2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
38 struct scsi_host_sg_pool {
41 struct kmem_cache *slab;
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
64 SP(SCSI_MAX_SG_SEGMENTS)
68 struct kmem_cache *scsi_sdb_cache;
70 static void scsi_run_queue(struct request_queue *q);
73 * Function: scsi_unprep_request()
75 * Purpose: Remove all preparation done for a request, including its
76 * associated scsi_cmnd, so that it can be requeued.
78 * Arguments: req - request to unprepare
80 * Lock status: Assumed that no locks are held upon entry.
84 static void scsi_unprep_request(struct request *req)
86 struct scsi_cmnd *cmd = req->special;
88 req->cmd_flags &= ~REQ_DONTPREP;
91 scsi_put_command(cmd);
95 * Function: scsi_queue_insert()
97 * Purpose: Insert a command in the midlevel queue.
99 * Arguments: cmd - command that we are adding to queue.
100 * reason - why we are inserting command to queue.
102 * Lock status: Assumed that lock is not held upon entry.
106 * Notes: We do this for one of two cases. Either the host is busy
107 * and it cannot accept any more commands for the time being,
108 * or the device returned QUEUE_FULL and can accept no more
110 * Notes: This could be called either from an interrupt context or a
111 * normal process context.
113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
115 struct Scsi_Host *host = cmd->device->host;
116 struct scsi_device *device = cmd->device;
117 struct scsi_target *starget = scsi_target(device);
118 struct request_queue *q = device->request_queue;
122 printk("Inserting command %p into mlqueue\n", cmd));
125 * Set the appropriate busy bit for the device/host.
127 * If the host/device isn't busy, assume that something actually
128 * completed, and that we should be able to queue a command now.
130 * Note that the prior mid-layer assumption that any host could
131 * always queue at least one command is now broken. The mid-layer
132 * will implement a user specifiable stall (see
133 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
134 * if a command is requeued with no other commands outstanding
135 * either for the device or for the host.
138 case SCSI_MLQUEUE_HOST_BUSY:
139 host->host_blocked = host->max_host_blocked;
141 case SCSI_MLQUEUE_DEVICE_BUSY:
142 device->device_blocked = device->max_device_blocked;
144 case SCSI_MLQUEUE_TARGET_BUSY:
145 starget->target_blocked = starget->max_target_blocked;
150 * Decrement the counters, since these commands are no longer
151 * active on the host/device.
153 scsi_device_unbusy(device);
156 * Requeue this command. It will go before all other commands
157 * that are already in the queue.
159 * NOTE: there is magic here about the way the queue is plugged if
160 * we have no outstanding commands.
162 * Although we *don't* plug the queue, we call the request
163 * function. The SCSI request function detects the blocked condition
164 * and plugs the queue appropriately.
166 spin_lock_irqsave(q->queue_lock, flags);
167 blk_requeue_request(q, cmd->request);
168 spin_unlock_irqrestore(q->queue_lock, flags);
176 * scsi_execute - insert request and wait for the result
179 * @data_direction: data direction
180 * @buffer: data buffer
181 * @bufflen: len of buffer
182 * @sense: optional sense buffer
183 * @timeout: request timeout in seconds
184 * @retries: number of times to retry request
185 * @flags: or into request flags;
187 * returns the req->errors value which is the scsi_cmnd result
190 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
191 int data_direction, void *buffer, unsigned bufflen,
192 unsigned char *sense, int timeout, int retries, int flags)
195 int write = (data_direction == DMA_TO_DEVICE);
196 int ret = DRIVER_ERROR << 24;
198 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
200 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
201 buffer, bufflen, __GFP_WAIT))
204 req->cmd_len = COMMAND_SIZE(cmd[0]);
205 memcpy(req->cmd, cmd, req->cmd_len);
208 req->retries = retries;
209 req->timeout = timeout;
210 req->cmd_type = REQ_TYPE_BLOCK_PC;
211 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
214 * head injection *required* here otherwise quiesce won't work
216 blk_execute_rq(req->q, NULL, req, 1);
219 * Some devices (USB mass-storage in particular) may transfer
220 * garbage data together with a residue indicating that the data
221 * is invalid. Prevent the garbage from being misinterpreted
222 * and prevent security leaks by zeroing out the excess data.
224 if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
225 memset(buffer + (bufflen - req->data_len), 0, req->data_len);
229 blk_put_request(req);
233 EXPORT_SYMBOL(scsi_execute);
236 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
237 int data_direction, void *buffer, unsigned bufflen,
238 struct scsi_sense_hdr *sshdr, int timeout, int retries)
244 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
246 return DRIVER_ERROR << 24;
248 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
249 sense, timeout, retries, 0);
251 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
256 EXPORT_SYMBOL(scsi_execute_req);
258 struct scsi_io_context {
260 void (*done)(void *data, char *sense, int result, int resid);
261 char sense[SCSI_SENSE_BUFFERSIZE];
264 static struct kmem_cache *scsi_io_context_cache;
266 static void scsi_end_async(struct request *req, int uptodate)
268 struct scsi_io_context *sioc = req->end_io_data;
271 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
273 kmem_cache_free(scsi_io_context_cache, sioc);
274 __blk_put_request(req->q, req);
277 static int scsi_merge_bio(struct request *rq, struct bio *bio)
279 struct request_queue *q = rq->q;
281 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
282 if (rq_data_dir(rq) == WRITE)
283 bio->bi_rw |= (1 << BIO_RW);
284 blk_queue_bounce(q, &bio);
286 return blk_rq_append_bio(q, rq, bio);
289 static void scsi_bi_endio(struct bio *bio, int error)
295 * scsi_req_map_sg - map a scatterlist into a request
296 * @rq: request to fill
298 * @nsegs: number of elements
299 * @bufflen: len of buffer
300 * @gfp: memory allocation flags
302 * scsi_req_map_sg maps a scatterlist into a request so that the
303 * request can be sent to the block layer. We do not trust the scatterlist
304 * sent to use, as some ULDs use that struct to only organize the pages.
306 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
307 int nsegs, unsigned bufflen, gfp_t gfp)
309 struct request_queue *q = rq->q;
310 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
311 unsigned int data_len = bufflen, len, bytes, off;
312 struct scatterlist *sg;
314 struct bio *bio = NULL;
315 int i, err, nr_vecs = 0;
317 for_each_sg(sgl, sg, nsegs, i) {
322 while (len > 0 && data_len > 0) {
324 * sg sends a scatterlist that is larger than
325 * the data_len it wants transferred for certain
328 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
329 bytes = min(bytes, data_len);
332 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
335 bio = bio_alloc(gfp, nr_vecs);
340 bio->bi_end_io = scsi_bi_endio;
343 if (bio_add_pc_page(q, bio, page, bytes, off) !=
350 if (bio->bi_vcnt >= nr_vecs) {
351 err = scsi_merge_bio(rq, bio);
366 rq->buffer = rq->data = NULL;
367 rq->data_len = bufflen;
371 while ((bio = rq->bio) != NULL) {
372 rq->bio = bio->bi_next;
374 * call endio instead of bio_put incase it was bounced
383 * scsi_execute_async - insert request
386 * @cmd_len: length of scsi cdb
387 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
388 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
389 * @bufflen: len of buffer
390 * @use_sg: if buffer is a scatterlist this is the number of elements
391 * @timeout: request timeout in seconds
392 * @retries: number of times to retry request
393 * @privdata: data passed to done()
394 * @done: callback function when done
395 * @gfp: memory allocation flags
397 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
398 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
399 int use_sg, int timeout, int retries, void *privdata,
400 void (*done)(void *, char *, int, int), gfp_t gfp)
403 struct scsi_io_context *sioc;
405 int write = (data_direction == DMA_TO_DEVICE);
407 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
409 return DRIVER_ERROR << 24;
411 req = blk_get_request(sdev->request_queue, write, gfp);
414 req->cmd_type = REQ_TYPE_BLOCK_PC;
415 req->cmd_flags |= REQ_QUIET;
418 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
420 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
425 req->cmd_len = cmd_len;
426 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
427 memcpy(req->cmd, cmd, req->cmd_len);
428 req->sense = sioc->sense;
430 req->timeout = timeout;
431 req->retries = retries;
432 req->end_io_data = sioc;
434 sioc->data = privdata;
437 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
441 blk_put_request(req);
443 kmem_cache_free(scsi_io_context_cache, sioc);
444 return DRIVER_ERROR << 24;
446 EXPORT_SYMBOL_GPL(scsi_execute_async);
449 * Function: scsi_init_cmd_errh()
451 * Purpose: Initialize cmd fields related to error handling.
