2 * linux/drivers/video/pxafb.c
4 * Copyright (C) 1999 Eric A. Thomas.
5 * Copyright (C) 2004 Jean-Frederic Clere.
6 * Copyright (C) 2004 Ian Campbell.
7 * Copyright (C) 2004 Jeff Lackey.
8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
10 * Based on acornfb.c Copyright (C) Russell King.
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file COPYING in the main directory of this archive for
16 * Intel PXA250/210 LCD Controller Frame Buffer Driver
18 * Please direct your questions and comments on this driver to the following
21 * linux-arm-kernel@lists.arm.linux.org.uk
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/errno.h>
30 #include <linux/string.h>
31 #include <linux/interrupt.h>
32 #include <linux/slab.h>
34 #include <linux/delay.h>
35 #include <linux/init.h>
36 #include <linux/ioport.h>
37 #include <linux/cpufreq.h>
38 #include <linux/platform_device.h>
39 #include <linux/dma-mapping.h>
41 #include <asm/hardware.h>
44 #include <asm/uaccess.h>
45 #include <asm/div64.h>
46 #include <asm/arch/pxa-regs.h>
47 #include <asm/arch/bitfield.h>
48 #include <asm/arch/pxafb.h>
51 * Complain if VAR is out of range.
57 /* Bits which should not be set in machine configuration structures */
58 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM|LCCR0_BM|LCCR0_QDM|LCCR0_DIS|LCCR0_EFM|LCCR0_IUM|LCCR0_SFM|LCCR0_LDM|LCCR0_ENB)
59 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP|LCCR3_VSP|LCCR3_PCD|LCCR3_BPP)
61 static void (*pxafb_backlight_power)(int);
62 static void (*pxafb_lcd_power)(int, struct fb_var_screeninfo *);
64 static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *);
65 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
67 #ifdef CONFIG_FB_PXA_PARAMETERS
68 #define PXAFB_OPTIONS_SIZE 256
69 static char g_options[PXAFB_OPTIONS_SIZE] __initdata = "";
72 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
76 local_irq_save(flags);
78 * We need to handle two requests being made at the same time.
79 * There are two important cases:
80 * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
81 * We must perform the unblanking, which will do our REENABLE for us.
82 * 2. When we are blanking, but immediately unblank before we have
83 * blanked. We do the "REENABLE" thing here as well, just to be sure.
85 if (fbi->task_state == C_ENABLE && state == C_REENABLE)
87 if (fbi->task_state == C_DISABLE && state == C_ENABLE)
90 if (state != (u_int)-1) {
91 fbi->task_state = state;
92 schedule_work(&fbi->task);
94 local_irq_restore(flags);
97 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
100 chan >>= 16 - bf->length;
101 return chan << bf->offset;
105 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
106 u_int trans, struct fb_info *info)
108 struct pxafb_info *fbi = (struct pxafb_info *)info;
111 if (regno < fbi->palette_size) {
112 if (fbi->fb.var.grayscale) {
113 val = ((blue >> 8) & 0x00ff);
115 val = ((red >> 0) & 0xf800);
116 val |= ((green >> 5) & 0x07e0);
117 val |= ((blue >> 11) & 0x001f);
119 fbi->palette_cpu[regno] = val;
126 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
127 u_int trans, struct fb_info *info)
129 struct pxafb_info *fbi = (struct pxafb_info *)info;
134 * If inverse mode was selected, invert all the colours
135 * rather than the register number. The register number
136 * is what you poke into the framebuffer to produce the
137 * colour you requested.
139 if (fbi->cmap_inverse) {
141 green = 0xffff - green;
142 blue = 0xffff - blue;
146 * If greyscale is true, then we convert the RGB value
147 * to greyscale no matter what visual we are using.
149 if (fbi->fb.var.grayscale)
150 red = green = blue = (19595 * red + 38470 * green +
153 switch (fbi->fb.fix.visual) {
154 case FB_VISUAL_TRUECOLOR:
156 * 16-bit True Colour. We encode the RGB value
157 * according to the RGB bitfield information.
160 u32 *pal = fbi->fb.pseudo_palette;
162 val = chan_to_field(red, &fbi->fb.var.red);
163 val |= chan_to_field(green, &fbi->fb.var.green);
164 val |= chan_to_field(blue, &fbi->fb.var.blue);
171 case FB_VISUAL_STATIC_PSEUDOCOLOR:
172 case FB_VISUAL_PSEUDOCOLOR:
173 ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
181 * pxafb_bpp_to_lccr3():
182 * Convert a bits per pixel value to the correct bit pattern for LCCR3
184 static int pxafb_bpp_to_lccr3(struct fb_var_screeninfo *var)
187 switch (var->bits_per_pixel) {
188 case 1: ret = LCCR3_1BPP; break;
189 case 2: ret = LCCR3_2BPP; break;
190 case 4: ret = LCCR3_4BPP; break;
191 case 8: ret = LCCR3_8BPP; break;
192 case 16: ret = LCCR3_16BPP; break;
197 #ifdef CONFIG_CPU_FREQ
199 * pxafb_display_dma_period()
200 * Calculate the minimum period (in picoseconds) between two DMA
201 * requests for the LCD controller. If we hit this, it means we're
202 * doing nothing but LCD DMA.
204 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
207 * Period = pixclock * bits_per_byte * bytes_per_transfer
208 * / memory_bits_per_pixel;
210 return var->pixclock * 8 * 16 / var->bits_per_pixel;
213 extern unsigned int get_clk_frequency_khz(int info);
217 * Select the smallest mode that allows the desired resolution to be
218 * displayed. If desired parameters can be rounded up.
