4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * proc base directory handling functions
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
50 #include <asm/uaccess.h>
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/resource.h>
69 #include <linux/module.h>
70 #include <linux/mount.h>
71 #include <linux/security.h>
72 #include <linux/ptrace.h>
73 #include <linux/tracehook.h>
74 #include <linux/cgroup.h>
75 #include <linux/cpuset.h>
76 #include <linux/audit.h>
77 #include <linux/poll.h>
78 #include <linux/nsproxy.h>
79 #include <linux/oom.h>
80 #include <linux/elf.h>
81 #include <linux/pid_namespace.h>
85 * Implementing inode permission operations in /proc is almost
86 * certainly an error. Permission checks need to happen during
87 * each system call not at open time. The reason is that most of
88 * what we wish to check for permissions in /proc varies at runtime.
90 * The classic example of a problem is opening file descriptors
91 * in /proc for a task before it execs a suid executable.
98 const struct inode_operations *iop;
99 const struct file_operations *fop;
103 #define NOD(NAME, MODE, IOP, FOP, OP) { \
105 .len = sizeof(NAME) - 1, \
112 #define DIR(NAME, MODE, OTYPE) \
113 NOD(NAME, (S_IFDIR|(MODE)), \
114 &proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations, \
116 #define LNK(NAME, OTYPE) \
117 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
118 &proc_pid_link_inode_operations, NULL, \
119 { .proc_get_link = &proc_##OTYPE##_link } )
120 #define REG(NAME, MODE, OTYPE) \
121 NOD(NAME, (S_IFREG|(MODE)), NULL, \
122 &proc_##OTYPE##_operations, {})
123 #define INF(NAME, MODE, OTYPE) \
124 NOD(NAME, (S_IFREG|(MODE)), \
125 NULL, &proc_info_file_operations, \
126 { .proc_read = &proc_##OTYPE } )
127 #define ONE(NAME, MODE, OTYPE) \
128 NOD(NAME, (S_IFREG|(MODE)), \
129 NULL, &proc_single_file_operations, \
130 { .proc_show = &proc_##OTYPE } )
133 * Count the number of hardlinks for the pid_entry table, excluding the .
136 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
143 for (i = 0; i < n; ++i) {
144 if (S_ISDIR(entries[i].mode))
152 EXPORT_SYMBOL(maps_protect);
154 static struct fs_struct *get_fs_struct(struct task_struct *task)
156 struct fs_struct *fs;
160 atomic_inc(&fs->count);
165 static int get_nr_threads(struct task_struct *tsk)
167 /* Must be called with the rcu_read_lock held */
171 if (lock_task_sighand(tsk, &flags)) {
172 count = atomic_read(&tsk->signal->count);
173 unlock_task_sighand(tsk, &flags);
178 static int proc_cwd_link(struct inode *inode, struct path *path)
180 struct task_struct *task = get_proc_task(inode);
181 struct fs_struct *fs = NULL;
182 int result = -ENOENT;
185 fs = get_fs_struct(task);
186 put_task_struct(task);
189 read_lock(&fs->lock);
192 read_unlock(&fs->lock);
199 static int proc_root_link(struct inode *inode, struct path *path)
201 struct task_struct *task = get_proc_task(inode);
202 struct fs_struct *fs = NULL;
203 int result = -ENOENT;
206 fs = get_fs_struct(task);
207 put_task_struct(task);
210 read_lock(&fs->lock);
213 read_unlock(&fs->lock);
221 * Return zero if current may access user memory in @task, -error if not.
223 static int check_mem_permission(struct task_struct *task)
226 * A task can always look at itself, in case it chooses
227 * to use system calls instead of load instructions.
233 * If current is actively ptrace'ing, and would also be
234 * permitted to freshly attach with ptrace now, permit it.
236 if (task_is_stopped_or_traced(task)) {
239 match = (tracehook_tracer_task(task) == current);
241 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
246 * Noone else is allowed.
251 struct mm_struct *mm_for_maps(struct task_struct *task)
253 struct mm_struct *mm = get_task_mm(task);
256 down_read(&mm->mmap_sem);
260 if (task->mm != current->mm &&
261 __ptrace_may_access(task, PTRACE_MODE_READ) < 0)
267 up_read(&mm->mmap_sem);
272 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
276 struct mm_struct *mm = get_task_mm(task);
280 goto out_mm; /* Shh! No looking before we're done */
282 len = mm->arg_end - mm->arg_start;
287 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
289 // If the nul at the end of args has been overwritten, then
290 // assume application is using setproctitle(3).
291 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
292 len = strnlen(buffer, res);
296 len = mm->env_end - mm->env_start;
297 if (len > PAGE_SIZE - res)
298 len = PAGE_SIZE - res;
299 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
300 res = strnlen(buffer, res);
309 static int proc_pid_auxv(struct task_struct *task, char *buffer)
312 struct mm_struct *mm = get_task_mm(task);
314 unsigned int nwords = 0;
317 while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
318 res = nwords * sizeof(mm->saved_auxv[0]);
321 memcpy(buffer, mm->saved_auxv, res);
328 #ifdef CONFIG_KALLSYMS
330 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
331 * Returns the resolved symbol. If that fails, simply return the address.
333 static int proc_pid_wchan(struct task_struct *task, char *buffer)
336 char symname[KSYM_NAME_LEN];
338 wchan = get_wchan(task);
340 if (lookup_symbol_name(wchan, symname) < 0)
341 return sprintf(buffer, "%lu", wchan);
343 return sprintf(buffer, "%s", symname);
345 #endif /* CONFIG_KALLSYMS */
347 #ifdef CONFIG_SCHEDSTATS
349 * Provides /proc/PID/schedstat
351 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
353 return sprintf(buffer, "%llu %llu %lu\n",
354 task->sched_info.cpu_time,
355 task->sched_info.run_delay,
356 task->sched_info.pcount);
360 #ifdef CONFIG_LATENCYTOP
361 static int lstats_show_proc(struct seq_file *m, void *v)
364 struct inode *inode = m->private;
365 struct task_struct *task = get_proc_task(inode);
369 seq_puts(m, "Latency Top version : v0.1\n");
370 for (i = 0; i < 32; i++) {
371 if (task->latency_record[i].backtrace[0]) {
373 seq_printf(m, "%i %li %li ",
374 task->latency_record[i].count,
375 task->latency_record[i].time,
376 task->latency_record[i].max);
377 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
378 char sym[KSYM_NAME_LEN];
380 if (!task->latency_record[i].backtrace[q])
382 if (task->latency_record[i].backtrace[q] == ULONG_MAX)
384 sprint_symbol(sym, task->latency_record[i].backtrace[q]);
385 c = strchr(sym, '+');
388 seq_printf(m, "%s ", sym);
394 put_task_struct(task);
398 static int lstats_open(struct inode *inode, struct file *file)
400 return single_open(file, lstats_show_proc, inode);
403 static ssize_t lstats_write(struct file *file, const char __user *buf,
404 size_t count, loff_t *offs)
406 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
410 clear_all_latency_tracing(task);
411 put_task_struct(task);
416 static const struct file_operations proc_lstats_operations = {
419 .write = lstats_write,
421 .release = single_release,
426 /* The badness from the OOM killer */
427 unsigned long badness(struct task_struct *p, unsigned long uptime);
428 static int proc_oom_score(struct task_struct *task, char *buffer)
430 unsigned long points;
431 struct timespec uptime;
433 do_posix_clock_monotonic_gettime(&uptime);
434 read_lock(&tasklist_lock);
435 points = badness(task, uptime.tv_sec);
436 read_unlock(&tasklist_lock);
437 return sprintf(buffer, "%lu\n", points);
445 static const struct limit_names lnames[RLIM_NLIMITS] = {
446 [RLIMIT_CPU] = {"Max cpu time", "ms"},
447 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
448 [RLIMIT_DATA] = {"Max data size", "bytes"},
449 [RLIMIT_STACK] = {"Max stack size", "bytes"},
450 [RLIMIT_CORE] = {"Max core file size", "bytes"},
451 [RLIMIT_RSS] = {"Max resident set", "bytes"},
452 [RLIMIT_NPROC] = {"Max processes", "processes"},
453 [RLIMIT_NOFILE] = {"Max open files", "files"},
454 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
455 [RLIMIT_AS] = {"Max address space", "bytes"},
456 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
457 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
458 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
459 [RLIMIT_NICE] = {"Max nice priority", NULL},
