2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
5 * May be copied or modified under the terms of the GNU General Public
6 * License. See linux/COPYING for more information.
8 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
11 * Theory of operation:
13 * At the lowest level, there is the standard driver for the CD/DVD device,
14 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
15 * but it doesn't know anything about the special restrictions that apply to
16 * packet writing. One restriction is that write requests must be aligned to
17 * packet boundaries on the physical media, and the size of a write request
18 * must be equal to the packet size. Another restriction is that a
19 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
20 * command, if the previous command was a write.
22 * The purpose of the packet writing driver is to hide these restrictions from
23 * higher layers, such as file systems, and present a block device that can be
24 * randomly read and written using 2kB-sized blocks.
26 * The lowest layer in the packet writing driver is the packet I/O scheduler.
27 * Its data is defined by the struct packet_iosched and includes two bio
28 * queues with pending read and write requests. These queues are processed
29 * by the pkt_iosched_process_queue() function. The write requests in this
30 * queue are already properly aligned and sized. This layer is responsible for
31 * issuing the flush cache commands and scheduling the I/O in a good order.
33 * The next layer transforms unaligned write requests to aligned writes. This
34 * transformation requires reading missing pieces of data from the underlying
35 * block device, assembling the pieces to full packets and queuing them to the
36 * packet I/O scheduler.
38 * At the top layer there is a custom make_request_fn function that forwards
39 * read requests directly to the iosched queue and puts write requests in the
40 * unaligned write queue. A kernel thread performs the necessary read
41 * gathering to convert the unaligned writes to aligned writes and then feeds
42 * them to the packet I/O scheduler.
44 *************************************************************************/
46 #include <linux/pktcdvd.h>
47 #include <linux/config.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/kthread.h>
52 #include <linux/errno.h>
53 #include <linux/spinlock.h>
54 #include <linux/file.h>
55 #include <linux/proc_fs.h>
56 #include <linux/seq_file.h>
57 #include <linux/miscdevice.h>
58 #include <linux/suspend.h>
59 #include <scsi/scsi_cmnd.h>
60 #include <scsi/scsi_ioctl.h>
61 #include <scsi/scsi.h>
63 #include <asm/uaccess.h>
66 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
68 #define DPRINTK(fmt, args...)
72 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
74 #define VPRINTK(fmt, args...)
77 #define MAX_SPEED 0xffff
79 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
81 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
82 static struct proc_dir_entry *pkt_proc;
84 static struct semaphore ctl_mutex; /* Serialize open/close/setup/teardown */
85 static mempool_t *psd_pool;
88 static void pkt_bio_finished(struct pktcdvd_device *pd)
90 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
91 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
92 VPRINTK("pktcdvd: queue empty\n");
93 atomic_set(&pd->iosched.attention, 1);
98 static void pkt_bio_destructor(struct bio *bio)
100 kfree(bio->bi_io_vec);
104 static struct bio *pkt_bio_alloc(int nr_iovecs)
106 struct bio_vec *bvl = NULL;
109 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
114 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
118 bio->bi_max_vecs = nr_iovecs;
119 bio->bi_io_vec = bvl;
120 bio->bi_destructor = pkt_bio_destructor;
131 * Allocate a packet_data struct
133 static struct packet_data *pkt_alloc_packet_data(int frames)
136 struct packet_data *pkt;
138 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
142 pkt->frames = frames;
143 pkt->w_bio = pkt_bio_alloc(frames);
147 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
148 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
153 spin_lock_init(&pkt->lock);
155 for (i = 0; i < frames; i++) {
156 struct bio *bio = pkt_bio_alloc(1);
159 pkt->r_bios[i] = bio;
165 for (i = 0; i < frames; i++) {
166 struct bio *bio = pkt->r_bios[i];
172 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
174 __free_page(pkt->pages[i]);
183 * Free a packet_data struct
185 static void pkt_free_packet_data(struct packet_data *pkt)
189 for (i = 0; i < pkt->frames; i++) {
190 struct bio *bio = pkt->r_bios[i];
194 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
195 __free_page(pkt->pages[i]);
200 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
202 struct packet_data *pkt, *next;
204 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
206 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
207 pkt_free_packet_data(pkt);
209 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
212 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
214 struct packet_data *pkt;
216 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
218 while (nr_packets > 0) {
219 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
221 pkt_shrink_pktlist(pd);
224 pkt->id = nr_packets;
226 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
232 static void *pkt_rb_alloc(gfp_t gfp_mask, void *data)
234 return kmalloc(sizeof(struct pkt_rb_node), gfp_mask);
237 static void pkt_rb_free(void *ptr, void *data)
242 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
244 struct rb_node *n = rb_next(&node->rb_node);
247 return rb_entry(n, struct pkt_rb_node, rb_node);
250 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
252 rb_erase(&node->rb_node, &pd->bio_queue);
253 mempool_free(node, pd->rb_pool);
254 pd->bio_queue_size--;
255 BUG_ON(pd->bio_queue_size < 0);
259 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
261 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
263 struct rb_node *n = pd->bio_queue.rb_node;
264 struct rb_node *next;
265 struct pkt_rb_node *tmp;
268 BUG_ON(pd->bio_queue_size > 0);
273 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
274 if (s <= tmp->bio->bi_sector)
283 if (s > tmp->bio->bi_sector) {
284 tmp = pkt_rbtree_next(tmp);
288 BUG_ON(s > tmp->bio->bi_sector);
293 * Insert a node into the pd->bio_queue rb tree.
295 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
297 struct rb_node **p = &pd->bio_queue.rb_node;
298 struct rb_node *parent = NULL;
299 sector_t s = node->bio->bi_sector;
300 struct pkt_rb_node *tmp;
304 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
305 if (s < tmp->bio->bi_sector)
310 rb_link_node(&node->rb_node, parent, p);
311 rb_insert_color(&node->rb_node, &pd->bio_queue);
312 pd->bio_queue_size++;
316 * Add a bio to a single linked list defined by its head and tail pointers.
318 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
322 BUG_ON((*list_head) == NULL);
323 (*list_tail)->bi_next = bio;
326 BUG_ON((*list_head) != NULL);
333 * Remove and return the first bio from a single linked list defined by its
334 * head and tail pointers.
336 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
340 if (*list_head == NULL)
344 *list_head = bio->bi_next;
345 if (*list_head == NULL)
353 * Send a packet_command to the underlying block device and
354 * wait for completion.
356 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
358 char sense[SCSI_SENSE_BUFFERSIZE];
361 DECLARE_COMPLETION(wait);
364 q = bdev_get_queue(pd->bdev);
366 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ,
369 rq->rq_disk = pd->bdev->bd_disk;
373 rq->data = cgc->buffer;
374 rq->data_len = cgc->buflen;
376 memset(sense, 0, sizeof(sense));
378 rq->flags |= REQ_BLOCK_PC | REQ_HARDBARRIER;
380 rq->flags |= REQ_QUIET;
381 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
382 if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
383 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
384 rq->cmd_len = COMMAND_SIZE(rq->cmd[0]);
387 rq->flags |= REQ_NOMERGE;
389 rq->end_io = blk_end_sync_rq;
390 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
391 generic_unplug_device(q);
392 wait_for_completion(&wait);
402 * A generic sense dump / resolve mechanism should be implemented across
403 * all ATAPI + SCSI devices.