220 static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach, struct fb_var_screeninfo *var)
222 struct pxafb_mode_info *mode = NULL;
223 struct pxafb_mode_info *modelist = mach->modes;
224 unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
227 for (i = 0 ; i < mach->num_modes ; i++) {
228 if (modelist[i].xres >= var->xres && modelist[i].yres >= var->yres &&
229 modelist[i].xres < best_x && modelist[i].yres < best_y &&
230 modelist[i].bpp >= var->bits_per_pixel ) {
231 best_x = modelist[i].xres;
232 best_y = modelist[i].yres;
240 static void pxafb_setmode(struct fb_var_screeninfo *var, struct pxafb_mode_info *mode)
242 var->xres = mode->xres;
243 var->yres = mode->yres;
244 var->bits_per_pixel = mode->bpp;
245 var->pixclock = mode->pixclock;
246 var->hsync_len = mode->hsync_len;
247 var->left_margin = mode->left_margin;
248 var->right_margin = mode->right_margin;
249 var->vsync_len = mode->vsync_len;
250 var->upper_margin = mode->upper_margin;
251 var->lower_margin = mode->lower_margin;
252 var->sync = mode->sync;
253 var->grayscale = mode->cmap_greyscale;
254 var->xres_virtual = var->xres;
255 var->yres_virtual = var->yres;
260 * Get the video params out of 'var'. If a value doesn't fit, round it up,
261 * if it's too big, return -EINVAL.
263 * Round up in the following order: bits_per_pixel, xres,
264 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
265 * bitfields, horizontal timing, vertical timing.
267 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
269 struct pxafb_info *fbi = (struct pxafb_info *)info;
270 struct pxafb_mach_info *inf = fbi->dev->platform_data;
272 if (var->xres < MIN_XRES)
273 var->xres = MIN_XRES;
274 if (var->yres < MIN_YRES)
275 var->yres = MIN_YRES;
277 if (inf->fixed_modes) {
278 struct pxafb_mode_info *mode;
280 mode = pxafb_getmode(inf, var);
283 pxafb_setmode(var, mode);
285 if (var->xres > inf->modes->xres)
287 if (var->yres > inf->modes->yres)
289 if (var->bits_per_pixel > inf->modes->bpp)
294 max(var->xres_virtual, var->xres);
296 max(var->yres_virtual, var->yres);
299 * Setup the RGB parameters for this display.
301 * The pixel packing format is described on page 7-11 of the
302 * PXA2XX Developer's Manual.
304 if (var->bits_per_pixel == 16) {
305 var->red.offset = 11; var->red.length = 5;
306 var->green.offset = 5; var->green.length = 6;
307 var->blue.offset = 0; var->blue.length = 5;
308 var->transp.offset = var->transp.length = 0;
310 var->red.offset = var->green.offset = var->blue.offset = var->transp.offset = 0;
312 var->green.length = 8;
313 var->blue.length = 8;
314 var->transp.length = 0;
317 #ifdef CONFIG_CPU_FREQ
318 pr_debug("pxafb: dma period = %d ps, clock = %d kHz\n",
319 pxafb_display_dma_period(var),
320 get_clk_frequency_khz(0));
326 static inline void pxafb_set_truecolor(u_int is_true_color)
328 pr_debug("pxafb: true_color = %d\n", is_true_color);
329 // do your machine-specific setup if needed
334 * Set the user defined part of the display for the specified console
336 static int pxafb_set_par(struct fb_info *info)
338 struct pxafb_info *fbi = (struct pxafb_info *)info;
339 struct fb_var_screeninfo *var = &info->var;
340 unsigned long palette_mem_size;
342 pr_debug("pxafb: set_par\n");
344 if (var->bits_per_pixel == 16)
345 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
346 else if (!fbi->cmap_static)
347 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
350 * Some people have weird ideas about wanting static
351 * pseudocolor maps. I suspect their user space
352 * applications are broken.
354 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
357 fbi->fb.fix.line_length = var->xres_virtual *
358 var->bits_per_pixel / 8;
359 if (var->bits_per_pixel == 16)
360 fbi->palette_size = 0;
362 fbi->palette_size = var->bits_per_pixel == 1 ? 4 : 1 << var->bits_per_pixel;
364 palette_mem_size = fbi->palette_size * sizeof(u16);
366 pr_debug("pxafb: palette_mem_size = 0x%08lx\n", palette_mem_size);
368 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
369 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
372 * Set (any) board control register to handle new color depth
374 pxafb_set_truecolor(fbi->fb.fix.visual == FB_VISUAL_TRUECOLOR);
376 if (fbi->fb.var.bits_per_pixel == 16)
377 fb_dealloc_cmap(&fbi->fb.cmap);
379 fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
381 pxafb_activate_var(var, fbi);
387 * Formal definition of the VESA spec:
389 * This refers to the state of the display when it is in full operation
391 * This defines an optional operating state of minimal power reduction with
392 * the shortest recovery time
394 * This refers to a level of power management in which substantial power
395 * reduction is achieved by the display. The display can have a longer
396 * recovery time from this state than from the Stand-by state
398 * This indicates that the display is consuming the lowest level of power
399 * and is non-operational. Recovery from this state may optionally require
400 * the user to manually power on the monitor
402 * Now, the fbdev driver adds an additional state, (blank), where they
403 * turn off the video (maybe by colormap tricks), but don't mess with the
404 * video itself: think of it semantically between on and Stand-By.
406 * So here's what we should do in our fbdev blank routine:
408 * VESA_NO_BLANKING (mode 0) Video on, front/back light on
409 * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
410 * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
411 * VESA_POWERDOWN (mode 3) Video off, front/back light off
413 * This will match the matrox implementation.
418 * Blank the display by setting all palette values to zero. Note, the
419 * 16 bpp mode does not really use the palette, so this will not
420 * blank the display in all modes.