460 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
461 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
464 /* Display limits for a process */
465 static int proc_pid_limits(struct task_struct *task, char *buffer)
470 char *bufptr = buffer;
472 struct rlimit rlim[RLIM_NLIMITS];
475 if (!lock_task_sighand(task,&flags)) {
479 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
480 unlock_task_sighand(task, &flags);
484 * print the file header
486 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
487 "Limit", "Soft Limit", "Hard Limit", "Units");
489 for (i = 0; i < RLIM_NLIMITS; i++) {
490 if (rlim[i].rlim_cur == RLIM_INFINITY)
491 count += sprintf(&bufptr[count], "%-25s %-20s ",
492 lnames[i].name, "unlimited");
494 count += sprintf(&bufptr[count], "%-25s %-20lu ",
495 lnames[i].name, rlim[i].rlim_cur);
497 if (rlim[i].rlim_max == RLIM_INFINITY)
498 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
500 count += sprintf(&bufptr[count], "%-20lu ",
504 count += sprintf(&bufptr[count], "%-10s\n",
507 count += sprintf(&bufptr[count], "\n");
513 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
514 static int proc_pid_syscall(struct task_struct *task, char *buffer)
517 unsigned long args[6], sp, pc;
519 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
520 return sprintf(buffer, "running\n");
523 return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
525 return sprintf(buffer,
526 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
528 args[0], args[1], args[2], args[3], args[4], args[5],
531 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
533 /************************************************************************/
534 /* Here the fs part begins */
535 /************************************************************************/
537 /* permission checks */
538 static int proc_fd_access_allowed(struct inode *inode)
540 struct task_struct *task;
542 /* Allow access to a task's file descriptors if it is us or we
543 * may use ptrace attach to the process and find out that
546 task = get_proc_task(inode);
548 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
549 put_task_struct(task);
554 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
557 struct inode *inode = dentry->d_inode;
559 if (attr->ia_valid & ATTR_MODE)
562 error = inode_change_ok(inode, attr);
564 error = inode_setattr(inode, attr);
568 static const struct inode_operations proc_def_inode_operations = {
569 .setattr = proc_setattr,
572 static int mounts_open_common(struct inode *inode, struct file *file,
573 const struct seq_operations *op)
575 struct task_struct *task = get_proc_task(inode);
577 struct mnt_namespace *ns = NULL;
578 struct fs_struct *fs = NULL;
580 struct proc_mounts *p;
585 nsp = task_nsproxy(task);
593 fs = get_fs_struct(task);
594 put_task_struct(task);
602 read_lock(&fs->lock);
605 read_unlock(&fs->lock);
609 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
613 file->private_data = &p->m;
614 ret = seq_open(file, op);
621 p->event = ns->event;
635 static int mounts_release(struct inode *inode, struct file *file)
637 struct proc_mounts *p = file->private_data;
640 return seq_release(inode, file);
643 static unsigned mounts_poll(struct file *file, poll_table *wait)
645 struct proc_mounts *p = file->private_data;
646 struct mnt_namespace *ns = p->ns;
649 poll_wait(file, &ns->poll, wait);
651 spin_lock(&vfsmount_lock);
652 if (p->event != ns->event) {
653 p->event = ns->event;
656 spin_unlock(&vfsmount_lock);
661 static int mounts_open(struct inode *inode, struct file *file)
663 return mounts_open_common(inode, file, &mounts_op);
666 static const struct file_operations proc_mounts_operations = {
670 .release = mounts_release,
674 static int mountinfo_open(struct inode *inode, struct file *file)
676 return mounts_open_common(inode, file, &mountinfo_op);
679 static const struct file_operations proc_mountinfo_operations = {
680 .open = mountinfo_open,
683 .release = mounts_release,
687 static int mountstats_open(struct inode *inode, struct file *file)
689 return mounts_open_common(inode, file, &mountstats_op);
692 static const struct file_operations proc_mountstats_operations = {
693 .open = mountstats_open,
696 .release = mounts_release,
699 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
701 static ssize_t proc_info_read(struct file * file, char __user * buf,
702 size_t count, loff_t *ppos)
704 struct inode * inode = file->f_path.dentry->d_inode;
707 struct task_struct *task = get_proc_task(inode);
713 if (count > PROC_BLOCK_SIZE)
714 count = PROC_BLOCK_SIZE;
717 if (!(page = __get_free_page(GFP_TEMPORARY)))
720 length = PROC_I(inode)->op.proc_read(task, (char*)page);
723 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
726 put_task_struct(task);
731 static const struct file_operations proc_info_file_operations = {
732 .read = proc_info_read,
735 static int proc_single_show(struct seq_file *m, void *v)
737 struct inode *inode = m->private;
738 struct pid_namespace *ns;
740 struct task_struct *task;
743 ns = inode->i_sb->s_fs_info;
744 pid = proc_pid(inode);
745 task = get_pid_task(pid, PIDTYPE_PID);
749 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
751 put_task_struct(task);
755 static int proc_single_open(struct inode *inode, struct file *filp)
758 ret = single_open(filp, proc_single_show, NULL);
760 struct seq_file *m = filp->private_data;
767 static const struct file_operations proc_single_file_operations = {
768 .open = proc_single_open,
771 .release = single_release,
774 static int mem_open(struct inode* inode, struct file* file)
776 file->private_data = (void*)((long)current->self_exec_id);
780 static ssize_t mem_read(struct file * file, char __user * buf,
781 size_t count, loff_t *ppos)
783 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
785 unsigned long src = *ppos;
787 struct mm_struct *mm;
792 if (check_mem_permission(task))
796 page = (char *)__get_free_page(GFP_TEMPORARY);
802 mm = get_task_mm(task);
808 if (file->private_data != (void*)((long)current->self_exec_id))
814 int this_len, retval;
816 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
817 retval = access_process_vm(task, src, page, this_len, 0);
818 if (!retval || check_mem_permission(task)) {
824 if (copy_to_user(buf, page, retval)) {
839 free_page((unsigned long) page);
841 put_task_struct(task);
846 #define mem_write NULL
849 /* This is a security hazard */
850 static ssize_t mem_write(struct file * file, const char __user *buf,
851 size_t count, loff_t *ppos)
855 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
856 unsigned long dst = *ppos;
862 if (check_mem_permission(task))
866 page = (char *)__get_free_page(GFP_TEMPORARY);
872 int this_len, retval;
874 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
875 if (copy_from_user(page, buf, this_len)) {
879 retval = access_process_vm(task, dst, page, this_len, 1);
891 free_page((unsigned long) page);
893 put_task_struct(task);
899 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
903 file->f_pos = offset;
906 file->f_pos += offset;
911 force_successful_syscall_return();
915 static const struct file_operations proc_mem_operations = {
922 static ssize_t environ_read(struct file *file, char __user *buf,
923 size_t count, loff_t *ppos)
925 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
927 unsigned long src = *ppos;
929 struct mm_struct *mm;
934 if (!ptrace_may_access(task, PTRACE_MODE_READ))
938 page = (char *)__get_free_page(GFP_TEMPORARY);
944 mm = get_task_mm(task);
949 int this_len, retval, max_len;
951 this_len = mm->env_end - (mm->env_start + src);
956 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
957 this_len = (this_len > max_len) ? max_len : this_len;
959 retval = access_process_vm(task, (mm->env_start + src),
967 if (copy_to_user(buf, page, retval)) {
981 free_page((unsigned long) page);
983 put_task_struct(task);
988 static const struct file_operations proc_environ_operations = {
989 .read = environ_read,
992 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
993 size_t count, loff_t *ppos)