405 static void pkt_dump_sense(struct packet_command *cgc)
407 static char *info[9] = { "No sense", "Recovered error", "Not ready",
408 "Medium error", "Hardware error", "Illegal request",
409 "Unit attention", "Data protect", "Blank check" };
411 struct request_sense *sense = cgc->sense;
414 for (i = 0; i < CDROM_PACKET_SIZE; i++)
415 printk(" %02x", cgc->cmd[i]);
419 printk("no sense\n");
423 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
425 if (sense->sense_key > 8) {
426 printk(" (INVALID)\n");
430 printk(" (%s)\n", info[sense->sense_key]);
434 * flush the drive cache to media
436 static int pkt_flush_cache(struct pktcdvd_device *pd)
438 struct packet_command cgc;
440 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
441 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
445 * the IMMED bit -- we default to not setting it, although that
446 * would allow a much faster close, this is safer
451 return pkt_generic_packet(pd, &cgc);
455 * speed is given as the normal factor, e.g. 4 for 4x
457 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
459 struct packet_command cgc;
460 struct request_sense sense;
463 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
465 cgc.cmd[0] = GPCMD_SET_SPEED;
466 cgc.cmd[2] = (read_speed >> 8) & 0xff;
467 cgc.cmd[3] = read_speed & 0xff;
468 cgc.cmd[4] = (write_speed >> 8) & 0xff;
469 cgc.cmd[5] = write_speed & 0xff;
471 if ((ret = pkt_generic_packet(pd, &cgc)))
472 pkt_dump_sense(&cgc);
478 * Queue a bio for processing by the low-level CD device. Must be called
479 * from process context.
481 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
483 spin_lock(&pd->iosched.lock);
484 if (bio_data_dir(bio) == READ) {
485 pkt_add_list_last(bio, &pd->iosched.read_queue,
486 &pd->iosched.read_queue_tail);
488 pkt_add_list_last(bio, &pd->iosched.write_queue,
489 &pd->iosched.write_queue_tail);
491 spin_unlock(&pd->iosched.lock);
493 atomic_set(&pd->iosched.attention, 1);
494 wake_up(&pd->wqueue);
498 * Process the queued read/write requests. This function handles special
499 * requirements for CDRW drives:
500 * - A cache flush command must be inserted before a read request if the
501 * previous request was a write.
502 * - Switching between reading and writing is slow, so don't do it more often
504 * - Optimize for throughput at the expense of latency. This means that streaming
505 * writes will never be interrupted by a read, but if the drive has to seek
506 * before the next write, switch to reading instead if there are any pending
508 * - Set the read speed according to current usage pattern. When only reading
509 * from the device, it's best to use the highest possible read speed, but
510 * when switching often between reading and writing, it's better to have the
511 * same read and write speeds.
513 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
516 if (atomic_read(&pd->iosched.attention) == 0)
518 atomic_set(&pd->iosched.attention, 0);
522 int reads_queued, writes_queued;
524 spin_lock(&pd->iosched.lock);
525 reads_queued = (pd->iosched.read_queue != NULL);
526 writes_queued = (pd->iosched.write_queue != NULL);
527 spin_unlock(&pd->iosched.lock);
529 if (!reads_queued && !writes_queued)
532 if (pd->iosched.writing) {
533 int need_write_seek = 1;
534 spin_lock(&pd->iosched.lock);
535 bio = pd->iosched.write_queue;
536 spin_unlock(&pd->iosched.lock);
537 if (bio && (bio->bi_sector == pd->iosched.last_write))
539 if (need_write_seek && reads_queued) {
540 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
541 VPRINTK("pktcdvd: write, waiting\n");
545 pd->iosched.writing = 0;
548 if (!reads_queued && writes_queued) {
549 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
550 VPRINTK("pktcdvd: read, waiting\n");
553 pd->iosched.writing = 1;
557 spin_lock(&pd->iosched.lock);
558 if (pd->iosched.writing) {
559 bio = pkt_get_list_first(&pd->iosched.write_queue,
560 &pd->iosched.write_queue_tail);
562 bio = pkt_get_list_first(&pd->iosched.read_queue,
563 &pd->iosched.read_queue_tail);
565 spin_unlock(&pd->iosched.lock);
570 if (bio_data_dir(bio) == READ)
571 pd->iosched.successive_reads += bio->bi_size >> 10;
573 pd->iosched.successive_reads = 0;
574 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
576 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
577 if (pd->read_speed == pd->write_speed) {
578 pd->read_speed = MAX_SPEED;
579 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
582 if (pd->read_speed != pd->write_speed) {
583 pd->read_speed = pd->write_speed;
584 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
588 atomic_inc(&pd->cdrw.pending_bios);
589 generic_make_request(bio);
594 * Special care is needed if the underlying block device has a small
595 * max_phys_segments value.
597 static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
599 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
601 * The cdrom device can handle one segment/frame
603 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
605 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
607 * We can handle this case at the expense of some extra memory
608 * copies during write operations
610 set_bit(PACKET_MERGE_SEGS, &pd->flags);
613 printk("pktcdvd: cdrom max_phys_segments too small\n");
619 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
621 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
623 unsigned int copy_size = CD_FRAMESIZE;
625 while (copy_size > 0) {
626 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
627 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
628 src_bvl->bv_offset + offs;
629 void *vto = page_address(dst_page) + dst_offs;
630 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
633 memcpy(vto, vfrom, len);
634 kunmap_atomic(vfrom, KM_USER0);
644 * Copy all data for this packet to pkt->pages[], so that
645 * a) The number of required segments for the write bio is minimized, which
646 * is necessary for some scsi controllers.
647 * b) The data can be used as cache to avoid read requests if we receive a
648 * new write request for the same zone.
650 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
654 /* Copy all data to pkt->pages[] */
657 for (f = 0; f < pkt->frames; f++) {
658 if (bvec[f].bv_page != pkt->pages[p]) {
659 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
660 void *vto = page_address(pkt->pages[p]) + offs;
661 memcpy(vto, vfrom, CD_FRAMESIZE);
662 kunmap_atomic(vfrom, KM_USER0);
663 bvec[f].bv_page = pkt->pages[p];
664 bvec[f].bv_offset = offs;
666 BUG_ON(bvec[f].bv_offset != offs);
668 offs += CD_FRAMESIZE;
669 if (offs >= PAGE_SIZE) {
676 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
678 struct packet_data *pkt = bio->bi_private;
679 struct pktcdvd_device *pd = pkt->pd;
685 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
686 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
689 atomic_inc(&pkt->io_errors);
690 if (atomic_dec_and_test(&pkt->io_wait)) {
691 atomic_inc(&pkt->run_sm);
692 wake_up(&pd->wqueue);
694 pkt_bio_finished(pd);
699 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
701 struct packet_data *pkt = bio->bi_private;
702 struct pktcdvd_device *pd = pkt->pd;
708 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
710 pd->stats.pkt_ended++;
712 pkt_bio_finished(pd);
713 atomic_dec(&pkt->io_wait);
714 atomic_inc(&pkt->run_sm);
715 wake_up(&pd->wqueue);
720 * Schedule reads for the holes in a packet
722 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
727 char written[PACKET_MAX_SIZE];
729 BUG_ON(!pkt->orig_bios);
731 atomic_set(&pkt->io_wait, 0);
732 atomic_set(&pkt->io_errors, 0);
735 * Figure out which frames we need to read before we can write.
