Pull pvops into release branch
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
38
39 /*
40  * Register access.
41  * All access to the CSR registers will go through the methods
42  * rt2x00pci_register_read and rt2x00pci_register_write.
43  * BBP and RF register require indirect register access,
44  * and use the CSR registers BBPCSR and RFCSR to achieve this.
45  * These indirect registers work with busy bits,
46  * and we will try maximal REGISTER_BUSY_COUNT times to access
47  * the register while taking a REGISTER_BUSY_DELAY us delay
48  * between each attampt. When the busy bit is still set at that time,
49  * the access attempt is considered to have failed,
50  * and we will print an error.
51  */
52 static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
53 {
54         u32 reg;
55         unsigned int i;
56
57         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58                 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59                 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60                         break;
61                 udelay(REGISTER_BUSY_DELAY);
62         }
63
64         return reg;
65 }
66
67 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68                                 const unsigned int word, const u8 value)
69 {
70         u32 reg;
71
72         /*
73          * Wait until the BBP becomes ready.
74          */
75         reg = rt2500pci_bbp_check(rt2x00dev);
76         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77                 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78                 return;
79         }
80
81         /*
82          * Write the data into the BBP.
83          */
84         reg = 0;
85         rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
89
90         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
91 }
92
93 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94                                const unsigned int word, u8 *value)
95 {
96         u32 reg;
97
98         /*
99          * Wait until the BBP becomes ready.
100          */
101         reg = rt2500pci_bbp_check(rt2x00dev);
102         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104                 return;
105         }
106
107         /*
108          * Write the request into the BBP.
109          */
110         reg = 0;
111         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
114
115         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
116
117         /*
118          * Wait until the BBP becomes ready.
119          */
120         reg = rt2500pci_bbp_check(rt2x00dev);
121         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123                 *value = 0xff;
124                 return;
125         }
126
127         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
128 }
129
130 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
131                                const unsigned int word, const u32 value)
132 {
133         u32 reg;
134         unsigned int i;
135
136         if (!word)
137                 return;
138
139         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140                 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141                 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142                         goto rf_write;
143                 udelay(REGISTER_BUSY_DELAY);
144         }
145
146         ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147         return;
148
149 rf_write:
150         reg = 0;
151         rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152         rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153         rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154         rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
155
156         rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157         rt2x00_rf_write(rt2x00dev, word, value);
158 }
159
160 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
161 {
162         struct rt2x00_dev *rt2x00dev = eeprom->data;
163         u32 reg;
164
165         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
166
167         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169         eeprom->reg_data_clock =
170             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171         eeprom->reg_chip_select =
172             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
173 }
174
175 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
176 {
177         struct rt2x00_dev *rt2x00dev = eeprom->data;
178         u32 reg = 0;
179
180         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183                            !!eeprom->reg_data_clock);
184         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185                            !!eeprom->reg_chip_select);
186
187         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
188 }
189
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
192
193 static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
194                                const unsigned int word, u32 *data)
195 {
196         rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
197 }
198
199 static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
200                                 const unsigned int word, u32 data)
201 {
202         rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
203 }
204
205 static const struct rt2x00debug rt2500pci_rt2x00debug = {
206         .owner  = THIS_MODULE,
207         .csr    = {
208                 .read           = rt2500pci_read_csr,
209                 .write          = rt2500pci_write_csr,
210                 .word_size      = sizeof(u32),
211                 .word_count     = CSR_REG_SIZE / sizeof(u32),
212         },
213         .eeprom = {
214                 .read           = rt2x00_eeprom_read,
215                 .write          = rt2x00_eeprom_write,
216                 .word_size      = sizeof(u16),
217                 .word_count     = EEPROM_SIZE / sizeof(u16),
218         },
219         .bbp    = {
220                 .read           = rt2500pci_bbp_read,
221                 .write          = rt2500pci_bbp_write,
222                 .word_size      = sizeof(u8),
223                 .word_count     = BBP_SIZE / sizeof(u8),
224         },
225         .rf     = {
226                 .read           = rt2x00_rf_read,
227                 .write          = rt2500pci_rf_write,
228                 .word_size      = sizeof(u32),
229                 .word_count     = RF_SIZE / sizeof(u32),
230         },
231 };
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
233
234 #ifdef CONFIG_RT2500PCI_RFKILL
235 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
236 {
237         u32 reg;
238
239         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
241 }
242 #else
243 #define rt2500pci_rfkill_poll   NULL
244 #endif /* CONFIG_RT2500PCI_RFKILL */
245
246 #ifdef CONFIG_RT2500PCI_LEDS
247 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
248                                      enum led_brightness brightness)
249 {
250         struct rt2x00_led *led =
251             container_of(led_cdev, struct rt2x00_led, led_dev);
252         unsigned int enabled = brightness != LED_OFF;
253         u32 reg;
254
255         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
256
257         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
258                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
259         else if (led->type == LED_TYPE_ACTIVITY)
260                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
261
262         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
263 }
264
265 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
266                                unsigned long *delay_on,
267                                unsigned long *delay_off)
268 {
269         struct rt2x00_led *led =
270             container_of(led_cdev, struct rt2x00_led, led_dev);
271         u32 reg;
272
273         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
274         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
275         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
276         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
277
278         return 0;
279 }
280 #endif /* CONFIG_RT2500PCI_LEDS */
281
282 /*
283  * Configuration handlers.
