Merge master.kernel.org:/pub/scm/linux/kernel/git/jejb/voyager-2.6
[linux-2.6] / arch / mips / lib / iomap.c
1 /*
2  * Implement the default iomap interfaces
3  *
4  * (C) Copyright 2004 Linus Torvalds
5  * (C) Copyright 2006 Ralf Baechle <ralf@linux-mips.org>
6  * (C) Copyright 2007 MIPS Technologies, Inc.
7  *     written by Ralf Baechle <ralf@linux-mips.org>
8  */
9 #include <linux/module.h>
10 #include <asm/io.h>
11
12 /*
13  * Read/write from/to an (offsettable) iomem cookie. It might be a PIO
14  * access or a MMIO access, these functions don't care. The info is
15  * encoded in the hardware mapping set up by the mapping functions
16  * (or the cookie itself, depending on implementation and hw).
17  *
18  * The generic routines don't assume any hardware mappings, and just
19  * encode the PIO/MMIO as part of the cookie. They coldly assume that
20  * the MMIO IO mappings are not in the low address range.
21  *
22  * Architectures for which this is not true can't use this generic
23  * implementation and should do their own copy.
24  */
25
26 #define PIO_MASK        0x0ffffUL
27
28 unsigned int ioread8(void __iomem *addr)
29 {
30         return readb(addr);
31 }
32
33 EXPORT_SYMBOL(ioread8);
34
35 unsigned int ioread16(void __iomem *addr)
36 {
37         return readw(addr);
38 }
39
40 EXPORT_SYMBOL(ioread16);
41
42 unsigned int ioread16be(void __iomem *addr)
43 {
44         return be16_to_cpu(__raw_readw(addr));
45 }
46
47 EXPORT_SYMBOL(ioread16be);
48
49 unsigned int ioread32(void __iomem *addr)
50 {
51         return readl(addr);
52 }
53
54 EXPORT_SYMBOL(ioread32);
55
56 unsigned int ioread32be(void __iomem *addr)
57 {
58         return be32_to_cpu(__raw_readl(addr));
59 }
60
61 EXPORT_SYMBOL(ioread32be);
62
63 void iowrite8(u8 val, void __iomem *addr)
64 {
65         writeb(val, addr);
66 }
67
68 EXPORT_SYMBOL(iowrite8);
69
70 void iowrite16(u16 val, void __iomem *addr)
71 {
72         writew(val, addr);
73 }
74
75 EXPORT_SYMBOL(iowrite16);
76
77 void iowrite16be(u16 val, void __iomem *addr)
78 {
79         __raw_writew(cpu_to_be16(val), addr);
80 }
81
82 EXPORT_SYMBOL(iowrite16be);
83
84 void iowrite32(u32 val, void __iomem *addr)
85 {
86         writel(val, addr);
87 }
88
89 EXPORT_SYMBOL(iowrite32);
90
91 void iowrite32be(u32 val, void __iomem *addr)
92 {
93         __raw_writel(cpu_to_be32(val), addr);
94 }
95
96 EXPORT_SYMBOL(iowrite32be);
97
98 /*
99  * These are the "repeat MMIO read/write" functions.
100  * Note the "__raw" accesses, since we don't want to
101  * convert to CPU byte order. We write in "IO byte
102  * order" (we also don't have IO barriers).
103  */
104 static inline void mmio_insb(void __iomem *addr, u8 *dst, int count)
105 {
106         while (--count >= 0) {
107                 u8 data = __raw_readb(addr);
108                 *dst = data;
109                 dst++;
110         }
111 }
112
113 static inline void mmio_insw(void __iomem *addr, u16 *dst, int count)
114 {
115         while (--count >= 0) {
116                 u16 data = __raw_readw(addr);
117                 *dst = data;
118                 dst++;
119         }
120 }
121
122 static inline void mmio_insl(void __iomem *addr, u32 *dst, int count)
123 {
124         while (--count >= 0) {
125                 u32 data = __raw_readl(addr);
126                 *dst = data;
127                 dst++;
128         }
129 }
130
131 static inline void mmio_outsb(void __iomem *addr, const u8 *src, int count)
132 {
133         while (--count >= 0) {
134                 __raw_writeb(*src, addr);
135                 src++;
136         }
137 }
138
139 static inline void mmio_outsw(void __iomem *addr, const u16 *src, int count)
140 {
141         while (--count >= 0) {
142                 __raw_writew(*src, addr);
143                 src++;
144         }
145 }
146
147 static inline void mmio_outsl(void __iomem *addr, const u32 *src, int count)
148 {
149         while (--count >= 0) {
150                 __raw_writel(*src, addr);
151                 src++;
152         }
153 }
154
155 void ioread8_rep(void __iomem *addr, void *dst, unsigned long count)
156 {
157         mmio_insb(addr, dst, count);
158 }
159
160 EXPORT_SYMBOL(ioread8_rep);
161
162 void ioread16_rep(void __iomem *addr, void *dst, unsigned long count)
163 {
164         mmio_insw(addr, dst, count);
165 }
166
167 EXPORT_SYMBOL(ioread16_rep);
168
169 void ioread32_rep(void __iomem *addr, void *dst, unsigned long count)
170 {
171         mmio_insl(addr, dst, count);
172 }
173
174 EXPORT_SYMBOL(ioread32_rep);
175
176 void iowrite8_rep(void __iomem *addr, const void *src, unsigned long count)
177 {
178         mmio_outsb(addr, src, count);
179 }
180
181 EXPORT_SYMBOL(iowrite8_rep);
182
183 void iowrite16_rep(void __iomem *addr, const void *src, unsigned long count)
184 {
185         mmio_outsw(addr, src, count);
186 }
187
188 EXPORT_SYMBOL(iowrite16_rep);
189
190 void iowrite32_rep(void __iomem *addr, const void *src, unsigned long count)
191 {
192         mmio_outsl(addr, src, count);
193 }
194
195 EXPORT_SYMBOL(iowrite32_rep);
196
197 /*
198  * Create a virtual mapping cookie for an IO port range
199  *
200  * This uses the same mapping are as the in/out family which has to be setup
201  * by the platform initialization code.
202  *
203  * Just to make matters somewhat more interesting on MIPS systems with
204  * multiple host bridge each will have it's own ioport address space.
205  */
206 static void __iomem *ioport_map_legacy(unsigned long port, unsigned int nr)
207 {
208         return (void __iomem *) (mips_io_port_base + port);
209 }
210
211 void __iomem *ioport_map(unsigned long port, unsigned int nr)
212 {
213         if (port > PIO_MASK)
214                 return NULL;
215
216         return ioport_map_legacy(port, nr);
217 }
218
219 EXPORT_SYMBOL(ioport_map);
220
221 void ioport_unmap(void __iomem *addr)
222 {
223         /* Nothing to do */
224 }
225
226 EXPORT_SYMBOL(ioport_unmap);