737 memset(written, 0, sizeof(written));
738 spin_lock(&pkt->lock);
739 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
740 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
741 int num_frames = bio->bi_size / CD_FRAMESIZE;
742 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
743 BUG_ON(first_frame < 0);
744 BUG_ON(first_frame + num_frames > pkt->frames);
745 for (f = first_frame; f < first_frame + num_frames; f++)
748 spin_unlock(&pkt->lock);
750 if (pkt->cache_valid) {
751 VPRINTK("pkt_gather_data: zone %llx cached\n",
752 (unsigned long long)pkt->sector);
757 * Schedule reads for missing parts of the packet.
759 for (f = 0; f < pkt->frames; f++) {
763 bio = pkt->r_bios[f];
765 bio->bi_max_vecs = 1;
766 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
767 bio->bi_bdev = pd->bdev;
768 bio->bi_end_io = pkt_end_io_read;
769 bio->bi_private = pkt;
771 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
772 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
773 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
774 f, pkt->pages[p], offset);
775 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
778 atomic_inc(&pkt->io_wait);
780 pkt_queue_bio(pd, bio);
785 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
786 frames_read, (unsigned long long)pkt->sector);
787 pd->stats.pkt_started++;
788 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
792 * Find a packet matching zone, or the least recently used packet if
795 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
797 struct packet_data *pkt;
799 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
800 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
801 list_del_init(&pkt->list);
802 if (pkt->sector != zone)
803 pkt->cache_valid = 0;
811 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
813 if (pkt->cache_valid) {
814 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
816 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
821 * recover a failed write, query for relocation if possible
823 * returns 1 if recovery is possible, or 0 if not
826 static int pkt_start_recovery(struct packet_data *pkt)
829 * FIXME. We need help from the file system to implement
834 struct request *rq = pkt->rq;
835 struct pktcdvd_device *pd = rq->rq_disk->private_data;
836 struct block_device *pkt_bdev;
837 struct super_block *sb = NULL;
838 unsigned long old_block, new_block;
841 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
843 sb = get_super(pkt_bdev);
850 if (!sb->s_op || !sb->s_op->relocate_blocks)
853 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
854 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
857 new_sector = new_block * (CD_FRAMESIZE >> 9);
858 pkt->sector = new_sector;
860 pkt->bio->bi_sector = new_sector;
861 pkt->bio->bi_next = NULL;
862 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
863 pkt->bio->bi_idx = 0;
865 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
866 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
867 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
868 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
869 BUG_ON(pkt->bio->bi_private != pkt);
880 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
883 static const char *state_name[] = {
884 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
886 enum packet_data_state old_state = pkt->state;
887 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
888 state_name[old_state], state_name[state]);
894 * Scan the work queue to see if we can start a new packet.
895 * returns non-zero if any work was done.
897 static int pkt_handle_queue(struct pktcdvd_device *pd)
899 struct packet_data *pkt, *p;
900 struct bio *bio = NULL;
901 sector_t zone = 0; /* Suppress gcc warning */
902 struct pkt_rb_node *node, *first_node;
905 VPRINTK("handle_queue\n");
907 atomic_set(&pd->scan_queue, 0);
909 if (list_empty(&pd->cdrw.pkt_free_list)) {
910 VPRINTK("handle_queue: no pkt\n");
915 * Try to find a zone we are not already working on.
917 spin_lock(&pd->lock);
918 first_node = pkt_rbtree_find(pd, pd->current_sector);
920 n = rb_first(&pd->bio_queue);
922 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
927 zone = ZONE(bio->bi_sector, pd);
928 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
929 if (p->sector == zone) {
936 node = pkt_rbtree_next(node);
938 n = rb_first(&pd->bio_queue);
940 node = rb_entry(n, struct pkt_rb_node, rb_node);
942 if (node == first_node)
945 spin_unlock(&pd->lock);
947 VPRINTK("handle_queue: no bio\n");
951 pkt = pkt_get_packet_data(pd, zone);
953 pd->current_sector = zone + pd->settings.size;
955 BUG_ON(pkt->frames != pd->settings.size >> 2);
959 * Scan work queue for bios in the same zone and link them
962 spin_lock(&pd->lock);
963 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
964 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
966 VPRINTK("pkt_handle_queue: found zone=%llx\n",
967 (unsigned long long)ZONE(bio->bi_sector, pd));
968 if (ZONE(bio->bi_sector, pd) != zone)
970 pkt_rbtree_erase(pd, node);
971 spin_lock(&pkt->lock);
972 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
973 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
974 spin_unlock(&pkt->lock);
976 spin_unlock(&pd->lock);
978 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
979 pkt_set_state(pkt, PACKET_WAITING_STATE);
980 atomic_set(&pkt->run_sm, 1);
982 spin_lock(&pd->cdrw.active_list_lock);
983 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
984 spin_unlock(&pd->cdrw.active_list_lock);
990 * Assemble a bio to write one packet and queue the bio for processing
991 * by the underlying block device.
993 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
998 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1000 for (f = 0; f < pkt->frames; f++) {
1001 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1002 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1006 * Fill-in bvec with data from orig_bios.
