2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47 #include <linux/hash.h>
49 #include <asm/atomic.h>
51 static DEFINE_MUTEX(cgroup_mutex);
53 /* Generate an array of cgroup subsystem pointers */
54 #define SUBSYS(_x) &_x ## _subsys,
56 static struct cgroup_subsys *subsys[] = {
57 #include <linux/cgroup_subsys.h>
61 * A cgroupfs_root represents the root of a cgroup hierarchy,
62 * and may be associated with a superblock to form an active
65 struct cgroupfs_root {
66 struct super_block *sb;
69 * The bitmask of subsystems intended to be attached to this
72 unsigned long subsys_bits;
74 /* The bitmask of subsystems currently attached to this hierarchy */
75 unsigned long actual_subsys_bits;
77 /* A list running through the attached subsystems */
78 struct list_head subsys_list;
80 /* The root cgroup for this hierarchy */
81 struct cgroup top_cgroup;
83 /* Tracks how many cgroups are currently defined in hierarchy.*/
84 int number_of_cgroups;
86 /* A list running through the mounted hierarchies */
87 struct list_head root_list;
89 /* Hierarchy-specific flags */
92 /* The path to use for release notifications. */
93 char release_agent_path[PATH_MAX];
98 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
99 * subsystems that are otherwise unattached - it never has more than a
100 * single cgroup, and all tasks are part of that cgroup.
102 static struct cgroupfs_root rootnode;
104 /* The list of hierarchy roots */
106 static LIST_HEAD(roots);
107 static int root_count;
109 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
110 #define dummytop (&rootnode.top_cgroup)
112 /* This flag indicates whether tasks in the fork and exit paths should
113 * check for fork/exit handlers to call. This avoids us having to do
114 * extra work in the fork/exit path if none of the subsystems need to
117 static int need_forkexit_callback __read_mostly;
118 static int need_mm_owner_callback __read_mostly;
120 /* convenient tests for these bits */
121 inline int cgroup_is_removed(const struct cgroup *cgrp)
123 return test_bit(CGRP_REMOVED, &cgrp->flags);
126 /* bits in struct cgroupfs_root flags field */
128 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
131 static int cgroup_is_releasable(const struct cgroup *cgrp)
134 (1 << CGRP_RELEASABLE) |
135 (1 << CGRP_NOTIFY_ON_RELEASE);
136 return (cgrp->flags & bits) == bits;
139 static int notify_on_release(const struct cgroup *cgrp)
141 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
145 * for_each_subsys() allows you to iterate on each subsystem attached to
146 * an active hierarchy
148 #define for_each_subsys(_root, _ss) \
149 list_for_each_entry(_ss, &_root->subsys_list, sibling)
151 /* for_each_root() allows you to iterate across the active hierarchies */
152 #define for_each_root(_root) \
153 list_for_each_entry(_root, &roots, root_list)
155 /* the list of cgroups eligible for automatic release. Protected by
156 * release_list_lock */
157 static LIST_HEAD(release_list);
158 static DEFINE_SPINLOCK(release_list_lock);
159 static void cgroup_release_agent(struct work_struct *work);
160 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
161 static void check_for_release(struct cgroup *cgrp);
163 /* Link structure for associating css_set objects with cgroups */
164 struct cg_cgroup_link {
166 * List running through cg_cgroup_links associated with a
167 * cgroup, anchored on cgroup->css_sets
169 struct list_head cgrp_link_list;
171 * List running through cg_cgroup_links pointing at a
172 * single css_set object, anchored on css_set->cg_links
174 struct list_head cg_link_list;
178 /* The default css_set - used by init and its children prior to any
179 * hierarchies being mounted. It contains a pointer to the root state
180 * for each subsystem. Also used to anchor the list of css_sets. Not
181 * reference-counted, to improve performance when child cgroups
182 * haven't been created.
185 static struct css_set init_css_set;
186 static struct cg_cgroup_link init_css_set_link;
188 /* css_set_lock protects the list of css_set objects, and the
189 * chain of tasks off each css_set. Nests outside task->alloc_lock
190 * due to cgroup_iter_start() */
191 static DEFINE_RWLOCK(css_set_lock);
192 static int css_set_count;
194 /* hash table for cgroup groups. This improves the performance to
195 * find an existing css_set */
196 #define CSS_SET_HASH_BITS 7
197 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
198 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
200 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
204 unsigned long tmp = 0UL;
206 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
207 tmp += (unsigned long)css[i];
208 tmp = (tmp >> 16) ^ tmp;
210 index = hash_long(tmp, CSS_SET_HASH_BITS);
212 return &css_set_table[index];
215 /* We don't maintain the lists running through each css_set to its
216 * task until after the first call to cgroup_iter_start(). This
217 * reduces the fork()/exit() overhead for people who have cgroups
218 * compiled into their kernel but not actually in use */
219 static int use_task_css_set_links __read_mostly;
221 /* When we create or destroy a css_set, the operation simply
222 * takes/releases a reference count on all the cgroups referenced
223 * by subsystems in this css_set. This can end up multiple-counting
224 * some cgroups, but that's OK - the ref-count is just a
225 * busy/not-busy indicator; ensuring that we only count each cgroup
226 * once would require taking a global lock to ensure that no
227 * subsystems moved between hierarchies while we were doing so.
229 * Possible TODO: decide at boot time based on the number of
230 * registered subsystems and the number of CPUs or NUMA nodes whether
231 * it's better for performance to ref-count every subsystem, or to
232 * take a global lock and only add one ref count to each hierarchy.
236 * unlink a css_set from the list and free it
238 static void unlink_css_set(struct css_set *cg)
240 struct cg_cgroup_link *link;
241 struct cg_cgroup_link *saved_link;
243 write_lock(&css_set_lock);
244 hlist_del(&cg->hlist);
247 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
249 list_del(&link->cg_link_list);
250 list_del(&link->cgrp_link_list);
254 write_unlock(&css_set_lock);
257 static void __release_css_set(struct kref *k, int taskexit)
260 struct css_set *cg = container_of(k, struct css_set, ref);
265 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
266 struct cgroup *cgrp = cg->subsys[i]->cgroup;
267 if (atomic_dec_and_test(&cgrp->count) &&
268 notify_on_release(cgrp)) {
270 set_bit(CGRP_RELEASABLE, &cgrp->flags);
271 check_for_release(cgrp);
278 static void release_css_set(struct kref *k)
280 __release_css_set(k, 0);
283 static void release_css_set_taskexit(struct kref *k)
285 __release_css_set(k, 1);
289 * refcounted get/put for css_set objects
291 static inline void get_css_set(struct css_set *cg)
296 static inline void put_css_set(struct css_set *cg)
298 kref_put(&cg->ref, release_css_set);
301 static inline void put_css_set_taskexit(struct css_set *cg)
303 kref_put(&cg->ref, release_css_set_taskexit);
307 * find_existing_css_set() is a helper for
308 * find_css_set(), and checks to see whether an existing
309 * css_set is suitable.
311 * oldcg: the cgroup group that we're using before the cgroup
314 * cgrp: the cgroup that we're moving into
316 * template: location in which to build the desired set of subsystem
317 * state objects for the new cgroup group
319 static struct css_set *find_existing_css_set(
320 struct css_set *oldcg,
322 struct cgroup_subsys_state *template[])
325 struct cgroupfs_root *root = cgrp->root;
326 struct hlist_head *hhead;
327 struct hlist_node *node;
330 /* Built the set of subsystem state objects that we want to
331 * see in the new css_set */
332 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
333 if (root->subsys_bits & (1UL << i)) {
334 /* Subsystem is in this hierarchy. So we want
335 * the subsystem state from the new
337 template[i] = cgrp->subsys[i];
339 /* Subsystem is not in this hierarchy, so we
340 * don't want to change the subsystem state */
341 template[i] = oldcg->subsys[i];
345 hhead = css_set_hash(template);
346 hlist_for_each_entry(cg, node, hhead, hlist) {
347 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
348 /* All subsystems matched */
353 /* No existing cgroup group matched */
358 * allocate_cg_links() allocates "count" cg_cgroup_link structures
359 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
360 * success or a negative error
362 static int allocate_cg_links(int count, struct list_head *tmp)
364 struct cg_cgroup_link *link;
365 struct cg_cgroup_link *saved_link;
368 for (i = 0; i < count; i++) {
369 link = kmalloc(sizeof(*link), GFP_KERNEL);
371 list_for_each_entry_safe(link, saved_link, tmp,
373 list_del(&link->cgrp_link_list);
378 list_add(&link->cgrp_link_list, tmp);
383 static void free_cg_links(struct list_head *tmp)
385 struct cg_cgroup_link *link;
386 struct cg_cgroup_link *saved_link;
388 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
389 list_del(&link->cgrp_link_list);
395 * find_css_set() takes an existing cgroup group and a
396 * cgroup object, and returns a css_set object that's
397 * equivalent to the old group, but with the given cgroup
398 * substituted into the appropriate hierarchy. Must be called with
401 static struct css_set *find_css_set(
402 struct css_set *oldcg, struct cgroup *cgrp)
405 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
408 struct list_head tmp_cg_links;
409 struct cg_cgroup_link *link;
411 struct hlist_head *hhead;
413 /* First see if we already have a cgroup group that matches
415 read_lock(&css_set_lock);
416 res = find_existing_css_set(oldcg, cgrp, template);
419 read_unlock(&css_set_lock);
424 res = kmalloc(sizeof(*res), GFP_KERNEL);
428 /* Allocate all the cg_cgroup_link objects that we'll need */
429 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
434 kref_init(&res->ref);
435 INIT_LIST_HEAD(&res->cg_links);
436 INIT_LIST_HEAD(&res->tasks);
437 INIT_HLIST_NODE(&res->hlist);
439 /* Copy the set of subsystem state objects generated in
440 * find_existing_css_set() */
441 memcpy(res->subsys, template, sizeof(res->subsys));
443 write_lock(&css_set_lock);
444 /* Add reference counts and links from the new css_set. */
445 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
446 struct cgroup *cgrp = res->subsys[i]->cgroup;
447 struct cgroup_subsys *ss = subsys[i];
448 atomic_inc(&cgrp->count);
450 * We want to add a link once per cgroup, so we
451 * only do it for the first subsystem in each
454 if (ss->root->subsys_list.next == &ss->sibling) {
455 BUG_ON(list_empty(&tmp_cg_links));
456 link = list_entry(tmp_cg_links.next,
457 struct cg_cgroup_link,
459 list_del(&link->cgrp_link_list);
460 list_add(&link->cgrp_link_list, &cgrp->css_sets);
462 list_add(&link->cg_link_list, &res->cg_links);
465 if (list_empty(&rootnode.subsys_list)) {
466 link = list_entry(tmp_cg_links.next,
467 struct cg_cgroup_link,
469 list_del(&link->cgrp_link_list);
470 list_add(&link->cgrp_link_list, &dummytop->css_sets);
472 list_add(&link->cg_link_list, &res->cg_links);
475 BUG_ON(!list_empty(&tmp_cg_links));
479 /* Add this cgroup group to the hash table */
480 hhead = css_set_hash(res->subsys);
481 hlist_add_head(&res->hlist, hhead);
483 write_unlock(&css_set_lock);
489 * There is one global cgroup mutex. We also require taking
490 * task_lock() when dereferencing a task's cgroup subsys pointers.
