Merge branch 'master' of /home/src/linux-2.6/
[linux-2.6] / drivers / scsi / sym53c8xx_2 / sym_glue.c
1 /*
2  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 
3  * of PCI-SCSI IO processors.
4  *
5  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  * Copyright (c) 2003-2005  Matthew Wilcox <matthew@wil.cx>
7  *
8  * This driver is derived from the Linux sym53c8xx driver.
9  * Copyright (C) 1998-2000  Gerard Roudier
10  *
11  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 
12  * a port of the FreeBSD ncr driver to Linux-1.2.13.
13  *
14  * The original ncr driver has been written for 386bsd and FreeBSD by
15  *         Wolfgang Stanglmeier        <wolf@cologne.de>
16  *         Stefan Esser                <se@mi.Uni-Koeln.de>
17  * Copyright (C) 1994  Wolfgang Stanglmeier
18  *
19  * Other major contributions:
20  *
21  * NVRAM detection and reading.
22  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23  *
24  *-----------------------------------------------------------------------------
25  *
26  * This program is free software; you can redistribute it and/or modify
27  * it under the terms of the GNU General Public License as published by
28  * the Free Software Foundation; either version 2 of the License, or
29  * (at your option) any later version.
30  *
31  * This program is distributed in the hope that it will be useful,
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  * GNU General Public License for more details.
35  *
36  * You should have received a copy of the GNU General Public License
37  * along with this program; if not, write to the Free Software
38  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
39  */
40 #include <linux/ctype.h>
41 #include <linux/init.h>
42 #include <linux/interrupt.h>
43 #include <linux/module.h>
44 #include <linux/moduleparam.h>
45 #include <linux/spinlock.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_tcq.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_transport.h>
50
51 #include "sym_glue.h"
52 #include "sym_nvram.h"
53
54 #define NAME53C         "sym53c"
55 #define NAME53C8XX      "sym53c8xx"
56
57 /* SPARC just has to be different ... */
58 #ifdef __sparc__
59 #define IRQ_FMT "%s"
60 #define IRQ_PRM(x) __irq_itoa(x)
61 #else
62 #define IRQ_FMT "%d"
63 #define IRQ_PRM(x) (x)
64 #endif
65
66 struct sym_driver_setup sym_driver_setup = SYM_LINUX_DRIVER_SETUP;
67 unsigned int sym_debug_flags = 0;
68
69 static char *excl_string;
70 static char *safe_string;
71 module_param_named(cmd_per_lun, sym_driver_setup.max_tag, ushort, 0);
72 module_param_string(tag_ctrl, sym_driver_setup.tag_ctrl, 100, 0);
73 module_param_named(burst, sym_driver_setup.burst_order, byte, 0);
74 module_param_named(led, sym_driver_setup.scsi_led, byte, 0);
75 module_param_named(diff, sym_driver_setup.scsi_diff, byte, 0);
76 module_param_named(irqm, sym_driver_setup.irq_mode, byte, 0);
77 module_param_named(buschk, sym_driver_setup.scsi_bus_check, byte, 0);
78 module_param_named(hostid, sym_driver_setup.host_id, byte, 0);
79 module_param_named(verb, sym_driver_setup.verbose, byte, 0);
80 module_param_named(debug, sym_debug_flags, uint, 0);
81 module_param_named(settle, sym_driver_setup.settle_delay, byte, 0);
82 module_param_named(nvram, sym_driver_setup.use_nvram, byte, 0);
83 module_param_named(excl, excl_string, charp, 0);
84 module_param_named(safe, safe_string, charp, 0);
85
86 MODULE_PARM_DESC(cmd_per_lun, "The maximum number of tags to use by default");
87 MODULE_PARM_DESC(tag_ctrl, "More detailed control over tags per LUN");
88 MODULE_PARM_DESC(burst, "Maximum burst.  0 to disable, 255 to read from registers");
89 MODULE_PARM_DESC(led, "Set to 1 to enable LED support");
90 MODULE_PARM_DESC(diff, "0 for no differential mode, 1 for BIOS, 2 for always, 3 for not GPIO3");
91 MODULE_PARM_DESC(irqm, "0 for open drain, 1 to leave alone, 2 for totem pole");
92 MODULE_PARM_DESC(buschk, "0 to not check, 1 for detach on error, 2 for warn on error");
93 MODULE_PARM_DESC(hostid, "The SCSI ID to use for the host adapters");
94 MODULE_PARM_DESC(verb, "0 for minimal verbosity, 1 for normal, 2 for excessive");
95 MODULE_PARM_DESC(debug, "Set bits to enable debugging");
96 MODULE_PARM_DESC(settle, "Settle delay in seconds.  Default 3");
97 MODULE_PARM_DESC(nvram, "Option currently not used");
98 MODULE_PARM_DESC(excl, "List ioport addresses here to prevent controllers from being attached");
99 MODULE_PARM_DESC(safe, "Set other settings to a \"safe mode\"");
100
101 MODULE_LICENSE("GPL");
102 MODULE_VERSION(SYM_VERSION);
103 MODULE_AUTHOR("Matthew Wilcox <matthew@wil.cx>");
104 MODULE_DESCRIPTION("NCR, Symbios and LSI 8xx and 1010 PCI SCSI adapters");
105
106 static void sym2_setup_params(void)
107 {
108         char *p = excl_string;
109         int xi = 0;
110
111         while (p && (xi < 8)) {
112                 char *next_p;
113                 int val = (int) simple_strtoul(p, &next_p, 0);
114                 sym_driver_setup.excludes[xi++] = val;
115                 p = next_p;
116         }
117
118         if (safe_string) {
119                 if (*safe_string == 'y') {
120                         sym_driver_setup.max_tag = 0;
121                         sym_driver_setup.burst_order = 0;
122                         sym_driver_setup.scsi_led = 0;
123                         sym_driver_setup.scsi_diff = 1;
124                         sym_driver_setup.irq_mode = 0;
125                         sym_driver_setup.scsi_bus_check = 2;
126                         sym_driver_setup.host_id = 7;
127                         sym_driver_setup.verbose = 2;
128                         sym_driver_setup.settle_delay = 10;
129                         sym_driver_setup.use_nvram = 1;
130                 } else if (*safe_string != 'n') {
131                         printk(KERN_WARNING NAME53C8XX "Ignoring parameter %s"
132                                         " passed to safe option", safe_string);
133                 }
134         }
135 }
136
137 /*
138  * We used to try to deal with 64-bit BARs here, but don't any more.
139  * There are many parts of this driver which would need to be modified
140  * to handle a 64-bit base address, including scripts.  I'm uncomfortable
141  * with making those changes when I have no way of testing it, so I'm
142  * just going to disable it.
143  *
144  * Note that some machines (eg HP rx8620 and Superdome) have bus addresses
145  * below 4GB and physical addresses above 4GB.  These will continue to work.
146  */
147 static int __devinit
148 pci_get_base_address(struct pci_dev *pdev, int index, unsigned long *basep)
149 {
150         u32 tmp;
151         unsigned long base;
152 #define PCI_BAR_OFFSET(index) (PCI_BASE_ADDRESS_0 + (index<<2))
153
154         pci_read_config_dword(pdev, PCI_BAR_OFFSET(index++), &tmp);
155         base = tmp;
156         if ((tmp & 0x7) == PCI_BASE_ADDRESS_MEM_TYPE_64) {
157                 pci_read_config_dword(pdev, PCI_BAR_OFFSET(index++), &tmp);
158                 if (tmp > 0) {
159                         dev_err(&pdev->dev,
160                                 "BAR %d is 64-bit, disabling\n", index - 1);
161                         base = 0;
162                 }
163         }
164
165         if ((base & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_IO) {
166                 base &= PCI_BASE_ADDRESS_IO_MASK;
167         } else {
168                 base &= PCI_BASE_ADDRESS_MEM_MASK;
169         }
170
171         *basep = base;
172         return index;
173 #undef PCI_BAR_OFFSET
174 }
175
176 static struct scsi_transport_template *sym2_transport_template = NULL;
177
178 /*
179  *  Used by the eh thread to wait for command completion.
180  *  It is allocated on the eh thread stack.
181  */
182 struct sym_eh_wait {
183         struct completion done;
184         struct timer_list timer;
185         void (*old_done)(struct scsi_cmnd *);
186         int to_do;
187         int timed_out;
188 };
189
190 /*
191  *  Driver private area in the SCSI command structure.
192  */
193 struct sym_ucmd {               /* Override the SCSI pointer structure */
194         dma_addr_t data_mapping;
195         u_char  data_mapped;
196         struct sym_eh_wait *eh_wait;
197 };
198
199 #define SYM_UCMD_PTR(cmd)  ((struct sym_ucmd *)(&(cmd)->SCp))
200 #define SYM_SOFTC_PTR(cmd) sym_get_hcb(cmd->device->host)
201
202 static void __unmap_scsi_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
203 {
204         int dma_dir = cmd->sc_data_direction;
205
206         switch(SYM_UCMD_PTR(cmd)->data_mapped) {
207         case 2:
208                 pci_unmap_sg(pdev, cmd->buffer, cmd->use_sg, dma_dir);
209                 break;
210         case 1:
211                 pci_unmap_single(pdev, SYM_UCMD_PTR(cmd)->data_mapping,
212                                  cmd->request_bufflen, dma_dir);
213                 break;
214         }
215         SYM_UCMD_PTR(cmd)->data_mapped = 0;
216 }
217
218 static dma_addr_t __map_scsi_single_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
219 {
220         dma_addr_t mapping;
221         int dma_dir = cmd->sc_data_direction;
222
223         mapping = pci_map_single(pdev, cmd->request_buffer,
224                                  cmd->request_bufflen, dma_dir);
225         if (mapping) {
226                 SYM_UCMD_PTR(cmd)->data_mapped  = 1;
227                 SYM_UCMD_PTR(cmd)->data_mapping = mapping;
228         }
229
230         return mapping;
231 }
232
233 static int __map_scsi_sg_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
234 {
235         int use_sg;
236         int dma_dir = cmd->sc_data_direction;
237
238         use_sg = pci_map_sg(pdev, cmd->buffer, cmd->use_sg, dma_dir);
239         if (use_sg > 0) {
240                 SYM_UCMD_PTR(cmd)->data_mapped  = 2;
241                 SYM_UCMD_PTR(cmd)->data_mapping = use_sg;
242         }
243
244         return use_sg;
245 }
246
247 #define unmap_scsi_data(np, cmd)        \
248                 __unmap_scsi_data(np->s.device, cmd)
249 #define map_scsi_single_data(np, cmd)   \
250                 __map_scsi_single_data(np->s.device, cmd)
251 #define map_scsi_sg_data(np, cmd)       \
252                 __map_scsi_sg_data(np->s.device, cmd)
253 /*
254  *  Complete a pending CAM CCB.