1009 spin_lock(&pkt->lock);
1010 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1011 int segment = bio->bi_idx;
1013 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1014 int num_frames = bio->bi_size / CD_FRAMESIZE;
1015 BUG_ON(first_frame < 0);
1016 BUG_ON(first_frame + num_frames > pkt->frames);
1017 for (f = first_frame; f < first_frame + num_frames; f++) {
1018 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1020 while (src_offs >= src_bvl->bv_len) {
1021 src_offs -= src_bvl->bv_len;
1023 BUG_ON(segment >= bio->bi_vcnt);
1024 src_bvl = bio_iovec_idx(bio, segment);
1027 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1028 bvec[f].bv_page = src_bvl->bv_page;
1029 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1031 pkt_copy_bio_data(bio, segment, src_offs,
1032 bvec[f].bv_page, bvec[f].bv_offset);
1034 src_offs += CD_FRAMESIZE;
1038 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1039 spin_unlock(&pkt->lock);
1041 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1042 frames_write, (unsigned long long)pkt->sector);
1043 BUG_ON(frames_write != pkt->write_size);
1045 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1046 pkt_make_local_copy(pkt, bvec);
1047 pkt->cache_valid = 1;
1049 pkt->cache_valid = 0;
1052 /* Start the write request */
1053 bio_init(pkt->w_bio);
1054 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1055 pkt->w_bio->bi_sector = pkt->sector;
1056 pkt->w_bio->bi_bdev = pd->bdev;
1057 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1058 pkt->w_bio->bi_private = pkt;
1059 for (f = 0; f < pkt->frames; f++)
1060 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1062 VPRINTK("pktcdvd: vcnt=%d\n", pkt->w_bio->bi_vcnt);
1064 atomic_set(&pkt->io_wait, 1);
1065 pkt->w_bio->bi_rw = WRITE;
1066 pkt_queue_bio(pd, pkt->w_bio);
1069 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1071 struct bio *bio, *next;
1074 pkt->cache_valid = 0;
1076 /* Finish all bios corresponding to this packet */
1077 bio = pkt->orig_bios;
1079 next = bio->bi_next;
1080 bio->bi_next = NULL;
1081 bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
1084 pkt->orig_bios = pkt->orig_bios_tail = NULL;
1087 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1091 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1094 switch (pkt->state) {
1095 case PACKET_WAITING_STATE:
1096 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1099 pkt->sleep_time = 0;
1100 pkt_gather_data(pd, pkt);
1101 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1104 case PACKET_READ_WAIT_STATE:
1105 if (atomic_read(&pkt->io_wait) > 0)
1108 if (atomic_read(&pkt->io_errors) > 0) {
1109 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1111 pkt_start_write(pd, pkt);
1115 case PACKET_WRITE_WAIT_STATE:
1116 if (atomic_read(&pkt->io_wait) > 0)
1119 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1120 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1122 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1126 case PACKET_RECOVERY_STATE:
1127 if (pkt_start_recovery(pkt)) {
1128 pkt_start_write(pd, pkt);
1130 VPRINTK("No recovery possible\n");
1131 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1135 case PACKET_FINISHED_STATE:
1136 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1137 pkt_finish_packet(pkt, uptodate);
1147 static void pkt_handle_packets(struct pktcdvd_device *pd)
1149 struct packet_data *pkt, *next;
1151 VPRINTK("pkt_handle_packets\n");
1154 * Run state machine for active packets
1156 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1157 if (atomic_read(&pkt->run_sm) > 0) {
1158 atomic_set(&pkt->run_sm, 0);
1159 pkt_run_state_machine(pd, pkt);
1164 * Move no longer active packets to the free list
1166 spin_lock(&pd->cdrw.active_list_lock);
1167 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1168 if (pkt->state == PACKET_FINISHED_STATE) {
1169 list_del(&pkt->list);
1170 pkt_put_packet_data(pd, pkt);
1171 pkt_set_state(pkt, PACKET_IDLE_STATE);
1172 atomic_set(&pd->scan_queue, 1);
1175 spin_unlock(&pd->cdrw.active_list_lock);
1178 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1180 struct packet_data *pkt;
1183 for (i = 0; i < PACKET_NUM_STATES; i++)
1186 spin_lock(&pd->cdrw.active_list_lock);
1187 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1188 states[pkt->state]++;
1190 spin_unlock(&pd->cdrw.active_list_lock);
1194 * kcdrwd is woken up when writes have been queued for one of our
1195 * registered devices
1197 static int kcdrwd(void *foobar)
1199 struct pktcdvd_device *pd = foobar;
1200 struct packet_data *pkt;
1201 long min_sleep_time, residue;
1203 set_user_nice(current, -20);
1206 DECLARE_WAITQUEUE(wait, current);
1209 * Wait until there is something to do
1211 add_wait_queue(&pd->wqueue, &wait);
1213 set_current_state(TASK_INTERRUPTIBLE);
1215 /* Check if we need to run pkt_handle_queue */
1216 if (atomic_read(&pd->scan_queue) > 0)
1219 /* Check if we need to run the state machine for some packet */
1220 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1221 if (atomic_read(&pkt->run_sm) > 0)
1225 /* Check if we need to process the iosched queues */
1226 if (atomic_read(&pd->iosched.attention) != 0)
1229 /* Otherwise, go to sleep */
1230 if (PACKET_DEBUG > 1) {
1231 int states[PACKET_NUM_STATES];
1232 pkt_count_states(pd, states);
1233 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1234 states[0], states[1], states[2], states[3],
1235 states[4], states[5]);
1238 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1239 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1240 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1241 min_sleep_time = pkt->sleep_time;
1244 generic_unplug_device(bdev_get_queue(pd->bdev));
1246 VPRINTK("kcdrwd: sleeping\n");
1247 residue = schedule_timeout(min_sleep_time);
1248 VPRINTK("kcdrwd: wake up\n");
1250 /* make swsusp happy with our thread */
1253 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1254 if (!pkt->sleep_time)
1256 pkt->sleep_time -= min_sleep_time - residue;
1257 if (pkt->sleep_time <= 0) {
1258 pkt->sleep_time = 0;
1259 atomic_inc(&pkt->run_sm);
1263 if (signal_pending(current)) {
1264 flush_signals(current);
1266 if (kthread_should_stop())
1270 set_current_state(TASK_RUNNING);
1271 remove_wait_queue(&pd->wqueue, &wait);
1273 if (kthread_should_stop())
1277 * if pkt_handle_queue returns true, we can queue
1280 while (pkt_handle_queue(pd))
1284 * Handle packet state machine
1286 pkt_handle_packets(pd);
1289 * Handle iosched queues
1291 pkt_iosched_process_queue(pd);
1297 static void pkt_print_settings(struct pktcdvd_device *pd)
1299 printk("pktcdvd: %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1300 printk("%u blocks, ", pd->settings.size >> 2);
1301 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1304 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1306 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1308 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1309 cgc->cmd[2] = page_code | (page_control << 6);
1310 cgc->cmd[7] = cgc->buflen >> 8;
1311 cgc->cmd[8] = cgc->buflen & 0xff;
1312 cgc->data_direction = CGC_DATA_READ;
1313 return pkt_generic_packet(pd, cgc);
