Merge branches 'acerhdf', 'acpi-pci-bind', 'bjorn-pci-root', 'bugzilla-12904', 'bugzi...
[linux-2.6] / drivers / net / fs_enet / fs_enet-main.c
1 /*
2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/bitops.h>
36 #include <linux/fs.h>
37 #include <linux/platform_device.h>
38 #include <linux/phy.h>
39 #include <linux/of.h>
40 #include <linux/of_mdio.h>
41 #include <linux/of_platform.h>
42 #include <linux/of_gpio.h>
43
44 #include <linux/vmalloc.h>
45 #include <asm/pgtable.h>
46 #include <asm/irq.h>
47 #include <asm/uaccess.h>
48
49 #include "fs_enet.h"
50
51 /*************************************************/
52
53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
55 MODULE_LICENSE("GPL");
56 MODULE_VERSION(DRV_MODULE_VERSION);
57
58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
59 module_param(fs_enet_debug, int, 0);
60 MODULE_PARM_DESC(fs_enet_debug,
61                  "Freescale bitmapped debugging message enable value");
62
63 #ifdef CONFIG_NET_POLL_CONTROLLER
64 static void fs_enet_netpoll(struct net_device *dev);
65 #endif
66
67 static void fs_set_multicast_list(struct net_device *dev)
68 {
69         struct fs_enet_private *fep = netdev_priv(dev);
70
71         (*fep->ops->set_multicast_list)(dev);
72 }
73
74 static void skb_align(struct sk_buff *skb, int align)
75 {
76         int off = ((unsigned long)skb->data) & (align - 1);
77
78         if (off)
79                 skb_reserve(skb, align - off);
80 }
81
82 /* NAPI receive function */
83 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
84 {
85         struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
86         struct net_device *dev = fep->ndev;
87         const struct fs_platform_info *fpi = fep->fpi;
88         cbd_t __iomem *bdp;
89         struct sk_buff *skb, *skbn, *skbt;
90         int received = 0;
91         u16 pkt_len, sc;
92         int curidx;
93
94         /*
95          * First, grab all of the stats for the incoming packet.
96          * These get messed up if we get called due to a busy condition.
97          */
98         bdp = fep->cur_rx;
99
100         /* clear RX status bits for napi*/
101         (*fep->ops->napi_clear_rx_event)(dev);
102
103         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
104                 curidx = bdp - fep->rx_bd_base;
105
106                 /*
107                  * Since we have allocated space to hold a complete frame,
108                  * the last indicator should be set.
109                  */
110                 if ((sc & BD_ENET_RX_LAST) == 0)
111                         printk(KERN_WARNING DRV_MODULE_NAME
112                                ": %s rcv is not +last\n",
113                                dev->name);
114
115                 /*
116                  * Check for errors.
117                  */
118                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
119                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
120                         fep->stats.rx_errors++;
121                         /* Frame too long or too short. */
122                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
123                                 fep->stats.rx_length_errors++;
124                         /* Frame alignment */
125                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
126                                 fep->stats.rx_frame_errors++;
127                         /* CRC Error */
128                         if (sc & BD_ENET_RX_CR)
129                                 fep->stats.rx_crc_errors++;
130                         /* FIFO overrun */
131                         if (sc & BD_ENET_RX_OV)
132                                 fep->stats.rx_crc_errors++;
133
134                         skb = fep->rx_skbuff[curidx];
135
136                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
137                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
138                                 DMA_FROM_DEVICE);
139
140                         skbn = skb;
141
142                 } else {
143                         skb = fep->rx_skbuff[curidx];
144
145                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
146                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
147                                 DMA_FROM_DEVICE);
148
149                         /*
150                          * Process the incoming frame.
