1 /*******************************************************************************
3 Intel PRO/100 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * e100.c: Intel(R) PRO/100 ethernet driver
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
55 * II. Driver Operation
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
109 * In order to keep updates to the RFD link field from colliding with
110 * hardware writes to mark packets complete, we use the feature that
111 * hardware will not write to a size 0 descriptor and mark the previous
112 * packet as end-of-list (EL). After updating the link, we remove EL
113 * and only then restore the size such that hardware may use the
114 * previous-to-end RFD.
116 * Under typical operation, the receive unit (RU) is start once,
117 * and the controller happily fills RFDs as frames arrive. If
118 * replacement RFDs cannot be allocated, or the RU goes non-active,
119 * the RU must be restarted. Frame arrival generates an interrupt,
120 * and Rx indication and re-allocation happen in the same context,
121 * therefore no locking is required. A software-generated interrupt
122 * is generated from the watchdog to recover from a failed allocation
123 * scenario where all Rx resources have been indicated and none re-
128 * VLAN offloading of tagging, stripping and filtering is not
129 * supported, but driver will accommodate the extra 4-byte VLAN tag
130 * for processing by upper layers. Tx/Rx Checksum offloading is not
131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
132 * not supported (hardware limitation).
134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
136 * Thanks to JC (jchapman@katalix.com) for helping with
137 * testing/troubleshooting the development driver.
140 * o several entry points race with dev->close
141 * o check for tx-no-resources/stop Q races with tx clean/wake Q
144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
145 * - Stratus87247: protect MDI control register manipulations
148 #include <linux/module.h>
149 #include <linux/moduleparam.h>
150 #include <linux/kernel.h>
151 #include <linux/types.h>
152 #include <linux/slab.h>
153 #include <linux/delay.h>
154 #include <linux/init.h>
155 #include <linux/pci.h>
156 #include <linux/dma-mapping.h>
157 #include <linux/netdevice.h>
158 #include <linux/etherdevice.h>
159 #include <linux/mii.h>
160 #include <linux/if_vlan.h>
161 #include <linux/skbuff.h>
162 #include <linux/ethtool.h>
163 #include <linux/string.h>
164 #include <linux/firmware.h>
165 #include <asm/unaligned.h>
168 #define DRV_NAME "e100"
169 #define DRV_EXT "-NAPI"
170 #define DRV_VERSION "3.5.24-k2"DRV_EXT
171 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
172 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
173 #define PFX DRV_NAME ": "
175 #define E100_WATCHDOG_PERIOD (2 * HZ)
176 #define E100_NAPI_WEIGHT 16
178 #define FIRMWARE_D101M "e100/d101m_ucode.bin"
179 #define FIRMWARE_D101S "e100/d101s_ucode.bin"
180 #define FIRMWARE_D102E "e100/d102e_ucode.bin"
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185 MODULE_VERSION(DRV_VERSION);
186 MODULE_FIRMWARE(FIRMWARE_D101M);
187 MODULE_FIRMWARE(FIRMWARE_D101S);
188 MODULE_FIRMWARE(FIRMWARE_D102E);
190 static int debug = 3;
191 static int eeprom_bad_csum_allow = 0;
192 static int use_io = 0;
193 module_param(debug, int, 0);
194 module_param(eeprom_bad_csum_allow, int, 0);
195 module_param(use_io, int, 0);
196 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
197 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
198 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
199 #define DPRINTK(nlevel, klevel, fmt, args...) \
200 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
201 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
204 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
205 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
206 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
207 static struct pci_device_id e100_id_table[] = {
208 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
209 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
210 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
211 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
212 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
213 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
214 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
215 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
216 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
217 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
218 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
219 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
220 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
221 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
222 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
223 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
224 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
225 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
226 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
227 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
228 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
229 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
230 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
231 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
232 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
233 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
234 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
235 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
236 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
237 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
238 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
239 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
240 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
241 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
242 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
243 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
244 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
245 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
246 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
247 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
248 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
249 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
252 MODULE_DEVICE_TABLE(pci, e100_id_table);
255 mac_82557_D100_A = 0,
256 mac_82557_D100_B = 1,
257 mac_82557_D100_C = 2,
258 mac_82558_D101_A4 = 4,
259 mac_82558_D101_B0 = 5,
263 mac_82550_D102_C = 13,
271 phy_100a = 0x000003E0,
272 phy_100c = 0x035002A8,
273 phy_82555_tx = 0x015002A8,
274 phy_nsc_tx = 0x5C002000,
275 phy_82562_et = 0x033002A8,
276 phy_82562_em = 0x032002A8,
277 phy_82562_ek = 0x031002A8,
278 phy_82562_eh = 0x017002A8,
279 phy_82552_v = 0xd061004d,
280 phy_unknown = 0xFFFFFFFF,
283 /* CSR (Control/Status Registers) */
309 RU_UNINITIALIZED = -1,
313 stat_ack_not_ours = 0x00,
314 stat_ack_sw_gen = 0x04,
316 stat_ack_cu_idle = 0x20,
317 stat_ack_frame_rx = 0x40,
318 stat_ack_cu_cmd_done = 0x80,
319 stat_ack_not_present = 0xFF,
320 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
321 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
325 irq_mask_none = 0x00,
333 ruc_load_base = 0x06,
336 cuc_dump_addr = 0x40,
337 cuc_dump_stats = 0x50,
338 cuc_load_base = 0x60,
339 cuc_dump_reset = 0x70,
343 cuc_dump_complete = 0x0000A005,
344 cuc_dump_reset_complete = 0x0000A007,
348 software_reset = 0x0000,
350 selective_reset = 0x0002,
353 enum eeprom_ctrl_lo {
361 mdi_write = 0x04000000,
362 mdi_read = 0x08000000,
363 mdi_ready = 0x10000000,
373 enum eeprom_offsets {
374 eeprom_cnfg_mdix = 0x03,
376 eeprom_config_asf = 0x0D,
377 eeprom_smbus_addr = 0x90,
380 enum eeprom_cnfg_mdix {
381 eeprom_mdix_enabled = 0x0080,
385 eeprom_id_wol = 0x0020,
388 enum eeprom_config_asf {
394 cb_complete = 0x8000,
423 struct rx *next, *prev;
428 #if defined(__BIG_ENDIAN_BITFIELD)
434 /*0*/ u8 X(byte_count:6, pad0:2);
435 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
436 /*2*/ u8 adaptive_ifs;
437 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
438 term_write_cache_line:1), pad3:4);
439 /*4*/ u8 X(rx_dma_max_count:7, pad4:1);
440 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
441 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
442 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
443 rx_discard_overruns:1), rx_save_bad_frames:1);
444 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
445 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
447 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
448 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
449 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
450 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
452 /*11*/ u8 X(linear_priority:3, pad11:5);
453 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
454 /*13*/ u8 ip_addr_lo;
455 /*14*/ u8 ip_addr_hi;
456 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
457 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
458 pad15_2:1), crs_or_cdt:1);
459 /*16*/ u8 fc_delay_lo;
460 /*17*/ u8 fc_delay_hi;
461 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
462 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
463 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
464 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
465 full_duplex_force:1), full_duplex_pin:1);
466 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
467 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
468 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
472 #define E100_MAX_MULTICAST_ADDRS 64
475 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
478 /* Important: keep total struct u32-aligned */
479 #define UCODE_SIZE 134
486 __le32 ucode[UCODE_SIZE];
487 struct config config;
500 __le32 dump_buffer_addr;
502 struct cb *next, *prev;
508 lb_none = 0, lb_mac = 1, lb_phy = 3,
512 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
513 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
