rt2x00: Fix TX status reporting
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
38
39 /*
40  * Register access.
41  * All access to the CSR registers will go through the methods
42  * rt2x00pci_register_read and rt2x00pci_register_write.
43  * BBP and RF register require indirect register access,
44  * and use the CSR registers BBPCSR and RFCSR to achieve this.
45  * These indirect registers work with busy bits,
46  * and we will try maximal REGISTER_BUSY_COUNT times to access
47  * the register while taking a REGISTER_BUSY_DELAY us delay
48  * between each attampt. When the busy bit is still set at that time,
49  * the access attempt is considered to have failed,
50  * and we will print an error.
51  */
52 static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
53 {
54         u32 reg;
55         unsigned int i;
56
57         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58                 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59                 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60                         break;
61                 udelay(REGISTER_BUSY_DELAY);
62         }
63
64         return reg;
65 }
66
67 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68                                 const unsigned int word, const u8 value)
69 {
70         u32 reg;
71
72         /*
73          * Wait until the BBP becomes ready.
74          */
75         reg = rt2500pci_bbp_check(rt2x00dev);
76         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77                 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78                 return;
79         }
80
81         /*
82          * Write the data into the BBP.
83          */
84         reg = 0;
85         rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
89
90         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
91 }
92
93 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94                                const unsigned int word, u8 *value)
95 {
96         u32 reg;
97
98         /*
99          * Wait until the BBP becomes ready.
100          */
101         reg = rt2500pci_bbp_check(rt2x00dev);
102         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104                 return;
105         }
106
107         /*
108          * Write the request into the BBP.
109          */
110         reg = 0;
111         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
114
115         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
116
117         /*
118          * Wait until the BBP becomes ready.
119          */
120         reg = rt2500pci_bbp_check(rt2x00dev);
121         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123                 *value = 0xff;
124                 return;
125         }
126
127         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
128 }
129
130 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
131                                const unsigned int word, const u32 value)
132 {
133         u32 reg;
134         unsigned int i;
135
136         if (!word)
137                 return;
138
139         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140                 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141                 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142                         goto rf_write;
143                 udelay(REGISTER_BUSY_DELAY);
144         }
145
146         ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147         return;
148
149 rf_write:
150         reg = 0;
151         rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152         rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153         rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154         rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
155
156         rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157         rt2x00_rf_write(rt2x00dev, word, value);
158 }
159
160 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
161 {
162         struct rt2x00_dev *rt2x00dev = eeprom->data;
163         u32 reg;
164
165         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
166
167         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169         eeprom->reg_data_clock =
170             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171         eeprom->reg_chip_select =
172             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
173 }
174
175 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
176 {
177         struct rt2x00_dev *rt2x00dev = eeprom->data;
178         u32 reg = 0;
179
180         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183                            !!eeprom->reg_data_clock);
184         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185                            !!eeprom->reg_chip_select);
186
187         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
188 }
189
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
192
193 static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
194                                const unsigned int word, u32 *data)
195 {
196         rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
197 }
198
199 static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
200                                 const unsigned int word, u32 data)
201 {
202         rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
203 }
204
205 static const struct rt2x00debug rt2500pci_rt2x00debug = {
206         .owner  = THIS_MODULE,
207         .csr    = {
208                 .read           = rt2500pci_read_csr,
209                 .write          = rt2500pci_write_csr,
210                 .word_size      = sizeof(u32),
211                 .word_count     = CSR_REG_SIZE / sizeof(u32),
212         },
213         .eeprom = {
214                 .read           = rt2x00_eeprom_read,
215                 .write          = rt2x00_eeprom_write,
216                 .word_size      = sizeof(u16),
217                 .word_count     = EEPROM_SIZE / sizeof(u16),
218         },
219         .bbp    = {
220                 .read           = rt2500pci_bbp_read,
221                 .write          = rt2500pci_bbp_write,
222                 .word_size      = sizeof(u8),
223                 .word_count     = BBP_SIZE / sizeof(u8),
224         },
225         .rf     = {
226                 .read           = rt2x00_rf_read,
227                 .write          = rt2500pci_rf_write,
228                 .word_size      = sizeof(u32),
229                 .word_count     = RF_SIZE / sizeof(u32),
230         },
231 };
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
233
234 #ifdef CONFIG_RT2500PCI_RFKILL
235 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
236 {
237         u32 reg;
238
239         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
241 }
242 #else
243 #define rt2500pci_rfkill_poll   NULL
244 #endif /* CONFIG_RT2500PCI_RFKILL */
245
246 #ifdef CONFIG_RT2500PCI_LEDS
247 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
248                                      enum led_brightness brightness)
249 {
250         struct rt2x00_led *led =
251             container_of(led_cdev, struct rt2x00_led, led_dev);
252         unsigned int enabled = brightness != LED_OFF;
253         u32 reg;
254
255         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
256
257         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
258                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
259         else if (led->type == LED_TYPE_ACTIVITY)
260                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
261
262         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
263 }
264
265 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
266                                unsigned long *delay_on,
267                                unsigned long *delay_off)
268 {
269         struct rt2x00_led *led =
270             container_of(led_cdev, struct rt2x00_led, led_dev);
271         u32 reg;
272
273         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
274         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
275         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
276         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
277
278         return 0;
279 }
280 #endif /* CONFIG_RT2500PCI_LEDS */
281
282 /*
283  * Configuration handlers.
284  */
285 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
286                                     const unsigned int filter_flags)
287 {
288         u32 reg;
289
290         /*
291          * Start configuration steps.
