libertas: remove lbs_get_fwversion()
[linux-2.6] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern int e1000_up(struct e1000_adapter *adapter);
36 extern void e1000_down(struct e1000_adapter *adapter);
37 extern void e1000_reinit_locked(struct e1000_adapter *adapter);
38 extern void e1000_reset(struct e1000_adapter *adapter);
39 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
40 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
41 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
42 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
43 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_update_stats(struct e1000_adapter *adapter);
45
46
47 struct e1000_stats {
48         char stat_string[ETH_GSTRING_LEN];
49         int sizeof_stat;
50         int stat_offset;
51 };
52
53 #define E1000_STAT(m) FIELD_SIZEOF(struct e1000_adapter, m), \
54                       offsetof(struct e1000_adapter, m)
55 static const struct e1000_stats e1000_gstrings_stats[] = {
56         { "rx_packets", E1000_STAT(stats.gprc) },
57         { "tx_packets", E1000_STAT(stats.gptc) },
58         { "rx_bytes", E1000_STAT(stats.gorcl) },
59         { "tx_bytes", E1000_STAT(stats.gotcl) },
60         { "rx_broadcast", E1000_STAT(stats.bprc) },
61         { "tx_broadcast", E1000_STAT(stats.bptc) },
62         { "rx_multicast", E1000_STAT(stats.mprc) },
63         { "tx_multicast", E1000_STAT(stats.mptc) },
64         { "rx_errors", E1000_STAT(stats.rxerrc) },
65         { "tx_errors", E1000_STAT(stats.txerrc) },
66         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
67         { "multicast", E1000_STAT(stats.mprc) },
68         { "collisions", E1000_STAT(stats.colc) },
69         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
70         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
71         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
72         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
73         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
74         { "rx_missed_errors", E1000_STAT(stats.mpc) },
75         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
76         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
77         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
78         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
79         { "tx_window_errors", E1000_STAT(stats.latecol) },
80         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
81         { "tx_deferred_ok", E1000_STAT(stats.dc) },
82         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
83         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
84         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
85         { "tx_restart_queue", E1000_STAT(restart_queue) },
86         { "rx_long_length_errors", E1000_STAT(stats.roc) },
87         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
88         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
89         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
90         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
91         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
92         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
93         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
94         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
95         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
96         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
97         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
98         { "rx_header_split", E1000_STAT(rx_hdr_split) },
99         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
100         { "tx_smbus", E1000_STAT(stats.mgptc) },
101         { "rx_smbus", E1000_STAT(stats.mgprc) },
102         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
103 };
104
105 #define E1000_QUEUE_STATS_LEN 0
106 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
107 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
108 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
109         "Register test  (offline)", "Eeprom test    (offline)",
110         "Interrupt test (offline)", "Loopback test  (offline)",
111         "Link test   (on/offline)"
112 };
113 #define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
114
115 static int
116 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
117 {
118         struct e1000_adapter *adapter = netdev_priv(netdev);
119         struct e1000_hw *hw = &adapter->hw;
120
121         if (hw->media_type == e1000_media_type_copper) {
122
123                 ecmd->supported = (SUPPORTED_10baseT_Half |
124                                    SUPPORTED_10baseT_Full |
125                                    SUPPORTED_100baseT_Half |
126                                    SUPPORTED_100baseT_Full |
127                                    SUPPORTED_1000baseT_Full|
128                                    SUPPORTED_Autoneg |
129                                    SUPPORTED_TP);
130                 if (hw->phy_type == e1000_phy_ife)
131                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
132                 ecmd->advertising = ADVERTISED_TP;
133
134                 if (hw->autoneg == 1) {
135                         ecmd->advertising |= ADVERTISED_Autoneg;
136                         /* the e1000 autoneg seems to match ethtool nicely */
137                         ecmd->advertising |= hw->autoneg_advertised;
138                 }
139
140                 ecmd->port = PORT_TP;
141                 ecmd->phy_address = hw->phy_addr;
142
143                 if (hw->mac_type == e1000_82543)
144                         ecmd->transceiver = XCVR_EXTERNAL;
145                 else
146                         ecmd->transceiver = XCVR_INTERNAL;
147
148         } else {
149                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
150                                      SUPPORTED_FIBRE |
151                                      SUPPORTED_Autoneg);
152
153                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
154                                      ADVERTISED_FIBRE |
155                                      ADVERTISED_Autoneg);
156
157                 ecmd->port = PORT_FIBRE;
158
159                 if (hw->mac_type >= e1000_82545)
160                         ecmd->transceiver = XCVR_INTERNAL;
161                 else
162                         ecmd->transceiver = XCVR_EXTERNAL;
163         }
164
165         if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) {
166
167                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
168                                                    &adapter->link_duplex);
169                 ecmd->speed = adapter->link_speed;
170
171                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
172                  *          and HALF_DUPLEX != DUPLEX_HALF */
173
174                 if (adapter->link_duplex == FULL_DUPLEX)
175                         ecmd->duplex = DUPLEX_FULL;
176                 else
177                         ecmd->duplex = DUPLEX_HALF;
178         } else {
179                 ecmd->speed = -1;
180                 ecmd->duplex = -1;
181         }
182
183         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
184                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
185         return 0;
186 }
187
188 static int
189 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
190 {
191         struct e1000_adapter *adapter = netdev_priv(netdev);
192         struct e1000_hw *hw = &adapter->hw;
193
194         /* When SoL/IDER sessions are active, autoneg/speed/duplex
195          * cannot be changed */
196         if (e1000_check_phy_reset_block(hw)) {
197                 DPRINTK(DRV, ERR, "Cannot change link characteristics "
198                         "when SoL/IDER is active.\n");
199                 return -EINVAL;
200         }
201
202         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
203                 msleep(1);
204
205         if (ecmd->autoneg == AUTONEG_ENABLE) {
206                 hw->autoneg = 1;
207                 if (hw->media_type == e1000_media_type_fiber)
208                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
209                                      ADVERTISED_FIBRE |
210                                      ADVERTISED_Autoneg;
211                 else
212                         hw->autoneg_advertised = ecmd->advertising |
213                                                  ADVERTISED_TP |
214                                                  ADVERTISED_Autoneg;
215                 ecmd->advertising = hw->autoneg_advertised;
216         } else
217                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
218                         clear_bit(__E1000_RESETTING, &adapter->flags);
219                         return -EINVAL;
220                 }
221
222         /* reset the link */
223
224         if (netif_running(adapter->netdev)) {
225                 e1000_down(adapter);
226                 e1000_up(adapter);
227         } else
228                 e1000_reset(adapter);
229
230         clear_bit(__E1000_RESETTING, &adapter->flags);
231         return 0;
232 }
233
234 static void
235 e1000_get_pauseparam(struct net_device *netdev,
236                      struct ethtool_pauseparam *pause)
237 {
238         struct e1000_adapter *adapter = netdev_priv(netdev);
239         struct e1000_hw *hw = &adapter->hw;
240
241         pause->autoneg =
242                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
243
244         if (hw->fc == E1000_FC_RX_PAUSE)
245                 pause->rx_pause = 1;
246         else if (hw->fc == E1000_FC_TX_PAUSE)
247                 pause->tx_pause = 1;
248         else if (hw->fc == E1000_FC_FULL) {
249                 pause->rx_pause = 1;
250                 pause->tx_pause = 1;
251         }
252 }
253
254 static int
255 e1000_set_pauseparam(struct net_device *netdev,
256                      struct ethtool_pauseparam *pause)
257 {
258         struct e1000_adapter *adapter = netdev_priv(netdev);
259         struct e1000_hw *hw = &adapter->hw;
260         int retval = 0;
261
262         adapter->fc_autoneg = pause->autoneg;
263
264         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
265                 msleep(1);
266
267         if (pause->rx_pause && pause->tx_pause)
268                 hw->fc = E1000_FC_FULL;
269         else if (pause->rx_pause && !pause->tx_pause)
270                 hw->fc = E1000_FC_RX_PAUSE;
271         else if (!pause->rx_pause && pause->tx_pause)
272                 hw->fc = E1000_FC_TX_PAUSE;
273         else if (!pause->rx_pause && !pause->tx_pause)
274                 hw->fc = E1000_FC_NONE;
275
276         hw->original_fc = hw->fc;
277
278         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
279                 if (netif_running(adapter->netdev)) {
280                         e1000_down(adapter);
281                         e1000_up(adapter);
282                 } else
283                         e1000_reset(adapter);
284         } else
285                 retval = ((hw->media_type == e1000_media_type_fiber) ?