514 tx_multiple_collisions, tx_total_collisions;
515 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
516 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
517 rx_short_frame_errors;
518 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
519 __le16 xmt_tco_frames, rcv_tco_frames;
539 struct param_range rfds;
540 struct param_range cbs;
544 /* Begin: frequently used values: keep adjacent for cache effect */
545 u32 msg_enable ____cacheline_aligned;
546 struct net_device *netdev;
547 struct pci_dev *pdev;
549 struct rx *rxs ____cacheline_aligned;
550 struct rx *rx_to_use;
551 struct rx *rx_to_clean;
552 struct rfd blank_rfd;
553 enum ru_state ru_running;
555 spinlock_t cb_lock ____cacheline_aligned;
557 struct csr __iomem *csr;
558 enum scb_cmd_lo cuc_cmd;
559 unsigned int cbs_avail;
560 struct napi_struct napi;
562 struct cb *cb_to_use;
563 struct cb *cb_to_send;
564 struct cb *cb_to_clean;
566 /* End: frequently used values: keep adjacent for cache effect */
570 promiscuous = (1 << 1),
571 multicast_all = (1 << 2),
572 wol_magic = (1 << 3),
573 ich_10h_workaround = (1 << 4),
574 } flags ____cacheline_aligned;
578 struct params params;
579 struct timer_list watchdog;
580 struct timer_list blink_timer;
581 struct mii_if_info mii;
582 struct work_struct tx_timeout_task;
583 enum loopback loopback;
588 dma_addr_t cbs_dma_addr;
594 u32 tx_single_collisions;
595 u32 tx_multiple_collisions;
600 u32 rx_fc_unsupported;
602 u32 rx_over_length_errors;
607 spinlock_t mdio_lock;
610 static inline void e100_write_flush(struct nic *nic)
612 /* Flush previous PCI writes through intermediate bridges
613 * by doing a benign read */
614 (void)ioread8(&nic->csr->scb.status);
617 static void e100_enable_irq(struct nic *nic)
621 spin_lock_irqsave(&nic->cmd_lock, flags);
622 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
623 e100_write_flush(nic);
624 spin_unlock_irqrestore(&nic->cmd_lock, flags);
627 static void e100_disable_irq(struct nic *nic)
631 spin_lock_irqsave(&nic->cmd_lock, flags);
632 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
633 e100_write_flush(nic);
634 spin_unlock_irqrestore(&nic->cmd_lock, flags);
637 static void e100_hw_reset(struct nic *nic)
639 /* Put CU and RU into idle with a selective reset to get
640 * device off of PCI bus */
641 iowrite32(selective_reset, &nic->csr->port);
642 e100_write_flush(nic); udelay(20);
644 /* Now fully reset device */
645 iowrite32(software_reset, &nic->csr->port);
646 e100_write_flush(nic); udelay(20);
648 /* Mask off our interrupt line - it's unmasked after reset */
649 e100_disable_irq(nic);
652 static int e100_self_test(struct nic *nic)
654 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
656 /* Passing the self-test is a pretty good indication
657 * that the device can DMA to/from host memory */
659 nic->mem->selftest.signature = 0;
660 nic->mem->selftest.result = 0xFFFFFFFF;
662 iowrite32(selftest | dma_addr, &nic->csr->port);
663 e100_write_flush(nic);
664 /* Wait 10 msec for self-test to complete */
667 /* Interrupts are enabled after self-test */
668 e100_disable_irq(nic);
670 /* Check results of self-test */
671 if (nic->mem->selftest.result != 0) {
672 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
673 nic->mem->selftest.result);
676 if (nic->mem->selftest.signature == 0) {
677 DPRINTK(HW, ERR, "Self-test failed: timed out\n");
684 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
686 u32 cmd_addr_data[3];
690 /* Three cmds: write/erase enable, write data, write/erase disable */
691 cmd_addr_data[0] = op_ewen << (addr_len - 2);
692 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
694 cmd_addr_data[2] = op_ewds << (addr_len - 2);
696 /* Bit-bang cmds to write word to eeprom */
697 for (j = 0; j < 3; j++) {
700 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
701 e100_write_flush(nic); udelay(4);
703 for (i = 31; i >= 0; i--) {
704 ctrl = (cmd_addr_data[j] & (1 << i)) ?
706 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
707 e100_write_flush(nic); udelay(4);
709 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
710 e100_write_flush(nic); udelay(4);
712 /* Wait 10 msec for cmd to complete */
716 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
717 e100_write_flush(nic); udelay(4);
721 /* General technique stolen from the eepro100 driver - very clever */
722 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
729 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
732 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
733 e100_write_flush(nic); udelay(4);
735 /* Bit-bang to read word from eeprom */
736 for (i = 31; i >= 0; i--) {
737 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
738 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
739 e100_write_flush(nic); udelay(4);
741 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
742 e100_write_flush(nic); udelay(4);
744 /* Eeprom drives a dummy zero to EEDO after receiving
745 * complete address. Use this to adjust addr_len. */
746 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
747 if (!(ctrl & eedo) && i > 16) {
748 *addr_len -= (i - 16);
752 data = (data << 1) | (ctrl & eedo ? 1 : 0);
756 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
757 e100_write_flush(nic); udelay(4);
759 return cpu_to_le16(data);
762 /* Load entire EEPROM image into driver cache and validate checksum */
763 static int e100_eeprom_load(struct nic *nic)
765 u16 addr, addr_len = 8, checksum = 0;
767 /* Try reading with an 8-bit addr len to discover actual addr len */
768 e100_eeprom_read(nic, &addr_len, 0);
769 nic->eeprom_wc = 1 << addr_len;
771 for (addr = 0; addr < nic->eeprom_wc; addr++) {
772 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
773 if (addr < nic->eeprom_wc - 1)
774 checksum += le16_to_cpu(nic->eeprom[addr]);
777 /* The checksum, stored in the last word, is calculated such that
778 * the sum of words should be 0xBABA */
779 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
780 DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
781 if (!eeprom_bad_csum_allow)
788 /* Save (portion of) driver EEPROM cache to device and update checksum */
789 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
791 u16 addr, addr_len = 8, checksum = 0;
793 /* Try reading with an 8-bit addr len to discover actual addr len */
794 e100_eeprom_read(nic, &addr_len, 0);
795 nic->eeprom_wc = 1 << addr_len;
797 if (start + count >= nic->eeprom_wc)
800 for (addr = start; addr < start + count; addr++)
801 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
803 /* The checksum, stored in the last word, is calculated such that
804 * the sum of words should be 0xBABA */
805 for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
806 checksum += le16_to_cpu(nic->eeprom[addr]);
807 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
808 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
809 nic->eeprom[nic->eeprom_wc - 1]);
814 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
815 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
816 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
822 spin_lock_irqsave(&nic->cmd_lock, flags);
824 /* Previous command is accepted when SCB clears */
825 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
826 if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
829 if (unlikely(i > E100_WAIT_SCB_FAST))
832 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
837 if (unlikely(cmd != cuc_resume))
838 iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
839 iowrite8(cmd, &nic->csr->scb.cmd_lo);
842 spin_unlock_irqrestore(&nic->cmd_lock, flags);
847 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
848 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
854 spin_lock_irqsave(&nic->cb_lock, flags);
856 if (unlikely(!nic->cbs_avail)) {
862 nic->cb_to_use = cb->next;
866 if (unlikely(!nic->cbs_avail))
869 cb_prepare(nic, cb, skb);
871 /* Order is important otherwise we'll be in a race with h/w:
872 * set S-bit in current first, then clear S-bit in previous. */
873 cb->command |= cpu_to_le16(cb_s);
875 cb->prev->command &= cpu_to_le16(~cb_s);
877 while (nic->cb_to_send != nic->cb_to_use) {
878 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
879 nic->cb_to_send->dma_addr))) {
880 /* Ok, here's where things get sticky. It's
881 * possible that we can't schedule the command
882 * because the controller is too busy, so
883 * let's just queue the command and try again
884 * when another command is scheduled. */
885 if (err == -ENOSPC) {
887 schedule_work(&nic->tx_timeout_task);
891 nic->cuc_cmd = cuc_resume;
892 nic->cb_to_send = nic->cb_to_send->next;
897 spin_unlock_irqrestore(&nic->cb_lock, flags);
902 static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
910 * Stratus87247: we shouldn't be writing the MDI control
911 * register until the Ready bit shows True. Also, since
912 * manipulation of the MDI control registers is a multi-step
913 * procedure it should be done under lock.
915 spin_lock_irqsave(&nic->mdio_lock, flags);
916 for (i = 100; i; --i) {
917 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
922 printk("e100.mdio_ctrl(%s) won't go Ready\n",
924 spin_unlock_irqrestore(&nic->mdio_lock, flags);
925 return 0; /* No way to indicate timeout error */
927 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
929 for (i = 0; i < 100; i++) {
931 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
934 spin_unlock_irqrestore(&nic->mdio_lock, flags);
936 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
937 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
938 return (u16)data_out;
941 static int mdio_read(struct net_device *netdev, int addr, int reg)
943 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0);
946 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
948 struct nic *nic = netdev_priv(netdev);
950 if ((nic->phy == phy_82552_v) && (reg == MII_BMCR) &&
951 (data & (BMCR_ANRESTART | BMCR_ANENABLE))) {
952 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
955 * Workaround Si issue where sometimes the part will not
956 * autoneg to 100Mbps even when advertised.