453 * Arguments: cmd - command that is ready to be queued.
455 * Notes: This function has the job of initializing a number of
456 * fields related to error handling. Typically this will
457 * be called once for each command, as required.
459 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
461 cmd->serial_number = 0;
462 scsi_set_resid(cmd, 0);
463 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
464 if (cmd->cmd_len == 0)
465 cmd->cmd_len = scsi_command_size(cmd->cmnd);
468 void scsi_device_unbusy(struct scsi_device *sdev)
470 struct Scsi_Host *shost = sdev->host;
471 struct scsi_target *starget = scsi_target(sdev);
474 spin_lock_irqsave(shost->host_lock, flags);
476 starget->target_busy--;
477 if (unlikely(scsi_host_in_recovery(shost) &&
478 (shost->host_failed || shost->host_eh_scheduled)))
479 scsi_eh_wakeup(shost);
480 spin_unlock(shost->host_lock);
481 spin_lock(sdev->request_queue->queue_lock);
483 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
487 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
488 * and call blk_run_queue for all the scsi_devices on the target -
489 * including current_sdev first.
491 * Called with *no* scsi locks held.
493 static void scsi_single_lun_run(struct scsi_device *current_sdev)
495 struct Scsi_Host *shost = current_sdev->host;
496 struct scsi_device *sdev, *tmp;
497 struct scsi_target *starget = scsi_target(current_sdev);
500 spin_lock_irqsave(shost->host_lock, flags);
501 starget->starget_sdev_user = NULL;
502 spin_unlock_irqrestore(shost->host_lock, flags);
505 * Call blk_run_queue for all LUNs on the target, starting with
506 * current_sdev. We race with others (to set starget_sdev_user),
507 * but in most cases, we will be first. Ideally, each LU on the
508 * target would get some limited time or requests on the target.
510 blk_run_queue(current_sdev->request_queue);
512 spin_lock_irqsave(shost->host_lock, flags);
513 if (starget->starget_sdev_user)
515 list_for_each_entry_safe(sdev, tmp, &starget->devices,
516 same_target_siblings) {
517 if (sdev == current_sdev)
519 if (scsi_device_get(sdev))
522 spin_unlock_irqrestore(shost->host_lock, flags);
523 blk_run_queue(sdev->request_queue);
524 spin_lock_irqsave(shost->host_lock, flags);
526 scsi_device_put(sdev);
529 spin_unlock_irqrestore(shost->host_lock, flags);
532 static inline int scsi_device_is_busy(struct scsi_device *sdev)
534 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
540 static inline int scsi_target_is_busy(struct scsi_target *starget)
542 return ((starget->can_queue > 0 &&
543 starget->target_busy >= starget->can_queue) ||
544 starget->target_blocked);
547 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
549 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
550 shost->host_blocked || shost->host_self_blocked)
557 * Function: scsi_run_queue()
559 * Purpose: Select a proper request queue to serve next
561 * Arguments: q - last request's queue
565 * Notes: The previous command was completely finished, start
566 * a new one if possible.
568 static void scsi_run_queue(struct request_queue *q)
570 struct scsi_device *sdev = q->queuedata;
571 struct Scsi_Host *shost = sdev->host;
572 LIST_HEAD(starved_list);
575 if (scsi_target(sdev)->single_lun)
576 scsi_single_lun_run(sdev);
578 spin_lock_irqsave(shost->host_lock, flags);
579 list_splice_init(&shost->starved_list, &starved_list);
581 while (!list_empty(&starved_list)) {
585 * As long as shost is accepting commands and we have
586 * starved queues, call blk_run_queue. scsi_request_fn
587 * drops the queue_lock and can add us back to the
590 * host_lock protects the starved_list and starved_entry.
591 * scsi_request_fn must get the host_lock before checking
592 * or modifying starved_list or starved_entry.
594 if (scsi_host_is_busy(shost))
597 sdev = list_entry(starved_list.next,
598 struct scsi_device, starved_entry);
599 list_del_init(&sdev->starved_entry);
600 if (scsi_target_is_busy(scsi_target(sdev))) {
601 list_move_tail(&sdev->starved_entry,
602 &shost->starved_list);
606 spin_unlock(shost->host_lock);
608 spin_lock(sdev->request_queue->queue_lock);
609 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
610 !test_bit(QUEUE_FLAG_REENTER,
611 &sdev->request_queue->queue_flags);
613 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
614 __blk_run_queue(sdev->request_queue);
616 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
617 spin_unlock(sdev->request_queue->queue_lock);
619 spin_lock(shost->host_lock);
621 /* put any unprocessed entries back */
622 list_splice(&starved_list, &shost->starved_list);
623 spin_unlock_irqrestore(shost->host_lock, flags);
629 * Function: scsi_requeue_command()
631 * Purpose: Handle post-processing of completed commands.
633 * Arguments: q - queue to operate on
634 * cmd - command that may need to be requeued.
638 * Notes: After command completion, there may be blocks left
639 * over which weren't finished by the previous command
640 * this can be for a number of reasons - the main one is
641 * I/O errors in the middle of the request, in which case
642 * we need to request the blocks that come after the bad
644 * Notes: Upon return, cmd is a stale pointer.
646 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
648 struct request *req = cmd->request;
651 spin_lock_irqsave(q->queue_lock, flags);
652 scsi_unprep_request(req);
653 blk_requeue_request(q, req);
654 spin_unlock_irqrestore(q->queue_lock, flags);
659 void scsi_next_command(struct scsi_cmnd *cmd)
661 struct scsi_device *sdev = cmd->device;
662 struct request_queue *q = sdev->request_queue;
664 /* need to hold a reference on the device before we let go of the cmd */
665 get_device(&sdev->sdev_gendev);
667 scsi_put_command(cmd);
670 /* ok to remove device now */
671 put_device(&sdev->sdev_gendev);
674 void scsi_run_host_queues(struct Scsi_Host *shost)
676 struct scsi_device *sdev;
678 shost_for_each_device(sdev, shost)
679 scsi_run_queue(sdev->request_queue);
683 * Function: scsi_end_request()
685 * Purpose: Post-processing of completed commands (usually invoked at end
686 * of upper level post-processing and scsi_io_completion).