995 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
996 char buffer[PROC_NUMBUF];
1002 oom_adjust = task->oomkilladj;
1003 put_task_struct(task);
1005 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1007 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1010 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1011 size_t count, loff_t *ppos)
1013 struct task_struct *task;
1014 char buffer[PROC_NUMBUF], *end;
1017 memset(buffer, 0, sizeof(buffer));
1018 if (count > sizeof(buffer) - 1)
1019 count = sizeof(buffer) - 1;
1020 if (copy_from_user(buffer, buf, count))
1022 oom_adjust = simple_strtol(buffer, &end, 0);
1023 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1024 oom_adjust != OOM_DISABLE)
1028 task = get_proc_task(file->f_path.dentry->d_inode);
1031 if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
1032 put_task_struct(task);
1035 task->oomkilladj = oom_adjust;
1036 put_task_struct(task);
1037 if (end - buffer == 0)
1039 return end - buffer;
1042 static const struct file_operations proc_oom_adjust_operations = {
1043 .read = oom_adjust_read,
1044 .write = oom_adjust_write,
1047 #ifdef CONFIG_AUDITSYSCALL
1048 #define TMPBUFLEN 21
1049 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1050 size_t count, loff_t *ppos)
1052 struct inode * inode = file->f_path.dentry->d_inode;
1053 struct task_struct *task = get_proc_task(inode);
1055 char tmpbuf[TMPBUFLEN];
1059 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1060 audit_get_loginuid(task));
1061 put_task_struct(task);
1062 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1065 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1066 size_t count, loff_t *ppos)
1068 struct inode * inode = file->f_path.dentry->d_inode;
1073 if (!capable(CAP_AUDIT_CONTROL))
1076 if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1079 if (count >= PAGE_SIZE)
1080 count = PAGE_SIZE - 1;
1083 /* No partial writes. */
1086 page = (char*)__get_free_page(GFP_TEMPORARY);
1090 if (copy_from_user(page, buf, count))
1094 loginuid = simple_strtoul(page, &tmp, 10);
1100 length = audit_set_loginuid(current, loginuid);
1101 if (likely(length == 0))
1105 free_page((unsigned long) page);
1109 static const struct file_operations proc_loginuid_operations = {
1110 .read = proc_loginuid_read,
1111 .write = proc_loginuid_write,
1114 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1115 size_t count, loff_t *ppos)
1117 struct inode * inode = file->f_path.dentry->d_inode;
1118 struct task_struct *task = get_proc_task(inode);
1120 char tmpbuf[TMPBUFLEN];
1124 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1125 audit_get_sessionid(task));
1126 put_task_struct(task);
1127 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1130 static const struct file_operations proc_sessionid_operations = {
1131 .read = proc_sessionid_read,
1135 #ifdef CONFIG_FAULT_INJECTION
1136 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1137 size_t count, loff_t *ppos)
1139 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1140 char buffer[PROC_NUMBUF];
1146 make_it_fail = task->make_it_fail;
1147 put_task_struct(task);
1149 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1151 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1154 static ssize_t proc_fault_inject_write(struct file * file,
1155 const char __user * buf, size_t count, loff_t *ppos)
1157 struct task_struct *task;
1158 char buffer[PROC_NUMBUF], *end;
1161 if (!capable(CAP_SYS_RESOURCE))
1163 memset(buffer, 0, sizeof(buffer));
1164 if (count > sizeof(buffer) - 1)
1165 count = sizeof(buffer) - 1;
1166 if (copy_from_user(buffer, buf, count))
1168 make_it_fail = simple_strtol(buffer, &end, 0);
1171 task = get_proc_task(file->f_dentry->d_inode);
1174 task->make_it_fail = make_it_fail;
1175 put_task_struct(task);
1176 if (end - buffer == 0)
1178 return end - buffer;
1181 static const struct file_operations proc_fault_inject_operations = {
1182 .read = proc_fault_inject_read,
1183 .write = proc_fault_inject_write,
1188 #ifdef CONFIG_SCHED_DEBUG
1190 * Print out various scheduling related per-task fields:
1192 static int sched_show(struct seq_file *m, void *v)
1194 struct inode *inode = m->private;
1195 struct task_struct *p;
1199 p = get_proc_task(inode);
1202 proc_sched_show_task(p, m);
1210 sched_write(struct file *file, const char __user *buf,
1211 size_t count, loff_t *offset)
1213 struct inode *inode = file->f_path.dentry->d_inode;
1214 struct task_struct *p;
1218 p = get_proc_task(inode);
1221 proc_sched_set_task(p);
1228 static int sched_open(struct inode *inode, struct file *filp)
1232 ret = single_open(filp, sched_show, NULL);
1234 struct seq_file *m = filp->private_data;
1241 static const struct file_operations proc_pid_sched_operations = {
1244 .write = sched_write,
1245 .llseek = seq_lseek,
1246 .release = single_release,
1252 * We added or removed a vma mapping the executable. The vmas are only mapped
1253 * during exec and are not mapped with the mmap system call.
1254 * Callers must hold down_write() on the mm's mmap_sem for these
1256 void added_exe_file_vma(struct mm_struct *mm)
1258 mm->num_exe_file_vmas++;
1261 void removed_exe_file_vma(struct mm_struct *mm)
1263 mm->num_exe_file_vmas--;
1264 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1266 mm->exe_file = NULL;
1271 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1274 get_file(new_exe_file);
1277 mm->exe_file = new_exe_file;
1278 mm->num_exe_file_vmas = 0;
1281 struct file *get_mm_exe_file(struct mm_struct *mm)
1283 struct file *exe_file;
1285 /* We need mmap_sem to protect against races with removal of
1286 * VM_EXECUTABLE vmas */
1287 down_read(&mm->mmap_sem);
1288 exe_file = mm->exe_file;
1291 up_read(&mm->mmap_sem);
1295 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1297 /* It's safe to write the exe_file pointer without exe_file_lock because
1298 * this is called during fork when the task is not yet in /proc */
1299 newmm->exe_file = get_mm_exe_file(oldmm);
1302 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1304 struct task_struct *task;
1305 struct mm_struct *mm;
1306 struct file *exe_file;
1308 task = get_proc_task(inode);
1311 mm = get_task_mm(task);
1312 put_task_struct(task);
1315 exe_file = get_mm_exe_file(mm);
1318 *exe_path = exe_file->f_path;
1319 path_get(&exe_file->f_path);
1326 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1328 struct inode *inode = dentry->d_inode;
1329 int error = -EACCES;
1331 /* We don't need a base pointer in the /proc filesystem */
1332 path_put(&nd->path);
1334 /* Are we allowed to snoop on the tasks file descriptors? */
1335 if (!proc_fd_access_allowed(inode))
1338 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1339 nd->last_type = LAST_BIND;
1341 return ERR_PTR(error);
1344 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1346 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1353 pathname = d_path(path, tmp, PAGE_SIZE);
1354 len = PTR_ERR(pathname);
1355 if (IS_ERR(pathname))
1357 len = tmp + PAGE_SIZE - 1 - pathname;
1361 if (copy_to_user(buffer, pathname, len))
1364 free_page((unsigned long)tmp);
1368 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1370 int error = -EACCES;
1371 struct inode *inode = dentry->d_inode;
1374 /* Are we allowed to snoop on the tasks file descriptors? */
1375 if (!proc_fd_access_allowed(inode))
1378 error = PROC_I(inode)->op.proc_get_link(inode, &path);
1382 error = do_proc_readlink(&path, buffer, buflen);
1388 static const struct inode_operations proc_pid_link_inode_operations = {
1389 .readlink = proc_pid_readlink,
1390 .follow_link = proc_pid_follow_link,
1391 .setattr = proc_setattr,
1395 /* building an inode */
1397 static int task_dumpable(struct task_struct *task)
1400 struct mm_struct *mm;
1405 dumpable = get_dumpable(mm);
1413 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1415 struct inode * inode;
1416 struct proc_inode *ei;
1418 /* We need a new inode */
1420 inode = new_inode(sb);
1426 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1427 inode->i_op = &proc_def_inode_operations;
1430 * grab the reference to task.