422 static int pxafb_blank(int blank, struct fb_info *info)
424 struct pxafb_info *fbi = (struct pxafb_info *)info;
427 pr_debug("pxafb: blank=%d\n", blank);
430 case FB_BLANK_POWERDOWN:
431 case FB_BLANK_VSYNC_SUSPEND:
432 case FB_BLANK_HSYNC_SUSPEND:
433 case FB_BLANK_NORMAL:
434 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
435 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
436 for (i = 0; i < fbi->palette_size; i++)
437 pxafb_setpalettereg(i, 0, 0, 0, 0, info);
439 pxafb_schedule_work(fbi, C_DISABLE);
440 //TODO if (pxafb_blank_helper) pxafb_blank_helper(blank);
443 case FB_BLANK_UNBLANK:
444 //TODO if (pxafb_blank_helper) pxafb_blank_helper(blank);
445 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
446 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
447 fb_set_cmap(&fbi->fb.cmap, info);
448 pxafb_schedule_work(fbi, C_ENABLE);
453 static int pxafb_mmap(struct fb_info *info,
454 struct vm_area_struct *vma)
456 struct pxafb_info *fbi = (struct pxafb_info *)info;
457 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
459 if (off < info->fix.smem_len) {
461 return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
462 fbi->map_dma, fbi->map_size);
467 static struct fb_ops pxafb_ops = {
468 .owner = THIS_MODULE,
469 .fb_check_var = pxafb_check_var,
470 .fb_set_par = pxafb_set_par,
471 .fb_setcolreg = pxafb_setcolreg,
472 .fb_fillrect = cfb_fillrect,
473 .fb_copyarea = cfb_copyarea,
474 .fb_imageblit = cfb_imageblit,
475 .fb_blank = pxafb_blank,
476 .fb_mmap = pxafb_mmap,
480 * Calculate the PCD value from the clock rate (in picoseconds).
481 * We take account of the PPCR clock setting.
482 * From PXA Developer's Manual:
493 * LCLK = LCD/Memory Clock
496 * PixelClock here is in Hz while the pixclock argument given is the
497 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
499 * The function get_lclk_frequency_10khz returns LCLK in units of
500 * 10khz. Calling the result of this function lclk gives us the
503 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
504 * -------------------------------------- - 1
507 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
509 static inline unsigned int get_pcd(unsigned int pixclock)
511 unsigned long long pcd;
513 /* FIXME: Need to take into account Double Pixel Clock mode
514 * (DPC) bit? or perhaps set it based on the various clock
517 pcd = (unsigned long long)get_lcdclk_frequency_10khz() * pixclock;
518 do_div(pcd, 100000000 * 2);
519 /* no need for this, since we should subtract 1 anyway. they cancel */
520 /* pcd += 1; */ /* make up for integer math truncations */
521 return (unsigned int)pcd;
525 * Some touchscreens need hsync information from the video driver to
526 * function correctly. We export it here.
528 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
530 unsigned long long htime;
532 if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
537 htime = (unsigned long long)get_lcdclk_frequency_10khz() * 10000;
538 do_div(htime, pcd * fbi->fb.var.hsync_len);
539 fbi->hsync_time = htime;
542 unsigned long pxafb_get_hsync_time(struct device *dev)
544 struct pxafb_info *fbi = dev_get_drvdata(dev);
546 /* If display is blanked/suspended, hsync isn't active */
547 if (!fbi || (fbi->state != C_ENABLE))
550 return fbi->hsync_time;
552 EXPORT_SYMBOL(pxafb_get_hsync_time);
555 * pxafb_activate_var():
556 * Configures LCD Controller based on entries in var parameter. Settings are
557 * only written to the controller if changes were made.
559 static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *fbi)
561 struct pxafb_lcd_reg new_regs;
563 u_int lines_per_panel, pcd = get_pcd(var->pixclock);
565 pr_debug("pxafb: Configuring PXA LCD\n");
567 pr_debug("var: xres=%d hslen=%d lm=%d rm=%d\n",
568 var->xres, var->hsync_len,
569 var->left_margin, var->right_margin);
570 pr_debug("var: yres=%d vslen=%d um=%d bm=%d\n",
571 var->yres, var->vsync_len,
572 var->upper_margin, var->lower_margin);
573 pr_debug("var: pixclock=%d pcd=%d\n", var->pixclock, pcd);
576 if (var->xres < 16 || var->xres > 1024)
577 printk(KERN_ERR "%s: invalid xres %d\n",
578 fbi->fb.fix.id, var->xres);
579 switch(var->bits_per_pixel) {
587 printk(KERN_ERR "%s: invalid bit depth %d\n",
588 fbi->fb.fix.id, var->bits_per_pixel);
591 if (var->hsync_len < 1 || var->hsync_len > 64)
592 printk(KERN_ERR "%s: invalid hsync_len %d\n",
593 fbi->fb.fix.id, var->hsync_len);
594 if (var->left_margin < 1 || var->left_margin > 255)
595 printk(KERN_ERR "%s: invalid left_margin %d\n",
596 fbi->fb.fix.id, var->left_margin);
597 if (var->right_margin < 1 || var->right_margin > 255)
598 printk(KERN_ERR "%s: invalid right_margin %d\n",
599 fbi->fb.fix.id, var->right_margin);
600 if (var->yres < 1 || var->yres > 1024)
601 printk(KERN_ERR "%s: invalid yres %d\n",
602 fbi->fb.fix.id, var->yres);
603 if (var->vsync_len < 1 || var->vsync_len > 64)
604 printk(KERN_ERR "%s: invalid vsync_len %d\n",
605 fbi->fb.fix.id, var->vsync_len);
606 if (var->upper_margin < 0 || var->upper_margin > 255)
607 printk(KERN_ERR "%s: invalid upper_margin %d\n",
608 fbi->fb.fix.id, var->upper_margin);
609 if (var->lower_margin < 0 || var->lower_margin > 255)
610 printk(KERN_ERR "%s: invalid lower_margin %d\n",
611 fbi->fb.fix.id, var->lower_margin);
614 new_regs.lccr0 = fbi->lccr0 |
615 (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
616 LCCR0_QDM | LCCR0_BM | LCCR0_OUM);
619 LCCR1_DisWdth(var->xres) +
620 LCCR1_HorSnchWdth(var->hsync_len) +
621 LCCR1_BegLnDel(var->left_margin) +
622 LCCR1_EndLnDel(var->right_margin);
625 * If we have a dual scan LCD, we need to halve
626 * the YRES parameter.
