Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/torvalds/linux-2.6
[linux-2.6] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  * 
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/usb.h>
43
44 #include "usb.h"
45 #include "hcd.h"
46 #include "hub.h"
47
48
49 /*-------------------------------------------------------------------------*/
50
51 /*
52  * USB Host Controller Driver framework
53  *
54  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55  * HCD-specific behaviors/bugs.
56  *
57  * This does error checks, tracks devices and urbs, and delegates to a
58  * "hc_driver" only for code (and data) that really needs to know about
59  * hardware differences.  That includes root hub registers, i/o queues,
60  * and so on ... but as little else as possible.
61  *
62  * Shared code includes most of the "root hub" code (these are emulated,
63  * though each HC's hardware works differently) and PCI glue, plus request
64  * tracking overhead.  The HCD code should only block on spinlocks or on
65  * hardware handshaking; blocking on software events (such as other kernel
66  * threads releasing resources, or completing actions) is all generic.
67  *
68  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70  * only by the hub driver ... and that neither should be seen or used by
71  * usb client device drivers.
72  *
73  * Contributors of ideas or unattributed patches include: David Brownell,
74  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
75  *
76  * HISTORY:
77  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
78  *              associated cleanup.  "usb_hcd" still != "usb_bus".
79  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
80  */
81
82 /*-------------------------------------------------------------------------*/
83
84 /* Keep track of which host controller drivers are loaded */
85 unsigned long usb_hcds_loaded;
86 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
87
88 /* host controllers we manage */
89 LIST_HEAD (usb_bus_list);
90 EXPORT_SYMBOL_GPL (usb_bus_list);
91
92 /* used when allocating bus numbers */
93 #define USB_MAXBUS              64
94 struct usb_busmap {
95         unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
96 };
97 static struct usb_busmap busmap;
98
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
102
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
105
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
108
109 /* used to protect against unlinking URBs after the device is gone */
110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
111
112 /* wait queue for synchronous unlinks */
113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
114
115 static inline int is_root_hub(struct usb_device *udev)
116 {
117         return (udev->parent == NULL);
118 }
119
120 /*-------------------------------------------------------------------------*/
121
122 /*
123  * Sharable chunks of root hub code.
124  */
125
126 /*-------------------------------------------------------------------------*/
127
128 #define KERNEL_REL      ((LINUX_VERSION_CODE >> 16) & 0x0ff)
129 #define KERNEL_VER      ((LINUX_VERSION_CODE >> 8) & 0x0ff)
130
131 /* usb 2.0 root hub device descriptor */
132 static const u8 usb2_rh_dev_descriptor [18] = {
133         0x12,       /*  __u8  bLength; */
134         0x01,       /*  __u8  bDescriptorType; Device */
135         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
136
137         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
138         0x00,       /*  __u8  bDeviceSubClass; */
139         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
140         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
141
142         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
143         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
144         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145
146         0x03,       /*  __u8  iManufacturer; */
147         0x02,       /*  __u8  iProduct; */
148         0x01,       /*  __u8  iSerialNumber; */
149         0x01        /*  __u8  bNumConfigurations; */
150 };
151
152 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
153
154 /* usb 1.1 root hub device descriptor */
155 static const u8 usb11_rh_dev_descriptor [18] = {
156         0x12,       /*  __u8  bLength; */
157         0x01,       /*  __u8  bDescriptorType; Device */
158         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
159
160         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
161         0x00,       /*  __u8  bDeviceSubClass; */
162         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
163         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
164
165         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
166         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
167         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
168
169         0x03,       /*  __u8  iManufacturer; */
170         0x02,       /*  __u8  iProduct; */
171         0x01,       /*  __u8  iSerialNumber; */
172         0x01        /*  __u8  bNumConfigurations; */
173 };
174
175
176 /*-------------------------------------------------------------------------*/
177
178 /* Configuration descriptors for our root hubs */
179
180 static const u8 fs_rh_config_descriptor [] = {
181
182         /* one configuration */
183         0x09,       /*  __u8  bLength; */
184         0x02,       /*  __u8  bDescriptorType; Configuration */
185         0x19, 0x00, /*  __le16 wTotalLength; */
186         0x01,       /*  __u8  bNumInterfaces; (1) */
187         0x01,       /*  __u8  bConfigurationValue; */
188         0x00,       /*  __u8  iConfiguration; */
189         0xc0,       /*  __u8  bmAttributes; 
190                                  Bit 7: must be set,
191                                      6: Self-powered,
192                                      5: Remote wakeup,
193                                      4..0: resvd */
194         0x00,       /*  __u8  MaxPower; */
195       
196         /* USB 1.1:
197          * USB 2.0, single TT organization (mandatory):
198          *      one interface, protocol 0
199          *
200          * USB 2.0, multiple TT organization (optional):
201          *      two interfaces, protocols 1 (like single TT)
202          *      and 2 (multiple TT mode) ... config is
203          *      sometimes settable
204          *      NOT IMPLEMENTED
205          */
206
207         /* one interface */
208         0x09,       /*  __u8  if_bLength; */
209         0x04,       /*  __u8  if_bDescriptorType; Interface */
210         0x00,       /*  __u8  if_bInterfaceNumber; */
211         0x00,       /*  __u8  if_bAlternateSetting; */
212         0x01,       /*  __u8  if_bNumEndpoints; */
213         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
214         0x00,       /*  __u8  if_bInterfaceSubClass; */
215         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
216         0x00,       /*  __u8  if_iInterface; */
217      
218         /* one endpoint (status change endpoint) */
219         0x07,       /*  __u8  ep_bLength; */
220         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
221         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
222         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
223         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
224         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
225 };
226
227 static const u8 hs_rh_config_descriptor [] = {
228
229         /* one configuration */
230         0x09,       /*  __u8  bLength; */
231         0x02,       /*  __u8  bDescriptorType; Configuration */
232         0x19, 0x00, /*  __le16 wTotalLength; */
233         0x01,       /*  __u8  bNumInterfaces; (1) */
234         0x01,       /*  __u8  bConfigurationValue; */
235         0x00,       /*  __u8  iConfiguration; */
236         0xc0,       /*  __u8  bmAttributes; 
237                                  Bit 7: must be set,
238                                      6: Self-powered,
239                                      5: Remote wakeup,
240                                      4..0: resvd */
241         0x00,       /*  __u8  MaxPower; */
242       
243         /* USB 1.1:
244          * USB 2.0, single TT organization (mandatory):
245          *      one interface, protocol 0
246          *
247          * USB 2.0, multiple TT organization (optional):
248          *      two interfaces, protocols 1 (like single TT)
249          *      and 2 (multiple TT mode) ... config is
250          *      sometimes settable
251          *      NOT IMPLEMENTED
252          */
253
254         /* one interface */
255         0x09,       /*  __u8  if_bLength; */
256         0x04,       /*  __u8  if_bDescriptorType; Interface */
257         0x00,       /*  __u8  if_bInterfaceNumber; */
258         0x00,       /*  __u8  if_bAlternateSetting; */
259         0x01,       /*  __u8  if_bNumEndpoints; */
260         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
261         0x00,       /*  __u8  if_bInterfaceSubClass; */
262         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
263         0x00,       /*  __u8  if_iInterface; */
264      
265         /* one endpoint (status change endpoint) */
266         0x07,       /*  __u8  ep_bLength; */
267         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
268         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
269         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
270                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
271                      * see hub.c:hub_configure() for details. */
272         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
273         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
274 };
275
276 /*-------------------------------------------------------------------------*/
277
278 /*
279  * helper routine for returning string descriptors in UTF-16LE
280  * input can actually be ISO-8859-1; ASCII is its 7-bit subset
281  */
282 static int ascii2utf (char *s, u8 *utf, int utfmax)
283 {
284         int retval;
285
286         for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
287                 *utf++ = *s++;
288                 *utf++ = 0;
289         }
290         if (utfmax > 0) {
291                 *utf = *s;
292                 ++retval;
293         }
294         return retval;
295 }
296
297 /*
298  * rh_string - provides manufacturer, product and serial strings for root hub
299  * @id: the string ID number (1: serial number, 2: product, 3: vendor)
300  * @hcd: the host controller for this root hub
301  * @data: return packet in UTF-16 LE
302  * @len: length of the return packet
303  *
304  * Produces either a manufacturer, product or serial number string for the
305  * virtual root hub device.