1432 ei->pid = get_task_pid(task, PIDTYPE_PID);
1438 if (task_dumpable(task)) {
1439 inode->i_uid = task->euid;
1440 inode->i_gid = task->egid;
1442 security_task_to_inode(task, inode);
1452 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1454 struct inode *inode = dentry->d_inode;
1455 struct task_struct *task;
1456 generic_fillattr(inode, stat);
1461 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1463 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1464 task_dumpable(task)) {
1465 stat->uid = task->euid;
1466 stat->gid = task->egid;
1476 * Exceptional case: normally we are not allowed to unhash a busy
1477 * directory. In this case, however, we can do it - no aliasing problems
1478 * due to the way we treat inodes.
1480 * Rewrite the inode's ownerships here because the owning task may have
1481 * performed a setuid(), etc.
1483 * Before the /proc/pid/status file was created the only way to read
1484 * the effective uid of a /process was to stat /proc/pid. Reading
1485 * /proc/pid/status is slow enough that procps and other packages
1486 * kept stating /proc/pid. To keep the rules in /proc simple I have
1487 * made this apply to all per process world readable and executable
1490 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1492 struct inode *inode = dentry->d_inode;
1493 struct task_struct *task = get_proc_task(inode);
1495 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1496 task_dumpable(task)) {
1497 inode->i_uid = task->euid;
1498 inode->i_gid = task->egid;
1503 inode->i_mode &= ~(S_ISUID | S_ISGID);
1504 security_task_to_inode(task, inode);
1505 put_task_struct(task);
1512 static int pid_delete_dentry(struct dentry * dentry)
1514 /* Is the task we represent dead?
1515 * If so, then don't put the dentry on the lru list,
1516 * kill it immediately.
1518 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1521 static struct dentry_operations pid_dentry_operations =
1523 .d_revalidate = pid_revalidate,
1524 .d_delete = pid_delete_dentry,
1529 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1530 struct task_struct *, const void *);
1533 * Fill a directory entry.
1535 * If possible create the dcache entry and derive our inode number and
1536 * file type from dcache entry.
1538 * Since all of the proc inode numbers are dynamically generated, the inode
1539 * numbers do not exist until the inode is cache. This means creating the
1540 * the dcache entry in readdir is necessary to keep the inode numbers
1541 * reported by readdir in sync with the inode numbers reported
1544 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1545 char *name, int len,
1546 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1548 struct dentry *child, *dir = filp->f_path.dentry;
1549 struct inode *inode;
1552 unsigned type = DT_UNKNOWN;
1556 qname.hash = full_name_hash(name, len);
1558 child = d_lookup(dir, &qname);
1561 new = d_alloc(dir, &qname);
1563 child = instantiate(dir->d_inode, new, task, ptr);
1570 if (!child || IS_ERR(child) || !child->d_inode)
1571 goto end_instantiate;
1572 inode = child->d_inode;
1575 type = inode->i_mode >> 12;
1580 ino = find_inode_number(dir, &qname);
1583 return filldir(dirent, name, len, filp->f_pos, ino, type);
1586 static unsigned name_to_int(struct dentry *dentry)
1588 const char *name = dentry->d_name.name;
1589 int len = dentry->d_name.len;
1592 if (len > 1 && *name == '0')
1595 unsigned c = *name++ - '0';
1598 if (n >= (~0U-9)/10)
1608 #define PROC_FDINFO_MAX 64
1610 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1612 struct task_struct *task = get_proc_task(inode);
1613 struct files_struct *files = NULL;
1615 int fd = proc_fd(inode);
1618 files = get_files_struct(task);
1619 put_task_struct(task);
1623 * We are not taking a ref to the file structure, so we must
1626 spin_lock(&files->file_lock);
1627 file = fcheck_files(files, fd);
1630 *path = file->f_path;
1631 path_get(&file->f_path);
1634 snprintf(info, PROC_FDINFO_MAX,
1637 (long long) file->f_pos,
1639 spin_unlock(&files->file_lock);
1640 put_files_struct(files);
1643 spin_unlock(&files->file_lock);
1644 put_files_struct(files);
1649 static int proc_fd_link(struct inode *inode, struct path *path)
1651 return proc_fd_info(inode, path, NULL);
1654 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1656 struct inode *inode = dentry->d_inode;
1657 struct task_struct *task = get_proc_task(inode);
1658 int fd = proc_fd(inode);
1659 struct files_struct *files;
1662 files = get_files_struct(task);
1665 if (fcheck_files(files, fd)) {
1667 put_files_struct(files);
1668 if (task_dumpable(task)) {
1669 inode->i_uid = task->euid;
1670 inode->i_gid = task->egid;
1675 inode->i_mode &= ~(S_ISUID | S_ISGID);
1676 security_task_to_inode(task, inode);
1677 put_task_struct(task);
1681 put_files_struct(files);
1683 put_task_struct(task);
1689 static struct dentry_operations tid_fd_dentry_operations =
1691 .d_revalidate = tid_fd_revalidate,
1692 .d_delete = pid_delete_dentry,
1695 static struct dentry *proc_fd_instantiate(struct inode *dir,
1696 struct dentry *dentry, struct task_struct *task, const void *ptr)
1698 unsigned fd = *(const unsigned *)ptr;
1700 struct files_struct *files;
1701 struct inode *inode;
1702 struct proc_inode *ei;
1703 struct dentry *error = ERR_PTR(-ENOENT);
1705 inode = proc_pid_make_inode(dir->i_sb, task);
1710 files = get_files_struct(task);
1713 inode->i_mode = S_IFLNK;
1716 * We are not taking a ref to the file structure, so we must
1719 spin_lock(&files->file_lock);
1720 file = fcheck_files(files, fd);
1723 if (file->f_mode & 1)
1724 inode->i_mode |= S_IRUSR | S_IXUSR;
1725 if (file->f_mode & 2)
1726 inode->i_mode |= S_IWUSR | S_IXUSR;
1727 spin_unlock(&files->file_lock);
1728 put_files_struct(files);
1730 inode->i_op = &proc_pid_link_inode_operations;
1732 ei->op.proc_get_link = proc_fd_link;
1733 dentry->d_op = &tid_fd_dentry_operations;
1734 d_add(dentry, inode);
1735 /* Close the race of the process dying before we return the dentry */
1736 if (tid_fd_revalidate(dentry, NULL))
1742 spin_unlock(&files->file_lock);
1743 put_files_struct(files);
1749 static struct dentry *proc_lookupfd_common(struct inode *dir,
1750 struct dentry *dentry,
1751 instantiate_t instantiate)
1753 struct task_struct *task = get_proc_task(dir);
1754 unsigned fd = name_to_int(dentry);
1755 struct dentry *result = ERR_PTR(-ENOENT);
1762 result = instantiate(dir, dentry, task, &fd);
1764 put_task_struct(task);
1769 static int proc_readfd_common(struct file * filp, void * dirent,
1770 filldir_t filldir, instantiate_t instantiate)
1772 struct dentry *dentry = filp->f_path.dentry;
1773 struct inode *inode = dentry->d_inode;
1774 struct task_struct *p = get_proc_task(inode);
1775 unsigned int fd, ino;
1777 struct files_struct * files;
1787 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1791 ino = parent_ino(dentry);
1792 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1796 files = get_files_struct(p);
1800 for (fd = filp->f_pos-2;
1801 fd < files_fdtable(files)->max_fds;
1802 fd++, filp->f_pos++) {
1803 char name[PROC_NUMBUF];
1806 if (!fcheck_files(files, fd))
1810 len = snprintf(name, sizeof(name), "%d", fd);
1811 if (proc_fill_cache(filp, dirent, filldir,
1812 name, len, instantiate,
1820 put_files_struct(files);
1828 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1829 struct nameidata *nd)
1831 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1834 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1836 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1839 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1840 size_t len, loff_t *ppos)
1842 char tmp[PROC_FDINFO_MAX];
1843 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1845 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1849 static const struct file_operations proc_fdinfo_file_operations = {
1850 .open = nonseekable_open,
1851 .read = proc_fdinfo_read,
1854 static const struct file_operations proc_fd_operations = {
1855 .read = generic_read_dir,
1856 .readdir = proc_readfd,
1860 * /proc/pid/fd needs a special permission handler so that a process can still
1861 * access /proc/self/fd after it has executed a setuid().