286                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
287
288         clear_bit(__E1000_RESETTING, &adapter->flags);
289         return retval;
290 }
291
292 static uint32_t
293 e1000_get_rx_csum(struct net_device *netdev)
294 {
295         struct e1000_adapter *adapter = netdev_priv(netdev);
296         return adapter->rx_csum;
297 }
298
299 static int
300 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
301 {
302         struct e1000_adapter *adapter = netdev_priv(netdev);
303         adapter->rx_csum = data;
304
305         if (netif_running(netdev))
306                 e1000_reinit_locked(adapter);
307         else
308                 e1000_reset(adapter);
309         return 0;
310 }
311
312 static uint32_t
313 e1000_get_tx_csum(struct net_device *netdev)
314 {
315         return (netdev->features & NETIF_F_HW_CSUM) != 0;
316 }
317
318 static int
319 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
320 {
321         struct e1000_adapter *adapter = netdev_priv(netdev);
322
323         if (adapter->hw.mac_type < e1000_82543) {
324                 if (!data)
325                         return -EINVAL;
326                 return 0;
327         }
328
329         if (data)
330                 netdev->features |= NETIF_F_HW_CSUM;
331         else
332                 netdev->features &= ~NETIF_F_HW_CSUM;
333
334         return 0;
335 }
336
337 static int
338 e1000_set_tso(struct net_device *netdev, uint32_t data)
339 {
340         struct e1000_adapter *adapter = netdev_priv(netdev);
341         if ((adapter->hw.mac_type < e1000_82544) ||
342             (adapter->hw.mac_type == e1000_82547))
343                 return data ? -EINVAL : 0;
344
345         if (data)
346                 netdev->features |= NETIF_F_TSO;
347         else
348                 netdev->features &= ~NETIF_F_TSO;
349
350         if (data)
351                 netdev->features |= NETIF_F_TSO6;
352         else
353                 netdev->features &= ~NETIF_F_TSO6;
354
355         DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
356         adapter->tso_force = true;
357         return 0;
358 }
359
360 static uint32_t
361 e1000_get_msglevel(struct net_device *netdev)
362 {
363         struct e1000_adapter *adapter = netdev_priv(netdev);
364         return adapter->msg_enable;
365 }
366
367 static void
368 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
369 {
370         struct e1000_adapter *adapter = netdev_priv(netdev);
371         adapter->msg_enable = data;
372 }
373
374 static int
375 e1000_get_regs_len(struct net_device *netdev)
376 {
377 #define E1000_REGS_LEN 32
378         return E1000_REGS_LEN * sizeof(uint32_t);
379 }
380
381 static void
382 e1000_get_regs(struct net_device *netdev,
383                struct ethtool_regs *regs, void *p)
384 {
385         struct e1000_adapter *adapter = netdev_priv(netdev);
386         struct e1000_hw *hw = &adapter->hw;
387         uint32_t *regs_buff = p;
388         uint16_t phy_data;
389
390         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
391
392         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
393
394         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
395         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
396
397         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
398         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
399         regs_buff[4]  = E1000_READ_REG(hw, RDH);
400         regs_buff[5]  = E1000_READ_REG(hw, RDT);
401         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
402
403         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
404         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
405         regs_buff[9]  = E1000_READ_REG(hw, TDH);
406         regs_buff[10] = E1000_READ_REG(hw, TDT);
407         regs_buff[11] = E1000_READ_REG(hw, TIDV);
408
409         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
410         if (hw->phy_type == e1000_phy_igp) {
411                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
412                                     IGP01E1000_PHY_AGC_A);
413                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
414                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
415                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
416                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
417                                     IGP01E1000_PHY_AGC_B);
418                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
419                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
420                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
421                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
422                                     IGP01E1000_PHY_AGC_C);
423                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
424                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
425                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
426                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
427                                     IGP01E1000_PHY_AGC_D);
428                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
429                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
430                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
431                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
432                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
433                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
434                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
435                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
436                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
437                                     IGP01E1000_PHY_PCS_INIT_REG);
438                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
439                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
440                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
441                 regs_buff[20] = 0; /* polarity correction enabled (always) */
442                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
443                 regs_buff[23] = regs_buff[18]; /* mdix mode */
444                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
445         } else {
446                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
447                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
448                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
449                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
450                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
451                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
452                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
453                 regs_buff[18] = regs_buff[13]; /* cable polarity */
454                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
455                 regs_buff[20] = regs_buff[17]; /* polarity correction */
456                 /* phy receive errors */
457                 regs_buff[22] = adapter->phy_stats.receive_errors;
458                 regs_buff[23] = regs_buff[13]; /* mdix mode */
459         }
460         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
461         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
462         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
463         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
464         if (hw->mac_type >= e1000_82540 &&
465             hw->mac_type < e1000_82571 &&
466             hw->media_type == e1000_media_type_copper) {
467                 regs_buff[26] = E1000_READ_REG(hw, MANC);
468         }
469 }
470
471 static int
472 e1000_get_eeprom_len(struct net_device *netdev)
473 {
474         struct e1000_adapter *adapter = netdev_priv(netdev);
475         return adapter->hw.eeprom.word_size * 2;
476 }
477
478 static int
479 e1000_get_eeprom(struct net_device *netdev,
480                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
481 {
482         struct e1000_adapter *adapter = netdev_priv(netdev);
483         struct e1000_hw *hw = &adapter->hw;
484         uint16_t *eeprom_buff;
485         int first_word, last_word;
486         int ret_val = 0;
487         uint16_t i;
488
489         if (eeprom->len == 0)
490                 return -EINVAL;
491
492         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
493
494         first_word = eeprom->offset >> 1;
495         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
496
497         eeprom_buff = kmalloc(sizeof(uint16_t) *
498                         (last_word - first_word + 1), GFP_KERNEL);
499         if (!eeprom_buff)
500                 return -ENOMEM;
501
502         if (hw->eeprom.type == e1000_eeprom_spi)
503                 ret_val = e1000_read_eeprom(hw, first_word,
504                                             last_word - first_word + 1,
505                                             eeprom_buff);
506         else {
507                 for (i = 0; i < last_word - first_word + 1; i++)
508                         if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
509                                                         &eeprom_buff[i])))
510                                 break;
511         }
512
513         /* Device's eeprom is always little-endian, word addressable */
514         for (i = 0; i < last_word - first_word + 1; i++)
515                 le16_to_cpus(&eeprom_buff[i]);
516
517         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
518                         eeprom->len);
519         kfree(eeprom_buff);
520
521         return ret_val;
522 }
523
524 static int
525 e1000_set_eeprom(struct net_device *netdev,
526                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
527 {
528         struct e1000_adapter *adapter = netdev_priv(netdev);
529         struct e1000_hw *hw = &adapter->hw;
530         uint16_t *eeprom_buff;
531         void *ptr;
532         int max_len, first_word, last_word, ret_val = 0;
533         uint16_t i;
534
535         if (eeprom->len == 0)
536                 return -EOPNOTSUPP;
537
538         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
539                 return -EFAULT;
540
541         max_len = hw->eeprom.word_size * 2;
542
543         first_word = eeprom->offset >> 1;