958 if (advert & ADVERTISE_100FULL)
959 data |= BMCR_SPEED100 | BMCR_FULLDPLX;
960 else if (advert & ADVERTISE_100HALF)
961 data |= BMCR_SPEED100;
964 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data);
967 static void e100_get_defaults(struct nic *nic)
969 struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
970 struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
972 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
973 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
974 if (nic->mac == mac_unknown)
975 nic->mac = mac_82557_D100_A;
977 nic->params.rfds = rfds;
978 nic->params.cbs = cbs;
980 /* Quadwords to DMA into FIFO before starting frame transmit */
981 nic->tx_threshold = 0xE0;
983 /* no interrupt for every tx completion, delay = 256us if not 557 */
984 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
985 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
987 /* Template for a freshly allocated RFD */
988 nic->blank_rfd.command = 0;
989 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
990 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
993 nic->mii.phy_id_mask = 0x1F;
994 nic->mii.reg_num_mask = 0x1F;
995 nic->mii.dev = nic->netdev;
996 nic->mii.mdio_read = mdio_read;
997 nic->mii.mdio_write = mdio_write;
1000 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1002 struct config *config = &cb->u.config;
1003 u8 *c = (u8 *)config;
1005 cb->command = cpu_to_le16(cb_config);
1007 memset(config, 0, sizeof(struct config));
1009 config->byte_count = 0x16; /* bytes in this struct */
1010 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
1011 config->direct_rx_dma = 0x1; /* reserved */
1012 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
1013 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
1014 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
1015 config->tx_underrun_retry = 0x3; /* # of underrun retries */
1016 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */
1017 config->pad10 = 0x6;
1018 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
1019 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
1020 config->ifs = 0x6; /* x16 = inter frame spacing */
1021 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
1022 config->pad15_1 = 0x1;
1023 config->pad15_2 = 0x1;
1024 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
1025 config->fc_delay_hi = 0x40; /* time delay for fc frame */
1026 config->tx_padding = 0x1; /* 1=pad short frames */
1027 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
1028 config->pad18 = 0x1;
1029 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
1030 config->pad20_1 = 0x1F;
1031 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
1032 config->pad21_1 = 0x5;
1034 config->adaptive_ifs = nic->adaptive_ifs;
1035 config->loopback = nic->loopback;
1037 if (nic->mii.force_media && nic->mii.full_duplex)
1038 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
1040 if (nic->flags & promiscuous || nic->loopback) {
1041 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1042 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1043 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
1046 if (nic->flags & multicast_all)
1047 config->multicast_all = 0x1; /* 1=accept, 0=no */
1049 /* disable WoL when up */
1050 if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1051 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
1053 if (nic->mac >= mac_82558_D101_A4) {
1054 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
1055 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
1056 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
1057 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
1058 if (nic->mac >= mac_82559_D101M) {
1059 config->tno_intr = 0x1; /* TCO stats enable */
1060 /* Enable TCO in extended config */
1061 if (nic->mac >= mac_82551_10) {
1062 config->byte_count = 0x20; /* extended bytes */
1063 config->rx_d102_mode = 0x1; /* GMRC for TCO */
1066 config->standard_stat_counter = 0x0;
1070 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1071 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1072 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1073 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1074 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1075 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1078 /*************************************************************************
1079 * CPUSaver parameters
1081 * All CPUSaver parameters are 16-bit literals that are part of a
1082 * "move immediate value" instruction. By changing the value of
1083 * the literal in the instruction before the code is loaded, the
1084 * driver can change the algorithm.
1086 * INTDELAY - This loads the dead-man timer with its initial value.
1087 * When this timer expires the interrupt is asserted, and the
1088 * timer is reset each time a new packet is received. (see
1089 * BUNDLEMAX below to set the limit on number of chained packets)
1090 * The current default is 0x600 or 1536. Experiments show that
1091 * the value should probably stay within the 0x200 - 0x1000.
1094 * This sets the maximum number of frames that will be bundled. In
1095 * some situations, such as the TCP windowing algorithm, it may be
1096 * better to limit the growth of the bundle size than let it go as
1097 * high as it can, because that could cause too much added latency.
1098 * The default is six, because this is the number of packets in the
1099 * default TCP window size. A value of 1 would make CPUSaver indicate
1100 * an interrupt for every frame received. If you do not want to put
1101 * a limit on the bundle size, set this value to xFFFF.
1104 * This contains a bit-mask describing the minimum size frame that
1105 * will be bundled. The default masks the lower 7 bits, which means
1106 * that any frame less than 128 bytes in length will not be bundled,
1107 * but will instead immediately generate an interrupt. This does
1108 * not affect the current bundle in any way. Any frame that is 128
1109 * bytes or large will be bundled normally. This feature is meant
1110 * to provide immediate indication of ACK frames in a TCP environment.
1111 * Customers were seeing poor performance when a machine with CPUSaver
1112 * enabled was sending but not receiving. The delay introduced when
1113 * the ACKs were received was enough to reduce total throughput, because
1114 * the sender would sit idle until the ACK was finally seen.
1116 * The current default is 0xFF80, which masks out the lower 7 bits.
1117 * This means that any frame which is x7F (127) bytes or smaller
1118 * will cause an immediate interrupt. Because this value must be a
1119 * bit mask, there are only a few valid values that can be used. To
1120 * turn this feature off, the driver can write the value xFFFF to the
1121 * lower word of this instruction (in the same way that the other
1122 * parameters are used). Likewise, a value of 0xF800 (2047) would
1123 * cause an interrupt to be generated for every frame, because all
1124 * standard Ethernet frames are <= 2047 bytes in length.
1125 *************************************************************************/
1127 /* if you wish to disable the ucode functionality, while maintaining the
1128 * workarounds it provides, set the following defines to:
1133 #define BUNDLESMALL 1
1134 #define BUNDLEMAX (u16)6
1135 #define INTDELAY (u16)1536 /* 0x600 */
1137 /* Initialize firmware */
1138 static const struct firmware *e100_request_firmware(struct nic *nic)
1140 const char *fw_name;
1141 const struct firmware *fw;
1142 u8 timer, bundle, min_size;
1145 /* do not load u-code for ICH devices */
1146 if (nic->flags & ich)
1149 /* Search for ucode match against h/w revision */
1150 if (nic->mac == mac_82559_D101M)
1151 fw_name = FIRMWARE_D101M;
1152 else if (nic->mac == mac_82559_D101S)
1153 fw_name = FIRMWARE_D101S;
1154 else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10)
1155 fw_name = FIRMWARE_D102E;
1156 else /* No ucode on other devices */
1159 err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1161 DPRINTK(PROBE, ERR, "Failed to load firmware \"%s\": %d\n",
1163 return ERR_PTR(err);
1165 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1166 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1167 if (fw->size != UCODE_SIZE * 4 + 3) {
1168 DPRINTK(PROBE, ERR, "Firmware \"%s\" has wrong size %zu\n",
1170 release_firmware(fw);
1171 return ERR_PTR(-EINVAL);
1174 /* Read timer, bundle and min_size from end of firmware blob */
1175 timer = fw->data[UCODE_SIZE * 4];
1176 bundle = fw->data[UCODE_SIZE * 4 + 1];
1177 min_size = fw->data[UCODE_SIZE * 4 + 2];
1179 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1180 min_size >= UCODE_SIZE) {
1182 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1183 fw_name, timer, bundle, min_size);
1184 release_firmware(fw);
1185 return ERR_PTR(-EINVAL);
1187 /* OK, firmware is validated and ready to use... */
1191 static void e100_setup_ucode(struct nic *nic, struct cb *cb,
1192 struct sk_buff *skb)
1194 const struct firmware *fw = (void *)skb;
1195 u8 timer, bundle, min_size;
1197 /* It's not a real skb; we just abused the fact that e100_exec_cb
1198 will pass it through to here... */
1201 /* firmware is stored as little endian already */
1202 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1204 /* Read timer, bundle and min_size from end of firmware blob */
1205 timer = fw->data[UCODE_SIZE * 4];
1206 bundle = fw->data[UCODE_SIZE * 4 + 1];
1207 min_size = fw->data[UCODE_SIZE * 4 + 2];