1863 static int proc_fd_permission(struct inode *inode, int mask)
1867 rv = generic_permission(inode, mask, NULL);
1870 if (task_pid(current) == proc_pid(inode))
1876 * proc directories can do almost nothing..
1878 static const struct inode_operations proc_fd_inode_operations = {
1879 .lookup = proc_lookupfd,
1880 .permission = proc_fd_permission,
1881 .setattr = proc_setattr,
1884 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1885 struct dentry *dentry, struct task_struct *task, const void *ptr)
1887 unsigned fd = *(unsigned *)ptr;
1888 struct inode *inode;
1889 struct proc_inode *ei;
1890 struct dentry *error = ERR_PTR(-ENOENT);
1892 inode = proc_pid_make_inode(dir->i_sb, task);
1897 inode->i_mode = S_IFREG | S_IRUSR;
1898 inode->i_fop = &proc_fdinfo_file_operations;
1899 dentry->d_op = &tid_fd_dentry_operations;
1900 d_add(dentry, inode);
1901 /* Close the race of the process dying before we return the dentry */
1902 if (tid_fd_revalidate(dentry, NULL))
1909 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1910 struct dentry *dentry,
1911 struct nameidata *nd)
1913 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1916 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1918 return proc_readfd_common(filp, dirent, filldir,
1919 proc_fdinfo_instantiate);
1922 static const struct file_operations proc_fdinfo_operations = {
1923 .read = generic_read_dir,
1924 .readdir = proc_readfdinfo,
1928 * proc directories can do almost nothing..
1930 static const struct inode_operations proc_fdinfo_inode_operations = {
1931 .lookup = proc_lookupfdinfo,
1932 .setattr = proc_setattr,
1936 static struct dentry *proc_pident_instantiate(struct inode *dir,
1937 struct dentry *dentry, struct task_struct *task, const void *ptr)
1939 const struct pid_entry *p = ptr;
1940 struct inode *inode;
1941 struct proc_inode *ei;
1942 struct dentry *error = ERR_PTR(-EINVAL);
1944 inode = proc_pid_make_inode(dir->i_sb, task);
1949 inode->i_mode = p->mode;
1950 if (S_ISDIR(inode->i_mode))
1951 inode->i_nlink = 2; /* Use getattr to fix if necessary */
1953 inode->i_op = p->iop;
1955 inode->i_fop = p->fop;
1957 dentry->d_op = &pid_dentry_operations;
1958 d_add(dentry, inode);
1959 /* Close the race of the process dying before we return the dentry */
1960 if (pid_revalidate(dentry, NULL))
1966 static struct dentry *proc_pident_lookup(struct inode *dir,
1967 struct dentry *dentry,
1968 const struct pid_entry *ents,
1971 struct inode *inode;
1972 struct dentry *error;
1973 struct task_struct *task = get_proc_task(dir);
1974 const struct pid_entry *p, *last;
1976 error = ERR_PTR(-ENOENT);
1983 * Yes, it does not scale. And it should not. Don't add
1984 * new entries into /proc/<tgid>/ without very good reasons.
1986 last = &ents[nents - 1];
1987 for (p = ents; p <= last; p++) {
1988 if (p->len != dentry->d_name.len)
1990 if (!memcmp(dentry->d_name.name, p->name, p->len))
1996 error = proc_pident_instantiate(dir, dentry, task, p);
1998 put_task_struct(task);
2003 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2004 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2006 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2007 proc_pident_instantiate, task, p);
2010 static int proc_pident_readdir(struct file *filp,
2011 void *dirent, filldir_t filldir,
2012 const struct pid_entry *ents, unsigned int nents)
2015 struct dentry *dentry = filp->f_path.dentry;
2016 struct inode *inode = dentry->d_inode;
2017 struct task_struct *task = get_proc_task(inode);
2018 const struct pid_entry *p, *last;
2031 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2037 ino = parent_ino(dentry);
2038 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2050 last = &ents[nents - 1];
2052 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2061 put_task_struct(task);
2066 #ifdef CONFIG_SECURITY
2067 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2068 size_t count, loff_t *ppos)
2070 struct inode * inode = file->f_path.dentry->d_inode;
2073 struct task_struct *task = get_proc_task(inode);
2078 length = security_getprocattr(task,
2079 (char*)file->f_path.dentry->d_name.name,
2081 put_task_struct(task);
2083 length = simple_read_from_buffer(buf, count, ppos, p, length);
2088 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2089 size_t count, loff_t *ppos)
2091 struct inode * inode = file->f_path.dentry->d_inode;
2094 struct task_struct *task = get_proc_task(inode);
2099 if (count > PAGE_SIZE)
2102 /* No partial writes. */
2108 page = (char*)__get_free_page(GFP_TEMPORARY);
2113 if (copy_from_user(page, buf, count))
2116 length = security_setprocattr(task,
2117 (char*)file->f_path.dentry->d_name.name,
2118 (void*)page, count);
2120 free_page((unsigned long) page);
2122 put_task_struct(task);
2127 static const struct file_operations proc_pid_attr_operations = {
2128 .read = proc_pid_attr_read,
2129 .write = proc_pid_attr_write,
2132 static const struct pid_entry attr_dir_stuff[] = {
2133 REG("current", S_IRUGO|S_IWUGO, pid_attr),
2134 REG("prev", S_IRUGO, pid_attr),
2135 REG("exec", S_IRUGO|S_IWUGO, pid_attr),
2136 REG("fscreate", S_IRUGO|S_IWUGO, pid_attr),
2137 REG("keycreate", S_IRUGO|S_IWUGO, pid_attr),
2138 REG("sockcreate", S_IRUGO|S_IWUGO, pid_attr),
2141 static int proc_attr_dir_readdir(struct file * filp,
2142 void * dirent, filldir_t filldir)
2144 return proc_pident_readdir(filp,dirent,filldir,
2145 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2148 static const struct file_operations proc_attr_dir_operations = {
2149 .read = generic_read_dir,
2150 .readdir = proc_attr_dir_readdir,
2153 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2154 struct dentry *dentry, struct nameidata *nd)
2156 return proc_pident_lookup(dir, dentry,
2157 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2160 static const struct inode_operations proc_attr_dir_inode_operations = {
2161 .lookup = proc_attr_dir_lookup,
2162 .getattr = pid_getattr,
2163 .setattr = proc_setattr,
2168 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2169 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2170 size_t count, loff_t *ppos)
