2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <linux/interrupt.h>
27 #include <linux/smp_lock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
33 #include <linux/sysctl.h>
34 #include <linux/list.h>
35 #include <linux/file.h>
36 #include <linux/poll.h>
37 #include <linux/vfs.h>
38 #include <linux/pagemap.h>
39 #include <linux/mount.h>
40 #include <linux/bitops.h>
41 #include <linux/capability.h>
42 #include <linux/rcupdate.h>
44 #include <asm/errno.h>
45 #include <asm/intrinsics.h>
47 #include <asm/perfmon.h>
48 #include <asm/processor.h>
49 #include <asm/signal.h>
50 #include <asm/system.h>
51 #include <asm/uaccess.h>
52 #include <asm/delay.h>
56 * perfmon context state
58 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
59 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
60 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
61 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
63 #define PFM_INVALID_ACTIVATION (~0UL)
66 * depth of message queue
68 #define PFM_MAX_MSGS 32
69 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
72 * type of a PMU register (bitmask).
74 * bit0 : register implemented
77 * bit4 : pmc has pmc.pm
78 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
79 * bit6-7 : register type
82 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
83 #define PFM_REG_IMPL 0x1 /* register implemented */
84 #define PFM_REG_END 0x2 /* end marker */
85 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
86 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
87 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
88 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
89 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
91 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
92 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
94 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
96 /* i assumed unsigned */
97 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
98 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
100 /* XXX: these assume that register i is implemented */
101 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
102 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
103 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
104 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
106 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
107 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
108 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
109 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
111 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
112 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
114 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
115 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
116 #define PFM_CTX_TASK(h) (h)->ctx_task
118 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
120 /* XXX: does not support more than 64 PMDs */
121 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
122 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
124 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
126 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
127 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
128 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
129 #define PFM_CODE_RR 0 /* requesting code range restriction */
130 #define PFM_DATA_RR 1 /* requestion data range restriction */
132 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
133 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
134 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
136 #define RDEP(x) (1UL<<(x))
139 * context protection macros
141 * - we need to protect against CPU concurrency (spin_lock)
142 * - we need to protect against PMU overflow interrupts (local_irq_disable)
144 * - we need to protect against PMU overflow interrupts (local_irq_disable)
146 * spin_lock_irqsave()/spin_lock_irqrestore():
147 * in SMP: local_irq_disable + spin_lock
148 * in UP : local_irq_disable
150 * spin_lock()/spin_lock():
151 * in UP : removed automatically
152 * in SMP: protect against context accesses from other CPU. interrupts
153 * are not masked. This is useful for the PMU interrupt handler
154 * because we know we will not get PMU concurrency in that code.
156 #define PROTECT_CTX(c, f) \
158 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
159 spin_lock_irqsave(&(c)->ctx_lock, f); \
160 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
163 #define UNPROTECT_CTX(c, f) \
165 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
166 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
169 #define PROTECT_CTX_NOPRINT(c, f) \
171 spin_lock_irqsave(&(c)->ctx_lock, f); \
175 #define UNPROTECT_CTX_NOPRINT(c, f) \
177 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
181 #define PROTECT_CTX_NOIRQ(c) \
183 spin_lock(&(c)->ctx_lock); \
186 #define UNPROTECT_CTX_NOIRQ(c) \
188 spin_unlock(&(c)->ctx_lock); \
194 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
195 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
196 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
198 #else /* !CONFIG_SMP */
199 #define SET_ACTIVATION(t) do {} while(0)
200 #define GET_ACTIVATION(t) do {} while(0)
201 #define INC_ACTIVATION(t) do {} while(0)
202 #endif /* CONFIG_SMP */
204 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
205 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
206 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
208 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
209 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
211 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
214 * cmp0 must be the value of pmc0
216 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
218 #define PFMFS_MAGIC 0xa0b4d889
223 #define PFM_DEBUGGING 1
227 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
230 #define DPRINT_ovfl(a) \
232 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
237 * 64-bit software counter structure
239 * the next_reset_type is applied to the next call to pfm_reset_regs()
242 unsigned long val; /* virtual 64bit counter value */
243 unsigned long lval; /* last reset value */
244 unsigned long long_reset; /* reset value on sampling overflow */
245 unsigned long short_reset; /* reset value on overflow */
246 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
247 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
248 unsigned long seed; /* seed for random-number generator */
249 unsigned long mask; /* mask for random-number generator */
250 unsigned int flags; /* notify/do not notify */
251 unsigned long eventid; /* overflow event identifier */
258 unsigned int block:1; /* when 1, task will blocked on user notifications */
259 unsigned int system:1; /* do system wide monitoring */
260 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
261 unsigned int is_sampling:1; /* true if using a custom format */
262 unsigned int excl_idle:1; /* exclude idle task in system wide session */
263 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
264 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
265 unsigned int no_msg:1; /* no message sent on overflow */
266 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
267 unsigned int reserved:22;
268 } pfm_context_flags_t;
270 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
271 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
272 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
276 * perfmon context: encapsulates all the state of a monitoring session
279 typedef struct pfm_context {
280 spinlock_t ctx_lock; /* context protection */
282 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
283 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
285 struct task_struct *ctx_task; /* task to which context is attached */
287 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
289 struct semaphore ctx_restart_sem; /* use for blocking notification mode */
291 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
292 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
293 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
295 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
296 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
297 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
299 unsigned long ctx_pmcs[IA64_NUM_PMC_REGS]; /* saved copies of PMC values */
301 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
302 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
303 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
304 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
306 pfm_counter_t ctx_pmds[IA64_NUM_PMD_REGS]; /* software state for PMDS */
308 u64 ctx_saved_psr_up; /* only contains psr.up value */
310 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
311 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
312 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
314 int ctx_fd; /* file descriptor used my this context */
315 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
317 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
318 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
319 unsigned long ctx_smpl_size; /* size of sampling buffer */
320 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
322 wait_queue_head_t ctx_msgq_wait;
323 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
326 struct fasync_struct *ctx_async_queue;
328 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
332 * magic number used to verify that structure is really
335 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
337 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
340 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
341 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
343 #define SET_LAST_CPU(ctx, v) do {} while(0)
344 #define GET_LAST_CPU(ctx) do {} while(0)
348 #define ctx_fl_block ctx_flags.block
349 #define ctx_fl_system ctx_flags.system
350 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
351 #define ctx_fl_is_sampling ctx_flags.is_sampling
352 #define ctx_fl_excl_idle ctx_flags.excl_idle
353 #define ctx_fl_going_zombie ctx_flags.going_zombie
354 #define ctx_fl_trap_reason ctx_flags.trap_reason
355 #define ctx_fl_no_msg ctx_flags.no_msg
356 #define ctx_fl_can_restart ctx_flags.can_restart
358 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
359 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
362 * global information about all sessions
363 * mostly used to synchronize between system wide and per-process
366 spinlock_t pfs_lock; /* lock the structure */
368 unsigned int pfs_task_sessions; /* number of per task sessions */
369 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
370 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
371 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
372 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
376 * information about a PMC or PMD.
377 * dep_pmd[]: a bitmask of dependent PMD registers
378 * dep_pmc[]: a bitmask of dependent PMC registers
380 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
384 unsigned long default_value; /* power-on default value */
385 unsigned long reserved_mask; /* bitmask of reserved bits */
386 pfm_reg_check_t read_check;
387 pfm_reg_check_t write_check;
388 unsigned long dep_pmd[4];
389 unsigned long dep_pmc[4];
392 /* assume cnum is a valid monitor */
393 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
396 * This structure is initialized at boot time and contains
397 * a description of the PMU main characteristics.
399 * If the probe function is defined, detection is based
400 * on its return value:
401 * - 0 means recognized PMU
402 * - anything else means not supported
403 * When the probe function is not defined, then the pmu_family field
404 * is used and it must match the host CPU family such that:
405 * - cpu->family & config->pmu_family != 0
408 unsigned long ovfl_val; /* overflow value for counters */
410 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
411 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
413 unsigned int num_pmcs; /* number of PMCS: computed at init time */
414 unsigned int num_pmds; /* number of PMDS: computed at init time */
415 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
416 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
418 char *pmu_name; /* PMU family name */
419 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
420 unsigned int flags; /* pmu specific flags */
421 unsigned int num_ibrs; /* number of IBRS: computed at init time */
422 unsigned int num_dbrs; /* number of DBRS: computed at init time */
423 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
424 int (*probe)(void); /* customized probe routine */
425 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
430 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
433 * debug register related type definitions
436 unsigned long ibr_mask:56;
437 unsigned long ibr_plm:4;
438 unsigned long ibr_ig:3;
439 unsigned long ibr_x:1;
443 unsigned long dbr_mask:56;
444 unsigned long dbr_plm:4;
445 unsigned long dbr_ig:2;
446 unsigned long dbr_w:1;
447 unsigned long dbr_r:1;
458 * perfmon command descriptions
461 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
464 unsigned int cmd_narg;
466 int (*cmd_getsize)(void *arg, size_t *sz);
469 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
470 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
471 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
472 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
475 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
476 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
477 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
478 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
479 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
481 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
484 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
485 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
486 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
487 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
488 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
489 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
490 unsigned long pfm_smpl_handler_calls;
491 unsigned long pfm_smpl_handler_cycles;
492 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
496 * perfmon internal variables
498 static pfm_stats_t pfm_stats[NR_CPUS];
499 static pfm_session_t pfm_sessions; /* global sessions information */
501 static DEFINE_SPINLOCK(pfm_alt_install_check);
502 static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
504 static struct proc_dir_entry *perfmon_dir;
505 static pfm_uuid_t pfm_null_uuid = {0,};
507 static spinlock_t pfm_buffer_fmt_lock;
508 static LIST_HEAD(pfm_buffer_fmt_list);
510 static pmu_config_t *pmu_conf;
512 /* sysctl() controls */
513 pfm_sysctl_t pfm_sysctl;
514 EXPORT_SYMBOL(pfm_sysctl);
516 static ctl_table pfm_ctl_table[]={
517 {1, "debug", &pfm_sysctl.debug, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
518 {2, "debug_ovfl", &pfm_sysctl.debug_ovfl, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
519 {3, "fastctxsw", &pfm_sysctl.fastctxsw, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
520 {4, "expert_mode", &pfm_sysctl.expert_mode, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
523 static ctl_table pfm_sysctl_dir[] = {
524 {1, "perfmon", NULL, 0, 0755, pfm_ctl_table, },
527 static ctl_table pfm_sysctl_root[] = {
528 {1, "kernel", NULL, 0, 0755, pfm_sysctl_dir, },
531 static struct ctl_table_header *pfm_sysctl_header;
533 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
534 static int pfm_flush(struct file *filp);
536 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
537 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
540 pfm_put_task(struct task_struct *task)
542 if (task != current) put_task_struct(task);
546 pfm_set_task_notify(struct task_struct *task)
548 struct thread_info *info;
550 info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
551 set_bit(TIF_NOTIFY_RESUME, &info->flags);
555 pfm_clear_task_notify(void)
557 clear_thread_flag(TIF_NOTIFY_RESUME);
561 pfm_reserve_page(unsigned long a)
563 SetPageReserved(vmalloc_to_page((void *)a));
566 pfm_unreserve_page(unsigned long a)
568 ClearPageReserved(vmalloc_to_page((void*)a));
571 static inline unsigned long
572 pfm_protect_ctx_ctxsw(pfm_context_t *x)
574 spin_lock(&(x)->ctx_lock);
579 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
581 spin_unlock(&(x)->ctx_lock);
584 static inline unsigned int
585 pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
587 return do_munmap(mm, addr, len);
590 static inline unsigned long
591 pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
593 return get_unmapped_area(file, addr, len, pgoff, flags);
597 static struct super_block *
598 pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
600 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC);
603 static struct file_system_type pfm_fs_type = {
605 .get_sb = pfmfs_get_sb,
606 .kill_sb = kill_anon_super,
609 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
610 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
611 DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
612 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
613 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
616 /* forward declaration */
617 static struct file_operations pfm_file_ops;
620 * forward declarations
623 static void pfm_lazy_save_regs (struct task_struct *ta);
626 void dump_pmu_state(const char *);
627 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
629 #include "perfmon_itanium.h"
630 #include "perfmon_mckinley.h"
631 #include "perfmon_generic.h"
633 static pmu_config_t *pmu_confs[]={
636 &pmu_conf_gen, /* must be last */
641 static int pfm_end_notify_user(pfm_context_t *ctx);
644 pfm_clear_psr_pp(void)
646 ia64_rsm(IA64_PSR_PP);
653 ia64_ssm(IA64_PSR_PP);
658 pfm_clear_psr_up(void)
660 ia64_rsm(IA64_PSR_UP);
667 ia64_ssm(IA64_PSR_UP);
671 static inline unsigned long
675 tmp = ia64_getreg(_IA64_REG_PSR);
681 pfm_set_psr_l(unsigned long val)
683 ia64_setreg(_IA64_REG_PSR_L, val);
695 pfm_unfreeze_pmu(void)
702 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
706 for (i=0; i < nibrs; i++) {
707 ia64_set_ibr(i, ibrs[i]);
708 ia64_dv_serialize_instruction();
714 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
718 for (i=0; i < ndbrs; i++) {
719 ia64_set_dbr(i, dbrs[i]);
720 ia64_dv_serialize_data();
726 * PMD[i] must be a counter. no check is made
728 static inline unsigned long
729 pfm_read_soft_counter(pfm_context_t *ctx, int i)
731 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
735 * PMD[i] must be a counter. no check is made
738 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
740 unsigned long ovfl_val = pmu_conf->ovfl_val;
742 ctx->ctx_pmds[i].val = val & ~ovfl_val;
744 * writing to unimplemented part is ignore, so we do not need to
747 ia64_set_pmd(i, val & ovfl_val);
751 pfm_get_new_msg(pfm_context_t *ctx)
755 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
757 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
758 if (next == ctx->ctx_msgq_head) return NULL;
760 idx = ctx->ctx_msgq_tail;
761 ctx->ctx_msgq_tail = next;
763 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
765 return ctx->ctx_msgq+idx;
769 pfm_get_next_msg(pfm_context_t *ctx)
773 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
775 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
780 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
785 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
787 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
793 pfm_reset_msgq(pfm_context_t *ctx)
795 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
796 DPRINT(("ctx=%p msgq reset\n", ctx));
800 pfm_rvmalloc(unsigned long size)
805 size = PAGE_ALIGN(size);
808 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
809 memset(mem, 0, size);
810 addr = (unsigned long)mem;
812 pfm_reserve_page(addr);
821 pfm_rvfree(void *mem, unsigned long size)
826 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
827 addr = (unsigned long) mem;
828 while ((long) size > 0) {
829 pfm_unreserve_page(addr);
838 static pfm_context_t *
839 pfm_context_alloc(void)
844 * allocate context descriptor
845 * must be able to free with interrupts disabled
847 ctx = kmalloc(sizeof(pfm_context_t), GFP_KERNEL);
849 memset(ctx, 0, sizeof(pfm_context_t));
850 DPRINT(("alloc ctx @%p\n", ctx));
856 pfm_context_free(pfm_context_t *ctx)
859 DPRINT(("free ctx @%p\n", ctx));
865 pfm_mask_monitoring(struct task_struct *task)
867 pfm_context_t *ctx = PFM_GET_CTX(task);
868 struct thread_struct *th = &task->thread;
869 unsigned long mask, val, ovfl_mask;
872 DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
874 ovfl_mask = pmu_conf->ovfl_val;
876 * monitoring can only be masked as a result of a valid
877 * counter overflow. In UP, it means that the PMU still
878 * has an owner. Note that the owner can be different
879 * from the current task. However the PMU state belongs
881 * In SMP, a valid overflow only happens when task is
882 * current. Therefore if we come here, we know that
883 * the PMU state belongs to the current task, therefore
884 * we can access the live registers.