1209 /* Insert user-tunable settings in cb->u.ucode */
1210 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1211 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1212 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1213 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1214 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1215 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1217 cb->command = cpu_to_le16(cb_ucode | cb_el);
1220 static inline int e100_load_ucode_wait(struct nic *nic)
1222 const struct firmware *fw;
1223 int err = 0, counter = 50;
1224 struct cb *cb = nic->cb_to_clean;
1226 fw = e100_request_firmware(nic);
1227 /* If it's NULL, then no ucode is required */
1228 if (!fw || IS_ERR(fw))
1231 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1232 DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err);
1234 /* must restart cuc */
1235 nic->cuc_cmd = cuc_start;
1237 /* wait for completion */
1238 e100_write_flush(nic);
1241 /* wait for possibly (ouch) 500ms */
1242 while (!(cb->status & cpu_to_le16(cb_complete))) {
1244 if (!--counter) break;
1247 /* ack any interrupts, something could have been set */
1248 iowrite8(~0, &nic->csr->scb.stat_ack);
1250 /* if the command failed, or is not OK, notify and return */
1251 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1252 DPRINTK(PROBE,ERR, "ucode load failed\n");
1259 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1260 struct sk_buff *skb)
1262 cb->command = cpu_to_le16(cb_iaaddr);
1263 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1266 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1268 cb->command = cpu_to_le16(cb_dump);
1269 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1270 offsetof(struct mem, dump_buf));
1273 #define NCONFIG_AUTO_SWITCH 0x0080
1274 #define MII_NSC_CONG MII_RESV1
1275 #define NSC_CONG_ENABLE 0x0100
1276 #define NSC_CONG_TXREADY 0x0400
1277 #define ADVERTISE_FC_SUPPORTED 0x0400
1278 static int e100_phy_init(struct nic *nic)
1280 struct net_device *netdev = nic->netdev;
1282 u16 bmcr, stat, id_lo, id_hi, cong;
1284 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1285 for (addr = 0; addr < 32; addr++) {
1286 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1287 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1288 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1289 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1290 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1293 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
1297 /* Isolate all the PHY ids */
1298 for (addr = 0; addr < 32; addr++)
1299 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1300 /* Select the discovered PHY */
1301 bmcr &= ~BMCR_ISOLATE;
1302 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1305 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1306 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1307 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1308 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
1310 /* Handle National tx phys */
1311 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1312 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1313 /* Disable congestion control */
1314 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1315 cong |= NSC_CONG_TXREADY;
1316 cong &= ~NSC_CONG_ENABLE;
1317 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1320 if (nic->phy == phy_82552_v) {
1321 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1323 /* Workaround Si not advertising flow-control during autoneg */
1324 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1325 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1327 /* Reset for the above changes to take effect */
1328 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1330 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1331 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1332 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1333 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1334 /* enable/disable MDI/MDI-X auto-switching. */
1335 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1336 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1342 static int e100_hw_init(struct nic *nic)
1348 DPRINTK(HW, ERR, "e100_hw_init\n");
1349 if (!in_interrupt() && (err = e100_self_test(nic)))
1352 if ((err = e100_phy_init(nic)))
1354 if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1356 if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1358 if ((err = e100_load_ucode_wait(nic)))
1360 if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1362 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1364 if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1365 nic->dma_addr + offsetof(struct mem, stats))))
1367 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1370 e100_disable_irq(nic);
1375 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1377 struct net_device *netdev = nic->netdev;
1378 struct dev_mc_list *list = netdev->mc_list;
1379 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
1381 cb->command = cpu_to_le16(cb_multi);
1382 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1383 for (i = 0; list && i < count; i++, list = list->next)
1384 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
1388 static void e100_set_multicast_list(struct net_device *netdev)
1390 struct nic *nic = netdev_priv(netdev);
1392 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
1393 netdev->mc_count, netdev->flags);
1395 if (netdev->flags & IFF_PROMISC)
1396 nic->flags |= promiscuous;
1398 nic->flags &= ~promiscuous;
1400 if (netdev->flags & IFF_ALLMULTI ||
1401 netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
1402 nic->flags |= multicast_all;
1404 nic->flags &= ~multicast_all;
1406 e100_exec_cb(nic, NULL, e100_configure);
1407 e100_exec_cb(nic, NULL, e100_multi);
1410 static void e100_update_stats(struct nic *nic)
1412 struct net_device *dev = nic->netdev;
1413 struct net_device_stats *ns = &dev->stats;
1414 struct stats *s = &nic->mem->stats;
1415 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1416 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1419 /* Device's stats reporting may take several microseconds to
1420 * complete, so we're always waiting for results of the
1421 * previous command. */
1423 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1425 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1426 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1427 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1428 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1429 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1430 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1431 ns->collisions += nic->tx_collisions;
1432 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1433 le32_to_cpu(s->tx_lost_crs);
1434 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1435 nic->rx_over_length_errors;
1436 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1437 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1438 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1439 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1440 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1441 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1442 le32_to_cpu(s->rx_alignment_errors) +
1443 le32_to_cpu(s->rx_short_frame_errors) +
1444 le32_to_cpu(s->rx_cdt_errors);
1445 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1446 nic->tx_single_collisions +=
1447 le32_to_cpu(s->tx_single_collisions);
1448 nic->tx_multiple_collisions +=
1449 le32_to_cpu(s->tx_multiple_collisions);
1450 if (nic->mac >= mac_82558_D101_A4) {
1451 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1452 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1453 nic->rx_fc_unsupported +=
1454 le32_to_cpu(s->fc_rcv_unsupported);
1455 if (nic->mac >= mac_82559_D101M) {
1456 nic->tx_tco_frames +=
1457 le16_to_cpu(s->xmt_tco_frames);
1458 nic->rx_tco_frames +=
1459 le16_to_cpu(s->rcv_tco_frames);
1465 if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1466 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
1469 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1471 /* Adjust inter-frame-spacing (IFS) between two transmits if
1472 * we're getting collisions on a half-duplex connection. */
1474 if (duplex == DUPLEX_HALF) {
1475 u32 prev = nic->adaptive_ifs;
1476 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1478 if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1479 (nic->tx_frames > min_frames)) {
1480 if (nic->adaptive_ifs < 60)
1481 nic->adaptive_ifs += 5;
1482 } else if (nic->tx_frames < min_frames) {
1483 if (nic->adaptive_ifs >= 5)
1484 nic->adaptive_ifs -= 5;
1486 if (nic->adaptive_ifs != prev)
1487 e100_exec_cb(nic, NULL, e100_configure);
1491 static void e100_watchdog(unsigned long data)
1493 struct nic *nic = (struct nic *)data;
1494 struct ethtool_cmd cmd;
1496 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
1498 /* mii library handles link maintenance tasks */
1500 mii_ethtool_gset(&nic->mii, &cmd);
1502 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1503 printk(KERN_INFO "e100: %s NIC Link is Up %s Mbps %s Duplex\n",
1505 cmd.speed == SPEED_100 ? "100" : "10",
1506 cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1507 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1508 printk(KERN_INFO "e100: %s NIC Link is Down\n",
1512 mii_check_link(&nic->mii);
1514 /* Software generated interrupt to recover from (rare) Rx
1515 * allocation failure.