255  */
256 void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *cmd)
257 {
258         unmap_scsi_data(np, cmd);
259         cmd->scsi_done(cmd);
260 }
261
262 static void sym_xpt_done2(struct sym_hcb *np, struct scsi_cmnd *cmd, int cam_status)
263 {
264         sym_set_cam_status(cmd, cam_status);
265         sym_xpt_done(np, cmd);
266 }
267
268
269 /*
270  *  Tell the SCSI layer about a BUS RESET.
271  */
272 void sym_xpt_async_bus_reset(struct sym_hcb *np)
273 {
274         printf_notice("%s: SCSI BUS has been reset.\n", sym_name(np));
275         np->s.settle_time = jiffies + sym_driver_setup.settle_delay * HZ;
276         np->s.settle_time_valid = 1;
277         if (sym_verbose >= 2)
278                 printf_info("%s: command processing suspended for %d seconds\n",
279                             sym_name(np), sym_driver_setup.settle_delay);
280 }
281
282 /*
283  *  Tell the SCSI layer about a BUS DEVICE RESET message sent.
284  */
285 void sym_xpt_async_sent_bdr(struct sym_hcb *np, int target)
286 {
287         printf_notice("%s: TARGET %d has been reset.\n", sym_name(np), target);
288 }
289
290 /*
291  *  Choose the more appropriate CAM status if 
292  *  the IO encountered an extended error.
293  */
294 static int sym_xerr_cam_status(int cam_status, int x_status)
295 {
296         if (x_status) {
297                 if      (x_status & XE_PARITY_ERR)
298                         cam_status = DID_PARITY;
299                 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
300                         cam_status = DID_ERROR;
301                 else if (x_status & XE_BAD_PHASE)
302                         cam_status = DID_ERROR;
303                 else
304                         cam_status = DID_ERROR;
305         }
306         return cam_status;
307 }
308
309 /*
310  *  Build CAM result for a failed or auto-sensed IO.
311  */
312 void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid)
313 {
314         struct scsi_cmnd *cmd = cp->cmd;
315         u_int cam_status, scsi_status, drv_status;
316
317         drv_status  = 0;
318         cam_status  = DID_OK;
319         scsi_status = cp->ssss_status;
320
321         if (cp->host_flags & HF_SENSE) {
322                 scsi_status = cp->sv_scsi_status;
323                 resid = cp->sv_resid;
324                 if (sym_verbose && cp->sv_xerr_status)
325                         sym_print_xerr(cmd, cp->sv_xerr_status);
326                 if (cp->host_status == HS_COMPLETE &&
327                     cp->ssss_status == S_GOOD &&
328                     cp->xerr_status == 0) {
329                         cam_status = sym_xerr_cam_status(DID_OK,
330                                                          cp->sv_xerr_status);
331                         drv_status = DRIVER_SENSE;
332                         /*
333                          *  Bounce back the sense data to user.
334                          */
335                         memset(&cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
336                         memcpy(cmd->sense_buffer, cp->sns_bbuf,
337                               min(sizeof(cmd->sense_buffer),
338                                   (size_t)SYM_SNS_BBUF_LEN));
339 #if 0
340                         /*
341                          *  If the device reports a UNIT ATTENTION condition 
342                          *  due to a RESET condition, we should consider all 
343                          *  disconnect CCBs for this unit as aborted.
344                          */
345                         if (1) {
346                                 u_char *p;
347                                 p  = (u_char *) cmd->sense_data;
348                                 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
349                                         sym_clear_tasks(np, DID_ABORT,
350                                                         cp->target,cp->lun, -1);
351                         }
352 #endif
353                 } else {
354                         /*
355                          * Error return from our internal request sense.  This
356                          * is bad: we must clear the contingent allegiance
357                          * condition otherwise the device will always return
358                          * BUSY.  Use a big stick.
359                          */
360                         sym_reset_scsi_target(np, cmd->device->id);
361                         cam_status = DID_ERROR;
362                 }
363         } else if (cp->host_status == HS_COMPLETE)      /* Bad SCSI status */
364                 cam_status = DID_OK;
365         else if (cp->host_status == HS_SEL_TIMEOUT)     /* Selection timeout */
366                 cam_status = DID_NO_CONNECT;
367         else if (cp->host_status == HS_UNEXPECTED)      /* Unexpected BUS FREE*/
368                 cam_status = DID_ERROR;
369         else {                                          /* Extended error */
370                 if (sym_verbose) {
371                         sym_print_addr(cmd, "COMMAND FAILED (%x %x %x).\n",
372                                 cp->host_status, cp->ssss_status,
373                                 cp->xerr_status);
374                 }
375                 /*
376                  *  Set the most appropriate value for CAM status.
377                  */
378                 cam_status = sym_xerr_cam_status(DID_ERROR, cp->xerr_status);
379         }
380         cmd->resid = resid;
381         cmd->result = (drv_status << 24) + (cam_status << 16) + scsi_status;
382 }
383
384
385 /*
386  *  Build the scatter/gather array for an I/O.
387  */
388
389 static int sym_scatter_no_sglist(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
390 {
391         struct sym_tblmove *data = &cp->phys.data[SYM_CONF_MAX_SG-1];
392         int segment;
393         unsigned int len = cmd->request_bufflen;
394
395         if (len) {
396                 dma_addr_t baddr = map_scsi_single_data(np, cmd);
397                 if (baddr) {
398                         if (len & 1) {
399                                 struct sym_tcb *tp = &np->target[cp->target];
400                                 if (tp->head.wval & EWS) {
401                                         len++;
402                                         cp->odd_byte_adjustment++;
403                                 }
404                         }
405                         cp->data_len = len;
406                         sym_build_sge(np, data, baddr, len);
407                         segment = 1;
408                 } else {
409                         segment = -2;
410                 }
411         } else {
412                 segment = 0;
413         }
414
415         return segment;
416 }
417
418 static int sym_scatter(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
419 {
420         int segment;
421         int use_sg = (int) cmd->use_sg;
422
423         cp->data_len = 0;
424
425         if (!use_sg)
426                 segment = sym_scatter_no_sglist(np, cp, cmd);
427         else if ((use_sg = map_scsi_sg_data(np, cmd)) > 0) {
428                 struct scatterlist *scatter = (struct scatterlist *)cmd->buffer;
429                 struct sym_tcb *tp = &np->target[cp->target];
430                 struct sym_tblmove *data;
431
432                 if (use_sg > SYM_CONF_MAX_SG) {
433                         unmap_scsi_data(np, cmd);
434                         return -1;
435                 }
436
437                 data = &cp->phys.data[SYM_CONF_MAX_SG - use_sg];
438
439                 for (segment = 0; segment < use_sg; segment++) {
440                         dma_addr_t baddr = sg_dma_address(&scatter[segment]);
441                         unsigned int len = sg_dma_len(&scatter[segment]);
442
443                         if ((len & 1) && (tp->head.wval & EWS)) {
444                                 len++;
445                                 cp->odd_byte_adjustment++;
446                         }
447
448                         sym_build_sge(np, &data[segment], baddr, len);
449                         cp->data_len += len;
450                 }
451         } else {
452                 segment = -2;
453         }
454
455         return segment;
456 }
457
458 /*
459  *  Queue a SCSI command.
460  */
461 static int sym_queue_command(struct sym_hcb *np, struct scsi_cmnd *cmd)
462 {
463         struct scsi_device *sdev = cmd->device;
464         struct sym_tcb *tp;
465         struct sym_lcb *lp;
466         struct sym_ccb *cp;
467         int     order;
468
469         /*
470          *  Minimal checkings, so that we will not 
471          *  go outside our tables.
472          */
473         if (sdev->id == np->myaddr) {
474                 sym_xpt_done2(np, cmd, DID_NO_CONNECT);
475                 return 0;
476         }
477
478         /*
479          *  Retrieve the target descriptor.
480          */
481         tp = &np->target[sdev->id];
482
483         /*
484          *  Select tagged/untagged.
485          */
486         lp = sym_lp(tp, sdev->lun);
487         order = (lp && lp->s.reqtags) ? M_SIMPLE_TAG : 0;
488
489         /*
490          *  Queue the SCSI IO.
491          */
492         cp = sym_get_ccb(np, cmd, order);
493         if (!cp)
494                 return 1;       /* Means resource shortage */
495         sym_queue_scsiio(np, cmd, cp);
496         return 0;
497 }
498
499 /*
500  *  Setup buffers and pointers that address the CDB.
501  */
502 static inline int sym_setup_cdb(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
503 {
504         memcpy(cp->cdb_buf, cmd->cmnd, cmd->cmd_len);
505
506         cp->phys.cmd.addr = CCB_BA(cp, cdb_buf[0]);
507         cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len);
508
509         return 0;
510 }
511
512 /*
513  *  Setup pointers that address the data and start the I/O.
514  */
515 int sym_setup_data_and_start(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
516 {
517         struct sym_tcb *tp = &np->target[cp->target];
518         struct sym_lcb *lp = sym_lp(tp, cp->lun);
519         u32 lastp, goalp;
520         int dir;
521
522         /*
523          *  Build the CDB.
524          */
525         if (sym_setup_cdb(np, cmd, cp))
526                 goto out_abort;
527
528         /*
529          *  No direction means no data.
530          */
531         dir = cmd->sc_data_direction;
532         if (dir != DMA_NONE) {
533                 cp->segments = sym_scatter(np, cp, cmd);
534                 if (cp->segments < 0) {
535                         sym_set_cam_status(cmd, DID_ERROR);
536                         goto out_abort;
537                 }
538
539                 /*
540                  *  No segments means no data.