886 * So in both cases, the live register contains the owner's
887 * state. We can ONLY touch the PMU registers and NOT the PSR.
889 * As a consequence to this call, the thread->pmds[] array
890 * contains stale information which must be ignored
891 * when context is reloaded AND monitoring is active (see
894 mask = ctx->ctx_used_pmds[0];
895 for (i = 0; mask; i++, mask>>=1) {
896 /* skip non used pmds */
897 if ((mask & 0x1) == 0) continue;
898 val = ia64_get_pmd(i);
900 if (PMD_IS_COUNTING(i)) {
902 * we rebuild the full 64 bit value of the counter
904 ctx->ctx_pmds[i].val += (val & ovfl_mask);
906 ctx->ctx_pmds[i].val = val;
908 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
910 ctx->ctx_pmds[i].val,
914 * mask monitoring by setting the privilege level to 0
915 * we cannot use psr.pp/psr.up for this, it is controlled by
918 * if task is current, modify actual registers, otherwise modify
919 * thread save state, i.e., what will be restored in pfm_load_regs()
921 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
922 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
923 if ((mask & 0x1) == 0UL) continue;
924 ia64_set_pmc(i, th->pmcs[i] & ~0xfUL);
925 th->pmcs[i] &= ~0xfUL;
926 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, th->pmcs[i]));
929 * make all of this visible
935 * must always be done with task == current
937 * context must be in MASKED state when calling
940 pfm_restore_monitoring(struct task_struct *task)
942 pfm_context_t *ctx = PFM_GET_CTX(task);
943 struct thread_struct *th = &task->thread;
944 unsigned long mask, ovfl_mask;
945 unsigned long psr, val;
948 is_system = ctx->ctx_fl_system;
949 ovfl_mask = pmu_conf->ovfl_val;
951 if (task != current) {
952 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
955 if (ctx->ctx_state != PFM_CTX_MASKED) {
956 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
957 task->pid, current->pid, ctx->ctx_state);
962 * monitoring is masked via the PMC.
963 * As we restore their value, we do not want each counter to
964 * restart right away. We stop monitoring using the PSR,
965 * restore the PMC (and PMD) and then re-establish the psr
966 * as it was. Note that there can be no pending overflow at
967 * this point, because monitoring was MASKED.
969 * system-wide session are pinned and self-monitoring
971 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
973 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
979 * first, we restore the PMD
981 mask = ctx->ctx_used_pmds[0];
982 for (i = 0; mask; i++, mask>>=1) {
983 /* skip non used pmds */
984 if ((mask & 0x1) == 0) continue;
986 if (PMD_IS_COUNTING(i)) {
988 * we split the 64bit value according to
991 val = ctx->ctx_pmds[i].val & ovfl_mask;
992 ctx->ctx_pmds[i].val &= ~ovfl_mask;
994 val = ctx->ctx_pmds[i].val;
996 ia64_set_pmd(i, val);
998 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1000 ctx->ctx_pmds[i].val,
1006 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1007 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1008 if ((mask & 0x1) == 0UL) continue;
1009 th->pmcs[i] = ctx->ctx_pmcs[i];
1010 ia64_set_pmc(i, th->pmcs[i]);
1011 DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, th->pmcs[i]));
1016 * must restore DBR/IBR because could be modified while masked
1017 * XXX: need to optimize
1019 if (ctx->ctx_fl_using_dbreg) {
1020 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1021 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1027 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1029 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1036 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1042 for (i=0; mask; i++, mask>>=1) {
1043 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1048 * reload from thread state (used for ctxw only)
1051 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1054 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1056 for (i=0; mask; i++, mask>>=1) {
1057 if ((mask & 0x1) == 0) continue;
1058 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1059 ia64_set_pmd(i, val);
1065 * propagate PMD from context to thread-state
1068 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1070 struct thread_struct *thread = &task->thread;
1071 unsigned long ovfl_val = pmu_conf->ovfl_val;
1072 unsigned long mask = ctx->ctx_all_pmds[0];
1076 DPRINT(("mask=0x%lx\n", mask));
1078 for (i=0; mask; i++, mask>>=1) {
1080 val = ctx->ctx_pmds[i].val;
1083 * We break up the 64 bit value into 2 pieces
1084 * the lower bits go to the machine state in the
1085 * thread (will be reloaded on ctxsw in).
1086 * The upper part stays in the soft-counter.
1088 if (PMD_IS_COUNTING(i)) {
1089 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1092 thread->pmds[i] = val;
1094 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1097 ctx->ctx_pmds[i].val));
1102 * propagate PMC from context to thread-state
1105 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1107 struct thread_struct *thread = &task->thread;
1108 unsigned long mask = ctx->ctx_all_pmcs[0];
1111 DPRINT(("mask=0x%lx\n", mask));
1113 for (i=0; mask; i++, mask>>=1) {
1114 /* masking 0 with ovfl_val yields 0 */
1115 thread->pmcs[i] = ctx->ctx_pmcs[i];
1116 DPRINT(("pmc[%d]=0x%lx\n", i, thread->pmcs[i]));
1123 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1127 for (i=0; mask; i++, mask>>=1) {
1128 if ((mask & 0x1) == 0) continue;
1129 ia64_set_pmc(i, pmcs[i]);
1135 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1137 return memcmp(a, b, sizeof(pfm_uuid_t));
1141 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1144 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1149 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1152 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1158 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1162 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1167 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1171 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1176 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1179 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1184 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1187 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1191 static pfm_buffer_fmt_t *
1192 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1194 struct list_head * pos;
1195 pfm_buffer_fmt_t * entry;
1197 list_for_each(pos, &pfm_buffer_fmt_list) {
1198 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1199 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1206 * find a buffer format based on its uuid
1208 static pfm_buffer_fmt_t *
1209 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1211 pfm_buffer_fmt_t * fmt;
1212 spin_lock(&pfm_buffer_fmt_lock);
1213 fmt = __pfm_find_buffer_fmt(uuid);
1214 spin_unlock(&pfm_buffer_fmt_lock);
1219 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1223 /* some sanity checks */
1224 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1226 /* we need at least a handler */
1227 if (fmt->fmt_handler == NULL) return -EINVAL;
1230 * XXX: need check validity of fmt_arg_size
1233 spin_lock(&pfm_buffer_fmt_lock);
1235 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1236 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1240 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1241 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1244 spin_unlock(&pfm_buffer_fmt_lock);
1247 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1250 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1252 pfm_buffer_fmt_t *fmt;
1255 spin_lock(&pfm_buffer_fmt_lock);
1257 fmt = __pfm_find_buffer_fmt(uuid);
1259 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1263 list_del_init(&fmt->fmt_list);
1264 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1267 spin_unlock(&pfm_buffer_fmt_lock);
1271 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1273 extern void update_pal_halt_status(int);
1276 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1278 unsigned long flags;
1280 * validy checks on cpu_mask have been done upstream
1284 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1285 pfm_sessions.pfs_sys_sessions,
1286 pfm_sessions.pfs_task_sessions,
1287 pfm_sessions.pfs_sys_use_dbregs,
1293 * cannot mix system wide and per-task sessions
1295 if (pfm_sessions.pfs_task_sessions > 0UL) {
1296 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1297 pfm_sessions.pfs_task_sessions));
1301 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1303 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1305 pfm_sessions.pfs_sys_session[cpu] = task;
1307 pfm_sessions.pfs_sys_sessions++ ;
1310 if (pfm_sessions.pfs_sys_sessions) goto abort;
1311 pfm_sessions.pfs_task_sessions++;
1314 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1315 pfm_sessions.pfs_sys_sessions,
1316 pfm_sessions.pfs_task_sessions,
1317 pfm_sessions.pfs_sys_use_dbregs,
1322 * disable default_idle() to go to PAL_HALT
1324 update_pal_halt_status(0);
1331 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1332 pfm_sessions.pfs_sys_session[cpu]->pid,
1342 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1344 unsigned long flags;
1346 * validy checks on cpu_mask have been done upstream
1350 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1351 pfm_sessions.pfs_sys_sessions,
1352 pfm_sessions.pfs_task_sessions,
1353 pfm_sessions.pfs_sys_use_dbregs,
1359 pfm_sessions.pfs_sys_session[cpu] = NULL;
1361 * would not work with perfmon+more than one bit in cpu_mask
1363 if (ctx && ctx->ctx_fl_using_dbreg) {
1364 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1365 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1367 pfm_sessions.pfs_sys_use_dbregs--;
1370 pfm_sessions.pfs_sys_sessions--;
1372 pfm_sessions.pfs_task_sessions--;
1374 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1375 pfm_sessions.pfs_sys_sessions,
1376 pfm_sessions.pfs_task_sessions,
1377 pfm_sessions.pfs_sys_use_dbregs,
1382 * if possible, enable default_idle() to go into PAL_HALT
1384 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1385 update_pal_halt_status(1);
1393 * removes virtual mapping of the sampling buffer.
1394 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1395 * a PROTECT_CTX() section.
1398 pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1403 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1404 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
1408 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1411 * does the actual unmapping
1413 down_write(&task->mm->mmap_sem);
1415 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1417 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1419 up_write(&task->mm->mmap_sem);
1421 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
1424 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1430 * free actual physical storage used by sampling buffer
1434 pfm_free_smpl_buffer(pfm_context_t *ctx)
1436 pfm_buffer_fmt_t *fmt;
1438 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1441 * we won't use the buffer format anymore
1443 fmt = ctx->ctx_buf_fmt;
1445 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1448 ctx->ctx_smpl_vaddr));
1450 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1455 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1457 ctx->ctx_smpl_hdr = NULL;
1458 ctx->ctx_smpl_size = 0UL;
1463 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
1469 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1471 if (fmt == NULL) return;
1473 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1478 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1479 * no real gain from having the whole whorehouse mounted. So we don't need
1480 * any operations on the root directory. However, we need a non-trivial
1481 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1483 static struct vfsmount *pfmfs_mnt;
1488 int err = register_filesystem(&pfm_fs_type);
1490 pfmfs_mnt = kern_mount(&pfm_fs_type);
1491 err = PTR_ERR(pfmfs_mnt);
1492 if (IS_ERR(pfmfs_mnt))
1493 unregister_filesystem(&pfm_fs_type);
1503 unregister_filesystem(&pfm_fs_type);
1508 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1513 unsigned long flags;
1514 DECLARE_WAITQUEUE(wait, current);
1515 if (PFM_IS_FILE(filp) == 0) {
1516 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1520 ctx = (pfm_context_t *)filp->private_data;
1522 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
1527 * check even when there is no message
1529 if (size < sizeof(pfm_msg_t)) {
1530 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1534 PROTECT_CTX(ctx, flags);
1537 * put ourselves on the wait queue
1539 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1547 set_current_state(TASK_INTERRUPTIBLE);
1549 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1552 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1554 UNPROTECT_CTX(ctx, flags);
1557 * check non-blocking read
1560 if(filp->f_flags & O_NONBLOCK) break;
1563 * check pending signals
1565 if(signal_pending(current)) {
1570 * no message, so wait
1574 PROTECT_CTX(ctx, flags);
1576 DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
1577 set_current_state(TASK_RUNNING);
1578 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1580 if (ret < 0) goto abort;
1583 msg = pfm_get_next_msg(ctx);
1585 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
1589 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1592 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1595 UNPROTECT_CTX(ctx, flags);
1601 pfm_write(struct file *file, const char __user *ubuf,
1602 size_t size, loff_t *ppos)
1604 DPRINT(("pfm_write called\n"));
1609 pfm_poll(struct file *filp, poll_table * wait)
1612 unsigned long flags;
1613 unsigned int mask = 0;
1615 if (PFM_IS_FILE(filp) == 0) {
1616 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1620 ctx = (pfm_context_t *)filp->private_data;
1622 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
1627 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1629 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1631 PROTECT_CTX(ctx, flags);
1633 if (PFM_CTXQ_EMPTY(ctx) == 0)
1634 mask = POLLIN | POLLRDNORM;
1636 UNPROTECT_CTX(ctx, flags);
1638 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1644 pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1646 DPRINT(("pfm_ioctl called\n"));
1651 * interrupt cannot be masked when coming here
1654 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1658 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1660 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1664 ctx->ctx_async_queue, ret));
1670 pfm_fasync(int fd, struct file *filp, int on)
1675 if (PFM_IS_FILE(filp) == 0) {
1676 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
1680 ctx = (pfm_context_t *)filp->private_data;
1682 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
1686 * we cannot mask interrupts during this call because this may
1687 * may go to sleep if memory is not readily avalaible.
1689 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1690 * done in caller. Serialization of this function is ensured by caller.
1692 ret = pfm_do_fasync(fd, filp, ctx, on);
1695 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1698 ctx->ctx_async_queue, ret));
1705 * this function is exclusively called from pfm_close().
1706 * The context is not protected at that time, nor are interrupts
1707 * on the remote CPU. That's necessary to avoid deadlocks.
1710 pfm_syswide_force_stop(void *info)
1712 pfm_context_t *ctx = (pfm_context_t *)info;
1713 struct pt_regs *regs = task_pt_regs(current);
1714 struct task_struct *owner;
1715 unsigned long flags;
1718 if (ctx->ctx_cpu != smp_processor_id()) {
1719 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1721 smp_processor_id());
1724 owner = GET_PMU_OWNER();
1725 if (owner != ctx->ctx_task) {
1726 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1728 owner->pid, ctx->ctx_task->pid);
1731 if (GET_PMU_CTX() != ctx) {
1732 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1734 GET_PMU_CTX(), ctx);
1738 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
1740 * the context is already protected in pfm_close(), we simply
1741 * need to mask interrupts to avoid a PMU interrupt race on
1744 local_irq_save(flags);
1746 ret = pfm_context_unload(ctx, NULL, 0, regs);
1748 DPRINT(("context_unload returned %d\n", ret));
1752 * unmask interrupts, PMU interrupts are now spurious here
1754 local_irq_restore(flags);
1758 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1762 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1763 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
1764 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1766 #endif /* CONFIG_SMP */
1769 * called for each close(). Partially free resources.
1770 * When caller is self-monitoring, the context is unloaded.
1773 pfm_flush(struct file *filp)
1776 struct task_struct *task;
1777 struct pt_regs *regs;
1778 unsigned long flags;
1779 unsigned long smpl_buf_size = 0UL;
1780 void *smpl_buf_vaddr = NULL;
1781 int state, is_system;
1783 if (PFM_IS_FILE(filp) == 0) {
1784 DPRINT(("bad magic for\n"));
1788 ctx = (pfm_context_t *)filp->private_data;
1790 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
1795 * remove our file from the async queue, if we use this mode.
1796 * This can be done without the context being protected. We come
1797 * here when the context has become unreacheable by other tasks.
1799 * We may still have active monitoring at this point and we may
1800 * end up in pfm_overflow_handler(). However, fasync_helper()
1801 * operates with interrupts disabled and it cleans up the
1802 * queue. If the PMU handler is called prior to entering
1803 * fasync_helper() then it will send a signal. If it is
1804 * invoked after, it will find an empty queue and no
1805 * signal will be sent. In both case, we are safe
1807 if (filp->f_flags & FASYNC) {
1808 DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
1809 pfm_do_fasync (-1, filp, ctx, 0);
1812 PROTECT_CTX(ctx, flags);
1814 state = ctx->ctx_state;
1815 is_system = ctx->ctx_fl_system;
1817 task = PFM_CTX_TASK(ctx);
1818 regs = task_pt_regs(task);
1820 DPRINT(("ctx_state=%d is_current=%d\n",
1822 task == current ? 1 : 0));
1825 * if state == UNLOADED, then task is NULL
1829 * we must stop and unload because we are losing access to the context.