1516 * Unfortunately have to use a spinlock to not re-enable interrupts
1517 * accidentally, due to hardware that shares a register between the
1518 * interrupt mask bit and the SW Interrupt generation bit */
1519 spin_lock_irq(&nic->cmd_lock);
1520 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1521 e100_write_flush(nic);
1522 spin_unlock_irq(&nic->cmd_lock);
1524 e100_update_stats(nic);
1525 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1527 if (nic->mac <= mac_82557_D100_C)
1528 /* Issue a multicast command to workaround a 557 lock up */
1529 e100_set_multicast_list(nic->netdev);
1531 if (nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1532 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1533 nic->flags |= ich_10h_workaround;
1535 nic->flags &= ~ich_10h_workaround;
1537 mod_timer(&nic->watchdog,
1538 round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1541 static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1542 struct sk_buff *skb)
1544 cb->command = nic->tx_command;
1545 /* interrupt every 16 packets regardless of delay */
1546 if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1547 cb->command |= cpu_to_le16(cb_i);
1548 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1549 cb->u.tcb.tcb_byte_count = 0;
1550 cb->u.tcb.threshold = nic->tx_threshold;
1551 cb->u.tcb.tbd_count = 1;
1552 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1553 skb->data, skb->len, PCI_DMA_TODEVICE));
1554 /* check for mapping failure? */
1555 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1558 static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1560 struct nic *nic = netdev_priv(netdev);
1563 if (nic->flags & ich_10h_workaround) {
1564 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1565 Issue a NOP command followed by a 1us delay before
1566 issuing the Tx command. */
1567 if (e100_exec_cmd(nic, cuc_nop, 0))
1568 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
1572 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1576 /* We queued the skb, but now we're out of space. */
1577 DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
1578 netif_stop_queue(netdev);
1581 /* This is a hard error - log it. */
1582 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
1583 netif_stop_queue(netdev);
1587 netdev->trans_start = jiffies;
1591 static int e100_tx_clean(struct nic *nic)
1593 struct net_device *dev = nic->netdev;
1597 spin_lock(&nic->cb_lock);
1599 /* Clean CBs marked complete */
1600 for (cb = nic->cb_to_clean;
1601 cb->status & cpu_to_le16(cb_complete);
1602 cb = nic->cb_to_clean = cb->next) {
1603 DPRINTK(TX_DONE, DEBUG, "cb[%d]->status = 0x%04X\n",
1604 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1607 if (likely(cb->skb != NULL)) {
1608 dev->stats.tx_packets++;
1609 dev->stats.tx_bytes += cb->skb->len;
1611 pci_unmap_single(nic->pdev,
1612 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1613 le16_to_cpu(cb->u.tcb.tbd.size),
1615 dev_kfree_skb_any(cb->skb);
1623 spin_unlock(&nic->cb_lock);
1625 /* Recover from running out of Tx resources in xmit_frame */
1626 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1627 netif_wake_queue(nic->netdev);
1632 static void e100_clean_cbs(struct nic *nic)
1635 while (nic->cbs_avail != nic->params.cbs.count) {
1636 struct cb *cb = nic->cb_to_clean;
1638 pci_unmap_single(nic->pdev,
1639 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1640 le16_to_cpu(cb->u.tcb.tbd.size),
1642 dev_kfree_skb(cb->skb);
1644 nic->cb_to_clean = nic->cb_to_clean->next;
1647 pci_free_consistent(nic->pdev,
1648 sizeof(struct cb) * nic->params.cbs.count,
1649 nic->cbs, nic->cbs_dma_addr);
1653 nic->cuc_cmd = cuc_start;
1654 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1658 static int e100_alloc_cbs(struct nic *nic)
1661 unsigned int i, count = nic->params.cbs.count;
1663 nic->cuc_cmd = cuc_start;
1664 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1667 nic->cbs = pci_alloc_consistent(nic->pdev,
1668 sizeof(struct cb) * count, &nic->cbs_dma_addr);
1672 for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1673 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1674 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1676 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1677 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1678 ((i+1) % count) * sizeof(struct cb));
1682 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1683 nic->cbs_avail = count;
1688 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1690 if (!nic->rxs) return;
1691 if (RU_SUSPENDED != nic->ru_running) return;
1693 /* handle init time starts */
1694 if (!rx) rx = nic->rxs;
1696 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1698 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1699 nic->ru_running = RU_RUNNING;
1703 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1704 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1706 if (!(rx->skb = netdev_alloc_skb(nic->netdev, RFD_BUF_LEN + NET_IP_ALIGN)))
1709 /* Align, init, and map the RFD. */
1710 skb_reserve(rx->skb, NET_IP_ALIGN);
1711 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1712 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1713 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1715 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1716 dev_kfree_skb_any(rx->skb);
1722 /* Link the RFD to end of RFA by linking previous RFD to
1723 * this one. We are safe to touch the previous RFD because
1724 * it is protected by the before last buffer's el bit being set */
1725 if (rx->prev->skb) {
1726 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1727 put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1728 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1729 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1735 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1736 unsigned int *work_done, unsigned int work_to_do)
1738 struct net_device *dev = nic->netdev;
1739 struct sk_buff *skb = rx->skb;
1740 struct rfd *rfd = (struct rfd *)skb->data;
1741 u16 rfd_status, actual_size;
1743 if (unlikely(work_done && *work_done >= work_to_do))
1746 /* Need to sync before taking a peek at cb_complete bit */
1747 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1748 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1749 rfd_status = le16_to_cpu(rfd->status);
1751 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
1753 /* If data isn't ready, nothing to indicate */
1754 if (unlikely(!(rfd_status & cb_complete))) {
1755 /* If the next buffer has the el bit, but we think the receiver
1756 * is still running, check to see if it really stopped while
1757 * we had interrupts off.
1758 * This allows for a fast restart without re-enabling
1760 if ((le16_to_cpu(rfd->command) & cb_el) &&
1761 (RU_RUNNING == nic->ru_running))
1763 if (ioread8(&nic->csr->scb.status) & rus_no_res)
1764 nic->ru_running = RU_SUSPENDED;
1768 /* Get actual data size */
1769 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1770 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1771 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1774 pci_unmap_single(nic->pdev, rx->dma_addr,
1775 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1777 /* If this buffer has the el bit, but we think the receiver
1778 * is still running, check to see if it really stopped while
1779 * we had interrupts off.
1780 * This allows for a fast restart without re-enabling interrupts.
1781 * This can happen when the RU sees the size change but also sees
1782 * the el bit set. */
1783 if ((le16_to_cpu(rfd->command) & cb_el) &&
1784 (RU_RUNNING == nic->ru_running)) {
1786 if (ioread8(&nic->csr->scb.status) & rus_no_res)
1787 nic->ru_running = RU_SUSPENDED;
1790 /* Pull off the RFD and put the actual data (minus eth hdr) */
1791 skb_reserve(skb, sizeof(struct rfd));
1792 skb_put(skb, actual_size);
1793 skb->protocol = eth_type_trans(skb, nic->netdev);
1795 if (unlikely(!(rfd_status & cb_ok))) {
1796 /* Don't indicate if hardware indicates errors */
1797 dev_kfree_skb_any(skb);
1798 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1799 /* Don't indicate oversized frames */
1800 nic->rx_over_length_errors++;
1801 dev_kfree_skb_any(skb);
1803 dev->stats.rx_packets++;
1804 dev->stats.rx_bytes += actual_size;
1805 netif_receive_skb(skb);
1815 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1816 unsigned int work_to_do)
1819 int restart_required = 0, err = 0;
1820 struct rx *old_before_last_rx, *new_before_last_rx;
1821 struct rfd *old_before_last_rfd, *new_before_last_rfd;
1823 /* Indicate newly arrived packets */
1824 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
1825 err = e100_rx_indicate(nic, rx, work_done, work_to_do);
1826 /* Hit quota or no more to clean */
1827 if (-EAGAIN == err || -ENODATA == err)
1832 /* On EAGAIN, hit quota so have more work to do, restart once
1833 * cleanup is complete.
1834 * Else, are we already rnr? then pay attention!!! this ensures that
1835 * the state machine progression never allows a start with a
1836 * partially cleaned list, avoiding a race between hardware
1837 * and rx_to_clean when in NAPI mode */
1838 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
1839 restart_required = 1;
1841 old_before_last_rx = nic->rx_to_use->prev->prev;
1842 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
1844 /* Alloc new skbs to refill list */
1845 for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
1846 if (unlikely(e100_rx_alloc_skb(nic, rx)))
1847 break; /* Better luck next time (see watchdog) */
1850 new_before_last_rx = nic->rx_to_use->prev->prev;
1851 if (new_before_last_rx != old_before_last_rx) {
1852 /* Set the el-bit on the buffer that is before the last buffer.
1853 * This lets us update the next pointer on the last buffer
1854 * without worrying about hardware touching it.
1855 * We set the size to 0 to prevent hardware from touching this
1857 * When the hardware hits the before last buffer with el-bit
1858 * and size of 0, it will RNR interrupt, the RUS will go into
1859 * the No Resources state. It will not complete nor write to
1861 new_before_last_rfd =
1862 (struct rfd *)new_before_last_rx->skb->data;
1863 new_before_last_rfd->size = 0;
1864 new_before_last_rfd->command |= cpu_to_le16(cb_el);
1865 pci_dma_sync_single_for_device(nic->pdev,
1866 new_before_last_rx->dma_addr, sizeof(struct rfd),
1867 PCI_DMA_BIDIRECTIONAL);
1869 /* Now that we have a new stopping point, we can clear the old
1870 * stopping point. We must sync twice to get the proper
1871 * ordering on the hardware side of things. */
1872 old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
1873 pci_dma_sync_single_for_device(nic->pdev,
1874 old_before_last_rx->dma_addr, sizeof(struct rfd),
1875 PCI_DMA_BIDIRECTIONAL);
1876 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
1877 pci_dma_sync_single_for_device(nic->pdev,
1878 old_before_last_rx->dma_addr, sizeof(struct rfd),
1879 PCI_DMA_BIDIRECTIONAL);
1882 if (restart_required) {
1884 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
1885 e100_start_receiver(nic, nic->rx_to_clean);
1891 static void e100_rx_clean_list(struct nic *nic)
1894 unsigned int i, count = nic->params.rfds.count;
1896 nic->ru_running = RU_UNINITIALIZED;
1899 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
1901 pci_unmap_single(nic->pdev, rx->dma_addr,
1902 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1903 dev_kfree_skb(rx->skb);
1910 nic->rx_to_use = nic->rx_to_clean = NULL;
1913 static int e100_rx_alloc_list(struct nic *nic)
1916 unsigned int i, count = nic->params.rfds.count;
1917 struct rfd *before_last;
1919 nic->rx_to_use = nic->rx_to_clean = NULL;
1920 nic->ru_running = RU_UNINITIALIZED;
1922 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
1925 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
1926 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
1927 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
1928 if (e100_rx_alloc_skb(nic, rx)) {
1929 e100_rx_clean_list(nic);
1933 /* Set the el-bit on the buffer that is before the last buffer.