151                          */
152                         fep->stats.rx_packets++;
153                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
154                         fep->stats.rx_bytes += pkt_len + 4;
155
156                         if (pkt_len <= fpi->rx_copybreak) {
157                                 /* +2 to make IP header L1 cache aligned */
158                                 skbn = dev_alloc_skb(pkt_len + 2);
159                                 if (skbn != NULL) {
160                                         skb_reserve(skbn, 2);   /* align IP header */
161                                         skb_copy_from_linear_data(skb,
162                                                       skbn->data, pkt_len);
163                                         /* swap */
164                                         skbt = skb;
165                                         skb = skbn;
166                                         skbn = skbt;
167                                 }
168                         } else {
169                                 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
170
171                                 if (skbn)
172                                         skb_align(skbn, ENET_RX_ALIGN);
173                         }
174
175                         if (skbn != NULL) {
176                                 skb_put(skb, pkt_len);  /* Make room */
177                                 skb->protocol = eth_type_trans(skb, dev);
178                                 received++;
179                                 netif_receive_skb(skb);
180                         } else {
181                                 printk(KERN_WARNING DRV_MODULE_NAME
182                                        ": %s Memory squeeze, dropping packet.\n",
183                                        dev->name);
184                                 fep->stats.rx_dropped++;
185                                 skbn = skb;
186                         }
187                 }
188
189                 fep->rx_skbuff[curidx] = skbn;
190                 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
191                              L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
192                              DMA_FROM_DEVICE));
193                 CBDW_DATLEN(bdp, 0);
194                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
195
196                 /*
197                  * Update BD pointer to next entry.
198                  */
199                 if ((sc & BD_ENET_RX_WRAP) == 0)
200                         bdp++;
201                 else
202                         bdp = fep->rx_bd_base;
203
204                 (*fep->ops->rx_bd_done)(dev);
205
206                 if (received >= budget)
207                         break;
208         }
209
210         fep->cur_rx = bdp;
211
212         if (received < budget) {
213                 /* done */
214                 napi_complete(napi);
215                 (*fep->ops->napi_enable_rx)(dev);
216         }
217         return received;
218 }
219
220 /* non NAPI receive function */
221 static int fs_enet_rx_non_napi(struct net_device *dev)
222 {
223         struct fs_enet_private *fep = netdev_priv(dev);
224         const struct fs_platform_info *fpi = fep->fpi;
225         cbd_t __iomem *bdp;
226         struct sk_buff *skb, *skbn, *skbt;
227         int received = 0;
228         u16 pkt_len, sc;
229         int curidx;
230         /*
231          * First, grab all of the stats for the incoming packet.
232          * These get messed up if we get called due to a busy condition.
233          */
234         bdp = fep->cur_rx;
235
236         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
237
238                 curidx = bdp - fep->rx_bd_base;
239
240                 /*
241                  * Since we have allocated space to hold a complete frame,
242                  * the last indicator should be set.
243                  */
244                 if ((sc & BD_ENET_RX_LAST) == 0)
245                         printk(KERN_WARNING DRV_MODULE_NAME
246                                ": %s rcv is not +last\n",
247                                dev->name);
248
249                 /*
250                  * Check for errors.
251                  */
252                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
253                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
254                         fep->stats.rx_errors++;
255                         /* Frame too long or too short. */
256                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
257                                 fep->stats.rx_length_errors++;
258                         /* Frame alignment */
259                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
260                                 fep->stats.rx_frame_errors++;
261                         /* CRC Error */
262                         if (sc & BD_ENET_RX_CR)
263                                 fep->stats.rx_crc_errors++;
264                         /* FIFO overrun */
265                         if (sc & BD_ENET_RX_OV)
266                                 fep->stats.rx_crc_errors++;
267
268                         skb = fep->rx_skbuff[curidx];
269
270                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
271                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
272                                 DMA_FROM_DEVICE);
273
274                         skbn = skb;
275
276                 } else {
277
278                         skb = fep->rx_skbuff[curidx];
279
280                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
281                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
282                                 DMA_FROM_DEVICE);
283
284                         /*
285                          * Process the incoming frame.
286                          */
287                         fep->stats.rx_packets++;
288                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
289                         fep->stats.rx_bytes += pkt_len + 4;
290
291                         if (pkt_len <= fpi->rx_copybreak) {
292                                 /* +2 to make IP header L1 cache aligned */
293                                 skbn = dev_alloc_skb(pkt_len + 2);
294                                 if (skbn != NULL) {
295                                         skb_reserve(skbn, 2);   /* align IP header */
296                                         skb_copy_from_linear_data(skb,
297                                                       skbn->data, pkt_len);
298                                         /* swap */
299                                         skbt = skb;
300                                         skb = skbn;
301                                         skbn = skbt;
302                                 }
303                         } else {
304                                 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
305
306                                 if (skbn)
307                                         skb_align(skbn, ENET_RX_ALIGN);
308                         }
309
310                         if (skbn != NULL) {
311                                 skb_put(skb, pkt_len);  /* Make room */
312                                 skb->protocol = eth_type_trans(skb, dev);
313                                 received++;
314                                 netif_rx(skb);
315                         } else {
316                                 printk(KERN_WARNING DRV_MODULE_NAME
317                                        ": %s Memory squeeze, dropping packet.\n",
318                                        dev->name);
319                                 fep->stats.rx_dropped++;
320                                 skbn = skb;
321                         }
322                 }
323
324                 fep->rx_skbuff[curidx] = skbn;
325                 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
326                              L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
327                              DMA_FROM_DEVICE));
328                 CBDW_DATLEN(bdp, 0);
329                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
330
331                 /*
332                  * Update BD pointer to next entry.
