Merge branches 'x86/apic', 'x86/cleanups', 'x86/cpufeature', 'x86/crashdump', 'x86...
[linux-2.6] / arch / x86 / kernel / cpu / common.c
1 #include <linux/init.h>
2 #include <linux/kernel.h>
3 #include <linux/sched.h>
4 #include <linux/string.h>
5 #include <linux/bootmem.h>
6 #include <linux/bitops.h>
7 #include <linux/module.h>
8 #include <linux/kgdb.h>
9 #include <linux/topology.h>
10 #include <linux/delay.h>
11 #include <linux/smp.h>
12 #include <linux/percpu.h>
13 #include <asm/i387.h>
14 #include <asm/msr.h>
15 #include <asm/io.h>
16 #include <asm/linkage.h>
17 #include <asm/mmu_context.h>
18 #include <asm/mtrr.h>
19 #include <asm/mce.h>
20 #include <asm/pat.h>
21 #include <asm/asm.h>
22 #include <asm/numa.h>
23 #include <asm/smp.h>
24 #ifdef CONFIG_X86_LOCAL_APIC
25 #include <asm/mpspec.h>
26 #include <asm/apic.h>
27 #include <mach_apic.h>
28 #include <asm/genapic.h>
29 #endif
30
31 #include <asm/pda.h>
32 #include <asm/pgtable.h>
33 #include <asm/processor.h>
34 #include <asm/desc.h>
35 #include <asm/atomic.h>
36 #include <asm/proto.h>
37 #include <asm/sections.h>
38 #include <asm/setup.h>
39 #include <asm/hypervisor.h>
40
41 #include "cpu.h"
42
43 static struct cpu_dev *this_cpu __cpuinitdata;
44
45 #ifdef CONFIG_X86_64
46 /* We need valid kernel segments for data and code in long mode too
47  * IRET will check the segment types  kkeil 2000/10/28
48  * Also sysret mandates a special GDT layout
49  */
50 /* The TLS descriptors are currently at a different place compared to i386.
51    Hopefully nobody expects them at a fixed place (Wine?) */
52 DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
53         [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
54         [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
55         [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
56         [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
57         [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
58         [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
59 } };
60 #else
61 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
62         [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
63         [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
64         [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
65         [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
66         /*
67          * Segments used for calling PnP BIOS have byte granularity.
68          * They code segments and data segments have fixed 64k limits,
69          * the transfer segment sizes are set at run time.
70          */
71         /* 32-bit code */
72         [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
73         /* 16-bit code */
74         [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
75         /* 16-bit data */
76         [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
77         /* 16-bit data */
78         [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
79         /* 16-bit data */
80         [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
81         /*
82          * The APM segments have byte granularity and their bases
83          * are set at run time.  All have 64k limits.
84          */
85         /* 32-bit code */
86         [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
87         /* 16-bit code */
88         [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
89         /* data */
90         [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
91
92         [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
93         [GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
94 } };
95 #endif
96 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
97
98 #ifdef CONFIG_X86_32
99 static int cachesize_override __cpuinitdata = -1;
100 static int disable_x86_serial_nr __cpuinitdata = 1;
101
102 static int __init cachesize_setup(char *str)
103 {
104         get_option(&str, &cachesize_override);
105         return 1;
106 }
107 __setup("cachesize=", cachesize_setup);
108
109 static int __init x86_fxsr_setup(char *s)
110 {
111         setup_clear_cpu_cap(X86_FEATURE_FXSR);
112         setup_clear_cpu_cap(X86_FEATURE_XMM);
113         return 1;
114 }
115 __setup("nofxsr", x86_fxsr_setup);
116
117 static int __init x86_sep_setup(char *s)
118 {
119         setup_clear_cpu_cap(X86_FEATURE_SEP);
120         return 1;
121 }
122 __setup("nosep", x86_sep_setup);
123
124 /* Standard macro to see if a specific flag is changeable */
125 static inline int flag_is_changeable_p(u32 flag)
126 {
127         u32 f1, f2;
128
129         /*
130          * Cyrix and IDT cpus allow disabling of CPUID
131          * so the code below may return different results
132          * when it is executed before and after enabling
133          * the CPUID. Add "volatile" to not allow gcc to
134          * optimize the subsequent calls to this function.