544         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
545         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
546         if (!eeprom_buff)
547                 return -ENOMEM;
548
549         ptr = (void *)eeprom_buff;
550
551         if (eeprom->offset & 1) {
552                 /* need read/modify/write of first changed EEPROM word */
553                 /* only the second byte of the word is being modified */
554                 ret_val = e1000_read_eeprom(hw, first_word, 1,
555                                             &eeprom_buff[0]);
556                 ptr++;
557         }
558         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
559                 /* need read/modify/write of last changed EEPROM word */
560                 /* only the first byte of the word is being modified */
561                 ret_val = e1000_read_eeprom(hw, last_word, 1,
562                                   &eeprom_buff[last_word - first_word]);
563         }
564
565         /* Device's eeprom is always little-endian, word addressable */
566         for (i = 0; i < last_word - first_word + 1; i++)
567                 le16_to_cpus(&eeprom_buff[i]);
568
569         memcpy(ptr, bytes, eeprom->len);
570
571         for (i = 0; i < last_word - first_word + 1; i++)
572                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
573
574         ret_val = e1000_write_eeprom(hw, first_word,
575                                      last_word - first_word + 1, eeprom_buff);
576
577         /* Update the checksum over the first part of the EEPROM if needed
578          * and flush shadow RAM for 82573 conrollers */
579         if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
580                                 (hw->mac_type == e1000_82573)))
581                 e1000_update_eeprom_checksum(hw);
582
583         kfree(eeprom_buff);
584         return ret_val;
585 }
586
587 static void
588 e1000_get_drvinfo(struct net_device *netdev,
589                        struct ethtool_drvinfo *drvinfo)
590 {
591         struct e1000_adapter *adapter = netdev_priv(netdev);
592         char firmware_version[32];
593         uint16_t eeprom_data;
594
595         strncpy(drvinfo->driver,  e1000_driver_name, 32);
596         strncpy(drvinfo->version, e1000_driver_version, 32);
597
598         /* EEPROM image version # is reported as firmware version # for
599          * 8257{1|2|3} controllers */
600         e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
601         switch (adapter->hw.mac_type) {
602         case e1000_82571:
603         case e1000_82572:
604         case e1000_82573:
605         case e1000_80003es2lan:
606         case e1000_ich8lan:
607                 sprintf(firmware_version, "%d.%d-%d",
608                         (eeprom_data & 0xF000) >> 12,
609                         (eeprom_data & 0x0FF0) >> 4,
610                         eeprom_data & 0x000F);
611                 break;
612         default:
613                 sprintf(firmware_version, "N/A");
614         }
615
616         strncpy(drvinfo->fw_version, firmware_version, 32);
617         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
618         drvinfo->regdump_len = e1000_get_regs_len(netdev);
619         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
620 }
621
622 static void
623 e1000_get_ringparam(struct net_device *netdev,
624                     struct ethtool_ringparam *ring)
625 {
626         struct e1000_adapter *adapter = netdev_priv(netdev);
627         e1000_mac_type mac_type = adapter->hw.mac_type;
628         struct e1000_tx_ring *txdr = adapter->tx_ring;
629         struct e1000_rx_ring *rxdr = adapter->rx_ring;
630
631         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
632                 E1000_MAX_82544_RXD;
633         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
634                 E1000_MAX_82544_TXD;
635         ring->rx_mini_max_pending = 0;
636         ring->rx_jumbo_max_pending = 0;
637         ring->rx_pending = rxdr->count;
638         ring->tx_pending = txdr->count;
639         ring->rx_mini_pending = 0;
640         ring->rx_jumbo_pending = 0;
641 }
642
643 static int
644 e1000_set_ringparam(struct net_device *netdev,
645                     struct ethtool_ringparam *ring)
646 {
647         struct e1000_adapter *adapter = netdev_priv(netdev);
648         e1000_mac_type mac_type = adapter->hw.mac_type;
649         struct e1000_tx_ring *txdr, *tx_old;
650         struct e1000_rx_ring *rxdr, *rx_old;
651         int i, err;
652
653         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
654                 return -EINVAL;
655
656         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
657                 msleep(1);
658
659         if (netif_running(adapter->netdev))
660                 e1000_down(adapter);
661
662         tx_old = adapter->tx_ring;
663         rx_old = adapter->rx_ring;
664
665         err = -ENOMEM;
666         txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
667         if (!txdr)
668                 goto err_alloc_tx;
669
670         rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
671         if (!rxdr)
672                 goto err_alloc_rx;
673
674         adapter->tx_ring = txdr;
675         adapter->rx_ring = rxdr;
676
677         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
678         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
679                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
680         rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
681
682         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
683         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
684                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
685         txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
686
687         for (i = 0; i < adapter->num_tx_queues; i++)
688                 txdr[i].count = txdr->count;
689         for (i = 0; i < adapter->num_rx_queues; i++)
690                 rxdr[i].count = rxdr->count;
691
692         if (netif_running(adapter->netdev)) {
693                 /* Try to get new resources before deleting old */
694                 if ((err = e1000_setup_all_rx_resources(adapter)))
695                         goto err_setup_rx;
696                 if ((err = e1000_setup_all_tx_resources(adapter)))
697                         goto err_setup_tx;
698
699                 /* save the new, restore the old in order to free it,
700                  * then restore the new back again */
701
702                 adapter->rx_ring = rx_old;
703                 adapter->tx_ring = tx_old;
704                 e1000_free_all_rx_resources(adapter);
705                 e1000_free_all_tx_resources(adapter);
706                 kfree(tx_old);
707                 kfree(rx_old);
708                 adapter->rx_ring = rxdr;
709                 adapter->tx_ring = txdr;
710                 if ((err = e1000_up(adapter)))
711                         goto err_setup;
712         }
713
714         clear_bit(__E1000_RESETTING, &adapter->flags);
715         return 0;
716 err_setup_tx:
717         e1000_free_all_rx_resources(adapter);
718 err_setup_rx:
719         adapter->rx_ring = rx_old;
720         adapter->tx_ring = tx_old;
721         kfree(rxdr);
722 err_alloc_rx:
723         kfree(txdr);
724 err_alloc_tx:
725         e1000_up(adapter);
726 err_setup:
727         clear_bit(__E1000_RESETTING, &adapter->flags);
728         return err;
729 }
730
731 static bool reg_pattern_test(struct e1000_adapter *adapter, uint64_t *data,
732                              int reg, uint32_t mask, uint32_t write)
733 {
734         static const uint32_t test[] =
735                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
736         uint8_t __iomem *address = adapter->hw.hw_addr + reg;
737         uint32_t read;
738         int i;
739
740         for (i = 0; i < ARRAY_SIZE(test); i++) {
741                 writel(write & test[i], address);
742                 read = readl(address);
743                 if (read != (write & test[i] & mask)) {
744                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: "
745                                 "got 0x%08X expected 0x%08X\n",
746                                 reg, read, (write & test[i] & mask));
747                         *data = reg;
748                         return true;
749                 }
750         }
751         return false;
752 }
753
754 static bool reg_set_and_check(struct e1000_adapter *adapter, uint64_t *data,
755                               int reg, uint32_t mask, uint32_t write)
756 {
757         uint8_t __iomem *address = adapter->hw.hw_addr + reg;
758         uint32_t read;
759
760         writel(write & mask, address);
761         read = readl(address);
762         if ((read & mask) != (write & mask)) {
763                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: "
764                         "got 0x%08X expected 0x%08X\n",
765                         reg, (read & mask), (write & mask));
766                 *data = reg;
767                 return true;
768         }
769         return false;
770 }
771
772 #define REG_PATTERN_TEST(reg, mask, write)                           \
773         do {                                                         \
774                 if (reg_pattern_test(adapter, data,                  \
775                              (adapter->hw.mac_type >= e1000_82543)   \
776                              ? E1000_##reg : E1000_82542_##reg,      \
777                              mask, write))                           \
778                         return 1;                                    \
779         } while (0)
780
781 #define REG_SET_AND_CHECK(reg, mask, write)                          \
782         do {                                                         \
783                 if (reg_set_and_check(adapter, data,                 \
784                               (adapter->hw.mac_type >= e1000_82543)  \
785                               ? E1000_##reg : E1000_82542_##reg,     \
786                               mask, write))                          \
787                         return 1;                                    \
788         } while (0)
789
790 static int
791 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
792 {
793         uint32_t value, before, after;
794         uint32_t i, toggle;
795
796         /* The status register is Read Only, so a write should fail.
