1 /*******************************************************************************
4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * e100.c: Intel(R) PRO/100 ethernet driver
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
55 * II. Driver Operation
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
109 * Under typical operation, the receive unit (RU) is start once,
110 * and the controller happily fills RFDs as frames arrive. If
111 * replacement RFDs cannot be allocated, or the RU goes non-active,
112 * the RU must be restarted. Frame arrival generates an interrupt,
113 * and Rx indication and re-allocation happen in the same context,
114 * therefore no locking is required. A software-generated interrupt
115 * is generated from the watchdog to recover from a failed allocation
116 * senario where all Rx resources have been indicated and none re-
121 * VLAN offloading of tagging, stripping and filtering is not
122 * supported, but driver will accommodate the extra 4-byte VLAN tag
123 * for processing by upper layers. Tx/Rx Checksum offloading is not
124 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
125 * not supported (hardware limitation).
127 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
129 * Thanks to JC (jchapman@katalix.com) for helping with
130 * testing/troubleshooting the development driver.
133 * o several entry points race with dev->close
134 * o check for tx-no-resources/stop Q races with tx clean/wake Q
137 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
138 * - Stratus87247: protect MDI control register manipulations
141 #include <linux/module.h>
142 #include <linux/moduleparam.h>
143 #include <linux/kernel.h>
144 #include <linux/types.h>
145 #include <linux/slab.h>
146 #include <linux/delay.h>
147 #include <linux/init.h>
148 #include <linux/pci.h>
149 #include <linux/dma-mapping.h>
150 #include <linux/netdevice.h>
151 #include <linux/etherdevice.h>
152 #include <linux/mii.h>
153 #include <linux/if_vlan.h>
154 #include <linux/skbuff.h>
155 #include <linux/ethtool.h>
156 #include <linux/string.h>
157 #include <asm/unaligned.h>
160 #define DRV_NAME "e100"
161 #define DRV_EXT "-NAPI"
162 #define DRV_VERSION "3.5.10-k4"DRV_EXT
163 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
164 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
165 #define PFX DRV_NAME ": "
167 #define E100_WATCHDOG_PERIOD (2 * HZ)
168 #define E100_NAPI_WEIGHT 16
170 MODULE_DESCRIPTION(DRV_DESCRIPTION);
171 MODULE_AUTHOR(DRV_COPYRIGHT);
172 MODULE_LICENSE("GPL");
173 MODULE_VERSION(DRV_VERSION);
175 static int debug = 3;
176 module_param(debug, int, 0);
177 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
178 #define DPRINTK(nlevel, klevel, fmt, args...) \
179 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
180 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
181 __FUNCTION__ , ## args))
183 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
184 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
185 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
186 static struct pci_device_id e100_id_table[] = {
187 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
188 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
189 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
190 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
191 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
192 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
193 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
194 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
195 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
196 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
197 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
198 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
199 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
200 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
201 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
202 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
203 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
204 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
205 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
206 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
207 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
208 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
209 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
210 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
211 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
212 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
213 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
214 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
215 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
216 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
217 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
218 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
219 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
220 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
221 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
222 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
223 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
224 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
225 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
226 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
227 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
230 MODULE_DEVICE_TABLE(pci, e100_id_table);
233 mac_82557_D100_A = 0,
234 mac_82557_D100_B = 1,
235 mac_82557_D100_C = 2,
236 mac_82558_D101_A4 = 4,
237 mac_82558_D101_B0 = 5,
241 mac_82550_D102_C = 13,
249 phy_100a = 0x000003E0,
250 phy_100c = 0x035002A8,
251 phy_82555_tx = 0x015002A8,
252 phy_nsc_tx = 0x5C002000,
253 phy_82562_et = 0x033002A8,
254 phy_82562_em = 0x032002A8,
255 phy_82562_ek = 0x031002A8,
256 phy_82562_eh = 0x017002A8,
257 phy_unknown = 0xFFFFFFFF,
260 /* CSR (Control/Status Registers) */
285 RU_UNINITIALIZED = -1,
289 stat_ack_not_ours = 0x00,
290 stat_ack_sw_gen = 0x04,
292 stat_ack_cu_idle = 0x20,
293 stat_ack_frame_rx = 0x40,
294 stat_ack_cu_cmd_done = 0x80,
295 stat_ack_not_present = 0xFF,
296 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
297 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
301 irq_mask_none = 0x00,
309 ruc_load_base = 0x06,
312 cuc_dump_addr = 0x40,
313 cuc_dump_stats = 0x50,
314 cuc_load_base = 0x60,
315 cuc_dump_reset = 0x70,
319 cuc_dump_complete = 0x0000A005,
320 cuc_dump_reset_complete = 0x0000A007,
324 software_reset = 0x0000,
326 selective_reset = 0x0002,
329 enum eeprom_ctrl_lo {
337 mdi_write = 0x04000000,
338 mdi_read = 0x08000000,
339 mdi_ready = 0x10000000,
349 enum eeprom_offsets {
350 eeprom_cnfg_mdix = 0x03,
352 eeprom_config_asf = 0x0D,
353 eeprom_smbus_addr = 0x90,
356 enum eeprom_cnfg_mdix {
357 eeprom_mdix_enabled = 0x0080,
361 eeprom_id_wol = 0x0020,
364 enum eeprom_config_asf {
370 cb_complete = 0x8000,
399 struct rx *next, *prev;
404 #if defined(__BIG_ENDIAN_BITFIELD)
410 /*0*/ u8 X(byte_count:6, pad0:2);
411 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
412 /*2*/ u8 adaptive_ifs;
413 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
414 term_write_cache_line:1), pad3:4);
415 /*4*/ u8 X(rx_dma_max_count:7, pad4:1);
416 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
417 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
418 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
419 rx_discard_overruns:1), rx_save_bad_frames:1);
420 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
421 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
423 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
424 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
425 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
426 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
428 /*11*/ u8 X(linear_priority:3, pad11:5);
429 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
430 /*13*/ u8 ip_addr_lo;
431 /*14*/ u8 ip_addr_hi;
432 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
433 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
434 pad15_2:1), crs_or_cdt:1);
435 /*16*/ u8 fc_delay_lo;
436 /*17*/ u8 fc_delay_hi;
437 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
438 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
439 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
440 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
441 full_duplex_force:1), full_duplex_pin:1);
442 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
443 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
444 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
448 #define E100_MAX_MULTICAST_ADDRS 64
451 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
454 /* Important: keep total struct u32-aligned */
455 #define UCODE_SIZE 134
462 u32 ucode[UCODE_SIZE];
463 struct config config;
476 u32 dump_buffer_addr;
478 struct cb *next, *prev;
484 lb_none = 0, lb_mac = 1, lb_phy = 3,
488 u32 tx_good_frames, tx_max_collisions, tx_late_collisions,
489 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
490 tx_multiple_collisions, tx_total_collisions;
491 u32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
492 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
493 rx_short_frame_errors;
494 u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
495 u16 xmt_tco_frames, rcv_tco_frames;
515 struct param_range rfds;
516 struct param_range cbs;
520 /* Begin: frequently used values: keep adjacent for cache effect */
521 u32 msg_enable ____cacheline_aligned;
522 struct net_device *netdev;
523 struct pci_dev *pdev;
525 struct rx *rxs ____cacheline_aligned;
526 struct rx *rx_to_use;
527 struct rx *rx_to_clean;
528 struct rfd blank_rfd;
529 enum ru_state ru_running;
531 spinlock_t cb_lock ____cacheline_aligned;
533 struct csr __iomem *csr;
534 enum scb_cmd_lo cuc_cmd;
535 unsigned int cbs_avail;
537 struct cb *cb_to_use;
538 struct cb *cb_to_send;
539 struct cb *cb_to_clean;
541 /* End: frequently used values: keep adjacent for cache effect */
545 promiscuous = (1 << 1),
546 multicast_all = (1 << 2),
547 wol_magic = (1 << 3),
548 ich_10h_workaround = (1 << 4),
549 } flags ____cacheline_aligned;
553 struct params params;
554 struct net_device_stats net_stats;
555 struct timer_list watchdog;
556 struct timer_list blink_timer;
557 struct mii_if_info mii;
558 struct work_struct tx_timeout_task;
559 enum loopback loopback;
564 dma_addr_t cbs_dma_addr;
570 u32 tx_single_collisions;
571 u32 tx_multiple_collisions;
576 u32 rx_fc_unsupported;
578 u32 rx_over_length_errors;
584 spinlock_t mdio_lock;
587 static inline void e100_write_flush(struct nic *nic)
589 /* Flush previous PCI writes through intermediate bridges
590 * by doing a benign read */
591 (void)readb(&nic->csr->scb.status);
594 static void e100_enable_irq(struct nic *nic)
598 spin_lock_irqsave(&nic->cmd_lock, flags);
599 writeb(irq_mask_none, &nic->csr->scb.cmd_hi);
600 e100_write_flush(nic);
601 spin_unlock_irqrestore(&nic->cmd_lock, flags);
604 static void e100_disable_irq(struct nic *nic)
608 spin_lock_irqsave(&nic->cmd_lock, flags);
609 writeb(irq_mask_all, &nic->csr->scb.cmd_hi);
610 e100_write_flush(nic);
611 spin_unlock_irqrestore(&nic->cmd_lock, flags);
614 static void e100_hw_reset(struct nic *nic)
616 /* Put CU and RU into idle with a selective reset to get
617 * device off of PCI bus */
618 writel(selective_reset, &nic->csr->port);
619 e100_write_flush(nic); udelay(20);
621 /* Now fully reset device */
622 writel(software_reset, &nic->csr->port);
623 e100_write_flush(nic); udelay(20);
625 /* Mask off our interrupt line - it's unmasked after reset */
626 e100_disable_irq(nic);
629 static int e100_self_test(struct nic *nic)
631 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
633 /* Passing the self-test is a pretty good indication
634 * that the device can DMA to/from host memory */
636 nic->mem->selftest.signature = 0;
637 nic->mem->selftest.result = 0xFFFFFFFF;
639 writel(selftest | dma_addr, &nic->csr->port);
640 e100_write_flush(nic);
641 /* Wait 10 msec for self-test to complete */
644 /* Interrupts are enabled after self-test */
645 e100_disable_irq(nic);
647 /* Check results of self-test */
648 if(nic->mem->selftest.result != 0) {
649 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
650 nic->mem->selftest.result);
653 if(nic->mem->selftest.signature == 0) {
654 DPRINTK(HW, ERR, "Self-test failed: timed out\n");
661 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data)
663 u32 cmd_addr_data[3];
667 /* Three cmds: write/erase enable, write data, write/erase disable */
668 cmd_addr_data[0] = op_ewen << (addr_len - 2);
669 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
671 cmd_addr_data[2] = op_ewds << (addr_len - 2);
673 /* Bit-bang cmds to write word to eeprom */
674 for(j = 0; j < 3; j++) {
677 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
678 e100_write_flush(nic); udelay(4);
680 for(i = 31; i >= 0; i--) {
681 ctrl = (cmd_addr_data[j] & (1 << i)) ?
683 writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
684 e100_write_flush(nic); udelay(4);
686 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
687 e100_write_flush(nic); udelay(4);
689 /* Wait 10 msec for cmd to complete */
693 writeb(0, &nic->csr->eeprom_ctrl_lo);
694 e100_write_flush(nic); udelay(4);
698 /* General technique stolen from the eepro100 driver - very clever */
699 static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
706 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
709 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
710 e100_write_flush(nic); udelay(4);
712 /* Bit-bang to read word from eeprom */
713 for(i = 31; i >= 0; i--) {
714 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
715 writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
716 e100_write_flush(nic); udelay(4);
718 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
719 e100_write_flush(nic); udelay(4);
721 /* Eeprom drives a dummy zero to EEDO after receiving
722 * complete address. Use this to adjust addr_len. */
723 ctrl = readb(&nic->csr->eeprom_ctrl_lo);
724 if(!(ctrl & eedo) && i > 16) {
725 *addr_len -= (i - 16);
729 data = (data << 1) | (ctrl & eedo ? 1 : 0);
733 writeb(0, &nic->csr->eeprom_ctrl_lo);
734 e100_write_flush(nic); udelay(4);
736 return le16_to_cpu(data);
739 /* Load entire EEPROM image into driver cache and validate checksum */
740 static int e100_eeprom_load(struct nic *nic)
742 u16 addr, addr_len = 8, checksum = 0;
744 /* Try reading with an 8-bit addr len to discover actual addr len */
745 e100_eeprom_read(nic, &addr_len, 0);
746 nic->eeprom_wc = 1 << addr_len;
748 for(addr = 0; addr < nic->eeprom_wc; addr++) {
749 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
750 if(addr < nic->eeprom_wc - 1)
751 checksum += cpu_to_le16(nic->eeprom[addr]);
754 /* The checksum, stored in the last word, is calculated such that
755 * the sum of words should be 0xBABA */
756 checksum = le16_to_cpu(0xBABA - checksum);
757 if(checksum != nic->eeprom[nic->eeprom_wc - 1]) {
758 DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
765 /* Save (portion of) driver EEPROM cache to device and update checksum */
766 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
768 u16 addr, addr_len = 8, checksum = 0;
770 /* Try reading with an 8-bit addr len to discover actual addr len */
771 e100_eeprom_read(nic, &addr_len, 0);
772 nic->eeprom_wc = 1 << addr_len;
774 if(start + count >= nic->eeprom_wc)
777 for(addr = start; addr < start + count; addr++)
778 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
780 /* The checksum, stored in the last word, is calculated such that
781 * the sum of words should be 0xBABA */
782 for(addr = 0; addr < nic->eeprom_wc - 1; addr++)
783 checksum += cpu_to_le16(nic->eeprom[addr]);
784 nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum);
785 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
786 nic->eeprom[nic->eeprom_wc - 1]);
791 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
792 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
793 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
799 spin_lock_irqsave(&nic->cmd_lock, flags);
801 /* Previous command is accepted when SCB clears */
802 for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
803 if(likely(!readb(&nic->csr->scb.cmd_lo)))
806 if(unlikely(i > E100_WAIT_SCB_FAST))
809 if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
814 if(unlikely(cmd != cuc_resume))
815 writel(dma_addr, &nic->csr->scb.gen_ptr);
816 writeb(cmd, &nic->csr->scb.cmd_lo);
819 spin_unlock_irqrestore(&nic->cmd_lock, flags);
824 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
825 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
831 spin_lock_irqsave(&nic->cb_lock, flags);
833 if(unlikely(!nic->cbs_avail)) {
839 nic->cb_to_use = cb->next;
843 if(unlikely(!nic->cbs_avail))
846 cb_prepare(nic, cb, skb);
848 /* Order is important otherwise we'll be in a race with h/w:
849 * set S-bit in current first, then clear S-bit in previous. */
850 cb->command |= cpu_to_le16(cb_s);
852 cb->prev->command &= cpu_to_le16(~cb_s);
854 while(nic->cb_to_send != nic->cb_to_use) {
855 if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
856 nic->cb_to_send->dma_addr))) {
857 /* Ok, here's where things get sticky. It's
858 * possible that we can't schedule the command
859 * because the controller is too busy, so
860 * let's just queue the command and try again
861 * when another command is scheduled. */
864 schedule_work(&nic->tx_timeout_task);
868 nic->cuc_cmd = cuc_resume;
869 nic->cb_to_send = nic->cb_to_send->next;
874 spin_unlock_irqrestore(&nic->cb_lock, flags);
879 static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
887 * Stratus87247: we shouldn't be writing the MDI control
888 * register until the Ready bit shows True. Also, since
889 * manipulation of the MDI control registers is a multi-step
890 * procedure it should be done under lock.
892 spin_lock_irqsave(&nic->mdio_lock, flags);
893 for (i = 100; i; --i) {
894 if (readl(&nic->csr->mdi_ctrl) & mdi_ready)
899 printk("e100.mdio_ctrl(%s) won't go Ready\n",
901 spin_unlock_irqrestore(&nic->mdio_lock, flags);
902 return 0; /* No way to indicate timeout error */
904 writel((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
906 for (i = 0; i < 100; i++) {
908 if ((data_out = readl(&nic->csr->mdi_ctrl)) & mdi_ready)
911 spin_unlock_irqrestore(&nic->mdio_lock, flags);
913 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
914 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
915 return (u16)data_out;
918 static int mdio_read(struct net_device *netdev, int addr, int reg)
920 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0);
923 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
925 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data);
928 static void e100_get_defaults(struct nic *nic)
930 struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
931 struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
933 pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id);
934 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
935 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->rev_id;
936 if(nic->mac == mac_unknown)
937 nic->mac = mac_82557_D100_A;
939 nic->params.rfds = rfds;
940 nic->params.cbs = cbs;
942 /* Quadwords to DMA into FIFO before starting frame transmit */
943 nic->tx_threshold = 0xE0;
945 /* no interrupt for every tx completion, delay = 256us if not 557*/
946 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
947 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
949 /* Template for a freshly allocated RFD */
950 nic->blank_rfd.command = cpu_to_le16(cb_el);
951 nic->blank_rfd.rbd = 0xFFFFFFFF;
952 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
955 nic->mii.phy_id_mask = 0x1F;
956 nic->mii.reg_num_mask = 0x1F;
957 nic->mii.dev = nic->netdev;
958 nic->mii.mdio_read = mdio_read;
959 nic->mii.mdio_write = mdio_write;
962 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
964 struct config *config = &cb->u.config;
965 u8 *c = (u8 *)config;
967 cb->command = cpu_to_le16(cb_config);
969 memset(config, 0, sizeof(struct config));
971 config->byte_count = 0x16; /* bytes in this struct */
972 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
973 config->direct_rx_dma = 0x1; /* reserved */
974 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
975 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
976 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
977 config->tx_underrun_retry = 0x3; /* # of underrun retries */
978 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */
980 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
981 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
982 config->ifs = 0x6; /* x16 = inter frame spacing */
983 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
984 config->pad15_1 = 0x1;
985 config->pad15_2 = 0x1;
986 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
987 config->fc_delay_hi = 0x40; /* time delay for fc frame */
988 config->tx_padding = 0x1; /* 1=pad short frames */
989 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
991 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
992 config->pad20_1 = 0x1F;
993 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
994 config->pad21_1 = 0x5;
996 config->adaptive_ifs = nic->adaptive_ifs;
997 config->loopback = nic->loopback;
999 if(nic->mii.force_media && nic->mii.full_duplex)
1000 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
1002 if(nic->flags & promiscuous || nic->loopback) {
1003 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1004 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1005 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
1008 if(nic->flags & multicast_all)
1009 config->multicast_all = 0x1; /* 1=accept, 0=no */
1011 /* disable WoL when up */
1012 if(netif_running(nic->netdev) || !(nic->flags & wol_magic))
1013 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
1015 if(nic->mac >= mac_82558_D101_A4) {
1016 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
1017 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
1018 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
1019 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
1020 if(nic->mac >= mac_82559_D101M)
1021 config->tno_intr = 0x1; /* TCO stats enable */
1023 config->standard_stat_counter = 0x0;
1026 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1027 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1028 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1029 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1030 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1031 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1034 /********************************************************/
1035 /* Micro code for 8086:1229 Rev 8 */
1036 /********************************************************/
1038 /* Parameter values for the D101M B-step */
1039 #define D101M_CPUSAVER_TIMER_DWORD 78
1040 #define D101M_CPUSAVER_BUNDLE_DWORD 65
1041 #define D101M_CPUSAVER_MIN_SIZE_DWORD 126
1043 #define D101M_B_RCVBUNDLE_UCODE \
1045 0x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \
1046 0x000C0001, 0x00101312, 0x000C0008, 0x00380216, \
1047 0x0010009C, 0x00204056, 0x002380CC, 0x00380056, \
1048 0x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \
1049 0x00380438, 0x00000000, 0x00140000, 0x00380555, \
1050 0x00308000, 0x00100662, 0x00100561, 0x000E0408, \
1051 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
1052 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
1053 0x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \
1054 0x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \
1055 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1056 0x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \
1057 0x003A0437, 0x00044010, 0x0038078A, 0x00000000, \
1058 0x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \
1059 0x00130824, 0x000C0001, 0x00101213, 0x00260C75, \
1060 0x00041000, 0x00010004, 0x00130826, 0x000C0006, \
1061 0x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \
1062 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1063 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1064 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
1065 0x00101210, 0x00380C34, 0x00000000, 0x00000000, \
1066 0x0021155B, 0x00100099, 0x00206559, 0x0010009C, \
1067 0x00244559, 0x00130836, 0x000C0000, 0x00220C62, \
1068 0x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \
1069 0x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \
1070 0x00214C0E, 0x00380555, 0x00010004, 0x00041000, \
1071 0x00278C67, 0x00040800, 0x00018100, 0x003A0437, \
1072 0x00130826, 0x000C0001, 0x00220559, 0x00101313, \
1073 0x00380559, 0x00000000, 0x00000000, 0x00000000, \
1074 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1075 0x00000000, 0x00130831, 0x0010090B, 0x00124813, \
1076 0x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \
1077 0x003806A8, 0x00000000, 0x00000000, 0x00000000, \
1080 /********************************************************/
1081 /* Micro code for 8086:1229 Rev 9 */
1082 /********************************************************/
1084 /* Parameter values for the D101S */
1085 #define D101S_CPUSAVER_TIMER_DWORD 78
1086 #define D101S_CPUSAVER_BUNDLE_DWORD 67
1087 #define D101S_CPUSAVER_MIN_SIZE_DWORD 128
1089 #define D101S_RCVBUNDLE_UCODE \
1091 0x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \
1092 0x000C0001, 0x00101312, 0x000C0008, 0x00380243, \
1093 0x0010009C, 0x00204056, 0x002380D0, 0x00380056, \
1094 0x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \
1095 0x0038047F, 0x00000000, 0x00140000, 0x003805A3, \
1096 0x00308000, 0x00100610, 0x00100561, 0x000E0408, \
1097 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
1098 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
1099 0x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \
1100 0x00380F90, 0x00080000, 0x00103090, 0x00380F90, \
1101 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1102 0x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \
1103 0x003A047E, 0x00044010, 0x00380819, 0x00000000, \
1104 0x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \
1105 0x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \
1106 0x00101213, 0x00260FF7, 0x00041000, 0x00010004, \
1107 0x00130826, 0x000C0006, 0x00220700, 0x0013C926, \
1108 0x00101313, 0x00380700, 0x00000000, 0x00000000, \
1109 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1110 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
1111 0x00101210, 0x00380FB6, 0x00000000, 0x00000000, \
1112 0x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \
1113 0x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \
1114 0x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \
1115 0x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \
1116 0x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \
1117 0x00010004, 0x00041000, 0x00278FE9, 0x00040800, \
1118 0x00018100, 0x003A047E, 0x00130826, 0x000C0001, \
1119 0x002205A7, 0x00101313, 0x003805A7, 0x00000000, \
1120 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1121 0x00000000, 0x00000000, 0x00000000, 0x00130831, \
1122 0x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \
1123 0x00041000, 0x00010004, 0x00380700 \
1126 /********************************************************/
1127 /* Micro code for the 8086:1229 Rev F/10 */
1128 /********************************************************/
1130 /* Parameter values for the D102 E-step */
1131 #define D102_E_CPUSAVER_TIMER_DWORD 42
1132 #define D102_E_CPUSAVER_BUNDLE_DWORD 54
1133 #define D102_E_CPUSAVER_MIN_SIZE_DWORD 46
1135 #define D102_E_RCVBUNDLE_UCODE \
1137 0x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \
1138 0x00E014B9, 0x00000000, 0x00000000, 0x00000000, \
1139 0x00E014BD, 0x00000000, 0x00000000, 0x00000000, \
1140 0x00E014D5, 0x00000000, 0x00000000, 0x00000000, \
1141 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1142 0x00E014C1, 0x00000000, 0x00000000, 0x00000000, \
1143 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1144 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1145 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1146 0x00E014C8, 0x00000000, 0x00000000, 0x00000000, \
1147 0x00200600, 0x00E014EE, 0x00000000, 0x00000000, \
1148 0x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \
1149 0x00E00E43, 0x00000000, 0x00000000, 0x00000000, \
1150 0x00300006, 0x00E014FB, 0x00000000, 0x00000000, \
1151 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1152 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1153 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1154 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \
1155 0x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \
1156 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1157 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1158 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1159 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1160 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1161 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1162 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1163 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1164 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1165 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1166 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1167 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1168 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1169 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1172 static void e100_setup_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1176 u32 ucode[UCODE_SIZE + 1];
1182 { D101M_B_RCVBUNDLE_UCODE,
1184 D101M_CPUSAVER_TIMER_DWORD,
1185 D101M_CPUSAVER_BUNDLE_DWORD,
1186 D101M_CPUSAVER_MIN_SIZE_DWORD },
1187 { D101S_RCVBUNDLE_UCODE,
1189 D101S_CPUSAVER_TIMER_DWORD,
1190 D101S_CPUSAVER_BUNDLE_DWORD,
1191 D101S_CPUSAVER_MIN_SIZE_DWORD },
1192 { D102_E_RCVBUNDLE_UCODE,
1194 D102_E_CPUSAVER_TIMER_DWORD,
1195 D102_E_CPUSAVER_BUNDLE_DWORD,
1196 D102_E_CPUSAVER_MIN_SIZE_DWORD },
1197 { D102_E_RCVBUNDLE_UCODE,
1199 D102_E_CPUSAVER_TIMER_DWORD,
1200 D102_E_CPUSAVER_BUNDLE_DWORD,
1201 D102_E_CPUSAVER_MIN_SIZE_DWORD },
1206 /*************************************************************************
1207 * CPUSaver parameters
1209 * All CPUSaver parameters are 16-bit literals that are part of a
1210 * "move immediate value" instruction. By changing the value of
1211 * the literal in the instruction before the code is loaded, the
1212 * driver can change the algorithm.
1214 * INTDELAY - This loads the dead-man timer with its inital value.
1215 * When this timer expires the interrupt is asserted, and the
1216 * timer is reset each time a new packet is received. (see
1217 * BUNDLEMAX below to set the limit on number of chained packets)
1218 * The current default is 0x600 or 1536. Experiments show that
1219 * the value should probably stay within the 0x200 - 0x1000.
1222 * This sets the maximum number of frames that will be bundled. In
1223 * some situations, such as the TCP windowing algorithm, it may be
1224 * better to limit the growth of the bundle size than let it go as
1225 * high as it can, because that could cause too much added latency.
1226 * The default is six, because this is the number of packets in the
1227 * default TCP window size. A value of 1 would make CPUSaver indicate
1228 * an interrupt for every frame received. If you do not want to put
1229 * a limit on the bundle size, set this value to xFFFF.
1232 * This contains a bit-mask describing the minimum size frame that
1233 * will be bundled. The default masks the lower 7 bits, which means
1234 * that any frame less than 128 bytes in length will not be bundled,
1235 * but will instead immediately generate an interrupt. This does
1236 * not affect the current bundle in any way. Any frame that is 128
1237 * bytes or large will be bundled normally. This feature is meant
1238 * to provide immediate indication of ACK frames in a TCP environment.
1239 * Customers were seeing poor performance when a machine with CPUSaver
1240 * enabled was sending but not receiving. The delay introduced when
1241 * the ACKs were received was enough to reduce total throughput, because
1242 * the sender would sit idle until the ACK was finally seen.
1244 * The current default is 0xFF80, which masks out the lower 7 bits.
1245 * This means that any frame which is x7F (127) bytes or smaller
1246 * will cause an immediate interrupt. Because this value must be a
1247 * bit mask, there are only a few valid values that can be used. To
1248 * turn this feature off, the driver can write the value xFFFF to the
1249 * lower word of this instruction (in the same way that the other
1250 * parameters are used). Likewise, a value of 0xF800 (2047) would
1251 * cause an interrupt to be generated for every frame, because all
1252 * standard Ethernet frames are <= 2047 bytes in length.
1253 *************************************************************************/
1255 /* if you wish to disable the ucode functionality, while maintaining the
1256 * workarounds it provides, set the following defines to:
1261 #define BUNDLESMALL 1
1262 #define BUNDLEMAX (u16)6
1263 #define INTDELAY (u16)1536 /* 0x600 */
1265 /* do not load u-code for ICH devices */
1266 if (nic->flags & ich)
1269 /* Search for ucode match against h/w rev_id */
1270 for (opts = ucode_opts; opts->mac; opts++) {
1272 u32 *ucode = opts->ucode;
1273 if (nic->mac != opts->mac)
1276 /* Insert user-tunable settings */
1277 ucode[opts->timer_dword] &= 0xFFFF0000;
1278 ucode[opts->timer_dword] |= INTDELAY;
1279 ucode[opts->bundle_dword] &= 0xFFFF0000;
1280 ucode[opts->bundle_dword] |= BUNDLEMAX;
1281 ucode[opts->min_size_dword] &= 0xFFFF0000;
1282 ucode[opts->min_size_dword] |= (BUNDLESMALL) ? 0xFFFF : 0xFF80;
1284 for (i = 0; i < UCODE_SIZE; i++)
1285 cb->u.ucode[i] = cpu_to_le32(ucode[i]);
1286 cb->command = cpu_to_le16(cb_ucode | cb_el);
1291 cb->command = cpu_to_le16(cb_nop | cb_el);
1294 static inline int e100_exec_cb_wait(struct nic *nic, struct sk_buff *skb,
1295 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
1297 int err = 0, counter = 50;
1298 struct cb *cb = nic->cb_to_clean;
1300 if ((err = e100_exec_cb(nic, NULL, e100_setup_ucode)))
1301 DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err);
1303 /* must restart cuc */
1304 nic->cuc_cmd = cuc_start;
1306 /* wait for completion */
1307 e100_write_flush(nic);
1310 /* wait for possibly (ouch) 500ms */
1311 while (!(cb->status & cpu_to_le16(cb_complete))) {
1313 if (!--counter) break;
1316 /* ack any interupts, something could have been set */
1317 writeb(~0, &nic->csr->scb.stat_ack);
1319 /* if the command failed, or is not OK, notify and return */
1320 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1321 DPRINTK(PROBE,ERR, "ucode load failed\n");
1328 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1329 struct sk_buff *skb)
1331 cb->command = cpu_to_le16(cb_iaaddr);
1332 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1335 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1337 cb->command = cpu_to_le16(cb_dump);
1338 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1339 offsetof(struct mem, dump_buf));
1342 #define NCONFIG_AUTO_SWITCH 0x0080
1343 #define MII_NSC_CONG MII_RESV1
1344 #define NSC_CONG_ENABLE 0x0100
1345 #define NSC_CONG_TXREADY 0x0400
1346 #define ADVERTISE_FC_SUPPORTED 0x0400
1347 static int e100_phy_init(struct nic *nic)
1349 struct net_device *netdev = nic->netdev;
1351 u16 bmcr, stat, id_lo, id_hi, cong;
1353 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1354 for(addr = 0; addr < 32; addr++) {
1355 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1356 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1357 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1358 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1359 if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1362 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
1366 /* Selected the phy and isolate the rest */
1367 for(addr = 0; addr < 32; addr++) {
1368 if(addr != nic->mii.phy_id) {
1369 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1371 bmcr = mdio_read(netdev, addr, MII_BMCR);
1372 mdio_write(netdev, addr, MII_BMCR,
1373 bmcr & ~BMCR_ISOLATE);
1378 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1379 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1380 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1381 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
1383 /* Handle National tx phys */
1384 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1385 if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1386 /* Disable congestion control */
1387 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1388 cong |= NSC_CONG_TXREADY;
1389 cong &= ~NSC_CONG_ENABLE;
1390 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1393 if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1394 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1395 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1396 /* enable/disable MDI/MDI-X auto-switching. */
1397 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1398 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1404 static int e100_hw_init(struct nic *nic)
1410 DPRINTK(HW, ERR, "e100_hw_init\n");
1411 if(!in_interrupt() && (err = e100_self_test(nic)))
1414 if((err = e100_phy_init(nic)))
1416 if((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1418 if((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1420 if ((err = e100_exec_cb_wait(nic, NULL, e100_setup_ucode)))
1422 if((err = e100_exec_cb(nic, NULL, e100_configure)))
1424 if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1426 if((err = e100_exec_cmd(nic, cuc_dump_addr,
1427 nic->dma_addr + offsetof(struct mem, stats))))
1429 if((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1432 e100_disable_irq(nic);
1437 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1439 struct net_device *netdev = nic->netdev;
1440 struct dev_mc_list *list = netdev->mc_list;
1441 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
1443 cb->command = cpu_to_le16(cb_multi);
1444 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1445 for(i = 0; list && i < count; i++, list = list->next)
1446 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
1450 static void e100_set_multicast_list(struct net_device *netdev)
1452 struct nic *nic = netdev_priv(netdev);
1454 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
1455 netdev->mc_count, netdev->flags);
1457 if(netdev->flags & IFF_PROMISC)
1458 nic->flags |= promiscuous;
1460 nic->flags &= ~promiscuous;
1462 if(netdev->flags & IFF_ALLMULTI ||
1463 netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
1464 nic->flags |= multicast_all;
1466 nic->flags &= ~multicast_all;
1468 e100_exec_cb(nic, NULL, e100_configure);
1469 e100_exec_cb(nic, NULL, e100_multi);
1472 static void e100_update_stats(struct nic *nic)
1474 struct net_device_stats *ns = &nic->net_stats;
1475 struct stats *s = &nic->mem->stats;
1476 u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1477 (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames :
1480 /* Device's stats reporting may take several microseconds to
1481 * complete, so where always waiting for results of the
1482 * previous command. */
1484 if(*complete == le32_to_cpu(cuc_dump_reset_complete)) {
1486 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1487 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1488 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1489 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1490 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1491 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1492 ns->collisions += nic->tx_collisions;
1493 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1494 le32_to_cpu(s->tx_lost_crs);
1495 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1496 nic->rx_over_length_errors;
1497 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1498 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1499 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1500 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1501 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1502 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1503 le32_to_cpu(s->rx_alignment_errors) +
1504 le32_to_cpu(s->rx_short_frame_errors) +
1505 le32_to_cpu(s->rx_cdt_errors);
1506 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1507 nic->tx_single_collisions +=
1508 le32_to_cpu(s->tx_single_collisions);
1509 nic->tx_multiple_collisions +=
1510 le32_to_cpu(s->tx_multiple_collisions);
1511 if(nic->mac >= mac_82558_D101_A4) {
1512 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1513 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1514 nic->rx_fc_unsupported +=
1515 le32_to_cpu(s->fc_rcv_unsupported);
1516 if(nic->mac >= mac_82559_D101M) {
1517 nic->tx_tco_frames +=
1518 le16_to_cpu(s->xmt_tco_frames);
1519 nic->rx_tco_frames +=
1520 le16_to_cpu(s->rcv_tco_frames);
1526 if(e100_exec_cmd(nic, cuc_dump_reset, 0))
1527 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
1530 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1532 /* Adjust inter-frame-spacing (IFS) between two transmits if
1533 * we're getting collisions on a half-duplex connection. */
1535 if(duplex == DUPLEX_HALF) {
1536 u32 prev = nic->adaptive_ifs;
1537 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1539 if((nic->tx_frames / 32 < nic->tx_collisions) &&
1540 (nic->tx_frames > min_frames)) {
1541 if(nic->adaptive_ifs < 60)
1542 nic->adaptive_ifs += 5;
1543 } else if (nic->tx_frames < min_frames) {
1544 if(nic->adaptive_ifs >= 5)
1545 nic->adaptive_ifs -= 5;
1547 if(nic->adaptive_ifs != prev)
1548 e100_exec_cb(nic, NULL, e100_configure);
1552 static void e100_watchdog(unsigned long data)
1554 struct nic *nic = (struct nic *)data;
1555 struct ethtool_cmd cmd;
1557 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
1559 /* mii library handles link maintenance tasks */
1561 mii_ethtool_gset(&nic->mii, &cmd);
1563 if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1564 DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n",
1565 cmd.speed == SPEED_100 ? "100" : "10",
1566 cmd.duplex == DUPLEX_FULL ? "full" : "half");
1567 } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1568 DPRINTK(LINK, INFO, "link down\n");
1571 mii_check_link(&nic->mii);
1573 /* Software generated interrupt to recover from (rare) Rx
1574 * allocation failure.
1575 * Unfortunately have to use a spinlock to not re-enable interrupts
1576 * accidentally, due to hardware that shares a register between the
1577 * interrupt mask bit and the SW Interrupt generation bit */
1578 spin_lock_irq(&nic->cmd_lock);
1579 writeb(readb(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1580 e100_write_flush(nic);
1581 spin_unlock_irq(&nic->cmd_lock);
1583 e100_update_stats(nic);
1584 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1586 if(nic->mac <= mac_82557_D100_C)
1587 /* Issue a multicast command to workaround a 557 lock up */
1588 e100_set_multicast_list(nic->netdev);
1590 if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1591 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1592 nic->flags |= ich_10h_workaround;
1594 nic->flags &= ~ich_10h_workaround;
1596 mod_timer(&nic->watchdog, jiffies + E100_WATCHDOG_PERIOD);
1599 static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1600 struct sk_buff *skb)
1602 cb->command = nic->tx_command;
1603 /* interrupt every 16 packets regardless of delay */
1604 if((nic->cbs_avail & ~15) == nic->cbs_avail)
1605 cb->command |= cpu_to_le16(cb_i);
1606 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1607 cb->u.tcb.tcb_byte_count = 0;
1608 cb->u.tcb.threshold = nic->tx_threshold;
1609 cb->u.tcb.tbd_count = 1;
1610 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1611 skb->data, skb->len, PCI_DMA_TODEVICE));
1612 /* check for mapping failure? */
1613 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1616 static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1618 struct nic *nic = netdev_priv(netdev);
1621 if(nic->flags & ich_10h_workaround) {
1622 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1623 Issue a NOP command followed by a 1us delay before
1624 issuing the Tx command. */
1625 if(e100_exec_cmd(nic, cuc_nop, 0))
1626 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
1630 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1634 /* We queued the skb, but now we're out of space. */
1635 DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
1636 netif_stop_queue(netdev);
1639 /* This is a hard error - log it. */
1640 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
1641 netif_stop_queue(netdev);
1645 netdev->trans_start = jiffies;
1649 static int e100_tx_clean(struct nic *nic)
1654 spin_lock(&nic->cb_lock);
1656 DPRINTK(TX_DONE, DEBUG, "cb->status = 0x%04X\n",
1657 nic->cb_to_clean->status);
1659 /* Clean CBs marked complete */
1660 for(cb = nic->cb_to_clean;
1661 cb->status & cpu_to_le16(cb_complete);
1662 cb = nic->cb_to_clean = cb->next) {
1663 if(likely(cb->skb != NULL)) {
1664 nic->net_stats.tx_packets++;
1665 nic->net_stats.tx_bytes += cb->skb->len;
1667 pci_unmap_single(nic->pdev,
1668 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1669 le16_to_cpu(cb->u.tcb.tbd.size),
1671 dev_kfree_skb_any(cb->skb);
1679 spin_unlock(&nic->cb_lock);
1681 /* Recover from running out of Tx resources in xmit_frame */
1682 if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1683 netif_wake_queue(nic->netdev);
1688 static void e100_clean_cbs(struct nic *nic)
1691 while(nic->cbs_avail != nic->params.cbs.count) {
1692 struct cb *cb = nic->cb_to_clean;
1694 pci_unmap_single(nic->pdev,
1695 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1696 le16_to_cpu(cb->u.tcb.tbd.size),
1698 dev_kfree_skb(cb->skb);
1700 nic->cb_to_clean = nic->cb_to_clean->next;
1703 pci_free_consistent(nic->pdev,
1704 sizeof(struct cb) * nic->params.cbs.count,
1705 nic->cbs, nic->cbs_dma_addr);
1709 nic->cuc_cmd = cuc_start;
1710 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1714 static int e100_alloc_cbs(struct nic *nic)
1717 unsigned int i, count = nic->params.cbs.count;
1719 nic->cuc_cmd = cuc_start;
1720 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1723 nic->cbs = pci_alloc_consistent(nic->pdev,
1724 sizeof(struct cb) * count, &nic->cbs_dma_addr);
1728 for(cb = nic->cbs, i = 0; i < count; cb++, i++) {
1729 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1730 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1732 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1733 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1734 ((i+1) % count) * sizeof(struct cb));
1738 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1739 nic->cbs_avail = count;
1744 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1746 if(!nic->rxs) return;
1747 if(RU_SUSPENDED != nic->ru_running) return;
1749 /* handle init time starts */
1750 if(!rx) rx = nic->rxs;
1752 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1754 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1755 nic->ru_running = RU_RUNNING;
1759 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1760 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1762 if(!(rx->skb = dev_alloc_skb(RFD_BUF_LEN + NET_IP_ALIGN)))
1765 /* Align, init, and map the RFD. */
1766 rx->skb->dev = nic->netdev;
1767 skb_reserve(rx->skb, NET_IP_ALIGN);
1768 memcpy(rx->skb->data, &nic->blank_rfd, sizeof(struct rfd));
1769 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1770 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1772 if(pci_dma_mapping_error(rx->dma_addr)) {
1773 dev_kfree_skb_any(rx->skb);
1779 /* Link the RFD to end of RFA by linking previous RFD to
1780 * this one, and clearing EL bit of previous. */
1782 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1783 put_unaligned(cpu_to_le32(rx->dma_addr),
1784 (u32 *)&prev_rfd->link);
1786 prev_rfd->command &= ~cpu_to_le16(cb_el);
1787 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1788 sizeof(struct rfd), PCI_DMA_TODEVICE);
1794 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1795 unsigned int *work_done, unsigned int work_to_do)
1797 struct sk_buff *skb = rx->skb;
1798 struct rfd *rfd = (struct rfd *)skb->data;
1799 u16 rfd_status, actual_size;
1801 if(unlikely(work_done && *work_done >= work_to_do))
1804 /* Need to sync before taking a peek at cb_complete bit */
1805 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1806 sizeof(struct rfd), PCI_DMA_FROMDEVICE);
1807 rfd_status = le16_to_cpu(rfd->status);
1809 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
1811 /* If data isn't ready, nothing to indicate */
1812 if(unlikely(!(rfd_status & cb_complete)))
1815 /* Get actual data size */
1816 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1817 if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1818 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1821 pci_unmap_single(nic->pdev, rx->dma_addr,
1822 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1824 /* this allows for a fast restart without re-enabling interrupts */
1825 if(le16_to_cpu(rfd->command) & cb_el)
1826 nic->ru_running = RU_SUSPENDED;
1828 /* Pull off the RFD and put the actual data (minus eth hdr) */
1829 skb_reserve(skb, sizeof(struct rfd));
1830 skb_put(skb, actual_size);
1831 skb->protocol = eth_type_trans(skb, nic->netdev);
1833 if(unlikely(!(rfd_status & cb_ok))) {
1834 /* Don't indicate if hardware indicates errors */
1835 dev_kfree_skb_any(skb);
1836 } else if(actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1837 /* Don't indicate oversized frames */
1838 nic->rx_over_length_errors++;
1839 dev_kfree_skb_any(skb);
1841 nic->net_stats.rx_packets++;
1842 nic->net_stats.rx_bytes += actual_size;
1843 nic->netdev->last_rx = jiffies;
1844 netif_receive_skb(skb);
1854 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1855 unsigned int work_to_do)
1858 int restart_required = 0;
1859 struct rx *rx_to_start = NULL;
1861 /* are we already rnr? then pay attention!!! this ensures that
1862 * the state machine progression never allows a start with a
1863 * partially cleaned list, avoiding a race between hardware
1864 * and rx_to_clean when in NAPI mode */
1865 if(RU_SUSPENDED == nic->ru_running)
1866 restart_required = 1;
1868 /* Indicate newly arrived packets */
1869 for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
1870 int err = e100_rx_indicate(nic, rx, work_done, work_to_do);
1871 if(-EAGAIN == err) {
1872 /* hit quota so have more work to do, restart once
1873 * cleanup is complete */
1874 restart_required = 0;
1876 } else if(-ENODATA == err)
1877 break; /* No more to clean */
1880 /* save our starting point as the place we'll restart the receiver */
1881 if(restart_required)
1882 rx_to_start = nic->rx_to_clean;
1884 /* Alloc new skbs to refill list */
1885 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
1886 if(unlikely(e100_rx_alloc_skb(nic, rx)))
1887 break; /* Better luck next time (see watchdog) */
1890 if(restart_required) {
1892 writeb(stat_ack_rnr, &nic->csr->scb.stat_ack);
1893 e100_start_receiver(nic, rx_to_start);
1899 static void e100_rx_clean_list(struct nic *nic)
1902 unsigned int i, count = nic->params.rfds.count;
1904 nic->ru_running = RU_UNINITIALIZED;
1907 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1909 pci_unmap_single(nic->pdev, rx->dma_addr,
1910 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1911 dev_kfree_skb(rx->skb);
1918 nic->rx_to_use = nic->rx_to_clean = NULL;
1921 static int e100_rx_alloc_list(struct nic *nic)
1924 unsigned int i, count = nic->params.rfds.count;
1926 nic->rx_to_use = nic->rx_to_clean = NULL;
1927 nic->ru_running = RU_UNINITIALIZED;
1929 if(!(nic->rxs = kmalloc(sizeof(struct rx) * count, GFP_ATOMIC)))
1931 memset(nic->rxs, 0, sizeof(struct rx) * count);
1933 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1934 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
1935 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
1936 if(e100_rx_alloc_skb(nic, rx)) {
1937 e100_rx_clean_list(nic);
1942 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
1943 nic->ru_running = RU_SUSPENDED;
1948 static irqreturn_t e100_intr(int irq, void *dev_id, struct pt_regs *regs)
1950 struct net_device *netdev = dev_id;
1951 struct nic *nic = netdev_priv(netdev);
1952 u8 stat_ack = readb(&nic->csr->scb.stat_ack);
1954 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
1956 if(stat_ack == stat_ack_not_ours || /* Not our interrupt */
1957 stat_ack == stat_ack_not_present) /* Hardware is ejected */
1960 /* Ack interrupt(s) */
1961 writeb(stat_ack, &nic->csr->scb.stat_ack);
1963 /* We hit Receive No Resource (RNR); restart RU after cleaning */
1964 if(stat_ack & stat_ack_rnr)
1965 nic->ru_running = RU_SUSPENDED;
1967 if(likely(netif_rx_schedule_prep(netdev))) {
1968 e100_disable_irq(nic);
1969 __netif_rx_schedule(netdev);
1975 static int e100_poll(struct net_device *netdev, int *budget)
1977 struct nic *nic = netdev_priv(netdev);
1978 unsigned int work_to_do = min(netdev->quota, *budget);
1979 unsigned int work_done = 0;
1982 e100_rx_clean(nic, &work_done, work_to_do);
1983 tx_cleaned = e100_tx_clean(nic);
1985 /* If no Rx and Tx cleanup work was done, exit polling mode. */
1986 if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
1987 netif_rx_complete(netdev);
1988 e100_enable_irq(nic);
1992 *budget -= work_done;
1993 netdev->quota -= work_done;
1998 #ifdef CONFIG_NET_POLL_CONTROLLER
1999 static void e100_netpoll(struct net_device *netdev)
2001 struct nic *nic = netdev_priv(netdev);
2003 e100_disable_irq(nic);
2004 e100_intr(nic->pdev->irq, netdev, NULL);
2006 e100_enable_irq(nic);
2010 static struct net_device_stats *e100_get_stats(struct net_device *netdev)
2012 struct nic *nic = netdev_priv(netdev);
2013 return &nic->net_stats;
2016 static int e100_set_mac_address(struct net_device *netdev, void *p)
2018 struct nic *nic = netdev_priv(netdev);
2019 struct sockaddr *addr = p;
2021 if (!is_valid_ether_addr(addr->sa_data))
2022 return -EADDRNOTAVAIL;
2024 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2025 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2030 static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2032 if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2034 netdev->mtu = new_mtu;
2039 static int e100_asf(struct nic *nic)
2041 /* ASF can be enabled from eeprom */
2042 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2043 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2044 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2045 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
2049 static int e100_up(struct nic *nic)
2053 if((err = e100_rx_alloc_list(nic)))
2055 if((err = e100_alloc_cbs(nic)))
2056 goto err_rx_clean_list;
2057 if((err = e100_hw_init(nic)))
2059 e100_set_multicast_list(nic->netdev);
2060 e100_start_receiver(nic, NULL);
2061 mod_timer(&nic->watchdog, jiffies);
2062 if((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2063 nic->netdev->name, nic->netdev)))
2065 netif_wake_queue(nic->netdev);
2066 netif_poll_enable(nic->netdev);
2067 /* enable ints _after_ enabling poll, preventing a race between
2068 * disable ints+schedule */
2069 e100_enable_irq(nic);
2073 del_timer_sync(&nic->watchdog);
2075 e100_clean_cbs(nic);
2077 e100_rx_clean_list(nic);
2081 static void e100_down(struct nic *nic)
2083 /* wait here for poll to complete */
2084 netif_poll_disable(nic->netdev);
2085 netif_stop_queue(nic->netdev);
2087 free_irq(nic->pdev->irq, nic->netdev);
2088 del_timer_sync(&nic->watchdog);
2089 netif_carrier_off(nic->netdev);
2090 e100_clean_cbs(nic);
2091 e100_rx_clean_list(nic);
2094 static void e100_tx_timeout(struct net_device *netdev)
2096 struct nic *nic = netdev_priv(netdev);
2098 /* Reset outside of interrupt context, to avoid request_irq
2099 * in interrupt context */
2100 schedule_work(&nic->tx_timeout_task);
2103 static void e100_tx_timeout_task(struct net_device *netdev)
2105 struct nic *nic = netdev_priv(netdev);
2107 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
2108 readb(&nic->csr->scb.status));
2109 e100_down(netdev_priv(netdev));
2110 e100_up(netdev_priv(netdev));
2113 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2116 struct sk_buff *skb;
2118 /* Use driver resources to perform internal MAC or PHY
2119 * loopback test. A single packet is prepared and transmitted
2120 * in loopback mode, and the test passes if the received
2121 * packet compares byte-for-byte to the transmitted packet. */
2123 if((err = e100_rx_alloc_list(nic)))
2125 if((err = e100_alloc_cbs(nic)))
2128 /* ICH PHY loopback is broken so do MAC loopback instead */
2129 if(nic->flags & ich && loopback_mode == lb_phy)
2130 loopback_mode = lb_mac;
2132 nic->loopback = loopback_mode;
2133 if((err = e100_hw_init(nic)))
2134 goto err_loopback_none;
2136 if(loopback_mode == lb_phy)
2137 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2140 e100_start_receiver(nic, NULL);
2142 if(!(skb = dev_alloc_skb(ETH_DATA_LEN))) {
2144 goto err_loopback_none;
2146 skb_put(skb, ETH_DATA_LEN);
2147 memset(skb->data, 0xFF, ETH_DATA_LEN);
2148 e100_xmit_frame(skb, nic->netdev);
2152 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2153 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
2155 if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2156 skb->data, ETH_DATA_LEN))
2160 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2161 nic->loopback = lb_none;
2162 e100_clean_cbs(nic);
2165 e100_rx_clean_list(nic);
2169 #define MII_LED_CONTROL 0x1B
2170 static void e100_blink_led(unsigned long data)
2172 struct nic *nic = (struct nic *)data;
2180 nic->leds = (nic->leds & led_on) ? led_off :
2181 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2182 mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds);
2183 mod_timer(&nic->blink_timer, jiffies + HZ / 4);
2186 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2188 struct nic *nic = netdev_priv(netdev);
2189 return mii_ethtool_gset(&nic->mii, cmd);
2192 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2194 struct nic *nic = netdev_priv(netdev);
2197 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2198 err = mii_ethtool_sset(&nic->mii, cmd);
2199 e100_exec_cb(nic, NULL, e100_configure);
2204 static void e100_get_drvinfo(struct net_device *netdev,
2205 struct ethtool_drvinfo *info)
2207 struct nic *nic = netdev_priv(netdev);
2208 strcpy(info->driver, DRV_NAME);
2209 strcpy(info->version, DRV_VERSION);
2210 strcpy(info->fw_version, "N/A");
2211 strcpy(info->bus_info, pci_name(nic->pdev));
2214 static int e100_get_regs_len(struct net_device *netdev)
2216 struct nic *nic = netdev_priv(netdev);
2217 #define E100_PHY_REGS 0x1C
2218 #define E100_REGS_LEN 1 + E100_PHY_REGS + \
2219 sizeof(nic->mem->dump_buf) / sizeof(u32)
2220 return E100_REGS_LEN * sizeof(u32);
2223 static void e100_get_regs(struct net_device *netdev,
2224 struct ethtool_regs *regs, void *p)
2226 struct nic *nic = netdev_priv(netdev);
2230 regs->version = (1 << 24) | nic->rev_id;
2231 buff[0] = readb(&nic->csr->scb.cmd_hi) << 24 |
2232 readb(&nic->csr->scb.cmd_lo) << 16 |
2233 readw(&nic->csr->scb.status);
2234 for(i = E100_PHY_REGS; i >= 0; i--)
2235 buff[1 + E100_PHY_REGS - i] =
2236 mdio_read(netdev, nic->mii.phy_id, i);
2237 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2238 e100_exec_cb(nic, NULL, e100_dump);
2240 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2241 sizeof(nic->mem->dump_buf));
2244 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2246 struct nic *nic = netdev_priv(netdev);
2247 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
2248 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2251 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2253 struct nic *nic = netdev_priv(netdev);
2255 if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
2259 nic->flags |= wol_magic;
2261 nic->flags &= ~wol_magic;
2263 e100_exec_cb(nic, NULL, e100_configure);
2268 static u32 e100_get_msglevel(struct net_device *netdev)
2270 struct nic *nic = netdev_priv(netdev);
2271 return nic->msg_enable;
2274 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2276 struct nic *nic = netdev_priv(netdev);
2277 nic->msg_enable = value;
2280 static int e100_nway_reset(struct net_device *netdev)
2282 struct nic *nic = netdev_priv(netdev);
2283 return mii_nway_restart(&nic->mii);
2286 static u32 e100_get_link(struct net_device *netdev)
2288 struct nic *nic = netdev_priv(netdev);
2289 return mii_link_ok(&nic->mii);
2292 static int e100_get_eeprom_len(struct net_device *netdev)
2294 struct nic *nic = netdev_priv(netdev);
2295 return nic->eeprom_wc << 1;
2298 #define E100_EEPROM_MAGIC 0x1234
2299 static int e100_get_eeprom(struct net_device *netdev,
2300 struct ethtool_eeprom *eeprom, u8 *bytes)
2302 struct nic *nic = netdev_priv(netdev);
2304 eeprom->magic = E100_EEPROM_MAGIC;
2305 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2310 static int e100_set_eeprom(struct net_device *netdev,
2311 struct ethtool_eeprom *eeprom, u8 *bytes)
2313 struct nic *nic = netdev_priv(netdev);
2315 if(eeprom->magic != E100_EEPROM_MAGIC)
2318 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2320 return e100_eeprom_save(nic, eeprom->offset >> 1,
2321 (eeprom->len >> 1) + 1);
2324 static void e100_get_ringparam(struct net_device *netdev,
2325 struct ethtool_ringparam *ring)
2327 struct nic *nic = netdev_priv(netdev);
2328 struct param_range *rfds = &nic->params.rfds;
2329 struct param_range *cbs = &nic->params.cbs;
2331 ring->rx_max_pending = rfds->max;
2332 ring->tx_max_pending = cbs->max;
2333 ring->rx_mini_max_pending = 0;
2334 ring->rx_jumbo_max_pending = 0;
2335 ring->rx_pending = rfds->count;
2336 ring->tx_pending = cbs->count;
2337 ring->rx_mini_pending = 0;
2338 ring->rx_jumbo_pending = 0;
2341 static int e100_set_ringparam(struct net_device *netdev,
2342 struct ethtool_ringparam *ring)
2344 struct nic *nic = netdev_priv(netdev);
2345 struct param_range *rfds = &nic->params.rfds;
2346 struct param_range *cbs = &nic->params.cbs;
2348 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2351 if(netif_running(netdev))
2353 rfds->count = max(ring->rx_pending, rfds->min);
2354 rfds->count = min(rfds->count, rfds->max);
2355 cbs->count = max(ring->tx_pending, cbs->min);
2356 cbs->count = min(cbs->count, cbs->max);
2357 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
2358 rfds->count, cbs->count);
2359 if(netif_running(netdev))
2365 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2366 "Link test (on/offline)",
2367 "Eeprom test (on/offline)",
2368 "Self test (offline)",
2369 "Mac loopback (offline)",
2370 "Phy loopback (offline)",
2372 #define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN
2374 static int e100_diag_test_count(struct net_device *netdev)
2376 return E100_TEST_LEN;
2379 static void e100_diag_test(struct net_device *netdev,
2380 struct ethtool_test *test, u64 *data)
2382 struct ethtool_cmd cmd;
2383 struct nic *nic = netdev_priv(netdev);
2386 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2387 data[0] = !mii_link_ok(&nic->mii);
2388 data[1] = e100_eeprom_load(nic);
2389 if(test->flags & ETH_TEST_FL_OFFLINE) {
2391 /* save speed, duplex & autoneg settings */
2392 err = mii_ethtool_gset(&nic->mii, &cmd);
2394 if(netif_running(netdev))
2396 data[2] = e100_self_test(nic);
2397 data[3] = e100_loopback_test(nic, lb_mac);
2398 data[4] = e100_loopback_test(nic, lb_phy);
2400 /* restore speed, duplex & autoneg settings */
2401 err = mii_ethtool_sset(&nic->mii, &cmd);
2403 if(netif_running(netdev))
2406 for(i = 0; i < E100_TEST_LEN; i++)
2407 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2409 msleep_interruptible(4 * 1000);
2412 static int e100_phys_id(struct net_device *netdev, u32 data)
2414 struct nic *nic = netdev_priv(netdev);
2416 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2417 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2418 mod_timer(&nic->blink_timer, jiffies);
2419 msleep_interruptible(data * 1000);
2420 del_timer_sync(&nic->blink_timer);
2421 mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0);
2426 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2427 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2428 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2429 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2430 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2431 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2432 "tx_heartbeat_errors", "tx_window_errors",
2433 /* device-specific stats */
2434 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2435 "tx_flow_control_pause", "rx_flow_control_pause",
2436 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2438 #define E100_NET_STATS_LEN 21
2439 #define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN
2441 static int e100_get_stats_count(struct net_device *netdev)
2443 return E100_STATS_LEN;
2446 static void e100_get_ethtool_stats(struct net_device *netdev,
2447 struct ethtool_stats *stats, u64 *data)
2449 struct nic *nic = netdev_priv(netdev);
2452 for(i = 0; i < E100_NET_STATS_LEN; i++)
2453 data[i] = ((unsigned long *)&nic->net_stats)[i];
2455 data[i++] = nic->tx_deferred;
2456 data[i++] = nic->tx_single_collisions;
2457 data[i++] = nic->tx_multiple_collisions;
2458 data[i++] = nic->tx_fc_pause;
2459 data[i++] = nic->rx_fc_pause;
2460 data[i++] = nic->rx_fc_unsupported;
2461 data[i++] = nic->tx_tco_frames;
2462 data[i++] = nic->rx_tco_frames;
2465 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2469 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2472 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2477 static struct ethtool_ops e100_ethtool_ops = {
2478 .get_settings = e100_get_settings,
2479 .set_settings = e100_set_settings,
2480 .get_drvinfo = e100_get_drvinfo,
2481 .get_regs_len = e100_get_regs_len,
2482 .get_regs = e100_get_regs,
2483 .get_wol = e100_get_wol,
2484 .set_wol = e100_set_wol,
2485 .get_msglevel = e100_get_msglevel,
2486 .set_msglevel = e100_set_msglevel,
2487 .nway_reset = e100_nway_reset,
2488 .get_link = e100_get_link,
2489 .get_eeprom_len = e100_get_eeprom_len,
2490 .get_eeprom = e100_get_eeprom,
2491 .set_eeprom = e100_set_eeprom,
2492 .get_ringparam = e100_get_ringparam,
2493 .set_ringparam = e100_set_ringparam,
2494 .self_test_count = e100_diag_test_count,
2495 .self_test = e100_diag_test,
2496 .get_strings = e100_get_strings,
2497 .phys_id = e100_phys_id,
2498 .get_stats_count = e100_get_stats_count,
2499 .get_ethtool_stats = e100_get_ethtool_stats,
2500 .get_perm_addr = ethtool_op_get_perm_addr,
2503 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2505 struct nic *nic = netdev_priv(netdev);
2507 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2510 static int e100_alloc(struct nic *nic)
2512 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2514 return nic->mem ? 0 : -ENOMEM;
2517 static void e100_free(struct nic *nic)
2520 pci_free_consistent(nic->pdev, sizeof(struct mem),
2521 nic->mem, nic->dma_addr);
2526 static int e100_open(struct net_device *netdev)
2528 struct nic *nic = netdev_priv(netdev);
2531 netif_carrier_off(netdev);
2532 if((err = e100_up(nic)))
2533 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
2537 static int e100_close(struct net_device *netdev)
2539 e100_down(netdev_priv(netdev));
2543 static int __devinit e100_probe(struct pci_dev *pdev,
2544 const struct pci_device_id *ent)
2546 struct net_device *netdev;
2550 if(!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2551 if(((1 << debug) - 1) & NETIF_MSG_PROBE)
2552 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
2556 netdev->open = e100_open;
2557 netdev->stop = e100_close;
2558 netdev->hard_start_xmit = e100_xmit_frame;
2559 netdev->get_stats = e100_get_stats;
2560 netdev->set_multicast_list = e100_set_multicast_list;
2561 netdev->set_mac_address = e100_set_mac_address;
2562 netdev->change_mtu = e100_change_mtu;
2563 netdev->do_ioctl = e100_do_ioctl;
2564 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2565 netdev->tx_timeout = e100_tx_timeout;
2566 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2567 netdev->poll = e100_poll;
2568 netdev->weight = E100_NAPI_WEIGHT;
2569 #ifdef CONFIG_NET_POLL_CONTROLLER
2570 netdev->poll_controller = e100_netpoll;
2572 strcpy(netdev->name, pci_name(pdev));
2574 nic = netdev_priv(netdev);
2575 nic->netdev = netdev;
2577 nic->msg_enable = (1 << debug) - 1;
2578 pci_set_drvdata(pdev, netdev);
2580 if((err = pci_enable_device(pdev))) {
2581 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
2582 goto err_out_free_dev;
2585 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2586 DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
2587 "base address, aborting.\n");
2589 goto err_out_disable_pdev;
2592 if((err = pci_request_regions(pdev, DRV_NAME))) {
2593 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
2594 goto err_out_disable_pdev;
2597 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
2598 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
2599 goto err_out_free_res;
2602 SET_MODULE_OWNER(netdev);
2603 SET_NETDEV_DEV(netdev, &pdev->dev);
2605 nic->csr = ioremap(pci_resource_start(pdev, 0), sizeof(struct csr));
2607 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
2609 goto err_out_free_res;
2612 if(ent->driver_data)
2617 e100_get_defaults(nic);
2619 /* locks must be initialized before calling hw_reset */
2620 spin_lock_init(&nic->cb_lock);
2621 spin_lock_init(&nic->cmd_lock);
2622 spin_lock_init(&nic->mdio_lock);
2624 /* Reset the device before pci_set_master() in case device is in some
2625 * funky state and has an interrupt pending - hint: we don't have the
2626 * interrupt handler registered yet. */
2629 pci_set_master(pdev);
2631 init_timer(&nic->watchdog);
2632 nic->watchdog.function = e100_watchdog;
2633 nic->watchdog.data = (unsigned long)nic;
2634 init_timer(&nic->blink_timer);
2635 nic->blink_timer.function = e100_blink_led;
2636 nic->blink_timer.data = (unsigned long)nic;
2638 INIT_WORK(&nic->tx_timeout_task,
2639 (void (*)(void *))e100_tx_timeout_task, netdev);
2641 if((err = e100_alloc(nic))) {
2642 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
2643 goto err_out_iounmap;
2646 if((err = e100_eeprom_load(nic)))
2651 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2652 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
2653 if(!is_valid_ether_addr(netdev->perm_addr)) {
2654 DPRINTK(PROBE, ERR, "Invalid MAC address from "
2655 "EEPROM, aborting.\n");
2660 /* Wol magic packet can be enabled from eeprom */
2661 if((nic->mac >= mac_82558_D101_A4) &&
2662 (nic->eeprom[eeprom_id] & eeprom_id_wol))
2663 nic->flags |= wol_magic;
2665 /* ack any pending wake events, disable PME */
2666 err = pci_enable_wake(pdev, 0, 0);
2668 DPRINTK(PROBE, ERR, "Error clearing wake event\n");
2670 strcpy(netdev->name, "eth%d");
2671 if((err = register_netdev(netdev))) {
2672 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
2676 DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, "
2677 "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
2678 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
2679 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
2680 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
2689 pci_release_regions(pdev);
2690 err_out_disable_pdev:
2691 pci_disable_device(pdev);
2693 pci_set_drvdata(pdev, NULL);
2694 free_netdev(netdev);
2698 static void __devexit e100_remove(struct pci_dev *pdev)
2700 struct net_device *netdev = pci_get_drvdata(pdev);
2703 struct nic *nic = netdev_priv(netdev);
2704 unregister_netdev(netdev);
2707 free_netdev(netdev);
2708 pci_release_regions(pdev);
2709 pci_disable_device(pdev);
2710 pci_set_drvdata(pdev, NULL);
2715 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2717 struct net_device *netdev = pci_get_drvdata(pdev);
2718 struct nic *nic = netdev_priv(netdev);
2721 if(netif_running(netdev))
2724 netif_device_detach(netdev);
2726 pci_save_state(pdev);
2727 retval = pci_enable_wake(pdev, pci_choose_state(pdev, state),
2728 nic->flags & (wol_magic | e100_asf(nic)));
2730 DPRINTK(PROBE,ERR, "Error enabling wake\n");
2731 pci_disable_device(pdev);
2732 retval = pci_set_power_state(pdev, pci_choose_state(pdev, state));
2734 DPRINTK(PROBE,ERR, "Error %d setting power state\n", retval);
2739 static int e100_resume(struct pci_dev *pdev)
2741 struct net_device *netdev = pci_get_drvdata(pdev);
2742 struct nic *nic = netdev_priv(netdev);
2745 retval = pci_set_power_state(pdev, PCI_D0);
2747 DPRINTK(PROBE,ERR, "Error waking adapter\n");
2748 pci_restore_state(pdev);
2749 /* ack any pending wake events, disable PME */
2750 retval = pci_enable_wake(pdev, 0, 0);
2752 DPRINTK(PROBE,ERR, "Error clearing wake events\n");
2754 netif_device_attach(netdev);
2755 if(netif_running(netdev))
2763 static void e100_shutdown(struct pci_dev *pdev)
2765 struct net_device *netdev = pci_get_drvdata(pdev);
2766 struct nic *nic = netdev_priv(netdev);
2770 retval = pci_enable_wake(pdev, 0, nic->flags & (wol_magic | e100_asf(nic)));
2772 retval = pci_enable_wake(pdev, 0, nic->flags & (wol_magic));
2775 DPRINTK(PROBE,ERR, "Error enabling wake\n");
2778 /* ------------------ PCI Error Recovery infrastructure -------------- */
2780 * e100_io_error_detected - called when PCI error is detected.
2781 * @pdev: Pointer to PCI device
2782 * @state: The current pci conneection state
2784 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2786 struct net_device *netdev = pci_get_drvdata(pdev);
2788 /* Similar to calling e100_down(), but avoids adpater I/O. */
2789 netdev->stop(netdev);
2791 /* Detach; put netif into state similar to hotplug unplug. */
2792 netif_poll_enable(netdev);
2793 netif_device_detach(netdev);
2795 /* Request a slot reset. */
2796 return PCI_ERS_RESULT_NEED_RESET;
2800 * e100_io_slot_reset - called after the pci bus has been reset.
2801 * @pdev: Pointer to PCI device
2803 * Restart the card from scratch.
2805 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
2807 struct net_device *netdev = pci_get_drvdata(pdev);
2808 struct nic *nic = netdev_priv(netdev);
2810 if (pci_enable_device(pdev)) {
2811 printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n");
2812 return PCI_ERS_RESULT_DISCONNECT;
2814 pci_set_master(pdev);
2816 /* Only one device per card can do a reset */
2817 if (0 != PCI_FUNC(pdev->devfn))
2818 return PCI_ERS_RESULT_RECOVERED;
2822 return PCI_ERS_RESULT_RECOVERED;
2826 * e100_io_resume - resume normal operations
2827 * @pdev: Pointer to PCI device
2829 * Resume normal operations after an error recovery
2830 * sequence has been completed.
2832 static void e100_io_resume(struct pci_dev *pdev)
2834 struct net_device *netdev = pci_get_drvdata(pdev);
2835 struct nic *nic = netdev_priv(netdev);
2837 /* ack any pending wake events, disable PME */
2838 pci_enable_wake(pdev, 0, 0);
2840 netif_device_attach(netdev);
2841 if (netif_running(netdev)) {
2843 mod_timer(&nic->watchdog, jiffies);
2847 static struct pci_error_handlers e100_err_handler = {
2848 .error_detected = e100_io_error_detected,
2849 .slot_reset = e100_io_slot_reset,
2850 .resume = e100_io_resume,
2853 static struct pci_driver e100_driver = {
2855 .id_table = e100_id_table,
2856 .probe = e100_probe,
2857 .remove = __devexit_p(e100_remove),
2859 .suspend = e100_suspend,
2860 .resume = e100_resume,
2862 .shutdown = e100_shutdown,
2863 .err_handler = &e100_err_handler,
2866 static int __init e100_init_module(void)
2868 if(((1 << debug) - 1) & NETIF_MSG_DRV) {
2869 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
2870 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
2872 return pci_register_driver(&e100_driver);
2875 static void __exit e100_cleanup_module(void)
2877 pci_unregister_driver(&e100_driver);
2880 module_init(e100_init_module);
2881 module_exit(e100_cleanup_module);