491 * See "The task_lock() exception", at the end of this comment.
493 * A task must hold cgroup_mutex to modify cgroups.
495 * Any task can increment and decrement the count field without lock.
496 * So in general, code holding cgroup_mutex can't rely on the count
497 * field not changing. However, if the count goes to zero, then only
498 * cgroup_attach_task() can increment it again. Because a count of zero
499 * means that no tasks are currently attached, therefore there is no
500 * way a task attached to that cgroup can fork (the other way to
501 * increment the count). So code holding cgroup_mutex can safely
502 * assume that if the count is zero, it will stay zero. Similarly, if
503 * a task holds cgroup_mutex on a cgroup with zero count, it
504 * knows that the cgroup won't be removed, as cgroup_rmdir()
507 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
508 * (usually) take cgroup_mutex. These are the two most performance
509 * critical pieces of code here. The exception occurs on cgroup_exit(),
510 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
511 * is taken, and if the cgroup count is zero, a usermode call made
512 * to the release agent with the name of the cgroup (path relative to
513 * the root of cgroup file system) as the argument.
515 * A cgroup can only be deleted if both its 'count' of using tasks
516 * is zero, and its list of 'children' cgroups is empty. Since all
517 * tasks in the system use _some_ cgroup, and since there is always at
518 * least one task in the system (init, pid == 1), therefore, top_cgroup
519 * always has either children cgroups and/or using tasks. So we don't
520 * need a special hack to ensure that top_cgroup cannot be deleted.
522 * The task_lock() exception
524 * The need for this exception arises from the action of
525 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
526 * another. It does so using cgroup_mutex, however there are
527 * several performance critical places that need to reference
528 * task->cgroup without the expense of grabbing a system global
529 * mutex. Therefore except as noted below, when dereferencing or, as
530 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
531 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
532 * the task_struct routinely used for such matters.
534 * P.S. One more locking exception. RCU is used to guard the
535 * update of a tasks cgroup pointer by cgroup_attach_task()
539 * cgroup_lock - lock out any changes to cgroup structures
542 void cgroup_lock(void)
544 mutex_lock(&cgroup_mutex);
548 * cgroup_unlock - release lock on cgroup changes
550 * Undo the lock taken in a previous cgroup_lock() call.
552 void cgroup_unlock(void)
554 mutex_unlock(&cgroup_mutex);
558 * A couple of forward declarations required, due to cyclic reference loop:
559 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
560 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
564 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
565 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
566 static int cgroup_populate_dir(struct cgroup *cgrp);
567 static struct inode_operations cgroup_dir_inode_operations;
568 static struct file_operations proc_cgroupstats_operations;
570 static struct backing_dev_info cgroup_backing_dev_info = {
571 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
574 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
576 struct inode *inode = new_inode(sb);
579 inode->i_mode = mode;
580 inode->i_uid = current->fsuid;
581 inode->i_gid = current->fsgid;
583 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
584 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
590 * Call subsys's pre_destroy handler.
591 * This is called before css refcnt check.
593 static void cgroup_call_pre_destroy(struct cgroup *cgrp)
595 struct cgroup_subsys *ss;
596 for_each_subsys(cgrp->root, ss)
597 if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
598 ss->pre_destroy(ss, cgrp);
602 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
604 /* is dentry a directory ? if so, kfree() associated cgroup */
605 if (S_ISDIR(inode->i_mode)) {
606 struct cgroup *cgrp = dentry->d_fsdata;
607 struct cgroup_subsys *ss;
608 BUG_ON(!(cgroup_is_removed(cgrp)));
609 /* It's possible for external users to be holding css
610 * reference counts on a cgroup; css_put() needs to
611 * be able to access the cgroup after decrementing
612 * the reference count in order to know if it needs to
613 * queue the cgroup to be handled by the release
617 mutex_lock(&cgroup_mutex);
619 * Release the subsystem state objects.
621 for_each_subsys(cgrp->root, ss) {
622 if (cgrp->subsys[ss->subsys_id])
623 ss->destroy(ss, cgrp);
626 cgrp->root->number_of_cgroups--;
627 mutex_unlock(&cgroup_mutex);
629 /* Drop the active superblock reference that we took when we
630 * created the cgroup */
631 deactivate_super(cgrp->root->sb);
638 static void remove_dir(struct dentry *d)
640 struct dentry *parent = dget(d->d_parent);
643 simple_rmdir(parent->d_inode, d);
647 static void cgroup_clear_directory(struct dentry *dentry)
649 struct list_head *node;
651 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
652 spin_lock(&dcache_lock);
653 node = dentry->d_subdirs.next;
654 while (node != &dentry->d_subdirs) {
655 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
658 /* This should never be called on a cgroup
659 * directory with child cgroups */
660 BUG_ON(d->d_inode->i_mode & S_IFDIR);
662 spin_unlock(&dcache_lock);
664 simple_unlink(dentry->d_inode, d);
666 spin_lock(&dcache_lock);
668 node = dentry->d_subdirs.next;
670 spin_unlock(&dcache_lock);
674 * NOTE : the dentry must have been dget()'ed
676 static void cgroup_d_remove_dir(struct dentry *dentry)
678 cgroup_clear_directory(dentry);
680 spin_lock(&dcache_lock);
681 list_del_init(&dentry->d_u.d_child);
682 spin_unlock(&dcache_lock);
686 static int rebind_subsystems(struct cgroupfs_root *root,
687 unsigned long final_bits)
689 unsigned long added_bits, removed_bits;
690 struct cgroup *cgrp = &root->top_cgroup;
693 removed_bits = root->actual_subsys_bits & ~final_bits;
694 added_bits = final_bits & ~root->actual_subsys_bits;
695 /* Check that any added subsystems are currently free */
696 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
697 unsigned long bit = 1UL << i;
698 struct cgroup_subsys *ss = subsys[i];
699 if (!(bit & added_bits))
701 if (ss->root != &rootnode) {
702 /* Subsystem isn't free */
707 /* Currently we don't handle adding/removing subsystems when
708 * any child cgroups exist. This is theoretically supportable
709 * but involves complex error handling, so it's being left until
711 if (!list_empty(&cgrp->children))
714 /* Process each subsystem */
715 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
716 struct cgroup_subsys *ss = subsys[i];
717 unsigned long bit = 1UL << i;
718 if (bit & added_bits) {
719 /* We're binding this subsystem to this hierarchy */
720 BUG_ON(cgrp->subsys[i]);
721 BUG_ON(!dummytop->subsys[i]);
722 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
723 cgrp->subsys[i] = dummytop->subsys[i];
724 cgrp->subsys[i]->cgroup = cgrp;
725 list_add(&ss->sibling, &root->subsys_list);
726 rcu_assign_pointer(ss->root, root);
730 } else if (bit & removed_bits) {
731 /* We're removing this subsystem */
732 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
733 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
735 ss->bind(ss, dummytop);
736 dummytop->subsys[i]->cgroup = dummytop;
737 cgrp->subsys[i] = NULL;
738 rcu_assign_pointer(subsys[i]->root, &rootnode);
739 list_del(&ss->sibling);
740 } else if (bit & final_bits) {
741 /* Subsystem state should already exist */
742 BUG_ON(!cgrp->subsys[i]);
744 /* Subsystem state shouldn't exist */
745 BUG_ON(cgrp->subsys[i]);
748 root->subsys_bits = root->actual_subsys_bits = final_bits;
754 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
756 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
757 struct cgroup_subsys *ss;
759 mutex_lock(&cgroup_mutex);
760 for_each_subsys(root, ss)
761 seq_printf(seq, ",%s", ss->name);
762 if (test_bit(ROOT_NOPREFIX, &root->flags))
763 seq_puts(seq, ",noprefix");
764 if (strlen(root->release_agent_path))