688 * Arguments: cmd - command that is complete.
689 * error - 0 if I/O indicates success, < 0 for I/O error.
690 * bytes - number of bytes of completed I/O
691 * requeue - indicates whether we should requeue leftovers.
693 * Lock status: Assumed that lock is not held upon entry.
695 * Returns: cmd if requeue required, NULL otherwise.
697 * Notes: This is called for block device requests in order to
698 * mark some number of sectors as complete.
700 * We are guaranteeing that the request queue will be goosed
701 * at some point during this call.
702 * Notes: If cmd was requeued, upon return it will be a stale pointer.
704 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
705 int bytes, int requeue)
707 struct request_queue *q = cmd->device->request_queue;
708 struct request *req = cmd->request;
711 * If there are blocks left over at the end, set up the command
712 * to queue the remainder of them.
714 if (blk_end_request(req, error, bytes)) {
715 int leftover = (req->hard_nr_sectors << 9);
717 if (blk_pc_request(req))
718 leftover = req->data_len;
720 /* kill remainder if no retrys */
721 if (error && scsi_noretry_cmd(cmd))
722 blk_end_request(req, error, leftover);
726 * Bleah. Leftovers again. Stick the
727 * leftovers in the front of the
728 * queue, and goose the queue again.
730 scsi_requeue_command(q, cmd);
738 * This will goose the queue request function at the end, so we don't
739 * need to worry about launching another command.
741 scsi_next_command(cmd);
745 static inline unsigned int scsi_sgtable_index(unsigned short nents)
749 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
754 index = get_count_order(nents) - 3;
759 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
761 struct scsi_host_sg_pool *sgp;
763 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
764 mempool_free(sgl, sgp->pool);
767 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
769 struct scsi_host_sg_pool *sgp;
771 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
772 return mempool_alloc(sgp->pool, gfp_mask);
775 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
782 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
783 gfp_mask, scsi_sg_alloc);
785 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
791 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
793 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
797 * Function: scsi_release_buffers()
799 * Purpose: Completion processing for block device I/O requests.
801 * Arguments: cmd - command that we are bailing.
803 * Lock status: Assumed that no lock is held upon entry.
807 * Notes: In the event that an upper level driver rejects a
808 * command, we must release resources allocated during
809 * the __init_io() function. Primarily this would involve
810 * the scatter-gather table, and potentially any bounce
813 void scsi_release_buffers(struct scsi_cmnd *cmd)
815 if (cmd->sdb.table.nents)
816 scsi_free_sgtable(&cmd->sdb);
818 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
820 if (scsi_bidi_cmnd(cmd)) {
821 struct scsi_data_buffer *bidi_sdb =
822 cmd->request->next_rq->special;
823 scsi_free_sgtable(bidi_sdb);
824 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
825 cmd->request->next_rq->special = NULL;
828 if (scsi_prot_sg_count(cmd))
829 scsi_free_sgtable(cmd->prot_sdb);
831 EXPORT_SYMBOL(scsi_release_buffers);
834 * Bidi commands Must be complete as a whole, both sides at once.
835 * If part of the bytes were written and lld returned
836 * scsi_in()->resid and/or scsi_out()->resid this information will be left
837 * in req->data_len and req->next_rq->data_len. The upper-layer driver can
838 * decide what to do with this information.
840 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
842 struct request *req = cmd->request;
843 unsigned int dlen = req->data_len;
844 unsigned int next_dlen = req->next_rq->data_len;
846 req->data_len = scsi_out(cmd)->resid;
847 req->next_rq->data_len = scsi_in(cmd)->resid;
849 /* The req and req->next_rq have not been completed */
850 BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
852 scsi_release_buffers(cmd);
855 * This will goose the queue request function at the end, so we don't
856 * need to worry about launching another command.
858 scsi_next_command(cmd);
862 * Function: scsi_io_completion()
864 * Purpose: Completion processing for block device I/O requests.
866 * Arguments: cmd - command that is finished.
868 * Lock status: Assumed that no lock is held upon entry.
872 * Notes: This function is matched in terms of capabilities to
873 * the function that created the scatter-gather list.
874 * In other words, if there are no bounce buffers
875 * (the normal case for most drivers), we don't need
876 * the logic to deal with cleaning up afterwards.
878 * We must do one of several things here:
880 * a) Call scsi_end_request. This will finish off the
881 * specified number of sectors. If we are done, the
882 * command block will be released, and the queue
883 * function will be goosed. If we are not done, then
884 * scsi_end_request will directly goose the queue.
886 * b) We can just use scsi_requeue_command() here. This would
887 * be used if we just wanted to retry, for example.
889 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
891 int result = cmd->result;
893 struct request_queue *q = cmd->device->request_queue;
894 struct request *req = cmd->request;
896 struct scsi_sense_hdr sshdr;
898 int sense_deferred = 0;
901 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
903 sense_deferred = scsi_sense_is_deferred(&sshdr);
906 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
907 req->errors = result;
909 if (sense_valid && req->sense) {
911 * SG_IO wants current and deferred errors
913 int len = 8 + cmd->sense_buffer[7];
915 if (len > SCSI_SENSE_BUFFERSIZE)
916 len = SCSI_SENSE_BUFFERSIZE;
917 memcpy(req->sense, cmd->sense_buffer, len);
918 req->sense_len = len;
923 if (scsi_bidi_cmnd(cmd)) {
924 /* will also release_buffers */
925 scsi_end_bidi_request(cmd);
928 req->data_len = scsi_get_resid(cmd);
931 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
932 scsi_release_buffers(cmd);
935 * Next deal with any sectors which we were able to correctly
938 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
940 req->nr_sectors, good_bytes));
942 /* A number of bytes were successfully read. If there
943 * are leftovers and there is some kind of error
944 * (result != 0), retry the rest.
946 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
948 this_count = blk_rq_bytes(req);
950 /* good_bytes = 0, or (inclusive) there were leftovers and
951 * result = 0, so scsi_end_request couldn't retry.
953 if (sense_valid && !sense_deferred) {
954 switch (sshdr.sense_key) {
956 if (cmd->device->removable) {
957 /* Detected disc change. Set a bit
958 * and quietly refuse further access.
960 cmd->device->changed = 1;
961 scsi_end_request(cmd, -EIO, this_count, 1);
964 /* Must have been a power glitch, or a
965 * bus reset. Could not have been a
966 * media change, so we just retry the
967 * request and see what happens.
969 scsi_requeue_command(q, cmd);
973 case ILLEGAL_REQUEST:
974 /* If we had an ILLEGAL REQUEST returned, then
975 * we may have performed an unsupported
976 * command. The only thing this should be
977 * would be a ten byte read where only a six
978 * byte read was supported. Also, on a system
979 * where READ CAPACITY failed, we may have
980 * read past the end of the disk.
982 if ((cmd->device->use_10_for_rw &&
983 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
984 (cmd->cmnd[0] == READ_10 ||
985 cmd->cmnd[0] == WRITE_10)) {
986 cmd->device->use_10_for_rw = 0;
987 /* This will cause a retry with a
990 scsi_requeue_command(q, cmd);
991 } else if (sshdr.asc == 0x10) /* DIX */
992 scsi_end_request(cmd, -EIO, this_count, 0);
994 scsi_end_request(cmd, -EIO, this_count, 1);
996 case ABORTED_COMMAND:
997 if (sshdr.asc == 0x10) { /* DIF */
998 scsi_end_request(cmd, -EIO, this_count, 0);
1003 /* If the device is in the process of becoming
1004 * ready, or has a temporary blockage, retry.