2172 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2173 struct mm_struct *mm;
2174 char buffer[PROC_NUMBUF];
2182 mm = get_task_mm(task);
2184 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2185 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2186 MMF_DUMP_FILTER_SHIFT));
2188 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2191 put_task_struct(task);
2196 static ssize_t proc_coredump_filter_write(struct file *file,
2197 const char __user *buf,
2201 struct task_struct *task;
2202 struct mm_struct *mm;
2203 char buffer[PROC_NUMBUF], *end;
2210 memset(buffer, 0, sizeof(buffer));
2211 if (count > sizeof(buffer) - 1)
2212 count = sizeof(buffer) - 1;
2213 if (copy_from_user(buffer, buf, count))
2217 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2220 if (end - buffer == 0)
2224 task = get_proc_task(file->f_dentry->d_inode);
2229 mm = get_task_mm(task);
2233 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2235 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2237 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2242 put_task_struct(task);
2247 static const struct file_operations proc_coredump_filter_operations = {
2248 .read = proc_coredump_filter_read,
2249 .write = proc_coredump_filter_write,
2256 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2259 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2260 pid_t tgid = task_tgid_nr_ns(current, ns);
2261 char tmp[PROC_NUMBUF];
2264 sprintf(tmp, "%d", tgid);
2265 return vfs_readlink(dentry,buffer,buflen,tmp);
2268 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2270 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2271 pid_t tgid = task_tgid_nr_ns(current, ns);
2272 char tmp[PROC_NUMBUF];
2274 return ERR_PTR(-ENOENT);
2275 sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2276 return ERR_PTR(vfs_follow_link(nd,tmp));
2279 static const struct inode_operations proc_self_inode_operations = {
2280 .readlink = proc_self_readlink,
2281 .follow_link = proc_self_follow_link,
2287 * These are the directory entries in the root directory of /proc
2288 * that properly belong to the /proc filesystem, as they describe
2289 * describe something that is process related.
2291 static const struct pid_entry proc_base_stuff[] = {
2292 NOD("self", S_IFLNK|S_IRWXUGO,
2293 &proc_self_inode_operations, NULL, {}),
2297 * Exceptional case: normally we are not allowed to unhash a busy
2298 * directory. In this case, however, we can do it - no aliasing problems
2299 * due to the way we treat inodes.
2301 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2303 struct inode *inode = dentry->d_inode;
2304 struct task_struct *task = get_proc_task(inode);
2306 put_task_struct(task);
2313 static struct dentry_operations proc_base_dentry_operations =
2315 .d_revalidate = proc_base_revalidate,
2316 .d_delete = pid_delete_dentry,
2319 static struct dentry *proc_base_instantiate(struct inode *dir,
2320 struct dentry *dentry, struct task_struct *task, const void *ptr)
2322 const struct pid_entry *p = ptr;
2323 struct inode *inode;
2324 struct proc_inode *ei;
2325 struct dentry *error = ERR_PTR(-EINVAL);
2327 /* Allocate the inode */
2328 error = ERR_PTR(-ENOMEM);
2329 inode = new_inode(dir->i_sb);
2333 /* Initialize the inode */
2335 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2338 * grab the reference to the task.
2340 ei->pid = get_task_pid(task, PIDTYPE_PID);
2346 inode->i_mode = p->mode;
2347 if (S_ISDIR(inode->i_mode))
2349 if (S_ISLNK(inode->i_mode))
2352 inode->i_op = p->iop;
2354 inode->i_fop = p->fop;
2356 dentry->d_op = &proc_base_dentry_operations;
2357 d_add(dentry, inode);
2366 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2368 struct dentry *error;
2369 struct task_struct *task = get_proc_task(dir);
2370 const struct pid_entry *p, *last;
2372 error = ERR_PTR(-ENOENT);
2377 /* Lookup the directory entry */
2378 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2379 for (p = proc_base_stuff; p <= last; p++) {
2380 if (p->len != dentry->d_name.len)
2382 if (!memcmp(dentry->d_name.name, p->name, p->len))
2388 error = proc_base_instantiate(dir, dentry, task, p);
2391 put_task_struct(task);
2396 static int proc_base_fill_cache(struct file *filp, void *dirent,
2397 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2399 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2400 proc_base_instantiate, task, p);
2403 #ifdef CONFIG_TASK_IO_ACCOUNTING
2404 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2406 struct task_io_accounting acct = task->ioac;
2407 unsigned long flags;
2409 if (whole && lock_task_sighand(task, &flags)) {
2410 struct task_struct *t = task;
2412 task_io_accounting_add(&acct, &task->signal->ioac);
2413 while_each_thread(task, t)
2414 task_io_accounting_add(&acct, &t->ioac);
2416 unlock_task_sighand(task, &flags);
2418 return sprintf(buffer,
2423 "read_bytes: %llu\n"
2424 "write_bytes: %llu\n"
2425 "cancelled_write_bytes: %llu\n",
2426 acct.rchar, acct.wchar,
2427 acct.syscr, acct.syscw,
2428 acct.read_bytes, acct.write_bytes,
2429 acct.cancelled_write_bytes);
2432 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2434 return do_io_accounting(task, buffer, 0);
2437 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2439 return do_io_accounting(task, buffer, 1);
2441 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2446 static const struct file_operations proc_task_operations;
2447 static const struct inode_operations proc_task_inode_operations;
2449 static const struct pid_entry tgid_base_stuff[] = {
2450 DIR("task", S_IRUGO|S_IXUGO, task),
2451 DIR("fd", S_IRUSR|S_IXUSR, fd),
2452 DIR("fdinfo", S_IRUSR|S_IXUSR, fdinfo),
2454 DIR("net", S_IRUGO|S_IXUGO, net),
2456 REG("environ", S_IRUSR, environ),
2457 INF("auxv", S_IRUSR, pid_auxv),
2458 ONE("status", S_IRUGO, pid_status),
2459 INF("limits", S_IRUSR, pid_limits),
2460 #ifdef CONFIG_SCHED_DEBUG
2461 REG("sched", S_IRUGO|S_IWUSR, pid_sched),
2463 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2464 INF("syscall", S_IRUSR, pid_syscall),
2466 INF("cmdline", S_IRUGO, pid_cmdline),
2467 ONE("stat", S_IRUGO, tgid_stat),
2468 ONE("statm", S_IRUGO, pid_statm),
2469 REG("maps", S_IRUGO, maps),