292          * Note that the version error will always be dropped
293          * and broadcast frames will always be accepted since
294          * there is no filter for it at this time.
295          */
296         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
297         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
298                            !(filter_flags & FIF_FCSFAIL));
299         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
300                            !(filter_flags & FIF_PLCPFAIL));
301         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
302                            !(filter_flags & FIF_CONTROL));
303         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
304                            !(filter_flags & FIF_PROMISC_IN_BSS));
305         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
306                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
307                            !rt2x00dev->intf_ap_count);
308         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
309         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
310                            !(filter_flags & FIF_ALLMULTI));
311         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
312         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
313 }
314
315 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
316                                   struct rt2x00_intf *intf,
317                                   struct rt2x00intf_conf *conf,
318                                   const unsigned int flags)
319 {
320         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
321         unsigned int bcn_preload;
322         u32 reg;
323
324         if (flags & CONFIG_UPDATE_TYPE) {
325                 /*
326                  * Enable beacon config
327                  */
328                 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
329                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
330                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
331                 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
332                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
333
334                 /*
335                  * Enable synchronisation.
336                  */
337                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
338                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
339                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
340                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
341                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
342         }
343
344         if (flags & CONFIG_UPDATE_MAC)
345                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
346                                               conf->mac, sizeof(conf->mac));
347
348         if (flags & CONFIG_UPDATE_BSSID)
349                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
350                                               conf->bssid, sizeof(conf->bssid));
351 }
352
353 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
354                                  struct rt2x00lib_erp *erp)
355 {
356         int preamble_mask;
357         u32 reg;
358
359         /*
360          * When short preamble is enabled, we should set bit 0x08
361          */
362         preamble_mask = erp->short_preamble << 3;
363
364         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
365         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
366                            erp->ack_timeout);
367         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
368                            erp->ack_consume_time);
369         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
370
371         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
372         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
373         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
374         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
375         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
376
377         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
378         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
379         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
380         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
381         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
382
383         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
384         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
385         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
386         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
387         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
388
389         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
390         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
391         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
392         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
393         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
394 }
395
396 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
397                                      const int basic_rate_mask)
398 {
399         rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
400 }
401
402 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
403                                      struct rf_channel *rf, const int txpower)
404 {
405         u8 r70;
406
407         /*
408          * Set TXpower.
409          */
410         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
411
412         /*
413          * Switch on tuning bits.
414          * For RT2523 devices we do not need to update the R1 register.
415          */
416         if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
417                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
418         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
419
420         /*
421          * For RT2525 we should first set the channel to half band higher.
422          */
423         if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
424                 static const u32 vals[] = {
425                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
426                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
427                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
428                         0x00080d2e, 0x00080d3a
429                 };
430
431                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
432                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
433                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
434                 if (rf->rf4)
435                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
436         }
437
438         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
439         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
440         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
441         if (rf->rf4)
442                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
443
444         /*
445          * Channel 14 requires the Japan filter bit to be set.
446          */
447         r70 = 0x46;
448         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
449         rt2500pci_bbp_write(rt2x00dev, 70, r70);
450
451         msleep(1);
452
453         /*
454          * Switch off tuning bits.
455          * For RT2523 devices we do not need to update the R1 register.
456          */
457         if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
458                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
459                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
460         }
461
462         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
463         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
464
465         /*
466          * Clear false CRC during channel switch.
467          */
468         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
469 }
470
471 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
472                                      const int txpower)
473 {
474         u32 rf3;
475
476         rt2x00_rf_read(rt2x00dev, 3, &rf3);
477         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
478         rt2500pci_rf_write(rt2x00dev, 3, rf3);
479 }
480
481 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
482                                      struct antenna_setup *ant)
483 {
484         u32 reg;
485         u8 r14;
486         u8 r2;
487
488         /*
489          * We should never come here because rt2x00lib is supposed
490          * to catch this and send us the correct antenna explicitely.
491          */
492         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
493                ant->tx == ANTENNA_SW_DIVERSITY);
494
495         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
496         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
497         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
498
499         /*
500          * Configure the TX antenna.
501          */
502         switch (ant->tx) {
503         case ANTENNA_A:
504                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
505                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
506                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
507                 break;
508         case ANTENNA_B:
509         default:
510                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
511                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
512                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
513                 break;
514         }
515
516         /*
517          * Configure the RX antenna.
518          */
519         switch (ant->rx) {
520         case ANTENNA_A:
521                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
522                 break;
523         case ANTENNA_B:
524         default:
525                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
526                 break;
527         }
528
529         /*
530          * RT2525E and RT5222 need to flip TX I/Q
531          */
532         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
533             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
534                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
535                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
536                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
537
538                 /*
539                  * RT2525E does not need RX I/Q Flip.
540                  */
541                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
542                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
543         } else {
544                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
545                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
546         }
547
548         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
549         rt2500pci_bbp_write(rt2x00dev, 14, r14);
550         rt2500pci_bbp_write(rt2x00dev, 2, r2);
551 }
552
553 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
554                                       struct rt2x00lib_conf *libconf)
555 {
556         u32 reg;
557
558         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
559         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
560         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
561
562         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
563         rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
564         rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
565         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
566
567         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
568         rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
569         rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
570         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
571
572         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
573         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
574         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
575         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
576
577         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
578         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
579                            libconf->conf->beacon_int * 16);
580         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
581                            libconf->conf->beacon_int * 16);
582         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
583 }
584
585 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
586                              struct rt2x00lib_conf *libconf,
587                              const unsigned int flags)
588 {
589         if (flags & CONFIG_UPDATE_PHYMODE)
590                 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
591         if (flags & CONFIG_UPDATE_CHANNEL)
592                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
593                                          libconf->conf->power_level);
594         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
595                 rt2500pci_config_txpower(rt2x00dev,
596                                          libconf->conf->power_level);
597         if (flags & CONFIG_UPDATE_ANTENNA)
598                 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
599         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
600                 rt2500pci_config_duration(rt2x00dev, libconf);
601 }
602
603 /*
604  * Link tuning
605  */
606 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
607                                  struct link_qual *qual)
608 {
609         u32 reg;
610
611         /*
612          * Update FCS error count from register.