333                  */
334                 if ((sc & BD_ENET_RX_WRAP) == 0)
335                         bdp++;
336                 else
337                         bdp = fep->rx_bd_base;
338
339                 (*fep->ops->rx_bd_done)(dev);
340         }
341
342         fep->cur_rx = bdp;
343
344         return 0;
345 }
346
347 static void fs_enet_tx(struct net_device *dev)
348 {
349         struct fs_enet_private *fep = netdev_priv(dev);
350         cbd_t __iomem *bdp;
351         struct sk_buff *skb;
352         int dirtyidx, do_wake, do_restart;
353         u16 sc;
354
355         spin_lock(&fep->tx_lock);
356         bdp = fep->dirty_tx;
357
358         do_wake = do_restart = 0;
359         while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
360                 dirtyidx = bdp - fep->tx_bd_base;
361
362                 if (fep->tx_free == fep->tx_ring)
363                         break;
364
365                 skb = fep->tx_skbuff[dirtyidx];
366
367                 /*
368                  * Check for errors.
369                  */
370                 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
371                           BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
372
373                         if (sc & BD_ENET_TX_HB) /* No heartbeat */
374                                 fep->stats.tx_heartbeat_errors++;
375                         if (sc & BD_ENET_TX_LC) /* Late collision */
376                                 fep->stats.tx_window_errors++;
377                         if (sc & BD_ENET_TX_RL) /* Retrans limit */
378                                 fep->stats.tx_aborted_errors++;
379                         if (sc & BD_ENET_TX_UN) /* Underrun */
380                                 fep->stats.tx_fifo_errors++;
381                         if (sc & BD_ENET_TX_CSL)        /* Carrier lost */
382                                 fep->stats.tx_carrier_errors++;
383
384                         if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
385                                 fep->stats.tx_errors++;
386                                 do_restart = 1;
387                         }
388                 } else
389                         fep->stats.tx_packets++;
390
391                 if (sc & BD_ENET_TX_READY)
392                         printk(KERN_WARNING DRV_MODULE_NAME
393                                ": %s HEY! Enet xmit interrupt and TX_READY.\n",
394                                dev->name);
395
396                 /*
397                  * Deferred means some collisions occurred during transmit,
398                  * but we eventually sent the packet OK.
399                  */
400                 if (sc & BD_ENET_TX_DEF)
401                         fep->stats.collisions++;
402
403                 /* unmap */
404                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
405                                 skb->len, DMA_TO_DEVICE);
406
407                 /*
408                  * Free the sk buffer associated with this last transmit.
409                  */
410                 dev_kfree_skb_irq(skb);
411                 fep->tx_skbuff[dirtyidx] = NULL;
412
413                 /*
414                  * Update pointer to next buffer descriptor to be transmitted.
415                  */
416                 if ((sc & BD_ENET_TX_WRAP) == 0)
417                         bdp++;
418                 else
419                         bdp = fep->tx_bd_base;
420
421                 /*
422                  * Since we have freed up a buffer, the ring is no longer
423                  * full.
424                  */
425                 if (!fep->tx_free++)
426                         do_wake = 1;
427         }
428
429         fep->dirty_tx = bdp;
430
431         if (do_restart)
432                 (*fep->ops->tx_restart)(dev);
433
434         spin_unlock(&fep->tx_lock);
435
436         if (do_wake)
437                 netif_wake_queue(dev);
438 }
439
440 /*
441  * The interrupt handler.
442  * This is called from the MPC core interrupt.
