Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[linux-2.6] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/interrupt.h>
43 #include <linux/if_ether.h>
44
45 #include "igb.h"
46
47 #define DRV_VERSION "1.0.8-k2"
48 char igb_driver_name[] = "igb";
49 char igb_driver_version[] = DRV_VERSION;
50 static const char igb_driver_string[] =
51                                 "Intel(R) Gigabit Ethernet Network Driver";
52 static const char igb_copyright[] = "Copyright (c) 2007 Intel Corporation.";
53
54
55 static const struct e1000_info *igb_info_tbl[] = {
56         [board_82575] = &e1000_82575_info,
57 };
58
59 static struct pci_device_id igb_pci_tbl[] = {
60         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
61         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
62         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
63         /* required last entry */
64         {0, }
65 };
66
67 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
68
69 void igb_reset(struct igb_adapter *);
70 static int igb_setup_all_tx_resources(struct igb_adapter *);
71 static int igb_setup_all_rx_resources(struct igb_adapter *);
72 static void igb_free_all_tx_resources(struct igb_adapter *);
73 static void igb_free_all_rx_resources(struct igb_adapter *);
74 static void igb_free_tx_resources(struct igb_adapter *, struct igb_ring *);
75 static void igb_free_rx_resources(struct igb_adapter *, struct igb_ring *);
76 void igb_update_stats(struct igb_adapter *);
77 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
78 static void __devexit igb_remove(struct pci_dev *pdev);
79 static int igb_sw_init(struct igb_adapter *);
80 static int igb_open(struct net_device *);
81 static int igb_close(struct net_device *);
82 static void igb_configure_tx(struct igb_adapter *);
83 static void igb_configure_rx(struct igb_adapter *);
84 static void igb_setup_rctl(struct igb_adapter *);
85 static void igb_clean_all_tx_rings(struct igb_adapter *);
86 static void igb_clean_all_rx_rings(struct igb_adapter *);
87 static void igb_clean_tx_ring(struct igb_adapter *, struct igb_ring *);
88 static void igb_clean_rx_ring(struct igb_adapter *, struct igb_ring *);
89 static void igb_set_multi(struct net_device *);
90 static void igb_update_phy_info(unsigned long);
91 static void igb_watchdog(unsigned long);
92 static void igb_watchdog_task(struct work_struct *);
93 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
94                                   struct igb_ring *);
95 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
96 static struct net_device_stats *igb_get_stats(struct net_device *);
97 static int igb_change_mtu(struct net_device *, int);
98 static int igb_set_mac(struct net_device *, void *);
99 static irqreturn_t igb_intr(int irq, void *);
100 static irqreturn_t igb_intr_msi(int irq, void *);
101 static irqreturn_t igb_msix_other(int irq, void *);
102 static irqreturn_t igb_msix_rx(int irq, void *);
103 static irqreturn_t igb_msix_tx(int irq, void *);
104 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
105 static bool igb_clean_tx_irq(struct igb_adapter *, struct igb_ring *);
106 static int igb_clean(struct napi_struct *, int);
107 static bool igb_clean_rx_irq_adv(struct igb_adapter *,
108                                  struct igb_ring *, int *, int);
109 static void igb_alloc_rx_buffers_adv(struct igb_adapter *,
110                                      struct igb_ring *, int);
111 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
112 static void igb_tx_timeout(struct net_device *);
113 static void igb_reset_task(struct work_struct *);
114 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
115 static void igb_vlan_rx_add_vid(struct net_device *, u16);
116 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
117 static void igb_restore_vlan(struct igb_adapter *);
118
119 static int igb_suspend(struct pci_dev *, pm_message_t);
120 #ifdef CONFIG_PM
121 static int igb_resume(struct pci_dev *);
122 #endif
123 static void igb_shutdown(struct pci_dev *);
124
125 #ifdef CONFIG_NET_POLL_CONTROLLER
126 /* for netdump / net console */
127 static void igb_netpoll(struct net_device *);
128 #endif
129
130 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
131                      pci_channel_state_t);
132 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
133 static void igb_io_resume(struct pci_dev *);
134
135 static struct pci_error_handlers igb_err_handler = {
136         .error_detected = igb_io_error_detected,
137         .slot_reset = igb_io_slot_reset,
138         .resume = igb_io_resume,
139 };
140
141
142 static struct pci_driver igb_driver = {
143         .name     = igb_driver_name,
144         .id_table = igb_pci_tbl,
145         .probe    = igb_probe,
146         .remove   = __devexit_p(igb_remove),
147 #ifdef CONFIG_PM
148         /* Power Managment Hooks */
149         .suspend  = igb_suspend,
150         .resume   = igb_resume,
151 #endif
152         .shutdown = igb_shutdown,
153         .err_handler = &igb_err_handler
154 };
155
156 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
157 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
158 MODULE_LICENSE("GPL");
159 MODULE_VERSION(DRV_VERSION);
160
161 #ifdef DEBUG
162 /**
163  * igb_get_hw_dev_name - return device name string
164  * used by hardware layer to print debugging information
165  **/
166 char *igb_get_hw_dev_name(struct e1000_hw *hw)
167 {
168         struct igb_adapter *adapter = hw->back;
169         return adapter->netdev->name;
170 }
171 #endif
172
173 /**
174  * igb_init_module - Driver Registration Routine
175  *
176  * igb_init_module is the first routine called when the driver is
177  * loaded. All it does is register with the PCI subsystem.
178  **/
179 static int __init igb_init_module(void)
180 {
181         int ret;
182         printk(KERN_INFO "%s - version %s\n",
183                igb_driver_string, igb_driver_version);
184
185         printk(KERN_INFO "%s\n", igb_copyright);
186
187         ret = pci_register_driver(&igb_driver);
188         return ret;
189 }
190
191 module_init(igb_init_module);
192
193 /**
194  * igb_exit_module - Driver Exit Cleanup Routine
195  *
196  * igb_exit_module is called just before the driver is removed
197  * from memory.
198  **/
199 static void __exit igb_exit_module(void)
200 {
201         pci_unregister_driver(&igb_driver);
202 }
203
204 module_exit(igb_exit_module);
205
206 /**
207  * igb_alloc_queues - Allocate memory for all rings
208  * @adapter: board private structure to initialize
209  *
210  * We allocate one ring per queue at run-time since we don't know the
211  * number of queues at compile-time.
212  **/
213 static int igb_alloc_queues(struct igb_adapter *adapter)
214 {
215         int i;
216
217         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
218                                    sizeof(struct igb_ring), GFP_KERNEL);
219         if (!adapter->tx_ring)
220                 return -ENOMEM;
221
222         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
223                                    sizeof(struct igb_ring), GFP_KERNEL);
224         if (!adapter->rx_ring) {
225                 kfree(adapter->tx_ring);
226                 return -ENOMEM;
227         }
228
229         for (i = 0; i < adapter->num_rx_queues; i++) {
230                 struct igb_ring *ring = &(adapter->rx_ring[i]);
231                 ring->adapter = adapter;
232                 ring->itr_register = E1000_ITR;
233
234                 if (!ring->napi.poll)
235                         netif_napi_add(adapter->netdev, &ring->napi, igb_clean,
236                                        adapter->napi.weight /
237                                        adapter->num_rx_queues);
238         }
239         return 0;
240 }
241
242 #define IGB_N0_QUEUE -1
243 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
244                               int tx_queue, int msix_vector)
245 {
246         u32 msixbm = 0;
247         struct e1000_hw *hw = &adapter->hw;
248                 /* The 82575 assigns vectors using a bitmask, which matches the
249                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
250                    or more queues to a vector, we write the appropriate bits
251                    into the MSIXBM register for that vector. */
252                 if (rx_queue > IGB_N0_QUEUE) {
253                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
254                         adapter->rx_ring[rx_queue].eims_value = msixbm;
255                 }
256                 if (tx_queue > IGB_N0_QUEUE) {
257                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
258                         adapter->tx_ring[tx_queue].eims_value =
259                                   E1000_EICR_TX_QUEUE0 << tx_queue;
260                 }
261                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
262 }
263
264 /**
265  * igb_configure_msix - Configure MSI-X hardware
266  *
267  * igb_configure_msix sets up the hardware to properly
268  * generate MSI-X interrupts.
269  **/
270 static void igb_configure_msix(struct igb_adapter *adapter)
271 {
272         u32 tmp;
273         int i, vector = 0;
274         struct e1000_hw *hw = &adapter->hw;
275
276         adapter->eims_enable_mask = 0;
277
278         for (i = 0; i < adapter->num_tx_queues; i++) {
279                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
280                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
281                 adapter->eims_enable_mask |= tx_ring->eims_value;
282                 if (tx_ring->itr_val)
283                         writel(1000000000 / (tx_ring->itr_val * 256),
284                                hw->hw_addr + tx_ring->itr_register);
285                 else
286                         writel(1, hw->hw_addr + tx_ring->itr_register);
287         }
288
289         for (i = 0; i < adapter->num_rx_queues; i++) {
290                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
291                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
292                 adapter->eims_enable_mask |= rx_ring->eims_value;
293                 if (rx_ring->itr_val)
294                         writel(1000000000 / (rx_ring->itr_val * 256),
295                                hw->hw_addr + rx_ring->itr_register);
296                 else
297                         writel(1, hw->hw_addr + rx_ring->itr_register);
298         }
299
300
301         /* set vector for other causes, i.e. link changes */
302                 array_wr32(E1000_MSIXBM(0), vector++,
303                                       E1000_EIMS_OTHER);
304
305                 /* disable IAM for ICR interrupt bits */
306                 wr32(E1000_IAM, 0);
307
308                 tmp = rd32(E1000_CTRL_EXT);
309                 /* enable MSI-X PBA support*/
310                 tmp |= E1000_CTRL_EXT_PBA_CLR;
311
312                 /* Auto-Mask interrupts upon ICR read. */
313                 tmp |= E1000_CTRL_EXT_EIAME;
314                 tmp |= E1000_CTRL_EXT_IRCA;
315
316                 wr32(E1000_CTRL_EXT, tmp);
317                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
318
319         wrfl();
320 }
321
322 /**
323  * igb_request_msix - Initialize MSI-X interrupts
324  *
325  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
326  * kernel.
327  **/
328 static int igb_request_msix(struct igb_adapter *adapter)
329 {
330         struct net_device *netdev = adapter->netdev;
331         int i, err = 0, vector = 0;
332
333         vector = 0;
334
335         for (i = 0; i < adapter->num_tx_queues; i++) {
336                 struct igb_ring *ring = &(adapter->tx_ring[i]);
337                 sprintf(ring->name, "%s-tx%d", netdev->name, i);
338                 err = request_irq(adapter->msix_entries[vector].vector,
339                                   &igb_msix_tx, 0, ring->name,
340                                   &(adapter->tx_ring[i]));
341                 if (err)
342                         goto out;
343                 ring->itr_register = E1000_EITR(0) + (vector << 2);
344                 ring->itr_val = adapter->itr;
345                 vector++;
346         }
347         for (i = 0; i < adapter->num_rx_queues; i++) {
348                 struct igb_ring *ring = &(adapter->rx_ring[i]);
349                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
350                         sprintf(ring->name, "%s-rx%d", netdev->name, i);
351                 else
352                         memcpy(ring->name, netdev->name, IFNAMSIZ);
353                 err = request_irq(adapter->msix_entries[vector].vector,
354                                   &igb_msix_rx, 0, ring->name,
355                                   &(adapter->rx_ring[i]));
356                 if (err)
357                         goto out;
358                 ring->itr_register = E1000_EITR(0) + (vector << 2);
359                 ring->itr_val = adapter->itr;
360                 vector++;
361         }
362
363         err = request_irq(adapter->msix_entries[vector].vector,
364                           &igb_msix_other, 0, netdev->name, netdev);
365         if (err)
366                 goto out;
367
368         adapter->napi.poll = igb_clean_rx_ring_msix;
369         for (i = 0; i < adapter->num_rx_queues; i++)
370                 adapter->rx_ring[i].napi.poll = adapter->napi.poll;
371         igb_configure_msix(adapter);
372         return 0;
373 out:
374         return err;
375 }
376
377 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
378 {
379         if (adapter->msix_entries) {
380                 pci_disable_msix(adapter->pdev);
381                 kfree(adapter->msix_entries);
382                 adapter->msix_entries = NULL;
383         } else if (adapter->msi_enabled)
384                 pci_disable_msi(adapter->pdev);
385         return;
386 }
387
388
389 /**
390  * igb_set_interrupt_capability - set MSI or MSI-X if supported
391  *
392  * Attempt to configure interrupts using the best available
393  * capabilities of the hardware and kernel.
394  **/
395 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
396 {
397         int err;
398         int numvecs, i;
399
400         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
401         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
402                                         GFP_KERNEL);
403         if (!adapter->msix_entries)
404                 goto msi_only;
405
406         for (i = 0; i < numvecs; i++)
407                 adapter->msix_entries[i].entry = i;
408
409         err = pci_enable_msix(adapter->pdev,
410                               adapter->msix_entries,
411                               numvecs);
412         if (err == 0)
413                 return;
414
415         igb_reset_interrupt_capability(adapter);
416
417         /* If we can't do MSI-X, try MSI */
418 msi_only:
419         adapter->num_rx_queues = 1;
420         if (!pci_enable_msi(adapter->pdev))
421                 adapter->msi_enabled = 1;
422         return;
423 }
424
425 /**
426  * igb_request_irq - initialize interrupts
427  *
428  * Attempts to configure interrupts using the best available
429  * capabilities of the hardware and kernel.
430  **/
431 static int igb_request_irq(struct igb_adapter *adapter)
432 {
433         struct net_device *netdev = adapter->netdev;
434         struct e1000_hw *hw = &adapter->hw;
435         int err = 0;
436
437         if (adapter->msix_entries) {
438                 err = igb_request_msix(adapter);
439                 if (!err) {
440                         /* enable IAM, auto-mask,
441                          * DO NOT USE EIAM or IAM in legacy mode */
442                         wr32(E1000_IAM, IMS_ENABLE_MASK);
443                         goto request_done;
444                 }
445                 /* fall back to MSI */
446                 igb_reset_interrupt_capability(adapter);
447                 if (!pci_enable_msi(adapter->pdev))
448                         adapter->msi_enabled = 1;
449                 igb_free_all_tx_resources(adapter);
450                 igb_free_all_rx_resources(adapter);
451                 adapter->num_rx_queues = 1;
452                 igb_alloc_queues(adapter);
453         }
454         if (adapter->msi_enabled) {
455                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
456                                   netdev->name, netdev);
457                 if (!err)
458                         goto request_done;
459                 /* fall back to legacy interrupts */
460                 igb_reset_interrupt_capability(adapter);
461                 adapter->msi_enabled = 0;
462         }
463
464         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
465                           netdev->name, netdev);
466
467         if (err)
468                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
469                         err);
470
471 request_done:
472         return err;
473 }
474
475 static void igb_free_irq(struct igb_adapter *adapter)
476 {
477         struct net_device *netdev = adapter->netdev;
478
479         if (adapter->msix_entries) {
480                 int vector = 0, i;
481
482                 for (i = 0; i < adapter->num_tx_queues; i++)
483                         free_irq(adapter->msix_entries[vector++].vector,
484                                 &(adapter->tx_ring[i]));
485                 for (i = 0; i < adapter->num_rx_queues; i++)
486                         free_irq(adapter->msix_entries[vector++].vector,
487                                 &(adapter->rx_ring[i]));
488
489                 free_irq(adapter->msix_entries[vector++].vector, netdev);
490                 return;
491         }
492
493         free_irq(adapter->pdev->irq, netdev);
494 }
495
496 /**
497  * igb_irq_disable - Mask off interrupt generation on the NIC
498  * @adapter: board private structure
499  **/
500 static void igb_irq_disable(struct igb_adapter *adapter)
501 {
502         struct e1000_hw *hw = &adapter->hw;
503
504         if (adapter->msix_entries) {
505                 wr32(E1000_EIMC, ~0);
506                 wr32(E1000_EIAC, 0);
507         }
508         wr32(E1000_IMC, ~0);
509         wrfl();
510         synchronize_irq(adapter->pdev->irq);
511 }
512
513 /**
514  * igb_irq_enable - Enable default interrupt generation settings
515  * @adapter: board private structure
516  **/
517 static void igb_irq_enable(struct igb_adapter *adapter)
518 {
519         struct e1000_hw *hw = &adapter->hw;
520
521         if (adapter->msix_entries) {
522                 wr32(E1000_EIMS,
523                                 adapter->eims_enable_mask);
524                 wr32(E1000_EIAC,
525                                 adapter->eims_enable_mask);
526                 wr32(E1000_IMS, E1000_IMS_LSC);
527         } else
528         wr32(E1000_IMS, IMS_ENABLE_MASK);
529 }
530
531 static void igb_update_mng_vlan(struct igb_adapter *adapter)
532 {
533         struct net_device *netdev = adapter->netdev;
534         u16 vid = adapter->hw.mng_cookie.vlan_id;
535         u16 old_vid = adapter->mng_vlan_id;
536         if (adapter->vlgrp) {
537                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
538                         if (adapter->hw.mng_cookie.status &
539                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
540                                 igb_vlan_rx_add_vid(netdev, vid);
541                                 adapter->mng_vlan_id = vid;
542                         } else
543                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
544
545                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
546                                         (vid != old_vid) &&
547                             !vlan_group_get_device(adapter->vlgrp, old_vid))
548                                 igb_vlan_rx_kill_vid(netdev, old_vid);
549                 } else
550                         adapter->mng_vlan_id = vid;
551         }
552 }
553
554 /**
555  * igb_release_hw_control - release control of the h/w to f/w
556  * @adapter: address of board private structure
557  *
558  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
559  * For ASF and Pass Through versions of f/w this means that the
560  * driver is no longer loaded.