628 lines_per_panel = var->yres;
629 if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
630 lines_per_panel /= 2;
633 LCCR2_DisHght(lines_per_panel) +
634 LCCR2_VrtSnchWdth(var->vsync_len) +
635 LCCR2_BegFrmDel(var->upper_margin) +
636 LCCR2_EndFrmDel(var->lower_margin);
638 new_regs.lccr3 = fbi->lccr3 |
639 pxafb_bpp_to_lccr3(var) |
640 (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
641 (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
644 new_regs.lccr3 |= LCCR3_PixClkDiv(pcd);
646 pr_debug("nlccr0 = 0x%08x\n", new_regs.lccr0);
647 pr_debug("nlccr1 = 0x%08x\n", new_regs.lccr1);
648 pr_debug("nlccr2 = 0x%08x\n", new_regs.lccr2);
649 pr_debug("nlccr3 = 0x%08x\n", new_regs.lccr3);
651 /* Update shadow copy atomically */
652 local_irq_save(flags);
654 /* setup dma descriptors */
655 fbi->dmadesc_fblow_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 3*16);
656 fbi->dmadesc_fbhigh_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 2*16);
657 fbi->dmadesc_palette_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 1*16);
659 fbi->dmadesc_fblow_dma = fbi->palette_dma - 3*16;
660 fbi->dmadesc_fbhigh_dma = fbi->palette_dma - 2*16;
661 fbi->dmadesc_palette_dma = fbi->palette_dma - 1*16;
663 #define BYTES_PER_PANEL (lines_per_panel * fbi->fb.fix.line_length)
665 /* populate descriptors */
666 fbi->dmadesc_fblow_cpu->fdadr = fbi->dmadesc_fblow_dma;
667 fbi->dmadesc_fblow_cpu->fsadr = fbi->screen_dma + BYTES_PER_PANEL;
668 fbi->dmadesc_fblow_cpu->fidr = 0;
669 fbi->dmadesc_fblow_cpu->ldcmd = BYTES_PER_PANEL;
671 fbi->fdadr1 = fbi->dmadesc_fblow_dma; /* only used in dual-panel mode */
673 fbi->dmadesc_fbhigh_cpu->fsadr = fbi->screen_dma;
674 fbi->dmadesc_fbhigh_cpu->fidr = 0;
675 fbi->dmadesc_fbhigh_cpu->ldcmd = BYTES_PER_PANEL;
677 fbi->dmadesc_palette_cpu->fsadr = fbi->palette_dma;
678 fbi->dmadesc_palette_cpu->fidr = 0;
679 fbi->dmadesc_palette_cpu->ldcmd = (fbi->palette_size * 2) | LDCMD_PAL;
681 if (var->bits_per_pixel == 16) {
682 /* palette shouldn't be loaded in true-color mode */
683 fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_fbhigh_dma;
684 fbi->fdadr0 = fbi->dmadesc_fbhigh_dma; /* no pal just fbhigh */
685 /* init it to something, even though we won't be using it */
686 fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_palette_dma;
688 fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_fbhigh_dma;
689 fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_palette_dma;
690 fbi->fdadr0 = fbi->dmadesc_palette_dma; /* flips back and forth between pal and fbhigh */
694 pr_debug("fbi->dmadesc_fblow_cpu = 0x%p\n", fbi->dmadesc_fblow_cpu);
695 pr_debug("fbi->dmadesc_fbhigh_cpu = 0x%p\n", fbi->dmadesc_fbhigh_cpu);
696 pr_debug("fbi->dmadesc_palette_cpu = 0x%p\n", fbi->dmadesc_palette_cpu);
697 pr_debug("fbi->dmadesc_fblow_dma = 0x%x\n", fbi->dmadesc_fblow_dma);
698 pr_debug("fbi->dmadesc_fbhigh_dma = 0x%x\n", fbi->dmadesc_fbhigh_dma);
699 pr_debug("fbi->dmadesc_palette_dma = 0x%x\n", fbi->dmadesc_palette_dma);
701 pr_debug("fbi->dmadesc_fblow_cpu->fdadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fdadr);
702 pr_debug("fbi->dmadesc_fbhigh_cpu->fdadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fdadr);
703 pr_debug("fbi->dmadesc_palette_cpu->fdadr = 0x%x\n", fbi->dmadesc_palette_cpu->fdadr);
705 pr_debug("fbi->dmadesc_fblow_cpu->fsadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fsadr);
706 pr_debug("fbi->dmadesc_fbhigh_cpu->fsadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fsadr);
707 pr_debug("fbi->dmadesc_palette_cpu->fsadr = 0x%x\n", fbi->dmadesc_palette_cpu->fsadr);
709 pr_debug("fbi->dmadesc_fblow_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fblow_cpu->ldcmd);
710 pr_debug("fbi->dmadesc_fbhigh_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fbhigh_cpu->ldcmd);
711 pr_debug("fbi->dmadesc_palette_cpu->ldcmd = 0x%x\n", fbi->dmadesc_palette_cpu->ldcmd);
714 fbi->reg_lccr0 = new_regs.lccr0;
715 fbi->reg_lccr1 = new_regs.lccr1;
716 fbi->reg_lccr2 = new_regs.lccr2;
717 fbi->reg_lccr3 = new_regs.lccr3;
718 set_hsync_time(fbi, pcd);
719 local_irq_restore(flags);
722 * Only update the registers if the controller is enabled
723 * and something has changed.