306  */
307 static int rh_string (
308         int             id,
309         struct usb_hcd  *hcd,
310         u8              *data,
311         int             len
312 ) {
313         char buf [100];
314
315         // language ids
316         if (id == 0) {
317                 buf[0] = 4;    buf[1] = 3;      /* 4 bytes string data */
318                 buf[2] = 0x09; buf[3] = 0x04;   /* MSFT-speak for "en-us" */
319                 len = min (len, 4);
320                 memcpy (data, buf, len);
321                 return len;
322
323         // serial number
324         } else if (id == 1) {
325                 strlcpy (buf, hcd->self.bus_name, sizeof buf);
326
327         // product description
328         } else if (id == 2) {
329                 strlcpy (buf, hcd->product_desc, sizeof buf);
330
331         // id 3 == vendor description
332         } else if (id == 3) {
333                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
334                         init_utsname()->release, hcd->driver->description);
335
336         // unsupported IDs --> "protocol stall"
337         } else
338                 return -EPIPE;
339
340         switch (len) {          /* All cases fall through */
341         default:
342                 len = 2 + ascii2utf (buf, data + 2, len - 2);
343         case 2:
344                 data [1] = 3;   /* type == string */
345         case 1:
346                 data [0] = 2 * (strlen (buf) + 1);
347         case 0:
348                 ;               /* Compiler wants a statement here */
349         }
350         return len;
351 }
352
353
354 /* Root hub control transfers execute synchronously */
355 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
356 {
357         struct usb_ctrlrequest *cmd;
358         u16             typeReq, wValue, wIndex, wLength;
359         u8              *ubuf = urb->transfer_buffer;
360         u8              tbuf [sizeof (struct usb_hub_descriptor)]
361                 __attribute__((aligned(4)));
362         const u8        *bufp = tbuf;
363         int             len = 0;
364         int             status;
365         int             n;
366         u8              patch_wakeup = 0;
367         u8              patch_protocol = 0;
368
369         might_sleep();
370
371         spin_lock_irq(&hcd_root_hub_lock);
372         status = usb_hcd_link_urb_to_ep(hcd, urb);
373         spin_unlock_irq(&hcd_root_hub_lock);
374         if (status)
375                 return status;
376         urb->hcpriv = hcd;      /* Indicate it's queued */
377
378         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
379         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
380         wValue   = le16_to_cpu (cmd->wValue);
381         wIndex   = le16_to_cpu (cmd->wIndex);
382         wLength  = le16_to_cpu (cmd->wLength);
383
384         if (wLength > urb->transfer_buffer_length)
385                 goto error;
386
387         urb->actual_length = 0;
388         switch (typeReq) {
389
390         /* DEVICE REQUESTS */
391
392         /* The root hub's remote wakeup enable bit is implemented using
393          * driver model wakeup flags.  If this system supports wakeup
394          * through USB, userspace may change the default "allow wakeup"
395          * policy through sysfs or these calls.
396          *
397          * Most root hubs support wakeup from downstream devices, for
398          * runtime power management (disabling USB clocks and reducing
399          * VBUS power usage).  However, not all of them do so; silicon,
400          * board, and BIOS bugs here are not uncommon, so these can't
401          * be treated quite like external hubs.
402          *
403          * Likewise, not all root hubs will pass wakeup events upstream,
404          * to wake up the whole system.  So don't assume root hub and
405          * controller capabilities are identical.
406          */
407
408         case DeviceRequest | USB_REQ_GET_STATUS:
409                 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
410                                         << USB_DEVICE_REMOTE_WAKEUP)
411                                 | (1 << USB_DEVICE_SELF_POWERED);
412                 tbuf [1] = 0;
413                 len = 2;
414                 break;
415         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
416                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
417                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
418                 else
419                         goto error;
420                 break;
421         case DeviceOutRequest | USB_REQ_SET_FEATURE:
422                 if (device_can_wakeup(&hcd->self.root_hub->dev)
423                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
424                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
425                 else
426                         goto error;
427                 break;
428         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
429                 tbuf [0] = 1;
430                 len = 1;
431                         /* FALLTHROUGH */
432         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
433                 break;
434         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
435                 switch (wValue & 0xff00) {
436                 case USB_DT_DEVICE << 8:
437                         if (hcd->driver->flags & HCD_USB2)
438                                 bufp = usb2_rh_dev_descriptor;
439                         else if (hcd->driver->flags & HCD_USB11)
440                                 bufp = usb11_rh_dev_descriptor;
441                         else
442                                 goto error;
443                         len = 18;
444                         if (hcd->has_tt)
445                                 patch_protocol = 1;
446                         break;
447                 case USB_DT_CONFIG << 8:
448                         if (hcd->driver->flags & HCD_USB2) {
449                                 bufp = hs_rh_config_descriptor;
450                                 len = sizeof hs_rh_config_descriptor;
451                         } else {
452                                 bufp = fs_rh_config_descriptor;
453                                 len = sizeof fs_rh_config_descriptor;
454                         }
455                         if (device_can_wakeup(&hcd->self.root_hub->dev))
456                                 patch_wakeup = 1;
457                         break;
458                 case USB_DT_STRING << 8:
459                         n = rh_string (wValue & 0xff, hcd, ubuf, wLength);
460                         if (n < 0)
461                                 goto error;
462                         urb->actual_length = n;
463                         break;
464                 default:
465                         goto error;
466                 }
467                 break;
468         case DeviceRequest | USB_REQ_GET_INTERFACE:
469                 tbuf [0] = 0;
470                 len = 1;
471                         /* FALLTHROUGH */
472         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
473                 break;
474         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
475                 // wValue == urb->dev->devaddr
476                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
477                         wValue);
478                 break;
479
480         /* INTERFACE REQUESTS (no defined feature/status flags) */
481
482         /* ENDPOINT REQUESTS */
483
484         case EndpointRequest | USB_REQ_GET_STATUS:
485                 // ENDPOINT_HALT flag
486                 tbuf [0] = 0;
487                 tbuf [1] = 0;
488                 len = 2;
489                         /* FALLTHROUGH */
490         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
491         case EndpointOutRequest | USB_REQ_SET_FEATURE:
492                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
493                 break;
494
495         /* CLASS REQUESTS (and errors) */
496
497         default:
498                 /* non-generic request */
499                 switch (typeReq) {
500                 case GetHubStatus:
501                 case GetPortStatus:
502                         len = 4;
503                         break;
504                 case GetHubDescriptor:
505                         len = sizeof (struct usb_hub_descriptor);
506                         break;
507                 }
508                 status = hcd->driver->hub_control (hcd,
509                         typeReq, wValue, wIndex,
510                         tbuf, wLength);
511                 break;
512 error:
513                 /* "protocol stall" on error */
514                 status = -EPIPE;
515         }
516
517         if (status) {
518                 len = 0;
519                 if (status != -EPIPE) {
520                         dev_dbg (hcd->self.controller,
521                                 "CTRL: TypeReq=0x%x val=0x%x "
522                                 "idx=0x%x len=%d ==> %d\n",
523                                 typeReq, wValue, wIndex,
524                                 wLength, status);
525                 }
526         }
527         if (len) {
528                 if (urb->transfer_buffer_length < len)
529                         len = urb->transfer_buffer_length;
530                 urb->actual_length = len;
531                 // always USB_DIR_IN, toward host
532                 memcpy (ubuf, bufp, len);
533
534                 /* report whether RH hardware supports remote wakeup */
535                 if (patch_wakeup &&
536                                 len > offsetof (struct usb_config_descriptor,
537                                                 bmAttributes))
538                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
539                                 |= USB_CONFIG_ATT_WAKEUP;
540
541                 /* report whether RH hardware has an integrated TT */
542                 if (patch_protocol &&
543                                 len > offsetof(struct usb_device_descriptor,
544                                                 bDeviceProtocol))
545                         ((struct usb_device_descriptor *) ubuf)->
546                                         bDeviceProtocol = 1;
547         }
548
549         /* any errors get returned through the urb completion */
550         spin_lock_irq(&hcd_root_hub_lock);
551         usb_hcd_unlink_urb_from_ep(hcd, urb);
552
553         /* This peculiar use of spinlocks echoes what real HC drivers do.