613          */
614         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
615         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
616
617         /*
618          * Update False CCA count from register.
619          */
620         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
621         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
622 }
623
624 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
625 {
626         rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
627         rt2x00dev->link.vgc_level = 0x48;
628 }
629
630 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
631 {
632         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
633         u8 r17;
634
635         /*
636          * To prevent collisions with MAC ASIC on chipsets
637          * up to version C the link tuning should halt after 20
638          * seconds while being associated.
639          */
640         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
641             rt2x00dev->intf_associated &&
642             rt2x00dev->link.count > 20)
643                 return;
644
645         rt2500pci_bbp_read(rt2x00dev, 17, &r17);
646
647         /*
648          * Chipset versions C and lower should directly continue
649          * to the dynamic CCA tuning. Chipset version D and higher
650          * should go straight to dynamic CCA tuning when they
651          * are not associated.
652          */
653         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
654             !rt2x00dev->intf_associated)
655                 goto dynamic_cca_tune;
656
657         /*
658          * A too low RSSI will cause too much false CCA which will
659          * then corrupt the R17 tuning. To remidy this the tuning should
660          * be stopped (While making sure the R17 value will not exceed limits)
661          */
662         if (rssi < -80 && rt2x00dev->link.count > 20) {
663                 if (r17 >= 0x41) {
664                         r17 = rt2x00dev->link.vgc_level;
665                         rt2500pci_bbp_write(rt2x00dev, 17, r17);
666                 }
667                 return;
668         }
669
670         /*
671          * Special big-R17 for short distance
672          */
673         if (rssi >= -58) {
674                 if (r17 != 0x50)
675                         rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
676                 return;
677         }
678
679         /*
680          * Special mid-R17 for middle distance
681          */
682         if (rssi >= -74) {
683                 if (r17 != 0x41)
684                         rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
685                 return;
686         }
687
688         /*
689          * Leave short or middle distance condition, restore r17
690          * to the dynamic tuning range.
691          */
692         if (r17 >= 0x41) {
693                 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
694                 return;
695         }
696
697 dynamic_cca_tune:
698
699         /*
700          * R17 is inside the dynamic tuning range,
701          * start tuning the link based on the false cca counter.
702          */
703         if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
704                 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
705                 rt2x00dev->link.vgc_level = r17;
706         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
707                 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
708                 rt2x00dev->link.vgc_level = r17;
709         }
710 }
711
712 /*
713  * Initialization functions.
714  */
715 static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
716                                    struct queue_entry *entry)
717 {
718         struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
719         u32 word;
720
721         rt2x00_desc_read(priv_rx->desc, 1, &word);
722         rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->data_dma);
723         rt2x00_desc_write(priv_rx->desc, 1, word);
724
725         rt2x00_desc_read(priv_rx->desc, 0, &word);
726         rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
727         rt2x00_desc_write(priv_rx->desc, 0, word);
728 }
729
730 static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
731                                    struct queue_entry *entry)
732 {
733         struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
734         u32 word;
735
736         rt2x00_desc_read(priv_tx->desc, 1, &word);
737         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->data_dma);
738         rt2x00_desc_write(priv_tx->desc, 1, word);
739
740         rt2x00_desc_read(priv_tx->desc, 0, &word);
741         rt2x00_set_field32(&word, TXD_W0_VALID, 0);
742         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
743         rt2x00_desc_write(priv_tx->desc, 0, word);
744 }
745
746 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
747 {
748         struct queue_entry_priv_pci_rx *priv_rx;
749         struct queue_entry_priv_pci_tx *priv_tx;
750         u32 reg;
751
752         /*
753          * Initialize registers.
754          */
755         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
756         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
757         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
758         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
759         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
760         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
761
762         priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
763         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
764         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
765                            priv_tx->desc_dma);
766         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
767
768         priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
769         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
770         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
771                            priv_tx->desc_dma);
772         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
773
774         priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
775         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
776         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
777                            priv_tx->desc_dma);
778         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
779
780         priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
781         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
782         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
783                            priv_tx->desc_dma);
784         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
785
786         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
787         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
788         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
789         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
790
791         priv_rx = rt2x00dev->rx->entries[0].priv_data;
792         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
793         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_rx->desc_dma);
794         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
795
796         return 0;
797 }
798
799 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
800 {
801         u32 reg;
802
803         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
804         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
805         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
806         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
807
808         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
809         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
810         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
811         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
812         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
813
814         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
815         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
816                            rt2x00dev->rx->data_size / 128);
817         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
818
819         /*
820          * Always use CWmin and CWmax set in descriptor.