1006 if (sshdr.asc == 0x04) {
1007 switch (sshdr.ascq) {
1008 case 0x01: /* becoming ready */
1009 case 0x04: /* format in progress */
1010 case 0x05: /* rebuild in progress */
1011 case 0x06: /* recalculation in progress */
1012 case 0x07: /* operation in progress */
1013 case 0x08: /* Long write in progress */
1014 case 0x09: /* self test in progress */
1015 scsi_requeue_command(q, cmd);
1021 if (!(req->cmd_flags & REQ_QUIET))
1022 scsi_cmd_print_sense_hdr(cmd,
1026 scsi_end_request(cmd, -EIO, this_count, 1);
1028 case VOLUME_OVERFLOW:
1029 if (!(req->cmd_flags & REQ_QUIET)) {
1030 scmd_printk(KERN_INFO, cmd,
1031 "Volume overflow, CDB: ");
1032 __scsi_print_command(cmd->cmnd);
1033 scsi_print_sense("", cmd);
1035 /* See SSC3rXX or current. */
1036 scsi_end_request(cmd, -EIO, this_count, 1);
1042 if (host_byte(result) == DID_RESET) {
1043 /* Third party bus reset or reset for error recovery
1044 * reasons. Just retry the request and see what
1047 scsi_requeue_command(q, cmd);
1051 if (!(req->cmd_flags & REQ_QUIET)) {
1052 scsi_print_result(cmd);
1053 if (driver_byte(result) & DRIVER_SENSE)
1054 scsi_print_sense("", cmd);
1057 scsi_end_request(cmd, -EIO, this_count, !result);
1060 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1066 * If sg table allocation fails, requeue request later.
1068 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1070 return BLKPREP_DEFER;
1076 * Next, walk the list, and fill in the addresses and sizes of
1079 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1080 BUG_ON(count > sdb->table.nents);
1081 sdb->table.nents = count;
1082 if (blk_pc_request(req))
1083 sdb->length = req->data_len;
1085 sdb->length = req->nr_sectors << 9;
1090 * Function: scsi_init_io()
1092 * Purpose: SCSI I/O initialize function.
1094 * Arguments: cmd - Command descriptor we wish to initialize
1096 * Returns: 0 on success
1097 * BLKPREP_DEFER if the failure is retryable
1098 * BLKPREP_KILL if the failure is fatal
1100 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1102 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1106 if (blk_bidi_rq(cmd->request)) {
1107 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1108 scsi_sdb_cache, GFP_ATOMIC);
1110 error = BLKPREP_DEFER;
1114 cmd->request->next_rq->special = bidi_sdb;
1115 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1121 if (blk_integrity_rq(cmd->request)) {
1122 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1125 BUG_ON(prot_sdb == NULL);
1126 ivecs = blk_rq_count_integrity_sg(cmd->request);
1128 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1129 error = BLKPREP_DEFER;
1133 count = blk_rq_map_integrity_sg(cmd->request,
1134 prot_sdb->table.sgl);
1135 BUG_ON(unlikely(count > ivecs));
1137 cmd->prot_sdb = prot_sdb;
1138 cmd->prot_sdb->table.nents = count;
1144 scsi_release_buffers(cmd);
1145 if (error == BLKPREP_KILL)
1146 scsi_put_command(cmd);
1147 else /* BLKPREP_DEFER */
1148 scsi_unprep_request(cmd->request);
1152 EXPORT_SYMBOL(scsi_init_io);
1154 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1155 struct request *req)
1157 struct scsi_cmnd *cmd;
1159 if (!req->special) {
1160 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1168 /* pull a tag out of the request if we have one */
1169 cmd->tag = req->tag;
1172 cmd->cmnd = req->cmd;
1177 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1179 struct scsi_cmnd *cmd;
1180 int ret = scsi_prep_state_check(sdev, req);
1182 if (ret != BLKPREP_OK)
1185 cmd = scsi_get_cmd_from_req(sdev, req);
1187 return BLKPREP_DEFER;
1190 * BLOCK_PC requests may transfer data, in which case they must
1191 * a bio attached to them. Or they might contain a SCSI command
1192 * that does not transfer data, in which case they may optionally
1193 * submit a request without an attached bio.
1198 BUG_ON(!req->nr_phys_segments);
1200 ret = scsi_init_io(cmd, GFP_ATOMIC);
1204 BUG_ON(req->data_len);
1207 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1211 cmd->cmd_len = req->cmd_len;
1213 cmd->sc_data_direction = DMA_NONE;
1214 else if (rq_data_dir(req) == WRITE)
1215 cmd->sc_data_direction = DMA_TO_DEVICE;
1217 cmd->sc_data_direction = DMA_FROM_DEVICE;
1219 cmd->transfersize = req->data_len;
1220 cmd->allowed = req->retries;
1223 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1226 * Setup a REQ_TYPE_FS command. These are simple read/write request
1227 * from filesystems that still need to be translated to SCSI CDBs from
1230 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1232 struct scsi_cmnd *cmd;
1233 int ret = scsi_prep_state_check(sdev, req);
1235 if (ret != BLKPREP_OK)
1238 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1239 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1240 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1241 if (ret != BLKPREP_OK)
1246 * Filesystem requests must transfer data.
1248 BUG_ON(!req->nr_phys_segments);
1250 cmd = scsi_get_cmd_from_req(sdev, req);
1252 return BLKPREP_DEFER;
1254 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1255 return scsi_init_io(cmd, GFP_ATOMIC);
1257 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1259 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1261 int ret = BLKPREP_OK;
1264 * If the device is not in running state we will reject some
1267 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1268 switch (sdev->sdev_state) {
1271 * If the device is offline we refuse to process any
1272 * commands. The device must be brought online
1273 * before trying any recovery commands.
1275 sdev_printk(KERN_ERR, sdev,
1276 "rejecting I/O to offline device\n");
1281 * If the device is fully deleted, we refuse to
1282 * process any commands as well.
1284 sdev_printk(KERN_ERR, sdev,
1285 "rejecting I/O to dead device\n");
1290 case SDEV_CREATED_BLOCK:
1292 * If the devices is blocked we defer normal commands.
1294 if (!(req->cmd_flags & REQ_PREEMPT))
1295 ret = BLKPREP_DEFER;
1299 * For any other not fully online state we only allow
1300 * special commands. In particular any user initiated
1301 * command is not allowed.
1303 if (!(req->cmd_flags & REQ_PREEMPT))
1310 EXPORT_SYMBOL(scsi_prep_state_check);
1312 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1314 struct scsi_device *sdev = q->queuedata;
1318 req->errors = DID_NO_CONNECT << 16;
1319 /* release the command and kill it */
1321 struct scsi_cmnd *cmd = req->special;
1322 scsi_release_buffers(cmd);
1323 scsi_put_command(cmd);
1324 req->special = NULL;
1329 * If we defer, the elv_next_request() returns NULL, but the
1330 * queue must be restarted, so we plug here if no returning
1331 * command will automatically do that.