797          * Some bits that get toggled are ignored.
798          */
799         switch (adapter->hw.mac_type) {
800         /* there are several bits on newer hardware that are r/w */
801         case e1000_82571:
802         case e1000_82572:
803         case e1000_80003es2lan:
804                 toggle = 0x7FFFF3FF;
805                 break;
806         case e1000_82573:
807         case e1000_ich8lan:
808                 toggle = 0x7FFFF033;
809                 break;
810         default:
811                 toggle = 0xFFFFF833;
812                 break;
813         }
814
815         before = E1000_READ_REG(&adapter->hw, STATUS);
816         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
817         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
818         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
819         if (value != after) {
820                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
821                         "0x%08X expected: 0x%08X\n", after, value);
822                 *data = 1;
823                 return 1;
824         }
825         /* restore previous status */
826         E1000_WRITE_REG(&adapter->hw, STATUS, before);
827
828         if (adapter->hw.mac_type != e1000_ich8lan) {
829                 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
830                 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
831                 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
832                 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
833         }
834
835         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
836         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
837         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
838         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
839         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
840         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
841         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
842         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
843         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
844         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
845
846         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
847
848         before = (adapter->hw.mac_type == e1000_ich8lan ?
849                   0x06C3B33E : 0x06DFB3FE);
850         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
851         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
852
853         if (adapter->hw.mac_type >= e1000_82543) {
854
855                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
856                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
857                 if (adapter->hw.mac_type != e1000_ich8lan)
858                         REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
859                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
860                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
861                 value = (adapter->hw.mac_type == e1000_ich8lan ?
862                          E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
863                 for (i = 0; i < value; i++) {
864                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
865                                          0xFFFFFFFF);
866                 }
867
868         } else {
869
870                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
871                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
872                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
873                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
874
875         }
876
877         value = (adapter->hw.mac_type == e1000_ich8lan ?
878                         E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
879         for (i = 0; i < value; i++)
880                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
881
882         *data = 0;
883         return 0;
884 }
885
886 static int
887 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
888 {
889         uint16_t temp;
890         uint16_t checksum = 0;
891         uint16_t i;
892
893         *data = 0;
894         /* Read and add up the contents of the EEPROM */
895         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
896                 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
897                         *data = 1;
898                         break;
899                 }
900                 checksum += temp;
901         }
902
903         /* If Checksum is not Correct return error else test passed */
904         if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
905                 *data = 2;
906
907         return *data;
908 }
909
910 static irqreturn_t
911 e1000_test_intr(int irq, void *data)
912 {
913         struct net_device *netdev = (struct net_device *) data;
914         struct e1000_adapter *adapter = netdev_priv(netdev);
915
916         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
917
918         return IRQ_HANDLED;
919 }
920
921 static int
922 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
923 {
924         struct net_device *netdev = adapter->netdev;
925         uint32_t mask, i = 0;
926         bool shared_int = true;
927         uint32_t irq = adapter->pdev->irq;
928
929         *data = 0;
930
931         /* NOTE: we don't test MSI interrupts here, yet */
932         /* Hook up test interrupt handler just for this test */
933         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
934                          netdev))
935                 shared_int = false;
936         else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
937                  netdev->name, netdev)) {
938                 *data = 1;
939                 return -1;
940         }
941         DPRINTK(HW, INFO, "testing %s interrupt\n",
942                 (shared_int ? "shared" : "unshared"));
943
944         /* Disable all the interrupts */
945         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
946         msleep(10);
947
948         /* Test each interrupt */
949         for (; i < 10; i++) {
950
951                 if (adapter->hw.mac_type == e1000_ich8lan && i == 8)
952                         continue;
953
954                 /* Interrupt to test */
955                 mask = 1 << i;
956
957                 if (!shared_int) {
958                         /* Disable the interrupt to be reported in
959                          * the cause register and then force the same
960                          * interrupt and see if one gets posted.  If
961                          * an interrupt was posted to the bus, the
962                          * test failed.
963                          */
964                         adapter->test_icr = 0;
965                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
966                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
967                         msleep(10);
968
969                         if (adapter->test_icr & mask) {
970                                 *data = 3;
971                                 break;
972                         }
973                 }
974
975                 /* Enable the interrupt to be reported in
976                  * the cause register and then force the same
977                  * interrupt and see if one gets posted.  If
978                  * an interrupt was not posted to the bus, the
979                  * test failed.
980                  */
981                 adapter->test_icr = 0;
982                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
983                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
984                 msleep(10);
985
986                 if (!(adapter->test_icr & mask)) {
987                         *data = 4;
988                         break;
989                 }
990
991                 if (!shared_int) {
992                         /* Disable the other interrupts to be reported in
993                          * the cause register and then force the other
994                          * interrupts and see if any get posted.  If
995                          * an interrupt was posted to the bus, the
996                          * test failed.