765 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
766 mutex_unlock(&cgroup_mutex);
770 struct cgroup_sb_opts {
771 unsigned long subsys_bits;
776 /* Convert a hierarchy specifier into a bitmask of subsystems and
778 static int parse_cgroupfs_options(char *data,
779 struct cgroup_sb_opts *opts)
781 char *token, *o = data ?: "all";
783 opts->subsys_bits = 0;
785 opts->release_agent = NULL;
787 while ((token = strsep(&o, ",")) != NULL) {
790 if (!strcmp(token, "all")) {
791 /* Add all non-disabled subsystems */
793 opts->subsys_bits = 0;
794 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
795 struct cgroup_subsys *ss = subsys[i];
797 opts->subsys_bits |= 1ul << i;
799 } else if (!strcmp(token, "noprefix")) {
800 set_bit(ROOT_NOPREFIX, &opts->flags);
801 } else if (!strncmp(token, "release_agent=", 14)) {
802 /* Specifying two release agents is forbidden */
803 if (opts->release_agent)
805 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
806 if (!opts->release_agent)
808 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
809 opts->release_agent[PATH_MAX - 1] = 0;
811 struct cgroup_subsys *ss;
813 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
815 if (!strcmp(token, ss->name)) {
817 set_bit(i, &opts->subsys_bits);
821 if (i == CGROUP_SUBSYS_COUNT)
826 /* We can't have an empty hierarchy */
827 if (!opts->subsys_bits)
833 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
836 struct cgroupfs_root *root = sb->s_fs_info;
837 struct cgroup *cgrp = &root->top_cgroup;
838 struct cgroup_sb_opts opts;
840 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
841 mutex_lock(&cgroup_mutex);
843 /* See what subsystems are wanted */
844 ret = parse_cgroupfs_options(data, &opts);
848 /* Don't allow flags to change at remount */
849 if (opts.flags != root->flags) {
854 ret = rebind_subsystems(root, opts.subsys_bits);
856 /* (re)populate subsystem files */
858 cgroup_populate_dir(cgrp);
860 if (opts.release_agent)
861 strcpy(root->release_agent_path, opts.release_agent);
863 if (opts.release_agent)
864 kfree(opts.release_agent);
865 mutex_unlock(&cgroup_mutex);
866 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
870 static struct super_operations cgroup_ops = {
871 .statfs = simple_statfs,
872 .drop_inode = generic_delete_inode,
873 .show_options = cgroup_show_options,
874 .remount_fs = cgroup_remount,
877 static void init_cgroup_root(struct cgroupfs_root *root)
879 struct cgroup *cgrp = &root->top_cgroup;
880 INIT_LIST_HEAD(&root->subsys_list);
881 INIT_LIST_HEAD(&root->root_list);
882 root->number_of_cgroups = 1;
884 cgrp->top_cgroup = cgrp;
885 INIT_LIST_HEAD(&cgrp->sibling);
886 INIT_LIST_HEAD(&cgrp->children);
887 INIT_LIST_HEAD(&cgrp->css_sets);
888 INIT_LIST_HEAD(&cgrp->release_list);
891 static int cgroup_test_super(struct super_block *sb, void *data)
893 struct cgroupfs_root *new = data;
894 struct cgroupfs_root *root = sb->s_fs_info;
896 /* First check subsystems */
897 if (new->subsys_bits != root->subsys_bits)
900 /* Next check flags */
901 if (new->flags != root->flags)
907 static int cgroup_set_super(struct super_block *sb, void *data)
910 struct cgroupfs_root *root = data;
912 ret = set_anon_super(sb, NULL);
916 sb->s_fs_info = root;
919 sb->s_blocksize = PAGE_CACHE_SIZE;
920 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
921 sb->s_magic = CGROUP_SUPER_MAGIC;
922 sb->s_op = &cgroup_ops;
927 static int cgroup_get_rootdir(struct super_block *sb)
929 struct inode *inode =
930 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
931 struct dentry *dentry;
936 inode->i_fop = &simple_dir_operations;
937 inode->i_op = &cgroup_dir_inode_operations;
938 /* directories start off with i_nlink == 2 (for "." entry) */
940 dentry = d_alloc_root(inode);
949 static int cgroup_get_sb(struct file_system_type *fs_type,
950 int flags, const char *unused_dev_name,
951 void *data, struct vfsmount *mnt)
953 struct cgroup_sb_opts opts;
955 struct super_block *sb;
956 struct cgroupfs_root *root;
957 struct list_head tmp_cg_links;
958 INIT_LIST_HEAD(&tmp_cg_links);
960 /* First find the desired set of subsystems */
961 ret = parse_cgroupfs_options(data, &opts);
963 if (opts.release_agent)
964 kfree(opts.release_agent);
968 root = kzalloc(sizeof(*root), GFP_KERNEL);
970 if (opts.release_agent)
971 kfree(opts.release_agent);
975 init_cgroup_root(root);
976 root->subsys_bits = opts.subsys_bits;
977 root->flags = opts.flags;
978 if (opts.release_agent) {
979 strcpy(root->release_agent_path, opts.release_agent);
980 kfree(opts.release_agent);
983 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
990 if (sb->s_fs_info != root) {
991 /* Reusing an existing superblock */
992 BUG_ON(sb->s_root == NULL);
997 struct cgroup *cgrp = &root->top_cgroup;
1001 BUG_ON(sb->s_root != NULL);
1003 ret = cgroup_get_rootdir(sb);
1005 goto drop_new_super;
1006 inode = sb->s_root->d_inode;
1008 mutex_lock(&inode->i_mutex);
1009 mutex_lock(&cgroup_mutex);
1012 * We're accessing css_set_count without locking
1013 * css_set_lock here, but that's OK - it can only be
1014 * increased by someone holding cgroup_lock, and
1015 * that's us. The worst that can happen is that we
1016 * have some link structures left over
1018 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1020 mutex_unlock(&cgroup_mutex);
1021 mutex_unlock(&inode->i_mutex);
1022 goto drop_new_super;
1025 ret = rebind_subsystems(root, root->subsys_bits);
1026 if (ret == -EBUSY) {
1027 mutex_unlock(&cgroup_mutex);
1028 mutex_unlock(&inode->i_mutex);
1029 goto drop_new_super;
1032 /* EBUSY should be the only error here */
1035 list_add(&root->root_list, &roots);
1038 sb->s_root->d_fsdata = &root->top_cgroup;
1039 root->top_cgroup.dentry = sb->s_root;
1041 /* Link the top cgroup in this hierarchy into all
1042 * the css_set objects */
1043 write_lock(&css_set_lock);
1044 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1045 struct hlist_head *hhead = &css_set_table[i];
1046 struct hlist_node *node;
1049 hlist_for_each_entry(cg, node, hhead, hlist) {
1050 struct cg_cgroup_link *link;
1052 BUG_ON(list_empty(&tmp_cg_links));
1053 link = list_entry(tmp_cg_links.next,
1054 struct cg_cgroup_link,
1056 list_del(&link->cgrp_link_list);
1058 list_add(&link->cgrp_link_list,
1059 &root->top_cgroup.css_sets);
1060 list_add(&link->cg_link_list, &cg->cg_links);
1063 write_unlock(&css_set_lock);
1065 free_cg_links(&tmp_cg_links);
1067 BUG_ON(!list_empty(&cgrp->sibling));
1068 BUG_ON(!list_empty(&cgrp->children));
1069 BUG_ON(root->number_of_cgroups != 1);
1071 cgroup_populate_dir(cgrp);
1072 mutex_unlock(&inode->i_mutex);
1073 mutex_unlock(&cgroup_mutex);
1076 return simple_set_mnt(mnt, sb);
1079 up_write(&sb->s_umount);
1080 deactivate_super(sb);
1081 free_cg_links(&tmp_cg_links);
1085 static void cgroup_kill_sb(struct super_block *sb) {
1086 struct cgroupfs_root *root = sb->s_fs_info;
1087 struct cgroup *cgrp = &root->top_cgroup;
1089 struct cg_cgroup_link *link;
1090 struct cg_cgroup_link *saved_link;
1094 BUG_ON(root->number_of_cgroups != 1);
1095 BUG_ON(!list_empty(&cgrp->children));
1096 BUG_ON(!list_empty(&cgrp->sibling));
1098 mutex_lock(&cgroup_mutex);
1100 /* Rebind all subsystems back to the default hierarchy */
1101 ret = rebind_subsystems(root, 0);
1102 /* Shouldn't be able to fail ... */
1106 * Release all the links from css_sets to this hierarchy's
1109 write_lock(&css_set_lock);
1111 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1113 list_del(&link->cg_link_list);
1114 list_del(&link->cgrp_link_list);
1117 write_unlock(&css_set_lock);
1119 if (!list_empty(&root->root_list)) {
1120 list_del(&root->root_list);
1123 mutex_unlock(&cgroup_mutex);
1126 kill_litter_super(sb);
1129 static struct file_system_type cgroup_fs_type = {
1131 .get_sb = cgroup_get_sb,
1132 .kill_sb = cgroup_kill_sb,
1135 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1137 return dentry->d_fsdata;
1140 static inline struct cftype *__d_cft(struct dentry *dentry)
1142 return dentry->d_fsdata;
1146 * cgroup_path - generate the path of a cgroup
1147 * @cgrp: the cgroup in question
1148 * @buf: the buffer to write the path into
1149 * @buflen: the length of the buffer
1151 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1152 * Returns 0 on success, -errno on error.