821          */
822         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
823         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
824         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
825
826         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
827
828         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
829         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
830         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
831         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
832         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
833         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
834         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
835         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
836         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
837         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
838
839         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
840         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
841         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
842         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
843         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
844         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
845
846         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
847         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
848         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
849         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
850         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
851         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
852
853         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
854         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
855         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
856         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
857         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
858         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
859
860         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
861         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
862         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
863         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
864         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
865         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
866         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
867         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
868         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
869         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
870
871         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
872         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
873         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
874         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
875         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
876         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
877         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
878         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
879         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
880
881         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
882
883         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
884         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
885
886         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
887                 return -EBUSY;
888
889         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
890         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
891
892         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
893         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
894         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
895
896         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
897         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
898         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
899         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
900         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
901         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
902         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
903         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
904
905         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
906
907         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
908
909         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
910         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
911         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
912         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
913         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
914
915         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
916         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
917         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
918         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
919
920         /*
921          * We must clear the FCS and FIFO error count.
922          * These registers are cleared on read,
923          * so we may pass a useless variable to store the value.
924          */
925         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
926         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
927
928         return 0;
929 }
930
931 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
932 {
933         unsigned int i;
934         u16 eeprom;
935         u8 reg_id;
936         u8 value;
937
938         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
939                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
940                 if ((value != 0xff) && (value != 0x00))
941                         goto continue_csr_init;
942                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
943                 udelay(REGISTER_BUSY_DELAY);
944         }
945
946         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
947         return -EACCES;
948
949 continue_csr_init:
950         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
951         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
952         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
953         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
954         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
955         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
956         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
957         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
958         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
959         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
960         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
961         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
962         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
963         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
964         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
965         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
966         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
967         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
968         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
969         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
970         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
971         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
972         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
973         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
974         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
975         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
976         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
977         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
978         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
979         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
980
981         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
982                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
983
984                 if (eeprom != 0xffff && eeprom != 0x0000) {
985                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
986                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
987                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
988                 }
989         }
990
991         return 0;
992 }
993
994 /*
995  * Device state switch handlers.
996  */
997 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
998                                 enum dev_state state)
999 {
1000         u32 reg;
1001
1002         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1003         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1004                            state == STATE_RADIO_RX_OFF);
1005         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1006 }
1007
1008 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1009                                  enum dev_state state)
1010 {
1011         int mask = (state == STATE_RADIO_IRQ_OFF);
1012         u32 reg;
1013
1014         /*
1015          * When interrupts are being enabled, the interrupt registers
1016          * should clear the register to assure a clean state.
1017          */
1018         if (state == STATE_RADIO_IRQ_ON) {
1019                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1020                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1021         }
1022
1023         /*
1024          * Only toggle the interrupts bits we are going to use.
1025          * Non-checked interrupt bits are disabled by default.
1026          */
1027         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1028         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1029         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1030         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1031         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1032         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1033         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1034 }
1035
1036 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1037 {
1038         /*
1039          * Initialize all registers.
1040          */
1041         if (rt2500pci_init_queues(rt2x00dev) ||
1042             rt2500pci_init_registers(rt2x00dev) ||
1043             rt2500pci_init_bbp(rt2x00dev)) {
1044                 ERROR(rt2x00dev, "Register initialization failed.\n");
1045                 return -EIO;
1046         }
1047
1048         /*
1049          * Enable interrupts.
1050          */
1051         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1052
1053         return 0;
1054 }
1055
1056 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1057 {
1058         u32 reg;
1059
1060         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1061
1062         /*
1063          * Disable synchronisation.
1064          */
1065         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1066
1067         /*
1068          * Cancel RX and TX.
1069          */
1070         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1071         rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1072         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1073
1074         /*
1075          * Disable interrupts.
1076          */
1077         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1078 }
1079
1080 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1081                                enum dev_state state)
1082 {
1083         u32 reg;
1084         unsigned int i;
1085         char put_to_sleep;
1086         char bbp_state;
1087         char rf_state;
1088
1089         put_to_sleep = (state != STATE_AWAKE);
1090
1091         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1092         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1093         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1094         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1095         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1096         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1097
1098         /*
1099          * Device is not guaranteed to be in the requested state yet.
1100          * We must wait until the register indicates that the
1101          * device has entered the correct state.
1102          */
1103         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1104                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1105                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1106                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1107                 if (bbp_state == state && rf_state == state)
1108                         return 0;
1109                 msleep(10);
1110         }
1111
1112         NOTICE(rt2x00dev, "Device failed to enter state %d, "
1113                "current device state: bbp %d and rf %d.\n",
1114                state, bbp_state, rf_state);
1115
1116         return -EBUSY;
1117 }
1118
1119 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1120                                       enum dev_state state)
1121 {
1122         int retval = 0;
1123
1124         switch (state) {
1125         case STATE_RADIO_ON:
1126                 retval = rt2500pci_enable_radio(rt2x00dev);
1127                 break;
1128         case STATE_RADIO_OFF:
1129                 rt2500pci_disable_radio(rt2x00dev);
1130                 break;
1131         case STATE_RADIO_RX_ON:
1132         case STATE_RADIO_RX_ON_LINK:
1133                 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1134                 break;
1135         case STATE_RADIO_RX_OFF:
1136         case STATE_RADIO_RX_OFF_LINK:
1137                 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1138                 break;
1139         case STATE_DEEP_SLEEP:
1140         case STATE_SLEEP:
1141         case STATE_STANDBY:
1142         case STATE_AWAKE:
1143                 retval = rt2500pci_set_state(rt2x00dev, state);
1144                 break;
1145         default:
1146                 retval = -ENOTSUPP;
1147                 break;
1148         }
1149
1150         return retval;
1151 }
1152
1153 /*
1154  * TX descriptor initialization
1155  */
1156 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1157                                     struct sk_buff *skb,
1158                                     struct txentry_desc *txdesc,
1159                                     struct ieee80211_tx_control *control)
1160 {
1161         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1162         __le32 *txd = skbdesc->desc;
1163         u32 word;
1164
1165         /*
1166          * Start writing the descriptor words.