561  *
562  **/
563 static void igb_release_hw_control(struct igb_adapter *adapter)
564 {
565         struct e1000_hw *hw = &adapter->hw;
566         u32 ctrl_ext;
567
568         /* Let firmware take over control of h/w */
569         ctrl_ext = rd32(E1000_CTRL_EXT);
570         wr32(E1000_CTRL_EXT,
571                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
572 }
573
574
575 /**
576  * igb_get_hw_control - get control of the h/w from f/w
577  * @adapter: address of board private structure
578  *
579  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
580  * For ASF and Pass Through versions of f/w this means that
581  * the driver is loaded.
582  *
583  **/
584 static void igb_get_hw_control(struct igb_adapter *adapter)
585 {
586         struct e1000_hw *hw = &adapter->hw;
587         u32 ctrl_ext;
588
589         /* Let firmware know the driver has taken over */
590         ctrl_ext = rd32(E1000_CTRL_EXT);
591         wr32(E1000_CTRL_EXT,
592                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
593 }
594
595 static void igb_init_manageability(struct igb_adapter *adapter)
596 {
597         struct e1000_hw *hw = &adapter->hw;
598
599         if (adapter->en_mng_pt) {
600                 u32 manc2h = rd32(E1000_MANC2H);
601                 u32 manc = rd32(E1000_MANC);
602
603                 /* enable receiving management packets to the host */
604                 /* this will probably generate destination unreachable messages
605                  * from the host OS, but the packets will be handled on SMBUS */
606                 manc |= E1000_MANC_EN_MNG2HOST;
607 #define E1000_MNG2HOST_PORT_623 (1 << 5)
608 #define E1000_MNG2HOST_PORT_664 (1 << 6)
609                 manc2h |= E1000_MNG2HOST_PORT_623;
610                 manc2h |= E1000_MNG2HOST_PORT_664;
611                 wr32(E1000_MANC2H, manc2h);
612
613                 wr32(E1000_MANC, manc);
614         }
615 }
616
617 /**
618  * igb_configure - configure the hardware for RX and TX
619  * @adapter: private board structure
620  **/
621 static void igb_configure(struct igb_adapter *adapter)
622 {
623         struct net_device *netdev = adapter->netdev;
624         int i;
625
626         igb_get_hw_control(adapter);
627         igb_set_multi(netdev);
628
629         igb_restore_vlan(adapter);
630         igb_init_manageability(adapter);
631
632         igb_configure_tx(adapter);
633         igb_setup_rctl(adapter);
634         igb_configure_rx(adapter);
635         /* call IGB_DESC_UNUSED which always leaves
636          * at least 1 descriptor unused to make sure
637          * next_to_use != next_to_clean */
638         for (i = 0; i < adapter->num_rx_queues; i++) {
639                 struct igb_ring *ring = &adapter->rx_ring[i];
640                 igb_alloc_rx_buffers_adv(adapter, ring, IGB_DESC_UNUSED(ring));
641         }
642
643
644         adapter->tx_queue_len = netdev->tx_queue_len;
645 }
646
647
648 /**
649  * igb_up - Open the interface and prepare it to handle traffic
650  * @adapter: board private structure
651  **/
652
653 int igb_up(struct igb_adapter *adapter)
654 {
655         struct e1000_hw *hw = &adapter->hw;
656         int i;
657
658         /* hardware has been reset, we need to reload some things */
659         igb_configure(adapter);
660
661         clear_bit(__IGB_DOWN, &adapter->state);
662
663         napi_enable(&adapter->napi);
664
665         if (adapter->msix_entries) {
666                 for (i = 0; i < adapter->num_rx_queues; i++)
667                         napi_enable(&adapter->rx_ring[i].napi);
668                 igb_configure_msix(adapter);
669         }
670
671         /* Clear any pending interrupts. */
672         rd32(E1000_ICR);
673         igb_irq_enable(adapter);
674
675         /* Fire a link change interrupt to start the watchdog. */
676         wr32(E1000_ICS, E1000_ICS_LSC);
677         return 0;
678 }
679
680 void igb_down(struct igb_adapter *adapter)
681 {
682         struct e1000_hw *hw = &adapter->hw;
683         struct net_device *netdev = adapter->netdev;
684         u32 tctl, rctl;
685         int i;
686
687         /* signal that we're down so the interrupt handler does not
688          * reschedule our watchdog timer */
689         set_bit(__IGB_DOWN, &adapter->state);
690
691         /* disable receives in the hardware */
692         rctl = rd32(E1000_RCTL);
693         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
694         /* flush and sleep below */
695
696         netif_stop_queue(netdev);
697
698         /* disable transmits in the hardware */
699         tctl = rd32(E1000_TCTL);
700         tctl &= ~E1000_TCTL_EN;
701         wr32(E1000_TCTL, tctl);
702         /* flush both disables and wait for them to finish */
703         wrfl();
704         msleep(10);
705
706         napi_disable(&adapter->napi);
707
708         if (adapter->msix_entries)
709                 for (i = 0; i < adapter->num_rx_queues; i++)
710                         napi_disable(&adapter->rx_ring[i].napi);
711         igb_irq_disable(adapter);
712
713         del_timer_sync(&adapter->watchdog_timer);
714         del_timer_sync(&adapter->phy_info_timer);
715
716         netdev->tx_queue_len = adapter->tx_queue_len;
717         netif_carrier_off(netdev);
718         adapter->link_speed = 0;
719         adapter->link_duplex = 0;
720
721         igb_reset(adapter);
722         igb_clean_all_tx_rings(adapter);
723         igb_clean_all_rx_rings(adapter);
724 }
725
726 void igb_reinit_locked(struct igb_adapter *adapter)
727 {
728         WARN_ON(in_interrupt());
729         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
730                 msleep(1);
731         igb_down(adapter);
732         igb_up(adapter);
733         clear_bit(__IGB_RESETTING, &adapter->state);
734 }
735
736 void igb_reset(struct igb_adapter *adapter)
737 {
738         struct e1000_hw *hw = &adapter->hw;
739         struct e1000_fc_info *fc = &adapter->hw.fc;
740         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
741         u16 hwm;
742
743         /* Repartition Pba for greater than 9k mtu
744          * To take effect CTRL.RST is required.
745          */
746         pba = E1000_PBA_34K;
747
748         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
749                 /* adjust PBA for jumbo frames */
750                 wr32(E1000_PBA, pba);
751
752                 /* To maintain wire speed transmits, the Tx FIFO should be
753                  * large enough to accommodate two full transmit packets,
754                  * rounded up to the next 1KB and expressed in KB.  Likewise,
755                  * the Rx FIFO should be large enough to accommodate at least
756                  * one full receive packet and is similarly rounded up and
757                  * expressed in KB. */
758                 pba = rd32(E1000_PBA);
759                 /* upper 16 bits has Tx packet buffer allocation size in KB */
760                 tx_space = pba >> 16;
761                 /* lower 16 bits has Rx packet buffer allocation size in KB */
762                 pba &= 0xffff;
763                 /* the tx fifo also stores 16 bytes of information about the tx
764                  * but don't include ethernet FCS because hardware appends it */
765                 min_tx_space = (adapter->max_frame_size +
766                                 sizeof(struct e1000_tx_desc) -
767                                 ETH_FCS_LEN) * 2;
768                 min_tx_space = ALIGN(min_tx_space, 1024);
769                 min_tx_space >>= 10;
770                 /* software strips receive CRC, so leave room for it */
771                 min_rx_space = adapter->max_frame_size;
772                 min_rx_space = ALIGN(min_rx_space, 1024);
773                 min_rx_space >>= 10;
774
775                 /* If current Tx allocation is less than the min Tx FIFO size,
776                  * and the min Tx FIFO size is less than the current Rx FIFO
777                  * allocation, take space away from current Rx allocation */
778                 if (tx_space < min_tx_space &&
779                     ((min_tx_space - tx_space) < pba)) {
780                         pba = pba - (min_tx_space - tx_space);
781
782                         /* if short on rx space, rx wins and must trump tx
783                          * adjustment */
784                         if (pba < min_rx_space)
785                                 pba = min_rx_space;
786                 }
787         }
788         wr32(E1000_PBA, pba);
789
790         /* flow control settings */
791         /* The high water mark must be low enough to fit one full frame
792          * (or the size used for early receive) above it in the Rx FIFO.
793          * Set it to the lower of:
794          * - 90% of the Rx FIFO size, or
795          * - the full Rx FIFO size minus one full frame */
796         hwm = min(((pba << 10) * 9 / 10),
797                   ((pba << 10) - adapter->max_frame_size));
798
799         fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
800         fc->low_water = fc->high_water - 8;
801         fc->pause_time = 0xFFFF;
802         fc->send_xon = 1;
803         fc->type = fc->original_type;
804
805         /* Allow time for pending master requests to run */
806         adapter->hw.mac.ops.reset_hw(&adapter->hw);
807         wr32(E1000_WUC, 0);
808
809         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
810                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
811
812         igb_update_mng_vlan(adapter);
813
814         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
815         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
816
817         igb_reset_adaptive(&adapter->hw);
818         if (adapter->hw.phy.ops.get_phy_info)
819                 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
820 }
821
822 /**
823  * igb_probe - Device Initialization Routine
824  * @pdev: PCI device information struct
825  * @ent: entry in igb_pci_tbl
826  *
827  * Returns 0 on success, negative on failure
828  *
829  * igb_probe initializes an adapter identified by a pci_dev structure.
830  * The OS initialization, configuring of the adapter private structure,
831  * and a hardware reset occur.
832  **/
833 static int __devinit igb_probe(struct pci_dev *pdev,
834                                const struct pci_device_id *ent)
835 {
836         struct net_device *netdev;
837         struct igb_adapter *adapter;
838         struct e1000_hw *hw;
839         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
840         unsigned long mmio_start, mmio_len;
841         static int cards_found;
842         int i, err, pci_using_dac;
843         u16 eeprom_data = 0;
844         u16 eeprom_apme_mask = IGB_EEPROM_APME;
845         u32 part_num;
846
847         err = pci_enable_device(pdev);
848         if (err)
849                 return err;
850
851         pci_using_dac = 0;
852         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
853         if (!err) {
854                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
855                 if (!err)
856                         pci_using_dac = 1;
857         } else {
858                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
859                 if (err) {
860                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
861                         if (err) {
862                                 dev_err(&pdev->dev, "No usable DMA "
863                                         "configuration, aborting\n");
864                                 goto err_dma;
865                         }
866                 }
867         }
868
869         err = pci_request_regions(pdev, igb_driver_name);
870         if (err)
871                 goto err_pci_reg;
872
873         pci_set_master(pdev);
874
875         err = -ENOMEM;
876         netdev = alloc_etherdev(sizeof(struct igb_adapter));
877         if (!netdev)
878                 goto err_alloc_etherdev;
879
880         SET_NETDEV_DEV(netdev, &pdev->dev);
881
882         pci_set_drvdata(pdev, netdev);
883         adapter = netdev_priv(netdev);
884         adapter->netdev = netdev;
885         adapter->pdev = pdev;
886         hw = &adapter->hw;
887         hw->back = adapter;
888         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
889
890         mmio_start = pci_resource_start(pdev, 0);
891         mmio_len = pci_resource_len(pdev, 0);
892
893         err = -EIO;
894         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
895         if (!adapter->hw.hw_addr)
896                 goto err_ioremap;
897
898         netdev->open = &igb_open;
899         netdev->stop = &igb_close;
900         netdev->get_stats = &igb_get_stats;
901         netdev->set_multicast_list = &igb_set_multi;
902         netdev->set_mac_address = &igb_set_mac;
903         netdev->change_mtu = &igb_change_mtu;
904         netdev->do_ioctl = &igb_ioctl;
905         igb_set_ethtool_ops(netdev);
906         netdev->tx_timeout = &igb_tx_timeout;
907         netdev->watchdog_timeo = 5 * HZ;
908         netif_napi_add(netdev, &adapter->napi, igb_clean, 64);
909         netdev->vlan_rx_register = igb_vlan_rx_register;
910         netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
911         netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
912 #ifdef CONFIG_NET_POLL_CONTROLLER
913         netdev->poll_controller = igb_netpoll;
914 #endif
915         netdev->hard_start_xmit = &igb_xmit_frame_adv;
916
917         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
918
919         netdev->mem_start = mmio_start;
920         netdev->mem_end = mmio_start + mmio_len;
921
922         adapter->bd_number = cards_found;
923
924         /* PCI config space info */
925         hw->vendor_id = pdev->vendor;
926         hw->device_id = pdev->device;
927         hw->revision_id = pdev->revision;
928         hw->subsystem_vendor_id = pdev->subsystem_vendor;
929         hw->subsystem_device_id = pdev->subsystem_device;
930
931         /* setup the private structure */
932         hw->back = adapter;
933         /* Copy the default MAC, PHY and NVM function pointers */
934         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
935         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
936         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
937         /* Initialize skew-specific constants */
938         err = ei->get_invariants(hw);
939         if (err)
940                 goto err_hw_init;
941
942         err = igb_sw_init(adapter);
943         if (err)
944                 goto err_sw_init;
945
946         igb_get_bus_info_pcie(hw);
947
948         hw->phy.autoneg_wait_to_complete = false;
949         hw->mac.adaptive_ifs = true;
950
951         /* Copper options */
952         if (hw->phy.media_type == e1000_media_type_copper) {
953                 hw->phy.mdix = AUTO_ALL_MODES;
954                 hw->phy.disable_polarity_correction = false;
955                 hw->phy.ms_type = e1000_ms_hw_default;
956         }
957
958         if (igb_check_reset_block(hw))
959                 dev_info(&pdev->dev,
960                         "PHY reset is blocked due to SOL/IDER session.\n");
961
962         netdev->features = NETIF_F_SG |
963                            NETIF_F_HW_CSUM |
964                            NETIF_F_HW_VLAN_TX |
965                            NETIF_F_HW_VLAN_RX |
966                            NETIF_F_HW_VLAN_FILTER;
967
968         netdev->features |= NETIF_F_TSO;
969
970         netdev->features |= NETIF_F_TSO6;
971         if (pci_using_dac)
972                 netdev->features |= NETIF_F_HIGHDMA;
973
974         netdev->features |= NETIF_F_LLTX;
975         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
976
977         /* before reading the NVM, reset the controller to put the device in a
978          * known good starting state */
979         hw->mac.ops.reset_hw(hw);
980
981         /* make sure the NVM is good */
982         if (igb_validate_nvm_checksum(hw) < 0) {
983                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
984                 err = -EIO;
985                 goto err_eeprom;
986         }
987
988         /* copy the MAC address out of the NVM */
989         if (hw->mac.ops.read_mac_addr(hw))
990                 dev_err(&pdev->dev, "NVM Read Error\n");
991
992         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
993         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
994
995         if (!is_valid_ether_addr(netdev->perm_addr)) {
996                 dev_err(&pdev->dev, "Invalid MAC Address\n");
997                 err = -EIO;
998                 goto err_eeprom;
999         }
1000
1001         init_timer(&adapter->watchdog_timer);
1002         adapter->watchdog_timer.function = &igb_watchdog;
1003         adapter->watchdog_timer.data = (unsigned long) adapter;
1004
1005         init_timer(&adapter->phy_info_timer);
1006         adapter->phy_info_timer.function = &igb_update_phy_info;
1007         adapter->phy_info_timer.data = (unsigned long) adapter;
1008
1009         INIT_WORK(&adapter->reset_task, igb_reset_task);
1010         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1011
1012         /* Initialize link & ring properties that are user-changeable */
1013         adapter->tx_ring->count = 256;
1014         for (i = 0; i < adapter->num_tx_queues; i++)
1015                 adapter->tx_ring[i].count = adapter->tx_ring->count;
1016         adapter->rx_ring->count = 256;
1017         for (i = 0; i < adapter->num_rx_queues; i++)
1018                 adapter->rx_ring[i].count = adapter->rx_ring->count;
1019
1020         adapter->fc_autoneg = true;
1021         hw->mac.autoneg = true;
1022         hw->phy.autoneg_advertised = 0x2f;
1023
1024         hw->fc.original_type = e1000_fc_default;
1025         hw->fc.type = e1000_fc_default;
1026
1027         adapter->itr_setting = 3;
1028         adapter->itr = IGB_START_ITR;
1029
1030         igb_validate_mdi_setting(hw);
1031
1032         adapter->rx_csum = 1;
1033
1034         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1035          * enable the ACPI Magic Packet filter
1036          */
1037
1038         if (hw->bus.func == 0 ||
1039             hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1040                 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1041                                      &eeprom_data);
1042
1043         if (eeprom_data & eeprom_apme_mask)
1044                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1045
1046         /* now that we have the eeprom settings, apply the special cases where
1047          * the eeprom may be wrong or the board simply won't support wake on
1048          * lan on a particular port */
1049         switch (pdev->device) {
1050         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1051                 adapter->eeprom_wol = 0;
1052                 break;
1053         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1054                 /* Wake events only supported on port A for dual fiber
1055                  * regardless of eeprom setting */
1056                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1057                         adapter->eeprom_wol = 0;
1058                 break;
1059         }
1060
1061         /* initialize the wol settings based on the eeprom settings */
1062         adapter->wol = adapter->eeprom_wol;
1063
1064         /* reset the hardware with the new settings */
1065         igb_reset(adapter);
1066
1067         /* let the f/w know that the h/w is now under the control of the
1068          * driver. */
1069         igb_get_hw_control(adapter);
1070
1071         /* tell the stack to leave us alone until igb_open() is called */
1072         netif_carrier_off(netdev);
1073         netif_stop_queue(netdev);
1074
1075         strcpy(netdev->name, "eth%d");
1076         err = register_netdev(netdev);
1077         if (err)
1078                 goto err_register;
1079
1080         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1081         /* print bus type/speed/width info */
1082         dev_info(&pdev->dev,
1083                  "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1084                  netdev->name,
1085                  ((hw->bus.speed == e1000_bus_speed_2500)
1086                   ? "2.5Gb/s" : "unknown"),
1087                  ((hw->bus.width == e1000_bus_width_pcie_x4)
1088                   ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1089                   ? "Width x1" : "unknown"),
1090                  netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1091                  netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1092
1093         igb_read_part_num(hw, &part_num);
1094         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1095                 (part_num >> 8), (part_num & 0xff));
1096
1097         dev_info(&pdev->dev,
1098                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1099                 adapter->msix_entries ? "MSI-X" :
1100                 adapter->msi_enabled ? "MSI" : "legacy",
1101                 adapter->num_rx_queues, adapter->num_tx_queues);
1102
1103         cards_found++;
1104         return 0;
1105
1106 err_register:
1107         igb_release_hw_control(adapter);
1108 err_eeprom:
1109         if (!igb_check_reset_block(hw))
1110                 hw->phy.ops.reset_phy(hw);
1111
1112         if (hw->flash_address)
1113                 iounmap(hw->flash_address);
1114
1115         igb_remove_device(hw);
1116         kfree(adapter->tx_ring);
1117         kfree(adapter->rx_ring);
1118 err_sw_init:
1119 err_hw_init:
1120         iounmap(hw->hw_addr);
1121 err_ioremap:
1122         free_netdev(netdev);
1123 err_alloc_etherdev:
1124         pci_release_regions(pdev);
1125 err_pci_reg:
1126 err_dma:
1127         pci_disable_device(pdev);
1128         return err;
1129 }
1130
1131 /**
1132  * igb_remove - Device Removal Routine
1133  * @pdev: PCI device information struct
1134  *
1135  * igb_remove is called by the PCI subsystem to alert the driver
1136  * that it should release a PCI device.  The could be caused by a
1137  * Hot-Plug event, or because the driver is going to be removed from
1138  * memory.