1934 * This lets us update the next pointer on the last buffer without
1935 * worrying about hardware touching it.
1936 * We set the size to 0 to prevent hardware from touching this buffer.
1937 * When the hardware hits the before last buffer with el-bit and size
1938 * of 0, it will RNR interrupt, the RU will go into the No Resources
1939 * state. It will not complete nor write to this buffer. */
1940 rx = nic->rxs->prev->prev;
1941 before_last = (struct rfd *)rx->skb->data;
1942 before_last->command |= cpu_to_le16(cb_el);
1943 before_last->size = 0;
1944 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
1945 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1947 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
1948 nic->ru_running = RU_SUSPENDED;
1953 static irqreturn_t e100_intr(int irq, void *dev_id)
1955 struct net_device *netdev = dev_id;
1956 struct nic *nic = netdev_priv(netdev);
1957 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
1959 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
1961 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */
1962 stat_ack == stat_ack_not_present) /* Hardware is ejected */
1965 /* Ack interrupt(s) */
1966 iowrite8(stat_ack, &nic->csr->scb.stat_ack);
1968 /* We hit Receive No Resource (RNR); restart RU after cleaning */
1969 if (stat_ack & stat_ack_rnr)
1970 nic->ru_running = RU_SUSPENDED;
1972 if (likely(napi_schedule_prep(&nic->napi))) {
1973 e100_disable_irq(nic);
1974 __napi_schedule(&nic->napi);
1980 static int e100_poll(struct napi_struct *napi, int budget)
1982 struct nic *nic = container_of(napi, struct nic, napi);
1983 unsigned int work_done = 0;
1985 e100_rx_clean(nic, &work_done, budget);
1988 /* If budget not fully consumed, exit the polling mode */
1989 if (work_done < budget) {
1990 napi_complete(napi);
1991 e100_enable_irq(nic);
1997 #ifdef CONFIG_NET_POLL_CONTROLLER
1998 static void e100_netpoll(struct net_device *netdev)
2000 struct nic *nic = netdev_priv(netdev);
2002 e100_disable_irq(nic);
2003 e100_intr(nic->pdev->irq, netdev);
2005 e100_enable_irq(nic);
2009 static int e100_set_mac_address(struct net_device *netdev, void *p)
2011 struct nic *nic = netdev_priv(netdev);
2012 struct sockaddr *addr = p;
2014 if (!is_valid_ether_addr(addr->sa_data))
2015 return -EADDRNOTAVAIL;
2017 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2018 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2023 static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2025 if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2027 netdev->mtu = new_mtu;
2031 static int e100_asf(struct nic *nic)
2033 /* ASF can be enabled from eeprom */
2034 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2035 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2036 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2037 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
2040 static int e100_up(struct nic *nic)
2044 if ((err = e100_rx_alloc_list(nic)))
2046 if ((err = e100_alloc_cbs(nic)))
2047 goto err_rx_clean_list;
2048 if ((err = e100_hw_init(nic)))
2050 e100_set_multicast_list(nic->netdev);
2051 e100_start_receiver(nic, NULL);
2052 mod_timer(&nic->watchdog, jiffies);
2053 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2054 nic->netdev->name, nic->netdev)))
2056 netif_wake_queue(nic->netdev);
2057 napi_enable(&nic->napi);
2058 /* enable ints _after_ enabling poll, preventing a race between
2059 * disable ints+schedule */
2060 e100_enable_irq(nic);
2064 del_timer_sync(&nic->watchdog);
2066 e100_clean_cbs(nic);
2068 e100_rx_clean_list(nic);
2072 static void e100_down(struct nic *nic)
2074 /* wait here for poll to complete */
2075 napi_disable(&nic->napi);
2076 netif_stop_queue(nic->netdev);
2078 free_irq(nic->pdev->irq, nic->netdev);
2079 del_timer_sync(&nic->watchdog);
2080 netif_carrier_off(nic->netdev);
2081 e100_clean_cbs(nic);
2082 e100_rx_clean_list(nic);
2085 static void e100_tx_timeout(struct net_device *netdev)
2087 struct nic *nic = netdev_priv(netdev);
2089 /* Reset outside of interrupt context, to avoid request_irq
2090 * in interrupt context */
2091 schedule_work(&nic->tx_timeout_task);
2094 static void e100_tx_timeout_task(struct work_struct *work)
2096 struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2097 struct net_device *netdev = nic->netdev;
2099 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
2100 ioread8(&nic->csr->scb.status));
2101 e100_down(netdev_priv(netdev));
2102 e100_up(netdev_priv(netdev));
2105 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2108 struct sk_buff *skb;
2110 /* Use driver resources to perform internal MAC or PHY
2111 * loopback test. A single packet is prepared and transmitted
2112 * in loopback mode, and the test passes if the received
2113 * packet compares byte-for-byte to the transmitted packet. */
2115 if ((err = e100_rx_alloc_list(nic)))
2117 if ((err = e100_alloc_cbs(nic)))
2120 /* ICH PHY loopback is broken so do MAC loopback instead */
2121 if (nic->flags & ich && loopback_mode == lb_phy)
2122 loopback_mode = lb_mac;
2124 nic->loopback = loopback_mode;
2125 if ((err = e100_hw_init(nic)))
2126 goto err_loopback_none;
2128 if (loopback_mode == lb_phy)
2129 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2132 e100_start_receiver(nic, NULL);
2134 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2136 goto err_loopback_none;
2138 skb_put(skb, ETH_DATA_LEN);
2139 memset(skb->data, 0xFF, ETH_DATA_LEN);
2140 e100_xmit_frame(skb, nic->netdev);
2144 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2145 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2147 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2148 skb->data, ETH_DATA_LEN))
2152 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2153 nic->loopback = lb_none;
2154 e100_clean_cbs(nic);
2157 e100_rx_clean_list(nic);
2161 #define MII_LED_CONTROL 0x1B
2162 #define E100_82552_LED_OVERRIDE 0x19
2163 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */
2164 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */
2165 static void e100_blink_led(unsigned long data)
2167 struct nic *nic = (struct nic *)data;
2174 u16 led_reg = MII_LED_CONTROL;
2176 if (nic->phy == phy_82552_v) {
2177 led_reg = E100_82552_LED_OVERRIDE;
2179 nic->leds = (nic->leds == E100_82552_LED_ON) ?