725 if ((LCCR0 != fbi->reg_lccr0) || (LCCR1 != fbi->reg_lccr1) ||
726 (LCCR2 != fbi->reg_lccr2) || (LCCR3 != fbi->reg_lccr3) ||
727 (FDADR0 != fbi->fdadr0) || (FDADR1 != fbi->fdadr1))
728 pxafb_schedule_work(fbi, C_REENABLE);
734 * NOTE! The following functions are purely helpers for set_ctrlr_state.
735 * Do not call them directly; set_ctrlr_state does the correct serialisation
736 * to ensure that things happen in the right way 100% of time time.
739 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
741 pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
743 if (pxafb_backlight_power)
744 pxafb_backlight_power(on);
747 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
749 pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
752 pxafb_lcd_power(on, &fbi->fb.var);
755 static void pxafb_setup_gpio(struct pxafb_info *fbi)
758 unsigned int lccr0 = fbi->lccr0;
761 * setup is based on type of panel supported
764 /* 4 bit interface */
765 if ((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
766 (lccr0 & LCCR0_SDS) == LCCR0_Sngl &&
767 (lccr0 & LCCR0_DPD) == LCCR0_4PixMono)
770 /* 8 bit interface */
771 else if (((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
772 ((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_DPD) == LCCR0_8PixMono)) ||
773 ((lccr0 & LCCR0_CMS) == LCCR0_Color &&
774 (lccr0 & LCCR0_PAS) == LCCR0_Pas && (lccr0 & LCCR0_SDS) == LCCR0_Sngl))
777 /* 16 bit interface */
778 else if ((lccr0 & LCCR0_CMS) == LCCR0_Color &&
779 ((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_PAS) == LCCR0_Act))
783 printk(KERN_ERR "pxafb_setup_gpio: unable to determine bits per pixel\n");
787 for (gpio = 58; ldd_bits; gpio++, ldd_bits--)
788 pxa_gpio_mode(gpio | GPIO_ALT_FN_2_OUT);
789 pxa_gpio_mode(GPIO74_LCD_FCLK_MD);
790 pxa_gpio_mode(GPIO75_LCD_LCLK_MD);
791 pxa_gpio_mode(GPIO76_LCD_PCLK_MD);
792 pxa_gpio_mode(GPIO77_LCD_ACBIAS_MD);
795 static void pxafb_enable_controller(struct pxafb_info *fbi)
797 pr_debug("pxafb: Enabling LCD controller\n");
798 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr0);
799 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr1);
800 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
801 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
802 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
803 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
805 /* enable LCD controller clock */
806 pxa_set_cken(CKEN16_LCD, 1);
808 /* Sequence from 11.7.10 */
809 LCCR3 = fbi->reg_lccr3;
810 LCCR2 = fbi->reg_lccr2;
811 LCCR1 = fbi->reg_lccr1;
812 LCCR0 = fbi->reg_lccr0 & ~LCCR0_ENB;
814 FDADR0 = fbi->fdadr0;
815 FDADR1 = fbi->fdadr1;
818 pr_debug("FDADR0 0x%08x\n", (unsigned int) FDADR0);
819 pr_debug("FDADR1 0x%08x\n", (unsigned int) FDADR1);
820 pr_debug("LCCR0 0x%08x\n", (unsigned int) LCCR0);
821 pr_debug("LCCR1 0x%08x\n", (unsigned int) LCCR1);
822 pr_debug("LCCR2 0x%08x\n", (unsigned int) LCCR2);
823 pr_debug("LCCR3 0x%08x\n", (unsigned int) LCCR3);
826 static void pxafb_disable_controller(struct pxafb_info *fbi)
828 DECLARE_WAITQUEUE(wait, current);
830 pr_debug("pxafb: disabling LCD controller\n");
832 set_current_state(TASK_UNINTERRUPTIBLE);
833 add_wait_queue(&fbi->ctrlr_wait, &wait);
835 LCSR = 0xffffffff; /* Clear LCD Status Register */
836 LCCR0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */
837 LCCR0 |= LCCR0_DIS; /* Disable LCD Controller */
839 schedule_timeout(200 * HZ / 1000);
840 remove_wait_queue(&fbi->ctrlr_wait, &wait);
842 /* disable LCD controller clock */
843 pxa_set_cken(CKEN16_LCD, 0);
847 * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
849 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
851 struct pxafb_info *fbi = dev_id;
852 unsigned int lcsr = LCSR;
854 if (lcsr & LCSR_LDD) {
856 wake_up(&fbi->ctrlr_wait);
864 * This function must be called from task context only, since it will
865 * sleep when disabling the LCD controller, or if we get two contending
866 * processes trying to alter state.
868 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
872 down(&fbi->ctrlr_sem);
874 old_state = fbi->state;
877 * Hack around fbcon initialisation.
879 if (old_state == C_STARTUP && state == C_REENABLE)
883 case C_DISABLE_CLKCHANGE:
885 * Disable controller for clock change. If the
886 * controller is already disabled, then do nothing.