1154 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1158 if (cgrp == dummytop) {
1160 * Inactive subsystems have no dentry for their root
1167 start = buf + buflen;
1171 int len = cgrp->dentry->d_name.len;
1172 if ((start -= len) < buf)
1173 return -ENAMETOOLONG;
1174 memcpy(start, cgrp->dentry->d_name.name, len);
1175 cgrp = cgrp->parent;
1181 return -ENAMETOOLONG;
1184 memmove(buf, start, buf + buflen - start);
1189 * Return the first subsystem attached to a cgroup's hierarchy, and
1193 static void get_first_subsys(const struct cgroup *cgrp,
1194 struct cgroup_subsys_state **css, int *subsys_id)
1196 const struct cgroupfs_root *root = cgrp->root;
1197 const struct cgroup_subsys *test_ss;
1198 BUG_ON(list_empty(&root->subsys_list));
1199 test_ss = list_entry(root->subsys_list.next,
1200 struct cgroup_subsys, sibling);
1202 *css = cgrp->subsys[test_ss->subsys_id];
1206 *subsys_id = test_ss->subsys_id;
1210 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1211 * @cgrp: the cgroup the task is attaching to
1212 * @tsk: the task to be attached
1214 * Call holding cgroup_mutex. May take task_lock of
1215 * the task 'tsk' during call.
1217 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1220 struct cgroup_subsys *ss;
1221 struct cgroup *oldcgrp;
1222 struct css_set *cg = tsk->cgroups;
1223 struct css_set *newcg;
1224 struct cgroupfs_root *root = cgrp->root;
1227 get_first_subsys(cgrp, NULL, &subsys_id);
1229 /* Nothing to do if the task is already in that cgroup */
1230 oldcgrp = task_cgroup(tsk, subsys_id);
1231 if (cgrp == oldcgrp)
1234 for_each_subsys(root, ss) {
1235 if (ss->can_attach) {
1236 retval = ss->can_attach(ss, cgrp, tsk);
1243 * Locate or allocate a new css_set for this task,
1244 * based on its final set of cgroups
1246 newcg = find_css_set(cg, cgrp);
1251 if (tsk->flags & PF_EXITING) {
1256 rcu_assign_pointer(tsk->cgroups, newcg);
1259 /* Update the css_set linked lists if we're using them */
1260 write_lock(&css_set_lock);
1261 if (!list_empty(&tsk->cg_list)) {
1262 list_del(&tsk->cg_list);
1263 list_add(&tsk->cg_list, &newcg->tasks);
1265 write_unlock(&css_set_lock);
1267 for_each_subsys(root, ss) {
1269 ss->attach(ss, cgrp, oldcgrp, tsk);
1271 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1278 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1279 * held. May take task_lock of task
1281 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1283 struct task_struct *tsk;
1288 tsk = find_task_by_vpid(pid);
1289 if (!tsk || tsk->flags & PF_EXITING) {
1293 get_task_struct(tsk);
1296 if ((current->euid) && (current->euid != tsk->uid)
1297 && (current->euid != tsk->suid)) {
1298 put_task_struct(tsk);
1303 get_task_struct(tsk);
1306 ret = cgroup_attach_task(cgrp, tsk);
1307 put_task_struct(tsk);
1311 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1314 if (!cgroup_lock_live_group(cgrp))
1316 ret = attach_task_by_pid(cgrp, pid);
1321 /* The various types of files and directories in a cgroup file system */
1322 enum cgroup_filetype {
1326 FILE_NOTIFY_ON_RELEASE,
1331 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1332 * @cgrp: the cgroup to be checked for liveness
1334 * On success, returns true; the lock should be later released with
1335 * cgroup_unlock(). On failure returns false with no lock held.
1337 bool cgroup_lock_live_group(struct cgroup *cgrp)
1339 mutex_lock(&cgroup_mutex);
1340 if (cgroup_is_removed(cgrp)) {
1341 mutex_unlock(&cgroup_mutex);
1347 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1350 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1351 if (!cgroup_lock_live_group(cgrp))
1353 strcpy(cgrp->root->release_agent_path, buffer);
1358 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1359 struct seq_file *seq)
1361 if (!cgroup_lock_live_group(cgrp))
1363 seq_puts(seq, cgrp->root->release_agent_path);
1364 seq_putc(seq, '\n');
1369 /* A buffer size big enough for numbers or short strings */
1370 #define CGROUP_LOCAL_BUFFER_SIZE 64
1372 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1374 const char __user *userbuf,
1375 size_t nbytes, loff_t *unused_ppos)
1377 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1383 if (nbytes >= sizeof(buffer))
1385 if (copy_from_user(buffer, userbuf, nbytes))
1388 buffer[nbytes] = 0; /* nul-terminate */
1390 if (cft->write_u64) {
1391 u64 val = simple_strtoull(buffer, &end, 0);
1394 retval = cft->write_u64(cgrp, cft, val);
1396 s64 val = simple_strtoll(buffer, &end, 0);
1399 retval = cft->write_s64(cgrp, cft, val);
1406 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1408 const char __user *userbuf,
1409 size_t nbytes, loff_t *unused_ppos)
1411 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1413 size_t max_bytes = cft->max_write_len;
1414 char *buffer = local_buffer;
1417 max_bytes = sizeof(local_buffer) - 1;
1418 if (nbytes >= max_bytes)
1420 /* Allocate a dynamic buffer if we need one */
1421 if (nbytes >= sizeof(local_buffer)) {
1422 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1426 if (nbytes && copy_from_user(buffer, userbuf, nbytes))
1429 buffer[nbytes] = 0; /* nul-terminate */
1431 retval = cft->write_string(cgrp, cft, buffer);
1434 if (buffer != local_buffer)
1439 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1440 size_t nbytes, loff_t *ppos)
1442 struct cftype *cft = __d_cft(file->f_dentry);
1443 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1445 if (!cft || cgroup_is_removed(cgrp))
1448 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1449 if (cft->write_u64 || cft->write_s64)
1450 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1451 if (cft->write_string)
1452 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1454 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1455 return ret ? ret : nbytes;
1460 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1462 char __user *buf, size_t nbytes,
1465 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1466 u64 val = cft->read_u64(cgrp, cft);
1467 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1469 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1472 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1474 char __user *buf, size_t nbytes,
1477 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1478 s64 val = cft->read_s64(cgrp, cft);
1479 int len = sprintf(tmp, "%lld\n", (long long) val);
1481 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1484 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1485 size_t nbytes, loff_t *ppos)
1487 struct cftype *cft = __d_cft(file->f_dentry);
1488 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1490 if (!cft || cgroup_is_removed(cgrp))
1494 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1496 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1498 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1503 * seqfile ops/methods for returning structured data. Currently just
1504 * supports string->u64 maps, but can be extended in future.
1507 struct cgroup_seqfile_state {
1509 struct cgroup *cgroup;
1512 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1514 struct seq_file *sf = cb->state;
1515 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1518 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1520 struct cgroup_seqfile_state *state = m->private;
1521 struct cftype *cft = state->cft;
1522 if (cft->read_map) {
1523 struct cgroup_map_cb cb = {
1524 .fill = cgroup_map_add,
1527 return cft->read_map(state->cgroup, cft, &cb);
1529 return cft->read_seq_string(state->cgroup, cft, m);
1532 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1534 struct seq_file *seq = file->private_data;
1535 kfree(seq->private);
1536 return single_release(inode, file);
1539 static struct file_operations cgroup_seqfile_operations = {
1541 .write = cgroup_file_write,
1542 .llseek = seq_lseek,
1543 .release = cgroup_seqfile_release,
1546 static int cgroup_file_open(struct inode *inode, struct file *file)
1551 err = generic_file_open(inode, file);
1555 cft = __d_cft(file->f_dentry);
1558 if (cft->read_map || cft->read_seq_string) {
1559 struct cgroup_seqfile_state *state =
1560 kzalloc(sizeof(*state), GFP_USER);
1564 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1565 file->f_op = &cgroup_seqfile_operations;
1566 err = single_open(file, cgroup_seqfile_show, state);
1569 } else if (cft->open)
1570 err = cft->open(inode, file);
1577 static int cgroup_file_release(struct inode *inode, struct file *file)
1579 struct cftype *cft = __d_cft(file->f_dentry);
1581 return cft->release(inode, file);
1586 * cgroup_rename - Only allow simple rename of directories in place.
