Pointer to PCI device
4407 * @state: The current pci connection state
4409 * This function is called after a PCI bus error affecting
4410 * this device has been detected.
4412 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4413 pci_channel_state_t state)
4415 struct net_device *netdev = pci_get_drvdata(pdev);
4416 struct igb_adapter *adapter = netdev_priv(netdev);
4418 netif_device_detach(netdev);
4420 if (netif_running(netdev))
4422 pci_disable_device(pdev);
4424 /* Request a slot slot reset. */
4425 return PCI_ERS_RESULT_NEED_RESET;
4429 * igb_io_slot_reset - called after the pci bus has been reset.
4430 * @pdev: Pointer to PCI device
4432 * Restart the card from scratch, as if from a cold-boot. Implementation
4433 * resembles the first-half of the igb_resume routine.
4435 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4437 struct net_device *netdev = pci_get_drvdata(pdev);
4438 struct igb_adapter *adapter = netdev_priv(netdev);
4439 struct e1000_hw *hw = &adapter->hw;
4440 pci_ers_result_t result;
4443 if (pci_enable_device_mem(pdev)) {
4445 "Cannot re-enable PCI device after reset.\n");
4446 result = PCI_ERS_RESULT_DISCONNECT;
4448 pci_set_master(pdev);
4449 pci_restore_state(pdev);
4451 pci_enable_wake(pdev, PCI_D3hot, 0);
4452 pci_enable_wake(pdev, PCI_D3cold, 0);
4455 wr32(E1000_WUS, ~0);
4456 result = PCI_ERS_RESULT_RECOVERED;
4459 err = pci_cleanup_aer_uncorrect_error_status(pdev);
4461 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
4462 "failed 0x%0x\n", err);
4463 /* non-fatal, continue */
4470 * igb_io_resume - called when traffic can start flowing again.
4471 * @pdev: Pointer to PCI device
4473 * This callback is called when the error recovery driver tells us that
4474 * its OK to resume normal operation. Implementation resembles the
4475 * second-half of the igb_resume routine.
4477 static void igb_io_resume(struct pci_dev *pdev)
4479 struct net_device *netdev = pci_get_drvdata(pdev);
4480 struct igb_adapter *adapter = netdev_priv(netdev);
4482 if (netif_running(netdev)) {
4483 if (igb_up(adapter)) {
4484 dev_err(&pdev->dev, "igb_up failed after reset\n");
4489 netif_device_attach(netdev);
4491 /* let the f/w know that the h/w is now under the control of the
4493 igb_get_hw_control(adapter);