997                          */
998                         adapter->test_icr = 0;
999                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
1000                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
1001                         msleep(10);
1002
1003                         if (adapter->test_icr) {
1004                                 *data = 5;
1005                                 break;
1006                         }
1007                 }
1008         }
1009
1010         /* Disable all the interrupts */
1011         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
1012         msleep(10);
1013
1014         /* Unhook test interrupt handler */
1015         free_irq(irq, netdev);
1016
1017         return *data;
1018 }
1019
1020 static void
1021 e1000_free_desc_rings(struct e1000_adapter *adapter)
1022 {
1023         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1024         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1025         struct pci_dev *pdev = adapter->pdev;
1026         int i;
1027
1028         if (txdr->desc && txdr->buffer_info) {
1029                 for (i = 0; i < txdr->count; i++) {
1030                         if (txdr->buffer_info[i].dma)
1031                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
1032                                                  txdr->buffer_info[i].length,
1033                                                  PCI_DMA_TODEVICE);
1034                         if (txdr->buffer_info[i].skb)
1035                                 dev_kfree_skb(txdr->buffer_info[i].skb);
1036                 }
1037         }
1038
1039         if (rxdr->desc && rxdr->buffer_info) {
1040                 for (i = 0; i < rxdr->count; i++) {
1041                         if (rxdr->buffer_info[i].dma)
1042                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
1043                                                  rxdr->buffer_info[i].length,
1044                                                  PCI_DMA_FROMDEVICE);
1045                         if (rxdr->buffer_info[i].skb)
1046                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
1047                 }
1048         }
1049
1050         if (txdr->desc) {
1051                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
1052                 txdr->desc = NULL;
1053         }
1054         if (rxdr->desc) {
1055                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
1056                 rxdr->desc = NULL;
1057         }
1058
1059         kfree(txdr->buffer_info);
1060         txdr->buffer_info = NULL;
1061         kfree(rxdr->buffer_info);
1062         rxdr->buffer_info = NULL;
1063
1064         return;
1065 }
1066
1067 static int
1068 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1069 {
1070         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1071         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1072         struct pci_dev *pdev = adapter->pdev;
1073         uint32_t rctl;
1074         int i, ret_val;
1075
1076         /* Setup Tx descriptor ring and Tx buffers */
1077
1078         if (!txdr->count)
1079                 txdr->count = E1000_DEFAULT_TXD;
1080
1081         if (!(txdr->buffer_info = kcalloc(txdr->count,
1082                                           sizeof(struct e1000_buffer),
1083                                           GFP_KERNEL))) {
1084                 ret_val = 1;
1085                 goto err_nomem;
1086         }
1087
1088         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1089         txdr->size = ALIGN(txdr->size, 4096);
1090         if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size,
1091                                                 &txdr->dma))) {
1092                 ret_val = 2;
1093                 goto err_nomem;
1094         }
1095         memset(txdr->desc, 0, txdr->size);
1096         txdr->next_to_use = txdr->next_to_clean = 0;
1097
1098         E1000_WRITE_REG(&adapter->hw, TDBAL,
1099                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1100         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1101         E1000_WRITE_REG(&adapter->hw, TDLEN,
1102                         txdr->count * sizeof(struct e1000_tx_desc));
1103         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1104         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1105         E1000_WRITE_REG(&adapter->hw, TCTL,
1106                         E1000_TCTL_PSP | E1000_TCTL_EN |
1107                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1108                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1109
1110         for (i = 0; i < txdr->count; i++) {
1111                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1112                 struct sk_buff *skb;
1113                 unsigned int size = 1024;
1114
1115                 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1116                         ret_val = 3;
1117                         goto err_nomem;
1118                 }
1119                 skb_put(skb, size);
1120                 txdr->buffer_info[i].skb = skb;
1121                 txdr->buffer_info[i].length = skb->len;
1122                 txdr->buffer_info[i].dma =
1123                         pci_map_single(pdev, skb->data, skb->len,
1124                                        PCI_DMA_TODEVICE);
1125                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1126                 tx_desc->lower.data = cpu_to_le32(skb->len);
1127                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1128                                                    E1000_TXD_CMD_IFCS |
1129                                                    E1000_TXD_CMD_RPS);
1130                 tx_desc->upper.data = 0;
1131         }
1132
1133         /* Setup Rx descriptor ring and Rx buffers */
1134
1135         if (!rxdr->count)
1136                 rxdr->count = E1000_DEFAULT_RXD;
1137
1138         if (!(rxdr->buffer_info = kcalloc(rxdr->count,
1139                                           sizeof(struct e1000_buffer),
1140                                           GFP_KERNEL))) {
1141                 ret_val = 4;
1142                 goto err_nomem;
1143         }
1144
1145         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1146         if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1147                 ret_val = 5;
1148                 goto err_nomem;
1149         }
1150         memset(rxdr->desc, 0, rxdr->size);
1151         rxdr->next_to_use = rxdr->next_to_clean = 0;
1152
1153         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1154         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1155         E1000_WRITE_REG(&adapter->hw, RDBAL,
1156                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1157         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1158         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1159         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1160         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1161         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1162                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1163                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1164         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1165
1166         for (i = 0; i < rxdr->count; i++) {
1167                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1168                 struct sk_buff *skb;
1169
1170                 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1171                                 GFP_KERNEL))) {
1172                         ret_val = 6;
1173                         goto err_nomem;
1174                 }
1175                 skb_reserve(skb, NET_IP_ALIGN);
1176                 rxdr->buffer_info[i].skb = skb;
1177                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1178                 rxdr->buffer_info[i].dma =
1179                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1180                                        PCI_DMA_FROMDEVICE);
1181                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1182                 memset(skb->data, 0x00, skb->len);
1183         }
1184
1185         return 0;
1186
1187 err_nomem:
1188         e1000_free_desc_rings(adapter);
1189         return ret_val;
1190 }
1191
1192 static void
1193 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1194 {
1195         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1196         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1197         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1198         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1199         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1200 }
1201
1202 static void
1203 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1204 {
1205         uint16_t phy_reg;
1206
1207         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1208          * Extended PHY Specific Control Register to 25MHz clock.  This
1209          * value defaults back to a 2.5MHz clock when the PHY is reset.
1210          */
1211         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1212         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1213         e1000_write_phy_reg(&adapter->hw,
1214                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1215
1216         /* In addition, because of the s/w reset above, we need to enable
1217          * CRS on TX.  This must be set for both full and half duplex
1218          * operation.
1219          */
1220         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1221         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1222         e1000_write_phy_reg(&adapter->hw,
1223                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1224 }
1225
1226 static int
1227 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1228 {
1229         uint32_t ctrl_reg;
1230         uint16_t phy_reg;
1231
1232         /* Setup the Device Control Register for PHY loopback test. */
1233
1234         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1235         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1236                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1237                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1238                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1239                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1240
1241         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1242
1243         /* Read the PHY Specific Control Register (0x10) */
1244         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1245
1246         /* Clear Auto-Crossover bits in PHY Specific Control Register
1247          * (bits 6:5).
1248          */
1249         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1250         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1251
1252         /* Perform software reset on the PHY */
1253         e1000_phy_reset(&adapter->hw);
1254
1255         /* Have to setup TX_CLK and TX_CRS after software reset */
1256         e1000_phy_reset_clk_and_crs(adapter);
1257
1258         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1259
1260         /* Wait for reset to complete. */
1261         udelay(500);
1262
1263         /* Have to setup TX_CLK and TX_CRS after software reset */
1264         e1000_phy_reset_clk_and_crs(adapter);
1265
1266         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1267         e1000_phy_disable_receiver(adapter);
1268
1269         /* Set the loopback bit in the PHY control register. */
1270         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1271         phy_reg |= MII_CR_LOOPBACK;
1272         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1273
1274         /* Setup TX_CLK and TX_CRS one more time. */
1275         e1000_phy_reset_clk_and_crs(adapter);
1276
1277         /* Check Phy Configuration */
1278         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1279         if (phy_reg != 0x4100)
1280                  return 9;
1281
1282         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1283         if (phy_reg != 0x0070)
1284                 return 10;
1285
1286         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1287         if (phy_reg != 0x001A)
1288                 return 11;
1289
1290         return 0;
1291 }
1292
1293 static int
1294 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1295 {
1296         uint32_t ctrl_reg = 0;
1297         uint32_t stat_reg = 0;
1298
1299         adapter->hw.autoneg = false;
1300
1301         if (adapter->hw.phy_type == e1000_phy_m88) {
1302                 /* Auto-MDI/MDIX Off */
1303                 e1000_write_phy_reg(&adapter->hw,
1304                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1305                 /* reset to update Auto-MDI/MDIX */
1306                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1307                 /* autoneg off */
1308                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1309         } else if (adapter->hw.phy_type == e1000_phy_gg82563)
1310                 e1000_write_phy_reg(&adapter->hw,
1311                                     GG82563_PHY_KMRN_MODE_CTRL,
1312                                     0x1CC);
1313
1314         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1315
1316         if (adapter->hw.phy_type == e1000_phy_ife) {
1317                 /* force 100, set loopback */
1318                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x6100);
1319
1320                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1321                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1322                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1323                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1324                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1325                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1326         } else {
1327                 /* force 1000, set loopback */
1328                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1329
1330                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1331                 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1332                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1333                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1334                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1335                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1336                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1337         }
1338
1339         if (adapter->hw.media_type == e1000_media_type_copper &&
1340            adapter->hw.phy_type == e1000_phy_m88)
1341                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1342         else {
1343                 /* Set the ILOS bit on the fiber Nic is half
1344                  * duplex link is detected. */
1345                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1346                 if ((stat_reg & E1000_STATUS_FD) == 0)
1347                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1348         }
1349
1350         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1351
1352         /* Disable the receiver on the PHY so when a cable is plugged in, the
1353          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1354          */
1355         if (adapter->hw.phy_type == e1000_phy_m88)
1356                 e1000_phy_disable_receiver(adapter);
1357
1358         udelay(500);
1359
1360         return 0;
1361 }
1362
1363 static int
1364 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1365 {
1366         uint16_t phy_reg = 0;
1367         uint16_t count = 0;
1368
1369         switch (adapter->hw.mac_type) {
1370         case e1000_82543:
1371                 if (adapter->hw.media_type == e1000_media_type_copper) {
1372                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1373                          * Some PHY registers get corrupted at random, so
1374                          * attempt this 10 times.