135          */
136         asm volatile ("pushfl\n\t"
137                       "pushfl\n\t"
138                       "popl %0\n\t"
139                       "movl %0,%1\n\t"
140                       "xorl %2,%0\n\t"
141                       "pushl %0\n\t"
142                       "popfl\n\t"
143                       "pushfl\n\t"
144                       "popl %0\n\t"
145                       "popfl\n\t"
146                       : "=&r" (f1), "=&r" (f2)
147                       : "ir" (flag));
148
149         return ((f1^f2) & flag) != 0;
150 }
151
152 /* Probe for the CPUID instruction */
153 static int __cpuinit have_cpuid_p(void)
154 {
155         return flag_is_changeable_p(X86_EFLAGS_ID);
156 }
157
158 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
159 {
160         if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
161                 /* Disable processor serial number */
162                 unsigned long lo, hi;
163                 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
164                 lo |= 0x200000;
165                 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
166                 printk(KERN_NOTICE "CPU serial number disabled.\n");
167                 clear_cpu_cap(c, X86_FEATURE_PN);
168
169                 /* Disabling the serial number may affect the cpuid level */
170                 c->cpuid_level = cpuid_eax(0);
171         }
172 }
173
174 static int __init x86_serial_nr_setup(char *s)
175 {
176         disable_x86_serial_nr = 0;
177         return 1;
178 }
179 __setup("serialnumber", x86_serial_nr_setup);
180 #else
181 static inline int flag_is_changeable_p(u32 flag)
182 {
183         return 1;
184 }
185 /* Probe for the CPUID instruction */
186 static inline int have_cpuid_p(void)
187 {
188         return 1;
189 }
190 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
191 {
192 }
193 #endif
194
195 /*
196  * Naming convention should be: <Name> [(<Codename>)]
197  * This table only is used unless init_<vendor>() below doesn't set it;
198  * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
199  *
200  */
201
202 /* Look up CPU names by table lookup. */
203 static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
204 {
205         struct cpu_model_info *info;
206
207         if (c->x86_model >= 16)
208                 return NULL;    /* Range check */
209
210         if (!this_cpu)
211                 return NULL;
212
213         info = this_cpu->c_models;
214
215         while (info && info->family) {
216                 if (info->family == c->x86)
217                         return info->model_names[c->x86_model];
218                 info++;
219         }
220         return NULL;            /* Not found */
221 }
222
223 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
224
225 /* Current gdt points %fs at the "master" per-cpu area: after this,
226  * it's on the real one. */
227 void switch_to_new_gdt(void)
228 {
229         struct desc_ptr gdt_descr;
230
231         gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
232         gdt_descr.size = GDT_SIZE - 1;
233         load_gdt(&gdt_descr);
234 #ifdef CONFIG_X86_32
235         asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
236 #endif
237 }
238
239 static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
240
241 static void __cpuinit default_init(struct cpuinfo_x86 *c)
242 {
243 #ifdef CONFIG_X86_64
244         display_cacheinfo(c);
245 #else
246         /* Not much we can do here... */
247         /* Check if at least it has cpuid */
248         if (c->cpuid_level == -1) {
249                 /* No cpuid. It must be an ancient CPU */
250                 if (c->x86 == 4)
251                         strcpy(c->x86_model_id, "486");
252                 else if (c->x86 == 3)
253                         strcpy(c->x86_model_id, "386");
254         }
255 #endif
256 }
257
258 static struct cpu_dev __cpuinitdata default_cpu = {
259         .c_init = default_init,
260         .c_vendor = "Unknown",
261         .c_x86_vendor = X86_VENDOR_UNKNOWN,
262 };
263
264 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
265 {
266         unsigned int *v;
267         char *p, *q;
268
269         if (c->extended_cpuid_level < 0x80000004)
270                 return;
271
272         v = (unsigned int *) c->x86_model_id;
273         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
274         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
275         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
276         c->x86_model_id[48] = 0;
277
278         /* Intel chips right-justify this string for some dumb reason;
279            undo that brain damage */
280         p = q = &c->x86_model_id[0];
281         while (*p == ' ')
282              p++;
283         if (p != q) {
284              while (*p)
285                   *q++ = *p++;
286              while (q <= &c->x86_model_id[48])
287                   *q++ = '\0';  /* Zero-pad the rest */
288         }
289 }
290
291 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
292 {
293         unsigned int n, dummy, ebx, ecx, edx, l2size;
294
295         n = c->extended_cpuid_level;
296
297         if (n >= 0x80000005) {