541                  */
542                 if (!cp->segments)
543                         dir = DMA_NONE;
544         } else {
545                 cp->data_len = 0;
546                 cp->segments = 0;
547         }
548
549         /*
550          *  Set the data pointer.
551          */
552         switch (dir) {
553         case DMA_BIDIRECTIONAL:
554                 printk("%s: got DMA_BIDIRECTIONAL command", sym_name(np));
555                 sym_set_cam_status(cmd, DID_ERROR);
556                 goto out_abort;
557         case DMA_TO_DEVICE:
558                 goalp = SCRIPTA_BA(np, data_out2) + 8;
559                 lastp = goalp - 8 - (cp->segments * (2*4));
560                 break;
561         case DMA_FROM_DEVICE:
562                 cp->host_flags |= HF_DATA_IN;
563                 goalp = SCRIPTA_BA(np, data_in2) + 8;
564                 lastp = goalp - 8 - (cp->segments * (2*4));
565                 break;
566         case DMA_NONE:
567         default:
568                 lastp = goalp = SCRIPTB_BA(np, no_data);
569                 break;
570         }
571
572         /*
573          *  Set all pointers values needed by SCRIPTS.
574          */
575         cp->phys.head.lastp = cpu_to_scr(lastp);
576         cp->phys.head.savep = cpu_to_scr(lastp);
577         cp->startp          = cp->phys.head.savep;
578         cp->goalp           = cpu_to_scr(goalp);
579
580         /*
581          *  When `#ifed 1', the code below makes the driver 
582          *  panic on the first attempt to write to a SCSI device.
583          *  It is the first test we want to do after a driver 
584          *  change that does not seem obviously safe. :)
585          */
586 #if 0
587         switch (cp->cdb_buf[0]) {
588         case 0x0A: case 0x2A: case 0xAA:
589                 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
590                 break;
591         default:
592                 break;
593         }
594 #endif
595
596         /*
597          *      activate this job.
598          */
599         sym_start_next_ccbs(np, lp, 2);
600         return 0;
601
602 out_abort:
603         sym_free_ccb(np, cp);
604         sym_xpt_done(np, cmd);
605         return 0;
606 }
607
608
609 /*
610  *  timer daemon.
611  *
612  *  Misused to keep the driver running when
613  *  interrupts are not configured correctly.
614  */
615 static void sym_timer(struct sym_hcb *np)
616 {
617         unsigned long thistime = jiffies;
618
619         /*
620          *  Restart the timer.
621          */
622         np->s.timer.expires = thistime + SYM_CONF_TIMER_INTERVAL;
623         add_timer(&np->s.timer);
624
625         /*
626          *  If we are resetting the ncr, wait for settle_time before 
627          *  clearing it. Then command processing will be resumed.
628          */
629         if (np->s.settle_time_valid) {
630                 if (time_before_eq(np->s.settle_time, thistime)) {
631                         if (sym_verbose >= 2 )
632                                 printk("%s: command processing resumed\n",
633                                        sym_name(np));
634                         np->s.settle_time_valid = 0;
635                 }
636                 return;
637         }
638
639         /*
640          *      Nothing to do for now, but that may come.
641          */
642         if (np->s.lasttime + 4*HZ < thistime) {
643                 np->s.lasttime = thistime;
644         }
645
646 #ifdef SYM_CONF_PCIQ_MAY_MISS_COMPLETIONS
647         /*
648          *  Some way-broken PCI bridges may lead to 
649          *  completions being lost when the clearing 
650          *  of the INTFLY flag by the CPU occurs 
651          *  concurrently with the chip raising this flag.
652          *  If this ever happen, lost completions will 
653          * be reaped here.
654          */
655         sym_wakeup_done(np);
656 #endif
657 }
658
659
660 /*
661  *  PCI BUS error handler.
662  */
663 void sym_log_bus_error(struct sym_hcb *np)
664 {
665         u_short pci_sts;
666         pci_read_config_word(np->s.device, PCI_STATUS, &pci_sts);
667         if (pci_sts & 0xf900) {
668                 pci_write_config_word(np->s.device, PCI_STATUS, pci_sts);
669                 printf("%s: PCI STATUS = 0x%04x\n",
670                         sym_name(np), pci_sts & 0xf900);
671         }
672 }
673
674 /*
675  * queuecommand method.  Entered with the host adapter lock held and
676  * interrupts disabled.
677  */
678 static int sym53c8xx_queue_command(struct scsi_cmnd *cmd,
679                                         void (*done)(struct scsi_cmnd *))
680 {
681         struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
682         struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd);
683         int sts = 0;
684
685         cmd->scsi_done     = done;
686         memset(ucp, 0, sizeof(*ucp));
687
688         /*
689          *  Shorten our settle_time if needed for 
690          *  this command not to time out.
691          */
692         if (np->s.settle_time_valid && cmd->timeout_per_command) {
693                 unsigned long tlimit = jiffies + cmd->timeout_per_command;
694                 tlimit -= SYM_CONF_TIMER_INTERVAL*2;
695                 if (time_after(np->s.settle_time, tlimit)) {
696                         np->s.settle_time = tlimit;
697                 }
698         }
699
700         if (np->s.settle_time_valid)
701                 return SCSI_MLQUEUE_HOST_BUSY;
702
703         sts = sym_queue_command(np, cmd);
704         if (sts)
705                 return SCSI_MLQUEUE_HOST_BUSY;
706         return 0;
707 }
708
709 /*
710  *  Linux entry point of the interrupt handler.
711  */
712 static irqreturn_t sym53c8xx_intr(int irq, void *dev_id, struct pt_regs * regs)
713 {
714         unsigned long flags;
715         struct sym_hcb *np = (struct sym_hcb *)dev_id;
716
717         if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("[");
718
719         spin_lock_irqsave(np->s.host->host_lock, flags);
720         sym_interrupt(np);
721         spin_unlock_irqrestore(np->s.host->host_lock, flags);
722
723         if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("]\n");
724
725         return IRQ_HANDLED;
726 }
727
728 /*
729  *  Linux entry point of the timer handler
730  */
731 static void sym53c8xx_timer(unsigned long npref)
732 {
733         struct sym_hcb *np = (struct sym_hcb *)npref;
734         unsigned long flags;
735
736         spin_lock_irqsave(np->s.host->host_lock, flags);
737         sym_timer(np);
738         spin_unlock_irqrestore(np->s.host->host_lock, flags);
739 }
740
741
742 /*
743  *  What the eh thread wants us to perform.
744  */
745 #define SYM_EH_ABORT            0
746 #define SYM_EH_DEVICE_RESET     1
747 #define SYM_EH_BUS_RESET        2
748 #define SYM_EH_HOST_RESET       3
749
750 /*
751  *  What we will do regarding the involved SCSI command.
752  */
753 #define SYM_EH_DO_IGNORE        0
754 #define SYM_EH_DO_COMPLETE      1
755 #define SYM_EH_DO_WAIT          2
756
757 /*
758  *  Our general completion handler.
759  */
760 static void __sym_eh_done(struct scsi_cmnd *cmd, int timed_out)
761 {
762         struct sym_eh_wait *ep = SYM_UCMD_PTR(cmd)->eh_wait;
763         if (!ep)
764                 return;
765
766         /* Try to avoid a race here (not 100% safe) */
767         if (!timed_out) {
768                 ep->timed_out = 0;
769                 if (ep->to_do == SYM_EH_DO_WAIT && !del_timer(&ep->timer))
770                         return;
771         }
772
773         /* Revert everything */
774         SYM_UCMD_PTR(cmd)->eh_wait = NULL;
775         cmd->scsi_done = ep->old_done;
776
777         /* Wake up the eh thread if it wants to sleep */
778         if (ep->to_do == SYM_EH_DO_WAIT)
779                 complete(&ep->done);
780 }
781
782 /*
783  *  scsi_done() alias when error recovery is in progress. 
784  */
785 static void sym_eh_done(struct scsi_cmnd *cmd) { __sym_eh_done(cmd, 0); }
786
787 /*
788  *  Some timeout handler to avoid waiting too long.
789  */
790 static void sym_eh_timeout(u_long p) { __sym_eh_done((struct scsi_cmnd *)p, 1); }
791
792 /*
793  *  Generic method for our eh processing.
794  *  The 'op' argument tells what we have to do.
795  */
796 static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd)
797 {
798         struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
799         SYM_QUEHEAD *qp;
800         int to_do = SYM_EH_DO_IGNORE;
801         int sts = -1;
802         struct sym_eh_wait eh, *ep = &eh;
803
804         dev_warn(&cmd->device->sdev_gendev, "%s operation started.\n", opname);
805
806         /* This one is queued in some place -> to wait for completion */
807         FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
808                 struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
809                 if (cp->cmd == cmd) {
810                         to_do = SYM_EH_DO_WAIT;
811                         goto prepare;
812                 }
813         }
814
815 prepare:
816         /* Prepare stuff to either ignore, complete or wait for completion */
817         switch(to_do) {
818         default:
819         case SYM_EH_DO_IGNORE:
820                 break;
821         case SYM_EH_DO_WAIT:
822                 init_completion(&ep->done);
823                 /* fall through */
824         case SYM_EH_DO_COMPLETE:
825                 ep->old_done = cmd->scsi_done;
826                 cmd->scsi_done = sym_eh_done;
827                 SYM_UCMD_PTR(cmd)->eh_wait = ep;
828         }
829
830         /* Try to proceed the operation we have been asked for */
831         sts = -1;
832         switch(op) {
833         case SYM_EH_ABORT:
834                 sts = sym_abort_scsiio(np, cmd, 1);
835                 break;
836         case SYM_EH_DEVICE_RESET:
837                 sts = sym_reset_scsi_target(np, cmd->device->id);
838                 break;
839         case SYM_EH_BUS_RESET:
840                 sym_reset_scsi_bus(np, 1);
841                 sts = 0;
842                 break;
843         case SYM_EH_HOST_RESET:
844                 sym_reset_scsi_bus(np, 0);
845                 sym_start_up (np, 1);
846                 sts = 0;
847                 break;
848         default:
849                 break;
850         }
851
852         /* On error, restore everything and cross fingers :) */
853         if (sts) {
854                 SYM_UCMD_PTR(cmd)->eh_wait = NULL;
855                 cmd->scsi_done = ep->old_done;
856                 to_do = SYM_EH_DO_IGNORE;
857         }
858
859         ep->to_do = to_do;
860         /* Complete the command with locks held as required by the driver */
861         if (to_do == SYM_EH_DO_COMPLETE)
862                 sym_xpt_done2(np, cmd, DID_ABORT);
863
864         /* Wait for completion with locks released, as required by kernel */
865         if (to_do == SYM_EH_DO_WAIT) {
866                 init_timer(&ep->timer);
867                 ep->timer.expires = jiffies + (5*HZ);
868                 ep->timer.function = sym_eh_timeout;
869                 ep->timer.data = (u_long)cmd;
870                 ep->timed_out = 1;      /* Be pessimistic for once :) */
871                 add_timer(&ep->timer);
872                 spin_unlock_irq(np->s.host->host_lock);
873                 wait_for_completion(&ep->done);
874                 spin_lock_irq(np->s.host->host_lock);
875                 if (ep->timed_out)
876                         sts = -2;
877         }
878         dev_warn(&cmd->device->sdev_gendev, "%s operation %s.\n", opname,
879                         sts==0 ? "complete" :sts==-2 ? "timed-out" : "failed");
880         return sts ? SCSI_FAILED : SCSI_SUCCESS;
881 }
882
883
884 /*
885  * Error handlers called from the eh thread (one thread per HBA).