1139  **/
1140 static void __devexit igb_remove(struct pci_dev *pdev)
1141 {
1142         struct net_device *netdev = pci_get_drvdata(pdev);
1143         struct igb_adapter *adapter = netdev_priv(netdev);
1144
1145         /* flush_scheduled work may reschedule our watchdog task, so
1146          * explicitly disable watchdog tasks from being rescheduled  */
1147         set_bit(__IGB_DOWN, &adapter->state);
1148         del_timer_sync(&adapter->watchdog_timer);
1149         del_timer_sync(&adapter->phy_info_timer);
1150
1151         flush_scheduled_work();
1152
1153         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1154          * would have already happened in close and is redundant. */
1155         igb_release_hw_control(adapter);
1156
1157         unregister_netdev(netdev);
1158
1159         if (!igb_check_reset_block(&adapter->hw))
1160                 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1161
1162         igb_remove_device(&adapter->hw);
1163         igb_reset_interrupt_capability(adapter);
1164
1165         kfree(adapter->tx_ring);
1166         kfree(adapter->rx_ring);
1167
1168         iounmap(adapter->hw.hw_addr);
1169         if (adapter->hw.flash_address)
1170                 iounmap(adapter->hw.flash_address);
1171         pci_release_regions(pdev);
1172
1173         free_netdev(netdev);
1174
1175         pci_disable_device(pdev);
1176 }
1177
1178 /**
1179  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1180  * @adapter: board private structure to initialize
1181  *
1182  * igb_sw_init initializes the Adapter private data structure.
1183  * Fields are initialized based on PCI device information and
1184  * OS network device settings (MTU size).
1185  **/
1186 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1187 {
1188         struct e1000_hw *hw = &adapter->hw;
1189         struct net_device *netdev = adapter->netdev;
1190         struct pci_dev *pdev = adapter->pdev;
1191
1192         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1193
1194         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1195         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1196         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1197         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1198
1199         /* Number of supported queues. */
1200         /* Having more queues than CPUs doesn't make sense. */
1201         adapter->num_tx_queues = 1;
1202         adapter->num_rx_queues = min(IGB_MAX_RX_QUEUES, num_online_cpus());
1203
1204         igb_set_interrupt_capability(adapter);
1205
1206         if (igb_alloc_queues(adapter)) {
1207                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1208                 return -ENOMEM;
1209         }
1210
1211         /* Explicitly disable IRQ since the NIC can be in any state. */
1212         igb_irq_disable(adapter);
1213
1214         set_bit(__IGB_DOWN, &adapter->state);
1215         return 0;
1216 }
1217
1218 /**
1219  * igb_open - Called when a network interface is made active
1220  * @netdev: network interface device structure
1221  *
1222  * Returns 0 on success, negative value on failure
1223  *
1224  * The open entry point is called when a network interface is made
1225  * active by the system (IFF_UP).  At this point all resources needed
1226  * for transmit and receive operations are allocated, the interrupt
1227  * handler is registered with the OS, the watchdog timer is started,
1228  * and the stack is notified that the interface is ready.
1229  **/
1230 static int igb_open(struct net_device *netdev)
1231 {
1232         struct igb_adapter *adapter = netdev_priv(netdev);
1233         struct e1000_hw *hw = &adapter->hw;
1234         int err;
1235         int i;
1236
1237         /* disallow open during test */
1238         if (test_bit(__IGB_TESTING, &adapter->state))
1239                 return -EBUSY;
1240
1241         /* allocate transmit descriptors */
1242         err = igb_setup_all_tx_resources(adapter);
1243         if (err)
1244                 goto err_setup_tx;
1245
1246         /* allocate receive descriptors */
1247         err = igb_setup_all_rx_resources(adapter);
1248         if (err)
1249                 goto err_setup_rx;
1250
1251         /* e1000_power_up_phy(adapter); */
1252
1253         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1254         if ((adapter->hw.mng_cookie.status &
1255              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1256                 igb_update_mng_vlan(adapter);
1257
1258         /* before we allocate an interrupt, we must be ready to handle it.
1259          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1260          * as soon as we call pci_request_irq, so we have to setup our
1261          * clean_rx handler before we do so.  */
1262         igb_configure(adapter);
1263
1264         err = igb_request_irq(adapter);
1265         if (err)
1266                 goto err_req_irq;
1267
1268         /* From here on the code is the same as igb_up() */
1269         clear_bit(__IGB_DOWN, &adapter->state);
1270
1271         napi_enable(&adapter->napi);
1272         if (adapter->msix_entries)
1273                 for (i = 0; i < adapter->num_rx_queues; i++)
1274                         napi_enable(&adapter->rx_ring[i].napi);
1275
1276         igb_irq_enable(adapter);
1277
1278         /* Clear any pending interrupts. */
1279         rd32(E1000_ICR);
1280         /* Fire a link status change interrupt to start the watchdog. */
1281         wr32(E1000_ICS, E1000_ICS_LSC);
1282
1283         return 0;
1284
1285 err_req_irq:
1286         igb_release_hw_control(adapter);
1287         /* e1000_power_down_phy(adapter); */
1288         igb_free_all_rx_resources(adapter);
1289 err_setup_rx:
1290         igb_free_all_tx_resources(adapter);
1291 err_setup_tx:
1292         igb_reset(adapter);
1293
1294         return err;
1295 }
1296
1297 /**
1298  * igb_close - Disables a network interface
1299  * @netdev: network interface device structure
1300  *
1301  * Returns 0, this is not allowed to fail
1302  *
1303  * The close entry point is called when an interface is de-activated
1304  * by the OS.  The hardware is still under the driver's control, but
1305  * needs to be disabled.  A global MAC reset is issued to stop the
1306  * hardware, and all transmit and receive resources are freed.
1307  **/
1308 static int igb_close(struct net_device *netdev)
1309 {
1310         struct igb_adapter *adapter = netdev_priv(netdev);
1311
1312         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1313         igb_down(adapter);
1314
1315         igb_free_irq(adapter);
1316
1317         igb_free_all_tx_resources(adapter);
1318         igb_free_all_rx_resources(adapter);
1319
1320         /* kill manageability vlan ID if supported, but not if a vlan with
1321          * the same ID is registered on the host OS (let 8021q kill it) */
1322         if ((adapter->hw.mng_cookie.status &
1323                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1324              !(adapter->vlgrp &&
1325                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1326                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1327
1328         return 0;
1329 }
1330
1331 /**
1332  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1333  * @adapter: board private structure
1334  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1335  *
1336  * Return 0 on success, negative on failure
1337  **/
1338
1339 int igb_setup_tx_resources(struct igb_adapter *adapter,
1340                            struct igb_ring *tx_ring)
1341 {
1342         struct pci_dev *pdev = adapter->pdev;
1343         int size;
1344
1345         size = sizeof(struct igb_buffer) * tx_ring->count;
1346         tx_ring->buffer_info = vmalloc(size);
1347         if (!tx_ring->buffer_info)
1348                 goto err;
1349         memset(tx_ring->buffer_info, 0, size);
1350
1351         /* round up to nearest 4K */
1352         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1353                         + sizeof(u32);
1354         tx_ring->size = ALIGN(tx_ring->size, 4096);
1355
1356         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1357                                              &tx_ring->dma);
1358
1359         if (!tx_ring->desc)
1360                 goto err;
1361
1362         tx_ring->adapter = adapter;
1363         tx_ring->next_to_use = 0;
1364         tx_ring->next_to_clean = 0;
1365         spin_lock_init(&tx_ring->tx_clean_lock);
1366         spin_lock_init(&tx_ring->tx_lock);
1367         return 0;
1368
1369 err:
1370         vfree(tx_ring->buffer_info);
1371         dev_err(&adapter->pdev->dev,
1372                 "Unable to allocate memory for the transmit descriptor ring\n");
1373         return -ENOMEM;
1374 }
1375
1376 /**
1377  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1378  *                                (Descriptors) for all queues
1379  * @adapter: board private structure
1380  *
1381  * Return 0 on success, negative on failure
1382  **/
1383 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1384 {
1385         int i, err = 0;
1386
1387         for (i = 0; i < adapter->num_tx_queues; i++) {
1388                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1389                 if (err) {
1390                         dev_err(&adapter->pdev->dev,
1391                                 "Allocation for Tx Queue %u failed\n", i);
1392                         for (i--; i >= 0; i--)
1393                                 igb_free_tx_resources(adapter,
1394                                                         &adapter->tx_ring[i]);
1395                         break;
1396                 }
1397         }
1398
1399         return err;
1400 }
1401
1402 /**
1403  * igb_configure_tx - Configure transmit Unit after Reset
1404  * @adapter: board private structure
1405  *
1406  * Configure the Tx unit of the MAC after a reset.
1407  **/
1408 static void igb_configure_tx(struct igb_adapter *adapter)
1409 {
1410         u64 tdba, tdwba;
1411         struct e1000_hw *hw = &adapter->hw;
1412         u32 tctl;
1413         u32 txdctl, txctrl;
1414         int i;
1415
1416         for (i = 0; i < adapter->num_tx_queues; i++) {
1417                 struct igb_ring *ring = &(adapter->tx_ring[i]);
1418
1419                 wr32(E1000_TDLEN(i),
1420                                 ring->count * sizeof(struct e1000_tx_desc));
1421                 tdba = ring->dma;
1422                 wr32(E1000_TDBAL(i),
1423                                 tdba & 0x00000000ffffffffULL);
1424                 wr32(E1000_TDBAH(i), tdba >> 32);
1425
1426                 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1427                 tdwba |= 1; /* enable head wb */
1428                 wr32(E1000_TDWBAL(i),
1429                                 tdwba & 0x00000000ffffffffULL);
1430                 wr32(E1000_TDWBAH(i), tdwba >> 32);
1431
1432                 ring->head = E1000_TDH(i);
1433                 ring->tail = E1000_TDT(i);
1434                 writel(0, hw->hw_addr + ring->tail);
1435                 writel(0, hw->hw_addr + ring->head);
1436                 txdctl = rd32(E1000_TXDCTL(i));
1437                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1438                 wr32(E1000_TXDCTL(i), txdctl);
1439
1440                 /* Turn off Relaxed Ordering on head write-backs.  The
1441                  * writebacks MUST be delivered in order or it will
1442                  * completely screw up our bookeeping.
1443                  */
1444                 txctrl = rd32(E1000_DCA_TXCTRL(i));
1445                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1446                 wr32(E1000_DCA_TXCTRL(i), txctrl);
1447         }
1448
1449
1450
1451         /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1452
1453         /* Program the Transmit Control Register */
1454
1455         tctl = rd32(E1000_TCTL);
1456         tctl &= ~E1000_TCTL_CT;
1457         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1458                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1459
1460         igb_config_collision_dist(hw);
1461
1462         /* Setup Transmit Descriptor Settings for eop descriptor */
1463         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1464
1465         /* Enable transmits */
1466         tctl |= E1000_TCTL_EN;
1467
1468         wr32(E1000_TCTL, tctl);
1469 }
1470
1471 /**
1472  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1473  * @adapter: board private structure
1474  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1475  *
1476  * Returns 0 on success, negative on failure
1477  **/
1478
1479 int igb_setup_rx_resources(struct igb_adapter *adapter,
1480                            struct igb_ring *rx_ring)
1481 {
1482         struct pci_dev *pdev = adapter->pdev;
1483         int size, desc_len;
1484
1485         size = sizeof(struct igb_buffer) * rx_ring->count;
1486         rx_ring->buffer_info = vmalloc(size);
1487         if (!rx_ring->buffer_info)
1488                 goto err;
1489         memset(rx_ring->buffer_info, 0, size);
1490
1491         desc_len = sizeof(union e1000_adv_rx_desc);
1492
1493         /* Round up to nearest 4K */
1494         rx_ring->size = rx_ring->count * desc_len;
1495         rx_ring->size = ALIGN(rx_ring->size, 4096);
1496
1497         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1498                                              &rx_ring->dma);
1499
1500         if (!rx_ring->desc)
1501                 goto err;
1502
1503         rx_ring->next_to_clean = 0;
1504         rx_ring->next_to_use = 0;
1505         rx_ring->pending_skb = NULL;
1506
1507         rx_ring->adapter = adapter;
1508         /* FIXME: do we want to setup ring->napi->poll here? */
1509         rx_ring->napi.poll = adapter->napi.poll;
1510
1511         return 0;
1512
1513 err:
1514         vfree(rx_ring->buffer_info);
1515         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1516                 "the receive descriptor ring\n");
1517         return -ENOMEM;
1518 }
1519
1520 /**
1521  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1522  *                                (Descriptors) for all queues
1523  * @adapter: board private structure
1524  *
1525  * Return 0 on success, negative on failure
1526  **/
1527 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1528 {
1529         int i, err = 0;
1530
1531         for (i = 0; i < adapter->num_rx_queues; i++) {
1532                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1533                 if (err) {
1534                         dev_err(&adapter->pdev->dev,
1535                                 "Allocation for Rx Queue %u failed\n", i);
1536                         for (i--; i >= 0; i--)
1537                                 igb_free_rx_resources(adapter,
1538                                                         &adapter->rx_ring[i]);
1539                         break;
1540                 }
1541         }
1542
1543         return err;
1544 }
1545
1546 /**
1547  * igb_setup_rctl - configure the receive control registers
1548  * @adapter: Board private structure
1549  **/
1550 static void igb_setup_rctl(struct igb_adapter *adapter)
1551 {
1552         struct e1000_hw *hw = &adapter->hw;
1553         u32 rctl;
1554         u32 srrctl = 0;
1555         int i;
1556
1557         rctl = rd32(E1000_RCTL);
1558
1559         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1560
1561         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1562                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1563                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1564
1565         /* disable the stripping of CRC because it breaks
1566          * BMC firmware connected over SMBUS
1567         rctl |= E1000_RCTL_SECRC;
1568         */
1569
1570         rctl &= ~E1000_RCTL_SBP;
1571
1572         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1573                 rctl &= ~E1000_RCTL_LPE;
1574         else
1575                 rctl |= E1000_RCTL_LPE;
1576         if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1577                 /* Setup buffer sizes */
1578                 rctl &= ~E1000_RCTL_SZ_4096;
1579                 rctl |= E1000_RCTL_BSEX;
1580                 switch (adapter->rx_buffer_len) {
1581                 case IGB_RXBUFFER_256:
1582                         rctl |= E1000_RCTL_SZ_256;
1583                         rctl &= ~E1000_RCTL_BSEX;
1584                         break;
1585                 case IGB_RXBUFFER_512:
1586                         rctl |= E1000_RCTL_SZ_512;
1587                         rctl &= ~E1000_RCTL_BSEX;
1588                         break;
1589                 case IGB_RXBUFFER_1024:
1590                         rctl |= E1000_RCTL_SZ_1024;
1591                         rctl &= ~E1000_RCTL_BSEX;
1592                         break;
1593                 case IGB_RXBUFFER_2048:
1594                 default:
1595                         rctl |= E1000_RCTL_SZ_2048;
1596                         rctl &= ~E1000_RCTL_BSEX;
1597                         break;
1598                 case IGB_RXBUFFER_4096:
1599                         rctl |= E1000_RCTL_SZ_4096;
1600                         break;
1601                 case IGB_RXBUFFER_8192:
1602                         rctl |= E1000_RCTL_SZ_8192;
1603                         break;
1604                 case IGB_RXBUFFER_16384:
1605                         rctl |= E1000_RCTL_SZ_16384;
1606                         break;
1607                 }
1608         } else {
1609                 rctl &= ~E1000_RCTL_BSEX;
1610                 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1611         }
1612
1613         /* 82575 and greater support packet-split where the protocol
1614          * header is placed in skb->data and the packet data is
1615          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1616          * In the case of a non-split, skb->data is linearly filled,
1617          * followed by the page buffers.  Therefore, skb->data is
1618          * sized to hold the largest protocol header.