1831 if (task == current) {
1834 * the task IS the owner but it migrated to another CPU: that's bad
1835 * but we must handle this cleanly. Unfortunately, the kernel does
1836 * not provide a mechanism to block migration (while the context is loaded).
1838 * We need to release the resource on the ORIGINAL cpu.
1840 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1842 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1844 * keep context protected but unmask interrupt for IPI
1846 local_irq_restore(flags);
1848 pfm_syswide_cleanup_other_cpu(ctx);
1851 * restore interrupt masking
1853 local_irq_save(flags);
1856 * context is unloaded at this point
1859 #endif /* CONFIG_SMP */
1862 DPRINT(("forcing unload\n"));
1864 * stop and unload, returning with state UNLOADED
1865 * and session unreserved.
1867 pfm_context_unload(ctx, NULL, 0, regs);
1869 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1874 * remove virtual mapping, if any, for the calling task.
1875 * cannot reset ctx field until last user is calling close().
1877 * ctx_smpl_vaddr must never be cleared because it is needed
1878 * by every task with access to the context
1880 * When called from do_exit(), the mm context is gone already, therefore
1881 * mm is NULL, i.e., the VMA is already gone and we do not have to
1884 if (ctx->ctx_smpl_vaddr && current->mm) {
1885 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1886 smpl_buf_size = ctx->ctx_smpl_size;
1889 UNPROTECT_CTX(ctx, flags);
1892 * if there was a mapping, then we systematically remove it
1893 * at this point. Cannot be done inside critical section
1894 * because some VM function reenables interrupts.
1897 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1902 * called either on explicit close() or from exit_files().
1903 * Only the LAST user of the file gets to this point, i.e., it is
1906 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1907 * (fput()),i.e, last task to access the file. Nobody else can access the
1908 * file at this point.
1910 * When called from exit_files(), the VMA has been freed because exit_mm()
1911 * is executed before exit_files().
1913 * When called from exit_files(), the current task is not yet ZOMBIE but we
1914 * flush the PMU state to the context.
1917 pfm_close(struct inode *inode, struct file *filp)
1920 struct task_struct *task;
1921 struct pt_regs *regs;
1922 DECLARE_WAITQUEUE(wait, current);
1923 unsigned long flags;
1924 unsigned long smpl_buf_size = 0UL;
1925 void *smpl_buf_addr = NULL;
1926 int free_possible = 1;
1927 int state, is_system;
1929 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1931 if (PFM_IS_FILE(filp) == 0) {
1932 DPRINT(("bad magic\n"));
1936 ctx = (pfm_context_t *)filp->private_data;
1938 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
1942 PROTECT_CTX(ctx, flags);
1944 state = ctx->ctx_state;
1945 is_system = ctx->ctx_fl_system;
1947 task = PFM_CTX_TASK(ctx);
1948 regs = task_pt_regs(task);
1950 DPRINT(("ctx_state=%d is_current=%d\n",
1952 task == current ? 1 : 0));
1955 * if task == current, then pfm_flush() unloaded the context
1957 if (state == PFM_CTX_UNLOADED) goto doit;
1960 * context is loaded/masked and task != current, we need to
1961 * either force an unload or go zombie
1965 * The task is currently blocked or will block after an overflow.
1966 * we must force it to wakeup to get out of the
1967 * MASKED state and transition to the unloaded state by itself.
1969 * This situation is only possible for per-task mode
1971 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
1974 * set a "partial" zombie state to be checked
1975 * upon return from down() in pfm_handle_work().
1977 * We cannot use the ZOMBIE state, because it is checked
1978 * by pfm_load_regs() which is called upon wakeup from down().
1979 * In such case, it would free the context and then we would
1980 * return to pfm_handle_work() which would access the
1981 * stale context. Instead, we set a flag invisible to pfm_load_regs()
1982 * but visible to pfm_handle_work().
1984 * For some window of time, we have a zombie context with
1985 * ctx_state = MASKED and not ZOMBIE
1987 ctx->ctx_fl_going_zombie = 1;
1990 * force task to wake up from MASKED state
1992 up(&ctx->ctx_restart_sem);
1994 DPRINT(("waking up ctx_state=%d\n", state));
1997 * put ourself to sleep waiting for the other
1998 * task to report completion
2000 * the context is protected by mutex, therefore there
2001 * is no risk of being notified of completion before
2002 * begin actually on the waitq.
2004 set_current_state(TASK_INTERRUPTIBLE);
2005 add_wait_queue(&ctx->ctx_zombieq, &wait);
2007 UNPROTECT_CTX(ctx, flags);
2010 * XXX: check for signals :
2011 * - ok for explicit close
2012 * - not ok when coming from exit_files()
2017 PROTECT_CTX(ctx, flags);
2020 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2021 set_current_state(TASK_RUNNING);
2024 * context is unloaded at this point
2026 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2028 else if (task != current) {
2031 * switch context to zombie state
2033 ctx->ctx_state = PFM_CTX_ZOMBIE;
2035 DPRINT(("zombie ctx for [%d]\n", task->pid));
2037 * cannot free the context on the spot. deferred until
2038 * the task notices the ZOMBIE state
2042 pfm_context_unload(ctx, NULL, 0, regs);
2047 /* reload state, may have changed during opening of critical section */
2048 state = ctx->ctx_state;
2051 * the context is still attached to a task (possibly current)
2052 * we cannot destroy it right now
2056 * we must free the sampling buffer right here because
2057 * we cannot rely on it being cleaned up later by the
2058 * monitored task. It is not possible to free vmalloc'ed
2059 * memory in pfm_load_regs(). Instead, we remove the buffer
2060 * now. should there be subsequent PMU overflow originally
2061 * meant for sampling, the will be converted to spurious
2062 * and that's fine because the monitoring tools is gone anyway.
2064 if (ctx->ctx_smpl_hdr) {
2065 smpl_buf_addr = ctx->ctx_smpl_hdr;
2066 smpl_buf_size = ctx->ctx_smpl_size;
2067 /* no more sampling */
2068 ctx->ctx_smpl_hdr = NULL;
2069 ctx->ctx_fl_is_sampling = 0;
2072 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2078 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2081 * UNLOADED that the session has already been unreserved.
2083 if (state == PFM_CTX_ZOMBIE) {
2084 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2088 * disconnect file descriptor from context must be done
2091 filp->private_data = NULL;
2094 * if we free on the spot, the context is now completely unreacheable
2095 * from the callers side. The monitored task side is also cut, so we
2098 * If we have a deferred free, only the caller side is disconnected.
2100 UNPROTECT_CTX(ctx, flags);
2103 * All memory free operations (especially for vmalloc'ed memory)
2104 * MUST be done with interrupts ENABLED.
2106 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2109 * return the memory used by the context
2111 if (free_possible) pfm_context_free(ctx);
2117 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2119 DPRINT(("pfm_no_open called\n"));
2125 static struct file_operations pfm_file_ops = {
2126 .llseek = no_llseek,
2131 .open = pfm_no_open, /* special open code to disallow open via /proc */
2132 .fasync = pfm_fasync,
2133 .release = pfm_close,
2138 pfmfs_delete_dentry(struct dentry *dentry)
2143 static struct dentry_operations pfmfs_dentry_operations = {
2144 .d_delete = pfmfs_delete_dentry,
2149 pfm_alloc_fd(struct file **cfile)
2152 struct file *file = NULL;
2153 struct inode * inode;
2157 fd = get_unused_fd();
2158 if (fd < 0) return -ENFILE;
2162 file = get_empty_filp();
2163 if (!file) goto out;
2166 * allocate a new inode
2168 inode = new_inode(pfmfs_mnt->mnt_sb);
2169 if (!inode) goto out;
2171 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2173 inode->i_mode = S_IFCHR|S_IRUGO;
2174 inode->i_uid = current->fsuid;
2175 inode->i_gid = current->fsgid;
2177 sprintf(name, "[%lu]", inode->i_ino);
2179 this.len = strlen(name);
2180 this.hash = inode->i_ino;
2185 * allocate a new dcache entry
2187 file->f_dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2188 if (!file->f_dentry) goto out;
2190 file->f_dentry->d_op = &pfmfs_dentry_operations;
2192 d_add(file->f_dentry, inode);
2193 file->f_vfsmnt = mntget(pfmfs_mnt);
2194 file->f_mapping = inode->i_mapping;
2196 file->f_op = &pfm_file_ops;
2197 file->f_mode = FMODE_READ;
2198 file->f_flags = O_RDONLY;
2202 * may have to delay until context is attached?
2204 fd_install(fd, file);
2207 * the file structure we will use
2213 if (file) put_filp(file);
2219 pfm_free_fd(int fd, struct file *file)
2221 struct files_struct *files = current->files;
2222 struct fdtable *fdt;
2225 * there ie no fd_uninstall(), so we do it here
2227 spin_lock(&files->file_lock);
2228 fdt = files_fdtable(files);
2229 rcu_assign_pointer(fdt->fd[fd], NULL);
2230 spin_unlock(&files->file_lock);
2238 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2240 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2243 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2246 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2257 * allocate a sampling buffer and remaps it into the user address space of the task
2260 pfm_smpl_buffer_alloc(struct task_struct *task, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2262 struct mm_struct *mm = task->mm;
2263 struct vm_area_struct *vma = NULL;
2269 * the fixed header + requested size and align to page boundary
2271 size = PAGE_ALIGN(rsize);
2273 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2276 * check requested size to avoid Denial-of-service attacks
2277 * XXX: may have to refine this test
2278 * Check against address space limit.
2280 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2283 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2287 * We do the easy to undo allocations first.
2289 * pfm_rvmalloc(), clears the buffer, so there is no leak
2291 smpl_buf = pfm_rvmalloc(size);
2292 if (smpl_buf == NULL) {
2293 DPRINT(("Can't allocate sampling buffer\n"));
2297 DPRINT(("smpl_buf @%p\n", smpl_buf));
2300 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2302 DPRINT(("Cannot allocate vma\n"));
2305 memset(vma, 0, sizeof(*vma));
2308 * partially initialize the vma for the sampling buffer
2311 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2312 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2315 * Now we have everything we need and we can initialize
2316 * and connect all the data structures
2319 ctx->ctx_smpl_hdr = smpl_buf;
2320 ctx->ctx_smpl_size = size; /* aligned size */
2323 * Let's do the difficult operations next.
2325 * now we atomically find some area in the address space and
2326 * remap the buffer in it.
2328 down_write(&task->mm->mmap_sem);
2330 /* find some free area in address space, must have mmap sem held */
2331 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2332 if (vma->vm_start == 0UL) {
2333 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2334 up_write(&task->mm->mmap_sem);
2337 vma->vm_end = vma->vm_start + size;
2338 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2340 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2342 /* can only be applied to current task, need to have the mm semaphore held when called */
2343 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2344 DPRINT(("Can't remap buffer\n"));
2345 up_write(&task->mm->mmap_sem);
2350 * now insert the vma in the vm list for the process, must be
2351 * done with mmap lock held
2353 insert_vm_struct(mm, vma);
2355 mm->total_vm += size >> PAGE_SHIFT;
2356 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2358 up_write(&task->mm->mmap_sem);
2361 * keep track of user level virtual address
2363 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2364 *(unsigned long *)user_vaddr = vma->vm_start;
2369 kmem_cache_free(vm_area_cachep, vma);
2371 pfm_rvfree(smpl_buf, size);
2377 * XXX: do something better here
2380 pfm_bad_permissions(struct task_struct *task)
2382 /* inspired by ptrace_attach() */
2383 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2392 return ((current->uid != task->euid)
2393 || (current->uid != task->suid)
2394 || (current->uid != task->uid)
2395 || (current->gid != task->egid)
2396 || (current->gid != task->sgid)
2397 || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
2401 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2407 ctx_flags = pfx->ctx_flags;
2409 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2412 * cannot block in this mode
2414 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2415 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2420 /* probably more to add here */
2426 pfm_setup_buffer_fmt(struct task_struct *task, pfm_context_t *ctx, unsigned int ctx_flags,
2427 unsigned int cpu, pfarg_context_t *arg)
2429 pfm_buffer_fmt_t *fmt = NULL;
2430 unsigned long size = 0UL;
2432 void *fmt_arg = NULL;
2434 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2436 /* invoke and lock buffer format, if found */
2437 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2439 DPRINT(("[%d] cannot find buffer format\n", task->pid));
2444 * buffer argument MUST be contiguous to pfarg_context_t
2446 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2448 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2450 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
2452 if (ret) goto error;
2454 /* link buffer format and context */
2455 ctx->ctx_buf_fmt = fmt;
2458 * check if buffer format wants to use perfmon buffer allocation/mapping service
2460 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2461 if (ret) goto error;
2465 * buffer is always remapped into the caller's address space
2467 ret = pfm_smpl_buffer_alloc(current, ctx, size, &uaddr);
2468 if (ret) goto error;
2470 /* keep track of user address of buffer */
2471 arg->ctx_smpl_vaddr = uaddr;
2473 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2480 pfm_reset_pmu_state(pfm_context_t *ctx)
2485 * install reset values for PMC.
2487 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2488 if (PMC_IS_IMPL(i) == 0) continue;
2489 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2490 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2493 * PMD registers are set to 0UL when the context in memset()
2497 * On context switched restore, we must restore ALL pmc and ALL pmd even
2498 * when they are not actively used by the task. In UP, the incoming process
2499 * may otherwise pick up left over PMC, PMD state from the previous process.
2500 * As opposed to PMD, stale PMC can cause harm to the incoming
2501 * process because they may change what is being measured.
2502 * Therefore, we must systematically reinstall the entire
2503 * PMC state. In SMP, the same thing is possible on the
2504 * same CPU but also on between 2 CPUs.
2506 * The problem with PMD is information leaking especially
2507 * to user level when psr.sp=0
2509 * There is unfortunately no easy way to avoid this problem
2510 * on either UP or SMP. This definitively slows down the
2511 * pfm_load_regs() function.
2515 * bitmask of all PMCs accessible to this context
2517 * PMC0 is treated differently.
2519 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2522 * bitmask of all PMDs that are accesible to this context
2524 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2526 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2529 * useful in case of re-enable after disable
2531 ctx->ctx_used_ibrs[0] = 0UL;
2532 ctx->ctx_used_dbrs[0] = 0UL;
2536 pfm_ctx_getsize(void *arg, size_t *sz)
2538 pfarg_context_t *req = (pfarg_context_t *)arg;
2539 pfm_buffer_fmt_t *fmt;
2543 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2545 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2547 DPRINT(("cannot find buffer format\n"));
2550 /* get just enough to copy in user parameters */
2551 *sz = fmt->fmt_arg_size;
2552 DPRINT(("arg_size=%lu\n", *sz));
2560 * cannot attach if :
2562 * - task not owned by caller
2563 * - task incompatible with context mode
2566 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2569 * no kernel task or task not owner by caller
2571 if (task->mm == NULL) {
2572 DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
2575 if (pfm_bad_permissions(task)) {
2576 DPRINT(("no permission to attach to [%d]\n", task->pid));
2580 * cannot block in self-monitoring mode
2582 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2583 DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
2587 if (task->exit_state == EXIT_ZOMBIE) {
2588 DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
2593 * always ok for self
2595 if (task == current) return 0;
2597 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
2598 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
2602 * make sure the task is off any CPU
2604 wait_task_inactive(task);
2606 /* more to come... */
2612 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2614 struct task_struct *p = current;
2617 /* XXX: need to add more checks here */
2618 if (pid < 2) return -EPERM;
2620 if (pid != current->pid) {
2622 read_lock(&tasklist_lock);
2624 p = find_task_by_pid(pid);
2626 /* make sure task cannot go away while we operate on it */
2627 if (p) get_task_struct(p);
2629 read_unlock(&tasklist_lock);
2631 if (p == NULL) return -ESRCH;
2634 ret = pfm_task_incompatible(ctx, p);
2637 } else if (p != current) {
2646 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2648 pfarg_context_t *req = (pfarg_context_t *)arg;
2653 /* let's check the arguments first */
2654 ret = pfarg_is_sane(current, req);
2655 if (ret < 0) return ret;
2657 ctx_flags = req->ctx_flags;
2661 ctx = pfm_context_alloc();
2662 if (!ctx) goto error;
2664 ret = pfm_alloc_fd(&filp);
2665 if (ret < 0) goto error_file;
2667 req->ctx_fd = ctx->ctx_fd = ret;
2670 * attach context to file
2672 filp->private_data = ctx;
2675 * does the user want to sample?