1316 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1318 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1319 memset(cgc->buffer, 0, 2);
1320 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1321 cgc->cmd[1] = 0x10; /* PF */
1322 cgc->cmd[7] = cgc->buflen >> 8;
1323 cgc->cmd[8] = cgc->buflen & 0xff;
1324 cgc->data_direction = CGC_DATA_WRITE;
1325 return pkt_generic_packet(pd, cgc);
1328 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1330 struct packet_command cgc;
1333 /* set up command and get the disc info */
1334 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1335 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1336 cgc.cmd[8] = cgc.buflen = 2;
1339 if ((ret = pkt_generic_packet(pd, &cgc)))
1342 /* not all drives have the same disc_info length, so requeue
1343 * packet with the length the drive tells us it can supply
1345 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1346 sizeof(di->disc_information_length);
1348 if (cgc.buflen > sizeof(disc_information))
1349 cgc.buflen = sizeof(disc_information);
1351 cgc.cmd[8] = cgc.buflen;
1352 return pkt_generic_packet(pd, &cgc);
1355 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1357 struct packet_command cgc;
1360 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1361 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1362 cgc.cmd[1] = type & 3;
1363 cgc.cmd[4] = (track & 0xff00) >> 8;
1364 cgc.cmd[5] = track & 0xff;
1368 if ((ret = pkt_generic_packet(pd, &cgc)))
1371 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1372 sizeof(ti->track_information_length);
1374 if (cgc.buflen > sizeof(track_information))
1375 cgc.buflen = sizeof(track_information);
1377 cgc.cmd[8] = cgc.buflen;
1378 return pkt_generic_packet(pd, &cgc);
1381 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
1383 disc_information di;
1384 track_information ti;
1388 if ((ret = pkt_get_disc_info(pd, &di)))
1391 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1392 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1395 /* if this track is blank, try the previous. */
1398 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1402 /* if last recorded field is valid, return it. */
1404 *last_written = be32_to_cpu(ti.last_rec_address);
1406 /* make it up instead */
1407 *last_written = be32_to_cpu(ti.track_start) +
1408 be32_to_cpu(ti.track_size);
1410 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1416 * write mode select package based on pd->settings
1418 static int pkt_set_write_settings(struct pktcdvd_device *pd)
1420 struct packet_command cgc;
1421 struct request_sense sense;
1422 write_param_page *wp;
1426 /* doesn't apply to DVD+RW or DVD-RAM */
1427 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1430 memset(buffer, 0, sizeof(buffer));
1431 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1433 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1434 pkt_dump_sense(&cgc);
1438 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1439 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1440 if (size > sizeof(buffer))
1441 size = sizeof(buffer);
1446 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1448 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1449 pkt_dump_sense(&cgc);
1454 * write page is offset header + block descriptor length
1456 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1458 wp->fp = pd->settings.fp;
1459 wp->track_mode = pd->settings.track_mode;
1460 wp->write_type = pd->settings.write_type;
1461 wp->data_block_type = pd->settings.block_mode;
1463 wp->multi_session = 0;
1465 #ifdef PACKET_USE_LS
1470 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1471 wp->session_format = 0;
1473 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1474 wp->session_format = 0x20;
1478 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1484 printk("pktcdvd: write mode wrong %d\n", wp->data_block_type);
1487 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1489 cgc.buflen = cgc.cmd[8] = size;
1490 if ((ret = pkt_mode_select(pd, &cgc))) {
1491 pkt_dump_sense(&cgc);
1495 pkt_print_settings(pd);
1500 * 1 -- we can write to this track, 0 -- we can't
1502 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1504 switch (pd->mmc3_profile) {
1505 case 0x1a: /* DVD+RW */
1506 case 0x12: /* DVD-RAM */
1507 /* The track is always writable on DVD+RW/DVD-RAM */
1513 if (!ti->packet || !ti->fp)
1517 * "good" settings as per Mt Fuji.
1519 if (ti->rt == 0 && ti->blank == 0)
1522 if (ti->rt == 0 && ti->blank == 1)
1525 if (ti->rt == 1 && ti->blank == 0)
1528 printk("pktcdvd: bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1533 * 1 -- we can write to this disc, 0 -- we can't
1535 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1537 switch (pd->mmc3_profile) {
1538 case 0x0a: /* CD-RW */
1539 case 0xffff: /* MMC3 not supported */
1541 case 0x1a: /* DVD+RW */
1542 case 0x13: /* DVD-RW */
1543 case 0x12: /* DVD-RAM */
1546 VPRINTK("pktcdvd: Wrong disc profile (%x)\n", pd->mmc3_profile);
1551 * for disc type 0xff we should probably reserve a new track.
1552 * but i'm not sure, should we leave this to user apps? probably.
1554 if (di->disc_type == 0xff) {
1555 printk("pktcdvd: Unknown disc. No track?\n");
1559 if (di->disc_type != 0x20 && di->disc_type != 0) {
1560 printk("pktcdvd: Wrong disc type (%x)\n", di->disc_type);
1564 if (di->erasable == 0) {
1565 printk("pktcdvd: Disc not erasable\n");
1569 if (di->border_status == PACKET_SESSION_RESERVED) {
1570 printk("pktcdvd: Can't write to last track (reserved)\n");
1577 static int pkt_probe_settings(struct pktcdvd_device *pd)
1579 struct packet_command cgc;
1580 unsigned char buf[12];
1581 disc_information di;
1582 track_information ti;
1585 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1586 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1588 ret = pkt_generic_packet(pd, &cgc);
1589 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1591 memset(&di, 0, sizeof(disc_information));
1592 memset(&ti, 0, sizeof(track_information));
1594 if ((ret = pkt_get_disc_info(pd, &di))) {
1595 printk("failed get_disc\n");
1599 if (!pkt_writable_disc(pd, &di))
1602 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1604 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1605 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1606 printk("pktcdvd: failed get_track\n");
1610 if (!pkt_writable_track(pd, &ti)) {
1611 printk("pktcdvd: can't write to this track\n");
1616 * we keep packet size in 512 byte units, makes it easier to
1617 * deal with request calculations.
1619 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1620 if (pd->settings.size == 0) {
1621 printk("pktcdvd: detected zero packet size!\n");
1624 if (pd->settings.size > PACKET_MAX_SECTORS) {
1625 printk("pktcdvd: packet size is too big\n");
1628 pd->settings.fp = ti.fp;
1629 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1632 pd->nwa = be32_to_cpu(ti.next_writable);
1633 set_bit(PACKET_NWA_VALID, &pd->flags);
1637 * in theory we could use lra on -RW media as well and just zero
1638 * blocks that haven't been written yet, but in practice that
1639 * is just a no-go. we'll use that for -R, naturally.