554          * Avoiding calls to local_irq_disable/enable makes the code
555          * RT-friendly.
556          */
557         spin_unlock(&hcd_root_hub_lock);
558         usb_hcd_giveback_urb(hcd, urb, status);
559         spin_lock(&hcd_root_hub_lock);
560
561         spin_unlock_irq(&hcd_root_hub_lock);
562         return 0;
563 }
564
565 /*-------------------------------------------------------------------------*/
566
567 /*
568  * Root Hub interrupt transfers are polled using a timer if the
569  * driver requests it; otherwise the driver is responsible for
570  * calling usb_hcd_poll_rh_status() when an event occurs.
571  *
572  * Completions are called in_interrupt(), but they may or may not
573  * be in_irq().
574  */
575 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
576 {
577         struct urb      *urb;
578         int             length;
579         unsigned long   flags;
580         char            buffer[4];      /* Any root hubs with > 31 ports? */
581
582         if (unlikely(!hcd->rh_registered))
583                 return;
584         if (!hcd->uses_new_polling && !hcd->status_urb)
585                 return;
586
587         length = hcd->driver->hub_status_data(hcd, buffer);
588         if (length > 0) {
589
590                 /* try to complete the status urb */
591                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
592                 urb = hcd->status_urb;
593                 if (urb) {
594                         hcd->poll_pending = 0;
595                         hcd->status_urb = NULL;
596                         urb->actual_length = length;
597                         memcpy(urb->transfer_buffer, buffer, length);
598
599                         usb_hcd_unlink_urb_from_ep(hcd, urb);
600                         spin_unlock(&hcd_root_hub_lock);
601                         usb_hcd_giveback_urb(hcd, urb, 0);
602                         spin_lock(&hcd_root_hub_lock);
603                 } else {
604                         length = 0;
605                         hcd->poll_pending = 1;
606                 }
607                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
608         }
609
610         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
611          * exceed that limit if HZ is 100. The math is more clunky than
612          * maybe expected, this is to make sure that all timers for USB devices
613          * fire at the same time to give the CPU a break inbetween */
614         if (hcd->uses_new_polling ? hcd->poll_rh :
615                         (length == 0 && hcd->status_urb != NULL))
616                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
617 }
618 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
619
620 /* timer callback */
621 static void rh_timer_func (unsigned long _hcd)
622 {
623         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
624 }
625
626 /*-------------------------------------------------------------------------*/
627
628 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
629 {
630         int             retval;
631         unsigned long   flags;
632         int             len = 1 + (urb->dev->maxchild / 8);
633
634         spin_lock_irqsave (&hcd_root_hub_lock, flags);
635         if (hcd->status_urb || urb->transfer_buffer_length < len) {
636                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
637                 retval = -EINVAL;
638                 goto done;
639         }
640
641         retval = usb_hcd_link_urb_to_ep(hcd, urb);
642         if (retval)
643                 goto done;
644
645         hcd->status_urb = urb;
646         urb->hcpriv = hcd;      /* indicate it's queued */
647         if (!hcd->uses_new_polling)
648                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
649
650         /* If a status change has already occurred, report it ASAP */
651         else if (hcd->poll_pending)
652                 mod_timer(&hcd->rh_timer, jiffies);
653         retval = 0;
654  done:
655         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
656         return retval;
657 }
658
659 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
660 {
661         if (usb_endpoint_xfer_int(&urb->ep->desc))
662                 return rh_queue_status (hcd, urb);
663         if (usb_endpoint_xfer_control(&urb->ep->desc))
664                 return rh_call_control (hcd, urb);
665         return -EINVAL;
666 }
667
668 /*-------------------------------------------------------------------------*/
669
670 /* Unlinks of root-hub control URBs are legal, but they don't do anything
671  * since these URBs always execute synchronously.
672  */
673 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
674 {
675         unsigned long   flags;
676         int             rc;
677
678         spin_lock_irqsave(&hcd_root_hub_lock, flags);
679         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
680         if (rc)
681                 goto done;
682
683         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
684                 ;       /* Do nothing */
685
686         } else {                                /* Status URB */
687                 if (!hcd->uses_new_polling)
688                         del_timer (&hcd->rh_timer);
689                 if (urb == hcd->status_urb) {
690                         hcd->status_urb = NULL;
691                         usb_hcd_unlink_urb_from_ep(hcd, urb);
692
693                         spin_unlock(&hcd_root_hub_lock);
694                         usb_hcd_giveback_urb(hcd, urb, status);
695                         spin_lock(&hcd_root_hub_lock);
696                 }
697         }
698  done:
699         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
700         return rc;
701 }
702
703
704
705 /*
706  * Show & store the current value of authorized_default
707  */
708 static ssize_t usb_host_authorized_default_show(struct device *dev,
709                                                 struct device_attribute *attr,
710                                                 char *buf)
711 {
712         struct usb_device *rh_usb_dev = to_usb_device(dev);
713         struct usb_bus *usb_bus = rh_usb_dev->bus;
714         struct usb_hcd *usb_hcd;
715
716         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
717                 return -ENODEV;
718         usb_hcd = bus_to_hcd(usb_bus);
719         return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
720 }
721
722 static ssize_t usb_host_authorized_default_store(struct device *dev,
723                                                  struct device_attribute *attr,
724                                                  const char *buf, size_t size)
725 {
726         ssize_t result;
727         unsigned val;
728         struct usb_device *rh_usb_dev = to_usb_device(dev);
729         struct usb_bus *usb_bus = rh_usb_dev->bus;
730         struct usb_hcd *usb_hcd;
731
732         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
733                 return -ENODEV;
734         usb_hcd = bus_to_hcd(usb_bus);
735         result = sscanf(buf, "%u\n", &val);
736         if (result == 1) {
737                 usb_hcd->authorized_default = val? 1 : 0;
738                 result = size;
739         }
740         else
741                 result = -EINVAL;
742         return result;
743 }
744
745 static DEVICE_ATTR(authorized_default, 0644,
746             usb_host_authorized_default_show,
747             usb_host_authorized_default_store);
748
749
750 /* Group all the USB bus attributes */
751 static struct attribute *usb_bus_attrs[] = {
752                 &dev_attr_authorized_default.attr,
753                 NULL,
754 };
755
756 static struct attribute_group usb_bus_attr_group = {
757         .name = NULL,   /* we want them in the same directory */
758         .attrs = usb_bus_attrs,
759 };
760
761
762
763 /*-------------------------------------------------------------------------*/
764
765 static struct class *usb_host_class;
766
767 int usb_host_init(void)
768 {
769         int retval = 0;
770
771         usb_host_class = class_create(THIS_MODULE, "usb_host");
772         if (IS_ERR(usb_host_class))
773                 retval = PTR_ERR(usb_host_class);
774         return retval;
775 }
776
777 void usb_host_cleanup(void)
778 {
779         class_destroy(usb_host_class);
780 }
781
782 /**
783  * usb_bus_init - shared initialization code
784  * @bus: the bus structure being initialized
785  *
786  * This code is used to initialize a usb_bus structure, memory for which is
787  * separately managed.
788  */
789 static void usb_bus_init (struct usb_bus *bus)
790 {
791         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
792
793         bus->devnum_next = 1;
794
795         bus->root_hub = NULL;
796         bus->busnum = -1;
797         bus->bandwidth_allocated = 0;
798         bus->bandwidth_int_reqs  = 0;
799         bus->bandwidth_isoc_reqs = 0;
800
801         INIT_LIST_HEAD (&bus->bus_list);
802 }
803
804 /*-------------------------------------------------------------------------*/
805
806 /**
807  * usb_register_bus - registers the USB host controller with the usb core
808  * @bus: pointer to the bus to register
809  * Context: !in_interrupt()
810  *
811  * Assigns a bus number, and links the controller into usbcore data
812  * structures so that it can be seen by scanning the bus list.