298                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
299                 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
300                                 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
301                 c->x86_cache_size = (ecx>>24) + (edx>>24);
302 #ifdef CONFIG_X86_64
303                 /* On K8 L1 TLB is inclusive, so don't count it */
304                 c->x86_tlbsize = 0;
305 #endif
306         }
307
308         if (n < 0x80000006)     /* Some chips just has a large L1. */
309                 return;
310
311         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
312         l2size = ecx >> 16;
313
314 #ifdef CONFIG_X86_64
315         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
316 #else
317         /* do processor-specific cache resizing */
318         if (this_cpu->c_size_cache)
319                 l2size = this_cpu->c_size_cache(c, l2size);
320
321         /* Allow user to override all this if necessary. */
322         if (cachesize_override != -1)
323                 l2size = cachesize_override;
324
325         if (l2size == 0)
326                 return;         /* Again, no L2 cache is possible */
327 #endif
328
329         c->x86_cache_size = l2size;
330
331         printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
332                         l2size, ecx & 0xFF);
333 }
334
335 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
336 {
337 #ifdef CONFIG_X86_HT
338         u32 eax, ebx, ecx, edx;
339         int index_msb, core_bits;
340
341         if (!cpu_has(c, X86_FEATURE_HT))
342                 return;
343
344         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
345                 goto out;
346
347         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
348                 return;
349
350         cpuid(1, &eax, &ebx, &ecx, &edx);
351
352         smp_num_siblings = (ebx & 0xff0000) >> 16;
353
354         if (smp_num_siblings == 1) {
355                 printk(KERN_INFO  "CPU: Hyper-Threading is disabled\n");
356         } else if (smp_num_siblings > 1) {
357
358                 if (smp_num_siblings > NR_CPUS) {
359                         printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
360                                         smp_num_siblings);
361                         smp_num_siblings = 1;
362                         return;
363                 }
364
365                 index_msb = get_count_order(smp_num_siblings);
366 #ifdef CONFIG_X86_64
367                 c->phys_proc_id = phys_pkg_id(index_msb);
368 #else
369                 c->phys_proc_id = phys_pkg_id(c->initial_apicid, index_msb);
370 #endif
371
372                 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
373
374                 index_msb = get_count_order(smp_num_siblings);
375
376                 core_bits = get_count_order(c->x86_max_cores);
377
378 #ifdef CONFIG_X86_64
379                 c->cpu_core_id = phys_pkg_id(index_msb) &
380                                                ((1 << core_bits) - 1);
381 #else
382                 c->cpu_core_id = phys_pkg_id(c->initial_apicid, index_msb) &
383                                                ((1 << core_bits) - 1);
384 #endif
385         }
386
387 out:
388         if ((c->x86_max_cores * smp_num_siblings) > 1) {
389                 printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
390                        c->phys_proc_id);
391                 printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
392                        c->cpu_core_id);
393         }
394 #endif
395 }
396
397 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
398 {
399         char *v = c->x86_vendor_id;
400         int i;
401         static int printed;
402
403         for (i = 0; i < X86_VENDOR_NUM; i++) {
404                 if (!cpu_devs[i])
405                         break;
406
407                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
408                     (cpu_devs[i]->c_ident[1] &&
409                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
410                         this_cpu = cpu_devs[i];
411                         c->x86_vendor = this_cpu->c_x86_vendor;
412                         return;
413                 }
414         }
415
416         if (!printed) {
417                 printed++;
418                 printk(KERN_ERR "CPU: vendor_id '%s' unknown, using generic init.\n", v);
419                 printk(KERN_ERR "CPU: Your system may be unstable.\n");
420         }
421
422         c->x86_vendor = X86_VENDOR_UNKNOWN;
423         this_cpu = &default_cpu;
424 }
425
426 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
427 {
428         /* Get vendor name */
429         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
430               (unsigned int *)&c->x86_vendor_id[0],
431               (unsigned int *)&c->x86_vendor_id[8],
432               (unsigned int *)&c->x86_vendor_id[4]);
433
434         c->x86 = 4;
435         /* Intel-defined flags: level 0x00000001 */
436         if (c->cpuid_level >= 0x00000001) {
437                 u32 junk, tfms, cap0, misc;
438                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
439                 c->x86 = (tfms >> 8) & 0xf;