1167          */
1168         rt2x00_desc_read(txd, 2, &word);
1169         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1170         rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1171         rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1172         rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1173         rt2x00_desc_write(txd, 2, word);
1174
1175         rt2x00_desc_read(txd, 3, &word);
1176         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1177         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1178         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1179         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1180         rt2x00_desc_write(txd, 3, word);
1181
1182         rt2x00_desc_read(txd, 10, &word);
1183         rt2x00_set_field32(&word, TXD_W10_RTS,
1184                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1185         rt2x00_desc_write(txd, 10, word);
1186
1187         rt2x00_desc_read(txd, 0, &word);
1188         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1189         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1190         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1191                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1192         rt2x00_set_field32(&word, TXD_W0_ACK,
1193                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1194         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1195                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1196         rt2x00_set_field32(&word, TXD_W0_OFDM,
1197                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1198         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1199         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1200         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1201                            !!(control->flags &
1202                               IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1203         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1204         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1205         rt2x00_desc_write(txd, 0, word);
1206 }
1207
1208 /*
1209  * TX data initialization
1210  */
1211 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1212                                     const enum data_queue_qid queue)
1213 {
1214         u32 reg;
1215
1216         if (queue == QID_BEACON) {
1217                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1218                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1219                         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1220                         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1221                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1222                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1223                 }
1224                 return;
1225         }
1226
1227         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1228         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1229         rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1230         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1231         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1232 }
1233
1234 /*
1235  * RX control handlers
1236  */
1237 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1238                                   struct rxdone_entry_desc *rxdesc)
1239 {
1240         struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1241         u32 word0;
1242         u32 word2;
1243
1244         rt2x00_desc_read(priv_rx->desc, 0, &word0);
1245         rt2x00_desc_read(priv_rx->desc, 2, &word2);
1246
1247         rxdesc->flags = 0;
1248         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1249                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1250         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1251                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1252
1253         /*
1254          * Obtain the status about this packet.
1255          * When frame was received with an OFDM bitrate,
1256          * the signal is the PLCP value. If it was received with
1257          * a CCK bitrate the signal is the rate in 100kbit/s.
1258          */
1259         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1260         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1261             entry->queue->rt2x00dev->rssi_offset;
1262         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1263
1264         rxdesc->dev_flags = 0;
1265         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1266                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1267         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1268                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1269 }
1270
1271 /*
1272  * Interrupt functions.
1273  */
1274 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1275                              const enum data_queue_qid queue_idx)
1276 {
1277         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1278         struct queue_entry_priv_pci_tx *priv_tx;
1279         struct queue_entry *entry;
1280         struct txdone_entry_desc txdesc;
1281         u32 word;
1282
1283         while (!rt2x00queue_empty(queue)) {
1284                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1285                 priv_tx = entry->priv_data;
1286                 rt2x00_desc_read(priv_tx->desc, 0, &word);
1287
1288                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1289                     !rt2x00_get_field32(word, TXD_W0_VALID))
1290                         break;
1291
1292                 /*
1293                  * Obtain the status about this packet.
1294                  */
1295                 txdesc.flags = 0;
1296                 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1297                 case 0: /* Success */
1298                 case 1: /* Success with retry */
1299                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1300                         break;
1301                 case 2: /* Failure, excessive retries */
1302                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1303                         /* Don't break, this is a failed frame! */
1304                 default: /* Failure */
1305                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1306                 }
1307                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1308
1309                 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1310         }
1311 }
1312
1313 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1314 {
1315         struct rt2x00_dev *rt2x00dev = dev_instance;
1316         u32 reg;
1317
1318         /*
1319          * Get the interrupt sources & saved to local variable.
1320          * Write register value back to clear pending interrupts.
1321          */
1322         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1323         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1324
1325         if (!reg)
1326                 return IRQ_NONE;
1327
1328         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1329                 return IRQ_HANDLED;
1330
1331         /*
1332          * Handle interrupts, walk through all bits
1333          * and run the tasks, the bits are checked in order of
1334          * priority.
1335          */
1336
1337         /*
1338          * 1 - Beacon timer expired interrupt.
1339          */
1340         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1341                 rt2x00lib_beacondone(rt2x00dev);
1342
1343         /*
1344          * 2 - Rx ring done interrupt.
1345          */
1346         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1347                 rt2x00pci_rxdone(rt2x00dev);
1348
1349         /*
1350          * 3 - Atim ring transmit done interrupt.
1351          */
1352         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1353                 rt2500pci_txdone(rt2x00dev, QID_ATIM);
1354
1355         /*
1356          * 4 - Priority ring transmit done interrupt.
1357          */
1358         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1359                 rt2500pci_txdone(rt2x00dev, QID_AC_BE);
1360
1361         /*
1362          * 5 - Tx ring transmit done interrupt.
1363          */
1364         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1365                 rt2500pci_txdone(rt2x00dev, QID_AC_BK);
1366
1367         return IRQ_HANDLED;
1368 }
1369
1370 /*
1371  * Device probe functions.