443  */
444 static irqreturn_t
445 fs_enet_interrupt(int irq, void *dev_id)
446 {
447         struct net_device *dev = dev_id;
448         struct fs_enet_private *fep;
449         const struct fs_platform_info *fpi;
450         u32 int_events;
451         u32 int_clr_events;
452         int nr, napi_ok;
453         int handled;
454
455         fep = netdev_priv(dev);
456         fpi = fep->fpi;
457
458         nr = 0;
459         while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
460                 nr++;
461
462                 int_clr_events = int_events;
463                 if (fpi->use_napi)
464                         int_clr_events &= ~fep->ev_napi_rx;
465
466                 (*fep->ops->clear_int_events)(dev, int_clr_events);
467
468                 if (int_events & fep->ev_err)
469                         (*fep->ops->ev_error)(dev, int_events);
470
471                 if (int_events & fep->ev_rx) {
472                         if (!fpi->use_napi)
473                                 fs_enet_rx_non_napi(dev);
474                         else {
475                                 napi_ok = napi_schedule_prep(&fep->napi);
476
477                                 (*fep->ops->napi_disable_rx)(dev);
478                                 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
479
480                                 /* NOTE: it is possible for FCCs in NAPI mode    */
481                                 /* to submit a spurious interrupt while in poll  */
482                                 if (napi_ok)
483                                         __napi_schedule(&fep->napi);
484                         }
485                 }
486
487                 if (int_events & fep->ev_tx)
488                         fs_enet_tx(dev);
489         }
490
491         handled = nr > 0;
492         return IRQ_RETVAL(handled);
493 }
494
495 void fs_init_bds(struct net_device *dev)
496 {
497         struct fs_enet_private *fep = netdev_priv(dev);
498         cbd_t __iomem *bdp;
499         struct sk_buff *skb;
500         int i;
501
502         fs_cleanup_bds(dev);
503
504         fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
505         fep->tx_free = fep->tx_ring;
506         fep->cur_rx = fep->rx_bd_base;
507
508         /*
509          * Initialize the receive buffer descriptors.
510          */
511         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
512                 skb = dev_alloc_skb(ENET_RX_FRSIZE);
513                 if (skb == NULL) {
514                         printk(KERN_WARNING DRV_MODULE_NAME
515                                ": %s Memory squeeze, unable to allocate skb\n",
516                                dev->name);
517                         break;
518                 }
519                 skb_align(skb, ENET_RX_ALIGN);
520                 fep->rx_skbuff[i] = skb;
521                 CBDW_BUFADDR(bdp,
522                         dma_map_single(fep->dev, skb->data,
523                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
524                                 DMA_FROM_DEVICE));
525                 CBDW_DATLEN(bdp, 0);    /* zero */
526                 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
527                         ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
528         }
529         /*
530          * if we failed, fillup remainder
531          */
532         for (; i < fep->rx_ring; i++, bdp++) {
533                 fep->rx_skbuff[i] = NULL;
534                 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
535         }
536
537         /*
538          * ...and the same for transmit.
539          */
540         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
541                 fep->tx_skbuff[i] = NULL;
542                 CBDW_BUFADDR(bdp, 0);
543                 CBDW_DATLEN(bdp, 0);
544                 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
545         }
546 }
547
548 void fs_cleanup_bds(struct net_device *dev)
549 {
550         struct fs_enet_private *fep = netdev_priv(dev);
551         struct sk_buff *skb;
552         cbd_t __iomem *bdp;
553         int i;
554
555         /*
556          * Reset SKB transmit buffers.
557          */
558         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
559                 if ((skb = fep->tx_skbuff[i]) == NULL)
560                         continue;
561
562                 /* unmap */
563                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
564                                 skb->len, DMA_TO_DEVICE);
565
566                 fep->tx_skbuff[i] = NULL;
567                 dev_kfree_skb(skb);
568         }
569
570         /*
571          * Reset SKB receive buffers
572          */
573         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
574                 if ((skb = fep->rx_skbuff[i]) == NULL)
575                         continue;
576
577                 /* unmap */
578                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
579                         L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
580                         DMA_FROM_DEVICE);
581
582                 fep->rx_skbuff[i] = NULL;
583
584                 dev_kfree_skb(skb);
585         }
586 }
587
588 /**********************************************************************************/
589
590 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
591 {
592         struct fs_enet_private *fep = netdev_priv(dev);
593         cbd_t __iomem *bdp;
594         int curidx;
595         u16 sc;
596         unsigned long flags;
597
598         spin_lock_irqsave(&fep->tx_lock, flags);
599
600         /*
601          * Fill in a Tx ring entry
602          */
603         bdp = fep->cur_tx;
604
605         if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
606                 netif_stop_queue(dev);
607                 spin_unlock_irqrestore(&fep->tx_lock, flags);
608
609                 /*
610                  * Ooops.  All transmit buffers are full.  Bail out.