2677 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2678 ret = pfm_setup_buffer_fmt(current, ctx, ctx_flags, 0, req);
2679 if (ret) goto buffer_error;
2683 * init context protection lock
2685 spin_lock_init(&ctx->ctx_lock);
2688 * context is unloaded
2690 ctx->ctx_state = PFM_CTX_UNLOADED;
2693 * initialization of context's flags
2695 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
2696 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
2697 ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
2698 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
2700 * will move to set properties
2701 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2705 * init restart semaphore to locked
2707 sema_init(&ctx->ctx_restart_sem, 0);
2710 * activation is used in SMP only
2712 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
2713 SET_LAST_CPU(ctx, -1);
2716 * initialize notification message queue
2718 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
2719 init_waitqueue_head(&ctx->ctx_msgq_wait);
2720 init_waitqueue_head(&ctx->ctx_zombieq);
2722 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2727 ctx->ctx_fl_excl_idle,
2732 * initialize soft PMU state
2734 pfm_reset_pmu_state(ctx);
2739 pfm_free_fd(ctx->ctx_fd, filp);
2741 if (ctx->ctx_buf_fmt) {
2742 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2745 pfm_context_free(ctx);
2751 static inline unsigned long
2752 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2754 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2755 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2756 extern unsigned long carta_random32 (unsigned long seed);
2758 if (reg->flags & PFM_REGFL_RANDOM) {
2759 new_seed = carta_random32(old_seed);
2760 val -= (old_seed & mask); /* counter values are negative numbers! */
2761 if ((mask >> 32) != 0)
2762 /* construct a full 64-bit random value: */
2763 new_seed |= carta_random32(old_seed >> 32) << 32;
2764 reg->seed = new_seed;
2771 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2773 unsigned long mask = ovfl_regs[0];
2774 unsigned long reset_others = 0UL;
2779 * now restore reset value on sampling overflowed counters
2781 mask >>= PMU_FIRST_COUNTER;
2782 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2784 if ((mask & 0x1UL) == 0UL) continue;
2786 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2787 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2789 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2793 * Now take care of resetting the other registers
2795 for(i = 0; reset_others; i++, reset_others >>= 1) {
2797 if ((reset_others & 0x1) == 0) continue;
2799 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2801 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2802 is_long_reset ? "long" : "short", i, val));
2807 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2809 unsigned long mask = ovfl_regs[0];
2810 unsigned long reset_others = 0UL;
2814 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2816 if (ctx->ctx_state == PFM_CTX_MASKED) {
2817 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2822 * now restore reset value on sampling overflowed counters
2824 mask >>= PMU_FIRST_COUNTER;
2825 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2827 if ((mask & 0x1UL) == 0UL) continue;
2829 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2830 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2832 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2834 pfm_write_soft_counter(ctx, i, val);
2838 * Now take care of resetting the other registers
2840 for(i = 0; reset_others; i++, reset_others >>= 1) {
2842 if ((reset_others & 0x1) == 0) continue;
2844 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2846 if (PMD_IS_COUNTING(i)) {
2847 pfm_write_soft_counter(ctx, i, val);
2849 ia64_set_pmd(i, val);
2851 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2852 is_long_reset ? "long" : "short", i, val));
2858 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2860 struct thread_struct *thread = NULL;
2861 struct task_struct *task;
2862 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2863 unsigned long value, pmc_pm;
2864 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2865 unsigned int cnum, reg_flags, flags, pmc_type;
2866 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2867 int is_monitor, is_counting, state;
2869 pfm_reg_check_t wr_func;
2870 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2872 state = ctx->ctx_state;
2873 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2874 is_system = ctx->ctx_fl_system;
2875 task = ctx->ctx_task;
2876 impl_pmds = pmu_conf->impl_pmds[0];
2878 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2881 thread = &task->thread;
2883 * In system wide and when the context is loaded, access can only happen
2884 * when the caller is running on the CPU being monitored by the session.
2885 * It does not have to be the owner (ctx_task) of the context per se.
2887 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2888 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2891 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2893 expert_mode = pfm_sysctl.expert_mode;
2895 for (i = 0; i < count; i++, req++) {
2897 cnum = req->reg_num;
2898 reg_flags = req->reg_flags;
2899 value = req->reg_value;
2900 smpl_pmds = req->reg_smpl_pmds[0];
2901 reset_pmds = req->reg_reset_pmds[0];
2905 if (cnum >= PMU_MAX_PMCS) {
2906 DPRINT(("pmc%u is invalid\n", cnum));
2910 pmc_type = pmu_conf->pmc_desc[cnum].type;
2911 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2912 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2913 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2916 * we reject all non implemented PMC as well
2917 * as attempts to modify PMC[0-3] which are used
2918 * as status registers by the PMU
2920 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2921 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2924 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2926 * If the PMC is a monitor, then if the value is not the default:
2927 * - system-wide session: PMCx.pm=1 (privileged monitor)
2928 * - per-task : PMCx.pm=0 (user monitor)
2930 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2931 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2940 * enforce generation of overflow interrupt. Necessary on all
2943 value |= 1 << PMU_PMC_OI;
2945 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2946 flags |= PFM_REGFL_OVFL_NOTIFY;
2949 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2951 /* verify validity of smpl_pmds */
2952 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2953 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2957 /* verify validity of reset_pmds */
2958 if ((reset_pmds & impl_pmds) != reset_pmds) {
2959 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2963 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2964 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2967 /* eventid on non-counting monitors are ignored */
2971 * execute write checker, if any
2973 if (likely(expert_mode == 0 && wr_func)) {
2974 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2975 if (ret) goto error;
2980 * no error on this register
2982 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2985 * Now we commit the changes to the software state
2989 * update overflow information
2993 * full flag update each time a register is programmed
2995 ctx->ctx_pmds[cnum].flags = flags;
2997 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2998 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2999 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
3002 * Mark all PMDS to be accessed as used.
3004 * We do not keep track of PMC because we have to
3005 * systematically restore ALL of them.
3007 * We do not update the used_monitors mask, because
3008 * if we have not programmed them, then will be in
3009 * a quiescent state, therefore we will not need to
3010 * mask/restore then when context is MASKED.
3012 CTX_USED_PMD(ctx, reset_pmds);
3013 CTX_USED_PMD(ctx, smpl_pmds);
3015 * make sure we do not try to reset on
3016 * restart because we have established new values
3018 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3021 * Needed in case the user does not initialize the equivalent
3022 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3023 * possible leak here.
3025 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3028 * keep track of the monitor PMC that we are using.
3029 * we save the value of the pmc in ctx_pmcs[] and if
3030 * the monitoring is not stopped for the context we also
3031 * place it in the saved state area so that it will be
3032 * picked up later by the context switch code.
3034 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3036 * The value in thread->pmcs[] may be modified on overflow, i.e., when
3037 * monitoring needs to be stopped.
3039 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3042 * update context state
3044 ctx->ctx_pmcs[cnum] = value;
3048 * write thread state
3050 if (is_system == 0) thread->pmcs[cnum] = value;
3053 * write hardware register if we can
3055 if (can_access_pmu) {
3056 ia64_set_pmc(cnum, value);
3061 * per-task SMP only here
3063 * we are guaranteed that the task is not running on the other CPU,
3064 * we indicate that this PMD will need to be reloaded if the task
3065 * is rescheduled on the CPU it ran last on.
3067 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3072 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3078 ctx->ctx_all_pmcs[0],
3079 ctx->ctx_used_pmds[0],
3080 ctx->ctx_pmds[cnum].eventid,
3083 ctx->ctx_reload_pmcs[0],
3084 ctx->ctx_used_monitors[0],
3085 ctx->ctx_ovfl_regs[0]));
3089 * make sure the changes are visible
3091 if (can_access_pmu) ia64_srlz_d();
3095 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3100 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3102 struct thread_struct *thread = NULL;
3103 struct task_struct *task;
3104 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3105 unsigned long value, hw_value, ovfl_mask;
3107 int i, can_access_pmu = 0, state;
3108 int is_counting, is_loaded, is_system, expert_mode;
3110 pfm_reg_check_t wr_func;
3113 state = ctx->ctx_state;
3114 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3115 is_system = ctx->ctx_fl_system;
3116 ovfl_mask = pmu_conf->ovfl_val;
3117 task = ctx->ctx_task;
3119 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3122 * on both UP and SMP, we can only write to the PMC when the task is
3123 * the owner of the local PMU.
3125 if (likely(is_loaded)) {
3126 thread = &task->thread;
3128 * In system wide and when the context is loaded, access can only happen
3129 * when the caller is running on the CPU being monitored by the session.
3130 * It does not have to be the owner (ctx_task) of the context per se.
3132 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3133 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3136 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3138 expert_mode = pfm_sysctl.expert_mode;
3140 for (i = 0; i < count; i++, req++) {
3142 cnum = req->reg_num;
3143 value = req->reg_value;
3145 if (!PMD_IS_IMPL(cnum)) {
3146 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3149 is_counting = PMD_IS_COUNTING(cnum);
3150 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3153 * execute write checker, if any
3155 if (unlikely(expert_mode == 0 && wr_func)) {
3156 unsigned long v = value;
3158 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3159 if (ret) goto abort_mission;
3166 * no error on this register
3168 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3171 * now commit changes to software state
3176 * update virtualized (64bits) counter
3180 * write context state
3182 ctx->ctx_pmds[cnum].lval = value;
3185 * when context is load we use the split value
3188 hw_value = value & ovfl_mask;
3189 value = value & ~ovfl_mask;
3193 * update reset values (not just for counters)
3195 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3196 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3199 * update randomization parameters (not just for counters)
3201 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3202 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3205 * update context value
3207 ctx->ctx_pmds[cnum].val = value;
3210 * Keep track of what we use
3212 * We do not keep track of PMC because we have to
3213 * systematically restore ALL of them.
3215 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3218 * mark this PMD register used as well
3220 CTX_USED_PMD(ctx, RDEP(cnum));
3223 * make sure we do not try to reset on
3224 * restart because we have established new values
3226 if (is_counting && state == PFM_CTX_MASKED) {
3227 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3232 * write thread state
3234 if (is_system == 0) thread->pmds[cnum] = hw_value;
3237 * write hardware register if we can
3239 if (can_access_pmu) {
3240 ia64_set_pmd(cnum, hw_value);
3244 * we are guaranteed that the task is not running on the other CPU,
3245 * we indicate that this PMD will need to be reloaded if the task
3246 * is rescheduled on the CPU it ran last on.
3248 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3253 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3254 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3260 ctx->ctx_pmds[cnum].val,
3261 ctx->ctx_pmds[cnum].short_reset,
3262 ctx->ctx_pmds[cnum].long_reset,
3263 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3264 ctx->ctx_pmds[cnum].seed,
3265 ctx->ctx_pmds[cnum].mask,
3266 ctx->ctx_used_pmds[0],
3267 ctx->ctx_pmds[cnum].reset_pmds[0],
3268 ctx->ctx_reload_pmds[0],
3269 ctx->ctx_all_pmds[0],
3270 ctx->ctx_ovfl_regs[0]));
3274 * make changes visible
3276 if (can_access_pmu) ia64_srlz_d();
3282 * for now, we have only one possibility for error
3284 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3289 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3290 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3291 * interrupt is delivered during the call, it will be kept pending until we leave, making
3292 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3293 * guaranteed to return consistent data to the user, it may simply be old. It is not
3294 * trivial to treat the overflow while inside the call because you may end up in
3295 * some module sampling buffer code causing deadlocks.
3298 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3300 struct thread_struct *thread = NULL;
3301 struct task_struct *task;
3302 unsigned long val = 0UL, lval, ovfl_mask, sval;
3303 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3304 unsigned int cnum, reg_flags = 0;
3305 int i, can_access_pmu = 0, state;
3306 int is_loaded, is_system, is_counting, expert_mode;
3308 pfm_reg_check_t rd_func;
3311 * access is possible when loaded only for
3312 * self-monitoring tasks or in UP mode
3315 state = ctx->ctx_state;
3316 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3317 is_system = ctx->ctx_fl_system;
3318 ovfl_mask = pmu_conf->ovfl_val;
3319 task = ctx->ctx_task;
3321 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3323 if (likely(is_loaded)) {
3324 thread = &task->thread;
3326 * In system wide and when the context is loaded, access can only happen
3327 * when the caller is running on the CPU being monitored by the session.
3328 * It does not have to be the owner (ctx_task) of the context per se.
3330 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3331 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3335 * this can be true when not self-monitoring only in UP
3337 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3339 if (can_access_pmu) ia64_srlz_d();
3341 expert_mode = pfm_sysctl.expert_mode;
3343 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3349 * on both UP and SMP, we can only read the PMD from the hardware register when
3350 * the task is the owner of the local PMU.
3353 for (i = 0; i < count; i++, req++) {
3355 cnum = req->reg_num;
3356 reg_flags = req->reg_flags;
3358 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3360 * we can only read the register that we use. That includes
3361 * the one we explicitely initialize AND the one we want included
3362 * in the sampling buffer (smpl_regs).
3364 * Having this restriction allows optimization in the ctxsw routine
3365 * without compromising security (leaks)
3367 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3369 sval = ctx->ctx_pmds[cnum].val;
3370 lval = ctx->ctx_pmds[cnum].lval;
3371 is_counting = PMD_IS_COUNTING(cnum);
3374 * If the task is not the current one, then we check if the
3375 * PMU state is still in the local live register due to lazy ctxsw.
3376 * If true, then we read directly from the registers.
3378 if (can_access_pmu){
3379 val = ia64_get_pmd(cnum);
3382 * context has been saved
3383 * if context is zombie, then task does not exist anymore.
3384 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3386 val = is_loaded ? thread->pmds[cnum] : 0UL;
3388 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3392 * XXX: need to check for overflow when loaded
3399 * execute read checker, if any
3401 if (unlikely(expert_mode == 0 && rd_func)) {
3402 unsigned long v = val;
3403 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3404 if (ret) goto error;
3409 PFM_REG_RETFLAG_SET(reg_flags, 0);
3411 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3414 * update register return value, abort all if problem during copy.
3415 * we only modify the reg_flags field. no check mode is fine because
3416 * access has been verified upfront in sys_perfmonctl().
3418 req->reg_value = val;
3419 req->reg_flags = reg_flags;
3420 req->reg_last_reset_val = lval;
3426 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3431 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3435 if (req == NULL) return -EINVAL;
3437 ctx = GET_PMU_CTX();
3439 if (ctx == NULL) return -EINVAL;
3442 * for now limit to current task, which is enough when calling
3443 * from overflow handler
3445 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3447 return pfm_write_pmcs(ctx, req, nreq, regs);
3449 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3452 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3456 if (req == NULL) return -EINVAL;
3458 ctx = GET_PMU_CTX();
3460 if (ctx == NULL) return -EINVAL;
3463 * for now limit to current task, which is enough when calling
3464 * from overflow handler
3466 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3468 return pfm_read_pmds(ctx, req, nreq, regs);
3470 EXPORT_SYMBOL(pfm_mod_read_pmds);
3473 * Only call this function when a process it trying to
3474 * write the debug registers (reading is always allowed)
3477 pfm_use_debug_registers(struct task_struct *task)
3479 pfm_context_t *ctx = task->thread.pfm_context;
3480 unsigned long flags;
3483 if (pmu_conf->use_rr_dbregs == 0) return 0;
3485 DPRINT(("called for [%d]\n", task->pid));
3490 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3493 * Even on SMP, we do not need to use an atomic here because
3494 * the only way in is via ptrace() and this is possible only when the
3495 * process is stopped. Even in the case where the ctxsw out is not totally
3496 * completed by the time we come here, there is no way the 'stopped' process
3497 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3498 * So this is always safe.