1619          */
1620         /* allocations using alloc_page take too long for regular MTU
1621          * so only enable packet split for jumbo frames */
1622         if (rctl & E1000_RCTL_LPE) {
1623                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1624                 srrctl = adapter->rx_ps_hdr_size <<
1625                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1626                 /* buffer size is ALWAYS one page */
1627                 srrctl |= PAGE_SIZE >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1628                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1629         } else {
1630                 adapter->rx_ps_hdr_size = 0;
1631                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1632         }
1633
1634         for (i = 0; i < adapter->num_rx_queues; i++)
1635                 wr32(E1000_SRRCTL(i), srrctl);
1636
1637         wr32(E1000_RCTL, rctl);
1638 }
1639
1640 /**
1641  * igb_configure_rx - Configure receive Unit after Reset
1642  * @adapter: board private structure
1643  *
1644  * Configure the Rx unit of the MAC after a reset.
1645  **/
1646 static void igb_configure_rx(struct igb_adapter *adapter)
1647 {
1648         u64 rdba;
1649         struct e1000_hw *hw = &adapter->hw;
1650         u32 rctl, rxcsum;
1651         u32 rxdctl;
1652         int i;
1653
1654         /* disable receives while setting up the descriptors */
1655         rctl = rd32(E1000_RCTL);
1656         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1657         wrfl();
1658         mdelay(10);
1659
1660         if (adapter->itr_setting > 3)
1661                 wr32(E1000_ITR,
1662                                 1000000000 / (adapter->itr * 256));
1663
1664         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1665          * the Base and Length of the Rx Descriptor Ring */
1666         for (i = 0; i < adapter->num_rx_queues; i++) {
1667                 struct igb_ring *ring = &(adapter->rx_ring[i]);
1668                 rdba = ring->dma;
1669                 wr32(E1000_RDBAL(i),
1670                                 rdba & 0x00000000ffffffffULL);
1671                 wr32(E1000_RDBAH(i), rdba >> 32);
1672                 wr32(E1000_RDLEN(i),
1673                                ring->count * sizeof(union e1000_adv_rx_desc));
1674
1675                 ring->head = E1000_RDH(i);
1676                 ring->tail = E1000_RDT(i);
1677                 writel(0, hw->hw_addr + ring->tail);
1678                 writel(0, hw->hw_addr + ring->head);
1679
1680                 rxdctl = rd32(E1000_RXDCTL(i));
1681                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1682                 rxdctl &= 0xFFF00000;
1683                 rxdctl |= IGB_RX_PTHRESH;
1684                 rxdctl |= IGB_RX_HTHRESH << 8;
1685                 rxdctl |= IGB_RX_WTHRESH << 16;
1686                 wr32(E1000_RXDCTL(i), rxdctl);
1687         }
1688
1689         if (adapter->num_rx_queues > 1) {
1690                 u32 random[10];
1691                 u32 mrqc;
1692                 u32 j, shift;
1693                 union e1000_reta {
1694                         u32 dword;
1695                         u8  bytes[4];
1696                 } reta;
1697
1698                 get_random_bytes(&random[0], 40);
1699
1700                 shift = 6;
1701                 for (j = 0; j < (32 * 4); j++) {
1702                         reta.bytes[j & 3] =
1703                                 (j % adapter->num_rx_queues) << shift;
1704                         if ((j & 3) == 3)
1705                                 writel(reta.dword,
1706                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
1707                 }
1708                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1709
1710                 /* Fill out hash function seeds */
1711                 for (j = 0; j < 10; j++)
1712                         array_wr32(E1000_RSSRK(0), j, random[j]);
1713
1714                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1715                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1716                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1717                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
1718                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1719                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
1720                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1721                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1722
1723
1724                 wr32(E1000_MRQC, mrqc);
1725
1726                 /* Multiqueue and raw packet checksumming are mutually
1727                  * exclusive.  Note that this not the same as TCP/IP
1728                  * checksumming, which works fine. */
1729                 rxcsum = rd32(E1000_RXCSUM);
1730                 rxcsum |= E1000_RXCSUM_PCSD;
1731                 wr32(E1000_RXCSUM, rxcsum);
1732         } else {
1733                 /* Enable Receive Checksum Offload for TCP and UDP */
1734                 rxcsum = rd32(E1000_RXCSUM);
1735                 if (adapter->rx_csum) {
1736                         rxcsum |= E1000_RXCSUM_TUOFL;
1737
1738                         /* Enable IPv4 payload checksum for UDP fragments
1739                          * Must be used in conjunction with packet-split. */
1740                         if (adapter->rx_ps_hdr_size)
1741                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1742                 } else {
1743                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1744                         /* don't need to clear IPPCSE as it defaults to 0 */
1745                 }
1746                 wr32(E1000_RXCSUM, rxcsum);
1747         }
1748
1749         if (adapter->vlgrp)
1750                 wr32(E1000_RLPML,
1751                                 adapter->max_frame_size + VLAN_TAG_SIZE);
1752         else
1753                 wr32(E1000_RLPML, adapter->max_frame_size);
1754
1755         /* Enable Receives */
1756         wr32(E1000_RCTL, rctl);
1757 }
1758
1759 /**
1760  * igb_free_tx_resources - Free Tx Resources per Queue
1761  * @adapter: board private structure
1762  * @tx_ring: Tx descriptor ring for a specific queue
1763  *
1764  * Free all transmit software resources
1765  **/
1766 static void igb_free_tx_resources(struct igb_adapter *adapter,
1767                                   struct igb_ring *tx_ring)
1768 {
1769         struct pci_dev *pdev = adapter->pdev;
1770
1771         igb_clean_tx_ring(adapter, tx_ring);
1772
1773         vfree(tx_ring->buffer_info);
1774         tx_ring->buffer_info = NULL;
1775
1776         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1777
1778         tx_ring->desc = NULL;
1779 }
1780
1781 /**
1782  * igb_free_all_tx_resources - Free Tx Resources for All Queues
1783  * @adapter: board private structure
1784  *
1785  * Free all transmit software resources
1786  **/
1787 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1788 {
1789         int i;
1790
1791         for (i = 0; i < adapter->num_tx_queues; i++)
1792                 igb_free_tx_resources(adapter, &adapter->tx_ring[i]);
1793 }
1794
1795 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
1796                                            struct igb_buffer *buffer_info)
1797 {
1798         if (buffer_info->dma) {
1799                 pci_unmap_page(adapter->pdev,
1800                                 buffer_info->dma,
1801                                 buffer_info->length,
1802                                 PCI_DMA_TODEVICE);
1803                 buffer_info->dma = 0;
1804         }
1805         if (buffer_info->skb) {
1806                 dev_kfree_skb_any(buffer_info->skb);
1807                 buffer_info->skb = NULL;
1808         }
1809         buffer_info->time_stamp = 0;
1810         /* buffer_info must be completely set up in the transmit path */
1811 }
1812
1813 /**
1814  * igb_clean_tx_ring - Free Tx Buffers
1815  * @adapter: board private structure
1816  * @tx_ring: ring to be cleaned
1817  **/
1818 static void igb_clean_tx_ring(struct igb_adapter *adapter,
1819                               struct igb_ring *tx_ring)
1820 {
1821         struct igb_buffer *buffer_info;
1822         unsigned long size;
1823         unsigned int i;
1824
1825         if (!tx_ring->buffer_info)
1826                 return;
1827         /* Free all the Tx ring sk_buffs */
1828
1829         for (i = 0; i < tx_ring->count; i++) {
1830                 buffer_info = &tx_ring->buffer_info[i];
1831                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
1832         }
1833
1834         size = sizeof(struct igb_buffer) * tx_ring->count;
1835         memset(tx_ring->buffer_info, 0, size);
1836
1837         /* Zero out the descriptor ring */
1838
1839         memset(tx_ring->desc, 0, tx_ring->size);
1840
1841         tx_ring->next_to_use = 0;
1842         tx_ring->next_to_clean = 0;
1843
1844         writel(0, adapter->hw.hw_addr + tx_ring->head);
1845         writel(0, adapter->hw.hw_addr + tx_ring->tail);
1846 }
1847
1848 /**
1849  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
1850  * @adapter: board private structure
1851  **/
1852 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
1853 {
1854         int i;
1855
1856         for (i = 0; i < adapter->num_tx_queues; i++)
1857                 igb_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1858 }
1859
1860 /**
1861  * igb_free_rx_resources - Free Rx Resources
1862  * @adapter: board private structure
1863  * @rx_ring: ring to clean the resources from
1864  *
1865  * Free all receive software resources
1866  **/
1867 static void igb_free_rx_resources(struct igb_adapter *adapter,
1868                                   struct igb_ring *rx_ring)
1869 {
1870         struct pci_dev *pdev = adapter->pdev;
1871
1872         igb_clean_rx_ring(adapter, rx_ring);
1873
1874         vfree(rx_ring->buffer_info);
1875         rx_ring->buffer_info = NULL;
1876
1877         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1878
1879         rx_ring->desc = NULL;
1880 }
1881
1882 /**
1883  * igb_free_all_rx_resources - Free Rx Resources for All Queues
1884  * @adapter: board private structure
1885  *
1886  * Free all receive software resources
1887  **/
1888 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
1889 {
1890         int i;
1891
1892         for (i = 0; i < adapter->num_rx_queues; i++)
1893                 igb_free_rx_resources(adapter, &adapter->rx_ring[i]);
1894 }
1895
1896 /**
1897  * igb_clean_rx_ring - Free Rx Buffers per Queue
1898  * @adapter: board private structure
1899  * @rx_ring: ring to free buffers from
1900  **/
1901 static void igb_clean_rx_ring(struct igb_adapter *adapter,
1902                               struct igb_ring *rx_ring)
1903 {
1904         struct igb_buffer *buffer_info;
1905         struct pci_dev *pdev = adapter->pdev;
1906         unsigned long size;
1907         unsigned int i;
1908
1909         if (!rx_ring->buffer_info)
1910                 return;
1911         /* Free all the Rx ring sk_buffs */
1912         for (i = 0; i < rx_ring->count; i++) {
1913                 buffer_info = &rx_ring->buffer_info[i];
1914                 if (buffer_info->dma) {
1915                         if (adapter->rx_ps_hdr_size)
1916                                 pci_unmap_single(pdev, buffer_info->dma,
1917                                                  adapter->rx_ps_hdr_size,
1918                                                  PCI_DMA_FROMDEVICE);
1919                         else
1920                                 pci_unmap_single(pdev, buffer_info->dma,
1921                                                  adapter->rx_buffer_len,
1922                                                  PCI_DMA_FROMDEVICE);
1923                         buffer_info->dma = 0;
1924                 }
1925
1926                 if (buffer_info->skb) {
1927                         dev_kfree_skb(buffer_info->skb);
1928                         buffer_info->skb = NULL;
1929                 }
1930                 if (buffer_info->page) {
1931                         pci_unmap_page(pdev, buffer_info->page_dma,
1932                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
1933                         put_page(buffer_info->page);
1934                         buffer_info->page = NULL;
1935                         buffer_info->page_dma = 0;
1936                 }
1937         }
1938
1939         /* there also may be some cached data from a chained receive */
1940         if (rx_ring->pending_skb) {
1941                 dev_kfree_skb(rx_ring->pending_skb);
1942                 rx_ring->pending_skb = NULL;
1943         }
1944
1945         size = sizeof(struct igb_buffer) * rx_ring->count;
1946         memset(rx_ring->buffer_info, 0, size);
1947
1948         /* Zero out the descriptor ring */
1949         memset(rx_ring->desc, 0, rx_ring->size);
1950
1951         rx_ring->next_to_clean = 0;
1952         rx_ring->next_to_use = 0;
1953
1954         writel(0, adapter->hw.hw_addr + rx_ring->head);
1955         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1956 }
1957
1958 /**
1959  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
1960  * @adapter: board private structure
1961  **/
1962 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
1963 {
1964         int i;
1965
1966         for (i = 0; i < adapter->num_rx_queues; i++)
1967                 igb_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1968 }
1969
1970 /**
1971  * igb_set_mac - Change the Ethernet Address of the NIC
1972  * @netdev: network interface device structure
1973  * @p: pointer to an address structure
1974  *
1975  * Returns 0 on success, negative on failure
1976  **/
1977 static int igb_set_mac(struct net_device *netdev, void *p)
1978 {
1979         struct igb_adapter *adapter = netdev_priv(netdev);
1980         struct sockaddr *addr = p;
1981
1982         if (!is_valid_ether_addr(addr->sa_data))
1983                 return -EADDRNOTAVAIL;
1984
1985         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1986         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
1987
1988         adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1989
1990         return 0;
1991 }
1992
1993 /**
1994  * igb_set_multi - Multicast and Promiscuous mode set
1995  * @netdev: network interface device structure
1996  *
1997  * The set_multi entry point is called whenever the multicast address
1998  * list or the network interface flags are updated.  This routine is
1999  * responsible for configuring the hardware for proper multicast,
2000  * promiscuous mode, and all-multi behavior.
2001  **/
2002 static void igb_set_multi(struct net_device *netdev)
2003 {
2004         struct igb_adapter *adapter = netdev_priv(netdev);
2005         struct e1000_hw *hw = &adapter->hw;
2006         struct e1000_mac_info *mac = &hw->mac;
2007         struct dev_mc_list *mc_ptr;
2008         u8  *mta_list;
2009         u32 rctl;
2010         int i;
2011
2012         /* Check for Promiscuous and All Multicast modes */
2013
2014         rctl = rd32(E1000_RCTL);
2015
2016         if (netdev->flags & IFF_PROMISC)
2017                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2018         else if (netdev->flags & IFF_ALLMULTI) {
2019                 rctl |= E1000_RCTL_MPE;
2020                 rctl &= ~E1000_RCTL_UPE;
2021         } else
2022                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2023
2024         wr32(E1000_RCTL, rctl);
2025
2026         if (!netdev->mc_count) {
2027                 /* nothing to program, so clear mc list */
2028                 igb_update_mc_addr_list(hw, NULL, 0, 1,
2029                                           mac->rar_entry_count);
2030                 return;
2031         }
2032
2033         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2034         if (!mta_list)
2035                 return;
2036
2037         /* The shared function expects a packed array of only addresses. */
2038         mc_ptr = netdev->mc_list;
2039
2040         for (i = 0; i < netdev->mc_count; i++) {
2041                 if (!mc_ptr)
2042                         break;
2043                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2044                 mc_ptr = mc_ptr->next;
2045         }
2046         igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2047         kfree(mta_list);
2048 }
2049
2050 /* Need to wait a few seconds after link up to get diagnostic information from
2051  * the phy */
2052 static void igb_update_phy_info(unsigned long data)
2053 {
2054         struct igb_adapter *adapter = (struct igb_adapter *) data;
2055         if (adapter->hw.phy.ops.get_phy_info)
2056                 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
2057 }
2058
2059 /**
2060  * igb_watchdog - Timer Call-back
2061  * @data: pointer to adapter cast into an unsigned long
2062  **/
2063 static void igb_watchdog(unsigned long data)
2064 {
2065         struct igb_adapter *adapter = (struct igb_adapter *)data;
2066         /* Do the rest outside of interrupt context */
2067         schedule_work(&adapter->watchdog_task);
2068 }
2069
2070 static void igb_watchdog_task(struct work_struct *work)
2071 {
2072         struct igb_adapter *adapter = container_of(work,
2073                                         struct igb_adapter, watchdog_task);
2074         struct e1000_hw *hw = &adapter->hw;
2075
2076         struct net_device *netdev = adapter->netdev;
2077         struct igb_ring *tx_ring = adapter->tx_ring;
2078         struct e1000_mac_info *mac = &adapter->hw.mac;
2079         u32 link;
2080         s32 ret_val;
2081
2082         if ((netif_carrier_ok(netdev)) &&
2083             (rd32(E1000_STATUS) & E1000_STATUS_LU))
2084                 goto link_up;
2085
2086         ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2087         if ((ret_val == E1000_ERR_PHY) &&
2088             (hw->phy.type == e1000_phy_igp_3) &&
2089             (rd32(E1000_CTRL) &
2090              E1000_PHY_CTRL_GBE_DISABLE))
2091                 dev_info(&adapter->pdev->dev,
2092                          "Gigabit has been disabled, downgrading speed\n");
2093
2094         if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2095             !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2096                 link = mac->serdes_has_link;
2097         else
2098                 link = rd32(E1000_STATUS) &
2099                                       E1000_STATUS_LU;
2100
2101         if (link) {
2102                 if (!netif_carrier_ok(netdev)) {
2103                         u32 ctrl;
2104                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2105                                                    &adapter->link_speed,
2106                                                    &adapter->link_duplex);
2107
2108                         ctrl = rd32(E1000_CTRL);
2109                         dev_info(&adapter->pdev->dev,
2110                                  "NIC Link is Up %d Mbps %s, "
2111                                  "Flow Control: %s\n",
2112                                  adapter->link_speed,
2113                                  adapter->link_duplex == FULL_DUPLEX ?