1375                          */
1376                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1377                               count++ < 10);
1378                         if (count < 11)
1379                                 return 0;
1380                 }
1381                 break;
1382
1383         case e1000_82544:
1384         case e1000_82540:
1385         case e1000_82545:
1386         case e1000_82545_rev_3:
1387         case e1000_82546:
1388         case e1000_82546_rev_3:
1389         case e1000_82541:
1390         case e1000_82541_rev_2:
1391         case e1000_82547:
1392         case e1000_82547_rev_2:
1393         case e1000_82571:
1394         case e1000_82572:
1395         case e1000_82573:
1396         case e1000_80003es2lan:
1397         case e1000_ich8lan:
1398                 return e1000_integrated_phy_loopback(adapter);
1399                 break;
1400
1401         default:
1402                 /* Default PHY loopback work is to read the MII
1403                  * control register and assert bit 14 (loopback mode).
1404                  */
1405                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1406                 phy_reg |= MII_CR_LOOPBACK;
1407                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1408                 return 0;
1409                 break;
1410         }
1411
1412         return 8;
1413 }
1414
1415 static int
1416 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1417 {
1418         struct e1000_hw *hw = &adapter->hw;
1419         uint32_t rctl;
1420
1421         if (hw->media_type == e1000_media_type_fiber ||
1422             hw->media_type == e1000_media_type_internal_serdes) {
1423                 switch (hw->mac_type) {
1424                 case e1000_82545:
1425                 case e1000_82546:
1426                 case e1000_82545_rev_3:
1427                 case e1000_82546_rev_3:
1428                         return e1000_set_phy_loopback(adapter);
1429                         break;
1430                 case e1000_82571:
1431                 case e1000_82572:
1432 #define E1000_SERDES_LB_ON 0x410
1433                         e1000_set_phy_loopback(adapter);
1434                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1435                         msleep(10);
1436                         return 0;
1437                         break;
1438                 default:
1439                         rctl = E1000_READ_REG(hw, RCTL);
1440                         rctl |= E1000_RCTL_LBM_TCVR;
1441                         E1000_WRITE_REG(hw, RCTL, rctl);
1442                         return 0;
1443                 }
1444         } else if (hw->media_type == e1000_media_type_copper)
1445                 return e1000_set_phy_loopback(adapter);
1446
1447         return 7;
1448 }
1449
1450 static void
1451 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1452 {
1453         struct e1000_hw *hw = &adapter->hw;
1454         uint32_t rctl;
1455         uint16_t phy_reg;
1456
1457         rctl = E1000_READ_REG(hw, RCTL);
1458         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1459         E1000_WRITE_REG(hw, RCTL, rctl);
1460
1461         switch (hw->mac_type) {
1462         case e1000_82571:
1463         case e1000_82572:
1464                 if (hw->media_type == e1000_media_type_fiber ||
1465                     hw->media_type == e1000_media_type_internal_serdes) {
1466 #define E1000_SERDES_LB_OFF 0x400
1467                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1468                         msleep(10);
1469                         break;
1470                 }
1471                 /* Fall Through */
1472         case e1000_82545:
1473         case e1000_82546:
1474         case e1000_82545_rev_3:
1475         case e1000_82546_rev_3:
1476         default:
1477                 hw->autoneg = true;
1478                 if (hw->phy_type == e1000_phy_gg82563)
1479                         e1000_write_phy_reg(hw,
1480                                             GG82563_PHY_KMRN_MODE_CTRL,
1481                                             0x180);
1482                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1483                 if (phy_reg & MII_CR_LOOPBACK) {
1484                         phy_reg &= ~MII_CR_LOOPBACK;
1485                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1486                         e1000_phy_reset(hw);
1487                 }
1488                 break;
1489         }
1490 }
1491
1492 static void
1493 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1494 {
1495         memset(skb->data, 0xFF, frame_size);
1496         frame_size &= ~1;
1497         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1498         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1499         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1500 }
1501
1502 static int
1503 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1504 {
1505         frame_size &= ~1;
1506         if (*(skb->data + 3) == 0xFF) {
1507                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1508                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1509                         return 0;
1510                 }
1511         }
1512         return 13;
1513 }
1514
1515 static int
1516 e1000_run_loopback_test(struct e1000_adapter *adapter)
1517 {
1518         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1519         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1520         struct pci_dev *pdev = adapter->pdev;
1521         int i, j, k, l, lc, good_cnt, ret_val=0;
1522         unsigned long time;
1523
1524         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1525
1526         /* Calculate the loop count based on the largest descriptor ring
1527          * The idea is to wrap the largest ring a number of times using 64
1528          * send/receive pairs during each loop
1529          */
1530
1531         if (rxdr->count <= txdr->count)
1532                 lc = ((txdr->count / 64) * 2) + 1;
1533         else
1534                 lc = ((rxdr->count / 64) * 2) + 1;
1535
1536         k = l = 0;
1537         for (j = 0; j <= lc; j++) { /* loop count loop */
1538                 for (i = 0; i < 64; i++) { /* send the packets */
1539                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1540                                         1024);
1541                         pci_dma_sync_single_for_device(pdev,
1542                                         txdr->buffer_info[k].dma,
1543                                         txdr->buffer_info[k].length,
1544                                         PCI_DMA_TODEVICE);
1545                         if (unlikely(++k == txdr->count)) k = 0;
1546                 }
1547                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1548                 msleep(200);
1549                 time = jiffies; /* set the start time for the receive */
1550                 good_cnt = 0;
1551                 do { /* receive the sent packets */
1552                         pci_dma_sync_single_for_cpu(pdev,
1553                                         rxdr->buffer_info[l].dma,
1554                                         rxdr->buffer_info[l].length,
1555                                         PCI_DMA_FROMDEVICE);
1556
1557                         ret_val = e1000_check_lbtest_frame(
1558                                         rxdr->buffer_info[l].skb,
1559                                         1024);
1560                         if (!ret_val)
1561                                 good_cnt++;
1562                         if (unlikely(++l == rxdr->count)) l = 0;
1563                         /* time + 20 msecs (200 msecs on 2.4) is more than
1564                          * enough time to complete the receives, if it's
1565                          * exceeded, break and error off
1566                          */
1567                 } while (good_cnt < 64 && jiffies < (time + 20));
1568                 if (good_cnt != 64) {
1569                         ret_val = 13; /* ret_val is the same as mis-compare */
1570                         break;
1571                 }
1572                 if (jiffies >= (time + 2)) {
1573                         ret_val = 14; /* error code for time out error */
1574                         break;
1575                 }
1576         } /* end loop count loop */
1577         return ret_val;
1578 }
1579
1580 static int
1581 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1582 {