611                  * This should not happen, since the tx queue should be stopped.
612                  */
613                 printk(KERN_WARNING DRV_MODULE_NAME
614                        ": %s tx queue full!.\n", dev->name);
615                 return NETDEV_TX_BUSY;
616         }
617
618         curidx = bdp - fep->tx_bd_base;
619         /*
620          * Clear all of the status flags.
621          */
622         CBDC_SC(bdp, BD_ENET_TX_STATS);
623
624         /*
625          * Save skb pointer.
626          */
627         fep->tx_skbuff[curidx] = skb;
628
629         fep->stats.tx_bytes += skb->len;
630
631         /*
632          * Push the data cache so the CPM does not get stale memory data.
633          */
634         CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
635                                 skb->data, skb->len, DMA_TO_DEVICE));
636         CBDW_DATLEN(bdp, skb->len);
637
638         dev->trans_start = jiffies;
639
640         /*
641          * If this was the last BD in the ring, start at the beginning again.
642          */
643         if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
644                 fep->cur_tx++;
645         else
646                 fep->cur_tx = fep->tx_bd_base;
647
648         if (!--fep->tx_free)
649                 netif_stop_queue(dev);
650
651         /* Trigger transmission start */
652         sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
653              BD_ENET_TX_LAST | BD_ENET_TX_TC;
654
655         /* note that while FEC does not have this bit
656          * it marks it as available for software use
657          * yay for hw reuse :) */
658         if (skb->len <= 60)
659                 sc |= BD_ENET_TX_PAD;
660         CBDS_SC(bdp, sc);
661
662         (*fep->ops->tx_kickstart)(dev);
663
664         spin_unlock_irqrestore(&fep->tx_lock, flags);
665
666         return NETDEV_TX_OK;
667 }
668
669 static void fs_timeout(struct net_device *dev)
670 {
671         struct fs_enet_private *fep = netdev_priv(dev);
672         unsigned long flags;
673         int wake = 0;
674
675         fep->stats.tx_errors++;
676
677         spin_lock_irqsave(&fep->lock, flags);
678
679         if (dev->flags & IFF_UP) {
680                 phy_stop(fep->phydev);
681                 (*fep->ops->stop)(dev);
682                 (*fep->ops->restart)(dev);
683                 phy_start(fep->phydev);
684         }
685
686         phy_start(fep->phydev);
687         wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
688         spin_unlock_irqrestore(&fep->lock, flags);
689
690         if (wake)
691                 netif_wake_queue(dev);
692 }
693
694 /*-----------------------------------------------------------------------------
695  *  generic link-change handler - should be sufficient for most cases
696  *-----------------------------------------------------------------------------*/
697 static void generic_adjust_link(struct  net_device *dev)
698 {
699         struct fs_enet_private *fep = netdev_priv(dev);
700         struct phy_device *phydev = fep->phydev;
701         int new_state = 0;
702
703         if (phydev->link) {
704                 /* adjust to duplex mode */
705                 if (phydev->duplex != fep->oldduplex) {
706                         new_state = 1;
707                         fep->oldduplex = phydev->duplex;
708                 }
709
710                 if (phydev->speed != fep->oldspeed) {
711                         new_state = 1;
712                         fep->oldspeed = phydev->speed;
713                 }
714
715                 if (!fep->oldlink) {
716                         new_state = 1;
717                         fep->oldlink = 1;
718                 }
719
720                 if (new_state)
721                         fep->ops->restart(dev);
722         } else if (fep->oldlink) {
723                 new_state = 1;
724                 fep->oldlink = 0;
725                 fep->oldspeed = 0;
726                 fep->oldduplex = -1;
727         }
728
729         if (new_state && netif_msg_link(fep))
730                 phy_print_status(phydev);
731 }
732
733
734 static void fs_adjust_link(struct net_device *dev)
735 {
736         struct fs_enet_private *fep = netdev_priv(dev);
737         unsigned long flags;
738