2114                                  "Full Duplex" : "Half Duplex",
2115                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2116                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2117                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2118                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2119
2120                         /* tweak tx_queue_len according to speed/duplex and
2121                          * adjust the timeout factor */
2122                         netdev->tx_queue_len = adapter->tx_queue_len;
2123                         adapter->tx_timeout_factor = 1;
2124                         switch (adapter->link_speed) {
2125                         case SPEED_10:
2126                                 netdev->tx_queue_len = 10;
2127                                 adapter->tx_timeout_factor = 14;
2128                                 break;
2129                         case SPEED_100:
2130                                 netdev->tx_queue_len = 100;
2131                                 /* maybe add some timeout factor ? */
2132                                 break;
2133                         }
2134
2135                         netif_carrier_on(netdev);
2136                         netif_wake_queue(netdev);
2137
2138                         if (!test_bit(__IGB_DOWN, &adapter->state))
2139                                 mod_timer(&adapter->phy_info_timer,
2140                                           round_jiffies(jiffies + 2 * HZ));
2141                 }
2142         } else {
2143                 if (netif_carrier_ok(netdev)) {
2144                         adapter->link_speed = 0;
2145                         adapter->link_duplex = 0;
2146                         dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2147                         netif_carrier_off(netdev);
2148                         netif_stop_queue(netdev);
2149                         if (!test_bit(__IGB_DOWN, &adapter->state))
2150                                 mod_timer(&adapter->phy_info_timer,
2151                                           round_jiffies(jiffies + 2 * HZ));
2152                 }
2153         }
2154
2155 link_up:
2156         igb_update_stats(adapter);
2157
2158         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2159         adapter->tpt_old = adapter->stats.tpt;
2160         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2161         adapter->colc_old = adapter->stats.colc;
2162
2163         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2164         adapter->gorc_old = adapter->stats.gorc;
2165         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2166         adapter->gotc_old = adapter->stats.gotc;
2167
2168         igb_update_adaptive(&adapter->hw);
2169
2170         if (!netif_carrier_ok(netdev)) {
2171                 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2172                         /* We've lost link, so the controller stops DMA,
2173                          * but we've got queued Tx work that's never going
2174                          * to get done, so reset controller to flush Tx.
2175                          * (Do the reset outside of interrupt context). */
2176                         adapter->tx_timeout_count++;
2177                         schedule_work(&adapter->reset_task);
2178                 }
2179         }
2180
2181         /* Cause software interrupt to ensure rx ring is cleaned */
2182         wr32(E1000_ICS, E1000_ICS_RXDMT0);
2183
2184         /* Force detection of hung controller every watchdog period */
2185         tx_ring->detect_tx_hung = true;
2186
2187         /* Reset the timer */
2188         if (!test_bit(__IGB_DOWN, &adapter->state))
2189                 mod_timer(&adapter->watchdog_timer,
2190                           round_jiffies(jiffies + 2 * HZ));
2191 }
2192
2193 enum latency_range {
2194         lowest_latency = 0,
2195         low_latency = 1,
2196         bulk_latency = 2,
2197         latency_invalid = 255
2198 };
2199
2200
2201 static void igb_lower_rx_eitr(struct igb_adapter *adapter,
2202                               struct igb_ring *rx_ring)
2203 {
2204         struct e1000_hw *hw = &adapter->hw;
2205         int new_val;
2206
2207         new_val = rx_ring->itr_val / 2;
2208         if (new_val < IGB_MIN_DYN_ITR)
2209                 new_val = IGB_MIN_DYN_ITR;
2210
2211         if (new_val != rx_ring->itr_val) {
2212                 rx_ring->itr_val = new_val;
2213                 wr32(rx_ring->itr_register,
2214                                 1000000000 / (new_val * 256));
2215         }
2216 }
2217
2218 static void igb_raise_rx_eitr(struct igb_adapter *adapter,
2219                               struct igb_ring *rx_ring)
2220 {
2221         struct e1000_hw *hw = &adapter->hw;
2222         int new_val;
2223
2224         new_val = rx_ring->itr_val * 2;
2225         if (new_val > IGB_MAX_DYN_ITR)
2226                 new_val = IGB_MAX_DYN_ITR;
2227
2228         if (new_val != rx_ring->itr_val) {
2229                 rx_ring->itr_val = new_val;
2230                 wr32(rx_ring->itr_register,
2231                                 1000000000 / (new_val * 256));
2232         }
2233 }
2234
2235 /**
2236  * igb_update_itr - update the dynamic ITR value based on statistics
2237  *      Stores a new ITR value based on packets and byte
2238  *      counts during the last interrupt.  The advantage of per interrupt
2239  *      computation is faster updates and more accurate ITR for the current
2240  *      traffic pattern.  Constants in this function were computed
2241  *      based on theoretical maximum wire speed and thresholds were set based
2242  *      on testing data as well as attempting to minimize response time
2243  *      while increasing bulk throughput.
2244  *      this functionality is controlled by the InterruptThrottleRate module
2245  *      parameter (see igb_param.c)
2246  *      NOTE:  These calculations are only valid when operating in a single-
2247  *             queue environment.
2248  * @adapter: pointer to adapter
2249  * @itr_setting: current adapter->itr
2250  * @packets: the number of packets during this measurement interval
2251  * @bytes: the number of bytes during this measurement interval
2252  **/
2253 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2254                                    int packets, int bytes)
2255 {
2256         unsigned int retval = itr_setting;
2257
2258         if (packets == 0)
2259                 goto update_itr_done;
2260
2261         switch (itr_setting) {
2262         case lowest_latency:
2263                 /* handle TSO and jumbo frames */
2264                 if (bytes/packets > 8000)
2265                         retval = bulk_latency;
2266                 else if ((packets < 5) && (bytes > 512))
2267                         retval = low_latency;
2268                 break;
2269         case low_latency:  /* 50 usec aka 20000 ints/s */
2270                 if (bytes > 10000) {
2271                         /* this if handles the TSO accounting */
2272                         if (bytes/packets > 8000) {
2273                                 retval = bulk_latency;
2274                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2275                                 retval = bulk_latency;
2276                         } else if ((packets > 35)) {
2277                                 retval = lowest_latency;
2278                         }
2279                 } else if (bytes/packets > 2000) {
2280                         retval = bulk_latency;
2281                 } else if (packets <= 2 && bytes < 512) {
2282                         retval = lowest_latency;
2283                 }
2284                 break;
2285         case bulk_latency: /* 250 usec aka 4000 ints/s */
2286                 if (bytes > 25000) {
2287                         if (packets > 35)
2288                                 retval = low_latency;
2289                 } else if (bytes < 6000) {
2290                         retval = low_latency;
2291                 }
2292                 break;
2293         }
2294
2295 update_itr_done:
2296         return retval;
2297 }
2298
2299 static void igb_set_itr(struct igb_adapter *adapter, u16 itr_register,
2300                         int rx_only)
2301 {
2302         u16 current_itr;
2303         u32 new_itr = adapter->itr;
2304
2305         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2306         if (adapter->link_speed != SPEED_1000) {
2307                 current_itr = 0;
2308                 new_itr = 4000;
2309                 goto set_itr_now;
2310         }
2311
2312         adapter->rx_itr = igb_update_itr(adapter,
2313                                     adapter->rx_itr,
2314                                     adapter->rx_ring->total_packets,
2315                                     adapter->rx_ring->total_bytes);
2316         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2317         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2318                 adapter->rx_itr = low_latency;
2319
2320         if (!rx_only) {
2321                 adapter->tx_itr = igb_update_itr(adapter,
2322                                             adapter->tx_itr,
2323                                             adapter->tx_ring->total_packets,
2324                                             adapter->tx_ring->total_bytes);
2325                 /* conservative mode (itr 3) eliminates the
2326                  * lowest_latency setting */
2327                 if (adapter->itr_setting == 3 &&
2328                     adapter->tx_itr == lowest_latency)
2329                         adapter->tx_itr = low_latency;
2330
2331                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2332         } else {
2333                 current_itr = adapter->rx_itr;
2334         }
2335
2336         switch (current_itr) {
2337         /* counts and packets in update_itr are dependent on these numbers */
2338         case lowest_latency:
2339                 new_itr = 70000;
2340                 break;
2341         case low_latency:
2342                 new_itr = 20000; /* aka hwitr = ~200 */
2343                 break;
2344         case bulk_latency:
2345                 new_itr = 4000;
2346                 break;
2347         default:
2348                 break;
2349         }
2350
2351 set_itr_now:
2352         if (new_itr != adapter->itr) {
2353                 /* this attempts to bias the interrupt rate towards Bulk
2354                  * by adding intermediate steps when interrupt rate is
2355                  * increasing */
2356                 new_itr = new_itr > adapter->itr ?
2357                              min(adapter->itr + (new_itr >> 2), new_itr) :
2358                              new_itr;
2359                 /* Don't write the value here; it resets the adapter's
2360                  * internal timer, and causes us to delay far longer than
2361                  * we should between interrupts.  Instead, we write the ITR
2362                  * value at the beginning of the next interrupt so the timing
2363                  * ends up being correct.
2364                  */
2365                 adapter->itr = new_itr;
2366                 adapter->set_itr = 1;
2367         }
2368
2369         return;
2370 }
2371
2372
2373 #define IGB_TX_FLAGS_CSUM               0x00000001
2374 #define IGB_TX_FLAGS_VLAN               0x00000002
2375 #define IGB_TX_FLAGS_TSO                0x00000004
2376 #define IGB_TX_FLAGS_IPV4               0x00000008
2377 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2378 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2379
2380 static inline int igb_tso_adv(struct igb_adapter *adapter,
2381                               struct igb_ring *tx_ring,
2382                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2383 {
2384         struct e1000_adv_tx_context_desc *context_desc;
2385         unsigned int i;
2386         int err;
2387         struct igb_buffer *buffer_info;
2388         u32 info = 0, tu_cmd = 0;
2389         u32 mss_l4len_idx, l4len;
2390         *hdr_len = 0;
2391
2392         if (skb_header_cloned(skb)) {
2393                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2394                 if (err)
2395                         return err;
2396         }
2397
2398         l4len = tcp_hdrlen(skb);
2399         *hdr_len += l4len;
2400
2401         if (skb->protocol == htons(ETH_P_IP)) {
2402                 struct iphdr *iph = ip_hdr(skb);
2403                 iph->tot_len = 0;
2404                 iph->check = 0;
2405                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2406                                                          iph->daddr, 0,
2407                                                          IPPROTO_TCP,
2408                                                          0);
2409         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2410                 ipv6_hdr(skb)->payload_len = 0;
2411                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2412                                                        &ipv6_hdr(skb)->daddr,
2413                                                        0, IPPROTO_TCP, 0);
2414         }
2415
2416         i = tx_ring->next_to_use;
2417
2418         buffer_info = &tx_ring->buffer_info[i];
2419         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2420         /* VLAN MACLEN IPLEN */
2421         if (tx_flags & IGB_TX_FLAGS_VLAN)
2422                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2423         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2424         *hdr_len += skb_network_offset(skb);
2425         info |= skb_network_header_len(skb);
2426         *hdr_len += skb_network_header_len(skb);
2427         context_desc->vlan_macip_lens = cpu_to_le32(info);
2428
2429         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2430         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2431
2432         if (skb->protocol == htons(ETH_P_IP))
2433                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2434         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2435
2436         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2437
2438         /* MSS L4LEN IDX */
2439         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2440         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2441
2442         /* Context index must be unique per ring.  Luckily, so is the interrupt
2443          * mask value. */
2444         mss_l4len_idx |= tx_ring->eims_value >> 4;
2445
2446         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2447         context_desc->seqnum_seed = 0;
2448
2449         buffer_info->time_stamp = jiffies;
2450         buffer_info->dma = 0;
2451         i++;
2452         if (i == tx_ring->count)
2453                 i = 0;
2454
2455         tx_ring->next_to_use = i;
2456
2457         return true;
2458 }
2459
2460 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2461                                         struct igb_ring *tx_ring,
2462                                         struct sk_buff *skb, u32 tx_flags)
2463 {
2464         struct e1000_adv_tx_context_desc *context_desc;
2465         unsigned int i;
2466         struct igb_buffer *buffer_info;
2467         u32 info = 0, tu_cmd = 0;
2468
2469         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2470             (tx_flags & IGB_TX_FLAGS_VLAN)) {
2471                 i = tx_ring->next_to_use;
2472                 buffer_info = &tx_ring->buffer_info[i];
2473                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2474
2475                 if (tx_flags & IGB_TX_FLAGS_VLAN)
2476                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2477                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2478                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2479                         info |= skb_network_header_len(skb);
2480
2481                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2482
2483                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2484
2485                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2486                         switch (skb->protocol) {
2487                         case __constant_htons(ETH_P_IP):
2488                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2489                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2490                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2491                                 break;
2492                         case __constant_htons(ETH_P_IPV6):
2493                                 /* XXX what about other V6 headers?? */
2494                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2495                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2496                                 break;
2497                         default:
2498                                 if (unlikely(net_ratelimit()))
2499                                         dev_warn(&adapter->pdev->dev,
2500                                             "partial checksum but proto=%x!\n",
2501                                             skb->protocol);
2502                                 break;
2503                         }
2504                 }
2505
2506                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2507                 context_desc->seqnum_seed = 0;
2508                 context_desc->mss_l4len_idx =
2509                                           cpu_to_le32(tx_ring->eims_value >> 4);
2510
2511                 buffer_info->time_stamp = jiffies;
2512                 buffer_info->dma = 0;
2513
2514                 i++;
2515                 if (i == tx_ring->count)
2516                         i = 0;
2517                 tx_ring->next_to_use = i;
2518
2519                 return true;
2520         }
2521
2522
2523         return false;
2524 }
2525
2526 #define IGB_MAX_TXD_PWR 16
2527 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
2528
2529 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2530                                  struct igb_ring *tx_ring,
2531                                  struct sk_buff *skb)
2532 {
2533         struct igb_buffer *buffer_info;
2534         unsigned int len = skb_headlen(skb);
2535         unsigned int count = 0, i;
2536         unsigned int f;
2537
2538         i = tx_ring->next_to_use;
2539
2540         buffer_info = &tx_ring->buffer_info[i];
2541         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2542         buffer_info->length = len;
2543         /* set time_stamp *before* dma to help avoid a possible race */
2544         buffer_info->time_stamp = jiffies;
2545         buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2546                                           PCI_DMA_TODEVICE);
2547         count++;
2548         i++;
2549         if (i == tx_ring->count)
2550                 i = 0;
2551
2552         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2553                 struct skb_frag_struct *frag;
2554
2555                 frag = &skb_shinfo(skb)->frags[f];
2556                 len = frag->size;
2557
2558                 buffer_info = &tx_ring->buffer_info[i];
2559                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2560                 buffer_info->length = len;
2561                 buffer_info->time_stamp = jiffies;
2562                 buffer_info->dma = pci_map_page(adapter->pdev,
2563                                                 frag->page,
2564                                                 frag->page_offset,
2565                                                 len,
2566                                                 PCI_DMA_TODEVICE);
2567
2568                 count++;
2569                 i++;
2570                 if (i == tx_ring->count)
2571                         i = 0;
2572         }
2573
2574         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2575         tx_ring->buffer_info[i].skb = skb;
2576
2577         return count;
2578 }
2579
2580 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2581                                     struct igb_ring *tx_ring,
2582                                     int tx_flags, int count, u32 paylen,
2583                                     u8 hdr_len)
2584 {
2585         union e1000_adv_tx_desc *tx_desc = NULL;
2586         struct igb_buffer *buffer_info;
2587         u32 olinfo_status = 0, cmd_type_len;
2588         unsigned int i;
2589
2590         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2591                         E1000_ADVTXD_DCMD_DEXT);
2592
2593         if (tx_flags & IGB_TX_FLAGS_VLAN)
2594                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2595
2596         if (tx_flags & IGB_TX_FLAGS_TSO) {
2597                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2598
2599                 /* insert tcp checksum */
2600                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2601
2602                 /* insert ip checksum */
2603                 if (tx_flags & IGB_TX_FLAGS_IPV4)
2604                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2605
2606         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2607                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2608         }
2609
2610         if (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2611                         IGB_TX_FLAGS_VLAN))
2612                 olinfo_status |= tx_ring->eims_value >> 4;
2613
2614         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2615
2616         i = tx_ring->next_to_use;
2617         while (count--) {
2618                 buffer_info = &tx_ring->buffer_info[i];
2619                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2620                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2621                 tx_desc->read.cmd_type_len =
2622                         cpu_to_le32(cmd_type_len | buffer_info->length);
2623                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2624                 i++;
2625                 if (i == tx_ring->count)
2626                         i = 0;
2627         }
2628
2629         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2630         /* Force memory writes to complete before letting h/w
2631          * know there are new descriptors to fetch.  (Only
2632          * applicable for weak-ordered memory model archs,
2633          * such as IA-64). */
2634         wmb();
2635
2636         tx_ring->next_to_use = i;
2637         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2638         /* we need this if more than one processor can write to our tail
2639          * at a time, it syncronizes IO on IA64/Altix systems */
2640         mmiowb();
2641 }
2642
2643 static int __igb_maybe_stop_tx(struct net_device *netdev,
2644                                struct igb_ring *tx_ring, int size)
2645 {
2646         struct igb_adapter *adapter = netdev_priv(netdev);
2647
2648         netif_stop_queue(netdev);
2649         /* Herbert's original patch had:
2650          *  smp_mb__after_netif_stop_queue();
2651          * but since that doesn't exist yet, just open code it. */
2652         smp_mb();
2653
2654         /* We need to check again in a case another CPU has just
2655          * made room available. */
2656         if (IGB_DESC_UNUSED(tx_ring) < size)
2657                 return -EBUSY;
2658
2659         /* A reprieve! */
2660         netif_start_queue(netdev);
2661         ++adapter->restart_queue;
2662         return 0;
2663 }
2664
2665 static int igb_maybe_stop_tx(struct net_device *netdev,
2666                              struct igb_ring *tx_ring, int size)
2667 {
2668         if (IGB_DESC_UNUSED(tx_ring) >= size)
2669                 return 0;
2670         return __igb_maybe_stop_tx(netdev, tx_ring, size);
2671 }
2672
2673 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2674
2675 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2676                                    struct net_device *netdev,
2677                                    struct igb_ring *tx_ring)
2678 {
2679         struct igb_adapter *adapter = netdev_priv(netdev);
2680         unsigned int tx_flags = 0;
2681         unsigned int len;
2682         unsigned long irq_flags;
2683         u8 hdr_len = 0;
2684         int tso = 0;
2685
2686         len = skb_headlen(skb);
2687
2688         if (test_bit(__IGB_DOWN, &adapter->state)) {
2689                 dev_kfree_skb_any(skb);
2690                 return NETDEV_TX_OK;
2691         }
2692
2693         if (skb->len <= 0) {
2694                 dev_kfree_skb_any(skb);
2695                 return NETDEV_TX_OK;
2696         }
2697
2698         if (!spin_trylock_irqsave(&tx_ring->tx_lock, irq_flags))
2699                 /* Collision - tell upper layer to requeue */
2700                 return NETDEV_TX_LOCKED;
2701
2702         /* need: 1 descriptor per page,
2703          *       + 2 desc gap to keep tail from touching head,
2704          *       + 1 desc for skb->data,
2705          *       + 1 desc for context descriptor,
2706          * otherwise try next time */
2707         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2708                 /* this is a hard error */
2709                 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2710                 return NETDEV_TX_BUSY;
2711         }
2712
2713         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2714                 tx_flags |= IGB_TX_FLAGS_VLAN;
2715                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2716         }
2717
2718         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2719                                               &hdr_len) : 0;
2720
2721         if (tso < 0) {
2722                 dev_kfree_skb_any(skb);
2723                 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2724                 return NETDEV_TX_OK;
2725         }
2726
2727         if (tso)
2728                 tx_flags |= IGB_TX_FLAGS_TSO;
2729         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2730                         if (skb->ip_summed == CHECKSUM_PARTIAL)
2731                                 tx_flags |= IGB_TX_FLAGS_CSUM;
2732
2733         if (skb->protocol == htons(ETH_P_IP))
2734                 tx_flags |= IGB_TX_FLAGS_IPV4;
2735
2736         igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2737                          igb_tx_map_adv(adapter, tx_ring, skb),
2738                          skb->len, hdr_len);
2739
2740         netdev->trans_start = jiffies;
2741
2742         /* Make sure there is space in the ring for the next send. */
2743         igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
2744
2745         spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2746         return NETDEV_TX_OK;
2747 }
2748
2749 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
2750 {
2751         struct igb_adapter *adapter = netdev_priv(netdev);
2752         struct igb_ring *tx_ring = &adapter->tx_ring[0];
2753
2754         /* This goes back to the question of how to logically map a tx queue
2755          * to a flow.  Right now, performance is impacted slightly negatively
2756          * if using multiple tx queues.  If the stack breaks away from a
2757          * single qdisc implementation, we can look at this again. */
2758         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
2759 }
2760
2761 /**
2762  * igb_tx_timeout - Respond to a Tx Hang
2763  * @netdev: network interface device structure
2764  **/
2765 static void igb_tx_timeout(struct net_device *netdev)
2766 {
2767         struct igb_adapter *adapter = netdev_priv(netdev);
2768         struct e1000_hw *hw = &adapter->hw;
2769
2770         /* Do the reset outside of interrupt context */
2771         adapter->tx_timeout_count++;
2772         schedule_work(&adapter->reset_task);
2773         wr32(E1000_EICS, adapter->eims_enable_mask &
2774                 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
2775 }
2776
2777 static void igb_reset_task(struct work_struct *work)
2778 {
2779         struct igb_adapter *adapter;
2780         adapter = container_of(work, struct igb_adapter, reset_task);
2781
2782         igb_reinit_locked(adapter);
2783 }
2784
2785 /**
2786  * igb_get_stats - Get System Network Statistics
2787  * @netdev: network interface device structure
2788  *
2789  * Returns the address of the device statistics structure.