1333 if (sdev->device_busy == 0)
1337 req->cmd_flags |= REQ_DONTPREP;
1342 EXPORT_SYMBOL(scsi_prep_return);
1344 int scsi_prep_fn(struct request_queue *q, struct request *req)
1346 struct scsi_device *sdev = q->queuedata;
1347 int ret = BLKPREP_KILL;
1349 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1350 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1351 return scsi_prep_return(q, req, ret);
1355 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1358 * Called with the queue_lock held.
1360 static inline int scsi_dev_queue_ready(struct request_queue *q,
1361 struct scsi_device *sdev)
1363 if (sdev->device_busy == 0 && sdev->device_blocked) {
1365 * unblock after device_blocked iterates to zero
1367 if (--sdev->device_blocked == 0) {
1369 sdev_printk(KERN_INFO, sdev,
1370 "unblocking device at zero depth\n"));
1376 if (scsi_device_is_busy(sdev))
1384 * scsi_target_queue_ready: checks if there we can send commands to target
1385 * @sdev: scsi device on starget to check.
1387 * Called with the host lock held.
1389 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1390 struct scsi_device *sdev)
1392 struct scsi_target *starget = scsi_target(sdev);
1394 if (starget->single_lun) {
1395 if (starget->starget_sdev_user &&
1396 starget->starget_sdev_user != sdev)
1398 starget->starget_sdev_user = sdev;
1401 if (starget->target_busy == 0 && starget->target_blocked) {
1403 * unblock after target_blocked iterates to zero
1405 if (--starget->target_blocked == 0) {
1406 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1407 "unblocking target at zero depth\n"));
1409 blk_plug_device(sdev->request_queue);
1414 if (scsi_target_is_busy(starget)) {
1415 if (list_empty(&sdev->starved_entry)) {
1416 list_add_tail(&sdev->starved_entry,
1417 &shost->starved_list);
1422 /* We're OK to process the command, so we can't be starved */
1423 if (!list_empty(&sdev->starved_entry))
1424 list_del_init(&sdev->starved_entry);
1429 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1430 * return 0. We must end up running the queue again whenever 0 is
1431 * returned, else IO can hang.
1433 * Called with host_lock held.
1435 static inline int scsi_host_queue_ready(struct request_queue *q,
1436 struct Scsi_Host *shost,
1437 struct scsi_device *sdev)
1439 if (scsi_host_in_recovery(shost))
1441 if (shost->host_busy == 0 && shost->host_blocked) {
1443 * unblock after host_blocked iterates to zero
1445 if (--shost->host_blocked == 0) {
1447 printk("scsi%d unblocking host at zero depth\n",
1453 if (scsi_host_is_busy(shost)) {
1454 if (list_empty(&sdev->starved_entry))
1455 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1459 /* We're OK to process the command, so we can't be starved */
1460 if (!list_empty(&sdev->starved_entry))
1461 list_del_init(&sdev->starved_entry);
1467 * Busy state exporting function for request stacking drivers.
1469 * For efficiency, no lock is taken to check the busy state of
1470 * shost/starget/sdev, since the returned value is not guaranteed and
1471 * may be changed after request stacking drivers call the function,
1472 * regardless of taking lock or not.
1474 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1475 * (e.g. !sdev), scsi needs to return 'not busy'.
1476 * Otherwise, request stacking drivers may hold requests forever.
1478 static int scsi_lld_busy(struct request_queue *q)
1480 struct scsi_device *sdev = q->queuedata;
1481 struct Scsi_Host *shost;
1482 struct scsi_target *starget;
1488 starget = scsi_target(sdev);
1490 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1491 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1498 * Kill a request for a dead device
1500 static void scsi_kill_request(struct request *req, struct request_queue *q)
1502 struct scsi_cmnd *cmd = req->special;
1503 struct scsi_device *sdev = cmd->device;
1504 struct scsi_target *starget = scsi_target(sdev);
1505 struct Scsi_Host *shost = sdev->host;
1507 blkdev_dequeue_request(req);
1509 if (unlikely(cmd == NULL)) {
1510 printk(KERN_CRIT "impossible request in %s.\n",
1515 scsi_init_cmd_errh(cmd);
1516 cmd->result = DID_NO_CONNECT << 16;
1517 atomic_inc(&cmd->device->iorequest_cnt);
1520 * SCSI request completion path will do scsi_device_unbusy(),
1521 * bump busy counts. To bump the counters, we need to dance
1522 * with the locks as normal issue path does.
1524 sdev->device_busy++;
1525 spin_unlock(sdev->request_queue->queue_lock);
1526 spin_lock(shost->host_lock);
1528 starget->target_busy++;
1529 spin_unlock(shost->host_lock);
1530 spin_lock(sdev->request_queue->queue_lock);
1532 blk_complete_request(req);
1535 static void scsi_softirq_done(struct request *rq)
1537 struct scsi_cmnd *cmd = rq->special;
1538 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1541 INIT_LIST_HEAD(&cmd->eh_entry);
1544 * Set the serial numbers back to zero
1546 cmd->serial_number = 0;
1548 atomic_inc(&cmd->device->iodone_cnt);
1550 atomic_inc(&cmd->device->ioerr_cnt);
1552 disposition = scsi_decide_disposition(cmd);
1553 if (disposition != SUCCESS &&
1554 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1555 sdev_printk(KERN_ERR, cmd->device,
1556 "timing out command, waited %lus\n",
1558 disposition = SUCCESS;
1561 scsi_log_completion(cmd, disposition);
1563 switch (disposition) {
1565 scsi_finish_command(cmd);
1568 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1570 case ADD_TO_MLQUEUE:
1571 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1574 if (!scsi_eh_scmd_add(cmd, 0))
1575 scsi_finish_command(cmd);
1580 * Function: scsi_request_fn()
1582 * Purpose: Main strategy routine for SCSI.
1584 * Arguments: q - Pointer to actual queue.
1588 * Lock status: IO request lock assumed to be held when called.
1590 static void scsi_request_fn(struct request_queue *q)
1592 struct scsi_device *sdev = q->queuedata;
1593 struct Scsi_Host *shost;
1594 struct scsi_cmnd *cmd;
1595 struct request *req;
1598 printk("scsi: killing requests for dead queue\n");
1599 while ((req = elv_next_request(q)) != NULL)
1600 scsi_kill_request(req, q);
1604 if(!get_device(&sdev->sdev_gendev))
1605 /* We must be tearing the block queue down already */
1609 * To start with, we keep looping until the queue is empty, or until
1610 * the host is no longer able to accept any more requests.
1613 while (!blk_queue_plugged(q)) {
1616 * get next queueable request. We do this early to make sure
1617 * that the request is fully prepared even if we cannot
1620 req = elv_next_request(q);
1621 if (!req || !scsi_dev_queue_ready(q, sdev))
1624 if (unlikely(!scsi_device_online(sdev))) {
1625 sdev_printk(KERN_ERR, sdev,
1626 "rejecting I/O to offline device\n");
1627 scsi_kill_request(req, q);
1633 * Remove the request from the request list.
1635 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1636 blkdev_dequeue_request(req);
1637 sdev->device_busy++;
1639 spin_unlock(q->queue_lock);
1641 if (unlikely(cmd == NULL)) {
1642 printk(KERN_CRIT "impossible request in %s.\n"
1643 "please mail a stack trace to "
1644 "linux-scsi@vger.kernel.org\n",
1646 blk_dump_rq_flags(req, "foo");
1649 spin_lock(shost->host_lock);
1652 * We hit this when the driver is using a host wide
1653 * tag map. For device level tag maps the queue_depth check
1654 * in the device ready fn would prevent us from trying
1655 * to allocate a tag. Since the map is a shared host resource
1656 * we add the dev to the starved list so it eventually gets
1657 * a run when a tag is freed.