1583         /* PHY loopback cannot be performed if SoL/IDER
1584          * sessions are active */
1585         if (e1000_check_phy_reset_block(&adapter->hw)) {
1586                 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1587                         "when SoL/IDER is active.\n");
1588                 *data = 0;
1589                 goto out;
1590         }
1591
1592         if ((*data = e1000_setup_desc_rings(adapter)))
1593                 goto out;
1594         if ((*data = e1000_setup_loopback_test(adapter)))
1595                 goto err_loopback;
1596         *data = e1000_run_loopback_test(adapter);
1597         e1000_loopback_cleanup(adapter);
1598
1599 err_loopback:
1600         e1000_free_desc_rings(adapter);
1601 out:
1602         return *data;
1603 }
1604
1605 static int
1606 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1607 {
1608         *data = 0;
1609         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1610                 int i = 0;
1611                 adapter->hw.serdes_link_down = true;
1612
1613                 /* On some blade server designs, link establishment
1614                  * could take as long as 2-3 minutes */
1615                 do {
1616                         e1000_check_for_link(&adapter->hw);
1617                         if (!adapter->hw.serdes_link_down)
1618                                 return *data;
1619                         msleep(20);
1620                 } while (i++ < 3750);
1621
1622                 *data = 1;
1623         } else {
1624                 e1000_check_for_link(&adapter->hw);
1625                 if (adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1626                         msleep(4000);
1627
1628                 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1629                         *data = 1;
1630                 }
1631         }
1632         return *data;
1633 }
1634
1635 static int
1636 e1000_get_sset_count(struct net_device *netdev, int sset)
1637 {
1638         switch (sset) {
1639         case ETH_SS_TEST:
1640                 return E1000_TEST_LEN;
1641         case ETH_SS_STATS:
1642                 return E1000_STATS_LEN;
1643         default:
1644                 return -EOPNOTSUPP;
1645         }
1646 }
1647
1648 static void
1649 e1000_diag_test(struct net_device *netdev,
1650                    struct ethtool_test *eth_test, uint64_t *data)
1651 {
1652         struct e1000_adapter *adapter = netdev_priv(netdev);
1653         bool if_running = netif_running(netdev);
1654
1655         set_bit(__E1000_TESTING, &adapter->flags);
1656         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1657                 /* Offline tests */
1658
1659                 /* save speed, duplex, autoneg settings */
1660                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1661                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1662                 uint8_t autoneg = adapter->hw.autoneg;
1663
1664                 DPRINTK(HW, INFO, "offline testing starting\n");
1665
1666                 /* Link test performed before hardware reset so autoneg doesn't
1667                  * interfere with test result */
1668                 if (e1000_link_test(adapter, &data[4]))
1669                         eth_test->flags |= ETH_TEST_FL_FAILED;
1670
1671                 if (if_running)
1672                         /* indicate we're in test mode */
1673                         dev_close(netdev);
1674                 else
1675                         e1000_reset(adapter);
1676
1677                 if (e1000_reg_test(adapter, &data[0]))
1678                         eth_test->flags |= ETH_TEST_FL_FAILED;
1679
1680                 e1000_reset(adapter);
1681                 if (e1000_eeprom_test(adapter, &data[1]))
1682                         eth_test->flags |= ETH_TEST_FL_FAILED;
1683
1684                 e1000_reset(adapter);
1685                 if (e1000_intr_test(adapter, &data[2]))
1686                         eth_test->flags |= ETH_TEST_FL_FAILED;
1687
1688                 e1000_reset(adapter);
1689                 /* make sure the phy is powered up */
1690                 e1000_power_up_phy(adapter);
1691                 if (e1000_loopback_test(adapter, &data[3]))
1692                         eth_test->flags |= ETH_TEST_FL_FAILED;
1693
1694                 /* restore speed, duplex, autoneg settings */
1695                 adapter->hw.autoneg_advertised = autoneg_advertised;
1696                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1697                 adapter->hw.autoneg = autoneg;
1698
1699                 e1000_reset(adapter);
1700                 clear_bit(__E1000_TESTING, &adapter->flags);
1701                 if (if_running)
1702                         dev_open(netdev);
1703         } else {
1704                 DPRINTK(HW, INFO, "online testing starting\n");
1705                 /* Online tests */
1706                 if (e1000_link_test(adapter, &data[4]))
1707                         eth_test->flags |= ETH_TEST_FL_FAILED;
1708
1709                 /* Online tests aren't run; pass by default */
1710                 data[0] = 0;
1711                 data[1] = 0;
1712                 data[2] = 0;
1713                 data[3] = 0;
1714
1715                 clear_bit(__E1000_TESTING, &adapter->flags);
1716         }
1717         msleep_interruptible(4 * 1000);
1718 }
1719
1720 static int e1000_wol_exclusion(struct e1000_adapter *adapter, struct ethtool_wolinfo *wol)
1721 {
1722         struct e1000_hw *hw = &adapter->hw;
1723         int retval = 1; /* fail by default */
1724
1725         switch (hw->device_id) {
1726         case E1000_DEV_ID_82542:
1727         case E1000_DEV_ID_82543GC_FIBER:
1728         case E1000_DEV_ID_82543GC_COPPER:
1729         case E1000_DEV_ID_82544EI_FIBER:
1730         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1731         case E1000_DEV_ID_82545EM_FIBER:
1732         case E1000_DEV_ID_82545EM_COPPER:
1733         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1734         case E1000_DEV_ID_82546GB_PCIE:
1735         case E1000_DEV_ID_82571EB_SERDES_QUAD:
1736                 /* these don't support WoL at all */
1737                 wol->supported = 0;
1738                 break;
1739         case E1000_DEV_ID_82546EB_FIBER:
1740         case E1000_DEV_ID_82546GB_FIBER:
1741         case E1000_DEV_ID_82571EB_FIBER:
1742         case E1000_DEV_ID_82571EB_SERDES:
1743         case E1000_DEV_ID_82571EB_COPPER:
1744                 /* Wake events not supported on port B */
1745                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1746                         wol->supported = 0;
1747                         break;
1748                 }
1749                 /* return success for non excluded adapter ports */
1750                 retval = 0;
1751                 break;
1752         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1753         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1754         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1755         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1756         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1757                 /* quad port adapters only support WoL on port A */
1758                 if (!adapter->quad_port_a) {
1759                         wol->supported = 0;
1760                         break;
1761                 }
1762                 /* return success for non excluded adapter ports */
1763                 retval = 0;
1764                 break;
1765         default:
1766                 /* dual port cards only support WoL on port A from now on
1767                  * unless it was enabled in the eeprom for port B
1768                  * so exclude FUNC_1 ports from having WoL enabled */
1769                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1 &&
1770                     !adapter->eeprom_wol) {
1771                         wol->supported = 0;
1772                         break;
1773                 }
1774
1775                 retval = 0;
1776         }
1777
1778         return retval;
1779 }
1780
1781 static void
1782 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1783 {
1784         struct e1000_adapter *adapter = netdev_priv(netdev);
1785
1786         wol->supported = WAKE_UCAST | WAKE_MCAST |
1787                          WAKE_BCAST | WAKE_MAGIC;
1788         wol->wolopts = 0;
1789
1790         /* this function will set ->supported = 0 and return 1 if wol is not