1588 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1589 struct inode *new_dir, struct dentry *new_dentry)
1591 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1593 if (new_dentry->d_inode)
1595 if (old_dir != new_dir)
1597 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1600 static struct file_operations cgroup_file_operations = {
1601 .read = cgroup_file_read,
1602 .write = cgroup_file_write,
1603 .llseek = generic_file_llseek,
1604 .open = cgroup_file_open,
1605 .release = cgroup_file_release,
1608 static struct inode_operations cgroup_dir_inode_operations = {
1609 .lookup = simple_lookup,
1610 .mkdir = cgroup_mkdir,
1611 .rmdir = cgroup_rmdir,
1612 .rename = cgroup_rename,
1615 static int cgroup_create_file(struct dentry *dentry, int mode,
1616 struct super_block *sb)
1618 static struct dentry_operations cgroup_dops = {
1619 .d_iput = cgroup_diput,
1622 struct inode *inode;
1626 if (dentry->d_inode)
1629 inode = cgroup_new_inode(mode, sb);
1633 if (S_ISDIR(mode)) {
1634 inode->i_op = &cgroup_dir_inode_operations;
1635 inode->i_fop = &simple_dir_operations;
1637 /* start off with i_nlink == 2 (for "." entry) */
1640 /* start with the directory inode held, so that we can
1641 * populate it without racing with another mkdir */
1642 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1643 } else if (S_ISREG(mode)) {
1645 inode->i_fop = &cgroup_file_operations;
1647 dentry->d_op = &cgroup_dops;
1648 d_instantiate(dentry, inode);
1649 dget(dentry); /* Extra count - pin the dentry in core */
1654 * cgroup_create_dir - create a directory for an object.
1655 * @cgrp: the cgroup we create the directory for. It must have a valid
1656 * ->parent field. And we are going to fill its ->dentry field.
1657 * @dentry: dentry of the new cgroup
1658 * @mode: mode to set on new directory.
1660 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1663 struct dentry *parent;
1666 parent = cgrp->parent->dentry;
1667 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1669 dentry->d_fsdata = cgrp;
1670 inc_nlink(parent->d_inode);
1671 cgrp->dentry = dentry;
1679 int cgroup_add_file(struct cgroup *cgrp,
1680 struct cgroup_subsys *subsys,
1681 const struct cftype *cft)
1683 struct dentry *dir = cgrp->dentry;
1684 struct dentry *dentry;
1687 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1688 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1689 strcpy(name, subsys->name);
1692 strcat(name, cft->name);
1693 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1694 dentry = lookup_one_len(name, dir, strlen(name));
1695 if (!IS_ERR(dentry)) {
1696 error = cgroup_create_file(dentry, 0644 | S_IFREG,
1699 dentry->d_fsdata = (void *)cft;
1702 error = PTR_ERR(dentry);
1706 int cgroup_add_files(struct cgroup *cgrp,
1707 struct cgroup_subsys *subsys,
1708 const struct cftype cft[],
1712 for (i = 0; i < count; i++) {
1713 err = cgroup_add_file(cgrp, subsys, &cft[i]);
1721 * cgroup_task_count - count the number of tasks in a cgroup.
1722 * @cgrp: the cgroup in question
1724 * Return the number of tasks in the cgroup.
1726 int cgroup_task_count(const struct cgroup *cgrp)
1729 struct cg_cgroup_link *link;
1731 read_lock(&css_set_lock);
1732 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1733 count += atomic_read(&link->cg->ref.refcount);
1735 read_unlock(&css_set_lock);
1740 * Advance a list_head iterator. The iterator should be positioned at
1741 * the start of a css_set
1743 static void cgroup_advance_iter(struct cgroup *cgrp,
1744 struct cgroup_iter *it)
1746 struct list_head *l = it->cg_link;
1747 struct cg_cgroup_link *link;
1750 /* Advance to the next non-empty css_set */
1753 if (l == &cgrp->css_sets) {
1757 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1759 } while (list_empty(&cg->tasks));
1761 it->task = cg->tasks.next;
1765 * To reduce the fork() overhead for systems that are not actually
1766 * using their cgroups capability, we don't maintain the lists running
1767 * through each css_set to its tasks until we see the list actually
1768 * used - in other words after the first call to cgroup_iter_start().
1770 * The tasklist_lock is not held here, as do_each_thread() and
1771 * while_each_thread() are protected by RCU.
1773 static void cgroup_enable_task_cg_lists(void)
1775 struct task_struct *p, *g;
1776 write_lock(&css_set_lock);
1777 use_task_css_set_links = 1;
1778 do_each_thread(g, p) {
1781 * We should check if the process is exiting, otherwise
1782 * it will race with cgroup_exit() in that the list
1783 * entry won't be deleted though the process has exited.
1785 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1786 list_add(&p->cg_list, &p->cgroups->tasks);
1788 } while_each_thread(g, p);
1789 write_unlock(&css_set_lock);
1792 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1795 * The first time anyone tries to iterate across a cgroup,
1796 * we need to enable the list linking each css_set to its
1797 * tasks, and fix up all existing tasks.
1799 if (!use_task_css_set_links)
1800 cgroup_enable_task_cg_lists();
1802 read_lock(&css_set_lock);
1803 it->cg_link = &cgrp->css_sets;
1804 cgroup_advance_iter(cgrp, it);
1807 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1808 struct cgroup_iter *it)
1810 struct task_struct *res;
1811 struct list_head *l = it->task;
1813 /* If the iterator cg is NULL, we have no tasks */
1816 res = list_entry(l, struct task_struct, cg_list);
1817 /* Advance iterator to find next entry */
1819 if (l == &res->cgroups->tasks) {
1820 /* We reached the end of this task list - move on to
1821 * the next cg_cgroup_link */
1822 cgroup_advance_iter(cgrp, it);
1829 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1831 read_unlock(&css_set_lock);
1834 static inline int started_after_time(struct task_struct *t1,
1835 struct timespec *time,
1836 struct task_struct *t2)
1838 int start_diff = timespec_compare(&t1->start_time, time);
1839 if (start_diff > 0) {
1841 } else if (start_diff < 0) {
1845 * Arbitrarily, if two processes started at the same
1846 * time, we'll say that the lower pointer value
1847 * started first. Note that t2 may have exited by now
1848 * so this may not be a valid pointer any longer, but
1849 * that's fine - it still serves to distinguish
1850 * between two tasks started (effectively) simultaneously.
1857 * This function is a callback from heap_insert() and is used to order
1859 * In this case we order the heap in descending task start time.
1861 static inline int started_after(void *p1, void *p2)
1863 struct task_struct *t1 = p1;
1864 struct task_struct *t2 = p2;
1865 return started_after_time(t1, &t2->start_time, t2);
1869 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1870 * @scan: struct cgroup_scanner containing arguments for the scan
1872 * Arguments include pointers to callback functions test_task() and
1874 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1875 * and if it returns true, call process_task() for it also.
1876 * The test_task pointer may be NULL, meaning always true (select all tasks).
1877 * Effectively duplicates cgroup_iter_{start,next,end}()
1878 * but does not lock css_set_lock for the call to process_task().
1879 * The struct cgroup_scanner may be embedded in any structure of the caller's
1881 * It is guaranteed that process_task() will act on every task that
1882 * is a member of the cgroup for the duration of this call. This
1883 * function may or may not call process_task() for tasks that exit
1884 * or move to a different cgroup during the call, or are forked or
1885 * move into the cgroup during the call.
1887 * Note that test_task() may be called with locks held, and may in some
1888 * situations be called multiple times for the same task, so it should
1890 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1891 * pre-allocated and will be used for heap operations (and its "gt" member will
1892 * be overwritten), else a temporary heap will be used (allocation of which
1893 * may cause this function to fail).
1895 int cgroup_scan_tasks(struct cgroup_scanner *scan)
1898 struct cgroup_iter it;
1899 struct task_struct *p, *dropped;
1900 /* Never dereference latest_task, since it's not refcounted */
1901 struct task_struct *latest_task = NULL;
1902 struct ptr_heap tmp_heap;
1903 struct ptr_heap *heap;
1904 struct timespec latest_time = { 0, 0 };
1907 /* The caller supplied our heap and pre-allocated its memory */
1909 heap->gt = &started_after;
1911 /* We need to allocate our own heap memory */
1913 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1915 /* cannot allocate the heap */
1921 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1922 * to determine which are of interest, and using the scanner's
1923 * "process_task" callback to process any of them that need an update.
1924 * Since we don't want to hold any locks during the task updates,
1925 * gather tasks to be processed in a heap structure.
1926 * The heap is sorted by descending task start time.
1927 * If the statically-sized heap fills up, we overflow tasks that
1928 * started later, and in future iterations only consider tasks that
1929 * started after the latest task in the previous pass. This
1930 * guarantees forward progress and that we don't miss any tasks.
1933 cgroup_iter_start(scan->cg, &it);
1934 while ((p = cgroup_iter_next(scan->cg, &it))) {
1936 * Only affect tasks that qualify per the caller's callback,
1937 * if he provided one
1939 if (scan->test_task && !scan->test_task(p, scan))
1942 * Only process tasks that started after the last task
1945 if (!started_after_time(p, &latest_time, latest_task))
1947 dropped = heap_insert(heap, p);
1948 if (dropped == NULL) {
1950 * The new task was inserted; the heap wasn't
1954 } else if (dropped != p) {
1956 * The new task was inserted, and pushed out a
1960 put_task_struct(dropped);
1963 * Else the new task was newer than anything already in
1964 * the heap and wasn't inserted
1967 cgroup_iter_end(scan->cg, &it);
1970 for (i = 0; i < heap->size; i++) {
1971 struct task_struct *q = heap->ptrs[i];
1973 latest_time = q->start_time;
1976 /* Process the task per the caller's callback */
1977 scan->process_task(q, scan);
1981 * If we had to process any tasks at all, scan again
1982 * in case some of them were in the middle of forking
1983 * children that didn't get processed.