886  */
887 static int sym53c8xx_eh_abort_handler(struct scsi_cmnd *cmd)
888 {
889         int rc;
890
891         spin_lock_irq(cmd->device->host->host_lock);
892         rc = sym_eh_handler(SYM_EH_ABORT, "ABORT", cmd);
893         spin_unlock_irq(cmd->device->host->host_lock);
894
895         return rc;
896 }
897
898 static int sym53c8xx_eh_device_reset_handler(struct scsi_cmnd *cmd)
899 {
900         int rc;
901
902         spin_lock_irq(cmd->device->host->host_lock);
903         rc = sym_eh_handler(SYM_EH_DEVICE_RESET, "DEVICE RESET", cmd);
904         spin_unlock_irq(cmd->device->host->host_lock);
905
906         return rc;
907 }
908
909 static int sym53c8xx_eh_bus_reset_handler(struct scsi_cmnd *cmd)
910 {
911         int rc;
912
913         spin_lock_irq(cmd->device->host->host_lock);
914         rc = sym_eh_handler(SYM_EH_BUS_RESET, "BUS RESET", cmd);
915         spin_unlock_irq(cmd->device->host->host_lock);
916
917         return rc;
918 }
919
920 static int sym53c8xx_eh_host_reset_handler(struct scsi_cmnd *cmd)
921 {
922         int rc;
923
924         spin_lock_irq(cmd->device->host->host_lock);
925         rc = sym_eh_handler(SYM_EH_HOST_RESET, "HOST RESET", cmd);
926         spin_unlock_irq(cmd->device->host->host_lock);
927
928         return rc;
929 }
930
931 /*
932  *  Tune device queuing depth, according to various limits.
933  */
934 static void sym_tune_dev_queuing(struct sym_tcb *tp, int lun, u_short reqtags)
935 {
936         struct sym_lcb *lp = sym_lp(tp, lun);
937         u_short oldtags;
938
939         if (!lp)
940                 return;
941
942         oldtags = lp->s.reqtags;
943
944         if (reqtags > lp->s.scdev_depth)
945                 reqtags = lp->s.scdev_depth;
946
947         lp->started_limit = reqtags ? reqtags : 2;
948         lp->started_max   = 1;
949         lp->s.reqtags     = reqtags;
950
951         if (reqtags != oldtags) {
952                 dev_info(&tp->starget->dev,
953                          "tagged command queuing %s, command queue depth %d.\n",
954                           lp->s.reqtags ? "enabled" : "disabled",
955                           lp->started_limit);
956         }
957 }
958
959 /*
960  *  Linux select queue depths function
961  */
962 #define DEF_DEPTH       (sym_driver_setup.max_tag)
963 #define ALL_TARGETS     -2
964 #define NO_TARGET       -1
965 #define ALL_LUNS        -2
966 #define NO_LUN          -1
967
968 static int device_queue_depth(struct sym_hcb *np, int target, int lun)
969 {
970         int c, h, t, u, v;
971         char *p = sym_driver_setup.tag_ctrl;
972         char *ep;
973
974         h = -1;
975         t = NO_TARGET;
976         u = NO_LUN;
977         while ((c = *p++) != 0) {
978                 v = simple_strtoul(p, &ep, 0);
979                 switch(c) {
980                 case '/':
981                         ++h;
982                         t = ALL_TARGETS;
983                         u = ALL_LUNS;
984                         break;
985                 case 't':
986                         if (t != target)
987                                 t = (target == v) ? v : NO_TARGET;
988                         u = ALL_LUNS;
989                         break;
990                 case 'u':
991                         if (u != lun)
992                                 u = (lun == v) ? v : NO_LUN;
993                         break;
994                 case 'q':
995                         if (h == np->s.unit &&
996                                 (t == ALL_TARGETS || t == target) &&
997                                 (u == ALL_LUNS    || u == lun))
998                                 return v;
999                         break;
1000                 case '-':
1001                         t = ALL_TARGETS;
1002                         u = ALL_LUNS;
1003                         break;
1004                 default:
1005                         break;
1006                 }
1007                 p = ep;
1008         }
1009         return DEF_DEPTH;
1010 }
1011
1012 static int sym53c8xx_slave_alloc(struct scsi_device *sdev)
1013 {
1014         struct sym_hcb *np = sym_get_hcb(sdev->host);
1015         struct sym_tcb *tp = &np->target[sdev->id];
1016         struct sym_lcb *lp;
1017
1018         if (sdev->id >= SYM_CONF_MAX_TARGET || sdev->lun >= SYM_CONF_MAX_LUN)
1019                 return -ENXIO;
1020
1021         tp->starget = sdev->sdev_target;
1022         /*
1023          * Fail the device init if the device is flagged NOSCAN at BOOT in
1024          * the NVRAM.  This may speed up boot and maintain coherency with
1025          * BIOS device numbering.  Clearing the flag allows the user to
1026          * rescan skipped devices later.  We also return an error for
1027          * devices not flagged for SCAN LUNS in the NVRAM since some single
1028          * lun devices behave badly when asked for a non zero LUN.
1029          */
1030
1031         if (tp->usrflags & SYM_SCAN_BOOT_DISABLED) {
1032                 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
1033                 starget_printk(KERN_INFO, tp->starget,
1034                                 "Scan at boot disabled in NVRAM\n");
1035                 return -ENXIO;
1036         }
1037
1038         if (tp->usrflags & SYM_SCAN_LUNS_DISABLED) {
1039                 if (sdev->lun != 0)
1040                         return -ENXIO;
1041                 starget_printk(KERN_INFO, tp->starget,
1042                                 "Multiple LUNs disabled in NVRAM\n");
1043         }
1044
1045         lp = sym_alloc_lcb(np, sdev->id, sdev->lun);
1046         if (!lp)
1047                 return -ENOMEM;
1048
1049         spi_min_period(tp->starget) = tp->usr_period;
1050         spi_max_width(tp->starget) = tp->usr_width;
1051
1052         return 0;
1053 }
1054
1055 /*
1056  * Linux entry point for device queue sizing.
1057  */
1058 static int sym53c8xx_slave_configure(struct scsi_device *sdev)
1059 {
1060         struct sym_hcb *np = sym_get_hcb(sdev->host);
1061         struct sym_tcb *tp = &np->target[sdev->id];
1062         struct sym_lcb *lp = sym_lp(tp, sdev->lun);
1063         int reqtags, depth_to_use;
1064
1065         /*
1066          *  Get user flags.
1067          */
1068         lp->curr_flags = lp->user_flags;
1069
1070         /*
1071          *  Select queue depth from driver setup.
1072          *  Donnot use more than configured by user.
1073          *  Use at least 2.
1074          *  Donnot use more than our maximum.
1075          */
1076         reqtags = device_queue_depth(np, sdev->id, sdev->lun);
1077         if (reqtags > tp->usrtags)
1078                 reqtags = tp->usrtags;
1079         if (!sdev->tagged_supported)
1080                 reqtags = 0;
1081 #if 1 /* Avoid to locally queue commands for no good reasons */
1082         if (reqtags > SYM_CONF_MAX_TAG)
1083                 reqtags = SYM_CONF_MAX_TAG;
1084         depth_to_use = (reqtags ? reqtags : 2);
1085 #else
1086         depth_to_use = (reqtags ? SYM_CONF_MAX_TAG : 2);
1087 #endif
1088         scsi_adjust_queue_depth(sdev,
1089                                 (sdev->tagged_supported ?
1090                                  MSG_SIMPLE_TAG : 0),
1091                                 depth_to_use);
1092         lp->s.scdev_depth = depth_to_use;
1093         sym_tune_dev_queuing(tp, sdev->lun, reqtags);
1094
1095         if (!spi_initial_dv(sdev->sdev_target))
1096                 spi_dv_device(sdev);
1097
1098         return 0;
1099 }
1100
1101 static void sym53c8xx_slave_destroy(struct scsi_device *sdev)
1102 {
1103         struct sym_hcb *np = sym_get_hcb(sdev->host);
1104         struct sym_lcb *lp = sym_lp(&np->target[sdev->id], sdev->lun);
1105
1106         if (lp->itlq_tbl)
1107                 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK * 4, "ITLQ_TBL");
1108         kfree(lp->cb_tags);
1109         sym_mfree_dma(lp, sizeof(*lp), "LCB");
1110 }
1111
1112 /*
1113  *  Linux entry point for info() function
1114  */
1115 static const char *sym53c8xx_info (struct Scsi_Host *host)
1116 {
1117         return SYM_DRIVER_NAME;
1118 }
1119
1120
1121 #ifdef SYM_LINUX_PROC_INFO_SUPPORT
1122 /*
1123  *  Proc file system stuff
1124  *
1125  *  A read operation returns adapter information.
1126  *  A write operation is a control command.
1127  *  The string is parsed in the driver code and the command is passed 
1128  *  to the sym_usercmd() function.