813  */
814 static int usb_register_bus(struct usb_bus *bus)
815 {
816         int result = -E2BIG;
817         int busnum;
818
819         mutex_lock(&usb_bus_list_lock);
820         busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
821         if (busnum >= USB_MAXBUS) {
822                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
823                 goto error_find_busnum;
824         }
825         set_bit (busnum, busmap.busmap);
826         bus->busnum = busnum;
827
828         bus->dev = device_create(usb_host_class, bus->controller, MKDEV(0, 0),
829                                  bus, "usb_host%d", busnum);
830         result = PTR_ERR(bus->dev);
831         if (IS_ERR(bus->dev))
832                 goto error_create_class_dev;
833
834         /* Add it to the local list of buses */
835         list_add (&bus->bus_list, &usb_bus_list);
836         mutex_unlock(&usb_bus_list_lock);
837
838         usb_notify_add_bus(bus);
839
840         dev_info (bus->controller, "new USB bus registered, assigned bus "
841                   "number %d\n", bus->busnum);
842         return 0;
843
844 error_create_class_dev:
845         clear_bit(busnum, busmap.busmap);
846 error_find_busnum:
847         mutex_unlock(&usb_bus_list_lock);
848         return result;
849 }
850
851 /**
852  * usb_deregister_bus - deregisters the USB host controller
853  * @bus: pointer to the bus to deregister
854  * Context: !in_interrupt()
855  *
856  * Recycles the bus number, and unlinks the controller from usbcore data
857  * structures so that it won't be seen by scanning the bus list.
858  */
859 static void usb_deregister_bus (struct usb_bus *bus)
860 {
861         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
862
863         /*
864          * NOTE: make sure that all the devices are removed by the
865          * controller code, as well as having it call this when cleaning
866          * itself up
867          */
868         mutex_lock(&usb_bus_list_lock);
869         list_del (&bus->bus_list);
870         mutex_unlock(&usb_bus_list_lock);
871
872         usb_notify_remove_bus(bus);
873
874         clear_bit (bus->busnum, busmap.busmap);
875
876         device_unregister(bus->dev);
877 }
878
879 /**
880  * register_root_hub - called by usb_add_hcd() to register a root hub
881  * @hcd: host controller for this root hub
882  *
883  * This function registers the root hub with the USB subsystem.  It sets up
884  * the device properly in the device tree and then calls usb_new_device()
885  * to register the usb device.  It also assigns the root hub's USB address
886  * (always 1).
887  */
888 static int register_root_hub(struct usb_hcd *hcd)
889 {
890         struct device *parent_dev = hcd->self.controller;
891         struct usb_device *usb_dev = hcd->self.root_hub;
892         const int devnum = 1;
893         int retval;
894
895         usb_dev->devnum = devnum;
896         usb_dev->bus->devnum_next = devnum + 1;
897         memset (&usb_dev->bus->devmap.devicemap, 0,
898                         sizeof usb_dev->bus->devmap.devicemap);
899         set_bit (devnum, usb_dev->bus->devmap.devicemap);
900         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
901
902         mutex_lock(&usb_bus_list_lock);
903
904         usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
905         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
906         if (retval != sizeof usb_dev->descriptor) {
907                 mutex_unlock(&usb_bus_list_lock);
908                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
909                                 dev_name(&usb_dev->dev), retval);
910                 return (retval < 0) ? retval : -EMSGSIZE;
911         }
912
913         retval = usb_new_device (usb_dev);
914         if (retval) {
915                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
916                                 dev_name(&usb_dev->dev), retval);
917         }
918         mutex_unlock(&usb_bus_list_lock);
919
920         if (retval == 0) {
921                 spin_lock_irq (&hcd_root_hub_lock);
922                 hcd->rh_registered = 1;
923                 spin_unlock_irq (&hcd_root_hub_lock);
924
925                 /* Did the HC die before the root hub was registered? */
926                 if (hcd->state == HC_STATE_HALT)
927                         usb_hc_died (hcd);      /* This time clean up */
928         }
929
930         return retval;
931 }
932
933
934 /*-------------------------------------------------------------------------*/
935
936 /**
937  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
938  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
939  * @is_input: true iff the transaction sends data to the host
940  * @isoc: true for isochronous transactions, false for interrupt ones
941  * @bytecount: how many bytes in the transaction.
942  *
943  * Returns approximate bus time in nanoseconds for a periodic transaction.
944  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
945  * scheduled in software, this function is only used for such scheduling.
946  */
947 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
948 {
949         unsigned long   tmp;
950
951         switch (speed) {
952         case USB_SPEED_LOW:     /* INTR only */
953                 if (is_input) {
954                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
955                         return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
956                 } else {
957                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
958                         return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
959                 }
960         case USB_SPEED_FULL:    /* ISOC or INTR */
961                 if (isoc) {
962                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
963                         return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
964                 } else {
965                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
966                         return (9107L + BW_HOST_DELAY + tmp);
967                 }
968         case USB_SPEED_HIGH:    /* ISOC or INTR */
969                 // FIXME adjust for input vs output
970                 if (isoc)
971                         tmp = HS_NSECS_ISO (bytecount);
972                 else
973                         tmp = HS_NSECS (bytecount);
974                 return tmp;
975         default:
976                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
977                 return -1;
978         }
979 }
980 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
981
982
983 /*-------------------------------------------------------------------------*/
984
985 /*
986  * Generic HC operations.
987  */
988
989 /*-------------------------------------------------------------------------*/
990
991 /**
992  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
993  * @hcd: host controller to which @urb was submitted
994  * @urb: URB being submitted
995  *
996  * Host controller drivers should call this routine in their enqueue()
997  * method.  The HCD's private spinlock must be held and interrupts must
998  * be disabled.  The actions carried out here are required for URB
999  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1000  *
1001  * Returns 0 for no error, otherwise a negative error code (in which case
1002  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1003  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1004  * the private spinlock and returning.
1005  */
1006 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1007 {
1008         int             rc = 0;
1009
1010         spin_lock(&hcd_urb_list_lock);
1011
1012         /* Check that the URB isn't being killed */
1013         if (unlikely(atomic_read(&urb->reject))) {
1014                 rc = -EPERM;
1015                 goto done;
1016         }
1017
1018         if (unlikely(!urb->ep->enabled)) {
1019                 rc = -ENOENT;
1020                 goto done;
1021         }
1022
1023         if (unlikely(!urb->dev->can_submit)) {
1024                 rc = -EHOSTUNREACH;
1025                 goto done;
1026         }
1027
1028         /*
1029          * Check the host controller's state and add the URB to the
1030          * endpoint's queue.
1031          */
1032         switch (hcd->state) {
1033         case HC_STATE_RUNNING:
1034         case HC_STATE_RESUMING:
1035                 urb->unlinked = 0;
1036                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1037                 break;
1038         default:
1039                 rc = -ESHUTDOWN;
1040                 goto done;
1041         }
1042  done:
1043         spin_unlock(&hcd_urb_list_lock);
1044         return rc;
1045 }
1046 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1047
1048 /**
1049  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1050  * @hcd: host controller to which @urb was submitted
1051  * @urb: URB being checked for unlinkability
1052  * @status: error code to store in @urb if the unlink succeeds
1053  *
1054  * Host controller drivers should call this routine in their dequeue()
1055  * method.  The HCD's private spinlock must be held and interrupts must
1056  * be disabled.  The actions carried out here are required for making
1057  * sure than an unlink is valid.
1058  *
1059  * Returns 0 for no error, otherwise a negative error code (in which case
1060  * the dequeue() method must fail).  The possible error codes are:
1061  *
1062  *      -EIDRM: @urb was not submitted or has already completed.
1063  *              The completion function may not have been called yet.
1064  *
1065  *      -EBUSY: @urb has already been unlinked.
1066  */
1067 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1068                 int status)
1069 {
1070         struct list_head        *tmp;
1071
1072         /* insist the urb is still queued */
1073         list_for_each(tmp, &urb->ep->urb_list) {
1074                 if (tmp == &urb->urb_list)
1075                         break;
1076         }
1077         if (tmp != &urb->urb_list)
1078                 return -EIDRM;
1079
1080         /* Any status except -EINPROGRESS means something already started to
1081          * unlink this URB from the hardware.  So there's no more work to do.
1082          */
1083         if (urb->unlinked)
1084                 return -EBUSY;
1085         urb->unlinked = status;
1086
1087         /* IRQ setup can easily be broken so that USB controllers
1088          * never get completion IRQs ... maybe even the ones we need to
1089          * finish unlinking the initial failed usb_set_address()
1090          * or device descriptor fetch.