2471 REG("numa_maps", S_IRUGO, numa_maps),
2473 REG("mem", S_IRUSR|S_IWUSR, mem),
2477 REG("mounts", S_IRUGO, mounts),
2478 REG("mountinfo", S_IRUGO, mountinfo),
2479 REG("mountstats", S_IRUSR, mountstats),
2480 #ifdef CONFIG_PROC_PAGE_MONITOR
2481 REG("clear_refs", S_IWUSR, clear_refs),
2482 REG("smaps", S_IRUGO, smaps),
2483 REG("pagemap", S_IRUSR, pagemap),
2485 #ifdef CONFIG_SECURITY
2486 DIR("attr", S_IRUGO|S_IXUGO, attr_dir),
2488 #ifdef CONFIG_KALLSYMS
2489 INF("wchan", S_IRUGO, pid_wchan),
2491 #ifdef CONFIG_SCHEDSTATS
2492 INF("schedstat", S_IRUGO, pid_schedstat),
2494 #ifdef CONFIG_LATENCYTOP
2495 REG("latency", S_IRUGO, lstats),
2497 #ifdef CONFIG_PROC_PID_CPUSET
2498 REG("cpuset", S_IRUGO, cpuset),
2500 #ifdef CONFIG_CGROUPS
2501 REG("cgroup", S_IRUGO, cgroup),
2503 INF("oom_score", S_IRUGO, oom_score),
2504 REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust),
2505 #ifdef CONFIG_AUDITSYSCALL
2506 REG("loginuid", S_IWUSR|S_IRUGO, loginuid),
2507 REG("sessionid", S_IRUGO, sessionid),
2509 #ifdef CONFIG_FAULT_INJECTION
2510 REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2512 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2513 REG("coredump_filter", S_IRUGO|S_IWUSR, coredump_filter),
2515 #ifdef CONFIG_TASK_IO_ACCOUNTING
2516 INF("io", S_IRUGO, tgid_io_accounting),
2520 static int proc_tgid_base_readdir(struct file * filp,
2521 void * dirent, filldir_t filldir)
2523 return proc_pident_readdir(filp,dirent,filldir,
2524 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2527 static const struct file_operations proc_tgid_base_operations = {
2528 .read = generic_read_dir,
2529 .readdir = proc_tgid_base_readdir,
2532 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2533 return proc_pident_lookup(dir, dentry,
2534 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2537 static const struct inode_operations proc_tgid_base_inode_operations = {
2538 .lookup = proc_tgid_base_lookup,
2539 .getattr = pid_getattr,
2540 .setattr = proc_setattr,
2543 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2545 struct dentry *dentry, *leader, *dir;
2546 char buf[PROC_NUMBUF];
2550 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2551 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2553 if (!(current->flags & PF_EXITING))
2554 shrink_dcache_parent(dentry);
2563 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2564 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2569 name.len = strlen(name.name);
2570 dir = d_hash_and_lookup(leader, &name);
2572 goto out_put_leader;
2575 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2576 dentry = d_hash_and_lookup(dir, &name);
2578 shrink_dcache_parent(dentry);
2591 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2592 * @task: task that should be flushed.
2594 * When flushing dentries from proc, one needs to flush them from global
2595 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2596 * in. This call is supposed to do all of this job.
2598 * Looks in the dcache for
2600 * /proc/@tgid/task/@pid
2601 * if either directory is present flushes it and all of it'ts children
2604 * It is safe and reasonable to cache /proc entries for a task until
2605 * that task exits. After that they just clog up the dcache with
2606 * useless entries, possibly causing useful dcache entries to be
2607 * flushed instead. This routine is proved to flush those useless
2608 * dcache entries at process exit time.
2610 * NOTE: This routine is just an optimization so it does not guarantee
2611 * that no dcache entries will exist at process exit time it
2612 * just makes it very unlikely that any will persist.
2615 void proc_flush_task(struct task_struct *task)
2618 struct pid *pid, *tgid = NULL;
2621 pid = task_pid(task);
2622 if (thread_group_leader(task))
2623 tgid = task_tgid(task);
2625 for (i = 0; i <= pid->level; i++) {
2626 upid = &pid->numbers[i];
2627 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2628 tgid ? tgid->numbers[i].nr : 0);
2631 upid = &pid->numbers[pid->level];
2633 pid_ns_release_proc(upid->ns);
2636 static struct dentry *proc_pid_instantiate(struct inode *dir,
2637 struct dentry * dentry,
2638 struct task_struct *task, const void *ptr)
2640 struct dentry *error = ERR_PTR(-ENOENT);
2641 struct inode *inode;
2643 inode = proc_pid_make_inode(dir->i_sb, task);
2647 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2648 inode->i_op = &proc_tgid_base_inode_operations;
2649 inode->i_fop = &proc_tgid_base_operations;
2650 inode->i_flags|=S_IMMUTABLE;
2652 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2653 ARRAY_SIZE(tgid_base_stuff));
2655 dentry->d_op = &pid_dentry_operations;
2657 d_add(dentry, inode);
2658 /* Close the race of the process dying before we return the dentry */
2659 if (pid_revalidate(dentry, NULL))
2665 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2667 struct dentry *result = ERR_PTR(-ENOENT);
2668 struct task_struct *task;
2670 struct pid_namespace *ns;
2672 result = proc_base_lookup(dir, dentry);
2673 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2676 tgid = name_to_int(dentry);
2680 ns = dentry->d_sb->s_fs_info;
2682 task = find_task_by_pid_ns(tgid, ns);
2684 get_task_struct(task);
2689 result = proc_pid_instantiate(dir, dentry, task, NULL);
2690 put_task_struct(task);
2696 * Find the first task with tgid >= tgid
2701 struct task_struct *task;
2703 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2708 put_task_struct(iter.task);
2712 pid = find_ge_pid(iter.tgid, ns);
2714 iter.tgid = pid_nr_ns(pid, ns);
2715 iter.task = pid_task(pid, PIDTYPE_PID);
2716 /* What we to know is if the pid we have find is the
2717 * pid of a thread_group_leader. Testing for task
2718 * being a thread_group_leader is the obvious thing
2719 * todo but there is a window when it fails, due to
2720 * the pid transfer logic in de_thread.
2722 * So we perform the straight forward test of seeing
2723 * if the pid we have found is the pid of a thread
2724 * group leader, and don't worry if the task we have
2725 * found doesn't happen to be a thread group leader.
2726 * As we don't care in the case of readdir.