1791          * supported by this hardware */
1792         if (e1000_wol_exclusion(adapter, wol))
1793                 return;
1794
1795         /* apply any specific unsupported masks here */
1796         switch (adapter->hw.device_id) {
1797         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1798                 /* KSP3 does not suppport UCAST wake-ups */
1799                 wol->supported &= ~WAKE_UCAST;
1800
1801                 if (adapter->wol & E1000_WUFC_EX)
1802                         DPRINTK(DRV, ERR, "Interface does not support "
1803                         "directed (unicast) frame wake-up packets\n");
1804                 break;
1805         default:
1806                 break;
1807         }
1808
1809         if (adapter->wol & E1000_WUFC_EX)
1810                 wol->wolopts |= WAKE_UCAST;
1811         if (adapter->wol & E1000_WUFC_MC)
1812                 wol->wolopts |= WAKE_MCAST;
1813         if (adapter->wol & E1000_WUFC_BC)
1814                 wol->wolopts |= WAKE_BCAST;
1815         if (adapter->wol & E1000_WUFC_MAG)
1816                 wol->wolopts |= WAKE_MAGIC;
1817
1818         return;
1819 }
1820
1821 static int
1822 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1823 {
1824         struct e1000_adapter *adapter = netdev_priv(netdev);
1825         struct e1000_hw *hw = &adapter->hw;
1826
1827         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1828                 return -EOPNOTSUPP;
1829
1830         if (e1000_wol_exclusion(adapter, wol))
1831                 return wol->wolopts ? -EOPNOTSUPP : 0;
1832
1833         switch (hw->device_id) {
1834         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1835                 if (wol->wolopts & WAKE_UCAST) {
1836                         DPRINTK(DRV, ERR, "Interface does not support "
1837                         "directed (unicast) frame wake-up packets\n");
1838                         return -EOPNOTSUPP;
1839                 }
1840                 break;
1841         default:
1842                 break;
1843         }
1844
1845         /* these settings will always override what we currently have */
1846         adapter->wol = 0;
1847
1848         if (wol->wolopts & WAKE_UCAST)
1849                 adapter->wol |= E1000_WUFC_EX;
1850         if (wol->wolopts & WAKE_MCAST)
1851                 adapter->wol |= E1000_WUFC_MC;
1852         if (wol->wolopts & WAKE_BCAST)
1853                 adapter->wol |= E1000_WUFC_BC;
1854         if (wol->wolopts & WAKE_MAGIC)
1855                 adapter->wol |= E1000_WUFC_MAG;
1856
1857         return 0;
1858 }
1859
1860 /* toggle LED 4 times per second = 2 "blinks" per second */
1861 #define E1000_ID_INTERVAL       (HZ/4)
1862
1863 /* bit defines for adapter->led_status */
1864 #define E1000_LED_ON            0
1865
1866 static void
1867 e1000_led_blink_callback(unsigned long data)
1868 {
1869         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1870
1871         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1872                 e1000_led_off(&adapter->hw);
1873         else
1874                 e1000_led_on(&adapter->hw);
1875
1876         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1877 }
1878
1879 static int
1880 e1000_phys_id(struct net_device *netdev, uint32_t data)
1881 {
1882         struct e1000_adapter *adapter = netdev_priv(netdev);
1883
1884         if (!data)
1885                 data = INT_MAX;
1886
1887         if (adapter->hw.mac_type < e1000_82571) {
1888                 if (!adapter->blink_timer.function) {
1889                         init_timer(&adapter->blink_timer);
1890                         adapter->blink_timer.function = e1000_led_blink_callback;
1891                         adapter->blink_timer.data = (unsigned long) adapter;
1892                 }
1893                 e1000_setup_led(&adapter->hw);
1894                 mod_timer(&adapter->blink_timer, jiffies);
1895                 msleep_interruptible(data * 1000);
1896                 del_timer_sync(&adapter->blink_timer);
1897         } else if (adapter->hw.phy_type == e1000_phy_ife) {
1898                 if (!adapter->blink_timer.function) {
1899                         init_timer(&adapter->blink_timer);
1900                         adapter->blink_timer.function = e1000_led_blink_callback;
1901                         adapter->blink_timer.data = (unsigned long) adapter;
1902                 }
1903                 mod_timer(&adapter->blink_timer, jiffies);
1904                 msleep_interruptible(data * 1000);
1905                 del_timer_sync(&adapter->blink_timer);
1906                 e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
1907         } else {
1908                 e1000_blink_led_start(&adapter->hw);
1909                 msleep_interruptible(data * 1000);
1910         }
1911
1912         e1000_led_off(&adapter->hw);
1913         clear_bit(E1000_LED_ON, &adapter->led_status);
1914         e1000_cleanup_led(&adapter->hw);
1915
1916         return 0;
1917 }
1918
1919 static int
1920 e1000_nway_reset(struct net_device *netdev)
1921 {
1922         struct e1000_adapter *adapter = netdev_priv(netdev);
1923         if (netif_running(netdev))
1924                 e1000_reinit_locked(adapter);
1925         return 0;
1926 }
1927
1928 static void
1929 e1000_get_ethtool_stats(struct net_device *netdev,
1930                 struct ethtool_stats *stats, uint64_t *data)
1931 {
1932         struct e1000_adapter *adapter = netdev_priv(netdev);
1933         int i;
1934
1935         e1000_update_stats(adapter);
1936         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1937                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1938                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1939                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1940         }
1941 /*      BUG_ON(i != E1000_STATS_LEN); */
1942 }
1943
1944 static void
1945 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1946 {
1947         uint8_t *p = data;
1948         int i;
1949
1950         switch (stringset) {
1951         case ETH_SS_TEST:
1952                 memcpy(data, *e1000_gstrings_test,
1953                         sizeof(e1000_gstrings_test));
1954                 break;
1955         case ETH_SS_STATS:
1956                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1957                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1958                                ETH_GSTRING_LEN);
1959                         p += ETH_GSTRING_LEN;
1960                 }
1961 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1962                 break;
1963         }
1964 }
1965
1966 static const struct ethtool_ops e1000_ethtool_ops = {
1967         .get_settings           = e1000_get_settings,
1968         .set_settings           = e1000_set_settings,
1969         .get_drvinfo            = e1000_get_drvinfo,
1970         .get_regs_len           = e1000_get_regs_len,
1971         .get_regs               = e1000_get_regs,
1972         .get_wol                = e1000_get_wol,
1973         .set_wol                = e1000_set_wol,
1974         .get_msglevel           = e1000_get_msglevel,
1975         .set_msglevel           = e1000_set_msglevel,
1976         .nway_reset             = e1000_nway_reset,
1977         .get_link               = ethtool_op_get_link,
1978         .get_eeprom_len         = e1000_get_eeprom_len,
1979         .get_eeprom             = e1000_get_eeprom,
1980         .set_eeprom             = e1000_set_eeprom,
1981         .get_ringparam          = e1000_get_ringparam,
1982         .set_ringparam          = e1000_set_ringparam,
1983         .get_pauseparam         = e1000_get_pauseparam,
1984         .set_pauseparam         = e1000_set_pauseparam,
1985         .get_rx_csum            = e1000_get_rx_csum,
1986         .set_rx_csum            = e1000_set_rx_csum,
1987         .get_tx_csum            = e1000_get_tx_csum,
1988         .set_tx_csum            = e1000_set_tx_csum,
1989         .set_sg                 = ethtool_op_set_sg,
1990         .set_tso                = e1000_set_tso,
1991         .self_test              = e1000_diag_test,
1992         .get_strings            = e1000_get_strings,
1993         .phys_id                = e1000_phys_id,
1994         .get_ethtool_stats      = e1000_get_ethtool_stats,
1995         .get_sset_count         = e1000_get_sset_count,
1996 };
1997
1998 void e1000_set_ethtool_ops(struct net_device *netdev)
1999 {
2000         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2001 }