1659 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1660 if (list_empty(&sdev->starved_entry))
1661 list_add_tail(&sdev->starved_entry,
1662 &shost->starved_list);
1666 if (!scsi_target_queue_ready(shost, sdev))
1669 if (!scsi_host_queue_ready(q, shost, sdev))
1672 scsi_target(sdev)->target_busy++;
1676 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1677 * take the lock again.
1679 spin_unlock_irq(shost->host_lock);
1682 * Finally, initialize any error handling parameters, and set up
1683 * the timers for timeouts.
1685 scsi_init_cmd_errh(cmd);
1688 * Dispatch the command to the low-level driver.
1690 rtn = scsi_dispatch_cmd(cmd);
1691 spin_lock_irq(q->queue_lock);
1693 /* we're refusing the command; because of
1694 * the way locks get dropped, we need to
1695 * check here if plugging is required */
1696 if(sdev->device_busy == 0)
1706 spin_unlock_irq(shost->host_lock);
1709 * lock q, handle tag, requeue req, and decrement device_busy. We
1710 * must return with queue_lock held.
1712 * Decrementing device_busy without checking it is OK, as all such
1713 * cases (host limits or settings) should run the queue at some
1716 spin_lock_irq(q->queue_lock);
1717 blk_requeue_request(q, req);
1718 sdev->device_busy--;
1719 if(sdev->device_busy == 0)
1722 /* must be careful here...if we trigger the ->remove() function
1723 * we cannot be holding the q lock */
1724 spin_unlock_irq(q->queue_lock);
1725 put_device(&sdev->sdev_gendev);
1726 spin_lock_irq(q->queue_lock);
1729 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1731 struct device *host_dev;
1732 u64 bounce_limit = 0xffffffff;
1734 if (shost->unchecked_isa_dma)
1735 return BLK_BOUNCE_ISA;
1737 * Platforms with virtual-DMA translation
1738 * hardware have no practical limit.
1740 if (!PCI_DMA_BUS_IS_PHYS)
1741 return BLK_BOUNCE_ANY;
1743 host_dev = scsi_get_device(shost);
1744 if (host_dev && host_dev->dma_mask)
1745 bounce_limit = *host_dev->dma_mask;
1747 return bounce_limit;
1749 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1751 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1752 request_fn_proc *request_fn)
1754 struct request_queue *q;
1755 struct device *dev = shost->shost_gendev.parent;
1757 q = blk_init_queue(request_fn, NULL);
1762 * this limit is imposed by hardware restrictions
1764 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1765 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1767 blk_queue_max_sectors(q, shost->max_sectors);
1768 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1769 blk_queue_segment_boundary(q, shost->dma_boundary);
1770 dma_set_seg_boundary(dev, shost->dma_boundary);
1772 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1774 /* New queue, no concurrency on queue_flags */
1775 if (!shost->use_clustering)
1776 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1779 * set a reasonable default alignment on word boundaries: the
1780 * host and device may alter it using
1781 * blk_queue_update_dma_alignment() later.
1783 blk_queue_dma_alignment(q, 0x03);
1787 EXPORT_SYMBOL(__scsi_alloc_queue);
1789 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1791 struct request_queue *q;
1793 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1797 blk_queue_prep_rq(q, scsi_prep_fn);
1798 blk_queue_softirq_done(q, scsi_softirq_done);
1799 blk_queue_rq_timed_out(q, scsi_times_out);
1800 blk_queue_lld_busy(q, scsi_lld_busy);
1804 void scsi_free_queue(struct request_queue *q)
1806 blk_cleanup_queue(q);
1810 * Function: scsi_block_requests()
1812 * Purpose: Utility function used by low-level drivers to prevent further
1813 * commands from being queued to the device.
1815 * Arguments: shost - Host in question
1819 * Lock status: No locks are assumed held.
1821 * Notes: There is no timer nor any other means by which the requests
1822 * get unblocked other than the low-level driver calling
1823 * scsi_unblock_requests().
1825 void scsi_block_requests(struct Scsi_Host *shost)
1827 shost->host_self_blocked = 1;
1829 EXPORT_SYMBOL(scsi_block_requests);
1832 * Function: scsi_unblock_requests()
1834 * Purpose: Utility function used by low-level drivers to allow further
1835 * commands from being queued to the device.
1837 * Arguments: shost - Host in question
1841 * Lock status: No locks are assumed held.
1843 * Notes: There is no timer nor any other means by which the requests
1844 * get unblocked other than the low-level driver calling
1845 * scsi_unblock_requests().
1847 * This is done as an API function so that changes to the
1848 * internals of the scsi mid-layer won't require wholesale
1849 * changes to drivers that use this feature.
1851 void scsi_unblock_requests(struct Scsi_Host *shost)
1853 shost->host_self_blocked = 0;
1854 scsi_run_host_queues(shost);
1856 EXPORT_SYMBOL(scsi_unblock_requests);
1858 int __init scsi_init_queue(void)
1862 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1863 sizeof(struct scsi_io_context),
1865 if (!scsi_io_context_cache) {
1866 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1870 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1871 sizeof(struct scsi_data_buffer),
1873 if (!scsi_sdb_cache) {
1874 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1875 goto cleanup_io_context;
1878 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1879 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1880 int size = sgp->size * sizeof(struct scatterlist);
1882 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1883 SLAB_HWCACHE_ALIGN, NULL);
1885 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1890 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1893 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1902 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1903 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1905 mempool_destroy(sgp->pool);
1907 kmem_cache_destroy(sgp->slab);
1909 kmem_cache_destroy(scsi_sdb_cache);
1911 kmem_cache_destroy(scsi_io_context_cache);
1916 void scsi_exit_queue(void)
1920 kmem_cache_destroy(scsi_io_context_cache);
1921 kmem_cache_destroy(scsi_sdb_cache);
1923 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1924 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1925 mempool_destroy(sgp->pool);
1926 kmem_cache_destroy(sgp->slab);
1931 * scsi_mode_select - issue a mode select
1932 * @sdev: SCSI device to be queried
1933 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1934 * @sp: Save page bit (0 == don't save, 1 == save)
1935 * @modepage: mode page being requested
1936 * @buffer: request buffer (may not be smaller than eight bytes)
1937 * @len: length of request buffer.
1938 * @timeout: command timeout
1939 * @retries: number of retries before failing
1940 * @data: returns a structure abstracting the mode header data
1941 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1942 * must be SCSI_SENSE_BUFFERSIZE big.