2728 if (!iter.task || !has_group_leader_pid(iter.task)) {
2732 get_task_struct(iter.task);
2738 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2740 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2741 struct tgid_iter iter)
2743 char name[PROC_NUMBUF];
2744 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2745 return proc_fill_cache(filp, dirent, filldir, name, len,
2746 proc_pid_instantiate, iter.task, NULL);
2749 /* for the /proc/ directory itself, after non-process stuff has been done */
2750 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2752 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2753 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2754 struct tgid_iter iter;
2755 struct pid_namespace *ns;
2760 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2761 const struct pid_entry *p = &proc_base_stuff[nr];
2762 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2766 ns = filp->f_dentry->d_sb->s_fs_info;
2768 iter.tgid = filp->f_pos - TGID_OFFSET;
2769 for (iter = next_tgid(ns, iter);
2771 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2772 filp->f_pos = iter.tgid + TGID_OFFSET;
2773 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2774 put_task_struct(iter.task);
2778 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2780 put_task_struct(reaper);
2788 static const struct pid_entry tid_base_stuff[] = {
2789 DIR("fd", S_IRUSR|S_IXUSR, fd),
2790 DIR("fdinfo", S_IRUSR|S_IXUSR, fdinfo),
2791 REG("environ", S_IRUSR, environ),
2792 INF("auxv", S_IRUSR, pid_auxv),
2793 ONE("status", S_IRUGO, pid_status),
2794 INF("limits", S_IRUSR, pid_limits),
2795 #ifdef CONFIG_SCHED_DEBUG
2796 REG("sched", S_IRUGO|S_IWUSR, pid_sched),
2798 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2799 INF("syscall", S_IRUSR, pid_syscall),
2801 INF("cmdline", S_IRUGO, pid_cmdline),
2802 ONE("stat", S_IRUGO, tid_stat),
2803 ONE("statm", S_IRUGO, pid_statm),
2804 REG("maps", S_IRUGO, maps),
2806 REG("numa_maps", S_IRUGO, numa_maps),
2808 REG("mem", S_IRUSR|S_IWUSR, mem),
2812 REG("mounts", S_IRUGO, mounts),
2813 REG("mountinfo", S_IRUGO, mountinfo),
2814 #ifdef CONFIG_PROC_PAGE_MONITOR
2815 REG("clear_refs", S_IWUSR, clear_refs),
2816 REG("smaps", S_IRUGO, smaps),
2817 REG("pagemap", S_IRUSR, pagemap),
2819 #ifdef CONFIG_SECURITY
2820 DIR("attr", S_IRUGO|S_IXUGO, attr_dir),
2822 #ifdef CONFIG_KALLSYMS
2823 INF("wchan", S_IRUGO, pid_wchan),
2825 #ifdef CONFIG_SCHEDSTATS
2826 INF("schedstat", S_IRUGO, pid_schedstat),
2828 #ifdef CONFIG_LATENCYTOP
2829 REG("latency", S_IRUGO, lstats),
2831 #ifdef CONFIG_PROC_PID_CPUSET
2832 REG("cpuset", S_IRUGO, cpuset),
2834 #ifdef CONFIG_CGROUPS
2835 REG("cgroup", S_IRUGO, cgroup),
2837 INF("oom_score", S_IRUGO, oom_score),
2838 REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust),
2839 #ifdef CONFIG_AUDITSYSCALL
2840 REG("loginuid", S_IWUSR|S_IRUGO, loginuid),
2841 REG("sessionid", S_IRUSR, sessionid),
2843 #ifdef CONFIG_FAULT_INJECTION
2844 REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2846 #ifdef CONFIG_TASK_IO_ACCOUNTING
2847 INF("io", S_IRUGO, tid_io_accounting),
2851 static int proc_tid_base_readdir(struct file * filp,
2852 void * dirent, filldir_t filldir)
2854 return proc_pident_readdir(filp,dirent,filldir,
2855 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2858 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2859 return proc_pident_lookup(dir, dentry,
2860 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2863 static const struct file_operations proc_tid_base_operations = {
2864 .read = generic_read_dir,
2865 .readdir = proc_tid_base_readdir,
2868 static const struct inode_operations proc_tid_base_inode_operations = {
2869 .lookup = proc_tid_base_lookup,
2870 .getattr = pid_getattr,
2871 .setattr = proc_setattr,
2874 static struct dentry *proc_task_instantiate(struct inode *dir,
2875 struct dentry *dentry, struct task_struct *task, const void *ptr)
2877 struct dentry *error = ERR_PTR(-ENOENT);
2878 struct inode *inode;
2879 inode = proc_pid_make_inode(dir->i_sb, task);
2883 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2884 inode->i_op = &proc_tid_base_inode_operations;
2885 inode->i_fop = &proc_tid_base_operations;
2886 inode->i_flags|=S_IMMUTABLE;
2888 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
2889 ARRAY_SIZE(tid_base_stuff));
2891 dentry->d_op = &pid_dentry_operations;
2893 d_add(dentry, inode);
2894 /* Close the race of the process dying before we return the dentry */
2895 if (pid_revalidate(dentry, NULL))
2901 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2903 struct dentry *result = ERR_PTR(-ENOENT);
2904 struct task_struct *task;
2905 struct task_struct *leader = get_proc_task(dir);
2907 struct pid_namespace *ns;
2912 tid = name_to_int(dentry);
2916 ns = dentry->d_sb->s_fs_info;
2918 task = find_task_by_pid_ns(tid, ns);
2920 get_task_struct(task);
2924 if (!same_thread_group(leader, task))
2927 result = proc_task_instantiate(dir, dentry, task, NULL);
2929 put_task_struct(task);
2931 put_task_struct(leader);
2937 * Find the first tid of a thread group to return to user space.
2939 * Usually this is just the thread group leader, but if the users
2940 * buffer was too small or there was a seek into the middle of the
2941 * directory we have more work todo.
2943 * In the case of a short read we start with find_task_by_pid.
2945 * In the case of a seek we start with the leader and walk nr
2948 static struct task_struct *first_tid(struct task_struct *leader,
2949 int tid, int nr, struct pid_namespace *ns)
2951 struct task_struct *pos;
2954 /* Attempt to start with the pid of a thread */
2955 if (tid && (nr > 0)) {
2956 pos = find_task_by_pid_ns(tid, ns);
2957 if (pos && (pos->group_leader == leader))
2961 /* If nr exceeds the number of threads there is nothing todo */
2963 if (nr && nr >= get_nr_threads(leader))
2966 /* If we haven't found our starting place yet start
2967 * with the leader and walk nr threads forward.
2969 for (pos = leader; nr > 0; --nr) {
2970 pos = next_thread(pos);
2971 if (pos == leader) {
2977 get_task_struct(pos);
2984 * Find the next thread in the thread list.
2985 * Return NULL if there is an error or no next thread.
2987 * The reference to the input task_struct is released.
2989 static struct task_struct *next_tid(struct task_struct *start)
2991 struct task_struct *pos = NULL;
2993 if (pid_alive(start)) {
2994 pos = next_thread(start);
2995 if (thread_group_leader(pos))
2998 get_task_struct(pos);
3001 put_task_struct(start);
3005 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3006 struct task_struct *task, int tid)
3008 char name[PROC_NUMBUF];
3009 int len = snprintf(name, sizeof(name), "%d", tid);
3010 return proc_fill_cache(filp, dirent, filldir, name, len,
3011 proc_task_instantiate, task, NULL);
3014 /* for the /proc/TGID/task/ directories */
3015 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3017 struct dentry *dentry = filp->f_path.dentry;
3018 struct inode *inode = dentry->d_inode;
3019 struct task_struct *leader = NULL;
3020 struct task_struct *task;
3021 int retval = -ENOENT;
3024 unsigned long pos = filp->f_pos; /* avoiding "long long" filp->f_pos */
3025 struct pid_namespace *ns;
3027 task = get_proc_task(inode);
3031 if (pid_alive(task)) {
3032 leader = task->group_leader;
3033 get_task_struct(leader);
3036 put_task_struct(task);
3044 if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0)
3049 ino = parent_ino(dentry);
3050 if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0)
3056 /* f_version caches the tgid value that the last readdir call couldn't
3057 * return. lseek aka telldir automagically resets f_version to 0.
3059 ns = filp->f_dentry->d_sb->s_fs_info;
3060 tid = (int)filp->f_version;
3061 filp->f_version = 0;
3062 for (task = first_tid(leader, tid, pos - 2, ns);
3064 task = next_tid(task), pos++) {
3065 tid = task_pid_nr_ns(task, ns);
3066 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3067 /* returning this tgid failed, save it as the first
3068 * pid for the next readir call */
3069 filp->f_version = (u64)tid;
3070 put_task_struct(task);
3076 put_task_struct(leader);
3081 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3083 struct inode *inode = dentry->d_inode;
3084 struct task_struct *p = get_proc_task(inode);
3085 generic_fillattr(inode, stat);
3089 stat->nlink += get_nr_threads(p);
3097 static const struct inode_operations proc_task_inode_operations = {
3098 .lookup = proc_task_lookup,
3099 .getattr = proc_task_getattr,
3100 .setattr = proc_setattr,
3103 static const struct file_operations proc_task_operations = {
3104 .read = generic_read_dir,
3105 .readdir = proc_task_readdir,