2790  * The statistics are actually updated from the timer callback.
2791  **/
2792 static struct net_device_stats *
2793 igb_get_stats(struct net_device *netdev)
2794 {
2795         struct igb_adapter *adapter = netdev_priv(netdev);
2796
2797         /* only return the current stats */
2798         return &adapter->net_stats;
2799 }
2800
2801 /**
2802  * igb_change_mtu - Change the Maximum Transfer Unit
2803  * @netdev: network interface device structure
2804  * @new_mtu: new value for maximum frame size
2805  *
2806  * Returns 0 on success, negative on failure
2807  **/
2808 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
2809 {
2810         struct igb_adapter *adapter = netdev_priv(netdev);
2811         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2812
2813         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2814             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2815                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2816                 return -EINVAL;
2817         }
2818
2819 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2820         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2821                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2822                 return -EINVAL;
2823         }
2824
2825         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2826                 msleep(1);
2827         /* igb_down has a dependency on max_frame_size */
2828         adapter->max_frame_size = max_frame;
2829         if (netif_running(netdev))
2830                 igb_down(adapter);
2831
2832         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2833          * means we reserve 2 more, this pushes us to allocate from the next
2834          * larger slab size.
2835          * i.e. RXBUFFER_2048 --> size-4096 slab
2836          */
2837
2838         if (max_frame <= IGB_RXBUFFER_256)
2839                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
2840         else if (max_frame <= IGB_RXBUFFER_512)
2841                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
2842         else if (max_frame <= IGB_RXBUFFER_1024)
2843                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
2844         else if (max_frame <= IGB_RXBUFFER_2048)
2845                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
2846         else
2847                 adapter->rx_buffer_len = IGB_RXBUFFER_4096;
2848         /* adjust allocation if LPE protects us, and we aren't using SBP */
2849         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2850              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
2851                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
2852
2853         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2854                  netdev->mtu, new_mtu);
2855         netdev->mtu = new_mtu;
2856
2857         if (netif_running(netdev))
2858                 igb_up(adapter);
2859         else
2860                 igb_reset(adapter);
2861
2862         clear_bit(__IGB_RESETTING, &adapter->state);
2863
2864         return 0;
2865 }
2866
2867 /**
2868  * igb_update_stats - Update the board statistics counters
2869  * @adapter: board private structure
2870  **/
2871
2872 void igb_update_stats(struct igb_adapter *adapter)
2873 {
2874         struct e1000_hw *hw = &adapter->hw;
2875         struct pci_dev *pdev = adapter->pdev;
2876         u16 phy_tmp;
2877
2878 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2879
2880         /*
2881          * Prevent stats update while adapter is being reset, or if the pci
2882          * connection is down.
2883          */
2884         if (adapter->link_speed == 0)
2885                 return;
2886         if (pci_channel_offline(pdev))
2887                 return;
2888
2889         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
2890         adapter->stats.gprc += rd32(E1000_GPRC);
2891         adapter->stats.gorc += rd32(E1000_GORCL);
2892         rd32(E1000_GORCH); /* clear GORCL */
2893         adapter->stats.bprc += rd32(E1000_BPRC);
2894         adapter->stats.mprc += rd32(E1000_MPRC);
2895         adapter->stats.roc += rd32(E1000_ROC);
2896
2897         adapter->stats.prc64 += rd32(E1000_PRC64);
2898         adapter->stats.prc127 += rd32(E1000_PRC127);
2899         adapter->stats.prc255 += rd32(E1000_PRC255);
2900         adapter->stats.prc511 += rd32(E1000_PRC511);
2901         adapter->stats.prc1023 += rd32(E1000_PRC1023);
2902         adapter->stats.prc1522 += rd32(E1000_PRC1522);
2903         adapter->stats.symerrs += rd32(E1000_SYMERRS);
2904         adapter->stats.sec += rd32(E1000_SEC);
2905
2906         adapter->stats.mpc += rd32(E1000_MPC);
2907         adapter->stats.scc += rd32(E1000_SCC);
2908         adapter->stats.ecol += rd32(E1000_ECOL);
2909         adapter->stats.mcc += rd32(E1000_MCC);
2910         adapter->stats.latecol += rd32(E1000_LATECOL);
2911         adapter->stats.dc += rd32(E1000_DC);
2912         adapter->stats.rlec += rd32(E1000_RLEC);
2913         adapter->stats.xonrxc += rd32(E1000_XONRXC);
2914         adapter->stats.xontxc += rd32(E1000_XONTXC);
2915         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
2916         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
2917         adapter->stats.fcruc += rd32(E1000_FCRUC);
2918         adapter->stats.gptc += rd32(E1000_GPTC);
2919         adapter->stats.gotc += rd32(E1000_GOTCL);
2920         rd32(E1000_GOTCH); /* clear GOTCL */
2921         adapter->stats.rnbc += rd32(E1000_RNBC);
2922         adapter->stats.ruc += rd32(E1000_RUC);
2923         adapter->stats.rfc += rd32(E1000_RFC);
2924         adapter->stats.rjc += rd32(E1000_RJC);
2925         adapter->stats.tor += rd32(E1000_TORH);
2926         adapter->stats.tot += rd32(E1000_TOTH);
2927         adapter->stats.tpr += rd32(E1000_TPR);
2928
2929         adapter->stats.ptc64 += rd32(E1000_PTC64);
2930         adapter->stats.ptc127 += rd32(E1000_PTC127);
2931         adapter->stats.ptc255 += rd32(E1000_PTC255);
2932         adapter->stats.ptc511 += rd32(E1000_PTC511);
2933         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
2934         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
2935
2936         adapter->stats.mptc += rd32(E1000_MPTC);
2937         adapter->stats.bptc += rd32(E1000_BPTC);
2938
2939         /* used for adaptive IFS */
2940
2941         hw->mac.tx_packet_delta = rd32(E1000_TPT);
2942         adapter->stats.tpt += hw->mac.tx_packet_delta;
2943         hw->mac.collision_delta = rd32(E1000_COLC);
2944         adapter->stats.colc += hw->mac.collision_delta;
2945
2946         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
2947         adapter->stats.rxerrc += rd32(E1000_RXERRC);
2948         adapter->stats.tncrs += rd32(E1000_TNCRS);
2949         adapter->stats.tsctc += rd32(E1000_TSCTC);
2950         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
2951
2952         adapter->stats.iac += rd32(E1000_IAC);
2953         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
2954         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
2955         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
2956         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
2957         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
2958         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
2959         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
2960         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
2961
2962         /* Fill out the OS statistics structure */
2963         adapter->net_stats.multicast = adapter->stats.mprc;
2964         adapter->net_stats.collisions = adapter->stats.colc;
2965
2966         /* Rx Errors */
2967
2968         /* RLEC on some newer hardware can be incorrect so build
2969         * our own version based on RUC and ROC */
2970         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2971                 adapter->stats.crcerrs + adapter->stats.algnerrc +
2972                 adapter->stats.ruc + adapter->stats.roc +
2973                 adapter->stats.cexterr;
2974         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2975                                               adapter->stats.roc;
2976         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2977         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2978         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2979
2980         /* Tx Errors */
2981         adapter->net_stats.tx_errors = adapter->stats.ecol +
2982                                        adapter->stats.latecol;
2983         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2984         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2985         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2986
2987         /* Tx Dropped needs to be maintained elsewhere */
2988
2989         /* Phy Stats */
2990         if (hw->phy.media_type == e1000_media_type_copper) {
2991                 if ((adapter->link_speed == SPEED_1000) &&
2992                    (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
2993                                               &phy_tmp))) {
2994                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2995                         adapter->phy_stats.idle_errors += phy_tmp;
2996                 }
2997         }
2998
2999         /* Management Stats */
3000         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3001         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3002         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3003 }
3004
3005
3006 static irqreturn_t igb_msix_other(int irq, void *data)
3007 {
3008         struct net_device *netdev = data;
3009         struct igb_adapter *adapter = netdev_priv(netdev);
3010         struct e1000_hw *hw = &adapter->hw;
3011         u32 eicr;
3012         /* disable interrupts from the "other" bit, avoid re-entry */
3013         wr32(E1000_EIMC, E1000_EIMS_OTHER);
3014
3015         eicr = rd32(E1000_EICR);
3016
3017         if (eicr & E1000_EIMS_OTHER) {
3018                 u32 icr = rd32(E1000_ICR);
3019                 /* reading ICR causes bit 31 of EICR to be cleared */
3020                 if (!(icr & E1000_ICR_LSC))
3021                         goto no_link_interrupt;
3022                 hw->mac.get_link_status = 1;
3023                 /* guard against interrupt when we're going down */
3024                 if (!test_bit(__IGB_DOWN, &adapter->state))
3025                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3026         }
3027
3028 no_link_interrupt:
3029         wr32(E1000_IMS, E1000_IMS_LSC);
3030         wr32(E1000_EIMS, E1000_EIMS_OTHER);
3031
3032         return IRQ_HANDLED;
3033 }
3034
3035 static irqreturn_t igb_msix_tx(int irq, void *data)
3036 {
3037         struct igb_ring *tx_ring = data;
3038         struct igb_adapter *adapter = tx_ring->adapter;
3039         struct e1000_hw *hw = &adapter->hw;
3040
3041         if (!tx_ring->itr_val)
3042                 wr32(E1000_EIMC, tx_ring->eims_value);
3043
3044         tx_ring->total_bytes = 0;
3045         tx_ring->total_packets = 0;
3046         if (!igb_clean_tx_irq(adapter, tx_ring))
3047                 /* Ring was not completely cleaned, so fire another interrupt */
3048                 wr32(E1000_EICS, tx_ring->eims_value);
3049
3050         if (!tx_ring->itr_val)
3051                 wr32(E1000_EIMS, tx_ring->eims_value);
3052         return IRQ_HANDLED;
3053 }
3054
3055 static irqreturn_t igb_msix_rx(int irq, void *data)
3056 {
3057         struct igb_ring *rx_ring = data;
3058         struct igb_adapter *adapter = rx_ring->adapter;
3059         struct e1000_hw *hw = &adapter->hw;
3060
3061         if (!rx_ring->itr_val)
3062                 wr32(E1000_EIMC, rx_ring->eims_value);
3063
3064         if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi)) {
3065                 rx_ring->total_bytes = 0;
3066                 rx_ring->total_packets = 0;
3067                 rx_ring->no_itr_adjust = 0;
3068                 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3069         } else {
3070                 if (!rx_ring->no_itr_adjust) {
3071                         igb_lower_rx_eitr(adapter, rx_ring);
3072                         rx_ring->no_itr_adjust = 1;
3073                 }
3074         }
3075
3076         return IRQ_HANDLED;
3077 }
3078
3079
3080 /**
3081  * igb_intr_msi - Interrupt Handler
3082  * @irq: interrupt number
3083  * @data: pointer to a network interface device structure
3084  **/
3085 static irqreturn_t igb_intr_msi(int irq, void *data)
3086 {
3087         struct net_device *netdev = data;
3088         struct igb_adapter *adapter = netdev_priv(netdev);
3089         struct napi_struct *napi = &adapter->napi;
3090         struct e1000_hw *hw = &adapter->hw;
3091         /* read ICR disables interrupts using IAM */
3092         u32 icr = rd32(E1000_ICR);
3093
3094         /* Write the ITR value calculated at the end of the
3095          * previous interrupt.
3096          */
3097         if (adapter->set_itr) {
3098                 wr32(E1000_ITR,
3099                         1000000000 / (adapter->itr * 256));
3100                 adapter->set_itr = 0;
3101         }
3102
3103         /* read ICR disables interrupts using IAM */
3104         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3105                 hw->mac.get_link_status = 1;
3106                 if (!test_bit(__IGB_DOWN, &adapter->state))
3107                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3108         }
3109
3110         if (netif_rx_schedule_prep(netdev, napi)) {
3111                 adapter->tx_ring->total_bytes = 0;
3112                 adapter->tx_ring->total_packets = 0;
3113                 adapter->rx_ring->total_bytes = 0;
3114                 adapter->rx_ring->total_packets = 0;
3115                 __netif_rx_schedule(netdev, napi);
3116         }
3117
3118         return IRQ_HANDLED;
3119 }
3120
3121 /**
3122  * igb_intr - Interrupt Handler
3123  * @irq: interrupt number
3124  * @data: pointer to a network interface device structure
3125  **/
3126 static irqreturn_t igb_intr(int irq, void *data)
3127 {
3128         struct net_device *netdev = data;
3129         struct igb_adapter *adapter = netdev_priv(netdev);
3130         struct napi_struct *napi = &adapter->napi;
3131         struct e1000_hw *hw = &adapter->hw;
3132         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3133          * need for the IMC write */
3134         u32 icr = rd32(E1000_ICR);
3135         u32 eicr = 0;
3136         if (!icr)
3137                 return IRQ_NONE;  /* Not our interrupt */
3138
3139         /* Write the ITR value calculated at the end of the
3140          * previous interrupt.