888 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
890 //TODO __pxafb_lcd_power(fbi, 0);
891 pxafb_disable_controller(fbi);
900 if (old_state != C_DISABLE) {
902 __pxafb_backlight_power(fbi, 0);
903 __pxafb_lcd_power(fbi, 0);
904 if (old_state != C_DISABLE_CLKCHANGE)
905 pxafb_disable_controller(fbi);
909 case C_ENABLE_CLKCHANGE:
911 * Enable the controller after clock change. Only
912 * do this if we were disabled for the clock change.
914 if (old_state == C_DISABLE_CLKCHANGE) {
915 fbi->state = C_ENABLE;
916 pxafb_enable_controller(fbi);
917 //TODO __pxafb_lcd_power(fbi, 1);
923 * Re-enable the controller only if it was already
924 * enabled. This is so we reprogram the control
927 if (old_state == C_ENABLE) {
928 __pxafb_lcd_power(fbi, 0);
929 pxafb_disable_controller(fbi);
930 pxafb_setup_gpio(fbi);
931 pxafb_enable_controller(fbi);
932 __pxafb_lcd_power(fbi, 1);
938 * Re-enable the controller after PM. This is not
939 * perfect - think about the case where we were doing
940 * a clock change, and we suspended half-way through.
942 if (old_state != C_DISABLE_PM)
948 * Power up the LCD screen, enable controller, and
949 * turn on the backlight.
951 if (old_state != C_ENABLE) {
952 fbi->state = C_ENABLE;
953 pxafb_setup_gpio(fbi);
954 pxafb_enable_controller(fbi);
955 __pxafb_lcd_power(fbi, 1);
956 __pxafb_backlight_power(fbi, 1);
964 * Our LCD controller task (which is called when we blank or unblank)
967 static void pxafb_task(struct work_struct *work)
969 struct pxafb_info *fbi =
970 container_of(work, struct pxafb_info, task);
971 u_int state = xchg(&fbi->task_state, -1);
973 set_ctrlr_state(fbi, state);
976 #ifdef CONFIG_CPU_FREQ
978 * CPU clock speed change handler. We need to adjust the LCD timing
979 * parameters when the CPU clock is adjusted by the power management
982 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
985 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
987 struct pxafb_info *fbi = TO_INF(nb, freq_transition);
988 //TODO struct cpufreq_freqs *f = data;
992 case CPUFREQ_PRECHANGE:
993 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
996 case CPUFREQ_POSTCHANGE:
997 pcd = get_pcd(fbi->fb.var.pixclock);
998 set_hsync_time(fbi, pcd);
999 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
1000 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1007 pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
1009 struct pxafb_info *fbi = TO_INF(nb, freq_policy);
1010 struct fb_var_screeninfo *var = &fbi->fb.var;
1011 struct cpufreq_policy *policy = data;
1014 case CPUFREQ_ADJUST:
1015 case CPUFREQ_INCOMPATIBLE:
1016 printk(KERN_DEBUG "min dma period: %d ps, "
1017 "new clock %d kHz\n", pxafb_display_dma_period(var),
1019 // TODO: fill in min/max values
1022 case CPUFREQ_NOTIFY:
1023 printk(KERN_ERR "%s: got CPUFREQ_NOTIFY\n", __FUNCTION__);
1025 /* todo: panic if min/max values aren't fulfilled
1026 * [can't really happen unless there's a bug in the
1027 * CPU policy verification process *
1038 * Power management hooks. Note that we won't be called from IRQ context,
1039 * unlike the blank functions above, so we may sleep.
1041 static int pxafb_suspend(struct platform_device *dev, pm_message_t state)
1043 struct pxafb_info *fbi = platform_get_drvdata(dev);
1045 set_ctrlr_state(fbi, C_DISABLE_PM);
1049 static int pxafb_resume(struct platform_device *dev)
1051 struct pxafb_info *fbi = platform_get_drvdata(dev);
1053 set_ctrlr_state(fbi, C_ENABLE_PM);
1057 #define pxafb_suspend NULL
1058 #define pxafb_resume NULL
1062 * pxafb_map_video_memory():
1063 * Allocates the DRAM memory for the frame buffer. This buffer is
1064 * remapped into a non-cached, non-buffered, memory region to
1065 * allow palette and pixel writes to occur without flushing the
1066 * cache. Once this area is remapped, all virtual memory
1067 * access to the video memory should occur at the new region.
1069 static int __init pxafb_map_video_memory(struct pxafb_info *fbi)
1071 u_long palette_mem_size;
1074 * We reserve one page for the palette, plus the size
1075 * of the framebuffer.