3500 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3505 * We cannot allow setting breakpoints when system wide monitoring
3506 * sessions are using the debug registers.
3508 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3511 pfm_sessions.pfs_ptrace_use_dbregs++;
3513 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3514 pfm_sessions.pfs_ptrace_use_dbregs,
3515 pfm_sessions.pfs_sys_use_dbregs,
3524 * This function is called for every task that exits with the
3525 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3526 * able to use the debug registers for debugging purposes via
3527 * ptrace(). Therefore we know it was not using them for
3528 * perfmormance monitoring, so we only decrement the number
3529 * of "ptraced" debug register users to keep the count up to date
3532 pfm_release_debug_registers(struct task_struct *task)
3534 unsigned long flags;
3537 if (pmu_conf->use_rr_dbregs == 0) return 0;
3540 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3541 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
3544 pfm_sessions.pfs_ptrace_use_dbregs--;
3553 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3555 struct task_struct *task;
3556 pfm_buffer_fmt_t *fmt;
3557 pfm_ovfl_ctrl_t rst_ctrl;
3558 int state, is_system;
3561 state = ctx->ctx_state;
3562 fmt = ctx->ctx_buf_fmt;
3563 is_system = ctx->ctx_fl_system;
3564 task = PFM_CTX_TASK(ctx);
3567 case PFM_CTX_MASKED:
3569 case PFM_CTX_LOADED:
3570 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3572 case PFM_CTX_UNLOADED:
3573 case PFM_CTX_ZOMBIE:
3574 DPRINT(("invalid state=%d\n", state));
3577 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3582 * In system wide and when the context is loaded, access can only happen
3583 * when the caller is running on the CPU being monitored by the session.
3584 * It does not have to be the owner (ctx_task) of the context per se.
3586 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3587 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3592 if (unlikely(task == NULL)) {
3593 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
3597 if (task == current || is_system) {
3599 fmt = ctx->ctx_buf_fmt;
3601 DPRINT(("restarting self %d ovfl=0x%lx\n",
3603 ctx->ctx_ovfl_regs[0]));
3605 if (CTX_HAS_SMPL(ctx)) {
3607 prefetch(ctx->ctx_smpl_hdr);
3609 rst_ctrl.bits.mask_monitoring = 0;
3610 rst_ctrl.bits.reset_ovfl_pmds = 0;
3612 if (state == PFM_CTX_LOADED)
3613 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3615 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3617 rst_ctrl.bits.mask_monitoring = 0;
3618 rst_ctrl.bits.reset_ovfl_pmds = 1;
3622 if (rst_ctrl.bits.reset_ovfl_pmds)
3623 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3625 if (rst_ctrl.bits.mask_monitoring == 0) {
3626 DPRINT(("resuming monitoring for [%d]\n", task->pid));
3628 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3630 DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
3632 // cannot use pfm_stop_monitoring(task, regs);
3636 * clear overflowed PMD mask to remove any stale information
3638 ctx->ctx_ovfl_regs[0] = 0UL;
3641 * back to LOADED state
3643 ctx->ctx_state = PFM_CTX_LOADED;
3646 * XXX: not really useful for self monitoring
3648 ctx->ctx_fl_can_restart = 0;
3654 * restart another task
3658 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3659 * one is seen by the task.
3661 if (state == PFM_CTX_MASKED) {
3662 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3664 * will prevent subsequent restart before this one is
3665 * seen by other task
3667 ctx->ctx_fl_can_restart = 0;
3671 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3672 * the task is blocked or on its way to block. That's the normal
3673 * restart path. If the monitoring is not masked, then the task
3674 * can be actively monitoring and we cannot directly intervene.
3675 * Therefore we use the trap mechanism to catch the task and
3676 * force it to reset the buffer/reset PMDs.
3678 * if non-blocking, then we ensure that the task will go into
3679 * pfm_handle_work() before returning to user mode.
3681 * We cannot explicitely reset another task, it MUST always
3682 * be done by the task itself. This works for system wide because
3683 * the tool that is controlling the session is logically doing
3684 * "self-monitoring".
3686 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3687 DPRINT(("unblocking [%d] \n", task->pid));
3688 up(&ctx->ctx_restart_sem);
3690 DPRINT(("[%d] armed exit trap\n", task->pid));
3692 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3694 PFM_SET_WORK_PENDING(task, 1);
3696 pfm_set_task_notify(task);
3699 * XXX: send reschedule if task runs on another CPU
3706 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3708 unsigned int m = *(unsigned int *)arg;
3710 pfm_sysctl.debug = m == 0 ? 0 : 1;
3712 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3715 memset(pfm_stats, 0, sizeof(pfm_stats));
3716 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3722 * arg can be NULL and count can be zero for this function
3725 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3727 struct thread_struct *thread = NULL;
3728 struct task_struct *task;
3729 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3730 unsigned long flags;
3735 int i, can_access_pmu = 0;
3736 int is_system, is_loaded;
3738 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3740 state = ctx->ctx_state;
3741 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3742 is_system = ctx->ctx_fl_system;
3743 task = ctx->ctx_task;
3745 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3748 * on both UP and SMP, we can only write to the PMC when the task is
3749 * the owner of the local PMU.
3752 thread = &task->thread;
3754 * In system wide and when the context is loaded, access can only happen
3755 * when the caller is running on the CPU being monitored by the session.
3756 * It does not have to be the owner (ctx_task) of the context per se.
3758 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3759 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3762 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3766 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3767 * ensuring that no real breakpoint can be installed via this call.
3769 * IMPORTANT: regs can be NULL in this function
3772 first_time = ctx->ctx_fl_using_dbreg == 0;
3775 * don't bother if we are loaded and task is being debugged
3777 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3778 DPRINT(("debug registers already in use for [%d]\n", task->pid));
3783 * check for debug registers in system wide mode
3785 * If though a check is done in pfm_context_load(),
3786 * we must repeat it here, in case the registers are
3787 * written after the context is loaded
3792 if (first_time && is_system) {
3793 if (pfm_sessions.pfs_ptrace_use_dbregs)
3796 pfm_sessions.pfs_sys_use_dbregs++;
3801 if (ret != 0) return ret;
3804 * mark ourself as user of the debug registers for
3807 ctx->ctx_fl_using_dbreg = 1;
3810 * clear hardware registers to make sure we don't
3811 * pick up stale state.
3813 * for a system wide session, we do not use
3814 * thread.dbr, thread.ibr because this process
3815 * never leaves the current CPU and the state
3816 * is shared by all processes running on it
3818 if (first_time && can_access_pmu) {
3819 DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
3820 for (i=0; i < pmu_conf->num_ibrs; i++) {
3821 ia64_set_ibr(i, 0UL);
3822 ia64_dv_serialize_instruction();
3825 for (i=0; i < pmu_conf->num_dbrs; i++) {
3826 ia64_set_dbr(i, 0UL);
3827 ia64_dv_serialize_data();
3833 * Now install the values into the registers
3835 for (i = 0; i < count; i++, req++) {
3837 rnum = req->dbreg_num;
3838 dbreg.val = req->dbreg_value;
3842 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3843 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3844 rnum, dbreg.val, mode, i, count));
3850 * make sure we do not install enabled breakpoint
3853 if (mode == PFM_CODE_RR)
3854 dbreg.ibr.ibr_x = 0;
3856 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3859 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3862 * Debug registers, just like PMC, can only be modified
3863 * by a kernel call. Moreover, perfmon() access to those
3864 * registers are centralized in this routine. The hardware
3865 * does not modify the value of these registers, therefore,
3866 * if we save them as they are written, we can avoid having
3867 * to save them on context switch out. This is made possible
3868 * by the fact that when perfmon uses debug registers, ptrace()
3869 * won't be able to modify them concurrently.
3871 if (mode == PFM_CODE_RR) {
3872 CTX_USED_IBR(ctx, rnum);
3874 if (can_access_pmu) {
3875 ia64_set_ibr(rnum, dbreg.val);
3876 ia64_dv_serialize_instruction();
3879 ctx->ctx_ibrs[rnum] = dbreg.val;
3881 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3882 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3884 CTX_USED_DBR(ctx, rnum);
3886 if (can_access_pmu) {
3887 ia64_set_dbr(rnum, dbreg.val);
3888 ia64_dv_serialize_data();
3890 ctx->ctx_dbrs[rnum] = dbreg.val;
3892 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3893 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3901 * in case it was our first attempt, we undo the global modifications
3905 if (ctx->ctx_fl_system) {
3906 pfm_sessions.pfs_sys_use_dbregs--;
3909 ctx->ctx_fl_using_dbreg = 0;
3912 * install error return flag
3914 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3920 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3922 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3926 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3928 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3932 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3936 if (req == NULL) return -EINVAL;
3938 ctx = GET_PMU_CTX();
3940 if (ctx == NULL) return -EINVAL;
3943 * for now limit to current task, which is enough when calling
3944 * from overflow handler
3946 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3948 return pfm_write_ibrs(ctx, req, nreq, regs);
3950 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3953 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3957 if (req == NULL) return -EINVAL;
3959 ctx = GET_PMU_CTX();
3961 if (ctx == NULL) return -EINVAL;
3964 * for now limit to current task, which is enough when calling
3965 * from overflow handler
3967 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3969 return pfm_write_dbrs(ctx, req, nreq, regs);
3971 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3975 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3977 pfarg_features_t *req = (pfarg_features_t *)arg;
3979 req->ft_version = PFM_VERSION;
3984 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3986 struct pt_regs *tregs;
3987 struct task_struct *task = PFM_CTX_TASK(ctx);
3988 int state, is_system;
3990 state = ctx->ctx_state;
3991 is_system = ctx->ctx_fl_system;
3994 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3996 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3999 * In system wide and when the context is loaded, access can only happen
4000 * when the caller is running on the CPU being monitored by the session.
4001 * It does not have to be the owner (ctx_task) of the context per se.
4003 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4004 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4007 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4008 PFM_CTX_TASK(ctx)->pid,
4012 * in system mode, we need to update the PMU directly
4013 * and the user level state of the caller, which may not
4014 * necessarily be the creator of the context.
4018 * Update local PMU first
4022 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4026 * update local cpuinfo
4028 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4031 * stop monitoring, does srlz.i
4036 * stop monitoring in the caller
4038 ia64_psr(regs)->pp = 0;
4046 if (task == current) {
4047 /* stop monitoring at kernel level */
4051 * stop monitoring at the user level
4053 ia64_psr(regs)->up = 0;
4055 tregs = task_pt_regs(task);
4058 * stop monitoring at the user level
4060 ia64_psr(tregs)->up = 0;
4063 * monitoring disabled in kernel at next reschedule
4065 ctx->ctx_saved_psr_up = 0;
4066 DPRINT(("task=[%d]\n", task->pid));
4073 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4075 struct pt_regs *tregs;
4076 int state, is_system;
4078 state = ctx->ctx_state;
4079 is_system = ctx->ctx_fl_system;
4081 if (state != PFM_CTX_LOADED) return -EINVAL;
4084 * In system wide and when the context is loaded, access can only happen
4085 * when the caller is running on the CPU being monitored by the session.
4086 * It does not have to be the owner (ctx_task) of the context per se.
4088 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4089 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4094 * in system mode, we need to update the PMU directly
4095 * and the user level state of the caller, which may not
4096 * necessarily be the creator of the context.
4101 * set user level psr.pp for the caller
4103 ia64_psr(regs)->pp = 1;
4106 * now update the local PMU and cpuinfo
4108 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4111 * start monitoring at kernel level
4116 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4126 if (ctx->ctx_task == current) {
4128 /* start monitoring at kernel level */
4132 * activate monitoring at user level
4134 ia64_psr(regs)->up = 1;
4137 tregs = task_pt_regs(ctx->ctx_task);
4140 * start monitoring at the kernel level the next
4141 * time the task is scheduled
4143 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4146 * activate monitoring at user level
4148 ia64_psr(tregs)->up = 1;
4154 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4156 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4161 for (i = 0; i < count; i++, req++) {
4163 cnum = req->reg_num;
4165 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4167 req->reg_value = PMC_DFL_VAL(cnum);
4169 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4171 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4176 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4181 pfm_check_task_exist(pfm_context_t *ctx)
4183 struct task_struct *g, *t;
4186 read_lock(&tasklist_lock);
4188 do_each_thread (g, t) {
4189 if (t->thread.pfm_context == ctx) {
4193 } while_each_thread (g, t);
4195 read_unlock(&tasklist_lock);
4197 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4203 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4205 struct task_struct *task;
4206 struct thread_struct *thread;
4207 struct pfm_context_t *old;
4208 unsigned long flags;
4210 struct task_struct *owner_task = NULL;
4212 pfarg_load_t *req = (pfarg_load_t *)arg;
4213 unsigned long *pmcs_source, *pmds_source;
4216 int state, is_system, set_dbregs = 0;
4218 state = ctx->ctx_state;
4219 is_system = ctx->ctx_fl_system;
4221 * can only load from unloaded or terminated state
4223 if (state != PFM_CTX_UNLOADED) {
4224 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4230 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4232 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4233 DPRINT(("cannot use blocking mode on self\n"));
4237 ret = pfm_get_task(ctx, req->load_pid, &task);
4239 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4246 * system wide is self monitoring only
4248 if (is_system && task != current) {
4249 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4254 thread = &task->thread;
4258 * cannot load a context which is using range restrictions,
4259 * into a task that is being debugged.
4261 if (ctx->ctx_fl_using_dbreg) {
4262 if (thread->flags & IA64_THREAD_DBG_VALID) {
4264 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4270 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4271 DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
4274 pfm_sessions.pfs_sys_use_dbregs++;
4275 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
4282 if (ret) goto error;
4286 * SMP system-wide monitoring implies self-monitoring.
4288 * The programming model expects the task to
4289 * be pinned on a CPU throughout the session.
4290 * Here we take note of the current CPU at the
4291 * time the context is loaded. No call from
4292 * another CPU will be allowed.
4294 * The pinning via shed_setaffinity()
4295 * must be done by the calling task prior
4298 * systemwide: keep track of CPU this session is supposed to run on
4300 the_cpu = ctx->ctx_cpu = smp_processor_id();
4304 * now reserve the session
4306 ret = pfm_reserve_session(current, is_system, the_cpu);
4307 if (ret) goto error;
4310 * task is necessarily stopped at this point.
4312 * If the previous context was zombie, then it got removed in
4313 * pfm_save_regs(). Therefore we should not see it here.
4314 * If we see a context, then this is an active context
4316 * XXX: needs to be atomic
4318 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4319 thread->pfm_context, ctx));
4322 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4324 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4328 pfm_reset_msgq(ctx);
4330 ctx->ctx_state = PFM_CTX_LOADED;
4333 * link context to task
4335 ctx->ctx_task = task;
4339 * we load as stopped
4341 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4342 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4344 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4346 thread->flags |= IA64_THREAD_PM_VALID;
4350 * propagate into thread-state
4352 pfm_copy_pmds(task, ctx);
4353 pfm_copy_pmcs(task, ctx);
4355 pmcs_source = thread->pmcs;
4356 pmds_source = thread->pmds;
4359 * always the case for system-wide
4361 if (task == current) {
4363 if (is_system == 0) {
4365 /* allow user level control */
4366 ia64_psr(regs)->sp = 0;
4367 DPRINT(("clearing psr.sp for [%d]\n", task->pid));
4369 SET_LAST_CPU(ctx, smp_processor_id());
4371 SET_ACTIVATION(ctx);
4374 * push the other task out, if any
4376 owner_task = GET_PMU_OWNER();
4377 if (owner_task) pfm_lazy_save_regs(owner_task);
4381 * load all PMD from ctx to PMU (as opposed to thread state)
4382 * restore all PMC from ctx to PMU
4384 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4385 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4387 ctx->ctx_reload_pmcs[0] = 0UL;
4388 ctx->ctx_reload_pmds[0] = 0UL;
4391 * guaranteed safe by earlier check against DBG_VALID
4393 if (ctx->ctx_fl_using_dbreg) {
4394 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4395 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4400 SET_PMU_OWNER(task, ctx);
4402 DPRINT(("context loaded on PMU for [%d]\n", task->pid));
4405 * when not current, task MUST be stopped, so this is safe
4407 regs = task_pt_regs(task);
4409 /* force a full reload */
4410 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4411 SET_LAST_CPU(ctx, -1);
4413 /* initial saved psr (stopped) */
4414 ctx->ctx_saved_psr_up = 0UL;
4415 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4421 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4424 * we must undo the dbregs setting (for system-wide)
4426 if (ret && set_dbregs) {
4428 pfm_sessions.pfs_sys_use_dbregs--;
4432 * release task, there is now a link with the context
4434 if (is_system == 0 && task != current) {
4438 ret = pfm_check_task_exist(ctx);
4440 ctx->ctx_state = PFM_CTX_UNLOADED;
4441 ctx->ctx_task = NULL;
4449 * in this function, we do not need to increase the use count
4450 * for the task via get_task_struct(), because we hold the
4451 * context lock. If the task were to disappear while having
4452 * a context attached, it would go through pfm_exit_thread()
4453 * which also grabs the context lock and would therefore be blocked
4454 * until we are here.
4456 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4459 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4461 struct task_struct *task = PFM_CTX_TASK(ctx);
4462 struct pt_regs *tregs;
4463 int prev_state, is_system;
4466 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
4468 prev_state = ctx->ctx_state;
4469 is_system = ctx->ctx_fl_system;
4472 * unload only when necessary
4474 if (prev_state == PFM_CTX_UNLOADED) {
4475 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4480 * clear psr and dcr bits
4482 ret = pfm_stop(ctx, NULL, 0, regs);
4483 if (ret) return ret;
4485 ctx->ctx_state = PFM_CTX_UNLOADED;
4488 * in system mode, we need to update the PMU directly
4489 * and the user level state of the caller, which may not
4490 * necessarily be the creator of the context.
4497 * local PMU is taken care of in pfm_stop()
4499 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4500 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4503 * save PMDs in context
4506 pfm_flush_pmds(current, ctx);
4509 * at this point we are done with the PMU
4510 * so we can unreserve the resource.
4512 if (prev_state != PFM_CTX_ZOMBIE)
4513 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4516 * disconnect context from task
4518 task->thread.pfm_context = NULL;
4520 * disconnect task from context
4522 ctx->ctx_task = NULL;
4525 * There is nothing more to cleanup here.
4533 tregs = task == current ? regs : task_pt_regs(task);
4535 if (task == current) {
4537 * cancel user level control
4539 ia64_psr(regs)->sp = 1;
4541 DPRINT(("setting psr.sp for [%d]\n", task->pid));
4544 * save PMDs to context
4547 pfm_flush_pmds(task, ctx);
4550 * at this point we are done with the PMU
4551 * so we can unreserve the resource.
4553 * when state was ZOMBIE, we have already unreserved.
4555 if (prev_state != PFM_CTX_ZOMBIE)
4556 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4559 * reset activation counter and psr
4561 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4562 SET_LAST_CPU(ctx, -1);
4565 * PMU state will not be restored
4567 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4570 * break links between context and task
4572 task->thread.pfm_context = NULL;
4573 ctx->ctx_task = NULL;
4575 PFM_SET_WORK_PENDING(task, 0);
4577 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4578 ctx->ctx_fl_can_restart = 0;
4579 ctx->ctx_fl_going_zombie = 0;
4581 DPRINT(("disconnected [%d] from context\n", task->pid));
4588 * called only from exit_thread(): task == current
4589 * we come here only if current has a context attached (loaded or masked)
4592 pfm_exit_thread(struct task_struct *task)
4595 unsigned long flags;
4596 struct pt_regs *regs = task_pt_regs(task);
4600 ctx = PFM_GET_CTX(task);
4602 PROTECT_CTX(ctx, flags);
4604 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
4606 state = ctx->ctx_state;
4608 case PFM_CTX_UNLOADED:
4610 * only comes to thios function if pfm_context is not NULL, i.e., cannot
4611 * be in unloaded state
4613 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
4615 case PFM_CTX_LOADED:
4616 case PFM_CTX_MASKED:
4617 ret = pfm_context_unload(ctx, NULL, 0, regs);
4619 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4621 DPRINT(("ctx unloaded for current state was %d\n", state));
4623 pfm_end_notify_user(ctx);
4625 case PFM_CTX_ZOMBIE:
4626 ret = pfm_context_unload(ctx, NULL, 0, regs);
4628 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4633 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
4636 UNPROTECT_CTX(ctx, flags);
4638 { u64 psr = pfm_get_psr();
4639 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4640 BUG_ON(GET_PMU_OWNER());
4641 BUG_ON(ia64_psr(regs)->up);
4642 BUG_ON(ia64_psr(regs)->pp);
4646 * All memory free operations (especially for vmalloc'ed memory)
4647 * MUST be done with interrupts ENABLED.
4649 if (free_ok) pfm_context_free(ctx);
4653 * functions MUST be listed in the increasing order of their index (see permfon.h)
4655 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4656 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4657 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4658 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4659 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4661 static pfm_cmd_desc_t pfm_cmd_tab[]={
4662 /* 0 */PFM_CMD_NONE,
4663 /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4664 /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4665 /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4666 /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4667 /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4668 /* 6 */PFM_CMD_NONE,
4669 /* 7 */PFM_CMD_NONE,
4670 /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4671 /* 9 */PFM_CMD_NONE,
4672 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4673 /* 11 */PFM_CMD_NONE,
4674 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4675 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4676 /* 14 */PFM_CMD_NONE,
4677 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4678 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4679 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4680 /* 18 */PFM_CMD_NONE,
4681 /* 19 */PFM_CMD_NONE,
4682 /* 20 */PFM_CMD_NONE,
4683 /* 21 */PFM_CMD_NONE,
4684 /* 22 */PFM_CMD_NONE,
4685 /* 23 */PFM_CMD_NONE,
4686 /* 24 */PFM_CMD_NONE,
4687 /* 25 */PFM_CMD_NONE,
4688 /* 26 */PFM_CMD_NONE,
4689 /* 27 */PFM_CMD_NONE,
4690 /* 28 */PFM_CMD_NONE,
4691 /* 29 */PFM_CMD_NONE,
4692 /* 30 */PFM_CMD_NONE,
4693 /* 31 */PFM_CMD_NONE,
4694 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4695 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4697 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4700 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4702 struct task_struct *task;
4703 int state, old_state;
4706 state = ctx->ctx_state;
4707 task = ctx->ctx_task;
4710 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4714 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4718 task->state, PFM_CMD_STOPPED(cmd)));
4721 * self-monitoring always ok.
4723 * for system-wide the caller can either be the creator of the
4724 * context (to one to which the context is attached to) OR
4725 * a task running on the same CPU as the session.
4727 if (task == current || ctx->ctx_fl_system) return 0;
4730 * we are monitoring another thread
4733 case PFM_CTX_UNLOADED:
4735 * if context is UNLOADED we are safe to go
4738 case PFM_CTX_ZOMBIE:
4740 * no command can operate on a zombie context
4742 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4744 case PFM_CTX_MASKED:
4746 * PMU state has been saved to software even though
4747 * the thread may still be running.
4749 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4753 * context is LOADED or MASKED. Some commands may need to have
4756 * We could lift this restriction for UP but it would mean that
4757 * the user has no guarantee the task would not run between
4758 * two successive calls to perfmonctl(). That's probably OK.
4759 * If this user wants to ensure the task does not run, then
4760 * the task must be stopped.
4762 if (PFM_CMD_STOPPED(cmd)) {
4763 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
4764 DPRINT(("[%d] task not in stopped state\n", task->pid));
4768 * task is now stopped, wait for ctxsw out
4770 * This is an interesting point in the code.
4771 * We need to unprotect the context because
4772 * the pfm_save_regs() routines needs to grab
4773 * the same lock. There are danger in doing
4774 * this because it leaves a window open for
4775 * another task to get access to the context
4776 * and possibly change its state. The one thing
4777 * that is not possible is for the context to disappear
4778 * because we are protected by the VFS layer, i.e.,
4779 * get_fd()/put_fd().
4783 UNPROTECT_CTX(ctx, flags);
4785 wait_task_inactive(task);
4787 PROTECT_CTX(ctx, flags);
4790 * we must recheck to verify if state has changed
4792 if (ctx->ctx_state != old_state) {
4793 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4801 * system-call entry point (must return long)
4804 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4806 struct file *file = NULL;
4807 pfm_context_t *ctx = NULL;
4808 unsigned long flags = 0UL;
4809 void *args_k = NULL;
4810 long ret; /* will expand int return types */
4811 size_t base_sz, sz, xtra_sz = 0;
4812 int narg, completed_args = 0, call_made = 0, cmd_flags;
4813 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4814 int (*getsize)(void *arg, size_t *sz);
4815 #define PFM_MAX_ARGSIZE 4096
4818 * reject any call if perfmon was disabled at initialization
4820 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4822 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4823 DPRINT(("invalid cmd=%d\n", cmd));
4827 func = pfm_cmd_tab[cmd].cmd_func;
4828 narg = pfm_cmd_tab[cmd].cmd_narg;
4829 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4830 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4831 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4833 if (unlikely(func == NULL)) {
4834 DPRINT(("invalid cmd=%d\n", cmd));
4838 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4846 * check if number of arguments matches what the command expects
4848 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4852 sz = xtra_sz + base_sz*count;
4854 * limit abuse to min page size
4856 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4857 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
4862 * allocate default-sized argument buffer
4864 if (likely(count && args_k == NULL)) {
4865 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4866 if (args_k == NULL) return -ENOMEM;
4874 * assume sz = 0 for command without parameters
4876 if (sz && copy_from_user(args_k, arg, sz)) {
4877 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4882 * check if command supports extra parameters
4884 if (completed_args == 0 && getsize) {
4886 * get extra parameters size (based on main argument)
4888 ret = (*getsize)(args_k, &xtra_sz);
4889 if (ret) goto error_args;
4893 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4895 /* retry if necessary */
4896 if (likely(xtra_sz)) goto restart_args;
4899 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4904 if (unlikely(file == NULL)) {
4905 DPRINT(("invalid fd %d\n", fd));
4908 if (unlikely(PFM_IS_FILE(file) == 0)) {
4909 DPRINT(("fd %d not related to perfmon\n", fd));
4913 ctx = (pfm_context_t *)file->private_data;
4914 if (unlikely(ctx == NULL)) {
4915 DPRINT(("no context for fd %d\n", fd));
4918 prefetch(&ctx->ctx_state);
4920 PROTECT_CTX(ctx, flags);
4923 * check task is stopped
4925 ret = pfm_check_task_state(ctx, cmd, flags);
4926 if (unlikely(ret)) goto abort_locked;
4929 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4935 DPRINT(("context unlocked\n"));
4936 UNPROTECT_CTX(ctx, flags);
4940 /* copy argument back to user, if needed */
4941 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4946 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4952 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4954 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4955 pfm_ovfl_ctrl_t rst_ctrl;
4959 state = ctx->ctx_state;
4961 * Unlock sampling buffer and reset index atomically
4962 * XXX: not really needed when blocking
4964 if (CTX_HAS_SMPL(ctx)) {
4966 rst_ctrl.bits.mask_monitoring = 0;
4967 rst_ctrl.bits.reset_ovfl_pmds = 0;
4969 if (state == PFM_CTX_LOADED)
4970 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4972 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4974 rst_ctrl.bits.mask_monitoring = 0;
4975 rst_ctrl.bits.reset_ovfl_pmds = 1;
4979 if (rst_ctrl.bits.reset_ovfl_pmds) {
4980 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4982 if (rst_ctrl.bits.mask_monitoring == 0) {
4983 DPRINT(("resuming monitoring\n"));
4984 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4986 DPRINT(("stopping monitoring\n"));
4987 //pfm_stop_monitoring(current, regs);
4989 ctx->ctx_state = PFM_CTX_LOADED;
4994 * context MUST BE LOCKED when calling
4995 * can only be called for current
4998 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
5002 DPRINT(("entering for [%d]\n", current->pid));
5004 ret = pfm_context_unload(ctx, NULL, 0, regs);
5006 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
5010 * and wakeup controlling task, indicating we are now disconnected
5012 wake_up_interruptible(&ctx->ctx_zombieq);
5015 * given that context is still locked, the controlling
5016 * task will only get access when we return from
5017 * pfm_handle_work().
5021 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5023 * pfm_handle_work() can be called with interrupts enabled
5024 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5025 * call may sleep, therefore we must re-enable interrupts
5026 * to avoid deadlocks. It is safe to do so because this function
5027 * is called ONLY when returning to user level (PUStk=1), in which case
5028 * there is no risk of kernel stack overflow due to deep
5029 * interrupt nesting.
5032 pfm_handle_work(void)
5035 struct pt_regs *regs;
5036 unsigned long flags, dummy_flags;
5037 unsigned long ovfl_regs;
5038 unsigned int reason;
5041 ctx = PFM_GET_CTX(current);
5043 printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
5047 PROTECT_CTX(ctx, flags);
5049 PFM_SET_WORK_PENDING(current, 0);
5051 pfm_clear_task_notify();
5053 regs = task_pt_regs(current);
5056 * extract reason for being here and clear
5058 reason = ctx->ctx_fl_trap_reason;
5059 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5060 ovfl_regs = ctx->ctx_ovfl_regs[0];
5062 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5065 * must be done before we check for simple-reset mode
5067 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
5070 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5071 if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
5074 * restore interrupt mask to what it was on entry.
5075 * Could be enabled/diasbled.
5077 UNPROTECT_CTX(ctx, flags);
5080 * force interrupt enable because of down_interruptible()
5084 DPRINT(("before block sleeping\n"));
5087 * may go through without blocking on SMP systems
5088 * if restart has been received already by the time we call down()
5090 ret = down_interruptible(&ctx->ctx_restart_sem);
5092 DPRINT(("after block sleeping ret=%d\n", ret));
5095 * lock context and mask interrupts again
5096 * We save flags into a dummy because we may have
5097 * altered interrupts mask compared to entry in this
5100 PROTECT_CTX(ctx, dummy_flags);
5103 * we need to read the ovfl_regs only after wake-up
5104 * because we may have had pfm_write_pmds() in between
5105 * and that can changed PMD values and therefore
5106 * ovfl_regs is reset for these new PMD values.
5108 ovfl_regs = ctx->ctx_ovfl_regs[0];
5110 if (ctx->ctx_fl_going_zombie) {
5112 DPRINT(("context is zombie, bailing out\n"));
5113 pfm_context_force_terminate(ctx, regs);
5117 * in case of interruption of down() we don't restart anything
5119 if (ret < 0) goto nothing_to_do;
5122 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5123 ctx->ctx_ovfl_regs[0] = 0UL;
5127 * restore flags as they were upon entry
5129 UNPROTECT_CTX(ctx, flags);
5133 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5135 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5136 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5140 DPRINT(("waking up somebody\n"));
5142 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5145 * safe, we are not in intr handler, nor in ctxsw when
5148 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5154 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5156 pfm_msg_t *msg = NULL;
5158 if (ctx->ctx_fl_no_msg == 0) {
5159 msg = pfm_get_new_msg(ctx);
5161 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5165 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5166 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5167 msg->pfm_ovfl_msg.msg_active_set = 0;
5168 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5169 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5170 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5171 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5172 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5175 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5181 return pfm_notify_user(ctx, msg);
5185 pfm_end_notify_user(pfm_context_t *ctx)
5189 msg = pfm_get_new_msg(ctx);
5191 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5195 memset(msg, 0, sizeof(*msg));
5197 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5198 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5199 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5201 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5206 return pfm_notify_user(ctx, msg);
5210 * main overflow processing routine.