739         spin_lock_irqsave(&fep->lock, flags);
740
741         if(fep->ops->adjust_link)
742                 fep->ops->adjust_link(dev);
743         else
744                 generic_adjust_link(dev);
745
746         spin_unlock_irqrestore(&fep->lock, flags);
747 }
748
749 static int fs_init_phy(struct net_device *dev)
750 {
751         struct fs_enet_private *fep = netdev_priv(dev);
752         struct phy_device *phydev;
753
754         fep->oldlink = 0;
755         fep->oldspeed = 0;
756         fep->oldduplex = -1;
757         if(fep->fpi->phy_node)
758                 phydev = of_phy_connect(dev, fep->fpi->phy_node,
759                                         &fs_adjust_link, 0,
760                                         PHY_INTERFACE_MODE_MII);
761         else {
762                 printk("No phy bus ID specified in BSP code\n");
763                 return -EINVAL;
764         }
765         if (IS_ERR(phydev)) {
766                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
767                 return PTR_ERR(phydev);
768         }
769
770         fep->phydev = phydev;
771
772         return 0;
773 }
774
775 static int fs_enet_open(struct net_device *dev)
776 {
777         struct fs_enet_private *fep = netdev_priv(dev);
778         int r;
779         int err;
780
781         /* to initialize the fep->cur_rx,... */
782         /* not doing this, will cause a crash in fs_enet_rx_napi */
783         fs_init_bds(fep->ndev);
784
785         if (fep->fpi->use_napi)
786                 napi_enable(&fep->napi);
787
788         /* Install our interrupt handler. */
789         r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
790                         "fs_enet-mac", dev);
791         if (r != 0) {
792                 printk(KERN_ERR DRV_MODULE_NAME
793                        ": %s Could not allocate FS_ENET IRQ!", dev->name);
794                 if (fep->fpi->use_napi)
795                         napi_disable(&fep->napi);
796                 return -EINVAL;
797         }
798
799         err = fs_init_phy(dev);
800         if (err) {
801                 free_irq(fep->interrupt, dev);
802                 if (fep->fpi->use_napi)
803                         napi_disable(&fep->napi);
804                 return err;
805         }
806         phy_start(fep->phydev);
807
808         netif_start_queue(dev);
809
810         return 0;
811 }
812
813 static int fs_enet_close(struct net_device *dev)
814 {
815         struct fs_enet_private *fep = netdev_priv(dev);
816         unsigned long flags;
817
818         netif_stop_queue(dev);
819         netif_carrier_off(dev);
820         if (fep->fpi->use_napi)
821                 napi_disable(&fep->napi);
822         phy_stop(fep->phydev);
823
824         spin_lock_irqsave(&fep->lock, flags);
825         spin_lock(&fep->tx_lock);
826         (*fep->ops->stop)(dev);
827         spin_unlock(&fep->tx_lock);
828         spin_unlock_irqrestore(&fep->lock, flags);
829
830         /* release any irqs */
831         phy_disconnect(fep->phydev);
832         fep->phydev = NULL;
833         free_irq(fep->interrupt, dev);
834
835         return 0;
836 }
837
838 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
839 {
840         struct fs_enet_private *fep = netdev_priv(dev);
841         return &fep->stats;
842 }
843
844 /*************************************************************************/
845
846 static void fs_get_drvinfo(struct net_device *dev,
847                             struct ethtool_drvinfo *info)
848 {
849         strcpy(info->driver, DRV_MODULE_NAME);
850         strcpy(info->version, DRV_MODULE_VERSION);
851 }
852
853 static int fs_get_regs_len(struct net_device *dev)
854 {
855         struct fs_enet_private *fep = netdev_priv(dev);
856
857         return (*fep->ops->get_regs_len)(dev);
858 }
859
860 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
861                          void *p)
862 {
863         struct fs_enet_private *fep = netdev_priv(dev);
864         unsigned long flags;
865         int r, len;
866
867         len = regs->len;
868
869         spin_lock_irqsave(&fep->lock, flags);
870         r = (*fep->ops->get_regs)(dev, p, &len);
871         spin_unlock_irqrestore(&fep->lock, flags);
872
873         if (r == 0)
874                 regs->version = 0;
875 }
876