1642 pd->lra = be32_to_cpu(ti.last_rec_address);
1643 set_bit(PACKET_LRA_VALID, &pd->flags);
1645 pd->lra = 0xffffffff;
1646 set_bit(PACKET_LRA_VALID, &pd->flags);
1652 pd->settings.link_loss = 7;
1653 pd->settings.write_type = 0; /* packet */
1654 pd->settings.track_mode = ti.track_mode;
1657 * mode1 or mode2 disc
1659 switch (ti.data_mode) {
1661 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1664 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1667 printk("pktcdvd: unknown data mode\n");
1674 * enable/disable write caching on drive
1676 static int pkt_write_caching(struct pktcdvd_device *pd, int set)
1678 struct packet_command cgc;
1679 struct request_sense sense;
1680 unsigned char buf[64];
1683 memset(buf, 0, sizeof(buf));
1684 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1686 cgc.buflen = pd->mode_offset + 12;
1689 * caching mode page might not be there, so quiet this command
1693 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1696 buf[pd->mode_offset + 10] |= (!!set << 2);
1698 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1699 ret = pkt_mode_select(pd, &cgc);
1701 printk("pktcdvd: write caching control failed\n");
1702 pkt_dump_sense(&cgc);
1703 } else if (!ret && set)
1704 printk("pktcdvd: enabled write caching on %s\n", pd->name);
1708 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1710 struct packet_command cgc;
1712 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1713 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1714 cgc.cmd[4] = lockflag ? 1 : 0;
1715 return pkt_generic_packet(pd, &cgc);
1719 * Returns drive maximum write speed
1721 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
1723 struct packet_command cgc;
1724 struct request_sense sense;
1725 unsigned char buf[256+18];
1726 unsigned char *cap_buf;
1729 memset(buf, 0, sizeof(buf));
1730 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1731 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1734 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1736 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1737 sizeof(struct mode_page_header);
1738 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1740 pkt_dump_sense(&cgc);
1745 offset = 20; /* Obsoleted field, used by older drives */
1746 if (cap_buf[1] >= 28)
1747 offset = 28; /* Current write speed selected */
1748 if (cap_buf[1] >= 30) {
1749 /* If the drive reports at least one "Logical Unit Write
1750 * Speed Performance Descriptor Block", use the information
1751 * in the first block. (contains the highest speed)
1753 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1758 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1762 /* These tables from cdrecord - I don't have orange book */
1763 /* standard speed CD-RW (1-4x) */
1764 static char clv_to_speed[16] = {
1765 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1766 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1768 /* high speed CD-RW (-10x) */
1769 static char hs_clv_to_speed[16] = {
1770 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1771 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1773 /* ultra high speed CD-RW */
1774 static char us_clv_to_speed[16] = {
1775 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1776 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1780 * reads the maximum media speed from ATIP
1782 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
1784 struct packet_command cgc;
1785 struct request_sense sense;
1786 unsigned char buf[64];
1787 unsigned int size, st, sp;
1790 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
1792 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1794 cgc.cmd[2] = 4; /* READ ATIP */
1796 ret = pkt_generic_packet(pd, &cgc);
1798 pkt_dump_sense(&cgc);
1801 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
1802 if (size > sizeof(buf))
1805 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
1807 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1811 ret = pkt_generic_packet(pd, &cgc);
1813 pkt_dump_sense(&cgc);
1817 if (!buf[6] & 0x40) {
1818 printk("pktcdvd: Disc type is not CD-RW\n");
1821 if (!buf[6] & 0x4) {
1822 printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n");
1826 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
1828 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
1830 /* Info from cdrecord */
1832 case 0: /* standard speed */
1833 *speed = clv_to_speed[sp];
1835 case 1: /* high speed */
1836 *speed = hs_clv_to_speed[sp];
1838 case 2: /* ultra high speed */
1839 *speed = us_clv_to_speed[sp];
1842 printk("pktcdvd: Unknown disc sub-type %d\n",st);
1846 printk("pktcdvd: Max. media speed: %d\n",*speed);
1849 printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp,st);
1854 static int pkt_perform_opc(struct pktcdvd_device *pd)
1856 struct packet_command cgc;
1857 struct request_sense sense;
1860 VPRINTK("pktcdvd: Performing OPC\n");
1862 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1864 cgc.timeout = 60*HZ;
1865 cgc.cmd[0] = GPCMD_SEND_OPC;
1867 if ((ret = pkt_generic_packet(pd, &cgc)))
1868 pkt_dump_sense(&cgc);
1872 static int pkt_open_write(struct pktcdvd_device *pd)
1875 unsigned int write_speed, media_write_speed, read_speed;
1877 if ((ret = pkt_probe_settings(pd))) {
1878 VPRINTK("pktcdvd: %s failed probe\n", pd->name);
1882 if ((ret = pkt_set_write_settings(pd))) {
1883 DPRINTK("pktcdvd: %s failed saving write settings\n", pd->name);
1887 pkt_write_caching(pd, USE_WCACHING);
1889 if ((ret = pkt_get_max_speed(pd, &write_speed)))
1890 write_speed = 16 * 177;
1891 switch (pd->mmc3_profile) {
1892 case 0x13: /* DVD-RW */
1893 case 0x1a: /* DVD+RW */
1894 case 0x12: /* DVD-RAM */
1895 DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed);
1898 if ((ret = pkt_media_speed(pd, &media_write_speed)))
1899 media_write_speed = 16;
1900 write_speed = min(write_speed, media_write_speed * 177);
1901 DPRINTK("pktcdvd: write speed %ux\n", write_speed / 176);
1904 read_speed = write_speed;
1906 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
1907 DPRINTK("pktcdvd: %s couldn't set write speed\n", pd->name);
1910 pd->write_speed = write_speed;
1911 pd->read_speed = read_speed;
1913 if ((ret = pkt_perform_opc(pd))) {
1914 DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd->name);
1921 * called at open time.
1923 static int pkt_open_dev(struct pktcdvd_device *pd, int write)
1930 * We need to re-open the cdrom device without O_NONBLOCK to be able
1931 * to read/write from/to it. It is already opened in O_NONBLOCK mode
1932 * so bdget() can't fail.
1934 bdget(pd->bdev->bd_dev);
1935 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
1938 if ((ret = bd_claim(pd->bdev, pd)))
1941 if ((ret = pkt_get_last_written(pd, &lba))) {
1942 printk("pktcdvd: pkt_get_last_written failed\n");
1946 set_capacity(pd->disk, lba << 2);
1947 set_capacity(pd->bdev->bd_disk, lba << 2);
1948 bd_set_size(pd->bdev, (loff_t)lba << 11);
1950 q = bdev_get_queue(pd->bdev);
1952 if ((ret = pkt_open_write(pd)))
1955 * Some CDRW drives can not handle writes larger than one packet,
1956 * even if the size is a multiple of the packet size.
1958 spin_lock_irq(q->queue_lock);
1959 blk_queue_max_sectors(q, pd->settings.size);
1960 spin_unlock_irq(q->queue_lock);
1961 set_bit(PACKET_WRITABLE, &pd->flags);
1963 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
1964 clear_bit(PACKET_WRITABLE, &pd->flags);
1967 if ((ret = pkt_set_segment_merging(pd, q)))
1971 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
1972 printk("pktcdvd: not enough memory for buffers\n");
1976 printk("pktcdvd: %lukB available on disc\n", lba << 1);
1982 bd_release(pd->bdev);
1984 blkdev_put(pd->bdev);
1990 * called when the device is closed. makes sure that the device flushes
1991 * the internal cache before we close.