3141          */
3142         if (adapter->set_itr) {
3143                 wr32(E1000_ITR,
3144                         1000000000 / (adapter->itr * 256));
3145                 adapter->set_itr = 0;
3146         }
3147
3148         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3149          * not set, then the adapter didn't send an interrupt */
3150         if (!(icr & E1000_ICR_INT_ASSERTED))
3151                 return IRQ_NONE;
3152
3153         eicr = rd32(E1000_EICR);
3154
3155         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3156                 hw->mac.get_link_status = 1;
3157                 /* guard against interrupt when we're going down */
3158                 if (!test_bit(__IGB_DOWN, &adapter->state))
3159                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3160         }
3161
3162         if (netif_rx_schedule_prep(netdev, napi)) {
3163                 adapter->tx_ring->total_bytes = 0;
3164                 adapter->rx_ring->total_bytes = 0;
3165                 adapter->tx_ring->total_packets = 0;
3166                 adapter->rx_ring->total_packets = 0;
3167                 __netif_rx_schedule(netdev, napi);
3168         }
3169
3170         return IRQ_HANDLED;
3171 }
3172
3173 /**
3174  * igb_clean - NAPI Rx polling callback
3175  * @adapter: board private structure
3176  **/
3177 static int igb_clean(struct napi_struct *napi, int budget)
3178 {
3179         struct igb_adapter *adapter = container_of(napi, struct igb_adapter,
3180                                                    napi);
3181         struct net_device *netdev = adapter->netdev;
3182         int tx_clean_complete = 1, work_done = 0;
3183         int i;
3184
3185         /* Must NOT use netdev_priv macro here. */
3186         adapter = netdev->priv;
3187
3188         /* Keep link state information with original netdev */
3189         if (!netif_carrier_ok(netdev))
3190                 goto quit_polling;
3191
3192         /* igb_clean is called per-cpu.  This lock protects tx_ring[i] from
3193          * being cleaned by multiple cpus simultaneously.  A failure obtaining
3194          * the lock means tx_ring[i] is currently being cleaned anyway. */
3195         for (i = 0; i < adapter->num_tx_queues; i++) {
3196                 if (spin_trylock(&adapter->tx_ring[i].tx_clean_lock)) {
3197                         tx_clean_complete &= igb_clean_tx_irq(adapter,
3198                                                         &adapter->tx_ring[i]);
3199                         spin_unlock(&adapter->tx_ring[i].tx_clean_lock);
3200                 }
3201         }
3202
3203         for (i = 0; i < adapter->num_rx_queues; i++)
3204                 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i], &work_done,
3205                                      adapter->rx_ring[i].napi.weight);
3206
3207         /* If no Tx and not enough Rx work done, exit the polling mode */
3208         if ((tx_clean_complete && (work_done < budget)) ||
3209             !netif_running(netdev)) {
3210 quit_polling:
3211                 if (adapter->itr_setting & 3)
3212                         igb_set_itr(adapter, E1000_ITR, false);
3213                 netif_rx_complete(netdev, napi);
3214                 if (!test_bit(__IGB_DOWN, &adapter->state))
3215                         igb_irq_enable(adapter);
3216                 return 0;
3217         }
3218
3219         return 1;
3220 }
3221
3222 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3223 {
3224         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3225         struct igb_adapter *adapter = rx_ring->adapter;
3226         struct e1000_hw *hw = &adapter->hw;
3227         struct net_device *netdev = adapter->netdev;
3228         int work_done = 0;
3229
3230         /* Keep link state information with original netdev */
3231         if (!netif_carrier_ok(netdev))
3232                 goto quit_polling;
3233
3234         igb_clean_rx_irq_adv(adapter, rx_ring, &work_done, budget);
3235
3236
3237         /* If not enough Rx work done, exit the polling mode */
3238         if ((work_done == 0) || !netif_running(netdev)) {
3239 quit_polling:
3240                 netif_rx_complete(netdev, napi);
3241
3242                 wr32(E1000_EIMS, rx_ring->eims_value);
3243                 if ((adapter->itr_setting & 3) && !rx_ring->no_itr_adjust &&
3244                     (rx_ring->total_packets > IGB_DYN_ITR_PACKET_THRESHOLD)) {
3245                         int mean_size = rx_ring->total_bytes /
3246                                         rx_ring->total_packets;
3247                         if (mean_size < IGB_DYN_ITR_LENGTH_LOW)
3248                                 igb_raise_rx_eitr(adapter, rx_ring);
3249                         else if (mean_size > IGB_DYN_ITR_LENGTH_HIGH)
3250                                 igb_lower_rx_eitr(adapter, rx_ring);
3251                 }
3252                 return 0;
3253         }
3254
3255         return 1;
3256 }
3257 /**
3258  * igb_clean_tx_irq - Reclaim resources after transmit completes
3259  * @adapter: board private structure
3260  * returns true if ring is completely cleaned
3261  **/
3262 static bool igb_clean_tx_irq(struct igb_adapter *adapter,
3263                                   struct igb_ring *tx_ring)
3264 {
3265         struct net_device *netdev = adapter->netdev;
3266         struct e1000_hw *hw = &adapter->hw;
3267         struct e1000_tx_desc *tx_desc;
3268         struct igb_buffer *buffer_info;
3269         struct sk_buff *skb;
3270         unsigned int i;
3271         u32 head, oldhead;
3272         unsigned int count = 0;
3273         bool cleaned = false;
3274         bool retval = true;
3275         unsigned int total_bytes = 0, total_packets = 0;
3276
3277         rmb();
3278         head = *(volatile u32 *)((struct e1000_tx_desc *)tx_ring->desc
3279                                  + tx_ring->count);
3280         head = le32_to_cpu(head);
3281         i = tx_ring->next_to_clean;
3282         while (1) {
3283                 while (i != head) {
3284                         cleaned = true;
3285                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3286                         buffer_info = &tx_ring->buffer_info[i];
3287                         skb = buffer_info->skb;
3288
3289                         if (skb) {
3290                                 unsigned int segs, bytecount;
3291                                 /* gso_segs is currently only valid for tcp */
3292                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3293                                 /* multiply data chunks by size of headers */
3294                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3295                                             skb->len;
3296                                 total_packets += segs;
3297                                 total_bytes += bytecount;
3298                         }
3299
3300                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
3301                         tx_desc->upper.data = 0;
3302
3303                         i++;
3304                         if (i == tx_ring->count)
3305                                 i = 0;
3306
3307                         count++;
3308                         if (count == IGB_MAX_TX_CLEAN) {
3309                                 retval = false;
3310                                 goto done_cleaning;
3311                         }
3312                 }
3313                 oldhead = head;
3314                 rmb();
3315                 head = *(volatile u32 *)((struct e1000_tx_desc *)tx_ring->desc
3316                                          + tx_ring->count);
3317                 head = le32_to_cpu(head);
3318                 if (head == oldhead)
3319                         goto done_cleaning;
3320         }  /* while (1) */
3321
3322 done_cleaning:
3323         tx_ring->next_to_clean = i;
3324
3325         if (unlikely(cleaned &&
3326                      netif_carrier_ok(netdev) &&
3327                      IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3328                 /* Make sure that anybody stopping the queue after this
3329                  * sees the new next_to_clean.
3330                  */
3331                 smp_mb();
3332                 if (netif_queue_stopped(netdev) &&
3333                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3334                         netif_wake_queue(netdev);
3335                         ++adapter->restart_queue;
3336                 }
3337         }
3338
3339         if (tx_ring->detect_tx_hung) {
3340                 /* Detect a transmit hang in hardware, this serializes the
3341                  * check with the clearing of time_stamp and movement of i */
3342                 tx_ring->detect_tx_hung = false;
3343                 if (tx_ring->buffer_info[i].time_stamp &&
3344                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3345                                (adapter->tx_timeout_factor * HZ))
3346                     && !(rd32(E1000_STATUS) &
3347                          E1000_STATUS_TXOFF)) {
3348
3349                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3350                         /* detected Tx unit hang */
3351                         dev_err(&adapter->pdev->dev,
3352                                 "Detected Tx Unit Hang\n"
3353                                 "  Tx Queue             <%lu>\n"
3354                                 "  TDH                  <%x>\n"
3355                                 "  TDT                  <%x>\n"
3356                                 "  next_to_use          <%x>\n"
3357                                 "  next_to_clean        <%x>\n"
3358                                 "  head (WB)            <%x>\n"
3359                                 "buffer_info[next_to_clean]\n"
3360                                 "  time_stamp           <%lx>\n"
3361                                 "  jiffies              <%lx>\n"
3362                                 "  desc.status          <%x>\n",
3363                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3364                                         sizeof(struct igb_ring)),
3365                                 readl(adapter->hw.hw_addr + tx_ring->head),
3366                                 readl(adapter->hw.hw_addr + tx_ring->tail),
3367                                 tx_ring->next_to_use,
3368                                 tx_ring->next_to_clean,
3369                                 head,
3370                                 tx_ring->buffer_info[i].time_stamp,
3371                                 jiffies,
3372                                 tx_desc->upper.fields.status);
3373                         netif_stop_queue(netdev);
3374                 }
3375         }
3376         tx_ring->total_bytes += total_bytes;
3377         tx_ring->total_packets += total_packets;
3378         adapter->net_stats.tx_bytes += total_bytes;
3379         adapter->net_stats.tx_packets += total_packets;
3380         return retval;
3381 }
3382
3383
3384 /**
3385  * igb_receive_skb - helper function to handle rx indications
3386  * @adapter: board private structure
3387  * @status: descriptor status field as written by hardware
3388  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3389  * @skb: pointer to sk_buff to be indicated to stack
3390  **/
3391 static void igb_receive_skb(struct igb_adapter *adapter, u8 status, u16 vlan,
3392                             struct sk_buff *skb)
3393 {
3394         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
3395                 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3396                                          le16_to_cpu(vlan) &
3397                                          E1000_RXD_SPC_VLAN_MASK);
3398         else
3399                 netif_receive_skb(skb);
3400 }
3401
3402
3403 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3404                                        u32 status_err, struct sk_buff *skb)
3405 {
3406         skb->ip_summed = CHECKSUM_NONE;
3407
3408         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3409         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3410                 return;
3411         /* TCP/UDP checksum error bit is set */
3412         if (status_err &
3413             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3414                 /* let the stack verify checksum errors */
3415                 adapter->hw_csum_err++;
3416                 return;
3417         }
3418         /* It must be a TCP or UDP packet with a valid checksum */
3419         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3420                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3421
3422         adapter->hw_csum_good++;
3423 }
3424
3425 static bool igb_clean_rx_irq_adv(struct igb_adapter *adapter,
3426                                       struct igb_ring *rx_ring,
3427                                       int *work_done, int budget)
3428 {
3429         struct net_device *netdev = adapter->netdev;
3430         struct pci_dev *pdev = adapter->pdev;
3431         union e1000_adv_rx_desc *rx_desc , *next_rxd;
3432         struct igb_buffer *buffer_info , *next_buffer;
3433         struct sk_buff *skb;
3434         unsigned int i, j;
3435         u32 length, hlen, staterr;
3436         bool cleaned = false;
3437         int cleaned_count = 0;
3438         unsigned int total_bytes = 0, total_packets = 0;
3439
3440         i = rx_ring->next_to_clean;
3441         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3442         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3443
3444         while (staterr & E1000_RXD_STAT_DD) {
3445                 if (*work_done >= budget)
3446                         break;
3447                 (*work_done)++;
3448                 buffer_info = &rx_ring->buffer_info[i];
3449
3450                 /* HW will not DMA in data larger than the given buffer, even
3451                  * if it parses the (NFS, of course) header to be larger.  In
3452                  * that case, it fills the header buffer and spills the rest
3453                  * into the page.
3454                  */
3455                 hlen = le16_to_cpu((rx_desc->wb.lower.lo_dword.hdr_info &
3456                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT);
3457                 if (hlen > adapter->rx_ps_hdr_size)
3458                         hlen = adapter->rx_ps_hdr_size;
3459
3460                 length = le16_to_cpu(rx_desc->wb.upper.length);
3461                 cleaned = true;
3462                 cleaned_count++;
3463
3464                 if (rx_ring->pending_skb != NULL) {
3465                         skb = rx_ring->pending_skb;
3466                         rx_ring->pending_skb = NULL;
3467                         j = rx_ring->pending_skb_page;
3468                 } else {
3469                         skb = buffer_info->skb;
3470                         prefetch(skb->data - NET_IP_ALIGN);
3471                         buffer_info->skb = NULL;
3472                         if (hlen) {
3473                                 pci_unmap_single(pdev, buffer_info->dma,
3474                                                  adapter->rx_ps_hdr_size +
3475                                                    NET_IP_ALIGN,
3476                                                  PCI_DMA_FROMDEVICE);
3477                                 skb_put(skb, hlen);
3478                         } else {
3479                                 pci_unmap_single(pdev, buffer_info->dma,
3480                                                  adapter->rx_buffer_len +
3481                                                    NET_IP_ALIGN,
3482                                                  PCI_DMA_FROMDEVICE);
3483                                 skb_put(skb, length);
3484                                 goto send_up;
3485                         }
3486                         j = 0;
3487                 }
3488
3489                 while (length) {
3490                         pci_unmap_page(pdev, buffer_info->page_dma,
3491                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3492                         buffer_info->page_dma = 0;
3493                         skb_fill_page_desc(skb, j, buffer_info->page,
3494                                                 0, length);
3495                         buffer_info->page = NULL;
3496
3497                         skb->len += length;
3498                         skb->data_len += length;
3499                         skb->truesize += length;
3500                         rx_desc->wb.upper.status_error = 0;
3501                         if (staterr & E1000_RXD_STAT_EOP)
3502                                 break;
3503
3504                         j++;
3505                         cleaned_count++;
3506                         i++;
3507                         if (i == rx_ring->count)
3508                                 i = 0;
3509
3510                         buffer_info = &rx_ring->buffer_info[i];
3511                         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3512                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3513                         length = le16_to_cpu(rx_desc->wb.upper.length);
3514                         if (!(staterr & E1000_RXD_STAT_DD)) {
3515                                 rx_ring->pending_skb = skb;
3516                                 rx_ring->pending_skb_page = j;
3517                                 goto out;
3518                         }
3519                 }
3520 send_up:
3521                 pskb_trim(skb, skb->len - 4);
3522                 i++;
3523                 if (i == rx_ring->count)
3524                         i = 0;
3525                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3526                 prefetch(next_rxd);
3527                 next_buffer = &rx_ring->buffer_info[i];
3528
3529                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3530                         dev_kfree_skb_irq(skb);
3531                         goto next_desc;
3532                 }
3533                 rx_ring->no_itr_adjust |= (staterr & E1000_RXD_STAT_DYNINT);
3534
3535                 total_bytes += skb->len;
3536                 total_packets++;
3537
3538                 igb_rx_checksum_adv(adapter, staterr, skb);
3539
3540                 skb->protocol = eth_type_trans(skb, netdev);
3541
3542                 igb_receive_skb(adapter, staterr, rx_desc->wb.upper.vlan, skb);
3543
3544                 netdev->last_rx = jiffies;
3545
3546 next_desc:
3547                 rx_desc->wb.upper.status_error = 0;
3548
3549                 /* return some buffers to hardware, one at a time is too slow */
3550                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3551                         igb_alloc_rx_buffers_adv(adapter, rx_ring,
3552                                                  cleaned_count);
3553                         cleaned_count = 0;
3554                 }
3555
3556                 /* use prefetched values */
3557                 rx_desc = next_rxd;
3558                 buffer_info = next_buffer;
3559
3560                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3561         }
3562 out:
3563         rx_ring->next_to_clean = i;
3564         cleaned_count = IGB_DESC_UNUSED(rx_ring);
3565
3566         if (cleaned_count)
3567                 igb_alloc_rx_buffers_adv(adapter, rx_ring, cleaned_count);
3568
3569         rx_ring->total_packets += total_packets;
3570         rx_ring->total_bytes += total_bytes;
3571         rx_ring->rx_stats.packets += total_packets;
3572         rx_ring->rx_stats.bytes += total_bytes;
3573         adapter->net_stats.rx_bytes += total_bytes;
3574         adapter->net_stats.rx_packets += total_packets;
3575         return cleaned;
3576 }
3577
3578
3579 /**
3580  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3581  * @adapter: address of board private structure
3582  **/
3583 static void igb_alloc_rx_buffers_adv(struct igb_adapter *adapter,