877 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
878 {
879         struct fs_enet_private *fep = netdev_priv(dev);
880
881         if (!fep->phydev)
882                 return -ENODEV;
883
884         return phy_ethtool_gset(fep->phydev, cmd);
885 }
886
887 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
888 {
889         struct fs_enet_private *fep = netdev_priv(dev);
890
891         if (!fep->phydev)
892                 return -ENODEV;
893
894         return phy_ethtool_sset(fep->phydev, cmd);
895 }
896
897 static int fs_nway_reset(struct net_device *dev)
898 {
899         return 0;
900 }
901
902 static u32 fs_get_msglevel(struct net_device *dev)
903 {
904         struct fs_enet_private *fep = netdev_priv(dev);
905         return fep->msg_enable;
906 }
907
908 static void fs_set_msglevel(struct net_device *dev, u32 value)
909 {
910         struct fs_enet_private *fep = netdev_priv(dev);
911         fep->msg_enable = value;
912 }
913
914 static const struct ethtool_ops fs_ethtool_ops = {
915         .get_drvinfo = fs_get_drvinfo,
916         .get_regs_len = fs_get_regs_len,
917         .get_settings = fs_get_settings,
918         .set_settings = fs_set_settings,
919         .nway_reset = fs_nway_reset,
920         .get_link = ethtool_op_get_link,
921         .get_msglevel = fs_get_msglevel,
922         .set_msglevel = fs_set_msglevel,
923         .set_tx_csum = ethtool_op_set_tx_csum,  /* local! */
924         .set_sg = ethtool_op_set_sg,
925         .get_regs = fs_get_regs,
926 };
927
928 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
929 {
930         struct fs_enet_private *fep = netdev_priv(dev);
931         struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
932
933         if (!netif_running(dev))
934                 return -EINVAL;
935
936         return phy_mii_ioctl(fep->phydev, mii, cmd);
937 }
938
939 extern int fs_mii_connect(struct net_device *dev);
940 extern void fs_mii_disconnect(struct net_device *dev);
941
942 /**************************************************************************************/
943
944 #ifdef CONFIG_FS_ENET_HAS_FEC
945 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
946 #else
947 #define IS_FEC(match) 0
948 #endif
949
950 static const struct net_device_ops fs_enet_netdev_ops = {
951         .ndo_open               = fs_enet_open,
952         .ndo_stop               = fs_enet_close,
953         .ndo_get_stats          = fs_enet_get_stats,
954         .ndo_start_xmit         = fs_enet_start_xmit,
955         .ndo_tx_timeout         = fs_timeout,
956         .ndo_set_multicast_list = fs_set_multicast_list,
957         .ndo_do_ioctl           = fs_ioctl,
958         .ndo_validate_addr      = eth_validate_addr,
959         .ndo_set_mac_address    = eth_mac_addr,
960         .ndo_change_mtu         = eth_change_mtu,
961 #ifdef CONFIG_NET_POLL_CONTROLLER
962         .ndo_poll_controller    = fs_enet_netpoll,
963 #endif
964 };
965
966 static int __devinit fs_enet_probe(struct of_device *ofdev,
967                                    const struct of_device_id *match)
968 {
969         struct net_device *ndev;
970         struct fs_enet_private *fep;
971         struct fs_platform_info *fpi;
972         const u32 *data;
973         const u8 *mac_addr;
974         int privsize, len, ret = -ENODEV;
975
976         fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
977         if (!fpi)
978                 return -ENOMEM;
979
980         if (!IS_FEC(match)) {
981                 data = of_get_property(ofdev->node, "fsl,cpm-command", &len);
982                 if (!data || len != 4)
983                         goto out_free_fpi;
984
985                 fpi->cp_command = *data;
986         }
987
988         fpi->rx_ring = 32;
989         fpi->tx_ring = 32;
990         fpi->rx_copybreak = 240;
991         fpi->use_napi = 1;
992         fpi->napi_weight = 17;
993         fpi->phy_node = of_parse_phandle(ofdev->node, "phy-handle", 0);
994         if ((!fpi->phy_node) && (!of_get_property(ofdev->node, "fixed-link",
995                                                   NULL)))
996                 goto out_free_fpi;
997
998         privsize = sizeof(*fep) +
999                    sizeof(struct sk_buff **) *
1000                    (fpi->rx_ring + fpi->tx_ring);
1001