1993 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
1995 if (flush && pkt_flush_cache(pd))
1996 DPRINTK("pktcdvd: %s not flushing cache\n", pd->name);
1998 pkt_lock_door(pd, 0);
2000 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2001 bd_release(pd->bdev);
2002 blkdev_put(pd->bdev);
2004 pkt_shrink_pktlist(pd);
2007 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2009 if (dev_minor >= MAX_WRITERS)
2011 return pkt_devs[dev_minor];
2014 static int pkt_open(struct inode *inode, struct file *file)
2016 struct pktcdvd_device *pd = NULL;
2019 VPRINTK("pktcdvd: entering open\n");
2022 pd = pkt_find_dev_from_minor(iminor(inode));
2027 BUG_ON(pd->refcnt < 0);
2030 if (pd->refcnt > 1) {
2031 if ((file->f_mode & FMODE_WRITE) &&
2032 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2037 ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE);
2041 * needed here as well, since ext2 (among others) may change
2042 * the blocksize at mount time
2044 set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2053 VPRINTK("pktcdvd: failed open (%d)\n", ret);
2058 static int pkt_close(struct inode *inode, struct file *file)
2060 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2065 BUG_ON(pd->refcnt < 0);
2066 if (pd->refcnt == 0) {
2067 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2068 pkt_release_dev(pd, flush);
2075 static void *psd_pool_alloc(gfp_t gfp_mask, void *data)
2077 return kmalloc(sizeof(struct packet_stacked_data), gfp_mask);
2080 static void psd_pool_free(void *ptr, void *data)
2085 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
2087 struct packet_stacked_data *psd = bio->bi_private;
2088 struct pktcdvd_device *pd = psd->pd;
2094 bio_endio(psd->bio, psd->bio->bi_size, err);
2095 mempool_free(psd, psd_pool);
2096 pkt_bio_finished(pd);
2100 static int pkt_make_request(request_queue_t *q, struct bio *bio)
2102 struct pktcdvd_device *pd;
2103 char b[BDEVNAME_SIZE];
2105 struct packet_data *pkt;
2106 int was_empty, blocked_bio;
2107 struct pkt_rb_node *node;
2111 printk("pktcdvd: %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2116 * Clone READ bios so we can have our own bi_end_io callback.
2118 if (bio_data_dir(bio) == READ) {
2119 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2120 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2124 cloned_bio->bi_bdev = pd->bdev;
2125 cloned_bio->bi_private = psd;
2126 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2127 pd->stats.secs_r += bio->bi_size >> 9;
2128 pkt_queue_bio(pd, cloned_bio);
2132 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2133 printk("pktcdvd: WRITE for ro device %s (%llu)\n",
2134 pd->name, (unsigned long long)bio->bi_sector);
2138 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2139 printk("pktcdvd: wrong bio size\n");
2143 blk_queue_bounce(q, &bio);
2145 zone = ZONE(bio->bi_sector, pd);
2146 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2147 (unsigned long long)bio->bi_sector,
2148 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2150 /* Check if we have to split the bio */
2152 struct bio_pair *bp;
2156 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2157 if (last_zone != zone) {
2158 BUG_ON(last_zone != zone + pd->settings.size);
2159 first_sectors = last_zone - bio->bi_sector;
2160 bp = bio_split(bio, bio_split_pool, first_sectors);
2162 pkt_make_request(q, &bp->bio1);
2163 pkt_make_request(q, &bp->bio2);
2164 bio_pair_release(bp);
2170 * If we find a matching packet in state WAITING or READ_WAIT, we can
2171 * just append this bio to that packet.
2173 spin_lock(&pd->cdrw.active_list_lock);
2175 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2176 if (pkt->sector == zone) {
2177 spin_lock(&pkt->lock);
2178 if ((pkt->state == PACKET_WAITING_STATE) ||
2179 (pkt->state == PACKET_READ_WAIT_STATE)) {
2180 pkt_add_list_last(bio, &pkt->orig_bios,
2181 &pkt->orig_bios_tail);
2182 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2183 if ((pkt->write_size >= pkt->frames) &&
2184 (pkt->state == PACKET_WAITING_STATE)) {
2185 atomic_inc(&pkt->run_sm);
2186 wake_up(&pd->wqueue);
2188 spin_unlock(&pkt->lock);
2189 spin_unlock(&pd->cdrw.active_list_lock);
2194 spin_unlock(&pkt->lock);
2197 spin_unlock(&pd->cdrw.active_list_lock);
2200 * No matching packet found. Store the bio in the work queue.
2202 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2204 spin_lock(&pd->lock);
2205 BUG_ON(pd->bio_queue_size < 0);
2206 was_empty = (pd->bio_queue_size == 0);
2207 pkt_rbtree_insert(pd, node);
2208 spin_unlock(&pd->lock);
2211 * Wake up the worker thread.
2213 atomic_set(&pd->scan_queue, 1);
2215 /* This wake_up is required for correct operation */
2216 wake_up(&pd->wqueue);
2217 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2219 * This wake up is not required for correct operation,
2220 * but improves performance in some cases.
2222 wake_up(&pd->wqueue);
2226 bio_io_error(bio, bio->bi_size);
2232 static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec)
2234 struct pktcdvd_device *pd = q->queuedata;
2235 sector_t zone = ZONE(bio->bi_sector, pd);
2236 int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
2237 int remaining = (pd->settings.size << 9) - used;
2241 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2242 * boundary, pkt_make_request() will split the bio.
2244 remaining2 = PAGE_SIZE - bio->bi_size;
2245 remaining = max(remaining, remaining2);
2247 BUG_ON(remaining < 0);
2251 static void pkt_init_queue(struct pktcdvd_device *pd)
2253 request_queue_t *q = pd->disk->queue;
2255 blk_queue_make_request(q, pkt_make_request);
2256 blk_queue_hardsect_size(q, CD_FRAMESIZE);
2257 blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2258 blk_queue_merge_bvec(q, pkt_merge_bvec);
2262 static int pkt_seq_show(struct seq_file *m, void *p)
2264 struct pktcdvd_device *pd = m->private;
2266 char bdev_buf[BDEVNAME_SIZE];
2267 int states[PACKET_NUM_STATES];
2269 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2270 bdevname(pd->bdev, bdev_buf));
2272 seq_printf(m, "\nSettings:\n");
2273 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2275 if (pd->settings.write_type == 0)
2279 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2281 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2282 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2284 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2286 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2288 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2292 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2294 seq_printf(m, "\nStatistics:\n");
2295 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2296 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2297 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2298 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2299 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2301 seq_printf(m, "\nMisc:\n");
2302 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2303 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2304 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2305 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2306 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2307 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2309 seq_printf(m, "\nQueue state:\n");
2310 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2311 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2312 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2314 pkt_count_states(pd, states);
2315 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2316 states[0], states[1], states[2], states[3], states[4], states[5]);
2321 static int pkt_seq_open(struct inode *inode, struct file *file)
2323 return single_open(file, pkt_seq_show, PDE(inode)->data);
2326 static struct file_operations pkt_proc_fops = {
2327 .open = pkt_seq_open,
2329 .llseek = seq_lseek,
2330 .release = single_release
2333 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2337 char b[BDEVNAME_SIZE];
2338 struct proc_dir_entry *proc;
2339 struct block_device *bdev;
2341 if (pd->pkt_dev == dev) {
2342 printk("pktcdvd: Recursive setup not allowed\n");
2345 for (i = 0; i < MAX_WRITERS; i++) {
2346 struct pktcdvd_device *pd2 = pkt_devs[i];
2349 if (pd2->bdev->bd_dev == dev) {
2350 printk("pktcdvd: %s already setup\n", bdevname(pd2->bdev, b));
2353 if (pd2->pkt_dev == dev) {
2354 printk("pktcdvd: Can't chain pktcdvd devices\n");
2362 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2366 /* This is safe, since we have a reference from open(). */
2367 __module_get(THIS_MODULE);
2370 set_blocksize(bdev, CD_FRAMESIZE);
2374 atomic_set(&pd->cdrw.pending_bios, 0);
2375 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2376 if (IS_ERR(pd->cdrw.thread)) {
2377 printk("pktcdvd: can't start kernel thread\n");
2382 proc = create_proc_entry(pd->name, 0, pkt_proc);
2385 proc->proc_fops = &pkt_proc_fops;
2387 DPRINTK("pktcdvd: writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2392 /* This is safe: open() is still holding a reference. */
2393 module_put(THIS_MODULE);
2397 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2399 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2401 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
2405 * forward selected CDROM ioctls to CD-ROM, for UDF
2407 case CDROMMULTISESSION:
2408 case CDROMREADTOCENTRY:
2409 case CDROM_LAST_WRITTEN:
2410 case CDROM_SEND_PACKET:
2411 case SCSI_IOCTL_SEND_COMMAND:
2412 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2416 * The door gets locked when the device is opened, so we
2417 * have to unlock it or else the eject command fails.