5211 * it can be called from the interrupt path or explicitely during the context switch code
5214 pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5216 pfm_ovfl_arg_t *ovfl_arg;
5218 unsigned long old_val, ovfl_val, new_val;
5219 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5220 unsigned long tstamp;
5221 pfm_ovfl_ctrl_t ovfl_ctrl;
5222 unsigned int i, has_smpl;
5223 int must_notify = 0;
5225 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5228 * sanity test. Should never happen
5230 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5232 tstamp = ia64_get_itc();
5233 mask = pmc0 >> PMU_FIRST_COUNTER;
5234 ovfl_val = pmu_conf->ovfl_val;
5235 has_smpl = CTX_HAS_SMPL(ctx);
5237 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5238 "used_pmds=0x%lx\n",
5240 task ? task->pid: -1,
5241 (regs ? regs->cr_iip : 0),
5242 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5243 ctx->ctx_used_pmds[0]));
5247 * first we update the virtual counters
5248 * assume there was a prior ia64_srlz_d() issued
5250 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5252 /* skip pmd which did not overflow */
5253 if ((mask & 0x1) == 0) continue;
5256 * Note that the pmd is not necessarily 0 at this point as qualified events
5257 * may have happened before the PMU was frozen. The residual count is not
5258 * taken into consideration here but will be with any read of the pmd via
5261 old_val = new_val = ctx->ctx_pmds[i].val;
5262 new_val += 1 + ovfl_val;
5263 ctx->ctx_pmds[i].val = new_val;
5266 * check for overflow condition
5268 if (likely(old_val > new_val)) {
5269 ovfl_pmds |= 1UL << i;
5270 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5273 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5277 ia64_get_pmd(i) & ovfl_val,
5283 * there was no 64-bit overflow, nothing else to do
5285 if (ovfl_pmds == 0UL) return;
5288 * reset all control bits
5294 * if a sampling format module exists, then we "cache" the overflow by
5295 * calling the module's handler() routine.
5298 unsigned long start_cycles, end_cycles;
5299 unsigned long pmd_mask;
5301 int this_cpu = smp_processor_id();
5303 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5304 ovfl_arg = &ctx->ctx_ovfl_arg;
5306 prefetch(ctx->ctx_smpl_hdr);
5308 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5312 if ((pmd_mask & 0x1) == 0) continue;
5314 ovfl_arg->ovfl_pmd = (unsigned char )i;
5315 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5316 ovfl_arg->active_set = 0;
5317 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5318 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5320 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5321 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5322 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5325 * copy values of pmds of interest. Sampling format may copy them
5326 * into sampling buffer.
5329 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5330 if ((smpl_pmds & 0x1) == 0) continue;
5331 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5332 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5336 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5338 start_cycles = ia64_get_itc();
5341 * call custom buffer format record (handler) routine
5343 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5345 end_cycles = ia64_get_itc();
5348 * For those controls, we take the union because they have
5349 * an all or nothing behavior.
5351 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5352 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5353 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5355 * build the bitmask of pmds to reset now
5357 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5359 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5362 * when the module cannot handle the rest of the overflows, we abort right here
5364 if (ret && pmd_mask) {
5365 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5366 pmd_mask<<PMU_FIRST_COUNTER));
5369 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5371 ovfl_pmds &= ~reset_pmds;
5374 * when no sampling module is used, then the default
5375 * is to notify on overflow if requested by user
5377 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5378 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5379 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5380 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5382 * if needed, we reset all overflowed pmds
5384 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5387 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5390 * reset the requested PMD registers using the short reset values
5393 unsigned long bm = reset_pmds;
5394 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5397 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5399 * keep track of what to reset when unblocking
5401 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5404 * check for blocking context
5406 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5408 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5411 * set the perfmon specific checking pending work for the task
5413 PFM_SET_WORK_PENDING(task, 1);
5416 * when coming from ctxsw, current still points to the
5417 * previous task, therefore we must work with task and not current.
5419 pfm_set_task_notify(task);
5422 * defer until state is changed (shorten spin window). the context is locked
5423 * anyway, so the signal receiver would come spin for nothing.
5428 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5429 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
5430 PFM_GET_WORK_PENDING(task),
5431 ctx->ctx_fl_trap_reason,
5434 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5436 * in case monitoring must be stopped, we toggle the psr bits
5438 if (ovfl_ctrl.bits.mask_monitoring) {
5439 pfm_mask_monitoring(task);
5440 ctx->ctx_state = PFM_CTX_MASKED;
5441 ctx->ctx_fl_can_restart = 1;
5445 * send notification now
5447 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5452 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5454 task ? task->pid : -1,
5460 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5461 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5462 * come here as zombie only if the task is the current task. In which case, we
5463 * can access the PMU hardware directly.
5465 * Note that zombies do have PM_VALID set. So here we do the minimal.
5467 * In case the context was zombified it could not be reclaimed at the time
5468 * the monitoring program exited. At this point, the PMU reservation has been
5469 * returned, the sampiing buffer has been freed. We must convert this call
5470 * into a spurious interrupt. However, we must also avoid infinite overflows
5471 * by stopping monitoring for this task. We can only come here for a per-task
5472 * context. All we need to do is to stop monitoring using the psr bits which
5473 * are always task private. By re-enabling secure montioring, we ensure that
5474 * the monitored task will not be able to re-activate monitoring.
5475 * The task will eventually be context switched out, at which point the context
5476 * will be reclaimed (that includes releasing ownership of the PMU).
5478 * So there might be a window of time where the number of per-task session is zero
5479 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5480 * context. This is safe because if a per-task session comes in, it will push this one
5481 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5482 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5483 * also push our zombie context out.
5485 * Overall pretty hairy stuff....
5487 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
5489 ia64_psr(regs)->up = 0;
5490 ia64_psr(regs)->sp = 1;
5495 pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5497 struct task_struct *task;
5499 unsigned long flags;
5501 int this_cpu = smp_processor_id();
5504 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5507 * srlz.d done before arriving here
5509 pmc0 = ia64_get_pmc(0);
5511 task = GET_PMU_OWNER();
5512 ctx = GET_PMU_CTX();
5515 * if we have some pending bits set
5516 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5518 if (PMC0_HAS_OVFL(pmc0) && task) {
5520 * we assume that pmc0.fr is always set here
5524 if (!ctx) goto report_spurious1;
5526 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5527 goto report_spurious2;
5529 PROTECT_CTX_NOPRINT(ctx, flags);
5531 pfm_overflow_handler(task, ctx, pmc0, regs);
5533 UNPROTECT_CTX_NOPRINT(ctx, flags);
5536 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5540 * keep it unfrozen at all times
5547 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5548 this_cpu, task->pid);
5552 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5560 pfm_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5562 unsigned long start_cycles, total_cycles;
5563 unsigned long min, max;
5567 this_cpu = get_cpu();
5568 if (likely(!pfm_alt_intr_handler)) {
5569 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5570 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5572 start_cycles = ia64_get_itc();
5574 ret = pfm_do_interrupt_handler(irq, arg, regs);
5576 total_cycles = ia64_get_itc();
5579 * don't measure spurious interrupts
5581 if (likely(ret == 0)) {
5582 total_cycles -= start_cycles;
5584 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5585 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5587 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5591 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5594 put_cpu_no_resched();
5599 * /proc/perfmon interface, for debug only
5602 #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5605 pfm_proc_start(struct seq_file *m, loff_t *pos)
5608 return PFM_PROC_SHOW_HEADER;
5611 while (*pos <= NR_CPUS) {
5612 if (cpu_online(*pos - 1)) {
5613 return (void *)*pos;
5621 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5624 return pfm_proc_start(m, pos);
5628 pfm_proc_stop(struct seq_file *m, void *v)
5633 pfm_proc_show_header(struct seq_file *m)
5635 struct list_head * pos;
5636 pfm_buffer_fmt_t * entry;
5637 unsigned long flags;
5640 "perfmon version : %u.%u\n"
5643 "expert mode : %s\n"
5644 "ovfl_mask : 0x%lx\n"
5645 "PMU flags : 0x%x\n",
5646 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5648 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5649 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5656 "proc_sessions : %u\n"
5657 "sys_sessions : %u\n"
5658 "sys_use_dbregs : %u\n"
5659 "ptrace_use_dbregs : %u\n",
5660 pfm_sessions.pfs_task_sessions,
5661 pfm_sessions.pfs_sys_sessions,
5662 pfm_sessions.pfs_sys_use_dbregs,
5663 pfm_sessions.pfs_ptrace_use_dbregs);
5667 spin_lock(&pfm_buffer_fmt_lock);
5669 list_for_each(pos, &pfm_buffer_fmt_list) {
5670 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5671 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5682 entry->fmt_uuid[10],
5683 entry->fmt_uuid[11],
5684 entry->fmt_uuid[12],
5685 entry->fmt_uuid[13],
5686 entry->fmt_uuid[14],
5687 entry->fmt_uuid[15],
5690 spin_unlock(&pfm_buffer_fmt_lock);
5695 pfm_proc_show(struct seq_file *m, void *v)
5701 if (v == PFM_PROC_SHOW_HEADER) {
5702 pfm_proc_show_header(m);
5706 /* show info for CPU (v - 1) */
5710 "CPU%-2d overflow intrs : %lu\n"
5711 "CPU%-2d overflow cycles : %lu\n"
5712 "CPU%-2d overflow min : %lu\n"
5713 "CPU%-2d overflow max : %lu\n"
5714 "CPU%-2d smpl handler calls : %lu\n"
5715 "CPU%-2d smpl handler cycles : %lu\n"
5716 "CPU%-2d spurious intrs : %lu\n"
5717 "CPU%-2d replay intrs : %lu\n"
5718 "CPU%-2d syst_wide : %d\n"
5719 "CPU%-2d dcr_pp : %d\n"
5720 "CPU%-2d exclude idle : %d\n"
5721 "CPU%-2d owner : %d\n"
5722 "CPU%-2d context : %p\n"
5723 "CPU%-2d activations : %lu\n",
5724 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5725 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5726 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5727 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5728 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5729 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5730 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5731 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5732 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5733 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5734 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5735 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5736 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5737 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5739 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5741 psr = pfm_get_psr();
5746 "CPU%-2d psr : 0x%lx\n"
5747 "CPU%-2d pmc0 : 0x%lx\n",
5749 cpu, ia64_get_pmc(0));
5751 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5752 if (PMC_IS_COUNTING(i) == 0) continue;
5754 "CPU%-2d pmc%u : 0x%lx\n"
5755 "CPU%-2d pmd%u : 0x%lx\n",
5756 cpu, i, ia64_get_pmc(i),
5757 cpu, i, ia64_get_pmd(i));
5763 struct seq_operations pfm_seq_ops = {
5764 .start = pfm_proc_start,
5765 .next = pfm_proc_next,
5766 .stop = pfm_proc_stop,
5767 .show = pfm_proc_show
5771 pfm_proc_open(struct inode *inode, struct file *file)
5773 return seq_open(file, &pfm_seq_ops);
5778 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5779 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5780 * is active or inactive based on mode. We must rely on the value in
5781 * local_cpu_data->pfm_syst_info
5784 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5786 struct pt_regs *regs;
5788 unsigned long dcr_pp;
5790 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5793 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5794 * on every CPU, so we can rely on the pid to identify the idle task.
5796 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5797 regs = task_pt_regs(task);
5798 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5802 * if monitoring has started
5805 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5807 * context switching in?
5810 /* mask monitoring for the idle task */
5811 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5817 * context switching out
5818 * restore monitoring for next task
5820 * Due to inlining this odd if-then-else construction generates
5823 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5832 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5834 struct task_struct *task = ctx->ctx_task;
5836 ia64_psr(regs)->up = 0;
5837 ia64_psr(regs)->sp = 1;
5839 if (GET_PMU_OWNER() == task) {
5840 DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
5841 SET_PMU_OWNER(NULL, NULL);
5845 * disconnect the task from the context and vice-versa
5847 PFM_SET_WORK_PENDING(task, 0);
5849 task->thread.pfm_context = NULL;
5850 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5852 DPRINT(("force cleanup for [%d]\n", task->pid));
5857 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5860 pfm_save_regs(struct task_struct *task)
5863 struct thread_struct *t;
5864 unsigned long flags;
5868 ctx = PFM_GET_CTX(task);
5869 if (ctx == NULL) return;
5873 * we always come here with interrupts ALREADY disabled by
5874 * the scheduler. So we simply need to protect against concurrent
5875 * access, not CPU concurrency.
5877 flags = pfm_protect_ctx_ctxsw(ctx);
5879 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5880 struct pt_regs *regs = task_pt_regs(task);
5884 pfm_force_cleanup(ctx, regs);
5886 BUG_ON(ctx->ctx_smpl_hdr);
5888 pfm_unprotect_ctx_ctxsw(ctx, flags);
5890 pfm_context_free(ctx);
5895 * save current PSR: needed because we modify it
5898 psr = pfm_get_psr();
5900 BUG_ON(psr & (IA64_PSR_I));
5904 * This is the last instruction which may generate an overflow
5906 * We do not need to set psr.sp because, it is irrelevant in kernel.
5907 * It will be restored from ipsr when going back to user level
5912 * keep a copy of psr.up (for reload)
5914 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5917 * release ownership of this PMU.
5918 * PM interrupts are masked, so nothing
5921 SET_PMU_OWNER(NULL, NULL);
5924 * we systematically save the PMD as we have no
5925 * guarantee we will be schedule at that same
5928 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
5931 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5932 * we will need it on the restore path to check
5933 * for pending overflow.
5935 t->pmcs[0] = ia64_get_pmc(0);
5938 * unfreeze PMU if had pending overflows
5940 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5943 * finally, allow context access.
5944 * interrupts will still be masked after this call.
5946 pfm_unprotect_ctx_ctxsw(ctx, flags);
5949 #else /* !CONFIG_SMP */
5951 pfm_save_regs(struct task_struct *task)
5956 ctx = PFM_GET_CTX(task);
5957 if (ctx == NULL) return;
5960 * save current PSR: needed because we modify it
5962 psr = pfm_get_psr();
5964 BUG_ON(psr & (IA64_PSR_I));
5968 * This is the last instruction which may generate an overflow
5970 * We do not need to set psr.sp because, it is irrelevant in kernel.
5971 * It will be restored from ipsr when going back to user level
5976 * keep a copy of psr.up (for reload)
5978 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5982 pfm_lazy_save_regs (struct task_struct *task)
5985 struct thread_struct *t;
5986 unsigned long flags;
5988 { u64 psr = pfm_get_psr();
5989 BUG_ON(psr & IA64_PSR_UP);
5992 ctx = PFM_GET_CTX(task);
5996 * we need to mask PMU overflow here to
5997 * make sure that we maintain pmc0 until
5998 * we save it. overflow interrupts are
5999 * treated as spurious if there is no
6002 * XXX: I don't think this is necessary
6004 PROTECT_CTX(ctx,flags);
6007 * release ownership of this PMU.
6008 * must be done before we save the registers.