2180 E100_82552_LED_OFF : E100_82552_LED_ON;
2182 nic->leds = (nic->leds & led_on) ? led_off :
2183 (nic->mac < mac_82559_D101M) ? led_on_557 :
2186 mdio_write(nic->netdev, nic->mii.phy_id, led_reg, nic->leds);
2187 mod_timer(&nic->blink_timer, jiffies + HZ / 4);
2190 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2192 struct nic *nic = netdev_priv(netdev);
2193 return mii_ethtool_gset(&nic->mii, cmd);
2196 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2198 struct nic *nic = netdev_priv(netdev);
2201 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2202 err = mii_ethtool_sset(&nic->mii, cmd);
2203 e100_exec_cb(nic, NULL, e100_configure);
2208 static void e100_get_drvinfo(struct net_device *netdev,
2209 struct ethtool_drvinfo *info)
2211 struct nic *nic = netdev_priv(netdev);
2212 strcpy(info->driver, DRV_NAME);
2213 strcpy(info->version, DRV_VERSION);
2214 strcpy(info->fw_version, "N/A");
2215 strcpy(info->bus_info, pci_name(nic->pdev));
2218 #define E100_PHY_REGS 0x1C
2219 static int e100_get_regs_len(struct net_device *netdev)
2221 struct nic *nic = netdev_priv(netdev);
2222 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2225 static void e100_get_regs(struct net_device *netdev,
2226 struct ethtool_regs *regs, void *p)
2228 struct nic *nic = netdev_priv(netdev);
2232 regs->version = (1 << 24) | nic->pdev->revision;
2233 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2234 ioread8(&nic->csr->scb.cmd_lo) << 16 |
2235 ioread16(&nic->csr->scb.status);
2236 for (i = E100_PHY_REGS; i >= 0; i--)
2237 buff[1 + E100_PHY_REGS - i] =
2238 mdio_read(netdev, nic->mii.phy_id, i);
2239 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2240 e100_exec_cb(nic, NULL, e100_dump);
2242 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2243 sizeof(nic->mem->dump_buf));
2246 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2248 struct nic *nic = netdev_priv(netdev);
2249 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
2250 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2253 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2255 struct nic *nic = netdev_priv(netdev);
2257 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2258 !device_can_wakeup(&nic->pdev->dev))
2262 nic->flags |= wol_magic;
2264 nic->flags &= ~wol_magic;
2266 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2268 e100_exec_cb(nic, NULL, e100_configure);
2273 static u32 e100_get_msglevel(struct net_device *netdev)
2275 struct nic *nic = netdev_priv(netdev);
2276 return nic->msg_enable;
2279 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2281 struct nic *nic = netdev_priv(netdev);
2282 nic->msg_enable = value;
2285 static int e100_nway_reset(struct net_device *netdev)
2287 struct nic *nic = netdev_priv(netdev);
2288 return mii_nway_restart(&nic->mii);
2291 static u32 e100_get_link(struct net_device *netdev)
2293 struct nic *nic = netdev_priv(netdev);
2294 return mii_link_ok(&nic->mii);
2297 static int e100_get_eeprom_len(struct net_device *netdev)
2299 struct nic *nic = netdev_priv(netdev);
2300 return nic->eeprom_wc << 1;
2303 #define E100_EEPROM_MAGIC 0x1234
2304 static int e100_get_eeprom(struct net_device *netdev,
2305 struct ethtool_eeprom *eeprom, u8 *bytes)
2307 struct nic *nic = netdev_priv(netdev);
2309 eeprom->magic = E100_EEPROM_MAGIC;
2310 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2315 static int e100_set_eeprom(struct net_device *netdev,
2316 struct ethtool_eeprom *eeprom, u8 *bytes)
2318 struct nic *nic = netdev_priv(netdev);
2320 if (eeprom->magic != E100_EEPROM_MAGIC)
2323 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2325 return e100_eeprom_save(nic, eeprom->offset >> 1,
2326 (eeprom->len >> 1) + 1);
2329 static void e100_get_ringparam(struct net_device *netdev,
2330 struct ethtool_ringparam *ring)
2332 struct nic *nic = netdev_priv(netdev);
2333 struct param_range *rfds = &nic->params.rfds;
2334 struct param_range *cbs = &nic->params.cbs;
2336 ring->rx_max_pending = rfds->max;
2337 ring->tx_max_pending = cbs->max;
2338 ring->rx_mini_max_pending = 0;
2339 ring->rx_jumbo_max_pending = 0;
2340 ring->rx_pending = rfds->count;
2341 ring->tx_pending = cbs->count;
2342 ring->rx_mini_pending = 0;
2343 ring->rx_jumbo_pending = 0;
2346 static int e100_set_ringparam(struct net_device *netdev,
2347 struct ethtool_ringparam *ring)
2349 struct nic *nic = netdev_priv(netdev);
2350 struct param_range *rfds = &nic->params.rfds;
2351 struct param_range *cbs = &nic->params.cbs;
2353 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2356 if (netif_running(netdev))
2358 rfds->count = max(ring->rx_pending, rfds->min);
2359 rfds->count = min(rfds->count, rfds->max);
2360 cbs->count = max(ring->tx_pending, cbs->min);
2361 cbs->count = min(cbs->count, cbs->max);
2362 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
2363 rfds->count, cbs->count);
2364 if (netif_running(netdev))
2370 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2371 "Link test (on/offline)",
2372 "Eeprom test (on/offline)",
2373 "Self test (offline)",
2374 "Mac loopback (offline)",
2375 "Phy loopback (offline)",
2377 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
2379 static void e100_diag_test(struct net_device *netdev,
2380 struct ethtool_test *test, u64 *data)
2382 struct ethtool_cmd cmd;
2383 struct nic *nic = netdev_priv(netdev);
2386 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2387 data[0] = !mii_link_ok(&nic->mii);
2388 data[1] = e100_eeprom_load(nic);
2389 if (test->flags & ETH_TEST_FL_OFFLINE) {
2391 /* save speed, duplex & autoneg settings */
2392 err = mii_ethtool_gset(&nic->mii, &cmd);
2394 if (netif_running(netdev))
2396 data[2] = e100_self_test(nic);
2397 data[3] = e100_loopback_test(nic, lb_mac);
2398 data[4] = e100_loopback_test(nic, lb_phy);
2400 /* restore speed, duplex & autoneg settings */
2401 err = mii_ethtool_sset(&nic->mii, &cmd);
2403 if (netif_running(netdev))
2406 for (i = 0; i < E100_TEST_LEN; i++)
2407 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2409 msleep_interruptible(4 * 1000);
2412 static int e100_phys_id(struct net_device *netdev, u32 data)
2414 struct nic *nic = netdev_priv(netdev);
2415 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2418 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2419 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2420 mod_timer(&nic->blink_timer, jiffies);
2421 msleep_interruptible(data * 1000);
2422 del_timer_sync(&nic->blink_timer);
2423 mdio_write(netdev, nic->mii.phy_id, led_reg, 0);
2428 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2429 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2430 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2431 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2432 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2433 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2434 "tx_heartbeat_errors", "tx_window_errors",
2435 /* device-specific stats */
2436 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2437 "tx_flow_control_pause", "rx_flow_control_pause",
2438 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2440 #define E100_NET_STATS_LEN 21
2441 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
2443 static int e100_get_sset_count(struct net_device *netdev, int sset)
2447 return E100_TEST_LEN;
2449 return E100_STATS_LEN;
2455 static void e100_get_ethtool_stats(struct net_device *netdev,
2456 struct ethtool_stats *stats, u64 *data)
2458 struct nic *nic = netdev_priv(netdev);
2461 for (i = 0; i < E100_NET_STATS_LEN; i++)
2462 data[i] = ((unsigned long *)&netdev->stats)[i];
2464 data[i++] = nic->tx_deferred;
2465 data[i++] = nic->tx_single_collisions;
2466 data[i++] = nic->tx_multiple_collisions;
2467 data[i++] = nic->tx_fc_pause;
2468 data[i++] = nic->rx_fc_pause;
2469 data[i++] = nic->rx_fc_unsupported;
2470 data[i++] = nic->tx_tco_frames;
2471 data[i++] = nic->rx_tco_frames;
2474 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2476 switch (stringset) {
2478 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2481 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2486 static const struct ethtool_ops e100_ethtool_ops = {
2487 .get_settings = e100_get_settings,
2488 .set_settings = e100_set_settings,
2489 .get_drvinfo = e100_get_drvinfo,
2490 .get_regs_len = e100_get_regs_len,
2491 .get_regs = e100_get_regs,
2492 .get_wol = e100_get_wol,
2493 .set_wol = e100_set_wol,
2494 .get_msglevel = e100_get_msglevel,
2495 .set_msglevel = e100_set_msglevel,
2496 .nway_reset = e100_nway_reset,
2497 .get_link = e100_get_link,
2498 .get_eeprom_len = e100_get_eeprom_len,
2499 .get_eeprom = e100_get_eeprom,
2500 .set_eeprom = e100_set_eeprom,
2501 .get_ringparam = e100_get_ringparam,
2502 .set_ringparam = e100_set_ringparam,
2503 .self_test = e100_diag_test,
2504 .get_strings = e100_get_strings,
2505 .phys_id = e100_phys_id,
2506 .get_ethtool_stats = e100_get_ethtool_stats,
2507 .get_sset_count = e100_get_sset_count,
2510 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2512 struct nic *nic = netdev_priv(netdev);
2514 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2517 static int e100_alloc(struct nic *nic)
2519 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2521 return nic->mem ? 0 : -ENOMEM;
2524 static void e100_free(struct nic *nic)
2527 pci_free_consistent(nic->pdev, sizeof(struct mem),
2528 nic->mem, nic->dma_addr);