1091          */
1092         if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1093                         !is_root_hub(urb->dev)) {
1094                 dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1095                         "Controller is probably using the wrong IRQ.\n");
1096                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1097         }
1098
1099         return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1102
1103 /**
1104  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1105  * @hcd: host controller to which @urb was submitted
1106  * @urb: URB being unlinked
1107  *
1108  * Host controller drivers should call this routine before calling
1109  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1110  * interrupts must be disabled.  The actions carried out here are required
1111  * for URB completion.
1112  */
1113 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1114 {
1115         /* clear all state linking urb to this dev (and hcd) */
1116         spin_lock(&hcd_urb_list_lock);
1117         list_del_init(&urb->urb_list);
1118         spin_unlock(&hcd_urb_list_lock);
1119 }
1120 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1121
1122 /*
1123  * Some usb host controllers can only perform dma using a small SRAM area.
1124  * The usb core itself is however optimized for host controllers that can dma
1125  * using regular system memory - like pci devices doing bus mastering.
1126  *
1127  * To support host controllers with limited dma capabilites we provide dma
1128  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1129  * For this to work properly the host controller code must first use the
1130  * function dma_declare_coherent_memory() to point out which memory area
1131  * that should be used for dma allocations.
1132  *
1133  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1134  * dma using dma_alloc_coherent() which in turn allocates from the memory
1135  * area pointed out with dma_declare_coherent_memory().
1136  *
1137  * So, to summarize...
1138  *
1139  * - We need "local" memory, canonical example being
1140  *   a small SRAM on a discrete controller being the
1141  *   only memory that the controller can read ...
1142  *   (a) "normal" kernel memory is no good, and
1143  *   (b) there's not enough to share
1144  *
1145  * - The only *portable* hook for such stuff in the
1146  *   DMA framework is dma_declare_coherent_memory()
1147  *
1148  * - So we use that, even though the primary requirement
1149  *   is that the memory be "local" (hence addressible
1150  *   by that device), not "coherent".
1151  *
1152  */
1153
1154 static int hcd_alloc_coherent(struct usb_bus *bus,
1155                               gfp_t mem_flags, dma_addr_t *dma_handle,
1156                               void **vaddr_handle, size_t size,
1157                               enum dma_data_direction dir)
1158 {
1159         unsigned char *vaddr;
1160
1161         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1162                                  mem_flags, dma_handle);
1163         if (!vaddr)
1164                 return -ENOMEM;
1165
1166         /*
1167          * Store the virtual address of the buffer at the end
1168          * of the allocated dma buffer. The size of the buffer
1169          * may be uneven so use unaligned functions instead
1170          * of just rounding up. It makes sense to optimize for
1171          * memory footprint over access speed since the amount
1172          * of memory available for dma may be limited.
1173          */
1174         put_unaligned((unsigned long)*vaddr_handle,
1175                       (unsigned long *)(vaddr + size));
1176
1177         if (dir == DMA_TO_DEVICE)
1178                 memcpy(vaddr, *vaddr_handle, size);
1179
1180         *vaddr_handle = vaddr;
1181         return 0;
1182 }
1183
1184 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1185                               void **vaddr_handle, size_t size,
1186                               enum dma_data_direction dir)
1187 {
1188         unsigned char *vaddr = *vaddr_handle;
1189
1190         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1191
1192         if (dir == DMA_FROM_DEVICE)
1193                 memcpy(vaddr, *vaddr_handle, size);
1194
1195         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1196
1197         *vaddr_handle = vaddr;
1198         *dma_handle = 0;
1199 }
1200
1201 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1202                            gfp_t mem_flags)
1203 {
1204         enum dma_data_direction dir;
1205         int ret = 0;
1206
1207         /* Map the URB's buffers for DMA access.
1208          * Lower level HCD code should use *_dma exclusively,
1209          * unless it uses pio or talks to another transport.
1210          */
1211         if (is_root_hub(urb->dev))
1212                 return 0;
1213
1214         if (usb_endpoint_xfer_control(&urb->ep->desc)
1215             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1216                 if (hcd->self.uses_dma)
1217                         urb->setup_dma = dma_map_single(
1218                                         hcd->self.controller,
1219                                         urb->setup_packet,
1220                                         sizeof(struct usb_ctrlrequest),
1221                                         DMA_TO_DEVICE);
1222                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1223                         ret = hcd_alloc_coherent(
1224                                         urb->dev->bus, mem_flags,
1225                                         &urb->setup_dma,
1226                                         (void **)&urb->setup_packet,
1227                                         sizeof(struct usb_ctrlrequest),
1228                                         DMA_TO_DEVICE);
1229         }
1230
1231         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1232         if (ret == 0 && urb->transfer_buffer_length != 0
1233             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1234                 if (hcd->self.uses_dma)
1235                         urb->transfer_dma = dma_map_single (
1236                                         hcd->self.controller,
1237                                         urb->transfer_buffer,
1238                                         urb->transfer_buffer_length,
1239                                         dir);
1240                 else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1241                         ret = hcd_alloc_coherent(
1242                                         urb->dev->bus, mem_flags,
1243                                         &urb->transfer_dma,
1244                                         &urb->transfer_buffer,
1245                                         urb->transfer_buffer_length,
1246                                         dir);
1247
1248                         if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1249                             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1250                                 hcd_free_coherent(urb->dev->bus,
1251                                         &urb->setup_dma,
1252                                         (void **)&urb->setup_packet,
1253                                         sizeof(struct usb_ctrlrequest),
1254                                         DMA_TO_DEVICE);
1255                 }
1256         }
1257         return ret;
1258 }
1259
1260 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1261 {
1262         enum dma_data_direction dir;
1263
1264         if (is_root_hub(urb->dev))
1265                 return;
1266
1267         if (usb_endpoint_xfer_control(&urb->ep->desc)
1268             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1269                 if (hcd->self.uses_dma)
1270                         dma_unmap_single(hcd->self.controller, urb->setup_dma,
1271                                         sizeof(struct usb_ctrlrequest),
1272                                         DMA_TO_DEVICE);
1273                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1274                         hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1275                                         (void **)&urb->setup_packet,
1276                                         sizeof(struct usb_ctrlrequest),
1277                                         DMA_TO_DEVICE);
1278         }
1279
1280         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1281         if (urb->transfer_buffer_length != 0
1282             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1283                 if (hcd->self.uses_dma)
1284                         dma_unmap_single(hcd->self.controller,
1285                                         urb->transfer_dma,
1286                                         urb->transfer_buffer_length,
1287                                         dir);
1288                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1289                         hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1290                                         &urb->transfer_buffer,
1291                                         urb->transfer_buffer_length,
1292                                         dir);
1293         }
1294 }
1295
1296 /*-------------------------------------------------------------------------*/
1297
1298 /* may be called in any context with a valid urb->dev usecount
1299  * caller surrenders "ownership" of urb
1300  * expects usb_submit_urb() to have sanity checked and conditioned all
1301  * inputs in the urb
1302  */
1303 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1304 {
1305         int                     status;
1306         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1307
1308         /* increment urb's reference count as part of giving it to the HCD
1309          * (which will control it).  HCD guarantees that it either returns
1310          * an error or calls giveback(), but not both.
1311          */
1312         usb_get_urb(urb);
1313         atomic_inc(&urb->use_count);
1314         atomic_inc(&urb->dev->urbnum);
1315         usbmon_urb_submit(&hcd->self, urb);
1316
1317         /* NOTE requirements on root-hub callers (usbfs and the hub
1318          * driver, for now):  URBs' urb->transfer_buffer must be
1319          * valid and usb_buffer_{sync,unmap}() not be needed, since
1320          * they could clobber root hub response data.  Also, control
1321          * URBs must be submitted in process context with interrupts
1322          * enabled.