1372  */
1373 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1374 {
1375         struct eeprom_93cx6 eeprom;
1376         u32 reg;
1377         u16 word;
1378         u8 *mac;
1379
1380         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1381
1382         eeprom.data = rt2x00dev;
1383         eeprom.register_read = rt2500pci_eepromregister_read;
1384         eeprom.register_write = rt2500pci_eepromregister_write;
1385         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1386             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1387         eeprom.reg_data_in = 0;
1388         eeprom.reg_data_out = 0;
1389         eeprom.reg_data_clock = 0;
1390         eeprom.reg_chip_select = 0;
1391
1392         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1393                                EEPROM_SIZE / sizeof(u16));
1394
1395         /*
1396          * Start validation of the data that has been read.
1397          */
1398         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1399         if (!is_valid_ether_addr(mac)) {
1400                 DECLARE_MAC_BUF(macbuf);
1401
1402                 random_ether_addr(mac);
1403                 EEPROM(rt2x00dev, "MAC: %s\n",
1404                        print_mac(macbuf, mac));
1405         }
1406
1407         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1408         if (word == 0xffff) {
1409                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1410                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1411                                    ANTENNA_SW_DIVERSITY);
1412                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1413                                    ANTENNA_SW_DIVERSITY);
1414                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1415                                    LED_MODE_DEFAULT);
1416                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1417                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1418                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1419                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1420                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1421         }
1422
1423         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1424         if (word == 0xffff) {
1425                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1426                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1427                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1428                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1429                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1430         }
1431
1432         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1433         if (word == 0xffff) {
1434                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1435                                    DEFAULT_RSSI_OFFSET);
1436                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1437                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1438         }
1439
1440         return 0;
1441 }
1442
1443 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1444 {
1445         u32 reg;
1446         u16 value;
1447         u16 eeprom;
1448
1449         /*
1450          * Read EEPROM word for configuration.
1451          */
1452         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1453
1454         /*
1455          * Identify RF chipset.
1456          */
1457         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1458         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1459         rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1460
1461         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1462             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1463             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1464             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1465             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1466             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1467                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1468                 return -ENODEV;
1469         }
1470
1471         /*
1472          * Identify default antenna configuration.
1473          */
1474         rt2x00dev->default_ant.tx =
1475             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1476         rt2x00dev->default_ant.rx =
1477             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1478
1479         /*
1480          * Store led mode, for correct led behaviour.
1481          */
1482 #ifdef CONFIG_RT2500PCI_LEDS
1483         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1484
1485         rt2x00dev->led_radio.rt2x00dev = rt2x00dev;
1486         rt2x00dev->led_radio.type = LED_TYPE_RADIO;
1487         rt2x00dev->led_radio.led_dev.brightness_set =
1488             rt2500pci_brightness_set;
1489         rt2x00dev->led_radio.led_dev.blink_set =
1490             rt2500pci_blink_set;
1491         rt2x00dev->led_radio.flags = LED_INITIALIZED;
1492
1493         if (value == LED_MODE_TXRX_ACTIVITY) {
1494                 rt2x00dev->led_qual.rt2x00dev = rt2x00dev;
1495                 rt2x00dev->led_qual.type = LED_TYPE_ACTIVITY;
1496                 rt2x00dev->led_qual.led_dev.brightness_set =
1497                     rt2500pci_brightness_set;
1498                 rt2x00dev->led_qual.led_dev.blink_set =
1499                     rt2500pci_blink_set;
1500                 rt2x00dev->led_qual.flags = LED_INITIALIZED;
1501         }
1502 #endif /* CONFIG_RT2500PCI_LEDS */
1503
1504         /*
1505          * Detect if this device has an hardware controlled radio.
1506          */
1507 #ifdef CONFIG_RT2500PCI_RFKILL
1508         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1509                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1510 #endif /* CONFIG_RT2500PCI_RFKILL */
1511
1512         /*
1513          * Check if the BBP tuning should be enabled.
1514          */
1515         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1516
1517         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1518                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1519
1520         /*
1521          * Read the RSSI <-> dBm offset information.
1522          */
1523         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1524         rt2x00dev->rssi_offset =
1525             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1526
1527         return 0;
1528 }
1529
1530 /*
1531  * RF value list for RF2522
1532  * Supports: 2.4 GHz
1533  */
1534 static const struct rf_channel rf_vals_bg_2522[] = {
1535         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1536         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1537         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1538         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1539         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1540         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1541         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1542         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1543         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1544         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1545         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1546         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1547         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1548         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1549 };
1550
1551 /*
1552  * RF value list for RF2523
1553  * Supports: 2.4 GHz
1554  */
1555 static const struct rf_channel rf_vals_bg_2523[] = {
1556         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1557         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1558         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1559         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1560         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1561         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1562         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1563         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1564         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1565         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1566         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1567         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1568         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1569         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1570 };
1571
1572 /*
1573  * RF value list for RF2524
1574  * Supports: 2.4 GHz
1575  */
1576 static const struct rf_channel rf_vals_bg_2524[] = {
1577         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1578         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1579         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1580         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1581         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1582         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1583         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1584         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1585         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1586         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1587         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1588         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1589         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1590         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1591 };
1592
1593 /*
1594  * RF value list for RF2525
1595  * Supports: 2.4 GHz
1596  */
1597 static const struct rf_channel rf_vals_bg_2525[] = {
1598         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1599         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1600         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1601         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1602         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1603         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1604         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1605         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1606         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1607         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1608         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1609         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1610         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1611         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1612 };
1613
1614 /*
1615  * RF value list for RF2525e
1616  * Supports: 2.4 GHz
1617  */
1618 static const struct rf_channel rf_vals_bg_2525e[] = {
1619         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1620         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1621         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1622         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1623         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1624         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1625         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1626         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1627         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1628         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1629         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1630         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1631         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1632         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1633 };
1634
1635 /*
1636  * RF value list for RF5222
1637  * Supports: 2.4 GHz & 5.2 GHz
1638  */
1639 static const struct rf_channel rf_vals_5222[] = {
1640         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1641         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1642         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1643         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1644         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1645         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1646         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1647         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1648         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1649         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1650         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1651         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1652         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1653         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1654
1655         /* 802.11 UNI / HyperLan 2 */
1656         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1657         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1658         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1659         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1660         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1661         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1662         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1663         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1664
1665         /* 802.11 HyperLan 2 */
1666         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1667         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1668         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1669         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1670         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1671         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1672         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1673         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1674         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1675         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1676
1677         /* 802.11 UNII */
1678         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1679         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1680         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1681         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1682         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1683 };
1684
1685 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1686 {
1687         struct hw_mode_spec *spec = &rt2x00dev->spec;
1688         u8 *txpower;
1689         unsigned int i;
1690
1691         /*
1692          * Initialize all hw fields.
1693          */
1694         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1695                                IEEE80211_HW_SIGNAL_DBM;
1696
1697         rt2x00dev->hw->extra_tx_headroom = 0;
1698         rt2x00dev->hw->queues = 2;
1699
1700         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1701         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1702                                 rt2x00_eeprom_addr(rt2x00dev,
1703                                                    EEPROM_MAC_ADDR_0));
1704
1705         /*
1706          * Convert tx_power array in eeprom.
1707          */
1708         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1709         for (i = 0; i < 14; i++)
1710                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1711
1712         /*
1713          * Initialize hw_mode information.
1714          */
1715         spec->supported_bands = SUPPORT_BAND_2GHZ;
1716         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1717         spec->tx_power_a = NULL;
1718         spec->tx_power_bg = txpower;
1719         spec->tx_power_default = DEFAULT_TXPOWER;
1720
1721         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1722                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1723                 spec->channels = rf_vals_bg_2522;
1724         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1725                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1726                 spec->channels = rf_vals_bg_2523;
1727         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1728                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1729                 spec->channels = rf_vals_bg_2524;
1730         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1731                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1732                 spec->channels = rf_vals_bg_2525;
1733         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1734                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1735                 spec->channels = rf_vals_bg_2525e;
1736         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1737                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1738                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1739                 spec->channels = rf_vals_5222;
1740         }
1741 }
1742
1743 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1744 {
1745         int retval;
1746
1747         /*
1748          * Allocate eeprom data.
1749          */
1750         retval = rt2500pci_validate_eeprom(rt2x00dev);
1751         if (retval)
1752                 return retval;
1753
1754         retval = rt2500pci_init_eeprom(rt2x00dev);
1755         if (retval)
1756                 return retval;
1757
1758         /*
1759          * Initialize hw specifications.
1760          */
1761         rt2500pci_probe_hw_mode(rt2x00dev);
1762
1763         /*
1764          * This device requires the atim queue
1765          */
1766         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1767
1768         /*
1769          * Set the rssi offset.
1770          */
1771         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1772
1773         return 0;
1774 }
1775
1776 /*
1777  * IEEE80211 stack callback functions.
1778  */
1779 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1780                                      u32 short_retry, u32 long_retry)
1781 {
1782         struct rt2x00_dev *rt2x00dev = hw->priv;
1783         u32 reg;
1784
1785         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1786         rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1787         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1788         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1789
1790         return 0;
1791 }
1792
1793 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1794 {
1795         struct rt2x00_dev *rt2x00dev = hw->priv;
1796         u64 tsf;
1797         u32 reg;
1798
1799         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1800         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1801         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1802         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1803
1804         return tsf;
1805 }
1806
1807 static int rt2500pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
1808                                    struct ieee80211_tx_control *control)
1809 {
1810         struct rt2x00_dev *rt2x00dev = hw->priv;
1811         struct rt2x00_intf *intf = vif_to_intf(control->vif);
1812         struct queue_entry_priv_pci_tx *priv_tx;
1813         struct skb_frame_desc *skbdesc;
1814         u32 reg;
1815
1816         if (unlikely(!intf->beacon))
1817                 return -ENOBUFS;
1818
1819         priv_tx = intf->beacon->priv_data;
1820
1821         /*
1822          * Fill in skb descriptor
1823          */
1824         skbdesc = get_skb_frame_desc(skb);
1825         memset(skbdesc, 0, sizeof(*skbdesc));
1826         skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
1827         skbdesc->data = skb->data;
1828         skbdesc->data_len = skb->len;
1829         skbdesc->desc = priv_tx->desc;
1830         skbdesc->desc_len = intf->beacon->queue->desc_size;
1831         skbdesc->entry = intf->beacon;
1832
1833         /*
1834          * Disable beaconing while we are reloading the beacon data,
1835          * otherwise we might be sending out invalid data.
1836          */
1837         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1838         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1839         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1840         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1841         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1842
1843         /*
1844          * Enable beacon generation.
1845          * Write entire beacon with descriptor to register,
1846          * and kick the beacon generator.