440                 c->x86_model = (tfms >> 4) & 0xf;
441                 c->x86_mask = tfms & 0xf;
442                 if (c->x86 == 0xf)
443                         c->x86 += (tfms >> 20) & 0xff;
444                 if (c->x86 >= 0x6)
445                         c->x86_model += ((tfms >> 16) & 0xf) << 4;
446                 if (cap0 & (1<<19)) {
447                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
448                         c->x86_cache_alignment = c->x86_clflush_size;
449                 }
450         }
451 }
452
453 static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
454 {
455         u32 tfms, xlvl;
456         u32 ebx;
457
458         /* Intel-defined flags: level 0x00000001 */
459         if (c->cpuid_level >= 0x00000001) {
460                 u32 capability, excap;
461                 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
462                 c->x86_capability[0] = capability;
463                 c->x86_capability[4] = excap;
464         }
465
466         /* AMD-defined flags: level 0x80000001 */
467         xlvl = cpuid_eax(0x80000000);
468         c->extended_cpuid_level = xlvl;
469         if ((xlvl & 0xffff0000) == 0x80000000) {
470                 if (xlvl >= 0x80000001) {
471                         c->x86_capability[1] = cpuid_edx(0x80000001);
472                         c->x86_capability[6] = cpuid_ecx(0x80000001);
473                 }
474         }
475
476 #ifdef CONFIG_X86_64
477         if (c->extended_cpuid_level >= 0x80000008) {
478                 u32 eax = cpuid_eax(0x80000008);
479
480                 c->x86_virt_bits = (eax >> 8) & 0xff;
481                 c->x86_phys_bits = eax & 0xff;
482         }
483 #endif
484
485         if (c->extended_cpuid_level >= 0x80000007)
486                 c->x86_power = cpuid_edx(0x80000007);
487
488 }
489
490 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
491 {
492 #ifdef CONFIG_X86_32
493         int i;
494
495         /*
496          * First of all, decide if this is a 486 or higher
497          * It's a 486 if we can modify the AC flag
498          */
499         if (flag_is_changeable_p(X86_EFLAGS_AC))
500                 c->x86 = 4;
501         else
502                 c->x86 = 3;
503
504         for (i = 0; i < X86_VENDOR_NUM; i++)
505                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
506                         c->x86_vendor_id[0] = 0;
507                         cpu_devs[i]->c_identify(c);
508                         if (c->x86_vendor_id[0]) {
509                                 get_cpu_vendor(c);
510                                 break;
511                         }
512                 }
513 #endif
514 }
515
516 /*
517  * Do minimum CPU detection early.
518  * Fields really needed: vendor, cpuid_level, family, model, mask,
519  * cache alignment.
520  * The others are not touched to avoid unwanted side effects.
521  *
522  * WARNING: this function is only called on the BP.  Don't add code here
523  * that is supposed to run on all CPUs.
524  */
525 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
526 {
527 #ifdef CONFIG_X86_64
528         c->x86_clflush_size = 64;
529 #else
530         c->x86_clflush_size = 32;
531 #endif
532         c->x86_cache_alignment = c->x86_clflush_size;
533
534         memset(&c->x86_capability, 0, sizeof c->x86_capability);
535         c->extended_cpuid_level = 0;
536
537         if (!have_cpuid_p())
538                 identify_cpu_without_cpuid(c);
539
540         /* cyrix could have cpuid enabled via c_identify()*/
541         if (!have_cpuid_p())
542                 return;
543
544         cpu_detect(c);
545
546         get_cpu_vendor(c);
547
548         get_cpu_cap(c);
549
550         if (this_cpu->c_early_init)
551                 this_cpu->c_early_init(c);
552
553         validate_pat_support(c);
554
555 #ifdef CONFIG_SMP
556         c->cpu_index = boot_cpu_id;
557 #endif
558 }
559
560 void __init early_cpu_init(void)
561 {
562         struct cpu_dev **cdev;
563         int count = 0;
564
565         printk("KERNEL supported cpus:\n");
566         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
567                 struct cpu_dev *cpudev = *cdev;
568                 unsigned int j;
569
570                 if (count >= X86_VENDOR_NUM)
571                         break;
572                 cpu_devs[count] = cpudev;
573                 count++;
574
575                 for (j = 0; j < 2; j++) {
576                         if (!cpudev->c_ident[j])
577                                 continue;
578                         printk("  %s %s\n", cpudev->c_vendor,
579                                 cpudev->c_ident[j]);
580                 }
581         }
582
583         early_identify_cpu(&boot_cpu_data);
584 }
585
586 /*
587  * The NOPL instruction is supposed to exist on all CPUs with
588  * family >= 6; unfortunately, that's not true in practice because
589  * of early VIA chips and (more importantly) broken virtualizers that
590  * are not easy to detect.  In the latter case it doesn't even *fail*
591  * reliably, so probing for it doesn't even work.  Disable it completely
592  * unless we can find a reliable way to detect all the broken cases.
593  */
594 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
595 {
596         clear_cpu_cap(c, X86_FEATURE_NOPL);
597 }
598
599 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
600 {
601         c->extended_cpuid_level = 0;
602
603         if (!have_cpuid_p())
604                 identify_cpu_without_cpuid(c);
605
606         /* cyrix could have cpuid enabled via c_identify()*/
607         if (!have_cpuid_p())
608                 return;
609
610         cpu_detect(c);
611
612         get_cpu_vendor(c);
613
614         get_cpu_cap(c);
615
616         if (c->cpuid_level >= 0x00000001) {
617                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
618 #ifdef CONFIG_X86_32
619 # ifdef CONFIG_X86_HT
620                 c->apicid = phys_pkg_id(c->initial_apicid, 0);
621 # else
622                 c->apicid = c->initial_apicid;
623 # endif
624 #endif
625
626 #ifdef CONFIG_X86_HT
627                 c->phys_proc_id = c->initial_apicid;
628 #endif
629         }
630
631         get_model_name(c); /* Default name */
632
633         init_scattered_cpuid_features(c);
634         detect_nopl(c);
635 }
636
637 /*
638  * This does the hard work of actually picking apart the CPU stuff...
639  */
640 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
641 {
642         int i;
643
644         c->loops_per_jiffy = loops_per_jiffy;
645         c->x86_cache_size = -1;
646         c->x86_vendor = X86_VENDOR_UNKNOWN;
647         c->x86_model = c->x86_mask = 0; /* So far unknown... */
648         c->x86_vendor_id[0] = '\0'; /* Unset */
649         c->x86_model_id[0] = '\0';  /* Unset */
650         c->x86_max_cores = 1;
651         c->x86_coreid_bits = 0;
652 #ifdef CONFIG_X86_64
653         c->x86_clflush_size = 64;
654 #else
655         c->cpuid_level = -1;    /* CPUID not detected */
656         c->x86_clflush_size = 32;
657 #endif
658         c->x86_cache_alignment = c->x86_clflush_size;
659         memset(&c->x86_capability, 0, sizeof c->x86_capability);
660
661         generic_identify(c);
662
663         if (this_cpu->c_identify)
664                 this_cpu->c_identify(c);
665
666 #ifdef CONFIG_X86_64
667         c->apicid = phys_pkg_id(0);
668 #endif
669
670         /*
671          * Vendor-specific initialization.  In this section we
672          * canonicalize the feature flags, meaning if there are
673          * features a certain CPU supports which CPUID doesn't
674          * tell us, CPUID claiming incorrect flags, or other bugs,
675          * we handle them here.
676          *
677          * At the end of this section, c->x86_capability better
678          * indicate the features this CPU genuinely supports!
679          */
680         if (this_cpu->c_init)
681                 this_cpu->c_init(c);
682
683         /* Disable the PN if appropriate */
684         squash_the_stupid_serial_number(c);
685
686         /*
687          * The vendor-specific functions might have changed features.  Now
688          * we do "generic changes."
689          */
690
691         /* If the model name is still unset, do table lookup. */
692         if (!c->x86_model_id[0]) {
693                 char *p;
694                 p = table_lookup_model(c);
695                 if (p)
696                         strcpy(c->x86_model_id, p);
697                 else
698                         /* Last resort... */
699                         sprintf(c->x86_model_id, "%02x/%02x",
700                                 c->x86, c->x86_model);
701         }
702
703 #ifdef CONFIG_X86_64
704         detect_ht(c);
705 #endif
706
707         init_hypervisor(c);
708         /*
709          * On SMP, boot_cpu_data holds the common feature set between
710          * all CPUs; so make sure that we indicate which features are
711          * common between the CPUs.  The first time this routine gets
712          * executed, c == &boot_cpu_data.
713          */
714         if (c != &boot_cpu_data) {
715                 /* AND the already accumulated flags with these */
716                 for (i = 0; i < NCAPINTS; i++)
717                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
718         }
719
720         /* Clear all flags overriden by options */
721         for (i = 0; i < NCAPINTS; i++)
722                 c->x86_capability[i] &= ~cleared_cpu_caps[i];
723
724 #ifdef CONFIG_X86_MCE
725         /* Init Machine Check Exception if available. */
726         mcheck_init(c);
727 #endif
728
729         select_idle_routine(c);
730
731 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
732         numa_add_cpu(smp_processor_id());
733 #endif
734 }
735
736 #ifdef CONFIG_X86_64
737 static void vgetcpu_set_mode(void)
738 {
739         if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
740                 vgetcpu_mode = VGETCPU_RDTSCP;
741         else
742                 vgetcpu_mode = VGETCPU_LSL;
743 }
744 #endif
745
746 void __init identify_boot_cpu(void)
747 {
748         identify_cpu(&boot_cpu_data);
749 #ifdef CONFIG_X86_32
750         sysenter_setup();
751         enable_sep_cpu();
752 #else
753         vgetcpu_set_mode();
754 #endif
755 }
756
757 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
758 {
759         BUG_ON(c == &boot_cpu_data);
760         identify_cpu(c);
761 #ifdef CONFIG_X86_32
762         enable_sep_cpu();
763 #endif
764         mtrr_ap_init();
765 }
766
767 struct msr_range {
768         unsigned min;
769         unsigned max;
770 };
771
772 static struct msr_range msr_range_array[] __cpuinitdata = {
773         { 0x00000000, 0x00000418},
774         { 0xc0000000, 0xc000040b},
775         { 0xc0010000, 0xc0010142},
776         { 0xc0011000, 0xc001103b},
777 };
778
779 static void __cpuinit print_cpu_msr(void)
780 {
781         unsigned index;
782         u64 val;
783         int i;
784         unsigned index_min, index_max;
785
786         for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
787                 index_min = msr_range_array[i].min;
788                 index_max = msr_range_array[i].max;
789                 for (index = index_min; index < index_max; index++) {
790                         if (rdmsrl_amd_safe(index, &val))
791                                 continue;
792                         printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
793                 }
794         }
795 }
796
797 static int show_msr __cpuinitdata;
798 static __init int setup_show_msr(char *arg)
799 {
800         int num;
801
802         get_option(&arg, &num);
803
804         if (num > 0)
805                 show_msr = num;
806         return 1;
807 }
808 __setup("show_msr=", setup_show_msr);
809
810 static __init int setup_noclflush(char *arg)
811 {
812         setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
813         return 1;
814 }
815 __setup("noclflush", setup_noclflush);
816
817 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
818 {
819         char *vendor = NULL;
820
821         if (c->x86_vendor < X86_VENDOR_NUM)
822                 vendor = this_cpu->c_vendor;
823         else if (c->cpuid_level >= 0)
824                 vendor = c->x86_vendor_id;
825
826         if (vendor && !strstr(c->x86_model_id, vendor))
827                 printk(KERN_CONT "%s ", vendor);
828
829         if (c->x86_model_id[0])
830                 printk(KERN_CONT "%s", c->x86_model_id);
831         else
832                 printk(KERN_CONT "%d86", c->x86);
833
834         if (c->x86_mask || c->cpuid_level >= 0)
835                 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
836         else
837                 printk(KERN_CONT "\n");
838
839 #ifdef CONFIG_SMP
840         if (c->cpu_index < show_msr)
841                 print_cpu_msr();
842 #else
843         if (show_msr)
844                 print_cpu_msr();
845 #endif
846 }
847
848 static __init int setup_disablecpuid(char *arg)
849 {
850         int bit;
851         if (get_option(&arg, &bit) && bit < NCAPINTS*32)
852                 setup_clear_cpu_cap(bit);
853         else
854                 return 0;
855         return 1;
856 }
857 __setup("clearcpuid=", setup_disablecpuid);
858
859 cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
860
861 #ifdef CONFIG_X86_64
862 struct x8664_pda **_cpu_pda __read_mostly;
863 EXPORT_SYMBOL(_cpu_pda);
864
865 struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
866
867 static char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss;
868
869 void __cpuinit pda_init(int cpu)
870 {
871         struct x8664_pda *pda = cpu_pda(cpu);
872
873         /* Setup up data that may be needed in __get_free_pages early */
874         loadsegment(fs, 0);
875         loadsegment(gs, 0);
876         /* Memory clobbers used to order PDA accessed */
877         mb();
878         wrmsrl(MSR_GS_BASE, pda);
879         mb();
880
881         pda->cpunumber = cpu;
882         pda->irqcount = -1;
883         pda->kernelstack = (unsigned long)stack_thread_info() -
884                                  PDA_STACKOFFSET + THREAD_SIZE;
885         pda->active_mm = &init_mm;
886         pda->mmu_state = 0;
887
888         if (cpu == 0) {
889                 /* others are initialized in smpboot.c */
890                 pda->pcurrent = &init_task;
891                 pda->irqstackptr = boot_cpu_stack;
892                 pda->irqstackptr += IRQSTACKSIZE - 64;
893         } else {
894                 if (!pda->irqstackptr) {
895                         pda->irqstackptr = (char *)
896                                 __get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER);
897                         if (!pda->irqstackptr)
898                                 panic("cannot allocate irqstack for cpu %d",
899                                       cpu);
900                         pda->irqstackptr += IRQSTACKSIZE - 64;
901                 }
902
903                 if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE)
904                         pda->nodenumber = cpu_to_node(cpu);
905         }
906 }
907
908 static char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ +
909                                   DEBUG_STKSZ] __page_aligned_bss;
910
911 extern asmlinkage void ignore_sysret(void);
912
913 /* May not be marked __init: used by software suspend */
914 void syscall_init(void)
915 {
916         /*
917          * LSTAR and STAR live in a bit strange symbiosis.
918          * They both write to the same internal register. STAR allows to
919          * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
920          */
921         wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
922         wrmsrl(MSR_LSTAR, system_call);
923         wrmsrl(MSR_CSTAR, ignore_sysret);
924
925 #ifdef CONFIG_IA32_EMULATION
926         syscall32_cpu_init();
927 #endif
928
929         /* Flags to clear on syscall */
930         wrmsrl(MSR_SYSCALL_MASK,
931                X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
932 }
933
934 unsigned long kernel_eflags;
935
936 /*
937  * Copies of the original ist values from the tss are only accessed during
938  * debugging, no special alignment required.
939  */
940 DEFINE_PER_CPU(struct orig_ist, orig_ist);
941
942 #else
943
944 /* Make sure %fs is initialized properly in idle threads */
945 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
946 {
947         memset(regs, 0, sizeof(struct pt_regs));
948         regs->fs = __KERNEL_PERCPU;
949         return regs;
950 }
951 #endif
952
953 /*
954  * cpu_init() initializes state that is per-CPU. Some data is already
955  * initialized (naturally) in the bootstrap process, such as the GDT
956  * and IDT. We reload them nevertheless, this function acts as a
957  * 'CPU state barrier', nothing should get across.
958  * A lot of state is already set up in PDA init for 64 bit
959  */
960 #ifdef CONFIG_X86_64
961 void __cpuinit cpu_init(void)
962 {
963         int cpu = stack_smp_processor_id();
964         struct tss_struct *t = &per_cpu(init_tss, cpu);
965         struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
966         unsigned long v;
967         char *estacks = NULL;
968         struct task_struct *me;
969         int i;
970
971         /* CPU 0 is initialised in head64.c */
972         if (cpu != 0)
973                 pda_init(cpu);
974         else
975                 estacks = boot_exception_stacks;
976
977         me = current;
978
979         if (cpu_test_and_set(cpu, cpu_initialized))
980                 panic("CPU#%d already initialized!\n", cpu);
981
982         printk(KERN_INFO "Initializing CPU#%d\n", cpu);
983
984         clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
985
986         /*
987          * Initialize the per-CPU GDT with the boot GDT,
988          * and set up the GDT descriptor:
989          */
990
991         switch_to_new_gdt();
992         load_idt((const struct desc_ptr *)&idt_descr);
993
994         memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
995         syscall_init();
996
997         wrmsrl(MSR_FS_BASE, 0);
998         wrmsrl(MSR_KERNEL_GS_BASE, 0);
999         barrier();
1000
1001         check_efer();
1002         if (cpu != 0 && x2apic)
1003                 enable_x2apic();
1004
1005         /*
1006          * set up and load the per-CPU TSS
1007          */
1008         if (!orig_ist->ist[0]) {
1009                 static const unsigned int order[N_EXCEPTION_STACKS] = {
1010                   [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER,
1011                   [DEBUG_STACK - 1] = DEBUG_STACK_ORDER
1012                 };
1013                 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1014                         if (cpu) {
1015                                 estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]);
1016                                 if (!estacks)
1017                                         panic("Cannot allocate exception "
1018                                               "stack %ld %d\n", v, cpu);
1019                         }
1020                         estacks += PAGE_SIZE << order[v];
1021                         orig_ist->ist[v] = t->x86_tss.ist[v] =
1022                                         (unsigned long)estacks;
1023                 }
1024         }
1025
1026         t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1027         /*
1028          * <= is required because the CPU will access up to
1029          * 8 bits beyond the end of the IO permission bitmap.