1323          */
1324         status = map_urb_for_dma(hcd, urb, mem_flags);
1325         if (unlikely(status)) {
1326                 usbmon_urb_submit_error(&hcd->self, urb, status);
1327                 goto error;
1328         }
1329
1330         if (is_root_hub(urb->dev))
1331                 status = rh_urb_enqueue(hcd, urb);
1332         else
1333                 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1334
1335         if (unlikely(status)) {
1336                 usbmon_urb_submit_error(&hcd->self, urb, status);
1337                 unmap_urb_for_dma(hcd, urb);
1338  error:
1339                 urb->hcpriv = NULL;
1340                 INIT_LIST_HEAD(&urb->urb_list);
1341                 atomic_dec(&urb->use_count);
1342                 atomic_dec(&urb->dev->urbnum);
1343                 if (atomic_read(&urb->reject))
1344                         wake_up(&usb_kill_urb_queue);
1345                 usb_put_urb(urb);
1346         }
1347         return status;
1348 }
1349
1350 /*-------------------------------------------------------------------------*/
1351
1352 /* this makes the hcd giveback() the urb more quickly, by kicking it
1353  * off hardware queues (which may take a while) and returning it as
1354  * soon as practical.  we've already set up the urb's return status,
1355  * but we can't know if the callback completed already.
1356  */
1357 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1358 {
1359         int             value;
1360
1361         if (is_root_hub(urb->dev))
1362                 value = usb_rh_urb_dequeue(hcd, urb, status);
1363         else {
1364
1365                 /* The only reason an HCD might fail this call is if
1366                  * it has not yet fully queued the urb to begin with.
1367                  * Such failures should be harmless. */
1368                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1369         }
1370         return value;
1371 }
1372
1373 /*
1374  * called in any context
1375  *
1376  * caller guarantees urb won't be recycled till both unlink()
1377  * and the urb's completion function return
1378  */
1379 int usb_hcd_unlink_urb (struct urb *urb, int status)
1380 {
1381         struct usb_hcd          *hcd;
1382         int                     retval = -EIDRM;
1383         unsigned long           flags;
1384
1385         /* Prevent the device and bus from going away while
1386          * the unlink is carried out.  If they are already gone
1387          * then urb->use_count must be 0, since disconnected
1388          * devices can't have any active URBs.
1389          */
1390         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1391         if (atomic_read(&urb->use_count) > 0) {
1392                 retval = 0;
1393                 usb_get_dev(urb->dev);
1394         }
1395         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1396         if (retval == 0) {
1397                 hcd = bus_to_hcd(urb->dev->bus);
1398                 retval = unlink1(hcd, urb, status);
1399                 usb_put_dev(urb->dev);
1400         }
1401
1402         if (retval == 0)
1403                 retval = -EINPROGRESS;
1404         else if (retval != -EIDRM && retval != -EBUSY)
1405                 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1406                                 urb, retval);
1407         return retval;
1408 }
1409
1410 /*-------------------------------------------------------------------------*/
1411
1412 /**
1413  * usb_hcd_giveback_urb - return URB from HCD to device driver
1414  * @hcd: host controller returning the URB
1415  * @urb: urb being returned to the USB device driver.
1416  * @status: completion status code for the URB.
1417  * Context: in_interrupt()
1418  *
1419  * This hands the URB from HCD to its USB device driver, using its
1420  * completion function.  The HCD has freed all per-urb resources
1421  * (and is done using urb->hcpriv).  It also released all HCD locks;
1422  * the device driver won't cause problems if it frees, modifies,
1423  * or resubmits this URB.
1424  *
1425  * If @urb was unlinked, the value of @status will be overridden by
1426  * @urb->unlinked.  Erroneous short transfers are detected in case
1427  * the HCD hasn't checked for them.
1428  */
1429 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1430 {
1431         urb->hcpriv = NULL;
1432         if (unlikely(urb->unlinked))
1433                 status = urb->unlinked;
1434         else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1435                         urb->actual_length < urb->transfer_buffer_length &&
1436                         !status))
1437                 status = -EREMOTEIO;
1438
1439         unmap_urb_for_dma(hcd, urb);
1440         usbmon_urb_complete(&hcd->self, urb, status);
1441         usb_unanchor_urb(urb);
1442
1443         /* pass ownership to the completion handler */
1444         urb->status = status;
1445         urb->complete (urb);
1446         atomic_dec (&urb->use_count);
1447         if (unlikely(atomic_read(&urb->reject)))
1448                 wake_up (&usb_kill_urb_queue);
1449         usb_put_urb (urb);
1450 }
1451 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1452
1453 /*-------------------------------------------------------------------------*/
1454
1455 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1456  * queue to drain completely.  The caller must first insure that no more
1457  * URBs can be submitted for this endpoint.
1458  */
1459 void usb_hcd_flush_endpoint(struct usb_device *udev,
1460                 struct usb_host_endpoint *ep)
1461 {
1462         struct usb_hcd          *hcd;
1463         struct urb              *urb;
1464
1465         if (!ep)
1466                 return;
1467         might_sleep();
1468         hcd = bus_to_hcd(udev->bus);
1469
1470         /* No more submits can occur */
1471         spin_lock_irq(&hcd_urb_list_lock);
1472 rescan:
1473         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1474                 int     is_in;
1475
1476                 if (urb->unlinked)
1477                         continue;
1478                 usb_get_urb (urb);
1479                 is_in = usb_urb_dir_in(urb);
1480                 spin_unlock(&hcd_urb_list_lock);
1481
1482                 /* kick hcd */
1483                 unlink1(hcd, urb, -ESHUTDOWN);
1484                 dev_dbg (hcd->self.controller,
1485                         "shutdown urb %p ep%d%s%s\n",
1486                         urb, usb_endpoint_num(&ep->desc),
1487                         is_in ? "in" : "out",
1488                         ({      char *s;
1489
1490                                  switch (usb_endpoint_type(&ep->desc)) {
1491                                  case USB_ENDPOINT_XFER_CONTROL:
1492                                         s = ""; break;
1493                                  case USB_ENDPOINT_XFER_BULK:
1494                                         s = "-bulk"; break;
1495                                  case USB_ENDPOINT_XFER_INT:
1496                                         s = "-intr"; break;
1497                                  default:
1498                                         s = "-iso"; break;
1499                                 };
1500                                 s;
1501                         }));
1502                 usb_put_urb (urb);
1503
1504                 /* list contents may have changed */
1505                 spin_lock(&hcd_urb_list_lock);
1506                 goto rescan;
1507         }
1508         spin_unlock_irq(&hcd_urb_list_lock);
1509
1510         /* Wait until the endpoint queue is completely empty */
1511         while (!list_empty (&ep->urb_list)) {
1512                 spin_lock_irq(&hcd_urb_list_lock);
1513
1514                 /* The list may have changed while we acquired the spinlock */
1515                 urb = NULL;
1516                 if (!list_empty (&ep->urb_list)) {
1517                         urb = list_entry (ep->urb_list.prev, struct urb,
1518                                         urb_list);
1519                         usb_get_urb (urb);
1520                 }
1521                 spin_unlock_irq(&hcd_urb_list_lock);
1522
1523                 if (urb) {
1524                         usb_kill_urb (urb);
1525                         usb_put_urb (urb);
1526                 }
1527         }
1528 }
1529
1530 /* Disables the endpoint: synchronizes with the hcd to make sure all
1531  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1532  * have been called previously.  Use for set_configuration, set_interface,
1533  * driver removal, physical disconnect.
1534  *
1535  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1536  * type, maxpacket size, toggle, halt status, and scheduling.
1537  */
1538 void usb_hcd_disable_endpoint(struct usb_device *udev,
1539                 struct usb_host_endpoint *ep)
1540 {
1541         struct usb_hcd          *hcd;
1542
1543         might_sleep();
1544         hcd = bus_to_hcd(udev->bus);
1545         if (hcd->driver->endpoint_disable)
1546                 hcd->driver->endpoint_disable(hcd, ep);
1547 }
1548
1549 /* Protect against drivers that try to unlink URBs after the device
1550  * is gone, by waiting until all unlinks for @udev are finished.
1551  * Since we don't currently track URBs by device, simply wait until
1552  * nothing is running in the locked region of usb_hcd_unlink_urb().