1002         ndev = alloc_etherdev(privsize);
1003         if (!ndev) {
1004                 ret = -ENOMEM;
1005                 goto out_free_fpi;
1006         }
1007
1008         dev_set_drvdata(&ofdev->dev, ndev);
1009
1010         fep = netdev_priv(ndev);
1011         fep->dev = &ofdev->dev;
1012         fep->ndev = ndev;
1013         fep->fpi = fpi;
1014         fep->ops = match->data;
1015
1016         ret = fep->ops->setup_data(ndev);
1017         if (ret)
1018                 goto out_free_dev;
1019
1020         fep->rx_skbuff = (struct sk_buff **)&fep[1];
1021         fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1022
1023         spin_lock_init(&fep->lock);
1024         spin_lock_init(&fep->tx_lock);
1025
1026         mac_addr = of_get_mac_address(ofdev->node);
1027         if (mac_addr)
1028                 memcpy(ndev->dev_addr, mac_addr, 6);
1029
1030         ret = fep->ops->allocate_bd(ndev);
1031         if (ret)
1032                 goto out_cleanup_data;
1033
1034         fep->rx_bd_base = fep->ring_base;
1035         fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1036
1037         fep->tx_ring = fpi->tx_ring;
1038         fep->rx_ring = fpi->rx_ring;
1039
1040         ndev->netdev_ops = &fs_enet_netdev_ops;
1041         ndev->watchdog_timeo = 2 * HZ;
1042         if (fpi->use_napi)
1043                 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
1044                                fpi->napi_weight);
1045
1046         ndev->ethtool_ops = &fs_ethtool_ops;
1047
1048         init_timer(&fep->phy_timer_list);
1049
1050         netif_carrier_off(ndev);
1051
1052         ret = register_netdev(ndev);
1053         if (ret)
1054                 goto out_free_bd;
1055
1056         printk(KERN_INFO "%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1057
1058         return 0;
1059
1060 out_free_bd:
1061         fep->ops->free_bd(ndev);
1062 out_cleanup_data:
1063         fep->ops->cleanup_data(ndev);
1064 out_free_dev:
1065         free_netdev(ndev);
1066         dev_set_drvdata(&ofdev->dev, NULL);
1067         of_node_put(fpi->phy_node);
1068 out_free_fpi:
1069         kfree(fpi);
1070         return ret;
1071 }
1072
1073 static int fs_enet_remove(struct of_device *ofdev)
1074 {
1075         struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
1076         struct fs_enet_private *fep = netdev_priv(ndev);
1077
1078         unregister_netdev(ndev);
1079
1080         fep->ops->free_bd(ndev);
1081         fep->ops->cleanup_data(ndev);
1082         dev_set_drvdata(fep->dev, NULL);
1083         of_node_put(fep->fpi->phy_node);
1084         free_netdev(ndev);
1085         return 0;
1086 }
1087
1088 static struct of_device_id fs_enet_match[] = {
1089 #ifdef CONFIG_FS_ENET_HAS_SCC
1090         {
1091                 .compatible = "fsl,cpm1-scc-enet",
1092                 .data = (void *)&fs_scc_ops,
1093         },
1094         {
1095                 .compatible = "fsl,cpm2-scc-enet",
1096                 .data = (void *)&fs_scc_ops,
1097         },
1098 #endif
1099 #ifdef CONFIG_FS_ENET_HAS_FCC
1100         {
1101                 .compatible = "fsl,cpm2-fcc-enet",
1102                 .data = (void *)&fs_fcc_ops,
1103         },
1104 #endif
1105 #ifdef CONFIG_FS_ENET_HAS_FEC
1106         {
1107                 .compatible = "fsl,pq1-fec-enet",
1108                 .data = (void *)&fs_fec_ops,
1109         },
1110 #endif
1111         {}
1112 };
1113
1114 static struct of_platform_driver fs_enet_driver = {
1115         .name   = "fs_enet",
1116         .match_table = fs_enet_match,
1117         .probe = fs_enet_probe,
1118         .remove = fs_enet_remove,
1119 };
1120
1121 static int __init fs_init(void)
1122 {
1123         return of_register_platform_driver(&fs_enet_driver);
1124 }
1125
1126 static void __exit fs_cleanup(void)
1127 {
1128         of_unregister_platform_driver(&fs_enet_driver);
1129 }
1130
1131 #ifdef CONFIG_NET_POLL_CONTROLLER
1132 static void fs_enet_netpoll(struct net_device *dev)
1133 {
1134        disable_irq(dev->irq);
1135        fs_enet_interrupt(dev->irq, dev);
1136        enable_irq(dev->irq);
1137 }
1138 #endif
1139
1140 /**************************************************************************************/
1141
1142 module_init(fs_init);
1143 module_exit(fs_cleanup);