6010 * after this call any PMU interrupt is treated
6013 SET_PMU_OWNER(NULL, NULL);
6016 * save all the pmds we use
6018 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
6021 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6022 * it is needed to check for pended overflow
6023 * on the restore path
6025 t->pmcs[0] = ia64_get_pmc(0);
6028 * unfreeze PMU if had pending overflows
6030 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6033 * now get can unmask PMU interrupts, they will
6034 * be treated as purely spurious and we will not
6035 * lose any information
6037 UNPROTECT_CTX(ctx,flags);
6039 #endif /* CONFIG_SMP */
6043 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6046 pfm_load_regs (struct task_struct *task)
6049 struct thread_struct *t;
6050 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6051 unsigned long flags;
6053 int need_irq_resend;
6055 ctx = PFM_GET_CTX(task);
6056 if (unlikely(ctx == NULL)) return;
6058 BUG_ON(GET_PMU_OWNER());
6062 * possible on unload
6064 if (unlikely((t->flags & IA64_THREAD_PM_VALID) == 0)) return;
6067 * we always come here with interrupts ALREADY disabled by
6068 * the scheduler. So we simply need to protect against concurrent
6069 * access, not CPU concurrency.
6071 flags = pfm_protect_ctx_ctxsw(ctx);
6072 psr = pfm_get_psr();
6074 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6076 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6077 BUG_ON(psr & IA64_PSR_I);
6079 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6080 struct pt_regs *regs = task_pt_regs(task);
6082 BUG_ON(ctx->ctx_smpl_hdr);
6084 pfm_force_cleanup(ctx, regs);
6086 pfm_unprotect_ctx_ctxsw(ctx, flags);
6089 * this one (kmalloc'ed) is fine with interrupts disabled
6091 pfm_context_free(ctx);
6097 * we restore ALL the debug registers to avoid picking up
6100 if (ctx->ctx_fl_using_dbreg) {
6101 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6102 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6105 * retrieve saved psr.up
6107 psr_up = ctx->ctx_saved_psr_up;
6110 * if we were the last user of the PMU on that CPU,
6111 * then nothing to do except restore psr
6113 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6116 * retrieve partial reload masks (due to user modifications)
6118 pmc_mask = ctx->ctx_reload_pmcs[0];
6119 pmd_mask = ctx->ctx_reload_pmds[0];
6123 * To avoid leaking information to the user level when psr.sp=0,
6124 * we must reload ALL implemented pmds (even the ones we don't use).
6125 * In the kernel we only allow PFM_READ_PMDS on registers which
6126 * we initialized or requested (sampling) so there is no risk there.
6128 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6131 * ALL accessible PMCs are systematically reloaded, unused registers
6132 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6133 * up stale configuration.
6135 * PMC0 is never in the mask. It is always restored separately.
6137 pmc_mask = ctx->ctx_all_pmcs[0];
6140 * when context is MASKED, we will restore PMC with plm=0
6141 * and PMD with stale information, but that's ok, nothing
6144 * XXX: optimize here
6146 if (pmd_mask) pfm_restore_pmds(t->pmds, pmd_mask);
6147 if (pmc_mask) pfm_restore_pmcs(t->pmcs, pmc_mask);
6150 * check for pending overflow at the time the state
6153 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6155 * reload pmc0 with the overflow information
6156 * On McKinley PMU, this will trigger a PMU interrupt
6158 ia64_set_pmc(0, t->pmcs[0]);
6163 * will replay the PMU interrupt
6165 if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
6167 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6171 * we just did a reload, so we reset the partial reload fields
6173 ctx->ctx_reload_pmcs[0] = 0UL;
6174 ctx->ctx_reload_pmds[0] = 0UL;
6176 SET_LAST_CPU(ctx, smp_processor_id());
6179 * dump activation value for this PMU
6183 * record current activation for this context
6185 SET_ACTIVATION(ctx);
6188 * establish new ownership.
6190 SET_PMU_OWNER(task, ctx);
6193 * restore the psr.up bit. measurement
6195 * no PMU interrupt can happen at this point
6196 * because we still have interrupts disabled.
6198 if (likely(psr_up)) pfm_set_psr_up();
6201 * allow concurrent access to context
6203 pfm_unprotect_ctx_ctxsw(ctx, flags);
6205 #else /* !CONFIG_SMP */
6207 * reload PMU state for UP kernels
6208 * in 2.5 we come here with interrupts disabled
6211 pfm_load_regs (struct task_struct *task)
6213 struct thread_struct *t;
6215 struct task_struct *owner;
6216 unsigned long pmd_mask, pmc_mask;
6218 int need_irq_resend;
6220 owner = GET_PMU_OWNER();
6221 ctx = PFM_GET_CTX(task);
6223 psr = pfm_get_psr();
6225 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6226 BUG_ON(psr & IA64_PSR_I);
6229 * we restore ALL the debug registers to avoid picking up
6232 * This must be done even when the task is still the owner
6233 * as the registers may have been modified via ptrace()
6234 * (not perfmon) by the previous task.
6236 if (ctx->ctx_fl_using_dbreg) {
6237 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6238 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6242 * retrieved saved psr.up
6244 psr_up = ctx->ctx_saved_psr_up;
6245 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6248 * short path, our state is still there, just
6249 * need to restore psr and we go
6251 * we do not touch either PMC nor PMD. the psr is not touched
6252 * by the overflow_handler. So we are safe w.r.t. to interrupt
6253 * concurrency even without interrupt masking.
6255 if (likely(owner == task)) {
6256 if (likely(psr_up)) pfm_set_psr_up();
6261 * someone else is still using the PMU, first push it out and
6262 * then we'll be able to install our stuff !
6264 * Upon return, there will be no owner for the current PMU
6266 if (owner) pfm_lazy_save_regs(owner);
6269 * To avoid leaking information to the user level when psr.sp=0,
6270 * we must reload ALL implemented pmds (even the ones we don't use).
6271 * In the kernel we only allow PFM_READ_PMDS on registers which
6272 * we initialized or requested (sampling) so there is no risk there.
6274 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6277 * ALL accessible PMCs are systematically reloaded, unused registers
6278 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6279 * up stale configuration.
6281 * PMC0 is never in the mask. It is always restored separately
6283 pmc_mask = ctx->ctx_all_pmcs[0];
6285 pfm_restore_pmds(t->pmds, pmd_mask);
6286 pfm_restore_pmcs(t->pmcs, pmc_mask);
6289 * check for pending overflow at the time the state
6292 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6294 * reload pmc0 with the overflow information
6295 * On McKinley PMU, this will trigger a PMU interrupt
6297 ia64_set_pmc(0, t->pmcs[0]);
6303 * will replay the PMU interrupt
6305 if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
6307 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6311 * establish new ownership.
6313 SET_PMU_OWNER(task, ctx);
6316 * restore the psr.up bit. measurement
6318 * no PMU interrupt can happen at this point
6319 * because we still have interrupts disabled.
6321 if (likely(psr_up)) pfm_set_psr_up();
6323 #endif /* CONFIG_SMP */
6326 * this function assumes monitoring is stopped
6329 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6332 unsigned long mask2, val, pmd_val, ovfl_val;
6333 int i, can_access_pmu = 0;
6337 * is the caller the task being monitored (or which initiated the
6338 * session for system wide measurements)
6340 is_self = ctx->ctx_task == task ? 1 : 0;
6343 * can access PMU is task is the owner of the PMU state on the current CPU
6344 * or if we are running on the CPU bound to the context in system-wide mode
6345 * (that is not necessarily the task the context is attached to in this mode).
6346 * In system-wide we always have can_access_pmu true because a task running on an
6347 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6349 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6350 if (can_access_pmu) {
6352 * Mark the PMU as not owned
6353 * This will cause the interrupt handler to do nothing in case an overflow
6354 * interrupt was in-flight
6355 * This also guarantees that pmc0 will contain the final state
6356 * It virtually gives us full control on overflow processing from that point
6359 SET_PMU_OWNER(NULL, NULL);
6360 DPRINT(("releasing ownership\n"));
6363 * read current overflow status:
6365 * we are guaranteed to read the final stable state
6368 pmc0 = ia64_get_pmc(0); /* slow */
6371 * reset freeze bit, overflow status information destroyed
6375 pmc0 = task->thread.pmcs[0];
6377 * clear whatever overflow status bits there were
6379 task->thread.pmcs[0] = 0;
6381 ovfl_val = pmu_conf->ovfl_val;
6383 * we save all the used pmds
6384 * we take care of overflows for counting PMDs
6386 * XXX: sampling situation is not taken into account here
6388 mask2 = ctx->ctx_used_pmds[0];
6390 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6392 for (i = 0; mask2; i++, mask2>>=1) {
6394 /* skip non used pmds */
6395 if ((mask2 & 0x1) == 0) continue;
6398 * can access PMU always true in system wide mode
6400 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : task->thread.pmds[i];
6402 if (PMD_IS_COUNTING(i)) {
6403 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6406 ctx->ctx_pmds[i].val,
6410 * we rebuild the full 64 bit value of the counter
6412 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6415 * now everything is in ctx_pmds[] and we need
6416 * to clear the saved context from save_regs() such that
6417 * pfm_read_pmds() gets the correct value
6422 * take care of overflow inline
6424 if (pmc0 & (1UL << i)) {
6425 val += 1 + ovfl_val;
6426 DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
6430 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
6432 if (is_self) task->thread.pmds[i] = pmd_val;
6434 ctx->ctx_pmds[i].val = val;
6438 static struct irqaction perfmon_irqaction = {
6439 .handler = pfm_interrupt_handler,
6440 .flags = SA_INTERRUPT,
6445 pfm_alt_save_pmu_state(void *data)
6447 struct pt_regs *regs;
6449 regs = task_pt_regs(current);
6451 DPRINT(("called\n"));
6454 * should not be necessary but
6455 * let's take not risk
6459 ia64_psr(regs)->pp = 0;
6462 * This call is required
6463 * May cause a spurious interrupt on some processors
6471 pfm_alt_restore_pmu_state(void *data)
6473 struct pt_regs *regs;
6475 regs = task_pt_regs(current);
6477 DPRINT(("called\n"));
6480 * put PMU back in state expected
6485 ia64_psr(regs)->pp = 0;
6488 * perfmon runs with PMU unfrozen at all times
6496 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6501 /* some sanity checks */
6502 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6504 /* do the easy test first */
6505 if (pfm_alt_intr_handler) return -EBUSY;
6507 /* one at a time in the install or remove, just fail the others */
6508 if (!spin_trylock(&pfm_alt_install_check)) {
6512 /* reserve our session */
6513 for_each_online_cpu(reserve_cpu) {
6514 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6515 if (ret) goto cleanup_reserve;
6518 /* save the current system wide pmu states */
6519 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
6521 DPRINT(("on_each_cpu() failed: %d\n", ret));
6522 goto cleanup_reserve;
6525 /* officially change to the alternate interrupt handler */
6526 pfm_alt_intr_handler = hdl;
6528 spin_unlock(&pfm_alt_install_check);
6533 for_each_online_cpu(i) {
6534 /* don't unreserve more than we reserved */
6535 if (i >= reserve_cpu) break;
6537 pfm_unreserve_session(NULL, 1, i);
6540 spin_unlock(&pfm_alt_install_check);
6544 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6547 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6552 if (hdl == NULL) return -EINVAL;
6554 /* cannot remove someone else's handler! */
6555 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6557 /* one at a time in the install or remove, just fail the others */
6558 if (!spin_trylock(&pfm_alt_install_check)) {
6562 pfm_alt_intr_handler = NULL;
6564 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
6566 DPRINT(("on_each_cpu() failed: %d\n", ret));
6569 for_each_online_cpu(i) {
6570 pfm_unreserve_session(NULL, 1, i);
6573 spin_unlock(&pfm_alt_install_check);
6577 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6580 * perfmon initialization routine, called from the initcall() table
6582 static int init_pfm_fs(void);
6590 family = local_cpu_data->family;
6595 if ((*p)->probe() == 0) goto found;
6596 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6607 static struct file_operations pfm_proc_fops = {
6608 .open = pfm_proc_open,
6610 .llseek = seq_lseek,
6611 .release = seq_release,
6617 unsigned int n, n_counters, i;
6619 printk("perfmon: version %u.%u IRQ %u\n",
6622 IA64_PERFMON_VECTOR);
6624 if (pfm_probe_pmu()) {
6625 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6626 local_cpu_data->family);
6631 * compute the number of implemented PMD/PMC from the
6632 * description tables
6635 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6636 if (PMC_IS_IMPL(i) == 0) continue;
6637 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6640 pmu_conf->num_pmcs = n;
6642 n = 0; n_counters = 0;
6643 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6644 if (PMD_IS_IMPL(i) == 0) continue;
6645 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6647 if (PMD_IS_COUNTING(i)) n_counters++;
6649 pmu_conf->num_pmds = n;
6650 pmu_conf->num_counters = n_counters;
6653 * sanity checks on the number of debug registers
6655 if (pmu_conf->use_rr_dbregs) {
6656 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6657 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6661 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6662 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6668 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6672 pmu_conf->num_counters,
6673 ffz(pmu_conf->ovfl_val));
6676 if (pmu_conf->num_pmds >= IA64_NUM_PMD_REGS || pmu_conf->num_pmcs >= IA64_NUM_PMC_REGS) {
6677 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6683 * create /proc/perfmon (mostly for debugging purposes)
6685 perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
6686 if (perfmon_dir == NULL) {
6687 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6692 * install customized file operations for /proc/perfmon entry
6694 perfmon_dir->proc_fops = &pfm_proc_fops;
6697 * create /proc/sys/kernel/perfmon (for debugging purposes)
6699 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root, 0);
6702 * initialize all our spinlocks
6704 spin_lock_init(&pfm_sessions.pfs_lock);
6705 spin_lock_init(&pfm_buffer_fmt_lock);
6709 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6714 __initcall(pfm_init);
6717 * this function is called before pfm_init()
6720 pfm_init_percpu (void)
6723 * make sure no measurement is active
6724 * (may inherit programmed PMCs from EFI).
6730 * we run with the PMU not frozen at all times
6734 if (smp_processor_id() == 0)
6735 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6737 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6742 * used for debug purposes only
6745 dump_pmu_state(const char *from)
6747 struct task_struct *task;
6748 struct thread_struct *t;
6749 struct pt_regs *regs;
6751 unsigned long psr, dcr, info, flags;
6754 local_irq_save(flags);
6756 this_cpu = smp_processor_id();
6757 regs = task_pt_regs(current);
6758 info = PFM_CPUINFO_GET();
6759 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6761 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6762 local_irq_restore(flags);
6766 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6773 task = GET_PMU_OWNER();
6774 ctx = GET_PMU_CTX();
6776 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
6778 psr = pfm_get_psr();
6780 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6783 psr & IA64_PSR_PP ? 1 : 0,
6784 psr & IA64_PSR_UP ? 1 : 0,
6785 dcr & IA64_DCR_PP ? 1 : 0,
6788 ia64_psr(regs)->pp);
6790 ia64_psr(regs)->up = 0;
6791 ia64_psr(regs)->pp = 0;
6793 t = ¤t->thread;
6795 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6796 if (PMC_IS_IMPL(i) == 0) continue;
6797 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, t->pmcs[i]);
6800 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6801 if (PMD_IS_IMPL(i) == 0) continue;
6802 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, t->pmds[i]);
6806 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6809 ctx->ctx_smpl_vaddr,
6813 ctx->ctx_saved_psr_up);
6815 local_irq_restore(flags);
6819 * called from process.c:copy_thread(). task is new child.
6822 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6824 struct thread_struct *thread;
6826 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
6828 thread = &task->thread;
6831 * cut links inherited from parent (current)
6833 thread->pfm_context = NULL;
6835 PFM_SET_WORK_PENDING(task, 0);
6838 * the psr bits are already set properly in copy_threads()
6841 #else /* !CONFIG_PERFMON */
6843 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6847 #endif /* CONFIG_PERFMON */