1553  */
1554 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1555 {
1556         spin_lock_irq(&hcd_urb_unlink_lock);
1557         spin_unlock_irq(&hcd_urb_unlink_lock);
1558 }
1559
1560 /*-------------------------------------------------------------------------*/
1561
1562 /* called in any context */
1563 int usb_hcd_get_frame_number (struct usb_device *udev)
1564 {
1565         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
1566
1567         if (!HC_IS_RUNNING (hcd->state))
1568                 return -ESHUTDOWN;
1569         return hcd->driver->get_frame_number (hcd);
1570 }
1571
1572 /*-------------------------------------------------------------------------*/
1573
1574 #ifdef  CONFIG_PM
1575
1576 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1577 {
1578         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1579         int             status;
1580         int             old_state = hcd->state;
1581
1582         dev_dbg(&rhdev->dev, "bus %s%s\n",
1583                         (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1584         if (!hcd->driver->bus_suspend) {
1585                 status = -ENOENT;
1586         } else {
1587                 hcd->state = HC_STATE_QUIESCING;
1588                 status = hcd->driver->bus_suspend(hcd);
1589         }
1590         if (status == 0) {
1591                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1592                 hcd->state = HC_STATE_SUSPENDED;
1593         } else {
1594                 hcd->state = old_state;
1595                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1596                                 "suspend", status);
1597         }
1598         return status;
1599 }
1600
1601 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1602 {
1603         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1604         int             status;
1605         int             old_state = hcd->state;
1606
1607         dev_dbg(&rhdev->dev, "usb %s%s\n",
1608                         (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
1609         if (!hcd->driver->bus_resume)
1610                 return -ENOENT;
1611         if (hcd->state == HC_STATE_RUNNING)
1612                 return 0;
1613
1614         hcd->state = HC_STATE_RESUMING;
1615         status = hcd->driver->bus_resume(hcd);
1616         if (status == 0) {
1617                 /* TRSMRCY = 10 msec */
1618                 msleep(10);
1619                 usb_set_device_state(rhdev, rhdev->actconfig
1620                                 ? USB_STATE_CONFIGURED
1621                                 : USB_STATE_ADDRESS);
1622                 hcd->state = HC_STATE_RUNNING;
1623         } else {
1624                 hcd->state = old_state;
1625                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1626                                 "resume", status);
1627                 if (status != -ESHUTDOWN)
1628                         usb_hc_died(hcd);
1629         }
1630         return status;
1631 }
1632
1633 /* Workqueue routine for root-hub remote wakeup */
1634 static void hcd_resume_work(struct work_struct *work)
1635 {
1636         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1637         struct usb_device *udev = hcd->self.root_hub;
1638
1639         usb_lock_device(udev);
1640         usb_mark_last_busy(udev);
1641         usb_external_resume_device(udev, PMSG_REMOTE_RESUME);
1642         usb_unlock_device(udev);
1643 }
1644
1645 /**
1646  * usb_hcd_resume_root_hub - called by HCD to resume its root hub 
1647  * @hcd: host controller for this root hub
1648  *
1649  * The USB host controller calls this function when its root hub is
1650  * suspended (with the remote wakeup feature enabled) and a remote
1651  * wakeup request is received.  The routine submits a workqueue request
1652  * to resume the root hub (that is, manage its downstream ports again).
1653  */
1654 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1655 {
1656         unsigned long flags;
1657
1658         spin_lock_irqsave (&hcd_root_hub_lock, flags);
1659         if (hcd->rh_registered)
1660                 queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1661         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1662 }
1663 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1664
1665 #endif
1666
1667 /*-------------------------------------------------------------------------*/
1668
1669 #ifdef  CONFIG_USB_OTG
1670
1671 /**
1672  * usb_bus_start_enum - start immediate enumeration (for OTG)
1673  * @bus: the bus (must use hcd framework)
1674  * @port_num: 1-based number of port; usually bus->otg_port
1675  * Context: in_interrupt()
1676  *
1677  * Starts enumeration, with an immediate reset followed later by
1678  * khubd identifying and possibly configuring the device.
1679  * This is needed by OTG controller drivers, where it helps meet
1680  * HNP protocol timing requirements for starting a port reset.
1681  */
1682 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1683 {
1684         struct usb_hcd          *hcd;
1685         int                     status = -EOPNOTSUPP;
1686
1687         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1688          * boards with root hubs hooked up to internal devices (instead of
1689          * just the OTG port) may need more attention to resetting...
1690          */
1691         hcd = container_of (bus, struct usb_hcd, self);
1692         if (port_num && hcd->driver->start_port_reset)
1693                 status = hcd->driver->start_port_reset(hcd, port_num);
1694
1695         /* run khubd shortly after (first) root port reset finishes;
1696          * it may issue others, until at least 50 msecs have passed.
1697          */
1698         if (status == 0)
1699                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1700         return status;
1701 }
1702 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1703
1704 #endif
1705
1706 /*-------------------------------------------------------------------------*/
1707
1708 /**
1709  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1710  * @irq: the IRQ being raised
1711  * @__hcd: pointer to the HCD whose IRQ is being signaled
1712  *
1713  * If the controller isn't HALTed, calls the driver's irq handler.
1714  * Checks whether the controller is now dead.
1715  */
1716 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1717 {
1718         struct usb_hcd          *hcd = __hcd;
1719         unsigned long           flags;
1720         irqreturn_t             rc;
1721
1722         /* IRQF_DISABLED doesn't work correctly with shared IRQs
1723          * when the first handler doesn't use it.  So let's just
1724          * assume it's never used.
1725          */
1726         local_irq_save(flags);
1727
1728         if (unlikely(hcd->state == HC_STATE_HALT ||
1729                      !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1730                 rc = IRQ_NONE;
1731         } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1732                 rc = IRQ_NONE;
1733         } else {
1734                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1735
1736                 if (unlikely(hcd->state == HC_STATE_HALT))
1737                         usb_hc_died(hcd);
1738                 rc = IRQ_HANDLED;
1739         }
1740
1741         local_irq_restore(flags);
1742         return rc;
1743 }
1744
1745 /*-------------------------------------------------------------------------*/
1746
1747 /**
1748  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1749  * @hcd: pointer to the HCD representing the controller
1750  *
1751  * This is called by bus glue to report a USB host controller that died
1752  * while operations may still have been pending.  It's called automatically
1753  * by the PCI glue, so only glue for non-PCI busses should need to call it. 
1754  */
1755 void usb_hc_died (struct usb_hcd *hcd)
1756 {
1757         unsigned long flags;
1758
1759         dev_err (hcd->self.controller, "HC died; cleaning up\n");
1760
1761         spin_lock_irqsave (&hcd_root_hub_lock, flags);
1762         if (hcd->rh_registered) {
1763                 hcd->poll_rh = 0;
1764
1765                 /* make khubd clean up old urbs and devices */
1766                 usb_set_device_state (hcd->self.root_hub,
1767                                 USB_STATE_NOTATTACHED);
1768                 usb_kick_khubd (hcd->self.root_hub);
1769         }
1770         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1771 }
1772 EXPORT_SYMBOL_GPL (usb_hc_died);
1773
1774 /*-------------------------------------------------------------------------*/
1775
1776 /**
1777  * usb_create_hcd - create and initialize an HCD structure
1778  * @driver: HC driver that will use this hcd
1779  * @dev: device for this HC, stored in hcd->self.controller
1780  * @bus_name: value to store in hcd->self.bus_name
1781  * Context: !in_interrupt()
1782  *
1783  * Allocate a struct usb_hcd, with extra space at the end for the
1784  * HC driver's private data.  Initialize the generic members of the
1785  * hcd structure.
1786  *
1787  * If memory is unavailable, returns NULL.
1788  */
1789 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1790                 struct device *dev, const char *bus_name)
1791 {
1792         struct usb_hcd *hcd;
1793
1794         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1795         if (!hcd) {
1796                 dev_dbg (dev, "hcd alloc failed\n");
1797                 return NULL;
1798         }
1799         dev_set_drvdata(dev, hcd);
1800         kref_init(&hcd->kref);
1801
1802         usb_bus_init(&hcd->self);
1803         hcd->self.controller = dev;
1804         hcd->self.bus_name = bus_name;
1805         hcd->self.uses_dma = (dev->dma_mask != NULL);
1806
1807         init_timer(&hcd->rh_timer);
1808         hcd->rh_timer.function = rh_timer_func;
1809         hcd->rh_timer.data = (unsigned long) hcd;
1810 #ifdef CONFIG_PM
1811         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1812 #endif
1813
1814         hcd->driver = driver;
1815         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1816                         "USB Host Controller";
1817         return hcd;
1818 }
1819 EXPORT_SYMBOL_GPL(usb_create_hcd);
1820
1821 static void hcd_release (struct kref *kref)
1822 {
1823         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1824
1825         kfree(hcd);
1826 }
1827
1828 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1829 {
1830         if (hcd)
1831                 kref_get (&hcd->kref);
1832         return hcd;
1833 }
1834 EXPORT_SYMBOL_GPL(usb_get_hcd);
1835
1836 void usb_put_hcd (struct usb_hcd *hcd)
1837 {
1838         if (hcd)
1839                 kref_put (&hcd->kref, hcd_release);
1840 }
1841 EXPORT_SYMBOL_GPL(usb_put_hcd);
1842
1843 /**
1844  * usb_add_hcd - finish generic HCD structure initialization and register
1845  * @hcd: the usb_hcd structure to initialize
1846  * @irqnum: Interrupt line to allocate
1847  * @irqflags: Interrupt type flags
1848  *
1849  * Finish the remaining parts of generic HCD initialization: allocate the
1850  * buffers of consistent memory, register the bus, request the IRQ line,
1851  * and call the driver's reset() and start() routines.