3584                                      struct igb_ring *rx_ring,
3585                                      int cleaned_count)
3586 {
3587         struct net_device *netdev = adapter->netdev;
3588         struct pci_dev *pdev = adapter->pdev;
3589         union e1000_adv_rx_desc *rx_desc;
3590         struct igb_buffer *buffer_info;
3591         struct sk_buff *skb;
3592         unsigned int i;
3593
3594         i = rx_ring->next_to_use;
3595         buffer_info = &rx_ring->buffer_info[i];
3596
3597         while (cleaned_count--) {
3598                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3599
3600                 if (adapter->rx_ps_hdr_size && !buffer_info->page) {
3601                         buffer_info->page = alloc_page(GFP_ATOMIC);
3602                         if (!buffer_info->page) {
3603                                 adapter->alloc_rx_buff_failed++;
3604                                 goto no_buffers;
3605                         }
3606                         buffer_info->page_dma =
3607                                 pci_map_page(pdev,
3608                                              buffer_info->page,
3609                                              0, PAGE_SIZE,
3610                                              PCI_DMA_FROMDEVICE);
3611                 }
3612
3613                 if (!buffer_info->skb) {
3614                         int bufsz;
3615
3616                         if (adapter->rx_ps_hdr_size)
3617                                 bufsz = adapter->rx_ps_hdr_size;
3618                         else
3619                                 bufsz = adapter->rx_buffer_len;
3620                         bufsz += NET_IP_ALIGN;
3621                         skb = netdev_alloc_skb(netdev, bufsz);
3622
3623                         if (!skb) {
3624                                 adapter->alloc_rx_buff_failed++;
3625                                 goto no_buffers;
3626                         }
3627
3628                         /* Make buffer alignment 2 beyond a 16 byte boundary
3629                          * this will result in a 16 byte aligned IP header after
3630                          * the 14 byte MAC header is removed
3631                          */
3632                         skb_reserve(skb, NET_IP_ALIGN);
3633
3634                         buffer_info->skb = skb;
3635                         buffer_info->dma = pci_map_single(pdev, skb->data,
3636                                                           bufsz,
3637                                                           PCI_DMA_FROMDEVICE);
3638
3639                 }
3640                 /* Refresh the desc even if buffer_addrs didn't change because
3641                  * each write-back erases this info. */
3642                 if (adapter->rx_ps_hdr_size) {
3643                         rx_desc->read.pkt_addr =
3644                              cpu_to_le64(buffer_info->page_dma);
3645                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
3646                 } else {
3647                         rx_desc->read.pkt_addr =
3648                              cpu_to_le64(buffer_info->dma);
3649                         rx_desc->read.hdr_addr = 0;
3650                 }
3651
3652                 i++;
3653                 if (i == rx_ring->count)
3654                         i = 0;
3655                 buffer_info = &rx_ring->buffer_info[i];
3656         }
3657
3658 no_buffers:
3659         if (rx_ring->next_to_use != i) {
3660                 rx_ring->next_to_use = i;
3661                 if (i == 0)
3662                         i = (rx_ring->count - 1);
3663                 else
3664                         i--;
3665
3666                 /* Force memory writes to complete before letting h/w
3667                  * know there are new descriptors to fetch.  (Only
3668                  * applicable for weak-ordered memory model archs,
3669                  * such as IA-64). */
3670                 wmb();
3671                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
3672         }
3673 }
3674
3675 /**
3676  * igb_mii_ioctl -
3677  * @netdev:
3678  * @ifreq:
3679  * @cmd:
3680  **/
3681 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3682 {
3683         struct igb_adapter *adapter = netdev_priv(netdev);
3684         struct mii_ioctl_data *data = if_mii(ifr);
3685
3686         if (adapter->hw.phy.media_type != e1000_media_type_copper)
3687                 return -EOPNOTSUPP;
3688
3689         switch (cmd) {
3690         case SIOCGMIIPHY:
3691                 data->phy_id = adapter->hw.phy.addr;
3692                 break;
3693         case SIOCGMIIREG:
3694                 if (!capable(CAP_NET_ADMIN))
3695                         return -EPERM;
3696                 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
3697                                                      data->reg_num
3698                                                      & 0x1F, &data->val_out))
3699                         return -EIO;
3700                 break;
3701         case SIOCSMIIREG:
3702         default:
3703                 return -EOPNOTSUPP;
3704         }
3705         return 0;
3706 }
3707
3708 /**
3709  * igb_ioctl -
3710  * @netdev:
3711  * @ifreq:
3712  * @cmd:
3713  **/
3714 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3715 {
3716         switch (cmd) {
3717         case SIOCGMIIPHY:
3718         case SIOCGMIIREG:
3719         case SIOCSMIIREG:
3720                 return igb_mii_ioctl(netdev, ifr, cmd);
3721         default:
3722                 return -EOPNOTSUPP;
3723         }
3724 }
3725
3726 static void igb_vlan_rx_register(struct net_device *netdev,
3727                                  struct vlan_group *grp)
3728 {
3729         struct igb_adapter *adapter = netdev_priv(netdev);
3730         struct e1000_hw *hw = &adapter->hw;
3731         u32 ctrl, rctl;
3732
3733         igb_irq_disable(adapter);
3734         adapter->vlgrp = grp;
3735
3736         if (grp) {
3737                 /* enable VLAN tag insert/strip */
3738                 ctrl = rd32(E1000_CTRL);
3739                 ctrl |= E1000_CTRL_VME;
3740                 wr32(E1000_CTRL, ctrl);
3741
3742                 /* enable VLAN receive filtering */
3743                 rctl = rd32(E1000_RCTL);
3744                 rctl |= E1000_RCTL_VFE;
3745                 rctl &= ~E1000_RCTL_CFIEN;
3746                 wr32(E1000_RCTL, rctl);
3747                 igb_update_mng_vlan(adapter);
3748                 wr32(E1000_RLPML,
3749                                 adapter->max_frame_size + VLAN_TAG_SIZE);
3750         } else {
3751                 /* disable VLAN tag insert/strip */
3752                 ctrl = rd32(E1000_CTRL);
3753                 ctrl &= ~E1000_CTRL_VME;
3754                 wr32(E1000_CTRL, ctrl);
3755
3756                 /* disable VLAN filtering */
3757                 rctl = rd32(E1000_RCTL);
3758                 rctl &= ~E1000_RCTL_VFE;
3759                 wr32(E1000_RCTL, rctl);
3760                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
3761                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3762                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
3763                 }
3764                 wr32(E1000_RLPML,
3765                                 adapter->max_frame_size);
3766         }
3767
3768         if (!test_bit(__IGB_DOWN, &adapter->state))
3769                 igb_irq_enable(adapter);
3770 }
3771
3772 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
3773 {
3774         struct igb_adapter *adapter = netdev_priv(netdev);
3775         struct e1000_hw *hw = &adapter->hw;
3776         u32 vfta, index;
3777
3778         if ((adapter->hw.mng_cookie.status &
3779              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3780             (vid == adapter->mng_vlan_id))
3781                 return;
3782         /* add VID to filter table */
3783         index = (vid >> 5) & 0x7F;
3784         vfta = array_rd32(E1000_VFTA, index);
3785         vfta |= (1 << (vid & 0x1F));
3786         igb_write_vfta(&adapter->hw, index, vfta);
3787 }
3788
3789 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
3790 {
3791         struct igb_adapter *adapter = netdev_priv(netdev);
3792         struct e1000_hw *hw = &adapter->hw;
3793         u32 vfta, index;
3794
3795         igb_irq_disable(adapter);
3796         vlan_group_set_device(adapter->vlgrp, vid, NULL);
3797
3798         if (!test_bit(__IGB_DOWN, &adapter->state))
3799                 igb_irq_enable(adapter);
3800
3801         if ((adapter->hw.mng_cookie.status &
3802              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3803             (vid == adapter->mng_vlan_id)) {
3804                 /* release control to f/w */
3805                 igb_release_hw_control(adapter);
3806                 return;
3807         }
3808
3809         /* remove VID from filter table */
3810         index = (vid >> 5) & 0x7F;
3811         vfta = array_rd32(E1000_VFTA, index);
3812         vfta &= ~(1 << (vid & 0x1F));
3813         igb_write_vfta(&adapter->hw, index, vfta);
3814 }
3815
3816 static void igb_restore_vlan(struct igb_adapter *adapter)
3817 {
3818         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
3819
3820         if (adapter->vlgrp) {
3821                 u16 vid;
3822                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
3823                         if (!vlan_group_get_device(adapter->vlgrp, vid))
3824                                 continue;
3825                         igb_vlan_rx_add_vid(adapter->netdev, vid);
3826                 }
3827         }
3828 }
3829
3830 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
3831 {
3832         struct e1000_mac_info *mac = &adapter->hw.mac;
3833
3834         mac->autoneg = 0;
3835
3836         /* Fiber NICs only allow 1000 gbps Full duplex */
3837         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
3838                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
3839                 dev_err(&adapter->pdev->dev,
3840                         "Unsupported Speed/Duplex configuration\n");
3841                 return -EINVAL;
3842         }
3843
3844         switch (spddplx) {
3845         case SPEED_10 + DUPLEX_HALF:
3846                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
3847                 break;
3848         case SPEED_10 + DUPLEX_FULL:
3849                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
3850                 break;
3851         case SPEED_100 + DUPLEX_HALF:
3852                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
3853                 break;
3854         case SPEED_100 + DUPLEX_FULL:
3855                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
3856                 break;
3857         case SPEED_1000 + DUPLEX_FULL:
3858                 mac->autoneg = 1;
3859                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
3860                 break;
3861         case SPEED_1000 + DUPLEX_HALF: /* not supported */
3862         default:
3863                 dev_err(&adapter->pdev->dev,
3864                         "Unsupported Speed/Duplex configuration\n");
3865                 return -EINVAL;
3866         }
3867         return 0;
3868 }
3869
3870
3871 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
3872 {
3873         struct net_device *netdev = pci_get_drvdata(pdev);
3874         struct igb_adapter *adapter = netdev_priv(netdev);
3875         struct e1000_hw *hw = &adapter->hw;
3876         u32 ctrl, ctrl_ext, rctl, status;
3877         u32 wufc = adapter->wol;
3878 #ifdef CONFIG_PM
3879         int retval = 0;
3880 #endif
3881
3882         netif_device_detach(netdev);
3883
3884         if (netif_running(netdev)) {
3885                 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3886                 igb_down(adapter);
3887                 igb_free_irq(adapter);
3888         }
3889
3890 #ifdef CONFIG_PM
3891         retval = pci_save_state(pdev);
3892         if (retval)
3893                 return retval;
3894 #endif
3895
3896         status = rd32(E1000_STATUS);
3897         if (status & E1000_STATUS_LU)
3898                 wufc &= ~E1000_WUFC_LNKC;
3899
3900         if (wufc) {
3901                 igb_setup_rctl(adapter);
3902                 igb_set_multi(netdev);
3903
3904                 /* turn on all-multi mode if wake on multicast is enabled */
3905                 if (wufc & E1000_WUFC_MC) {
3906                         rctl = rd32(E1000_RCTL);
3907                         rctl |= E1000_RCTL_MPE;
3908                         wr32(E1000_RCTL, rctl);
3909                 }
3910
3911                 ctrl = rd32(E1000_CTRL);
3912                 /* advertise wake from D3Cold */
3913                 #define E1000_CTRL_ADVD3WUC 0x00100000
3914                 /* phy power management enable */
3915                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3916                 ctrl |= E1000_CTRL_ADVD3WUC;
3917                 wr32(E1000_CTRL, ctrl);
3918
3919                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3920                    adapter->hw.phy.media_type ==
3921                                         e1000_media_type_internal_serdes) {
3922                         /* keep the laser running in D3 */
3923                         ctrl_ext = rd32(E1000_CTRL_EXT);
3924                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3925                         wr32(E1000_CTRL_EXT, ctrl_ext);
3926                 }
3927
3928                 /* Allow time for pending master requests to run */
3929                 igb_disable_pcie_master(&adapter->hw);
3930
3931                 wr32(E1000_WUC, E1000_WUC_PME_EN);
3932                 wr32(E1000_WUFC, wufc);
3933                 pci_enable_wake(pdev, PCI_D3hot, 1);
3934                 pci_enable_wake(pdev, PCI_D3cold, 1);
3935         } else {
3936                 wr32(E1000_WUC, 0);
3937                 wr32(E1000_WUFC, 0);
3938                 pci_enable_wake(pdev, PCI_D3hot, 0);
3939                 pci_enable_wake(pdev, PCI_D3cold, 0);
3940         }
3941
3942         /* make sure adapter isn't asleep if manageability is enabled */
3943         if (adapter->en_mng_pt) {
3944                 pci_enable_wake(pdev, PCI_D3hot, 1);
3945                 pci_enable_wake(pdev, PCI_D3cold, 1);
3946         }
3947
3948         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3949          * would have already happened in close and is redundant. */
3950         igb_release_hw_control(adapter);
3951
3952         pci_disable_device(pdev);
3953
3954         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3955
3956         return 0;
3957 }
3958
3959 #ifdef CONFIG_PM
3960 static int igb_resume(struct pci_dev *pdev)
3961 {
3962         struct net_device *netdev = pci_get_drvdata(pdev);
3963         struct igb_adapter *adapter = netdev_priv(netdev);
3964         struct e1000_hw *hw = &adapter->hw;
3965         u32 err;
3966
3967         pci_set_power_state(pdev, PCI_D0);
3968         pci_restore_state(pdev);
3969         err = pci_enable_device(pdev);
3970         if (err) {
3971                 dev_err(&pdev->dev,
3972                         "igb: Cannot enable PCI device from suspend\n");
3973                 return err;
3974         }
3975         pci_set_master(pdev);
3976
3977         pci_enable_wake(pdev, PCI_D3hot, 0);
3978         pci_enable_wake(pdev, PCI_D3cold, 0);
3979
3980         if (netif_running(netdev)) {
3981                 err = igb_request_irq(adapter);
3982                 if (err)
3983                         return err;
3984         }
3985
3986         /* e1000_power_up_phy(adapter); */
3987
3988         igb_reset(adapter);
3989         wr32(E1000_WUS, ~0);
3990
3991         igb_init_manageability(adapter);
3992
3993         if (netif_running(netdev))
3994                 igb_up(adapter);
3995
3996         netif_device_attach(netdev);
3997
3998         /* let the f/w know that the h/w is now under the control of the
3999          * driver. */
4000         igb_get_hw_control(adapter);
4001
4002         return 0;
4003 }
4004 #endif
4005
4006 static void igb_shutdown(struct pci_dev *pdev)
4007 {
4008         igb_suspend(pdev, PMSG_SUSPEND);
4009 }
4010
4011 #ifdef CONFIG_NET_POLL_CONTROLLER
4012 /*
4013  * Polling 'interrupt' - used by things like netconsole to send skbs
4014  * without having to re-enable interrupts. It's not called while
4015  * the interrupt routine is executing.
4016  */
4017 static void igb_netpoll(struct net_device *netdev)
4018 {
4019         struct igb_adapter *adapter = netdev_priv(netdev);
4020         int i;
4021         int work_done = 0;
4022
4023         igb_irq_disable(adapter);
4024         for (i = 0; i < adapter->num_tx_queues; i++)
4025                 igb_clean_tx_irq(adapter, &adapter->tx_ring[i]);
4026
4027         for (i = 0; i < adapter->num_rx_queues; i++)
4028                 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i],
4029                                      &work_done,
4030                                      adapter->rx_ring[i].napi.weight);
4031
4032         igb_irq_enable(adapter);
4033 }
4034 #endif /* CONFIG_NET_POLL_CONTROLLER */
4035
4036 /**
4037  * igb_io_error_detected - called when PCI error is detected
4038  * @pdev: Pointer to PCI device
4039  * @state: The current pci connection state
4040  *
4041  * This function is called after a PCI bus error affecting
4042  * this device has been detected.
4043  */
4044 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4045                                               pci_channel_state_t state)
4046 {
4047         struct net_device *netdev = pci_get_drvdata(pdev);
4048         struct igb_adapter *adapter = netdev_priv(netdev);
4049
4050         netif_device_detach(netdev);
4051
4052         if (netif_running(netdev))
4053                 igb_down(adapter);
4054         pci_disable_device(pdev);
4055
4056         /* Request a slot slot reset. */
4057         return PCI_ERS_RESULT_NEED_RESET;
4058 }
4059
4060 /**
4061  * igb_io_slot_reset - called after the pci bus has been reset.
4062  * @pdev: Pointer to PCI device
4063  *
4064  * Restart the card from scratch, as if from a cold-boot. Implementation
4065  * resembles the first-half of the igb_resume routine.
4066  */
4067 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4068 {
4069         struct net_device *netdev = pci_get_drvdata(pdev);
4070         struct igb_adapter *adapter = netdev_priv(netdev);
4071         struct e1000_hw *hw = &adapter->hw;
4072
4073         if (pci_enable_device(pdev)) {
4074                 dev_err(&pdev->dev,
4075                         "Cannot re-enable PCI device after reset.\n");
4076                 return PCI_ERS_RESULT_DISCONNECT;
4077         }
4078         pci_set_master(pdev);
4079
4080         pci_enable_wake(pdev, PCI_D3hot, 0);
4081         pci_enable_wake(pdev, PCI_D3cold, 0);
4082
4083         igb_reset(adapter);
4084         wr32(E1000_WUS, ~0);
4085
4086         return PCI_ERS_RESULT_RECOVERED;
4087 }
4088
4089 /**
4090  * igb_io_resume - called when traffic can start flowing again.
4091  * @pdev: Pointer to PCI device
4092  *
4093  * This callback is called when the error recovery driver tells us that
4094  * its OK to resume normal operation. Implementation resembles the
4095  * second-half of the igb_resume routine.
4096  */
4097 static void igb_io_resume(struct pci_dev *pdev)
4098 {
4099         struct net_device *netdev = pci_get_drvdata(pdev);
4100         struct igb_adapter *adapter = netdev_priv(netdev);
4101
4102         igb_init_manageability(adapter);
4103
4104         if (netif_running(netdev)) {
4105                 if (igb_up(adapter)) {
4106                         dev_err(&pdev->dev, "igb_up failed after reset\n");
4107                         return;
4108                 }
4109         }
4110
4111         netif_device_attach(netdev);
4112
4113         /* let the f/w know that the h/w is now under the control of the
4114          * driver. */
4115         igb_get_hw_control(adapter);
4116
4117 }
4118
4119 /* igb_main.c */