1077 fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1078 fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
1079 &fbi->map_dma, GFP_KERNEL);
1082 /* prevent initial garbage on screen */
1083 memset(fbi->map_cpu, 0, fbi->map_size);
1084 fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1085 fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1087 * FIXME: this is actually the wrong thing to place in
1088 * smem_start. But fbdev suffers from the problem that
1089 * it needs an API which doesn't exist (in this case,
1090 * dma_writecombine_mmap)
1092 fbi->fb.fix.smem_start = fbi->screen_dma;
1094 fbi->palette_size = fbi->fb.var.bits_per_pixel == 8 ? 256 : 16;
1096 palette_mem_size = fbi->palette_size * sizeof(u16);
1097 pr_debug("pxafb: palette_mem_size = 0x%08lx\n", palette_mem_size);
1099 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
1100 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
1103 return fbi->map_cpu ? 0 : -ENOMEM;
1106 static struct pxafb_info * __init pxafb_init_fbinfo(struct device *dev)
1108 struct pxafb_info *fbi;
1110 struct pxafb_mach_info *inf = dev->platform_data;
1111 struct pxafb_mode_info *mode = inf->modes;
1114 /* Alloc the pxafb_info and pseudo_palette in one step */
1115 fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL);
1119 memset(fbi, 0, sizeof(struct pxafb_info));
1122 strcpy(fbi->fb.fix.id, PXA_NAME);
1124 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1125 fbi->fb.fix.type_aux = 0;
1126 fbi->fb.fix.xpanstep = 0;
1127 fbi->fb.fix.ypanstep = 0;
1128 fbi->fb.fix.ywrapstep = 0;
1129 fbi->fb.fix.accel = FB_ACCEL_NONE;
1131 fbi->fb.var.nonstd = 0;
1132 fbi->fb.var.activate = FB_ACTIVATE_NOW;
1133 fbi->fb.var.height = -1;
1134 fbi->fb.var.width = -1;
1135 fbi->fb.var.accel_flags = 0;
1136 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1138 fbi->fb.fbops = &pxafb_ops;
1139 fbi->fb.flags = FBINFO_DEFAULT;
1143 addr = addr + sizeof(struct pxafb_info);
1144 fbi->fb.pseudo_palette = addr;
1146 pxafb_setmode(&fbi->fb.var, mode);
1148 fbi->cmap_inverse = inf->cmap_inverse;
1149 fbi->cmap_static = inf->cmap_static;
1151 fbi->lccr0 = inf->lccr0;
1152 fbi->lccr3 = inf->lccr3;
1153 fbi->state = C_STARTUP;
1154 fbi->task_state = (u_char)-1;
1156 for (i = 0; i < inf->num_modes; i++) {
1157 smemlen = mode[i].xres * mode[i].yres * mode[i].bpp / 8;
1158 if (smemlen > fbi->fb.fix.smem_len)
1159 fbi->fb.fix.smem_len = smemlen;
1162 init_waitqueue_head(&fbi->ctrlr_wait);
1163 INIT_WORK(&fbi->task, pxafb_task);
1164 init_MUTEX(&fbi->ctrlr_sem);
1169 #ifdef CONFIG_FB_PXA_PARAMETERS
1170 static int __init pxafb_parse_options(struct device *dev, char *options)
1172 struct pxafb_mach_info *inf = dev->platform_data;
1175 if (!options || !*options)
1178 dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
1180 /* could be made table driven or similar?... */
1181 while ((this_opt = strsep(&options, ",")) != NULL) {
1182 if (!strncmp(this_opt, "mode:", 5)) {
1183 const char *name = this_opt+5;
1184 unsigned int namelen = strlen(name);
1185 int res_specified = 0, bpp_specified = 0;
1186 unsigned int xres = 0, yres = 0, bpp = 0;
1187 int yres_specified = 0;
1189 for (i = namelen-1; i >= 0; i--) {
1193 if (!bpp_specified && !yres_specified) {
1194 bpp = simple_strtoul(&name[i+1], NULL, 0);
1200 if (!yres_specified) {
1201 yres = simple_strtoul(&name[i+1], NULL, 0);
1212 if (i < 0 && yres_specified) {
1213 xres = simple_strtoul(name, NULL, 0);
1217 if (res_specified) {
1218 dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
1219 inf->modes[0].xres = xres; inf->modes[0].yres = yres;
1228 inf->modes[0].bpp = bpp;
1229 dev_info(dev, "overriding bit depth: %d\n", bpp);
1232 dev_err(dev, "Depth %d is not valid\n", bpp);
1234 } else if (!strncmp(this_opt, "pixclock:", 9)) {
1235 inf->modes[0].pixclock = simple_strtoul(this_opt+9, NULL, 0);
1236 dev_info(dev, "override pixclock: %ld\n", inf->modes[0].pixclock);
1237 } else if (!strncmp(this_opt, "left:", 5)) {
1238 inf->modes[0].left_margin = simple_strtoul(this_opt+5, NULL, 0);
1239 dev_info(dev, "override left: %u\n", inf->modes[0].left_margin);
1240 } else if (!strncmp(this_opt, "right:", 6)) {
1241 inf->modes[0].right_margin = simple_strtoul(this_opt+6, NULL, 0);
1242 dev_info(dev, "override right: %u\n", inf->modes[0].right_margin);
1243 } else if (!strncmp(this_opt, "upper:", 6)) {
1244 inf->modes[0].upper_margin = simple_strtoul(this_opt+6, NULL, 0);
1245 dev_info(dev, "override upper: %u\n", inf->modes[0].upper_margin);
1246 } else if (!strncmp(this_opt, "lower:", 6)) {
1247 inf->modes[0].lower_margin = simple_strtoul(this_opt+6, NULL, 0);
1248 dev_info(dev, "override lower: %u\n", inf->modes[0].lower_margin);
1249 } else if (!strncmp(this_opt, "hsynclen:", 9)) {
1250 inf->modes[0].hsync_len = simple_strtoul(this_opt+9, NULL, 0);
1251 dev_info(dev, "override hsynclen: %u\n", inf->modes[0].hsync_len);
1252 } else if (!strncmp(this_opt, "vsynclen:", 9)) {
1253 inf->modes[0].vsync_len = simple_strtoul(this_opt+9, NULL, 0);
1254 dev_info(dev, "override vsynclen: %u\n", inf->modes[0].vsync_len);
1255 } else if (!strncmp(this_opt, "hsync:", 6)) {
1256 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1257 dev_info(dev, "override hsync: Active Low\n");
1258 inf->modes[0].sync &= ~FB_SYNC_HOR_HIGH_ACT;
1260 dev_info(dev, "override hsync: Active High\n");
1261 inf->modes[0].sync |= FB_SYNC_HOR_HIGH_ACT;
1263 } else if (!strncmp(this_opt, "vsync:", 6)) {
1264 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1265 dev_info(dev, "override vsync: Active Low\n");
1266 inf->modes[0].sync &= ~FB_SYNC_VERT_HIGH_ACT;
1268 dev_info(dev, "override vsync: Active High\n");
1269 inf->modes[0].sync |= FB_SYNC_VERT_HIGH_ACT;