1030          */
1031         for (i = 0; i <= IO_BITMAP_LONGS; i++)
1032                 t->io_bitmap[i] = ~0UL;
1033
1034         atomic_inc(&init_mm.mm_count);
1035         me->active_mm = &init_mm;
1036         if (me->mm)
1037                 BUG();
1038         enter_lazy_tlb(&init_mm, me);
1039
1040         load_sp0(t, &current->thread);
1041         set_tss_desc(cpu, t);
1042         load_TR_desc();
1043         load_LDT(&init_mm.context);
1044
1045 #ifdef CONFIG_KGDB
1046         /*
1047          * If the kgdb is connected no debug regs should be altered.  This
1048          * is only applicable when KGDB and a KGDB I/O module are built
1049          * into the kernel and you are using early debugging with
1050          * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1051          */
1052         if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
1053                 arch_kgdb_ops.correct_hw_break();
1054         else {
1055 #endif
1056         /*
1057          * Clear all 6 debug registers:
1058          */
1059
1060         set_debugreg(0UL, 0);
1061         set_debugreg(0UL, 1);
1062         set_debugreg(0UL, 2);
1063         set_debugreg(0UL, 3);
1064         set_debugreg(0UL, 6);
1065         set_debugreg(0UL, 7);
1066 #ifdef CONFIG_KGDB
1067         /* If the kgdb is connected no debug regs should be altered. */
1068         }
1069 #endif
1070
1071         fpu_init();
1072
1073         raw_local_save_flags(kernel_eflags);
1074
1075         if (is_uv_system())
1076                 uv_cpu_init();
1077 }
1078
1079 #else
1080
1081 void __cpuinit cpu_init(void)
1082 {
1083         int cpu = smp_processor_id();
1084         struct task_struct *curr = current;
1085         struct tss_struct *t = &per_cpu(init_tss, cpu);
1086         struct thread_struct *thread = &curr->thread;
1087
1088         if (cpu_test_and_set(cpu, cpu_initialized)) {
1089                 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1090                 for (;;) local_irq_enable();
1091         }
1092
1093         printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1094
1095         if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1096                 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1097
1098         load_idt(&idt_descr);
1099         switch_to_new_gdt();
1100
1101         /*
1102          * Set up and load the per-CPU TSS and LDT
1103          */
1104         atomic_inc(&init_mm.mm_count);
1105         curr->active_mm = &init_mm;
1106         if (curr->mm)
1107                 BUG();
1108         enter_lazy_tlb(&init_mm, curr);
1109
1110         load_sp0(t, thread);
1111         set_tss_desc(cpu, t);
1112         load_TR_desc();
1113         load_LDT(&init_mm.context);
1114
1115 #ifdef CONFIG_DOUBLEFAULT
1116         /* Set up doublefault TSS pointer in the GDT */
1117         __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1118 #endif
1119
1120         /* Clear %gs. */
1121         asm volatile ("mov %0, %%gs" : : "r" (0));
1122
1123         /* Clear all 6 debug registers: */
1124         set_debugreg(0, 0);
1125         set_debugreg(0, 1);
1126         set_debugreg(0, 2);
1127         set_debugreg(0, 3);
1128         set_debugreg(0, 6);
1129         set_debugreg(0, 7);
1130
1131         /*
1132          * Force FPU initialization:
1133          */
1134         if (cpu_has_xsave)
1135                 current_thread_info()->status = TS_XSAVE;
1136         else
1137                 current_thread_info()->status = 0;
1138         clear_used_math();
1139         mxcsr_feature_mask_init();
1140
1141         /*
1142          * Boot processor to setup the FP and extended state context info.
1143          */
1144         if (smp_processor_id() == boot_cpu_id)
1145                 init_thread_xstate();
1146
1147         xsave_init();
1148 }
1149
1150
1151 #endif