1944 * Returns zero if successful; negative error number or scsi
1949 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1950 unsigned char *buffer, int len, int timeout, int retries,
1951 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1953 unsigned char cmd[10];
1954 unsigned char *real_buffer;
1957 memset(cmd, 0, sizeof(cmd));
1958 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1960 if (sdev->use_10_for_ms) {
1963 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1966 memcpy(real_buffer + 8, buffer, len);
1970 real_buffer[2] = data->medium_type;
1971 real_buffer[3] = data->device_specific;
1972 real_buffer[4] = data->longlba ? 0x01 : 0;
1974 real_buffer[6] = data->block_descriptor_length >> 8;
1975 real_buffer[7] = data->block_descriptor_length;
1977 cmd[0] = MODE_SELECT_10;
1981 if (len > 255 || data->block_descriptor_length > 255 ||
1985 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1988 memcpy(real_buffer + 4, buffer, len);
1991 real_buffer[1] = data->medium_type;
1992 real_buffer[2] = data->device_specific;
1993 real_buffer[3] = data->block_descriptor_length;
1996 cmd[0] = MODE_SELECT;
2000 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2001 sshdr, timeout, retries);
2005 EXPORT_SYMBOL_GPL(scsi_mode_select);
2008 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2009 * @sdev: SCSI device to be queried
2010 * @dbd: set if mode sense will allow block descriptors to be returned
2011 * @modepage: mode page being requested
2012 * @buffer: request buffer (may not be smaller than eight bytes)
2013 * @len: length of request buffer.
2014 * @timeout: command timeout
2015 * @retries: number of retries before failing
2016 * @data: returns a structure abstracting the mode header data
2017 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2018 * must be SCSI_SENSE_BUFFERSIZE big.
2020 * Returns zero if unsuccessful, or the header offset (either 4
2021 * or 8 depending on whether a six or ten byte command was
2022 * issued) if successful.
2025 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2026 unsigned char *buffer, int len, int timeout, int retries,
2027 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2029 unsigned char cmd[12];
2033 struct scsi_sense_hdr my_sshdr;
2035 memset(data, 0, sizeof(*data));
2036 memset(&cmd[0], 0, 12);
2037 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2040 /* caller might not be interested in sense, but we need it */
2045 use_10_for_ms = sdev->use_10_for_ms;
2047 if (use_10_for_ms) {
2051 cmd[0] = MODE_SENSE_10;
2058 cmd[0] = MODE_SENSE;
2063 memset(buffer, 0, len);
2065 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2066 sshdr, timeout, retries);
2068 /* This code looks awful: what it's doing is making sure an
2069 * ILLEGAL REQUEST sense return identifies the actual command
2070 * byte as the problem. MODE_SENSE commands can return
2071 * ILLEGAL REQUEST if the code page isn't supported */
2073 if (use_10_for_ms && !scsi_status_is_good(result) &&
2074 (driver_byte(result) & DRIVER_SENSE)) {
2075 if (scsi_sense_valid(sshdr)) {
2076 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2077 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2079 * Invalid command operation code
2081 sdev->use_10_for_ms = 0;
2087 if(scsi_status_is_good(result)) {
2088 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2089 (modepage == 6 || modepage == 8))) {
2090 /* Initio breakage? */
2093 data->medium_type = 0;
2094 data->device_specific = 0;
2096 data->block_descriptor_length = 0;
2097 } else if(use_10_for_ms) {
2098 data->length = buffer[0]*256 + buffer[1] + 2;
2099 data->medium_type = buffer[2];
2100 data->device_specific = buffer[3];
2101 data->longlba = buffer[4] & 0x01;
2102 data->block_descriptor_length = buffer[6]*256
2105 data->length = buffer[0] + 1;
2106 data->medium_type = buffer[1];
2107 data->device_specific = buffer[2];
2108 data->block_descriptor_length = buffer[3];
2110 data->header_length = header_length;
2115 EXPORT_SYMBOL(scsi_mode_sense);
2118 * scsi_test_unit_ready - test if unit is ready
2119 * @sdev: scsi device to change the state of.
2120 * @timeout: command timeout
2121 * @retries: number of retries before failing
2122 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2123 * returning sense. Make sure that this is cleared before passing
2126 * Returns zero if unsuccessful or an error if TUR failed. For
2127 * removable media, a return of NOT_READY or UNIT_ATTENTION is
2128 * translated to success, with the ->changed flag updated.
2131 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2132 struct scsi_sense_hdr *sshdr_external)
2135 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2137 struct scsi_sense_hdr *sshdr;
2140 if (!sshdr_external)
2141 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2143 sshdr = sshdr_external;
2145 /* try to eat the UNIT_ATTENTION if there are enough retries */
2147 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2149 if (sdev->removable && scsi_sense_valid(sshdr) &&
2150 sshdr->sense_key == UNIT_ATTENTION)
2152 } while (scsi_sense_valid(sshdr) &&
2153 sshdr->sense_key == UNIT_ATTENTION && --retries);
2156 /* could not allocate sense buffer, so can't process it */
2159 if (sdev->removable && scsi_sense_valid(sshdr) &&
2160 (sshdr->sense_key == UNIT_ATTENTION ||
2161 sshdr->sense_key == NOT_READY)) {
2165 if (!sshdr_external)
2169 EXPORT_SYMBOL(scsi_test_unit_ready);
2172 * scsi_device_set_state - Take the given device through the device state model.
2173 * @sdev: scsi device to change the state of.
2174 * @state: state to change to.
2176 * Returns zero if unsuccessful or an error if the requested
2177 * transition is illegal.
2180 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2182 enum scsi_device_state oldstate = sdev->sdev_state;
2184 if (state == oldstate)
2190 case SDEV_CREATED_BLOCK:
2234 case SDEV_CREATED_BLOCK:
2241 case SDEV_CREATED_BLOCK:
2276 sdev->sdev_state = state;
2280 SCSI_LOG_ERROR_RECOVERY(1,
2281 sdev_printk(KERN_ERR, sdev,
2282 "Illegal state transition %s->%s\n",
2283 scsi_device_state_name(oldstate),
2284 scsi_device_state_name(state))
2288 EXPORT_SYMBOL(scsi_device_set_state);
2291 * sdev_evt_emit - emit a single SCSI device uevent
2292 * @sdev: associated SCSI device
2293 * @evt: event to emit
2295 * Send a single uevent (scsi_event) to the associated scsi_device.
2297 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2302 switch (evt->evt_type) {
2303 case SDEV_EVT_MEDIA_CHANGE:
2304 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2314 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2318 * sdev_evt_thread - send a uevent for each scsi event
2319 * @work: work struct for scsi_device
2321 * Dispatch queued events to their associated scsi_device kobjects
2324 void scsi_evt_thread(struct work_struct *work)
2326 struct scsi_device *sdev;
2327 LIST_HEAD(event_list);
2329 sdev = container_of(work, struct scsi_device, event_work);
2332 struct scsi_event *evt;
2333 struct list_head *this, *tmp;
2334 unsigned long flags;
2336 spin_lock_irqsave(&sdev->list_lock, flags);
2337 list_splice_init(&sdev->event_list, &event_list);
2338 spin_unlock_irqrestore(&sdev->list_lock, flags);
2340 if (list_empty(&event_list))
2343 list_for_each_safe(this, tmp, &event_list) {
2344 evt = list_entry(this, struct scsi_event, node);
2345 list_del(&evt->node);
2346 scsi_evt_emit(sdev, evt);
2353 * sdev_evt_send - send asserted event to uevent thread
2354 * @sdev: scsi_device event occurred on
2355 * @evt: event to send
2357 * Assert scsi device event asynchronously.
2359 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2361 unsigned long flags;
2364 /* FIXME: currently this check eliminates all media change events
2365 * for polled devices. Need to update to discriminate between AN
2366 * and polled events */
2367 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2373 spin_lock_irqsave(&sdev->list_lock, flags);
2374 list_add_tail(&evt->node, &sdev->event_list);
2375 schedule_work(&sdev->event_work);
2376 spin_unlock_irqrestore(&sdev->list_lock, flags);
2378 EXPORT_SYMBOL_GPL(sdev_evt_send);
2381 * sdev_evt_alloc - allocate a new scsi event
2382 * @evt_type: type of event to allocate
2383 * @gfpflags: GFP flags for allocation
2385 * Allocates and returns a new scsi_event.