1271 } else if (!strncmp(this_opt, "dpc:", 4)) {
1272 if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
1273 dev_info(dev, "override double pixel clock: false\n");
1274 inf->lccr3 &= ~LCCR3_DPC;
1276 dev_info(dev, "override double pixel clock: true\n");
1277 inf->lccr3 |= LCCR3_DPC;
1279 } else if (!strncmp(this_opt, "outputen:", 9)) {
1280 if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
1281 dev_info(dev, "override output enable: active low\n");
1282 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
1284 dev_info(dev, "override output enable: active high\n");
1285 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
1287 } else if (!strncmp(this_opt, "pixclockpol:", 12)) {
1288 if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
1289 dev_info(dev, "override pixel clock polarity: falling edge\n");
1290 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
1292 dev_info(dev, "override pixel clock polarity: rising edge\n");
1293 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
1295 } else if (!strncmp(this_opt, "color", 5)) {
1296 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
1297 } else if (!strncmp(this_opt, "mono", 4)) {
1298 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
1299 } else if (!strncmp(this_opt, "active", 6)) {
1300 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
1301 } else if (!strncmp(this_opt, "passive", 7)) {
1302 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
1303 } else if (!strncmp(this_opt, "single", 6)) {
1304 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
1305 } else if (!strncmp(this_opt, "dual", 4)) {
1306 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
1307 } else if (!strncmp(this_opt, "4pix", 4)) {
1308 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
1309 } else if (!strncmp(this_opt, "8pix", 4)) {
1310 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
1312 dev_err(dev, "unknown option: %s\n", this_opt);
1321 int __init pxafb_probe(struct platform_device *dev)
1323 struct pxafb_info *fbi;
1324 struct pxafb_mach_info *inf;
1327 dev_dbg(&dev->dev, "pxafb_probe\n");
1329 inf = dev->dev.platform_data;
1335 #ifdef CONFIG_FB_PXA_PARAMETERS
1336 ret = pxafb_parse_options(&dev->dev, g_options);
1342 /* Check for various illegal bit-combinations. Currently only
1343 * a warning is given. */
1345 if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
1346 dev_warn(&dev->dev, "machine LCCR0 setting contains illegal bits: %08x\n",
1347 inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
1348 if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
1349 dev_warn(&dev->dev, "machine LCCR3 setting contains illegal bits: %08x\n",
1350 inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
1351 if (inf->lccr0 & LCCR0_DPD &&
1352 ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
1353 (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
1354 (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
1355 dev_warn(&dev->dev, "Double Pixel Data (DPD) mode is only valid in passive mono"
1356 " single panel mode\n");
1357 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
1358 (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
1359 dev_warn(&dev->dev, "Dual panel only valid in passive mode\n");
1360 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
1361 (inf->modes->upper_margin || inf->modes->lower_margin))
1362 dev_warn(&dev->dev, "Upper and lower margins must be 0 in passive mode\n");
1365 dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",inf->modes->xres, inf->modes->yres, inf->modes->bpp);
1366 if (inf->modes->xres == 0 || inf->modes->yres == 0 || inf->modes->bpp == 0) {
1367 dev_err(&dev->dev, "Invalid resolution or bit depth\n");
1371 pxafb_backlight_power = inf->pxafb_backlight_power;
1372 pxafb_lcd_power = inf->pxafb_lcd_power;
1373 fbi = pxafb_init_fbinfo(&dev->dev);
1375 dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
1376 ret = -ENOMEM; // only reason for pxafb_init_fbinfo to fail is kmalloc
1380 /* Initialize video memory */
1381 ret = pxafb_map_video_memory(fbi);
1383 dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
1388 ret = request_irq(IRQ_LCD, pxafb_handle_irq, IRQF_DISABLED, "LCD", fbi);
1390 dev_err(&dev->dev, "request_irq failed: %d\n", ret);
1396 * This makes sure that our colour bitfield
1397 * descriptors are correctly initialised.
1399 pxafb_check_var(&fbi->fb.var, &fbi->fb);
1400 pxafb_set_par(&fbi->fb);
1402 platform_set_drvdata(dev, fbi);
1404 ret = register_framebuffer(&fbi->fb);
1406 dev_err(&dev->dev, "Failed to register framebuffer device: %d\n", ret);
1414 #ifdef CONFIG_CPU_FREQ
1415 fbi->freq_transition.notifier_call = pxafb_freq_transition;
1416 fbi->freq_policy.notifier_call = pxafb_freq_policy;
1417 cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1418 cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
1422 * Ok, now enable the LCD controller
1424 set_ctrlr_state(fbi, C_ENABLE);
1429 platform_set_drvdata(dev, NULL);
1434 static struct platform_driver pxafb_driver = {
1435 .probe = pxafb_probe,
1437 .suspend = pxafb_suspend,
1438 .resume = pxafb_resume,
1441 .name = "pxa2xx-fb",
1446 int __devinit pxafb_setup(char *options)
1448 # ifdef CONFIG_FB_PXA_PARAMETERS
1450 strlcpy(g_options, options, sizeof(g_options));
1455 # ifdef CONFIG_FB_PXA_PARAMETERS
1456 module_param_string(options, g_options, sizeof(g_options), 0);
1457 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
1461 int __devinit pxafb_init(void)
1464 char *option = NULL;
1466 if (fb_get_options("pxafb", &option))
1468 pxafb_setup(option);
1470 return platform_driver_register(&pxafb_driver);
1473 module_init(pxafb_init);
1475 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
1476 MODULE_LICENSE("GPL");