1984 * Not the most efficient way to do it, but it avoids
1985 * having to take callback_mutex in the fork path
1989 if (heap == &tmp_heap)
1990 heap_free(&tmp_heap);
1995 * Stuff for reading the 'tasks' file.
1997 * Reading this file can return large amounts of data if a cgroup has
1998 * *lots* of attached tasks. So it may need several calls to read(),
1999 * but we cannot guarantee that the information we produce is correct
2000 * unless we produce it entirely atomically.
2002 * Upon tasks file open(), a struct ctr_struct is allocated, that
2003 * will have a pointer to an array (also allocated here). The struct
2004 * ctr_struct * is stored in file->private_data. Its resources will
2005 * be freed by release() when the file is closed. The array is used
2006 * to sprintf the PIDs and then used by read().
2014 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2015 * 'cgrp'. Return actual number of pids loaded. No need to
2016 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2017 * read section, so the css_set can't go away, and is
2018 * immutable after creation.
2020 static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2023 struct cgroup_iter it;
2024 struct task_struct *tsk;
2025 cgroup_iter_start(cgrp, &it);
2026 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2027 if (unlikely(n == npids))
2029 pidarray[n++] = task_pid_vnr(tsk);
2031 cgroup_iter_end(cgrp, &it);
2036 * cgroupstats_build - build and fill cgroupstats
2037 * @stats: cgroupstats to fill information into
2038 * @dentry: A dentry entry belonging to the cgroup for which stats have
2041 * Build and fill cgroupstats so that taskstats can export it to user
2044 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2047 struct cgroup *cgrp;
2048 struct cgroup_iter it;
2049 struct task_struct *tsk;
2051 * Validate dentry by checking the superblock operations
2053 if (dentry->d_sb->s_op != &cgroup_ops)
2057 cgrp = dentry->d_fsdata;
2060 cgroup_iter_start(cgrp, &it);
2061 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2062 switch (tsk->state) {
2064 stats->nr_running++;
2066 case TASK_INTERRUPTIBLE:
2067 stats->nr_sleeping++;
2069 case TASK_UNINTERRUPTIBLE:
2070 stats->nr_uninterruptible++;
2073 stats->nr_stopped++;
2076 if (delayacct_is_task_waiting_on_io(tsk))
2077 stats->nr_io_wait++;
2081 cgroup_iter_end(cgrp, &it);
2088 static int cmppid(const void *a, const void *b)
2090 return *(pid_t *)a - *(pid_t *)b;
2094 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
2095 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
2096 * count 'cnt' of how many chars would be written if buf were large enough.
2098 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
2103 for (i = 0; i < npids; i++)
2104 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
2109 * Handle an open on 'tasks' file. Prepare a buffer listing the
2110 * process id's of tasks currently attached to the cgroup being opened.
2112 * Does not require any specific cgroup mutexes, and does not take any.
2114 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2116 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2117 struct ctr_struct *ctr;
2122 if (!(file->f_mode & FMODE_READ))
2125 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
2130 * If cgroup gets more users after we read count, we won't have
2131 * enough space - tough. This race is indistinguishable to the
2132 * caller from the case that the additional cgroup users didn't
2133 * show up until sometime later on.
2135 npids = cgroup_task_count(cgrp);
2137 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2141 npids = pid_array_load(pidarray, npids, cgrp);
2142 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2144 /* Call pid_array_to_buf() twice, first just to get bufsz */
2145 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
2146 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
2149 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
2156 file->private_data = ctr;
2167 static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
2169 struct file *file, char __user *buf,
2170 size_t nbytes, loff_t *ppos)
2172 struct ctr_struct *ctr = file->private_data;
2174 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
2177 static int cgroup_tasks_release(struct inode *unused_inode,
2180 struct ctr_struct *ctr;
2182 if (file->f_mode & FMODE_READ) {
2183 ctr = file->private_data;
2190 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2193 return notify_on_release(cgrp);
2196 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2200 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2202 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2204 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2209 * for the common functions, 'private' gives the type of file
2211 static struct cftype files[] = {
2214 .open = cgroup_tasks_open,
2215 .read = cgroup_tasks_read,
2216 .write_u64 = cgroup_tasks_write,
2217 .release = cgroup_tasks_release,
2218 .private = FILE_TASKLIST,
2222 .name = "notify_on_release",
2223 .read_u64 = cgroup_read_notify_on_release,
2224 .write_u64 = cgroup_write_notify_on_release,
2225 .private = FILE_NOTIFY_ON_RELEASE,
2229 static struct cftype cft_release_agent = {
2230 .name = "release_agent",
2231 .read_seq_string = cgroup_release_agent_show,
2232 .write_string = cgroup_release_agent_write,
2233 .max_write_len = PATH_MAX,
2234 .private = FILE_RELEASE_AGENT,
2237 static int cgroup_populate_dir(struct cgroup *cgrp)
2240 struct cgroup_subsys *ss;
2242 /* First clear out any existing files */
2243 cgroup_clear_directory(cgrp->dentry);
2245 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2249 if (cgrp == cgrp->top_cgroup) {
2250 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2254 for_each_subsys(cgrp->root, ss) {
2255 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2262 static void init_cgroup_css(struct cgroup_subsys_state *css,
2263 struct cgroup_subsys *ss,
2264 struct cgroup *cgrp)
2267 atomic_set(&css->refcnt, 0);
2269 if (cgrp == dummytop)
2270 set_bit(CSS_ROOT, &css->flags);
2271 BUG_ON(cgrp->subsys[ss->subsys_id]);
2272 cgrp->subsys[ss->subsys_id] = css;
2276 * cgroup_create - create a cgroup
2277 * @parent: cgroup that will be parent of the new cgroup
2278 * @dentry: dentry of the new cgroup
2279 * @mode: mode to set on new inode
2281 * Must be called with the mutex on the parent inode held
2283 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2286 struct cgroup *cgrp;
2287 struct cgroupfs_root *root = parent->root;
2289 struct cgroup_subsys *ss;
2290 struct super_block *sb = root->sb;
2292 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2296 /* Grab a reference on the superblock so the hierarchy doesn't
2297 * get deleted on unmount if there are child cgroups. This
2298 * can be done outside cgroup_mutex, since the sb can't
2299 * disappear while someone has an open control file on the
2301 atomic_inc(&sb->s_active);
2303 mutex_lock(&cgroup_mutex);
2305 INIT_LIST_HEAD(&cgrp->sibling);
2306 INIT_LIST_HEAD(&cgrp->children);
2307 INIT_LIST_HEAD(&cgrp->css_sets);
2308 INIT_LIST_HEAD(&cgrp->release_list);
2310 cgrp->parent = parent;
2311 cgrp->root = parent->root;
2312 cgrp->top_cgroup = parent->top_cgroup;
2314 if (notify_on_release(parent))
2315 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2317 for_each_subsys(root, ss) {
2318 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2323 init_cgroup_css(css, ss, cgrp);
2326 list_add(&cgrp->sibling, &cgrp->parent->children);
2327 root->number_of_cgroups++;
2329 err = cgroup_create_dir(cgrp, dentry, mode);
2333 /* The cgroup directory was pre-locked for us */
2334 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2336 err = cgroup_populate_dir(cgrp);
2337 /* If err < 0, we have a half-filled directory - oh well ;) */
2339 mutex_unlock(&cgroup_mutex);
2340 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2346 list_del(&cgrp->sibling);
2347 root->number_of_cgroups--;
2351 for_each_subsys(root, ss) {
2352 if (cgrp->subsys[ss->subsys_id])
2353 ss->destroy(ss, cgrp);
2356 mutex_unlock(&cgroup_mutex);
2358 /* Release the reference count that we took on the superblock */
2359 deactivate_super(sb);
2365 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2367 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2369 /* the vfs holds inode->i_mutex already */
2370 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2373 static inline int cgroup_has_css_refs(struct cgroup *cgrp)
2375 /* Check the reference count on each subsystem. Since we
2376 * already established that there are no tasks in the
2377 * cgroup, if the css refcount is also 0, then there should
2378 * be no outstanding references, so the subsystem is safe to
2379 * destroy. We scan across all subsystems rather than using
2380 * the per-hierarchy linked list of mounted subsystems since
2381 * we can be called via check_for_release() with no
2382 * synchronization other than RCU, and the subsystem linked
2383 * list isn't RCU-safe */
2385 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2386 struct cgroup_subsys *ss = subsys[i];
2387 struct cgroup_subsys_state *css;
2388 /* Skip subsystems not in this hierarchy */
2389 if (ss->root != cgrp->root)
2391 css = cgrp->subsys[ss->subsys_id];
2392 /* When called from check_for_release() it's possible
2393 * that by this point the cgroup has been removed
2394 * and the css deleted. But a false-positive doesn't
2395 * matter, since it can only happen if the cgroup
2396 * has been deleted and hence no longer needs the
2397 * release agent to be called anyway. */
2398 if (css && atomic_read(&css->refcnt))
2404 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2406 struct cgroup *cgrp = dentry->d_fsdata;
2408 struct cgroup *parent;
2409 struct super_block *sb;
2410 struct cgroupfs_root *root;
2412 /* the vfs holds both inode->i_mutex already */
2414 mutex_lock(&cgroup_mutex);
2415 if (atomic_read(&cgrp->count) != 0) {
2416 mutex_unlock(&cgroup_mutex);
2419 if (!list_empty(&cgrp->children)) {
2420 mutex_unlock(&cgroup_mutex);
2424 parent = cgrp->parent;
2429 * Call pre_destroy handlers of subsys. Notify subsystems
2430 * that rmdir() request comes.