2419 if (pd->refcnt == 1)
2420 pkt_lock_door(pd, 0);
2421 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2424 VPRINTK("pktcdvd: Unknown ioctl for %s (%x)\n", pd->name, cmd);
2431 static int pkt_media_changed(struct gendisk *disk)
2433 struct pktcdvd_device *pd = disk->private_data;
2434 struct gendisk *attached_disk;
2440 attached_disk = pd->bdev->bd_disk;
2443 return attached_disk->fops->media_changed(attached_disk);
2446 static struct block_device_operations pktcdvd_ops = {
2447 .owner = THIS_MODULE,
2449 .release = pkt_close,
2451 .media_changed = pkt_media_changed,
2455 * Set up mapping from pktcdvd device to CD-ROM device.
2457 static int pkt_setup_dev(struct pkt_ctrl_command *ctrl_cmd)
2461 struct pktcdvd_device *pd;
2462 struct gendisk *disk;
2463 dev_t dev = new_decode_dev(ctrl_cmd->dev);
2465 for (idx = 0; idx < MAX_WRITERS; idx++)
2468 if (idx == MAX_WRITERS) {
2469 printk("pktcdvd: max %d writers supported\n", MAX_WRITERS);
2473 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2477 pd->rb_pool = mempool_create(PKT_RB_POOL_SIZE, pkt_rb_alloc, pkt_rb_free, NULL);
2481 disk = alloc_disk(1);
2486 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2487 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2488 spin_lock_init(&pd->cdrw.active_list_lock);
2490 spin_lock_init(&pd->lock);
2491 spin_lock_init(&pd->iosched.lock);
2492 sprintf(pd->name, "pktcdvd%d", idx);
2493 init_waitqueue_head(&pd->wqueue);
2494 pd->bio_queue = RB_ROOT;
2496 disk->major = pkt_major;
2497 disk->first_minor = idx;
2498 disk->fops = &pktcdvd_ops;
2499 disk->flags = GENHD_FL_REMOVABLE;
2500 sprintf(disk->disk_name, "pktcdvd%d", idx);
2501 disk->private_data = pd;
2502 disk->queue = blk_alloc_queue(GFP_KERNEL);
2506 pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2507 ret = pkt_new_dev(pd, dev);
2513 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2517 blk_put_queue(disk->queue);
2522 mempool_destroy(pd->rb_pool);
2528 * Tear down mapping from pktcdvd device to CD-ROM device.
2530 static int pkt_remove_dev(struct pkt_ctrl_command *ctrl_cmd)
2532 struct pktcdvd_device *pd;
2534 dev_t pkt_dev = new_decode_dev(ctrl_cmd->pkt_dev);
2536 for (idx = 0; idx < MAX_WRITERS; idx++) {
2538 if (pd && (pd->pkt_dev == pkt_dev))
2541 if (idx == MAX_WRITERS) {
2542 DPRINTK("pktcdvd: dev not setup\n");
2549 if (!IS_ERR(pd->cdrw.thread))
2550 kthread_stop(pd->cdrw.thread);
2552 blkdev_put(pd->bdev);
2554 remove_proc_entry(pd->name, pkt_proc);
2555 DPRINTK("pktcdvd: writer %s unmapped\n", pd->name);
2557 del_gendisk(pd->disk);
2558 blk_put_queue(pd->disk->queue);
2561 pkt_devs[idx] = NULL;
2562 mempool_destroy(pd->rb_pool);
2565 /* This is safe: open() is still holding a reference. */
2566 module_put(THIS_MODULE);
2570 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2572 struct pktcdvd_device *pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2574 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2575 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2578 ctrl_cmd->pkt_dev = 0;
2580 ctrl_cmd->num_devices = MAX_WRITERS;
2583 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2585 void __user *argp = (void __user *)arg;
2586 struct pkt_ctrl_command ctrl_cmd;
2589 if (cmd != PACKET_CTRL_CMD)
2592 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2595 switch (ctrl_cmd.command) {
2596 case PKT_CTRL_CMD_SETUP:
2597 if (!capable(CAP_SYS_ADMIN))
2600 ret = pkt_setup_dev(&ctrl_cmd);
2603 case PKT_CTRL_CMD_TEARDOWN:
2604 if (!capable(CAP_SYS_ADMIN))
2607 ret = pkt_remove_dev(&ctrl_cmd);
2610 case PKT_CTRL_CMD_STATUS:
2612 pkt_get_status(&ctrl_cmd);
2619 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2625 static struct file_operations pkt_ctl_fops = {
2626 .ioctl = pkt_ctl_ioctl,
2627 .owner = THIS_MODULE,
2630 static struct miscdevice pkt_misc = {
2631 .minor = MISC_DYNAMIC_MINOR,
2633 .devfs_name = "pktcdvd/control",
2634 .fops = &pkt_ctl_fops
2637 static int __init pkt_init(void)
2641 psd_pool = mempool_create(PSD_POOL_SIZE, psd_pool_alloc, psd_pool_free, NULL);
2645 ret = register_blkdev(pkt_major, "pktcdvd");
2647 printk("pktcdvd: Unable to register block device\n");
2653 ret = misc_register(&pkt_misc);
2655 printk("pktcdvd: Unable to register misc device\n");
2659 init_MUTEX(&ctl_mutex);
2661 pkt_proc = proc_mkdir("pktcdvd", proc_root_driver);
2666 unregister_blkdev(pkt_major, "pktcdvd");
2668 mempool_destroy(psd_pool);
2672 static void __exit pkt_exit(void)
2674 remove_proc_entry("pktcdvd", proc_root_driver);
2675 misc_deregister(&pkt_misc);
2676 unregister_blkdev(pkt_major, "pktcdvd");
2677 mempool_destroy(psd_pool);
2680 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2681 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2682 MODULE_LICENSE("GPL");
2684 module_init(pkt_init);
2685 module_exit(pkt_exit);