2533 static int e100_open(struct net_device *netdev)
2535 struct nic *nic = netdev_priv(netdev);
2538 netif_carrier_off(netdev);
2539 if ((err = e100_up(nic)))
2540 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
2544 static int e100_close(struct net_device *netdev)
2546 e100_down(netdev_priv(netdev));
2550 static const struct net_device_ops e100_netdev_ops = {
2551 .ndo_open = e100_open,
2552 .ndo_stop = e100_close,
2553 .ndo_start_xmit = e100_xmit_frame,
2554 .ndo_validate_addr = eth_validate_addr,
2555 .ndo_set_multicast_list = e100_set_multicast_list,
2556 .ndo_set_mac_address = e100_set_mac_address,
2557 .ndo_change_mtu = e100_change_mtu,
2558 .ndo_do_ioctl = e100_do_ioctl,
2559 .ndo_tx_timeout = e100_tx_timeout,
2560 #ifdef CONFIG_NET_POLL_CONTROLLER
2561 .ndo_poll_controller = e100_netpoll,
2565 static int __devinit e100_probe(struct pci_dev *pdev,
2566 const struct pci_device_id *ent)
2568 struct net_device *netdev;
2572 if (!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2573 if (((1 << debug) - 1) & NETIF_MSG_PROBE)
2574 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
2578 netdev->netdev_ops = &e100_netdev_ops;
2579 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2580 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2581 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2583 nic = netdev_priv(netdev);
2584 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2585 nic->netdev = netdev;
2587 nic->msg_enable = (1 << debug) - 1;
2588 pci_set_drvdata(pdev, netdev);
2590 if ((err = pci_enable_device(pdev))) {
2591 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
2592 goto err_out_free_dev;
2595 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2596 DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
2597 "base address, aborting.\n");
2599 goto err_out_disable_pdev;
2602 if ((err = pci_request_regions(pdev, DRV_NAME))) {
2603 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
2604 goto err_out_disable_pdev;
2607 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
2608 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
2609 goto err_out_free_res;
2612 SET_NETDEV_DEV(netdev, &pdev->dev);
2615 DPRINTK(PROBE, INFO, "using i/o access mode\n");
2617 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2619 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
2621 goto err_out_free_res;
2624 if (ent->driver_data)
2629 e100_get_defaults(nic);
2631 /* locks must be initialized before calling hw_reset */
2632 spin_lock_init(&nic->cb_lock);
2633 spin_lock_init(&nic->cmd_lock);
2634 spin_lock_init(&nic->mdio_lock);
2636 /* Reset the device before pci_set_master() in case device is in some
2637 * funky state and has an interrupt pending - hint: we don't have the
2638 * interrupt handler registered yet. */
2641 pci_set_master(pdev);
2643 init_timer(&nic->watchdog);
2644 nic->watchdog.function = e100_watchdog;
2645 nic->watchdog.data = (unsigned long)nic;
2646 init_timer(&nic->blink_timer);
2647 nic->blink_timer.function = e100_blink_led;
2648 nic->blink_timer.data = (unsigned long)nic;
2650 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2652 if ((err = e100_alloc(nic))) {
2653 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
2654 goto err_out_iounmap;
2657 if ((err = e100_eeprom_load(nic)))
2662 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2663 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
2664 if (!is_valid_ether_addr(netdev->perm_addr)) {
2665 if (!eeprom_bad_csum_allow) {
2666 DPRINTK(PROBE, ERR, "Invalid MAC address from "
2667 "EEPROM, aborting.\n");
2671 DPRINTK(PROBE, ERR, "Invalid MAC address from EEPROM, "
2672 "you MUST configure one.\n");
2676 /* Wol magic packet can be enabled from eeprom */
2677 if ((nic->mac >= mac_82558_D101_A4) &&
2678 (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2679 nic->flags |= wol_magic;
2680 device_set_wakeup_enable(&pdev->dev, true);
2683 /* ack any pending wake events, disable PME */
2684 pci_pme_active(pdev, false);
2686 strcpy(netdev->name, "eth%d");
2687 if ((err = register_netdev(netdev))) {
2688 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
2692 DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, MAC addr %pM\n",
2693 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2694 pdev->irq, netdev->dev_addr);
2701 pci_iounmap(pdev, nic->csr);
2703 pci_release_regions(pdev);
2704 err_out_disable_pdev:
2705 pci_disable_device(pdev);
2707 pci_set_drvdata(pdev, NULL);
2708 free_netdev(netdev);
2712 static void __devexit e100_remove(struct pci_dev *pdev)
2714 struct net_device *netdev = pci_get_drvdata(pdev);
2717 struct nic *nic = netdev_priv(netdev);
2718 unregister_netdev(netdev);
2720 pci_iounmap(pdev, nic->csr);
2721 free_netdev(netdev);
2722 pci_release_regions(pdev);
2723 pci_disable_device(pdev);
2724 pci_set_drvdata(pdev, NULL);
2728 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */
2729 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */
2730 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */
2731 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2733 struct net_device *netdev = pci_get_drvdata(pdev);
2734 struct nic *nic = netdev_priv(netdev);
2736 if (netif_running(netdev))
2738 netif_device_detach(netdev);
2740 pci_save_state(pdev);
2742 if ((nic->flags & wol_magic) | e100_asf(nic)) {
2743 /* enable reverse auto-negotiation */
2744 if (nic->phy == phy_82552_v) {
2745 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2746 E100_82552_SMARTSPEED);
2748 mdio_write(netdev, nic->mii.phy_id,
2749 E100_82552_SMARTSPEED, smartspeed |
2750 E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
2752 if (pci_enable_wake(pdev, PCI_D3cold, true))
2753 pci_enable_wake(pdev, PCI_D3hot, true);
2755 pci_enable_wake(pdev, PCI_D3hot, false);
2758 pci_disable_device(pdev);
2759 pci_set_power_state(pdev, PCI_D3hot);
2765 static int e100_resume(struct pci_dev *pdev)
2767 struct net_device *netdev = pci_get_drvdata(pdev);
2768 struct nic *nic = netdev_priv(netdev);
2770 pci_set_power_state(pdev, PCI_D0);
2771 pci_restore_state(pdev);
2772 /* ack any pending wake events, disable PME */
2773 pci_enable_wake(pdev, 0, 0);
2775 /* disbale reverse auto-negotiation */
2776 if (nic->phy == phy_82552_v) {
2777 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2778 E100_82552_SMARTSPEED);
2780 mdio_write(netdev, nic->mii.phy_id,
2781 E100_82552_SMARTSPEED,
2782 smartspeed & ~(E100_82552_REV_ANEG));
2785 netif_device_attach(netdev);
2786 if (netif_running(netdev))
2791 #endif /* CONFIG_PM */
2793 static void e100_shutdown(struct pci_dev *pdev)
2795 e100_suspend(pdev, PMSG_SUSPEND);
2798 /* ------------------ PCI Error Recovery infrastructure -------------- */
2800 * e100_io_error_detected - called when PCI error is detected.
2801 * @pdev: Pointer to PCI device
2802 * @state: The current pci connection state
2804 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2806 struct net_device *netdev = pci_get_drvdata(pdev);
2807 struct nic *nic = netdev_priv(netdev);
2809 /* Similar to calling e100_down(), but avoids adapter I/O. */
2812 /* Detach; put netif into a state similar to hotplug unplug. */
2813 napi_enable(&nic->napi);
2814 netif_device_detach(netdev);
2815 pci_disable_device(pdev);
2817 /* Request a slot reset. */
2818 return PCI_ERS_RESULT_NEED_RESET;
2822 * e100_io_slot_reset - called after the pci bus has been reset.
2823 * @pdev: Pointer to PCI device
2825 * Restart the card from scratch.
2827 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
2829 struct net_device *netdev = pci_get_drvdata(pdev);
2830 struct nic *nic = netdev_priv(netdev);
2832 if (pci_enable_device(pdev)) {
2833 printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n");
2834 return PCI_ERS_RESULT_DISCONNECT;
2836 pci_set_master(pdev);
2838 /* Only one device per card can do a reset */
2839 if (0 != PCI_FUNC(pdev->devfn))
2840 return PCI_ERS_RESULT_RECOVERED;
2844 return PCI_ERS_RESULT_RECOVERED;
2848 * e100_io_resume - resume normal operations
2849 * @pdev: Pointer to PCI device
2851 * Resume normal operations after an error recovery
2852 * sequence has been completed.
2854 static void e100_io_resume(struct pci_dev *pdev)
2856 struct net_device *netdev = pci_get_drvdata(pdev);
2857 struct nic *nic = netdev_priv(netdev);
2859 /* ack any pending wake events, disable PME */
2860 pci_enable_wake(pdev, 0, 0);
2862 netif_device_attach(netdev);
2863 if (netif_running(netdev)) {
2865 mod_timer(&nic->watchdog, jiffies);
2869 static struct pci_error_handlers e100_err_handler = {
2870 .error_detected = e100_io_error_detected,
2871 .slot_reset = e100_io_slot_reset,
2872 .resume = e100_io_resume,
2875 static struct pci_driver e100_driver = {
2877 .id_table = e100_id_table,
2878 .probe = e100_probe,
2879 .remove = __devexit_p(e100_remove),
2881 /* Power Management hooks */
2882 .suspend = e100_suspend,
2883 .resume = e100_resume,
2885 .shutdown = e100_shutdown,
2886 .err_handler = &e100_err_handler,
2889 static int __init e100_init_module(void)
2891 if (((1 << debug) - 1) & NETIF_MSG_DRV) {
2892 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
2893 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
2895 return pci_register_driver(&e100_driver);
2898 static void __exit e100_cleanup_module(void)
2900 pci_unregister_driver(&e100_driver);
2903 module_init(e100_init_module);
2904 module_exit(e100_cleanup_module);