1852  */
1853 int usb_add_hcd(struct usb_hcd *hcd,
1854                 unsigned int irqnum, unsigned long irqflags)
1855 {
1856         int retval;
1857         struct usb_device *rhdev;
1858
1859         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1860
1861         hcd->authorized_default = hcd->wireless? 0 : 1;
1862         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1863
1864         /* HC is in reset state, but accessible.  Now do the one-time init,
1865          * bottom up so that hcds can customize the root hubs before khubd
1866          * starts talking to them.  (Note, bus id is assigned early too.)
1867          */
1868         if ((retval = hcd_buffer_create(hcd)) != 0) {
1869                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
1870                 return retval;
1871         }
1872
1873         if ((retval = usb_register_bus(&hcd->self)) < 0)
1874                 goto err_register_bus;
1875
1876         if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1877                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
1878                 retval = -ENOMEM;
1879                 goto err_allocate_root_hub;
1880         }
1881         rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1882                         USB_SPEED_FULL;
1883         hcd->self.root_hub = rhdev;
1884
1885         /* wakeup flag init defaults to "everything works" for root hubs,
1886          * but drivers can override it in reset() if needed, along with
1887          * recording the overall controller's system wakeup capability.
1888          */
1889         device_init_wakeup(&rhdev->dev, 1);
1890
1891         /* "reset" is misnamed; its role is now one-time init. the controller
1892          * should already have been reset (and boot firmware kicked off etc).
1893          */
1894         if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1895                 dev_err(hcd->self.controller, "can't setup\n");
1896                 goto err_hcd_driver_setup;
1897         }
1898
1899         /* NOTE: root hub and controller capabilities may not be the same */
1900         if (device_can_wakeup(hcd->self.controller)
1901                         && device_can_wakeup(&hcd->self.root_hub->dev))
1902                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1903
1904         /* enable irqs just before we start the controller */
1905         if (hcd->driver->irq) {
1906
1907                 /* IRQF_DISABLED doesn't work as advertised when used together
1908                  * with IRQF_SHARED. As usb_hcd_irq() will always disable
1909                  * interrupts we can remove it here.
1910                  */
1911                 if (irqflags & IRQF_SHARED)
1912                         irqflags &= ~IRQF_DISABLED;
1913
1914                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1915                                 hcd->driver->description, hcd->self.busnum);
1916                 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1917                                 hcd->irq_descr, hcd)) != 0) {
1918                         dev_err(hcd->self.controller,
1919                                         "request interrupt %d failed\n", irqnum);
1920                         goto err_request_irq;
1921                 }
1922                 hcd->irq = irqnum;
1923                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1924                                 (hcd->driver->flags & HCD_MEMORY) ?
1925                                         "io mem" : "io base",
1926                                         (unsigned long long)hcd->rsrc_start);
1927         } else {
1928                 hcd->irq = -1;
1929                 if (hcd->rsrc_start)
1930                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
1931                                         (hcd->driver->flags & HCD_MEMORY) ?
1932                                         "io mem" : "io base",
1933                                         (unsigned long long)hcd->rsrc_start);
1934         }
1935
1936         if ((retval = hcd->driver->start(hcd)) < 0) {
1937                 dev_err(hcd->self.controller, "startup error %d\n", retval);
1938                 goto err_hcd_driver_start;
1939         }
1940
1941         /* starting here, usbcore will pay attention to this root hub */
1942         rhdev->bus_mA = min(500u, hcd->power_budget);
1943         if ((retval = register_root_hub(hcd)) != 0)
1944                 goto err_register_root_hub;
1945
1946         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
1947         if (retval < 0) {
1948                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
1949                        retval);
1950                 goto error_create_attr_group;
1951         }
1952         if (hcd->uses_new_polling && hcd->poll_rh)
1953                 usb_hcd_poll_rh_status(hcd);
1954         return retval;
1955
1956 error_create_attr_group:
1957         mutex_lock(&usb_bus_list_lock);
1958         usb_disconnect(&hcd->self.root_hub);
1959         mutex_unlock(&usb_bus_list_lock);
1960 err_register_root_hub:
1961         hcd->driver->stop(hcd);
1962 err_hcd_driver_start:
1963         if (hcd->irq >= 0)
1964                 free_irq(irqnum, hcd);
1965 err_request_irq:
1966 err_hcd_driver_setup:
1967         hcd->self.root_hub = NULL;
1968         usb_put_dev(rhdev);
1969 err_allocate_root_hub:
1970         usb_deregister_bus(&hcd->self);
1971 err_register_bus:
1972         hcd_buffer_destroy(hcd);
1973         return retval;
1974
1975 EXPORT_SYMBOL_GPL(usb_add_hcd);
1976
1977 /**
1978  * usb_remove_hcd - shutdown processing for generic HCDs
1979  * @hcd: the usb_hcd structure to remove
1980  * Context: !in_interrupt()
1981  *
1982  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1983  * invoking the HCD's stop() method.
1984  */
1985 void usb_remove_hcd(struct usb_hcd *hcd)
1986 {
1987         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
1988
1989         if (HC_IS_RUNNING (hcd->state))
1990                 hcd->state = HC_STATE_QUIESCING;
1991
1992         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
1993         spin_lock_irq (&hcd_root_hub_lock);
1994         hcd->rh_registered = 0;
1995         spin_unlock_irq (&hcd_root_hub_lock);
1996
1997 #ifdef CONFIG_PM
1998         cancel_work_sync(&hcd->wakeup_work);
1999 #endif
2000
2001         sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
2002         mutex_lock(&usb_bus_list_lock);
2003         usb_disconnect(&hcd->self.root_hub);
2004         mutex_unlock(&usb_bus_list_lock);
2005
2006         hcd->driver->stop(hcd);
2007         hcd->state = HC_STATE_HALT;
2008
2009         hcd->poll_rh = 0;
2010         del_timer_sync(&hcd->rh_timer);
2011
2012         if (hcd->irq >= 0)
2013                 free_irq(hcd->irq, hcd);
2014         usb_deregister_bus(&hcd->self);
2015         hcd_buffer_destroy(hcd);
2016 }
2017 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2018
2019 void
2020 usb_hcd_platform_shutdown(struct platform_device* dev)
2021 {
2022         struct usb_hcd *hcd = platform_get_drvdata(dev);
2023
2024         if (hcd->driver->shutdown)
2025                 hcd->driver->shutdown(hcd);
2026 }
2027 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2028
2029 /*-------------------------------------------------------------------------*/
2030
2031 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2032
2033 struct usb_mon_operations *mon_ops;
2034
2035 /*
2036  * The registration is unlocked.
2037  * We do it this way because we do not want to lock in hot paths.
2038  *
2039  * Notice that the code is minimally error-proof. Because usbmon needs
2040  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2041  */
2042  
2043 int usb_mon_register (struct usb_mon_operations *ops)
2044 {
2045
2046         if (mon_ops)
2047                 return -EBUSY;
2048
2049         mon_ops = ops;
2050         mb();
2051         return 0;
2052 }
2053 EXPORT_SYMBOL_GPL (usb_mon_register);
2054
2055 void usb_mon_deregister (void)
2056 {
2057
2058         if (mon_ops == NULL) {
2059                 printk(KERN_ERR "USB: monitor was not registered\n");
2060                 return;
2061         }
2062         mon_ops = NULL;
2063         mb();
2064 }
2065 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2066
2067 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */