Merge branches 'acerhdf', 'acpi-pci-bind', 'bjorn-pci-root', 'bugzilla-12904', 'bugzi...
[linux-2.6] / drivers / firewire / net.c
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  *
4  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5  *
6  * based on eth1394 by Ben Collins et al
7  */
8
9 #include <linux/bug.h>
10 #include <linux/device.h>
11 #include <linux/ethtool.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/highmem.h>
15 #include <linux/in.h>
16 #include <linux/ip.h>
17 #include <linux/jiffies.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/mutex.h>
22 #include <linux/netdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/spinlock.h>
25
26 #include <asm/unaligned.h>
27 #include <net/arp.h>
28
29 #define FWNET_MAX_FRAGMENTS     25      /* arbitrary limit */
30 #define FWNET_ISO_PAGE_COUNT    (PAGE_SIZE < 16 * 1024 ? 4 : 2)
31
32 #define IEEE1394_BROADCAST_CHANNEL      31
33 #define IEEE1394_ALL_NODES              (0xffc0 | 0x003f)
34 #define IEEE1394_MAX_PAYLOAD_S100       512
35 #define FWNET_NO_FIFO_ADDR              (~0ULL)
36
37 #define IANA_SPECIFIER_ID               0x00005eU
38 #define RFC2734_SW_VERSION              0x000001U
39
40 #define IEEE1394_GASP_HDR_SIZE  8
41
42 #define RFC2374_UNFRAG_HDR_SIZE 4
43 #define RFC2374_FRAG_HDR_SIZE   8
44 #define RFC2374_FRAG_OVERHEAD   4
45
46 #define RFC2374_HDR_UNFRAG      0       /* unfragmented         */
47 #define RFC2374_HDR_FIRSTFRAG   1       /* first fragment       */
48 #define RFC2374_HDR_LASTFRAG    2       /* last fragment        */
49 #define RFC2374_HDR_INTFRAG     3       /* interior fragment    */
50
51 #define RFC2734_HW_ADDR_LEN     16
52
53 struct rfc2734_arp {
54         __be16 hw_type;         /* 0x0018       */
55         __be16 proto_type;      /* 0x0806       */
56         u8 hw_addr_len;         /* 16           */
57         u8 ip_addr_len;         /* 4            */
58         __be16 opcode;          /* ARP Opcode   */
59         /* Above is exactly the same format as struct arphdr */
60
61         __be64 s_uniq_id;       /* Sender's 64bit EUI                   */
62         u8 max_rec;             /* Sender's max packet size             */
63         u8 sspd;                /* Sender's max speed                   */
64         __be16 fifo_hi;         /* hi 16bits of sender's FIFO addr      */
65         __be32 fifo_lo;         /* lo 32bits of sender's FIFO addr      */
66         __be32 sip;             /* Sender's IP Address                  */
67         __be32 tip;             /* IP Address of requested hw addr      */
68 } __attribute__((packed));
69
70 /* This header format is specific to this driver implementation. */
71 #define FWNET_ALEN      8
72 #define FWNET_HLEN      10
73 struct fwnet_header {
74         u8 h_dest[FWNET_ALEN];  /* destination address */
75         __be16 h_proto;         /* packet type ID field */
76 } __attribute__((packed));
77
78 /* IPv4 and IPv6 encapsulation header */
79 struct rfc2734_header {
80         u32 w0;
81         u32 w1;
82 };
83
84 #define fwnet_get_hdr_lf(h)             (((h)->w0 & 0xc0000000) >> 30)
85 #define fwnet_get_hdr_ether_type(h)     (((h)->w0 & 0x0000ffff))
86 #define fwnet_get_hdr_dg_size(h)        (((h)->w0 & 0x0fff0000) >> 16)
87 #define fwnet_get_hdr_fg_off(h)         (((h)->w0 & 0x00000fff))
88 #define fwnet_get_hdr_dgl(h)            (((h)->w1 & 0xffff0000) >> 16)
89
90 #define fwnet_set_hdr_lf(lf)            ((lf)  << 30)
91 #define fwnet_set_hdr_ether_type(et)    (et)
92 #define fwnet_set_hdr_dg_size(dgs)      ((dgs) << 16)
93 #define fwnet_set_hdr_fg_off(fgo)       (fgo)
94
95 #define fwnet_set_hdr_dgl(dgl)          ((dgl) << 16)
96
97 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
98                 unsigned ether_type)
99 {
100         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
101                   | fwnet_set_hdr_ether_type(ether_type);
102 }
103
104 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
105                 unsigned ether_type, unsigned dg_size, unsigned dgl)
106 {
107         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
108                   | fwnet_set_hdr_dg_size(dg_size)
109                   | fwnet_set_hdr_ether_type(ether_type);
110         hdr->w1 = fwnet_set_hdr_dgl(dgl);
111 }
112
113 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
114                 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
115 {
116         hdr->w0 = fwnet_set_hdr_lf(lf)
117                   | fwnet_set_hdr_dg_size(dg_size)
118                   | fwnet_set_hdr_fg_off(fg_off);
119         hdr->w1 = fwnet_set_hdr_dgl(dgl);
120 }
121
122 /* This list keeps track of what parts of the datagram have been filled in */
123 struct fwnet_fragment_info {
124         struct list_head fi_link;
125         u16 offset;
126         u16 len;
127 };
128
129 struct fwnet_partial_datagram {
130         struct list_head pd_link;
131         struct list_head fi_list;
132         struct sk_buff *skb;
133         /* FIXME Why not use skb->data? */
134         char *pbuf;
135         u16 datagram_label;
136         u16 ether_type;
137         u16 datagram_size;
138 };
139
140 static DEFINE_MUTEX(fwnet_device_mutex);
141 static LIST_HEAD(fwnet_device_list);
142
143 struct fwnet_device {
144         struct list_head dev_link;
145         spinlock_t lock;
146         enum {
147                 FWNET_BROADCAST_ERROR,
148                 FWNET_BROADCAST_RUNNING,
149                 FWNET_BROADCAST_STOPPED,
150         } broadcast_state;
151         struct fw_iso_context *broadcast_rcv_context;
152         struct fw_iso_buffer broadcast_rcv_buffer;
153         void **broadcast_rcv_buffer_ptrs;
154         unsigned broadcast_rcv_next_ptr;
155         unsigned num_broadcast_rcv_ptrs;
156         unsigned rcv_buffer_size;
157         /*
158          * This value is the maximum unfragmented datagram size that can be
159          * sent by the hardware.  It already has the GASP overhead and the
160          * unfragmented datagram header overhead calculated into it.
161          */
162         unsigned broadcast_xmt_max_payload;
163         u16 broadcast_xmt_datagramlabel;
164
165         /*
166          * The CSR address that remote nodes must send datagrams to for us to
167          * receive them.
168          */
169         struct fw_address_handler handler;
170         u64 local_fifo;
171
172         /* List of packets to be sent */
173         struct list_head packet_list;
174         /*
175          * List of packets that were broadcasted.  When we get an ISO interrupt
176          * one of them has been sent
177          */
178         struct list_head broadcasted_list;
179         /* List of packets that have been sent but not yet acked */
180         struct list_head sent_list;
181
182         struct list_head peer_list;
183         struct fw_card *card;
184         struct net_device *netdev;
185 };
186
187 struct fwnet_peer {
188         struct list_head peer_link;
189         struct fwnet_device *dev;
190         u64 guid;
191         u64 fifo;
192
193         /* guarded by dev->lock */
194         struct list_head pd_list; /* received partial datagrams */
195         unsigned pdg_size;        /* pd_list size */
196
197         u16 datagram_label;       /* outgoing datagram label */
198         unsigned max_payload;     /* includes RFC2374_FRAG_HDR_SIZE overhead */
199         int node_id;
200         int generation;
201         unsigned speed;
202 };
203
204 /* This is our task struct. It's used for the packet complete callback.  */
205 struct fwnet_packet_task {
206         /*
207          * ptask can actually be on dev->packet_list, dev->broadcasted_list,
208          * or dev->sent_list depending on its current state.
209          */
210         struct list_head pt_link;
211         struct fw_transaction transaction;
212         struct rfc2734_header hdr;
213         struct sk_buff *skb;
214         struct fwnet_device *dev;
215
216         int outstanding_pkts;
217         unsigned max_payload;
218         u64 fifo_addr;
219         u16 dest_node;
220         u8 generation;
221         u8 speed;
222 };
223
224 /*
225  * saddr == NULL means use device source address.
226  * daddr == NULL means leave destination address (eg unresolved arp).
227  */
228 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
229                         unsigned short type, const void *daddr,
230                         const void *saddr, unsigned len)
231 {
232         struct fwnet_header *h;
233
234         h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
235         put_unaligned_be16(type, &h->h_proto);
236
237         if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
238                 memset(h->h_dest, 0, net->addr_len);
239
240                 return net->hard_header_len;
241         }
242
243         if (daddr) {
244                 memcpy(h->h_dest, daddr, net->addr_len);
245
246                 return net->hard_header_len;
247         }
248
249         return -net->hard_header_len;
250 }
251
252 static int fwnet_header_rebuild(struct sk_buff *skb)
253 {
254         struct fwnet_header *h = (struct fwnet_header *)skb->data;
255
256         if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
257                 return arp_find((unsigned char *)&h->h_dest, skb);
258
259         fw_notify("%s: unable to resolve type %04x addresses\n",
260                   skb->dev->name, be16_to_cpu(h->h_proto));
261         return 0;
262 }
263
264 static int fwnet_header_cache(const struct neighbour *neigh,
265                               struct hh_cache *hh)
266 {
267         struct net_device *net;
268         struct fwnet_header *h;
269
270         if (hh->hh_type == cpu_to_be16(ETH_P_802_3))
271                 return -1;
272         net = neigh->dev;
273         h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
274         h->h_proto = hh->hh_type;
275         memcpy(h->h_dest, neigh->ha, net->addr_len);
276         hh->hh_len = FWNET_HLEN;
277
278         return 0;
279 }
280
281 /* Called by Address Resolution module to notify changes in address. */
282 static void fwnet_header_cache_update(struct hh_cache *hh,
283                 const struct net_device *net, const unsigned char *haddr)
284 {
285         memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
286 }
287
288 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
289 {
290         memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
291
292         return FWNET_ALEN;
293 }
294
295 static const struct header_ops fwnet_header_ops = {
296         .create         = fwnet_header_create,
297         .rebuild        = fwnet_header_rebuild,
298         .cache          = fwnet_header_cache,
299         .cache_update   = fwnet_header_cache_update,
300         .parse          = fwnet_header_parse,
301 };
302
303 /* FIXME: is this correct for all cases? */
304 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
305                                unsigned offset, unsigned len)
306 {
307         struct fwnet_fragment_info *fi;
308         unsigned end = offset + len;
309
310         list_for_each_entry(fi, &pd->fi_list, fi_link)
311                 if (offset < fi->offset + fi->len && end > fi->offset)
312                         return true;
313
314         return false;
315 }
316
317 /* Assumes that new fragment does not overlap any existing fragments */
318 static struct fwnet_fragment_info *fwnet_frag_new(
319         struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
320 {
321         struct fwnet_fragment_info *fi, *fi2, *new;
322         struct list_head *list;
323
324         list = &pd->fi_list;
325         list_for_each_entry(fi, &pd->fi_list, fi_link) {
326                 if (fi->offset + fi->len == offset) {
327                         /* The new fragment can be tacked on to the end */
328                         /* Did the new fragment plug a hole? */
329                         fi2 = list_entry(fi->fi_link.next,
330                                          struct fwnet_fragment_info, fi_link);
331                         if (fi->offset + fi->len == fi2->offset) {
332                                 /* glue fragments together */
333                                 fi->len += len + fi2->len;
334                                 list_del(&fi2->fi_link);
335                                 kfree(fi2);
336                         } else {
337                                 fi->len += len;
338                         }
339
340                         return fi;
341                 }
342                 if (offset + len == fi->offset) {
343                         /* The new fragment can be tacked on to the beginning */
344                         /* Did the new fragment plug a hole? */
345                         fi2 = list_entry(fi->fi_link.prev,
346                                          struct fwnet_fragment_info, fi_link);
347                         if (fi2->offset + fi2->len == fi->offset) {
348                                 /* glue fragments together */
349                                 fi2->len += fi->len + len;
350                                 list_del(&fi->fi_link);
351                                 kfree(fi);
352
353                                 return fi2;
354                         }
355                         fi->offset = offset;
356                         fi->len += len;
357
358                         return fi;
359                 }
360                 if (offset > fi->offset + fi->len) {
361                         list = &fi->fi_link;
362                         break;
363                 }
364                 if (offset + len < fi->offset) {
365                         list = fi->fi_link.prev;
366                         break;
367                 }
368         }
369
370         new = kmalloc(sizeof(*new), GFP_ATOMIC);
371         if (!new) {
372                 fw_error("out of memory\n");
373                 return NULL;
374         }
375
376         new->offset = offset;
377         new->len = len;
378         list_add(&new->fi_link, list);
379
380         return new;
381 }
382
383 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
384                 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
385                 void *frag_buf, unsigned frag_off, unsigned frag_len)
386 {
387         struct fwnet_partial_datagram *new;
388         struct fwnet_fragment_info *fi;
389
390         new = kmalloc(sizeof(*new), GFP_ATOMIC);
391         if (!new)
392                 goto fail;
393
394         INIT_LIST_HEAD(&new->fi_list);
395         fi = fwnet_frag_new(new, frag_off, frag_len);
396         if (fi == NULL)
397                 goto fail_w_new;
398
399         new->datagram_label = datagram_label;
400         new->datagram_size = dg_size;
401         new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
402         if (new->skb == NULL)
403                 goto fail_w_fi;
404
405         skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
406         new->pbuf = skb_put(new->skb, dg_size);
407         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
408         list_add_tail(&new->pd_link, &peer->pd_list);
409
410         return new;
411
412 fail_w_fi:
413         kfree(fi);
414 fail_w_new:
415         kfree(new);
416 fail:
417         fw_error("out of memory\n");
418
419         return NULL;
420 }
421
422 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
423                                                     u16 datagram_label)
424 {
425         struct fwnet_partial_datagram *pd;
426
427         list_for_each_entry(pd, &peer->pd_list, pd_link)
428                 if (pd->datagram_label == datagram_label)
429                         return pd;
430
431         return NULL;
432 }
433
434
435 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
436 {
437         struct fwnet_fragment_info *fi, *n;
438
439         list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
440                 kfree(fi);
441
442         list_del(&old->pd_link);
443         dev_kfree_skb_any(old->skb);
444         kfree(old);
445 }
446
447 static bool fwnet_pd_update(struct fwnet_peer *peer,
448                 struct fwnet_partial_datagram *pd, void *frag_buf,
449                 unsigned frag_off, unsigned frag_len)
450 {
451         if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
452                 return false;
453
454         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
455
456         /*
457          * Move list entry to beginnig of list so that oldest partial
458          * datagrams percolate to the end of the list
459          */
460         list_move_tail(&pd->pd_link, &peer->pd_list);
461
462         return true;
463 }
464
465 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
466 {
467         struct fwnet_fragment_info *fi;
468
469         fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
470
471         return fi->len == pd->datagram_size;
472 }
473
474 /* caller must hold dev->lock */
475 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
476                                                   u64 guid)
477 {
478         struct fwnet_peer *peer;
479
480         list_for_each_entry(peer, &dev->peer_list, peer_link)
481                 if (peer->guid == guid)
482                         return peer;
483
484         return NULL;
485 }
486
487 /* caller must hold dev->lock */
488 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
489                                                 int node_id, int generation)
490 {
491         struct fwnet_peer *peer;
492
493         list_for_each_entry(peer, &dev->peer_list, peer_link)
494                 if (peer->node_id    == node_id &&
495                     peer->generation == generation)
496                         return peer;
497
498         return NULL;
499 }
500
501 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
502 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
503 {
504         max_rec = min(max_rec, speed + 8);
505         max_rec = min(max_rec, 0xbU); /* <= 4096 */
506         if (max_rec < 8) {
507                 fw_notify("max_rec %x out of range\n", max_rec);
508                 max_rec = 8;
509         }
510
511         return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
512 }
513
514
515 static int fwnet_finish_incoming_packet(struct net_device *net,
516                                         struct sk_buff *skb, u16 source_node_id,
517                                         bool is_broadcast, u16 ether_type)
518 {
519         struct fwnet_device *dev;
520         static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
521         int status;
522         __be64 guid;
523
524         dev = netdev_priv(net);
525         /* Write metadata, and then pass to the receive level */
526         skb->dev = net;
527         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
528
529         /*
530          * Parse the encapsulation header. This actually does the job of
531          * converting to an ethernet frame header, as well as arp
532          * conversion if needed. ARP conversion is easier in this
533          * direction, since we are using ethernet as our backend.
534          */
535         /*
536          * If this is an ARP packet, convert it. First, we want to make
537          * use of some of the fields, since they tell us a little bit
538          * about the sending machine.
539          */
540         if (ether_type == ETH_P_ARP) {
541                 struct rfc2734_arp *arp1394;
542                 struct arphdr *arp;
543                 unsigned char *arp_ptr;
544                 u64 fifo_addr;
545                 u64 peer_guid;
546                 unsigned sspd;
547                 u16 max_payload;
548                 struct fwnet_peer *peer;
549                 unsigned long flags;
550
551                 arp1394   = (struct rfc2734_arp *)skb->data;
552                 arp       = (struct arphdr *)skb->data;
553                 arp_ptr   = (unsigned char *)(arp + 1);
554                 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
555                 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
556                                 | get_unaligned_be32(&arp1394->fifo_lo);
557
558                 sspd = arp1394->sspd;
559                 /* Sanity check.  OS X 10.3 PPC reportedly sends 131. */
560                 if (sspd > SCODE_3200) {
561                         fw_notify("sspd %x out of range\n", sspd);
562                         sspd = SCODE_3200;
563                 }
564                 max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
565
566                 spin_lock_irqsave(&dev->lock, flags);
567                 peer = fwnet_peer_find_by_guid(dev, peer_guid);
568                 if (peer) {
569                         peer->fifo = fifo_addr;
570
571                         if (peer->speed > sspd)
572                                 peer->speed = sspd;
573                         if (peer->max_payload > max_payload)
574                                 peer->max_payload = max_payload;
575                 }
576                 spin_unlock_irqrestore(&dev->lock, flags);
577
578                 if (!peer) {
579                         fw_notify("No peer for ARP packet from %016llx\n",
580                                   (unsigned long long)peer_guid);
581                         goto failed_proto;
582                 }
583
584                 /*
585                  * Now that we're done with the 1394 specific stuff, we'll
586                  * need to alter some of the data.  Believe it or not, all
587                  * that needs to be done is sender_IP_address needs to be
588                  * moved, the destination hardware address get stuffed
589                  * in and the hardware address length set to 8.
590                  *
591                  * IMPORTANT: The code below overwrites 1394 specific data
592                  * needed above so keep the munging of the data for the
593                  * higher level IP stack last.
594                  */
595
596                 arp->ar_hln = 8;
597                 /* skip over sender unique id */
598                 arp_ptr += arp->ar_hln;
599                 /* move sender IP addr */
600                 put_unaligned(arp1394->sip, (u32 *)arp_ptr);
601                 /* skip over sender IP addr */
602                 arp_ptr += arp->ar_pln;
603
604                 if (arp->ar_op == htons(ARPOP_REQUEST))
605                         memset(arp_ptr, 0, sizeof(u64));
606                 else
607                         memcpy(arp_ptr, net->dev_addr, sizeof(u64));
608         }
609
610         /* Now add the ethernet header. */
611         guid = cpu_to_be64(dev->card->guid);
612         if (dev_hard_header(skb, net, ether_type,
613                            is_broadcast ? &broadcast_hw : &guid,
614                            NULL, skb->len) >= 0) {
615                 struct fwnet_header *eth;
616                 u16 *rawp;
617                 __be16 protocol;
618
619                 skb_reset_mac_header(skb);
620                 skb_pull(skb, sizeof(*eth));
621                 eth = (struct fwnet_header *)skb_mac_header(skb);
622                 if (*eth->h_dest & 1) {
623                         if (memcmp(eth->h_dest, net->broadcast,
624                                    net->addr_len) == 0)
625                                 skb->pkt_type = PACKET_BROADCAST;
626 #if 0
627                         else
628                                 skb->pkt_type = PACKET_MULTICAST;
629 #endif
630                 } else {
631                         if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
632                                 skb->pkt_type = PACKET_OTHERHOST;
633                 }
634                 if (ntohs(eth->h_proto) >= 1536) {
635                         protocol = eth->h_proto;
636                 } else {
637                         rawp = (u16 *)skb->data;
638                         if (*rawp == 0xffff)
639                                 protocol = htons(ETH_P_802_3);
640                         else
641                                 protocol = htons(ETH_P_802_2);
642                 }
643                 skb->protocol = protocol;
644         }
645         status = netif_rx(skb);
646         if (status == NET_RX_DROP) {
647                 net->stats.rx_errors++;
648                 net->stats.rx_dropped++;
649         } else {
650                 net->stats.rx_packets++;
651                 net->stats.rx_bytes += skb->len;
652         }
653         if (netif_queue_stopped(net))
654                 netif_wake_queue(net);
655
656         return 0;
657
658  failed_proto:
659         net->stats.rx_errors++;
660         net->stats.rx_dropped++;
661
662         dev_kfree_skb_any(skb);
663         if (netif_queue_stopped(net))
664                 netif_wake_queue(net);
665
666         net->last_rx = jiffies;
667
668         return 0;
669 }
670
671 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
672                                  int source_node_id, int generation,
673                                  bool is_broadcast)
674 {
675         struct sk_buff *skb;
676         struct net_device *net = dev->netdev;
677         struct rfc2734_header hdr;
678         unsigned lf;
679         unsigned long flags;
680         struct fwnet_peer *peer;
681         struct fwnet_partial_datagram *pd;
682         int fg_off;
683         int dg_size;
684         u16 datagram_label;
685         int retval;
686         u16 ether_type;
687
688         hdr.w0 = be32_to_cpu(buf[0]);
689         lf = fwnet_get_hdr_lf(&hdr);
690         if (lf == RFC2374_HDR_UNFRAG) {
691                 /*
692                  * An unfragmented datagram has been received by the ieee1394
693                  * bus. Build an skbuff around it so we can pass it to the
694                  * high level network layer.
695                  */
696                 ether_type = fwnet_get_hdr_ether_type(&hdr);
697                 buf++;
698                 len -= RFC2374_UNFRAG_HDR_SIZE;
699
700                 skb = dev_alloc_skb(len + net->hard_header_len + 15);
701                 if (unlikely(!skb)) {
702                         fw_error("out of memory\n");
703                         net->stats.rx_dropped++;
704
705                         return -1;
706                 }
707                 skb_reserve(skb, (net->hard_header_len + 15) & ~15);
708                 memcpy(skb_put(skb, len), buf, len);
709
710                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
711                                                     is_broadcast, ether_type);
712         }
713         /* A datagram fragment has been received, now the fun begins. */
714         hdr.w1 = ntohl(buf[1]);
715         buf += 2;
716         len -= RFC2374_FRAG_HDR_SIZE;
717         if (lf == RFC2374_HDR_FIRSTFRAG) {
718                 ether_type = fwnet_get_hdr_ether_type(&hdr);
719                 fg_off = 0;
720         } else {
721                 ether_type = 0;
722                 fg_off = fwnet_get_hdr_fg_off(&hdr);
723         }
724         datagram_label = fwnet_get_hdr_dgl(&hdr);
725         dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
726
727         spin_lock_irqsave(&dev->lock, flags);
728
729         peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
730         if (!peer)
731                 goto bad_proto;
732
733         pd = fwnet_pd_find(peer, datagram_label);
734         if (pd == NULL) {
735                 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
736                         /* remove the oldest */
737                         fwnet_pd_delete(list_first_entry(&peer->pd_list,
738                                 struct fwnet_partial_datagram, pd_link));
739                         peer->pdg_size--;
740                 }
741                 pd = fwnet_pd_new(net, peer, datagram_label,
742                                   dg_size, buf, fg_off, len);
743                 if (pd == NULL) {
744                         retval = -ENOMEM;
745                         goto bad_proto;
746                 }
747                 peer->pdg_size++;
748         } else {
749                 if (fwnet_frag_overlap(pd, fg_off, len) ||
750                     pd->datagram_size != dg_size) {
751                         /*
752                          * Differing datagram sizes or overlapping fragments,
753                          * discard old datagram and start a new one.
754                          */
755                         fwnet_pd_delete(pd);
756                         pd = fwnet_pd_new(net, peer, datagram_label,
757                                           dg_size, buf, fg_off, len);
758                         if (pd == NULL) {
759                                 retval = -ENOMEM;
760                                 peer->pdg_size--;
761                                 goto bad_proto;
762                         }
763                 } else {
764                         if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
765                                 /*
766                                  * Couldn't save off fragment anyway
767                                  * so might as well obliterate the
768                                  * datagram now.
769                                  */
770                                 fwnet_pd_delete(pd);
771                                 peer->pdg_size--;
772                                 goto bad_proto;
773                         }
774                 }
775         } /* new datagram or add to existing one */
776
777         if (lf == RFC2374_HDR_FIRSTFRAG)
778                 pd->ether_type = ether_type;
779
780         if (fwnet_pd_is_complete(pd)) {
781                 ether_type = pd->ether_type;
782                 peer->pdg_size--;
783                 skb = skb_get(pd->skb);
784                 fwnet_pd_delete(pd);
785
786                 spin_unlock_irqrestore(&dev->lock, flags);
787
788                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
789                                                     false, ether_type);
790         }
791         /*
792          * Datagram is not complete, we're done for the
793          * moment.
794          */
795         spin_unlock_irqrestore(&dev->lock, flags);
796
797         return 0;
798
799  bad_proto:
800         spin_unlock_irqrestore(&dev->lock, flags);
801
802         if (netif_queue_stopped(net))
803                 netif_wake_queue(net);
804
805         return 0;
806 }
807
808 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
809                 int tcode, int destination, int source, int generation,
810                 int speed, unsigned long long offset, void *payload,
811                 size_t length, void *callback_data)
812 {
813         struct fwnet_device *dev = callback_data;
814         int rcode;
815
816         if (destination == IEEE1394_ALL_NODES) {
817                 kfree(r);
818
819                 return;
820         }
821
822         if (offset != dev->handler.offset)
823                 rcode = RCODE_ADDRESS_ERROR;
824         else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
825                 rcode = RCODE_TYPE_ERROR;
826         else if (fwnet_incoming_packet(dev, payload, length,
827                                        source, generation, false) != 0) {
828                 fw_error("Incoming packet failure\n");
829                 rcode = RCODE_CONFLICT_ERROR;
830         } else
831                 rcode = RCODE_COMPLETE;
832
833         fw_send_response(card, r, rcode);
834 }
835
836 static void fwnet_receive_broadcast(struct fw_iso_context *context,
837                 u32 cycle, size_t header_length, void *header, void *data)
838 {
839         struct fwnet_device *dev;
840         struct fw_iso_packet packet;
841         struct fw_card *card;
842         __be16 *hdr_ptr;
843         __be32 *buf_ptr;
844         int retval;
845         u32 length;
846         u16 source_node_id;
847         u32 specifier_id;
848         u32 ver;
849         unsigned long offset;
850         unsigned long flags;
851
852         dev = data;
853         card = dev->card;
854         hdr_ptr = header;
855         length = be16_to_cpup(hdr_ptr);
856
857         spin_lock_irqsave(&dev->lock, flags);
858
859         offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
860         buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
861         if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
862                 dev->broadcast_rcv_next_ptr = 0;
863
864         spin_unlock_irqrestore(&dev->lock, flags);
865
866         specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
867                         | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
868         ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
869         source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
870
871         if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
872                 buf_ptr += 2;
873                 length -= IEEE1394_GASP_HDR_SIZE;
874                 fwnet_incoming_packet(dev, buf_ptr, length,
875                                       source_node_id, -1, true);
876         }
877
878         packet.payload_length = dev->rcv_buffer_size;
879         packet.interrupt = 1;
880         packet.skip = 0;
881         packet.tag = 3;
882         packet.sy = 0;
883         packet.header_length = IEEE1394_GASP_HDR_SIZE;
884
885         spin_lock_irqsave(&dev->lock, flags);
886
887         retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
888                                       &dev->broadcast_rcv_buffer, offset);
889
890         spin_unlock_irqrestore(&dev->lock, flags);
891
892         if (retval < 0)
893                 fw_error("requeue failed\n");
894 }
895
896 static struct kmem_cache *fwnet_packet_task_cache;
897
898 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
899
900 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
901 {
902         struct fwnet_device *dev;
903         unsigned long flags;
904
905         dev = ptask->dev;
906
907         spin_lock_irqsave(&dev->lock, flags);
908         list_del(&ptask->pt_link);
909         spin_unlock_irqrestore(&dev->lock, flags);
910
911         ptask->outstanding_pkts--; /* FIXME access inside lock */
912
913         if (ptask->outstanding_pkts > 0) {
914                 u16 dg_size;
915                 u16 fg_off;
916                 u16 datagram_label;
917                 u16 lf;
918                 struct sk_buff *skb;
919
920                 /* Update the ptask to point to the next fragment and send it */
921                 lf = fwnet_get_hdr_lf(&ptask->hdr);
922                 switch (lf) {
923                 case RFC2374_HDR_LASTFRAG:
924                 case RFC2374_HDR_UNFRAG:
925                 default:
926                         fw_error("Outstanding packet %x lf %x, header %x,%x\n",
927                                  ptask->outstanding_pkts, lf, ptask->hdr.w0,
928                                  ptask->hdr.w1);
929                         BUG();
930
931                 case RFC2374_HDR_FIRSTFRAG:
932                         /* Set frag type here for future interior fragments */
933                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
934                         fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
935                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
936                         break;
937
938                 case RFC2374_HDR_INTFRAG:
939                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
940                         fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
941                                   + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
942                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
943                         break;
944                 }
945                 skb = ptask->skb;
946                 skb_pull(skb, ptask->max_payload);
947                 if (ptask->outstanding_pkts > 1) {
948                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
949                                           dg_size, fg_off, datagram_label);
950                 } else {
951                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
952                                           dg_size, fg_off, datagram_label);
953                         ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
954                 }
955                 fwnet_send_packet(ptask);
956         } else {
957                 dev_kfree_skb_any(ptask->skb);
958                 kmem_cache_free(fwnet_packet_task_cache, ptask);
959         }
960 }
961
962 static void fwnet_write_complete(struct fw_card *card, int rcode,
963                                  void *payload, size_t length, void *data)
964 {
965         struct fwnet_packet_task *ptask;
966
967         ptask = data;
968
969         if (rcode == RCODE_COMPLETE)
970                 fwnet_transmit_packet_done(ptask);
971         else
972                 fw_error("fwnet_write_complete: failed: %x\n", rcode);
973                 /* ??? error recovery */
974 }
975
976 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
977 {
978         struct fwnet_device *dev;
979         unsigned tx_len;
980         struct rfc2734_header *bufhdr;
981         unsigned long flags;
982
983         dev = ptask->dev;
984         tx_len = ptask->max_payload;
985         switch (fwnet_get_hdr_lf(&ptask->hdr)) {
986         case RFC2374_HDR_UNFRAG:
987                 bufhdr = (struct rfc2734_header *)
988                                 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
989                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
990                 break;
991
992         case RFC2374_HDR_FIRSTFRAG:
993         case RFC2374_HDR_INTFRAG:
994         case RFC2374_HDR_LASTFRAG:
995                 bufhdr = (struct rfc2734_header *)
996                                 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
997                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
998                 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
999                 break;
1000
1001         default:
1002                 BUG();
1003         }
1004         if (ptask->dest_node == IEEE1394_ALL_NODES) {
1005                 u8 *p;
1006                 int generation;
1007                 int node_id;
1008
1009                 /* ptask->generation may not have been set yet */
1010                 generation = dev->card->generation;
1011                 smp_rmb();
1012                 node_id = dev->card->node_id;
1013
1014                 p = skb_push(ptask->skb, 8);
1015                 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1016                 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1017                                                 | RFC2734_SW_VERSION, &p[4]);
1018
1019                 /* We should not transmit if broadcast_channel.valid == 0. */
1020                 fw_send_request(dev->card, &ptask->transaction,
1021                                 TCODE_STREAM_DATA,
1022                                 fw_stream_packet_destination_id(3,
1023                                                 IEEE1394_BROADCAST_CHANNEL, 0),
1024                                 generation, SCODE_100, 0ULL, ptask->skb->data,
1025                                 tx_len + 8, fwnet_write_complete, ptask);
1026
1027                 /* FIXME race? */
1028                 spin_lock_irqsave(&dev->lock, flags);
1029                 list_add_tail(&ptask->pt_link, &dev->broadcasted_list);
1030                 spin_unlock_irqrestore(&dev->lock, flags);
1031
1032                 return 0;
1033         }
1034
1035         fw_send_request(dev->card, &ptask->transaction,
1036                         TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1037                         ptask->generation, ptask->speed, ptask->fifo_addr,
1038                         ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1039
1040         /* FIXME race? */
1041         spin_lock_irqsave(&dev->lock, flags);
1042         list_add_tail(&ptask->pt_link, &dev->sent_list);
1043         spin_unlock_irqrestore(&dev->lock, flags);
1044
1045         dev->netdev->trans_start = jiffies;
1046
1047         return 0;
1048 }
1049
1050 static int fwnet_broadcast_start(struct fwnet_device *dev)
1051 {
1052         struct fw_iso_context *context;
1053         int retval;
1054         unsigned num_packets;
1055         unsigned max_receive;
1056         struct fw_iso_packet packet;
1057         unsigned long offset;
1058         unsigned u;
1059
1060         if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1061                 /* outside OHCI posted write area? */
1062                 static const struct fw_address_region region = {
1063                         .start = 0xffff00000000ULL,
1064                         .end   = CSR_REGISTER_BASE,
1065                 };
1066
1067                 dev->handler.length = 4096;
1068                 dev->handler.address_callback = fwnet_receive_packet;
1069                 dev->handler.callback_data = dev;
1070
1071                 retval = fw_core_add_address_handler(&dev->handler, &region);
1072                 if (retval < 0)
1073                         goto failed_initial;
1074
1075                 dev->local_fifo = dev->handler.offset;
1076         }
1077
1078         max_receive = 1U << (dev->card->max_receive + 1);
1079         num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1080
1081         if (!dev->broadcast_rcv_context) {
1082                 void **ptrptr;
1083
1084                 context = fw_iso_context_create(dev->card,
1085                     FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1086                     dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1087                 if (IS_ERR(context)) {
1088                         retval = PTR_ERR(context);
1089                         goto failed_context_create;
1090                 }
1091
1092                 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1093                     dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1094                 if (retval < 0)
1095                         goto failed_buffer_init;
1096
1097                 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1098                 if (!ptrptr) {
1099                         retval = -ENOMEM;
1100                         goto failed_ptrs_alloc;
1101                 }
1102
1103                 dev->broadcast_rcv_buffer_ptrs = ptrptr;
1104                 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1105                         void *ptr;
1106                         unsigned v;
1107
1108                         ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1109                         for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1110                                 *ptrptr++ = (void *)
1111                                                 ((char *)ptr + v * max_receive);
1112                 }
1113                 dev->broadcast_rcv_context = context;
1114         } else {
1115                 context = dev->broadcast_rcv_context;
1116         }
1117
1118         packet.payload_length = max_receive;
1119         packet.interrupt = 1;
1120         packet.skip = 0;
1121         packet.tag = 3;
1122         packet.sy = 0;
1123         packet.header_length = IEEE1394_GASP_HDR_SIZE;
1124         offset = 0;
1125
1126         for (u = 0; u < num_packets; u++) {
1127                 retval = fw_iso_context_queue(context, &packet,
1128                                 &dev->broadcast_rcv_buffer, offset);
1129                 if (retval < 0)
1130                         goto failed_rcv_queue;
1131
1132                 offset += max_receive;
1133         }
1134         dev->num_broadcast_rcv_ptrs = num_packets;
1135         dev->rcv_buffer_size = max_receive;
1136         dev->broadcast_rcv_next_ptr = 0U;
1137         retval = fw_iso_context_start(context, -1, 0,
1138                         FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1139         if (retval < 0)
1140                 goto failed_rcv_queue;
1141
1142         /* FIXME: adjust it according to the min. speed of all known peers? */
1143         dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1144                         - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1145         dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1146
1147         return 0;
1148
1149  failed_rcv_queue:
1150         kfree(dev->broadcast_rcv_buffer_ptrs);
1151         dev->broadcast_rcv_buffer_ptrs = NULL;
1152  failed_ptrs_alloc:
1153         fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1154  failed_buffer_init:
1155         fw_iso_context_destroy(context);
1156         dev->broadcast_rcv_context = NULL;
1157  failed_context_create:
1158         fw_core_remove_address_handler(&dev->handler);
1159  failed_initial:
1160         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1161
1162         return retval;
1163 }
1164
1165 /* ifup */
1166 static int fwnet_open(struct net_device *net)
1167 {
1168         struct fwnet_device *dev = netdev_priv(net);
1169         int ret;
1170
1171         if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1172                 ret = fwnet_broadcast_start(dev);
1173                 if (ret)
1174                         return ret;
1175         }
1176         netif_start_queue(net);
1177
1178         return 0;
1179 }
1180
1181 /* ifdown */
1182 static int fwnet_stop(struct net_device *net)
1183 {
1184         netif_stop_queue(net);
1185
1186         /* Deallocate iso context for use by other applications? */
1187
1188         return 0;
1189 }
1190
1191 static int fwnet_tx(struct sk_buff *skb, struct net_device *net)
1192 {
1193         struct fwnet_header hdr_buf;
1194         struct fwnet_device *dev = netdev_priv(net);
1195         __be16 proto;
1196         u16 dest_node;
1197         unsigned max_payload;
1198         u16 dg_size;
1199         u16 *datagram_label_ptr;
1200         struct fwnet_packet_task *ptask;
1201         struct fwnet_peer *peer;
1202         unsigned long flags;
1203
1204         ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1205         if (ptask == NULL)
1206                 goto fail;
1207
1208         skb = skb_share_check(skb, GFP_ATOMIC);
1209         if (!skb)
1210                 goto fail;
1211
1212         /*
1213          * Make a copy of the driver-specific header.
1214          * We might need to rebuild the header on tx failure.
1215          */
1216         memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1217         skb_pull(skb, sizeof(hdr_buf));
1218
1219         proto = hdr_buf.h_proto;
1220         dg_size = skb->len;
1221
1222         /* serialize access to peer, including peer->datagram_label */
1223         spin_lock_irqsave(&dev->lock, flags);
1224
1225         /*
1226          * Set the transmission type for the packet.  ARP packets and IP
1227          * broadcast packets are sent via GASP.
1228          */
1229         if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1230             || proto == htons(ETH_P_ARP)
1231             || (proto == htons(ETH_P_IP)
1232                 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1233                 max_payload        = dev->broadcast_xmt_max_payload;
1234                 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1235
1236                 ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1237                 ptask->generation  = 0;
1238                 ptask->dest_node   = IEEE1394_ALL_NODES;
1239                 ptask->speed       = SCODE_100;
1240         } else {
1241                 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1242                 u8 generation;
1243
1244                 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1245                 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1246                         goto fail_unlock;
1247
1248                 generation         = peer->generation;
1249                 dest_node          = peer->node_id;
1250                 max_payload        = peer->max_payload;
1251                 datagram_label_ptr = &peer->datagram_label;
1252
1253                 ptask->fifo_addr   = peer->fifo;
1254                 ptask->generation  = generation;
1255                 ptask->dest_node   = dest_node;
1256                 ptask->speed       = peer->speed;
1257         }
1258
1259         /* If this is an ARP packet, convert it */
1260         if (proto == htons(ETH_P_ARP)) {
1261                 struct arphdr *arp = (struct arphdr *)skb->data;
1262                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1263                 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1264                 __be32 ipaddr;
1265
1266                 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1267
1268                 arp1394->hw_addr_len    = RFC2734_HW_ADDR_LEN;
1269                 arp1394->max_rec        = dev->card->max_receive;
1270                 arp1394->sspd           = dev->card->link_speed;
1271
1272                 put_unaligned_be16(dev->local_fifo >> 32,
1273                                    &arp1394->fifo_hi);
1274                 put_unaligned_be32(dev->local_fifo & 0xffffffff,
1275                                    &arp1394->fifo_lo);
1276                 put_unaligned(ipaddr, &arp1394->sip);
1277         }
1278
1279         ptask->hdr.w0 = 0;
1280         ptask->hdr.w1 = 0;
1281         ptask->skb = skb;
1282         ptask->dev = dev;
1283
1284         /* Does it all fit in one packet? */
1285         if (dg_size <= max_payload) {
1286                 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1287                 ptask->outstanding_pkts = 1;
1288                 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1289         } else {
1290                 u16 datagram_label;
1291
1292                 max_payload -= RFC2374_FRAG_OVERHEAD;
1293                 datagram_label = (*datagram_label_ptr)++;
1294                 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1295                                   datagram_label);
1296                 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1297                 max_payload += RFC2374_FRAG_HDR_SIZE;
1298         }
1299
1300         spin_unlock_irqrestore(&dev->lock, flags);
1301
1302         ptask->max_payload = max_payload;
1303         fwnet_send_packet(ptask);
1304
1305         return NETDEV_TX_OK;
1306
1307  fail_unlock:
1308         spin_unlock_irqrestore(&dev->lock, flags);
1309  fail:
1310         if (ptask)
1311                 kmem_cache_free(fwnet_packet_task_cache, ptask);
1312
1313         if (skb != NULL)
1314                 dev_kfree_skb(skb);
1315
1316         net->stats.tx_dropped++;
1317         net->stats.tx_errors++;
1318
1319         /*
1320          * FIXME: According to a patch from 2003-02-26, "returning non-zero
1321          * causes serious problems" here, allegedly.  Before that patch,
1322          * -ERRNO was returned which is not appropriate under Linux 2.6.
1323          * Perhaps more needs to be done?  Stop the queue in serious
1324          * conditions and restart it elsewhere?
1325          */
1326         return NETDEV_TX_OK;
1327 }
1328
1329 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1330 {
1331         if (new_mtu < 68)
1332                 return -EINVAL;
1333
1334         net->mtu = new_mtu;
1335         return 0;
1336 }
1337
1338 static void fwnet_get_drvinfo(struct net_device *net,
1339                               struct ethtool_drvinfo *info)
1340 {
1341         strcpy(info->driver, KBUILD_MODNAME);
1342         strcpy(info->bus_info, "ieee1394");
1343 }
1344
1345 static struct ethtool_ops fwnet_ethtool_ops = {
1346         .get_drvinfo = fwnet_get_drvinfo,
1347 };
1348
1349 static const struct net_device_ops fwnet_netdev_ops = {
1350         .ndo_open       = fwnet_open,
1351         .ndo_stop       = fwnet_stop,
1352         .ndo_start_xmit = fwnet_tx,
1353         .ndo_change_mtu = fwnet_change_mtu,
1354 };
1355
1356 static void fwnet_init_dev(struct net_device *net)
1357 {
1358         net->header_ops         = &fwnet_header_ops;
1359         net->netdev_ops         = &fwnet_netdev_ops;
1360         net->watchdog_timeo     = 2 * HZ;
1361         net->flags              = IFF_BROADCAST | IFF_MULTICAST;
1362         net->features           = NETIF_F_HIGHDMA;
1363         net->addr_len           = FWNET_ALEN;
1364         net->hard_header_len    = FWNET_HLEN;
1365         net->type               = ARPHRD_IEEE1394;
1366         net->tx_queue_len       = 10;
1367         SET_ETHTOOL_OPS(net, &fwnet_ethtool_ops);
1368 }
1369
1370 /* caller must hold fwnet_device_mutex */
1371 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1372 {
1373         struct fwnet_device *dev;
1374
1375         list_for_each_entry(dev, &fwnet_device_list, dev_link)
1376                 if (dev->card == card)
1377                         return dev;
1378
1379         return NULL;
1380 }
1381
1382 static int fwnet_add_peer(struct fwnet_device *dev,
1383                           struct fw_unit *unit, struct fw_device *device)
1384 {
1385         struct fwnet_peer *peer;
1386
1387         peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1388         if (!peer)
1389                 return -ENOMEM;
1390
1391         dev_set_drvdata(&unit->device, peer);
1392
1393         peer->dev = dev;
1394         peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1395         peer->fifo = FWNET_NO_FIFO_ADDR;
1396         INIT_LIST_HEAD(&peer->pd_list);
1397         peer->pdg_size = 0;
1398         peer->datagram_label = 0;
1399         peer->speed = device->max_speed;
1400         peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1401
1402         peer->generation = device->generation;
1403         smp_rmb();
1404         peer->node_id = device->node_id;
1405
1406         spin_lock_irq(&dev->lock);
1407         list_add_tail(&peer->peer_link, &dev->peer_list);
1408         spin_unlock_irq(&dev->lock);
1409
1410         return 0;
1411 }
1412
1413 static int fwnet_probe(struct device *_dev)
1414 {
1415         struct fw_unit *unit = fw_unit(_dev);
1416         struct fw_device *device = fw_parent_device(unit);
1417         struct fw_card *card = device->card;
1418         struct net_device *net;
1419         bool allocated_netdev = false;
1420         struct fwnet_device *dev;
1421         unsigned max_mtu;
1422         int ret;
1423
1424         mutex_lock(&fwnet_device_mutex);
1425
1426         dev = fwnet_dev_find(card);
1427         if (dev) {
1428                 net = dev->netdev;
1429                 goto have_dev;
1430         }
1431
1432         net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1433         if (net == NULL) {
1434                 ret = -ENOMEM;
1435                 goto out;
1436         }
1437
1438         allocated_netdev = true;
1439         SET_NETDEV_DEV(net, card->device);
1440         dev = netdev_priv(net);
1441
1442         spin_lock_init(&dev->lock);
1443         dev->broadcast_state = FWNET_BROADCAST_ERROR;
1444         dev->broadcast_rcv_context = NULL;
1445         dev->broadcast_xmt_max_payload = 0;
1446         dev->broadcast_xmt_datagramlabel = 0;
1447
1448         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1449
1450         INIT_LIST_HEAD(&dev->packet_list);
1451         INIT_LIST_HEAD(&dev->broadcasted_list);
1452         INIT_LIST_HEAD(&dev->sent_list);
1453         INIT_LIST_HEAD(&dev->peer_list);
1454
1455         dev->card = card;
1456         dev->netdev = net;
1457
1458         /*
1459          * Use the RFC 2734 default 1500 octets or the maximum payload
1460          * as initial MTU
1461          */
1462         max_mtu = (1 << (card->max_receive + 1))
1463                   - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1464         net->mtu = min(1500U, max_mtu);
1465
1466         /* Set our hardware address while we're at it */
1467         put_unaligned_be64(card->guid, net->dev_addr);
1468         put_unaligned_be64(~0ULL, net->broadcast);
1469         ret = register_netdev(net);
1470         if (ret) {
1471                 fw_error("Cannot register the driver\n");
1472                 goto out;
1473         }
1474
1475         list_add_tail(&dev->dev_link, &fwnet_device_list);
1476         fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1477                   net->name, (unsigned long long)card->guid);
1478  have_dev:
1479         ret = fwnet_add_peer(dev, unit, device);
1480         if (ret && allocated_netdev) {
1481                 unregister_netdev(net);
1482                 list_del(&dev->dev_link);
1483         }
1484  out:
1485         if (ret && allocated_netdev)
1486                 free_netdev(net);
1487
1488         mutex_unlock(&fwnet_device_mutex);
1489
1490         return ret;
1491 }
1492
1493 static void fwnet_remove_peer(struct fwnet_peer *peer)
1494 {
1495         struct fwnet_partial_datagram *pd, *pd_next;
1496
1497         spin_lock_irq(&peer->dev->lock);
1498         list_del(&peer->peer_link);
1499         spin_unlock_irq(&peer->dev->lock);
1500
1501         list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1502                 fwnet_pd_delete(pd);
1503
1504         kfree(peer);
1505 }
1506
1507 static int fwnet_remove(struct device *_dev)
1508 {
1509         struct fwnet_peer *peer = dev_get_drvdata(_dev);
1510         struct fwnet_device *dev = peer->dev;
1511         struct net_device *net;
1512         struct fwnet_packet_task *ptask, *pt_next;
1513
1514         mutex_lock(&fwnet_device_mutex);
1515
1516         fwnet_remove_peer(peer);
1517
1518         if (list_empty(&dev->peer_list)) {
1519                 net = dev->netdev;
1520                 unregister_netdev(net);
1521
1522                 if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1523                         fw_core_remove_address_handler(&dev->handler);
1524                 if (dev->broadcast_rcv_context) {
1525                         fw_iso_context_stop(dev->broadcast_rcv_context);
1526                         fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1527                                               dev->card);
1528                         fw_iso_context_destroy(dev->broadcast_rcv_context);
1529                 }
1530                 list_for_each_entry_safe(ptask, pt_next,
1531                                          &dev->packet_list, pt_link) {
1532                         dev_kfree_skb_any(ptask->skb);
1533                         kmem_cache_free(fwnet_packet_task_cache, ptask);
1534                 }
1535                 list_for_each_entry_safe(ptask, pt_next,
1536                                          &dev->broadcasted_list, pt_link) {
1537                         dev_kfree_skb_any(ptask->skb);
1538                         kmem_cache_free(fwnet_packet_task_cache, ptask);
1539                 }
1540                 list_for_each_entry_safe(ptask, pt_next,
1541                                          &dev->sent_list, pt_link) {
1542                         dev_kfree_skb_any(ptask->skb);
1543                         kmem_cache_free(fwnet_packet_task_cache, ptask);
1544                 }
1545                 list_del(&dev->dev_link);
1546
1547                 free_netdev(net);
1548         }
1549
1550         mutex_unlock(&fwnet_device_mutex);
1551
1552         return 0;
1553 }
1554
1555 /*
1556  * FIXME abort partially sent fragmented datagrams,
1557  * discard partially received fragmented datagrams
1558  */
1559 static void fwnet_update(struct fw_unit *unit)
1560 {
1561         struct fw_device *device = fw_parent_device(unit);
1562         struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1563         int generation;
1564
1565         generation = device->generation;
1566
1567         spin_lock_irq(&peer->dev->lock);
1568         peer->node_id    = device->node_id;
1569         peer->generation = generation;
1570         spin_unlock_irq(&peer->dev->lock);
1571 }
1572
1573 static const struct ieee1394_device_id fwnet_id_table[] = {
1574         {
1575                 .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1576                                 IEEE1394_MATCH_VERSION,
1577                 .specifier_id = IANA_SPECIFIER_ID,
1578                 .version      = RFC2734_SW_VERSION,
1579         },
1580         { }
1581 };
1582
1583 static struct fw_driver fwnet_driver = {
1584         .driver = {
1585                 .owner  = THIS_MODULE,
1586                 .name   = "net",
1587                 .bus    = &fw_bus_type,
1588                 .probe  = fwnet_probe,
1589                 .remove = fwnet_remove,
1590         },
1591         .update   = fwnet_update,
1592         .id_table = fwnet_id_table,
1593 };
1594
1595 static const u32 rfc2374_unit_directory_data[] = {
1596         0x00040000,     /* directory_length             */
1597         0x1200005e,     /* unit_specifier_id: IANA      */
1598         0x81000003,     /* textual descriptor offset    */
1599         0x13000001,     /* unit_sw_version: RFC 2734    */
1600         0x81000005,     /* textual descriptor offset    */
1601         0x00030000,     /* descriptor_length            */
1602         0x00000000,     /* text                         */
1603         0x00000000,     /* minimal ASCII, en            */
1604         0x49414e41,     /* I A N A                      */
1605         0x00030000,     /* descriptor_length            */
1606         0x00000000,     /* text                         */
1607         0x00000000,     /* minimal ASCII, en            */
1608         0x49507634,     /* I P v 4                      */
1609 };
1610
1611 static struct fw_descriptor rfc2374_unit_directory = {
1612         .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1613         .key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1614         .data   = rfc2374_unit_directory_data
1615 };
1616
1617 static int __init fwnet_init(void)
1618 {
1619         int err;
1620
1621         err = fw_core_add_descriptor(&rfc2374_unit_directory);
1622         if (err)
1623                 return err;
1624
1625         fwnet_packet_task_cache = kmem_cache_create("packet_task",
1626                         sizeof(struct fwnet_packet_task), 0, 0, NULL);
1627         if (!fwnet_packet_task_cache) {
1628                 err = -ENOMEM;
1629                 goto out;
1630         }
1631
1632         err = driver_register(&fwnet_driver.driver);
1633         if (!err)
1634                 return 0;
1635
1636         kmem_cache_destroy(fwnet_packet_task_cache);
1637 out:
1638         fw_core_remove_descriptor(&rfc2374_unit_directory);
1639
1640         return err;
1641 }
1642 module_init(fwnet_init);
1643
1644 static void __exit fwnet_cleanup(void)
1645 {
1646         driver_unregister(&fwnet_driver.driver);
1647         kmem_cache_destroy(fwnet_packet_task_cache);
1648         fw_core_remove_descriptor(&rfc2374_unit_directory);
1649 }
1650 module_exit(fwnet_cleanup);
1651
1652 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1653 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1654 MODULE_LICENSE("GPL");
1655 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);