2432 cgroup_call_pre_destroy(cgrp);
2434 if (cgroup_has_css_refs(cgrp)) {
2435 mutex_unlock(&cgroup_mutex);
2439 spin_lock(&release_list_lock);
2440 set_bit(CGRP_REMOVED, &cgrp->flags);
2441 if (!list_empty(&cgrp->release_list))
2442 list_del(&cgrp->release_list);
2443 spin_unlock(&release_list_lock);
2444 /* delete my sibling from parent->children */
2445 list_del(&cgrp->sibling);
2446 spin_lock(&cgrp->dentry->d_lock);
2447 d = dget(cgrp->dentry);
2448 cgrp->dentry = NULL;
2449 spin_unlock(&d->d_lock);
2451 cgroup_d_remove_dir(d);
2454 set_bit(CGRP_RELEASABLE, &parent->flags);
2455 check_for_release(parent);
2457 mutex_unlock(&cgroup_mutex);
2461 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2463 struct cgroup_subsys_state *css;
2465 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2467 /* Create the top cgroup state for this subsystem */
2468 ss->root = &rootnode;
2469 css = ss->create(ss, dummytop);
2470 /* We don't handle early failures gracefully */
2471 BUG_ON(IS_ERR(css));
2472 init_cgroup_css(css, ss, dummytop);
2474 /* Update the init_css_set to contain a subsys
2475 * pointer to this state - since the subsystem is
2476 * newly registered, all tasks and hence the
2477 * init_css_set is in the subsystem's top cgroup. */
2478 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2480 need_forkexit_callback |= ss->fork || ss->exit;
2481 need_mm_owner_callback |= !!ss->mm_owner_changed;
2483 /* At system boot, before all subsystems have been
2484 * registered, no tasks have been forked, so we don't
2485 * need to invoke fork callbacks here. */
2486 BUG_ON(!list_empty(&init_task.tasks));
2492 * cgroup_init_early - cgroup initialization at system boot
2494 * Initialize cgroups at system boot, and initialize any
2495 * subsystems that request early init.
2497 int __init cgroup_init_early(void)
2500 kref_init(&init_css_set.ref);
2501 kref_get(&init_css_set.ref);
2502 INIT_LIST_HEAD(&init_css_set.cg_links);
2503 INIT_LIST_HEAD(&init_css_set.tasks);
2504 INIT_HLIST_NODE(&init_css_set.hlist);
2506 init_cgroup_root(&rootnode);
2507 list_add(&rootnode.root_list, &roots);
2509 init_task.cgroups = &init_css_set;
2511 init_css_set_link.cg = &init_css_set;
2512 list_add(&init_css_set_link.cgrp_link_list,
2513 &rootnode.top_cgroup.css_sets);
2514 list_add(&init_css_set_link.cg_link_list,
2515 &init_css_set.cg_links);
2517 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
2518 INIT_HLIST_HEAD(&css_set_table[i]);
2520 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2521 struct cgroup_subsys *ss = subsys[i];
2524 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2525 BUG_ON(!ss->create);
2526 BUG_ON(!ss->destroy);
2527 if (ss->subsys_id != i) {
2528 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2529 ss->name, ss->subsys_id);
2534 cgroup_init_subsys(ss);
2540 * cgroup_init - cgroup initialization
2542 * Register cgroup filesystem and /proc file, and initialize
2543 * any subsystems that didn't request early init.
2545 int __init cgroup_init(void)
2549 struct hlist_head *hhead;
2551 err = bdi_init(&cgroup_backing_dev_info);
2555 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2556 struct cgroup_subsys *ss = subsys[i];
2557 if (!ss->early_init)
2558 cgroup_init_subsys(ss);
2561 /* Add init_css_set to the hash table */
2562 hhead = css_set_hash(init_css_set.subsys);
2563 hlist_add_head(&init_css_set.hlist, hhead);
2565 err = register_filesystem(&cgroup_fs_type);
2569 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2573 bdi_destroy(&cgroup_backing_dev_info);
2579 * proc_cgroup_show()
2580 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2581 * - Used for /proc/<pid>/cgroup.
2582 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2583 * doesn't really matter if tsk->cgroup changes after we read it,
2584 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2585 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2586 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2587 * cgroup to top_cgroup.
2590 /* TODO: Use a proper seq_file iterator */
2591 static int proc_cgroup_show(struct seq_file *m, void *v)
2594 struct task_struct *tsk;
2597 struct cgroupfs_root *root;
2600 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2606 tsk = get_pid_task(pid, PIDTYPE_PID);
2612 mutex_lock(&cgroup_mutex);
2614 for_each_root(root) {
2615 struct cgroup_subsys *ss;
2616 struct cgroup *cgrp;
2620 /* Skip this hierarchy if it has no active subsystems */
2621 if (!root->actual_subsys_bits)
2623 seq_printf(m, "%lu:", root->subsys_bits);
2624 for_each_subsys(root, ss)
2625 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2627 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2628 cgrp = task_cgroup(tsk, subsys_id);
2629 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2637 mutex_unlock(&cgroup_mutex);
2638 put_task_struct(tsk);
2645 static int cgroup_open(struct inode *inode, struct file *file)
2647 struct pid *pid = PROC_I(inode)->pid;
2648 return single_open(file, proc_cgroup_show, pid);
2651 struct file_operations proc_cgroup_operations = {
2652 .open = cgroup_open,
2654 .llseek = seq_lseek,
2655 .release = single_release,
2658 /* Display information about each subsystem and each hierarchy */
2659 static int proc_cgroupstats_show(struct seq_file *m, void *v)
2663 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2664 mutex_lock(&cgroup_mutex);
2665 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2666 struct cgroup_subsys *ss = subsys[i];
2667 seq_printf(m, "%s\t%lu\t%d\t%d\n",
2668 ss->name, ss->root->subsys_bits,
2669 ss->root->number_of_cgroups, !ss->disabled);
2671 mutex_unlock(&cgroup_mutex);
2675 static int cgroupstats_open(struct inode *inode, struct file *file)
2677 return single_open(file, proc_cgroupstats_show, NULL);
2680 static struct file_operations proc_cgroupstats_operations = {
2681 .open = cgroupstats_open,
2683 .llseek = seq_lseek,
2684 .release = single_release,
2688 * cgroup_fork - attach newly forked task to its parents cgroup.
2689 * @child: pointer to task_struct of forking parent process.
2691 * Description: A task inherits its parent's cgroup at fork().
2693 * A pointer to the shared css_set was automatically copied in
2694 * fork.c by dup_task_struct(). However, we ignore that copy, since
2695 * it was not made under the protection of RCU or cgroup_mutex, so
2696 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2697 * have already changed current->cgroups, allowing the previously
2698 * referenced cgroup group to be removed and freed.
2700 * At the point that cgroup_fork() is called, 'current' is the parent
2701 * task, and the passed argument 'child' points to the child task.
2703 void cgroup_fork(struct task_struct *child)
2706 child->cgroups = current->cgroups;
2707 get_css_set(child->cgroups);
2708 task_unlock(current);
2709 INIT_LIST_HEAD(&child->cg_list);
2713 * cgroup_fork_callbacks - run fork callbacks
2714 * @child: the new task
2716 * Called on a new task very soon before adding it to the
2717 * tasklist. No need to take any locks since no-one can
2718 * be operating on this task.
2720 void cgroup_fork_callbacks(struct task_struct *child)
2722 if (need_forkexit_callback) {
2724 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2725 struct cgroup_subsys *ss = subsys[i];
2727 ss->fork(ss, child);
2732 #ifdef CONFIG_MM_OWNER
2734 * cgroup_mm_owner_callbacks - run callbacks when the mm->owner changes
2737 * Called on every change to mm->owner. mm_init_owner() does not
2738 * invoke this routine, since it assigns the mm->owner the first time
2739 * and does not change it.
2741 void cgroup_mm_owner_callbacks(struct task_struct *old, struct task_struct *new)
2743 struct cgroup *oldcgrp, *newcgrp;
2745 if (need_mm_owner_callback) {
2747 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2748 struct cgroup_subsys *ss = subsys[i];
2749 oldcgrp = task_cgroup(old, ss->subsys_id);
2750 newcgrp = task_cgroup(new, ss->subsys_id);
2751 if (oldcgrp == newcgrp)
2753 if (ss->mm_owner_changed)
2754 ss->mm_owner_changed(ss, oldcgrp, newcgrp);
2758 #endif /* CONFIG_MM_OWNER */
2761 * cgroup_post_fork - called on a new task after adding it to the task list
2762 * @child: the task in question
2764 * Adds the task to the list running through its css_set if necessary.
2765 * Has to be after the task is visible on the task list in case we race
2766 * with the first call to cgroup_iter_start() - to guarantee that the
2767 * new task ends up on its list.
2769 void cgroup_post_fork(struct task_struct *child)
2771 if (use_task_css_set_links) {
2772 write_lock(&css_set_lock);
2773 if (list_empty(&child->cg_list))
2774 list_add(&child->cg_list, &child->cgroups->tasks);
2775 write_unlock(&css_set_lock);
2779 * cgroup_exit - detach cgroup from exiting task
2780 * @tsk: pointer to task_struct of exiting process
2781 * @run_callback: run exit callbacks?
2783 * Description: Detach cgroup from @tsk and release it.
2785 * Note that cgroups marked notify_on_release force every task in
2786 * them to take the global cgroup_mutex mutex when exiting.
2787 * This could impact scaling on very large systems. Be reluctant to
2788 * use notify_on_release cgroups where very high task exit scaling
2789 * is required on large systems.
2791 * the_top_cgroup_hack:
2793 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2795 * We call cgroup_exit() while the task is still competent to
2796 * handle notify_on_release(), then leave the task attached to the
2797 * root cgroup in each hierarchy for the remainder of its exit.
2799 * To do this properly, we would increment the reference count on
2800 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2801 * code we would add a second cgroup function call, to drop that
2802 * reference. This would just create an unnecessary hot spot on
2803 * the top_cgroup reference count, to no avail.
2805 * Normally, holding a reference to a cgroup without bumping its
2806 * count is unsafe. The cgroup could go away, or someone could
2807 * attach us to a different cgroup, decrementing the count on
2808 * the first cgroup that we never incremented. But in this case,
2809 * top_cgroup isn't going away, and either task has PF_EXITING set,
2810 * which wards off any cgroup_attach_task() attempts, or task is a failed
2811 * fork, never visible to cgroup_attach_task.
2813 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2818 if (run_callbacks && need_forkexit_callback) {
2819 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2820 struct cgroup_subsys *ss = subsys[i];
2827 * Unlink from the css_set task list if necessary.
2828 * Optimistically check cg_list before taking
2831 if (!list_empty(&tsk->cg_list)) {
2832 write_lock(&css_set_lock);
2833 if (!list_empty(&tsk->cg_list))
2834 list_del(&tsk->cg_list);
2835 write_unlock(&css_set_lock);
2838 /* Reassign the task to the init_css_set. */
2841 tsk->cgroups = &init_css_set;
2844 put_css_set_taskexit(cg);
2848 * cgroup_clone - clone the cgroup the given subsystem is attached to
2849 * @tsk: the task to be moved
2850 * @subsys: the given subsystem
2851 * @nodename: the name for the new cgroup
2853 * Duplicate the current cgroup in the hierarchy that the given
2854 * subsystem is attached to, and move this task into the new
2857 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
2860 struct dentry *dentry;
2862 struct cgroup *parent, *child;
2863 struct inode *inode;
2865 struct cgroupfs_root *root;
2866 struct cgroup_subsys *ss;
2868 /* We shouldn't be called by an unregistered subsystem */
2869 BUG_ON(!subsys->active);
2871 /* First figure out what hierarchy and cgroup we're dealing
2872 * with, and pin them so we can drop cgroup_mutex */
2873 mutex_lock(&cgroup_mutex);
2875 root = subsys->root;
2876 if (root == &rootnode) {
2878 "Not cloning cgroup for unused subsystem %s\n",
2880 mutex_unlock(&cgroup_mutex);
2884 parent = task_cgroup(tsk, subsys->subsys_id);
2886 /* Pin the hierarchy */
2887 atomic_inc(&parent->root->sb->s_active);
2889 /* Keep the cgroup alive */
2891 mutex_unlock(&cgroup_mutex);
2893 /* Now do the VFS work to create a cgroup */
2894 inode = parent->dentry->d_inode;
2896 /* Hold the parent directory mutex across this operation to
2897 * stop anyone else deleting the new cgroup */
2898 mutex_lock(&inode->i_mutex);
2899 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2900 if (IS_ERR(dentry)) {
2902 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2904 ret = PTR_ERR(dentry);
2908 /* Create the cgroup directory, which also creates the cgroup */
2909 ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2910 child = __d_cgrp(dentry);
2914 "Failed to create cgroup %s: %d\n", nodename,
2921 "Couldn't find new cgroup %s\n", nodename);
2926 /* The cgroup now exists. Retake cgroup_mutex and check
2927 * that we're still in the same state that we thought we
2929 mutex_lock(&cgroup_mutex);
2930 if ((root != subsys->root) ||
2931 (parent != task_cgroup(tsk, subsys->subsys_id))) {
2932 /* Aargh, we raced ... */
2933 mutex_unlock(&inode->i_mutex);
2936 deactivate_super(parent->root->sb);
2937 /* The cgroup is still accessible in the VFS, but
2938 * we're not going to try to rmdir() it at this
2941 "Race in cgroup_clone() - leaking cgroup %s\n",
2946 /* do any required auto-setup */
2947 for_each_subsys(root, ss) {
2949 ss->post_clone(ss, child);
2952 /* All seems fine. Finish by moving the task into the new cgroup */
2953 ret = cgroup_attach_task(child, tsk);
2954 mutex_unlock(&cgroup_mutex);
2957 mutex_unlock(&inode->i_mutex);
2959 mutex_lock(&cgroup_mutex);
2961 mutex_unlock(&cgroup_mutex);
2962 deactivate_super(parent->root->sb);
2967 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
2968 * @cgrp: the cgroup in question
2970 * See if @cgrp is a descendant of the current task's cgroup in
2971 * the appropriate hierarchy.
2973 * If we are sending in dummytop, then presumably we are creating
2974 * the top cgroup in the subsystem.
2976 * Called only by the ns (nsproxy) cgroup.
2978 int cgroup_is_descendant(const struct cgroup *cgrp)
2981 struct cgroup *target;
2984 if (cgrp == dummytop)
2987 get_first_subsys(cgrp, NULL, &subsys_id);
2988 target = task_cgroup(current, subsys_id);
2989 while (cgrp != target && cgrp!= cgrp->top_cgroup)
2990 cgrp = cgrp->parent;
2991 ret = (cgrp == target);
2995 static void check_for_release(struct cgroup *cgrp)
2997 /* All of these checks rely on RCU to keep the cgroup
2998 * structure alive */
2999 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
3000 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3001 /* Control Group is currently removeable. If it's not
3002 * already queued for a userspace notification, queue
3004 int need_schedule_work = 0;
3005 spin_lock(&release_list_lock);
3006 if (!cgroup_is_removed(cgrp) &&
3007 list_empty(&cgrp->release_list)) {
3008 list_add(&cgrp->release_list, &release_list);
3009 need_schedule_work = 1;
3011 spin_unlock(&release_list_lock);
3012 if (need_schedule_work)
3013 schedule_work(&release_agent_work);
3017 void __css_put(struct cgroup_subsys_state *css)
3019 struct cgroup *cgrp = css->cgroup;
3021 if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
3022 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3023 check_for_release(cgrp);
3029 * Notify userspace when a cgroup is released, by running the
3030 * configured release agent with the name of the cgroup (path
3031 * relative to the root of cgroup file system) as the argument.
3033 * Most likely, this user command will try to rmdir this cgroup.
3035 * This races with the possibility that some other task will be
3036 * attached to this cgroup before it is removed, or that some other
3037 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3038 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3039 * unused, and this cgroup will be reprieved from its death sentence,
3040 * to continue to serve a useful existence. Next time it's released,
3041 * we will get notified again, if it still has 'notify_on_release' set.
3043 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3044 * means only wait until the task is successfully execve()'d. The
3045 * separate release agent task is forked by call_usermodehelper(),
3046 * then control in this thread returns here, without waiting for the
3047 * release agent task. We don't bother to wait because the caller of
3048 * this routine has no use for the exit status of the release agent
3049 * task, so no sense holding our caller up for that.
3051 static void cgroup_release_agent(struct work_struct *work)
3053 BUG_ON(work != &release_agent_work);
3054 mutex_lock(&cgroup_mutex);
3055 spin_lock(&release_list_lock);
3056 while (!list_empty(&release_list)) {
3057 char *argv[3], *envp[3];
3059 char *pathbuf = NULL, *agentbuf = NULL;
3060 struct cgroup *cgrp = list_entry(release_list.next,
3063 list_del_init(&cgrp->release_list);
3064 spin_unlock(&release_list_lock);
3065 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3068 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3070 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3075 argv[i++] = agentbuf;
3076 argv[i++] = pathbuf;
3080 /* minimal command environment */
3081 envp[i++] = "HOME=/";
3082 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3085 /* Drop the lock while we invoke the usermode helper,
3086 * since the exec could involve hitting disk and hence
3087 * be a slow process */
3088 mutex_unlock(&cgroup_mutex);
3089 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3090 mutex_lock(&cgroup_mutex);
3094 spin_lock(&release_list_lock);
3096 spin_unlock(&release_list_lock);
3097 mutex_unlock(&cgroup_mutex);
3100 static int __init cgroup_disable(char *str)
3105 while ((token = strsep(&str, ",")) != NULL) {
3109 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3110 struct cgroup_subsys *ss = subsys[i];
3112 if (!strcmp(token, ss->name)) {
3114 printk(KERN_INFO "Disabling %s control group"
3115 " subsystem\n", ss->name);
3122 __setup("cgroup_disable=", cgroup_disable);