1847          */
1848         rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1849         memcpy(priv_tx->data, skb->data, skb->len);
1850         rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
1851
1852         return 0;
1853 }
1854
1855 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1856 {
1857         struct rt2x00_dev *rt2x00dev = hw->priv;
1858         u32 reg;
1859
1860         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1861         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1862 }
1863
1864 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1865         .tx                     = rt2x00mac_tx,
1866         .start                  = rt2x00mac_start,
1867         .stop                   = rt2x00mac_stop,
1868         .add_interface          = rt2x00mac_add_interface,
1869         .remove_interface       = rt2x00mac_remove_interface,
1870         .config                 = rt2x00mac_config,
1871         .config_interface       = rt2x00mac_config_interface,
1872         .configure_filter       = rt2x00mac_configure_filter,
1873         .get_stats              = rt2x00mac_get_stats,
1874         .set_retry_limit        = rt2500pci_set_retry_limit,
1875         .bss_info_changed       = rt2x00mac_bss_info_changed,
1876         .conf_tx                = rt2x00mac_conf_tx,
1877         .get_tx_stats           = rt2x00mac_get_tx_stats,
1878         .get_tsf                = rt2500pci_get_tsf,
1879         .beacon_update          = rt2500pci_beacon_update,
1880         .tx_last_beacon         = rt2500pci_tx_last_beacon,
1881 };
1882
1883 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1884         .irq_handler            = rt2500pci_interrupt,
1885         .probe_hw               = rt2500pci_probe_hw,
1886         .initialize             = rt2x00pci_initialize,
1887         .uninitialize           = rt2x00pci_uninitialize,
1888         .init_rxentry           = rt2500pci_init_rxentry,
1889         .init_txentry           = rt2500pci_init_txentry,
1890         .set_device_state       = rt2500pci_set_device_state,
1891         .rfkill_poll            = rt2500pci_rfkill_poll,
1892         .link_stats             = rt2500pci_link_stats,
1893         .reset_tuner            = rt2500pci_reset_tuner,
1894         .link_tuner             = rt2500pci_link_tuner,
1895         .write_tx_desc          = rt2500pci_write_tx_desc,
1896         .write_tx_data          = rt2x00pci_write_tx_data,
1897         .kick_tx_queue          = rt2500pci_kick_tx_queue,
1898         .fill_rxdone            = rt2500pci_fill_rxdone,
1899         .config_filter          = rt2500pci_config_filter,
1900         .config_intf            = rt2500pci_config_intf,
1901         .config_erp             = rt2500pci_config_erp,
1902         .config                 = rt2500pci_config,
1903 };
1904
1905 static const struct data_queue_desc rt2500pci_queue_rx = {
1906         .entry_num              = RX_ENTRIES,
1907         .data_size              = DATA_FRAME_SIZE,
1908         .desc_size              = RXD_DESC_SIZE,
1909         .priv_size              = sizeof(struct queue_entry_priv_pci_rx),
1910 };
1911
1912 static const struct data_queue_desc rt2500pci_queue_tx = {
1913         .entry_num              = TX_ENTRIES,
1914         .data_size              = DATA_FRAME_SIZE,
1915         .desc_size              = TXD_DESC_SIZE,
1916         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1917 };
1918
1919 static const struct data_queue_desc rt2500pci_queue_bcn = {
1920         .entry_num              = BEACON_ENTRIES,
1921         .data_size              = MGMT_FRAME_SIZE,
1922         .desc_size              = TXD_DESC_SIZE,
1923         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1924 };
1925
1926 static const struct data_queue_desc rt2500pci_queue_atim = {
1927         .entry_num              = ATIM_ENTRIES,
1928         .data_size              = DATA_FRAME_SIZE,
1929         .desc_size              = TXD_DESC_SIZE,
1930         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1931 };
1932
1933 static const struct rt2x00_ops rt2500pci_ops = {
1934         .name           = KBUILD_MODNAME,
1935         .max_sta_intf   = 1,
1936         .max_ap_intf    = 1,
1937         .eeprom_size    = EEPROM_SIZE,
1938         .rf_size        = RF_SIZE,
1939         .rx             = &rt2500pci_queue_rx,
1940         .tx             = &rt2500pci_queue_tx,
1941         .bcn            = &rt2500pci_queue_bcn,
1942         .atim           = &rt2500pci_queue_atim,
1943         .lib            = &rt2500pci_rt2x00_ops,
1944         .hw             = &rt2500pci_mac80211_ops,
1945 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1946         .debugfs        = &rt2500pci_rt2x00debug,
1947 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1948 };
1949
1950 /*
1951  * RT2500pci module information.
1952  */
1953 static struct pci_device_id rt2500pci_device_table[] = {
1954         { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1955         { 0, }
1956 };
1957
1958 MODULE_AUTHOR(DRV_PROJECT);
1959 MODULE_VERSION(DRV_VERSION);
1960 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1961 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1962 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1963 MODULE_LICENSE("GPL");
1964
1965 static struct pci_driver rt2500pci_driver = {
1966         .name           = KBUILD_MODNAME,
1967         .id_table       = rt2500pci_device_table,
1968         .probe          = rt2x00pci_probe,
1969         .remove         = __devexit_p(rt2x00pci_remove),
1970         .suspend        = rt2x00pci_suspend,
1971         .resume         = rt2x00pci_resume,
1972 };
1973
1974 static int __init rt2500pci_init(void)
1975 {
1976         return pci_register_driver(&rt2500pci_driver);
1977 }
1978
1979 static void __exit rt2500pci_exit(void)
1980 {
1981         pci_unregister_driver(&rt2500pci_driver);
1982 }
1983
1984 module_init(rt2500pci_init);
1985 module_exit(rt2500pci_exit);