1129  */
1130
1131 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT
1132
1133 struct  sym_usrcmd {
1134         u_long  target;
1135         u_long  lun;
1136         u_long  data;
1137         u_long  cmd;
1138 };
1139
1140 #define UC_SETSYNC      10
1141 #define UC_SETTAGS      11
1142 #define UC_SETDEBUG     12
1143 #define UC_SETWIDE      14
1144 #define UC_SETFLAG      15
1145 #define UC_SETVERBOSE   17
1146 #define UC_RESETDEV     18
1147 #define UC_CLEARDEV     19
1148
1149 static void sym_exec_user_command (struct sym_hcb *np, struct sym_usrcmd *uc)
1150 {
1151         struct sym_tcb *tp;
1152         int t, l;
1153
1154         switch (uc->cmd) {
1155         case 0: return;
1156
1157 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1158         case UC_SETDEBUG:
1159                 sym_debug_flags = uc->data;
1160                 break;
1161 #endif
1162         case UC_SETVERBOSE:
1163                 np->verbose = uc->data;
1164                 break;
1165         default:
1166                 /*
1167                  * We assume that other commands apply to targets.
1168                  * This should always be the case and avoid the below 
1169                  * 4 lines to be repeated 6 times.
1170                  */
1171                 for (t = 0; t < SYM_CONF_MAX_TARGET; t++) {
1172                         if (!((uc->target >> t) & 1))
1173                                 continue;
1174                         tp = &np->target[t];
1175
1176                         switch (uc->cmd) {
1177
1178                         case UC_SETSYNC:
1179                                 if (!uc->data || uc->data >= 255) {
1180                                         tp->tgoal.iu = tp->tgoal.dt =
1181                                                 tp->tgoal.qas = 0;
1182                                         tp->tgoal.offset = 0;
1183                                 } else if (uc->data <= 9 && np->minsync_dt) {
1184                                         if (uc->data < np->minsync_dt)
1185                                                 uc->data = np->minsync_dt;
1186                                         tp->tgoal.iu = tp->tgoal.dt =
1187                                                 tp->tgoal.qas = 1;
1188                                         tp->tgoal.width = 1;
1189                                         tp->tgoal.period = uc->data;
1190                                         tp->tgoal.offset = np->maxoffs_dt;
1191                                 } else {
1192                                         if (uc->data < np->minsync)
1193                                                 uc->data = np->minsync;
1194                                         tp->tgoal.iu = tp->tgoal.dt =
1195                                                 tp->tgoal.qas = 0;
1196                                         tp->tgoal.period = uc->data;
1197                                         tp->tgoal.offset = np->maxoffs;
1198                                 }
1199                                 tp->tgoal.check_nego = 1;
1200                                 break;
1201                         case UC_SETWIDE:
1202                                 tp->tgoal.width = uc->data ? 1 : 0;
1203                                 tp->tgoal.check_nego = 1;
1204                                 break;
1205                         case UC_SETTAGS:
1206                                 for (l = 0; l < SYM_CONF_MAX_LUN; l++)
1207                                         sym_tune_dev_queuing(tp, l, uc->data);
1208                                 break;
1209                         case UC_RESETDEV:
1210                                 tp->to_reset = 1;
1211                                 np->istat_sem = SEM;
1212                                 OUTB(np, nc_istat, SIGP|SEM);
1213                                 break;
1214                         case UC_CLEARDEV:
1215                                 for (l = 0; l < SYM_CONF_MAX_LUN; l++) {
1216                                         struct sym_lcb *lp = sym_lp(tp, l);
1217                                         if (lp) lp->to_clear = 1;
1218                                 }
1219                                 np->istat_sem = SEM;
1220                                 OUTB(np, nc_istat, SIGP|SEM);
1221                                 break;
1222                         case UC_SETFLAG:
1223                                 tp->usrflags = uc->data;
1224                                 break;
1225                         }
1226                 }
1227                 break;
1228         }
1229 }
1230
1231 static int skip_spaces(char *ptr, int len)
1232 {
1233         int cnt, c;
1234
1235         for (cnt = len; cnt > 0 && (c = *ptr++) && isspace(c); cnt--);
1236
1237         return (len - cnt);
1238 }
1239
1240 static int get_int_arg(char *ptr, int len, u_long *pv)
1241 {
1242         char *end;
1243
1244         *pv = simple_strtoul(ptr, &end, 10);
1245         return (end - ptr);
1246 }
1247
1248 static int is_keyword(char *ptr, int len, char *verb)
1249 {
1250         int verb_len = strlen(verb);
1251
1252         if (len >= verb_len && !memcmp(verb, ptr, verb_len))
1253                 return verb_len;
1254         else
1255                 return 0;
1256 }
1257
1258 #define SKIP_SPACES(ptr, len)                                           \
1259         if ((arg_len = skip_spaces(ptr, len)) < 1)                      \
1260                 return -EINVAL;                                         \
1261         ptr += arg_len; len -= arg_len;
1262
1263 #define GET_INT_ARG(ptr, len, v)                                        \
1264         if (!(arg_len = get_int_arg(ptr, len, &(v))))                   \
1265                 return -EINVAL;                                         \
1266         ptr += arg_len; len -= arg_len;
1267
1268
1269 /*
1270  * Parse a control command
1271  */
1272
1273 static int sym_user_command(struct sym_hcb *np, char *buffer, int length)
1274 {
1275         char *ptr       = buffer;
1276         int len         = length;
1277         struct sym_usrcmd cmd, *uc = &cmd;
1278         int             arg_len;
1279         u_long          target;
1280
1281         memset(uc, 0, sizeof(*uc));
1282
1283         if (len > 0 && ptr[len-1] == '\n')
1284                 --len;
1285
1286         if      ((arg_len = is_keyword(ptr, len, "setsync")) != 0)
1287                 uc->cmd = UC_SETSYNC;
1288         else if ((arg_len = is_keyword(ptr, len, "settags")) != 0)
1289                 uc->cmd = UC_SETTAGS;
1290         else if ((arg_len = is_keyword(ptr, len, "setverbose")) != 0)
1291                 uc->cmd = UC_SETVERBOSE;
1292         else if ((arg_len = is_keyword(ptr, len, "setwide")) != 0)
1293                 uc->cmd = UC_SETWIDE;
1294 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1295         else if ((arg_len = is_keyword(ptr, len, "setdebug")) != 0)
1296                 uc->cmd = UC_SETDEBUG;
1297 #endif
1298         else if ((arg_len = is_keyword(ptr, len, "setflag")) != 0)
1299                 uc->cmd = UC_SETFLAG;
1300         else if ((arg_len = is_keyword(ptr, len, "resetdev")) != 0)
1301                 uc->cmd = UC_RESETDEV;
1302         else if ((arg_len = is_keyword(ptr, len, "cleardev")) != 0)
1303                 uc->cmd = UC_CLEARDEV;
1304         else
1305                 arg_len = 0;
1306
1307 #ifdef DEBUG_PROC_INFO
1308 printk("sym_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd);
1309 #endif
1310
1311         if (!arg_len)
1312                 return -EINVAL;
1313         ptr += arg_len; len -= arg_len;
1314
1315         switch(uc->cmd) {
1316         case UC_SETSYNC:
1317         case UC_SETTAGS:
1318         case UC_SETWIDE:
1319         case UC_SETFLAG:
1320         case UC_RESETDEV:
1321         case UC_CLEARDEV:
1322                 SKIP_SPACES(ptr, len);
1323                 if ((arg_len = is_keyword(ptr, len, "all")) != 0) {
1324                         ptr += arg_len; len -= arg_len;
1325                         uc->target = ~0;
1326                 } else {
1327                         GET_INT_ARG(ptr, len, target);
1328                         uc->target = (1<<target);
1329 #ifdef DEBUG_PROC_INFO
1330 printk("sym_user_command: target=%ld\n", target);
1331 #endif
1332                 }
1333                 break;
1334         }
1335
1336         switch(uc->cmd) {
1337         case UC_SETVERBOSE:
1338         case UC_SETSYNC:
1339         case UC_SETTAGS:
1340         case UC_SETWIDE:
1341                 SKIP_SPACES(ptr, len);
1342                 GET_INT_ARG(ptr, len, uc->data);
1343 #ifdef DEBUG_PROC_INFO
1344 printk("sym_user_command: data=%ld\n", uc->data);
1345 #endif
1346                 break;
1347 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1348         case UC_SETDEBUG:
1349                 while (len > 0) {
1350                         SKIP_SPACES(ptr, len);
1351                         if      ((arg_len = is_keyword(ptr, len, "alloc")))
1352                                 uc->data |= DEBUG_ALLOC;
1353                         else if ((arg_len = is_keyword(ptr, len, "phase")))
1354                                 uc->data |= DEBUG_PHASE;
1355                         else if ((arg_len = is_keyword(ptr, len, "queue")))
1356                                 uc->data |= DEBUG_QUEUE;
1357                         else if ((arg_len = is_keyword(ptr, len, "result")))
1358                                 uc->data |= DEBUG_RESULT;
1359                         else if ((arg_len = is_keyword(ptr, len, "scatter")))
1360                                 uc->data |= DEBUG_SCATTER;
1361                         else if ((arg_len = is_keyword(ptr, len, "script")))
1362                                 uc->data |= DEBUG_SCRIPT;
1363                         else if ((arg_len = is_keyword(ptr, len, "tiny")))
1364                                 uc->data |= DEBUG_TINY;
1365                         else if ((arg_len = is_keyword(ptr, len, "timing")))
1366                                 uc->data |= DEBUG_TIMING;
1367                         else if ((arg_len = is_keyword(ptr, len, "nego")))
1368                                 uc->data |= DEBUG_NEGO;
1369                         else if ((arg_len = is_keyword(ptr, len, "tags")))
1370                                 uc->data |= DEBUG_TAGS;
1371                         else if ((arg_len = is_keyword(ptr, len, "pointer")))
1372                                 uc->data |= DEBUG_POINTER;
1373                         else
1374                                 return -EINVAL;
1375                         ptr += arg_len; len -= arg_len;
1376                 }
1377 #ifdef DEBUG_PROC_INFO
1378 printk("sym_user_command: data=%ld\n", uc->data);
1379 #endif
1380                 break;
1381 #endif /* SYM_LINUX_DEBUG_CONTROL_SUPPORT */
1382         case UC_SETFLAG:
1383                 while (len > 0) {
1384                         SKIP_SPACES(ptr, len);
1385                         if      ((arg_len = is_keyword(ptr, len, "no_disc")))
1386                                 uc->data &= ~SYM_DISC_ENABLED;
1387                         else
1388                                 return -EINVAL;
1389                         ptr += arg_len; len -= arg_len;
1390                 }
1391                 break;
1392         default:
1393                 break;
1394         }
1395
1396         if (len)
1397                 return -EINVAL;
1398         else {
1399                 unsigned long flags;
1400
1401                 spin_lock_irqsave(np->s.host->host_lock, flags);
1402                 sym_exec_user_command (np, uc);
1403                 spin_unlock_irqrestore(np->s.host->host_lock, flags);
1404         }
1405         return length;
1406 }
1407
1408 #endif  /* SYM_LINUX_USER_COMMAND_SUPPORT */
1409
1410
1411 #ifdef SYM_LINUX_USER_INFO_SUPPORT
1412 /*
1413  *  Informations through the proc file system.
1414  */
1415 struct info_str {
1416         char *buffer;
1417         int length;
1418         int offset;
1419         int pos;
1420 };
1421
1422 static void copy_mem_info(struct info_str *info, char *data, int len)
1423 {
1424         if (info->pos + len > info->length)
1425                 len = info->length - info->pos;
1426
1427         if (info->pos + len < info->offset) {
1428                 info->pos += len;
1429                 return;
1430         }
1431         if (info->pos < info->offset) {
1432                 data += (info->offset - info->pos);
1433                 len  -= (info->offset - info->pos);
1434         }
1435
1436         if (len > 0) {
1437                 memcpy(info->buffer + info->pos, data, len);
1438                 info->pos += len;
1439         }
1440 }
1441
1442 static int copy_info(struct info_str *info, char *fmt, ...)
1443 {
1444         va_list args;
1445         char buf[81];
1446         int len;
1447
1448         va_start(args, fmt);
1449         len = vsprintf(buf, fmt, args);
1450         va_end(args);
1451
1452         copy_mem_info(info, buf, len);
1453         return len;
1454 }
1455
1456 /*
1457  *  Copy formatted information into the input buffer.
1458  */
1459 static int sym_host_info(struct sym_hcb *np, char *ptr, off_t offset, int len)
1460 {
1461         struct info_str info;
1462
1463         info.buffer     = ptr;
1464         info.length     = len;
1465         info.offset     = offset;
1466         info.pos        = 0;
1467
1468         copy_info(&info, "Chip " NAME53C "%s, device id 0x%x, "
1469                          "revision id 0x%x\n",
1470                          np->s.chip_name, np->device_id, np->revision_id);
1471         copy_info(&info, "At PCI address %s, IRQ " IRQ_FMT "\n",
1472                 pci_name(np->s.device), IRQ_PRM(np->s.irq));
1473         copy_info(&info, "Min. period factor %d, %s SCSI BUS%s\n",
1474                          (int) (np->minsync_dt ? np->minsync_dt : np->minsync),
1475                          np->maxwide ? "Wide" : "Narrow",
1476                          np->minsync_dt ? ", DT capable" : "");
1477
1478         copy_info(&info, "Max. started commands %d, "
1479                          "max. commands per LUN %d\n",
1480                          SYM_CONF_MAX_START, SYM_CONF_MAX_TAG);
1481
1482         return info.pos > info.offset? info.pos - info.offset : 0;
1483 }
1484 #endif /* SYM_LINUX_USER_INFO_SUPPORT */
1485
1486 /*
1487  *  Entry point of the scsi proc fs of the driver.
1488  *  - func = 0 means read  (returns adapter infos)
1489  *  - func = 1 means write (not yet merget from sym53c8xx)
1490  */
1491 static int sym53c8xx_proc_info(struct Scsi_Host *host, char *buffer,
1492                         char **start, off_t offset, int length, int func)
1493 {
1494         struct sym_hcb *np = sym_get_hcb(host);
1495         int retv;
1496
1497         if (func) {
1498 #ifdef  SYM_LINUX_USER_COMMAND_SUPPORT
1499                 retv = sym_user_command(np, buffer, length);
1500 #else
1501                 retv = -EINVAL;
1502 #endif
1503         } else {
1504                 if (start)
1505                         *start = buffer;
1506 #ifdef SYM_LINUX_USER_INFO_SUPPORT
1507                 retv = sym_host_info(np, buffer, offset, length);
1508 #else
1509                 retv = -EINVAL;
1510 #endif
1511         }
1512
1513         return retv;
1514 }
1515 #endif /* SYM_LINUX_PROC_INFO_SUPPORT */
1516
1517 /*
1518  *      Free controller resources.
1519  */
1520 static void sym_free_resources(struct sym_hcb *np, struct pci_dev *pdev)
1521 {
1522         /*
1523          *  Free O/S specific resources.
1524          */
1525         if (np->s.irq)
1526                 free_irq(np->s.irq, np);
1527         if (np->s.ioaddr)
1528                 pci_iounmap(pdev, np->s.ioaddr);
1529         if (np->s.ramaddr)
1530                 pci_iounmap(pdev, np->s.ramaddr);
1531         /*
1532          *  Free O/S independent resources.
1533          */
1534         sym_hcb_free(np);
1535
1536         sym_mfree_dma(np, sizeof(*np), "HCB");
1537 }
1538
1539 /*
1540  *  Ask/tell the system about DMA addressing.
1541  */
1542 static int sym_setup_bus_dma_mask(struct sym_hcb *np)
1543 {
1544 #if SYM_CONF_DMA_ADDRESSING_MODE > 0
1545 #if   SYM_CONF_DMA_ADDRESSING_MODE == 1
1546 #define DMA_DAC_MASK    DMA_40BIT_MASK
1547 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
1548 #define DMA_DAC_MASK    DMA_64BIT_MASK
1549 #endif
1550         if ((np->features & FE_DAC) &&
1551                         !pci_set_dma_mask(np->s.device, DMA_DAC_MASK)) {
1552                 np->use_dac = 1;
1553                 return 0;
1554         }
1555 #endif
1556
1557         if (!pci_set_dma_mask(np->s.device, DMA_32BIT_MASK))
1558                 return 0;
1559
1560         printf_warning("%s: No suitable DMA available\n", sym_name(np));
1561         return -1;
1562 }
1563
1564 /*
1565  *  Host attach and initialisations.
1566  *
1567  *  Allocate host data and ncb structure.
1568  *  Remap MMIO region.
1569  *  Do chip initialization.
1570  *  If all is OK, install interrupt handling and
1571  *  start the timer daemon.
1572  */
1573 static struct Scsi_Host * __devinit sym_attach(struct scsi_host_template *tpnt,
1574                 int unit, struct sym_device *dev)
1575 {
1576         struct host_data *host_data;
1577         struct sym_hcb *np = NULL;
1578         struct Scsi_Host *instance = NULL;
1579         struct pci_dev *pdev = dev->pdev;
1580         unsigned long flags;
1581         struct sym_fw *fw;
1582
1583         printk(KERN_INFO
1584                 "sym%d: <%s> rev 0x%x at pci %s irq " IRQ_FMT "\n",
1585                 unit, dev->chip.name, dev->chip.revision_id,
1586                 pci_name(pdev), IRQ_PRM(pdev->irq));
1587
1588         /*
1589          *  Get the firmware for this chip.
1590          */
1591         fw = sym_find_firmware(&dev->chip);
1592         if (!fw)
1593                 goto attach_failed;
1594
1595         /*
1596          *      Allocate host_data structure
1597          */
1598         instance = scsi_host_alloc(tpnt, sizeof(*host_data));
1599         if (!instance)
1600                 goto attach_failed;
1601         host_data = (struct host_data *) instance->hostdata;
1602
1603         /*
1604          *  Allocate immediately the host control block, 
1605          *  since we are only expecting to succeed. :)
1606          *  We keep track in the HCB of all the resources that 
1607          *  are to be released on error.
1608          */
1609         np = __sym_calloc_dma(&pdev->dev, sizeof(*np), "HCB");
1610         if (!np)
1611                 goto attach_failed;
1612         np->s.device = pdev;
1613         np->bus_dmat = &pdev->dev; /* Result in 1 DMA pool per HBA */
1614         host_data->ncb = np;
1615         np->s.host = instance;
1616
1617         pci_set_drvdata(pdev, np);
1618
1619         /*
1620          *  Copy some useful infos to the HCB.
1621          */
1622         np->hcb_ba      = vtobus(np);
1623         np->verbose     = sym_driver_setup.verbose;
1624         np->s.device    = pdev;
1625         np->s.unit      = unit;
1626         np->device_id   = dev->chip.device_id;
1627         np->revision_id = dev->chip.revision_id;
1628         np->features    = dev->chip.features;
1629         np->clock_divn  = dev->chip.nr_divisor;
1630         np->maxoffs     = dev->chip.offset_max;
1631         np->maxburst    = dev->chip.burst_max;
1632         np->myaddr      = dev->host_id;
1633
1634         /*
1635          *  Edit its name.
1636          */
1637         strlcpy(np->s.chip_name, dev->chip.name, sizeof(np->s.chip_name));
1638         sprintf(np->s.inst_name, "sym%d", np->s.unit);
1639
1640         if (sym_setup_bus_dma_mask(np))
1641                 goto attach_failed;
1642
1643         /*
1644          *  Try to map the controller chip to
1645          *  virtual and physical memory.
1646          */
1647         np->mmio_ba = (u32)dev->mmio_base;
1648         np->s.ioaddr    = dev->s.ioaddr;
1649         np->s.ramaddr   = dev->s.ramaddr;
1650         np->s.io_ws = (np->features & FE_IO256) ? 256 : 128;
1651
1652         /*
1653          *  Map on-chip RAM if present and supported.
1654          */
1655         if (!(np->features & FE_RAM))
1656                 dev->ram_base = 0;
1657         if (dev->ram_base) {
1658                 np->ram_ba = (u32)dev->ram_base;
1659                 np->ram_ws = (np->features & FE_RAM8K) ? 8192 : 4096;
1660         }
1661
1662         if (sym_hcb_attach(instance, fw, dev->nvram))
1663                 goto attach_failed;
1664
1665         /*
1666          *  Install the interrupt handler.
1667          *  If we synchonize the C code with SCRIPTS on interrupt, 
1668          *  we do not want to share the INTR line at all.
1669          */
1670         if (request_irq(pdev->irq, sym53c8xx_intr, SA_SHIRQ, NAME53C8XX, np)) {
1671                 printf_err("%s: request irq %d failure\n",
1672                         sym_name(np), pdev->irq);
1673                 goto attach_failed;
1674         }
1675         np->s.irq = pdev->irq;
1676
1677         /*
1678          *  After SCSI devices have been opened, we cannot
1679          *  reset the bus safely, so we do it here.
1680          */
1681         spin_lock_irqsave(instance->host_lock, flags);
1682         if (sym_reset_scsi_bus(np, 0))
1683                 goto reset_failed;
1684
1685         /*
1686          *  Start the SCRIPTS.
1687          */
1688         sym_start_up (np, 1);
1689
1690         /*
1691          *  Start the timer daemon
1692          */
1693         init_timer(&np->s.timer);
1694         np->s.timer.data     = (unsigned long) np;
1695         np->s.timer.function = sym53c8xx_timer;
1696         np->s.lasttime=0;
1697         sym_timer (np);
1698
1699         /*
1700          *  Fill Linux host instance structure
1701          *  and return success.
1702          */
1703         instance->max_channel   = 0;
1704         instance->this_id       = np->myaddr;
1705         instance->max_id        = np->maxwide ? 16 : 8;
1706         instance->max_lun       = SYM_CONF_MAX_LUN;
1707         instance->unique_id     = pci_resource_start(pdev, 0);
1708         instance->cmd_per_lun   = SYM_CONF_MAX_TAG;
1709         instance->can_queue     = (SYM_CONF_MAX_START-2);
1710         instance->sg_tablesize  = SYM_CONF_MAX_SG;
1711         instance->max_cmd_len   = 16;
1712         BUG_ON(sym2_transport_template == NULL);
1713         instance->transportt    = sym2_transport_template;
1714
1715         spin_unlock_irqrestore(instance->host_lock, flags);
1716
1717         return instance;
1718
1719  reset_failed:
1720         printf_err("%s: FATAL ERROR: CHECK SCSI BUS - CABLES, "
1721                    "TERMINATION, DEVICE POWER etc.!\n", sym_name(np));
1722         spin_unlock_irqrestore(instance->host_lock, flags);
1723  attach_failed:
1724         if (!instance)
1725                 return NULL;
1726         printf_info("%s: giving up ...\n", sym_name(np));
1727         if (np)
1728                 sym_free_resources(np, pdev);
1729         scsi_host_put(instance);
1730
1731         return NULL;
1732  }
1733
1734
1735 /*
1736  *    Detect and try to read SYMBIOS and TEKRAM NVRAM.
1737  */
1738 #if SYM_CONF_NVRAM_SUPPORT
1739 static void __devinit sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
1740 {
1741         devp->nvram = nvp;
1742         devp->device_id = devp->chip.device_id;
1743         nvp->type = 0;
1744
1745         sym_read_nvram(devp, nvp);
1746 }
1747 #else
1748 static inline void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
1749 {
1750 }
1751 #endif  /* SYM_CONF_NVRAM_SUPPORT */
1752
1753 static int __devinit sym_check_supported(struct sym_device *device)
1754 {
1755         struct sym_chip *chip;
1756         struct pci_dev *pdev = device->pdev;
1757         u_char revision;
1758         unsigned long io_port = pci_resource_start(pdev, 0);
1759         int i;
1760
1761         /*
1762          *  If user excluded this chip, do not initialize it.
1763          *  I hate this code so much.  Must kill it.
1764          */
1765         if (io_port) {
1766                 for (i = 0 ; i < 8 ; i++) {
1767                         if (sym_driver_setup.excludes[i] == io_port)
1768                                 return -ENODEV;
1769                 }
1770         }
1771
1772         /*
1773          * Check if the chip is supported.  Then copy the chip description
1774          * to our device structure so we can make it match the actual device
1775          * and options.
1776          */
1777         pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision);
1778         chip = sym_lookup_chip_table(pdev->device, revision);
1779         if (!chip) {
1780                 dev_info(&pdev->dev, "device not supported\n");
1781                 return -ENODEV;
1782         }
1783         memcpy(&device->chip, chip, sizeof(device->chip));
1784         device->chip.revision_id = revision;
1785
1786         return 0;
1787 }
1788
1789 /*
1790  * Ignore Symbios chips controlled by various RAID controllers.
1791  * These controllers set value 0x52414944 at RAM end - 16.
1792  */
1793 static int __devinit sym_check_raid(struct sym_device *device)
1794 {
1795         unsigned int ram_size, ram_val;
1796
1797         if (!device->s.ramaddr)
1798                 return 0;
1799
1800         if (device->chip.features & FE_RAM8K)
1801                 ram_size = 8192;
1802         else
1803                 ram_size = 4096;
1804
1805         ram_val = readl(device->s.ramaddr + ram_size - 16);
1806         if (ram_val != 0x52414944)
1807                 return 0;
1808
1809         dev_info(&device->pdev->dev,
1810                         "not initializing, driven by RAID controller.\n");
1811         return -ENODEV;
1812 }
1813
1814 static int __devinit sym_set_workarounds(struct sym_device *device)
1815 {
1816         struct sym_chip *chip = &device->chip;
1817         struct pci_dev *pdev = device->pdev;
1818         u_short status_reg;
1819
1820         /*
1821          *  (ITEM 12 of a DEL about the 896 I haven't yet).
1822          *  We must ensure the chip will use WRITE AND INVALIDATE.
1823          *  The revision number limit is for now arbitrary.
1824          */
1825         if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && chip->revision_id < 0x4) {
1826                 chip->features  |= (FE_WRIE | FE_CLSE);
1827         }
1828
1829         /* If the chip can do Memory Write Invalidate, enable it */
1830         if (chip->features & FE_WRIE) {
1831                 if (pci_set_mwi(pdev))
1832                         return -ENODEV;
1833         }
1834
1835         /*
1836          *  Work around for errant bit in 895A. The 66Mhz
1837          *  capable bit is set erroneously. Clear this bit.
1838          *  (Item 1 DEL 533)
1839          *
1840          *  Make sure Config space and Features agree.
1841          *
1842          *  Recall: writes are not normal to status register -
1843          *  write a 1 to clear and a 0 to leave unchanged.
1844          *  Can only reset bits.
1845          */
1846         pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1847         if (chip->features & FE_66MHZ) {
1848                 if (!(status_reg & PCI_STATUS_66MHZ))
1849                         chip->features &= ~FE_66MHZ;
1850         } else {
1851                 if (status_reg & PCI_STATUS_66MHZ) {
1852                         status_reg = PCI_STATUS_66MHZ;
1853                         pci_write_config_word(pdev, PCI_STATUS, status_reg);
1854                         pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1855                 }
1856         }
1857
1858         return 0;
1859 }
1860
1861 /*
1862  *  Read and check the PCI configuration for any detected NCR 
1863  *  boards and save data for attaching after all boards have 
1864  *  been detected.
1865  */
1866 static void __devinit
1867 sym_init_device(struct pci_dev *pdev, struct sym_device *device)
1868 {
1869         int i;
1870
1871         device->host_id = SYM_SETUP_HOST_ID;
1872         device->pdev = pdev;
1873
1874         i = pci_get_base_address(pdev, 1, &device->mmio_base);
1875         pci_get_base_address(pdev, i, &device->ram_base);
1876
1877 #ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
1878         if (device->mmio_base)
1879                 device->s.ioaddr = pci_iomap(pdev, 1,
1880                                                 pci_resource_len(pdev, 1));
1881 #endif
1882         if (!device->s.ioaddr)
1883                 device->s.ioaddr = pci_iomap(pdev, 0,
1884                                                 pci_resource_len(pdev, 0));
1885         if (device->ram_base)
1886                 device->s.ramaddr = pci_iomap(pdev, i,
1887                                                 pci_resource_len(pdev, i));
1888 }
1889
1890 /*
1891  * The NCR PQS and PDS cards are constructed as a DEC bridge
1892  * behind which sits a proprietary NCR memory controller and
1893  * either four or two 53c875s as separate devices.  We can tell
1894  * if an 875 is part of a PQS/PDS or not since if it is, it will
1895  * be on the same bus as the memory controller.  In its usual
1896  * mode of operation, the 875s are slaved to the memory
1897  * controller for all transfers.  To operate with the Linux
1898  * driver, the memory controller is disabled and the 875s
1899  * freed to function independently.  The only wrinkle is that
1900  * the preset SCSI ID (which may be zero) must be read in from
1901  * a special configuration space register of the 875.
1902  */
1903 static void sym_config_pqs(struct pci_dev *pdev, struct sym_device *sym_dev)
1904 {
1905         int slot;
1906         u8 tmp;
1907
1908         for (slot = 0; slot < 256; slot++) {
1909                 struct pci_dev *memc = pci_get_slot(pdev->bus, slot);
1910
1911                 if (!memc || memc->vendor != 0x101a || memc->device == 0x0009) {
1912                         pci_dev_put(memc);
1913                         continue;
1914                 }
1915
1916                 /* bit 1: allow individual 875 configuration */
1917                 pci_read_config_byte(memc, 0x44, &tmp);
1918                 if ((tmp & 0x2) == 0) {
1919                         tmp |= 0x2;
1920                         pci_write_config_byte(memc, 0x44, tmp);
1921                 }
1922
1923                 /* bit 2: drive individual 875 interrupts to the bus */
1924                 pci_read_config_byte(memc, 0x45, &tmp);
1925                 if ((tmp & 0x4) == 0) {
1926                         tmp |= 0x4;
1927                         pci_write_config_byte(memc, 0x45, tmp);
1928                 }
1929
1930                 pci_dev_put(memc);
1931                 break;
1932         }
1933
1934         pci_read_config_byte(pdev, 0x84, &tmp);
1935         sym_dev->host_id = tmp;
1936 }
1937
1938 /*
1939  *  Called before unloading the module.
1940  *  Detach the host.
1941  *  We have to free resources and halt the NCR chip.
1942  */
1943 static int sym_detach(struct sym_hcb *np, struct pci_dev *pdev)
1944 {
1945         printk("%s: detaching ...\n", sym_name(np));
1946
1947         del_timer_sync(&np->s.timer);
1948
1949         /*
1950          * Reset NCR chip.
1951          * We should use sym_soft_reset(), but we don't want to do 
1952          * so, since we may not be safe if interrupts occur.
1953          */
1954         printk("%s: resetting chip\n", sym_name(np));
1955         OUTB(np, nc_istat, SRST);
1956         INB(np, nc_mbox1);
1957         udelay(10);
1958         OUTB(np, nc_istat, 0);
1959
1960         sym_free_resources(np, pdev);
1961
1962         return 1;
1963 }
1964
1965 /*
1966  * Driver host template.
1967  */
1968 static struct scsi_host_template sym2_template = {
1969         .module                 = THIS_MODULE,
1970         .name                   = "sym53c8xx",
1971         .info                   = sym53c8xx_info, 
1972         .queuecommand           = sym53c8xx_queue_command,
1973         .slave_alloc            = sym53c8xx_slave_alloc,
1974         .slave_configure        = sym53c8xx_slave_configure,
1975         .slave_destroy          = sym53c8xx_slave_destroy,
1976         .eh_abort_handler       = sym53c8xx_eh_abort_handler,
1977         .eh_device_reset_handler = sym53c8xx_eh_device_reset_handler,
1978         .eh_bus_reset_handler   = sym53c8xx_eh_bus_reset_handler,
1979         .eh_host_reset_handler  = sym53c8xx_eh_host_reset_handler,
1980         .this_id                = 7,
1981         .use_clustering         = DISABLE_CLUSTERING,
1982 #ifdef SYM_LINUX_PROC_INFO_SUPPORT
1983         .proc_info              = sym53c8xx_proc_info,
1984         .proc_name              = NAME53C8XX,
1985 #endif
1986 };
1987
1988 static int attach_count;
1989
1990 static int __devinit sym2_probe(struct pci_dev *pdev,
1991                                 const struct pci_device_id *ent)
1992 {
1993         struct sym_device sym_dev;
1994         struct sym_nvram nvram;
1995         struct Scsi_Host *instance;
1996
1997         memset(&sym_dev, 0, sizeof(sym_dev));
1998         memset(&nvram, 0, sizeof(nvram));
1999
2000         if (pci_enable_device(pdev))
2001                 goto leave;
2002
2003         pci_set_master(pdev);
2004
2005         if (pci_request_regions(pdev, NAME53C8XX))
2006                 goto disable;
2007
2008         sym_init_device(pdev, &sym_dev);
2009         if (sym_check_supported(&sym_dev))
2010                 goto free;
2011
2012         if (sym_check_raid(&sym_dev))
2013                 goto leave;     /* Don't disable the device */
2014
2015         if (sym_set_workarounds(&sym_dev))
2016                 goto free;
2017
2018         sym_config_pqs(pdev, &sym_dev);
2019
2020         sym_get_nvram(&sym_dev, &nvram);
2021
2022         instance = sym_attach(&sym2_template, attach_count, &sym_dev);
2023         if (!instance)
2024                 goto free;
2025
2026         if (scsi_add_host(instance, &pdev->dev))
2027                 goto detach;
2028         scsi_scan_host(instance);
2029
2030         attach_count++;
2031
2032         return 0;
2033
2034  detach:
2035         sym_detach(pci_get_drvdata(pdev), pdev);
2036  free:
2037         pci_release_regions(pdev);
2038  disable:
2039         pci_disable_device(pdev);
2040  leave:
2041         return -ENODEV;
2042 }
2043
2044 static void __devexit sym2_remove(struct pci_dev *pdev)
2045 {
2046         struct sym_hcb *np = pci_get_drvdata(pdev);
2047         struct Scsi_Host *host = np->s.host;
2048
2049         scsi_remove_host(host);
2050         scsi_host_put(host);
2051
2052         sym_detach(np, pdev);
2053
2054         pci_release_regions(pdev);
2055         pci_disable_device(pdev);
2056
2057         attach_count--;
2058 }
2059
2060 static void sym2_get_signalling(struct Scsi_Host *shost)
2061 {
2062         struct sym_hcb *np = sym_get_hcb(shost);
2063         enum spi_signal_type type;
2064
2065         switch (np->scsi_mode) {
2066         case SMODE_SE:
2067                 type = SPI_SIGNAL_SE;
2068                 break;
2069         case SMODE_LVD:
2070                 type = SPI_SIGNAL_LVD;
2071                 break;
2072         case SMODE_HVD:
2073                 type = SPI_SIGNAL_HVD;
2074                 break;
2075         default:
2076                 type = SPI_SIGNAL_UNKNOWN;
2077                 break;
2078         }
2079         spi_signalling(shost) = type;
2080 }
2081
2082 static void sym2_set_offset(struct scsi_target *starget, int offset)
2083 {
2084         struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2085         struct sym_hcb *np = sym_get_hcb(shost);
2086         struct sym_tcb *tp = &np->target[starget->id];
2087
2088         tp->tgoal.offset = offset;
2089         tp->tgoal.check_nego = 1;
2090 }
2091
2092 static void sym2_set_period(struct scsi_target *starget, int period)
2093 {
2094         struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2095         struct sym_hcb *np = sym_get_hcb(shost);
2096         struct sym_tcb *tp = &np->target[starget->id];
2097
2098         /* have to have DT for these transfers, but DT will also
2099          * set width, so check that this is allowed */
2100         if (period <= np->minsync && spi_width(starget))
2101                 tp->tgoal.dt = 1;
2102
2103         tp->tgoal.period = period;
2104         tp->tgoal.check_nego = 1;
2105 }
2106
2107 static void sym2_set_width(struct scsi_target *starget, int width)
2108 {
2109         struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2110         struct sym_hcb *np = sym_get_hcb(shost);
2111         struct sym_tcb *tp = &np->target[starget->id];
2112
2113         /* It is illegal to have DT set on narrow transfers.  If DT is
2114          * clear, we must also clear IU and QAS.  */
2115         if (width == 0)
2116                 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
2117
2118         tp->tgoal.width = width;
2119         tp->tgoal.check_nego = 1;
2120 }
2121
2122 static void sym2_set_dt(struct scsi_target *starget, int dt)
2123 {
2124         struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2125         struct sym_hcb *np = sym_get_hcb(shost);
2126         struct sym_tcb *tp = &np->target[starget->id];
2127
2128         /* We must clear QAS and IU if DT is clear */
2129         if (dt)
2130                 tp->tgoal.dt = 1;
2131         else
2132                 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
2133         tp->tgoal.check_nego = 1;
2134 }
2135
2136 #if 0
2137 static void sym2_set_iu(struct scsi_target *starget, int iu)
2138 {
2139         struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2140         struct sym_hcb *np = sym_get_hcb(shost);
2141         struct sym_tcb *tp = &np->target[starget->id];
2142
2143         if (iu)
2144                 tp->tgoal.iu = tp->tgoal.dt = 1;
2145         else
2146                 tp->tgoal.iu = 0;
2147         tp->tgoal.check_nego = 1;
2148 }
2149
2150 static void sym2_set_qas(struct scsi_target *starget, int qas)
2151 {
2152         struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2153         struct sym_hcb *np = sym_get_hcb(shost);
2154         struct sym_tcb *tp = &np->target[starget->id];
2155
2156         if (qas)
2157                 tp->tgoal.dt = tp->tgoal.qas = 1;
2158         else
2159                 tp->tgoal.qas = 0;
2160         tp->tgoal.check_nego = 1;
2161 }
2162 #endif
2163
2164 static struct spi_function_template sym2_transport_functions = {
2165         .set_offset     = sym2_set_offset,
2166         .show_offset    = 1,
2167         .set_period     = sym2_set_period,
2168         .show_period    = 1,
2169         .set_width      = sym2_set_width,
2170         .show_width     = 1,
2171         .set_dt         = sym2_set_dt,
2172         .show_dt        = 1,
2173 #if 0
2174         .set_iu         = sym2_set_iu,
2175         .show_iu        = 1,
2176         .set_qas        = sym2_set_qas,
2177         .show_qas       = 1,
2178 #endif
2179         .get_signalling = sym2_get_signalling,
2180 };
2181
2182 static struct pci_device_id sym2_id_table[] __devinitdata = {
2183         { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C810,
2184           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2185         { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C820,
2186           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2187         { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C825,
2188           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2189         { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C815,
2190           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2191         { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C810AP,
2192           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2193         { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C860,
2194           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2195         { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1510,
2196           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2197         { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C896,
2198           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2199         { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C895,
2200           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2201         { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C885,
2202           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2203         { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875,
2204           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2205         { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C1510,
2206           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2207         { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C895A,
2208           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2209         { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C875A,
2210           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2211         { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_33,
2212           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2213         { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_66,
2214           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2215         { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875J,
2216           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2217         { 0, }
2218 };
2219
2220 MODULE_DEVICE_TABLE(pci, sym2_id_table);
2221
2222 static struct pci_driver sym2_driver = {
2223         .name           = NAME53C8XX,
2224         .id_table       = sym2_id_table,
2225         .probe          = sym2_probe,
2226         .remove         = __devexit_p(sym2_remove),
2227 };
2228
2229 static int __init sym2_init(void)
2230 {
2231         int error;
2232
2233         sym2_setup_params();
2234         sym2_transport_template = spi_attach_transport(&sym2_transport_functions);
2235         if (!sym2_transport_template)
2236                 return -ENODEV;
2237
2238         error = pci_register_driver(&sym2_driver);
2239         if (error)
2240                 spi_release_transport(sym2_transport_template);
2241         return error;
2242 }
2243
2244 static void __exit sym2_exit(void)
2245 {
2246         pci_unregister_driver(&sym2_driver);
2247         spi_release_transport(sym2_transport_template);
2248 }
2249
2250 module_init(sym2_init);
2251 module_exit(sym2_exit);