2387 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2390 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2394 evt->evt_type = evt_type;
2395 INIT_LIST_HEAD(&evt->node);
2397 /* evt_type-specific initialization, if any */
2399 case SDEV_EVT_MEDIA_CHANGE:
2407 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2410 * sdev_evt_send_simple - send asserted event to uevent thread
2411 * @sdev: scsi_device event occurred on
2412 * @evt_type: type of event to send
2413 * @gfpflags: GFP flags for allocation
2415 * Assert scsi device event asynchronously, given an event type.
2417 void sdev_evt_send_simple(struct scsi_device *sdev,
2418 enum scsi_device_event evt_type, gfp_t gfpflags)
2420 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2422 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2427 sdev_evt_send(sdev, evt);
2429 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2432 * scsi_device_quiesce - Block user issued commands.
2433 * @sdev: scsi device to quiesce.
2435 * This works by trying to transition to the SDEV_QUIESCE state
2436 * (which must be a legal transition). When the device is in this
2437 * state, only special requests will be accepted, all others will
2438 * be deferred. Since special requests may also be requeued requests,
2439 * a successful return doesn't guarantee the device will be
2440 * totally quiescent.
2442 * Must be called with user context, may sleep.
2444 * Returns zero if unsuccessful or an error if not.
2447 scsi_device_quiesce(struct scsi_device *sdev)
2449 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2453 scsi_run_queue(sdev->request_queue);
2454 while (sdev->device_busy) {
2455 msleep_interruptible(200);
2456 scsi_run_queue(sdev->request_queue);
2460 EXPORT_SYMBOL(scsi_device_quiesce);
2463 * scsi_device_resume - Restart user issued commands to a quiesced device.
2464 * @sdev: scsi device to resume.
2466 * Moves the device from quiesced back to running and restarts the
2469 * Must be called with user context, may sleep.
2472 scsi_device_resume(struct scsi_device *sdev)
2474 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2476 scsi_run_queue(sdev->request_queue);
2478 EXPORT_SYMBOL(scsi_device_resume);
2481 device_quiesce_fn(struct scsi_device *sdev, void *data)
2483 scsi_device_quiesce(sdev);
2487 scsi_target_quiesce(struct scsi_target *starget)
2489 starget_for_each_device(starget, NULL, device_quiesce_fn);
2491 EXPORT_SYMBOL(scsi_target_quiesce);
2494 device_resume_fn(struct scsi_device *sdev, void *data)
2496 scsi_device_resume(sdev);
2500 scsi_target_resume(struct scsi_target *starget)
2502 starget_for_each_device(starget, NULL, device_resume_fn);
2504 EXPORT_SYMBOL(scsi_target_resume);
2507 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2508 * @sdev: device to block
2510 * Block request made by scsi lld's to temporarily stop all
2511 * scsi commands on the specified device. Called from interrupt
2512 * or normal process context.
2514 * Returns zero if successful or error if not
2517 * This routine transitions the device to the SDEV_BLOCK state
2518 * (which must be a legal transition). When the device is in this
2519 * state, all commands are deferred until the scsi lld reenables
2520 * the device with scsi_device_unblock or device_block_tmo fires.
2521 * This routine assumes the host_lock is held on entry.
2524 scsi_internal_device_block(struct scsi_device *sdev)
2526 struct request_queue *q = sdev->request_queue;
2527 unsigned long flags;
2530 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2532 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2539 * The device has transitioned to SDEV_BLOCK. Stop the
2540 * block layer from calling the midlayer with this device's
2543 spin_lock_irqsave(q->queue_lock, flags);
2545 spin_unlock_irqrestore(q->queue_lock, flags);
2549 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2552 * scsi_internal_device_unblock - resume a device after a block request
2553 * @sdev: device to resume
2555 * Called by scsi lld's or the midlayer to restart the device queue
2556 * for the previously suspended scsi device. Called from interrupt or
2557 * normal process context.
2559 * Returns zero if successful or error if not.
2562 * This routine transitions the device to the SDEV_RUNNING state
2563 * (which must be a legal transition) allowing the midlayer to
2564 * goose the queue for this device. This routine assumes the
2565 * host_lock is held upon entry.
2568 scsi_internal_device_unblock(struct scsi_device *sdev)
2570 struct request_queue *q = sdev->request_queue;
2572 unsigned long flags;
2575 * Try to transition the scsi device to SDEV_RUNNING
2576 * and goose the device queue if successful.
2578 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2580 err = scsi_device_set_state(sdev, SDEV_CREATED);
2586 spin_lock_irqsave(q->queue_lock, flags);
2588 spin_unlock_irqrestore(q->queue_lock, flags);
2592 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2595 device_block(struct scsi_device *sdev, void *data)
2597 scsi_internal_device_block(sdev);
2601 target_block(struct device *dev, void *data)
2603 if (scsi_is_target_device(dev))
2604 starget_for_each_device(to_scsi_target(dev), NULL,
2610 scsi_target_block(struct device *dev)
2612 if (scsi_is_target_device(dev))
2613 starget_for_each_device(to_scsi_target(dev), NULL,
2616 device_for_each_child(dev, NULL, target_block);
2618 EXPORT_SYMBOL_GPL(scsi_target_block);
2621 device_unblock(struct scsi_device *sdev, void *data)
2623 scsi_internal_device_unblock(sdev);
2627 target_unblock(struct device *dev, void *data)
2629 if (scsi_is_target_device(dev))
2630 starget_for_each_device(to_scsi_target(dev), NULL,
2636 scsi_target_unblock(struct device *dev)
2638 if (scsi_is_target_device(dev))
2639 starget_for_each_device(to_scsi_target(dev), NULL,
2642 device_for_each_child(dev, NULL, target_unblock);
2644 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2647 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2648 * @sgl: scatter-gather list
2649 * @sg_count: number of segments in sg
2650 * @offset: offset in bytes into sg, on return offset into the mapped area
2651 * @len: bytes to map, on return number of bytes mapped
2653 * Returns virtual address of the start of the mapped page
2655 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2656 size_t *offset, size_t *len)
2659 size_t sg_len = 0, len_complete = 0;
2660 struct scatterlist *sg;
2663 WARN_ON(!irqs_disabled());
2665 for_each_sg(sgl, sg, sg_count, i) {
2666 len_complete = sg_len; /* Complete sg-entries */
2667 sg_len += sg->length;
2668 if (sg_len > *offset)
2672 if (unlikely(i == sg_count)) {
2673 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2675 __func__, sg_len, *offset, sg_count);
2680 /* Offset starting from the beginning of first page in this sg-entry */
2681 *offset = *offset - len_complete + sg->offset;
2683 /* Assumption: contiguous pages can be accessed as "page + i" */
2684 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2685 *offset &= ~PAGE_MASK;
2687 /* Bytes in this sg-entry from *offset to the end of the page */
2688 sg_len = PAGE_SIZE - *offset;
2692 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2694 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2697 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2698 * @virt: virtual address to be unmapped
2700 void scsi_kunmap_atomic_sg(void *virt)
2702 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2704 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);