284  */
285 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
286                                     const unsigned int filter_flags)
287 {
288         u32 reg;
289
290         /*
291          * Start configuration steps.
292          * Note that the version error will always be dropped
293          * and broadcast frames will always be accepted since
294          * there is no filter for it at this time.
295          */
296         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
297         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
298                            !(filter_flags & FIF_FCSFAIL));
299         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
300                            !(filter_flags & FIF_PLCPFAIL));
301         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
302                            !(filter_flags & FIF_CONTROL));
303         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
304                            !(filter_flags & FIF_PROMISC_IN_BSS));
305         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
306                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
307                            !rt2x00dev->intf_ap_count);
308         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
309         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
310                            !(filter_flags & FIF_ALLMULTI));
311         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
312         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
313 }
314
315 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
316                                   struct rt2x00_intf *intf,
317                                   struct rt2x00intf_conf *conf,
318                                   const unsigned int flags)
319 {
320         struct data_queue *queue =
321             rt2x00queue_get_queue(rt2x00dev, RT2X00_BCN_QUEUE_BEACON);
322         unsigned int bcn_preload;
323         u32 reg;
324
325         if (flags & CONFIG_UPDATE_TYPE) {
326                 /*
327                  * Enable beacon config
328                  */
329                 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
330                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
331                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
332                 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
333                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
334
335                 /*
336                  * Enable synchronisation.
337                  */
338                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
339                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
340                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
341                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
342                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
343         }
344
345         if (flags & CONFIG_UPDATE_MAC)
346                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
347                                               conf->mac, sizeof(conf->mac));
348
349         if (flags & CONFIG_UPDATE_BSSID)
350                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
351                                               conf->bssid, sizeof(conf->bssid));
352 }
353
354 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
355                                  struct rt2x00lib_erp *erp)
356 {
357         int preamble_mask;
358         u32 reg;
359
360         /*
361          * When short preamble is enabled, we should set bit 0x08
362          */
363         preamble_mask = erp->short_preamble << 3;
364
365         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
366         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
367                            erp->ack_timeout);
368         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
369                            erp->ack_consume_time);
370         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
371
372         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
373         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
374         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
375         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
376         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
377
378         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
379         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
380         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
381         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
382         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
383
384         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
385         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
386         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
387         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
388         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
389
390         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
391         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
392         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
393         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
394         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
395 }
396
397 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
398                                      const int basic_rate_mask)
399 {
400         rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
401 }
402
403 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
404                                      struct rf_channel *rf, const int txpower)
405 {
406         u8 r70;
407
408         /*
409          * Set TXpower.
410          */
411         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
412
413         /*
414          * Switch on tuning bits.
415          * For RT2523 devices we do not need to update the R1 register.
416          */
417         if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
418                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
419         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
420
421         /*
422          * For RT2525 we should first set the channel to half band higher.
423          */
424         if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
425                 static const u32 vals[] = {
426                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
427                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
428                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
429                         0x00080d2e, 0x00080d3a
430                 };
431
432                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
433                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
434                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
435                 if (rf->rf4)
436                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
437         }
438
439         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
440         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
441         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
442         if (rf->rf4)
443                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
444
445         /*
446          * Channel 14 requires the Japan filter bit to be set.
447          */
448         r70 = 0x46;
449         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
450         rt2500pci_bbp_write(rt2x00dev, 70, r70);
451
452         msleep(1);
453
454         /*
455          * Switch off tuning bits.
456          * For RT2523 devices we do not need to update the R1 register.
457          */
458         if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
459                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
460                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
461         }
462
463         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
464         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
465
466         /*
467          * Clear false CRC during channel switch.
468          */
469         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
470 }
471
472 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
473                                      const int txpower)
474 {
475         u32 rf3;
476
477         rt2x00_rf_read(rt2x00dev, 3, &rf3);
478         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
479         rt2500pci_rf_write(rt2x00dev, 3, rf3);
480 }
481
482 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
483                                      struct antenna_setup *ant)
484 {
485         u32 reg;
486         u8 r14;
487         u8 r2;
488
489         /*
490          * We should never come here because rt2x00lib is supposed
491          * to catch this and send us the correct antenna explicitely.
492          */
493         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
494                ant->tx == ANTENNA_SW_DIVERSITY);
495
496         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
497         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
498         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
499
500         /*
501          * Configure the TX antenna.
502          */
503         switch (ant->tx) {
504         case ANTENNA_A:
505                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
506                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
507                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
508                 break;
509         case ANTENNA_B:
510         default:
511                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
512                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
513                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
514                 break;
515         }
516
517         /*
518          * Configure the RX antenna.
519          */
520         switch (ant->rx) {
521         case ANTENNA_A:
522                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
523                 break;
524         case ANTENNA_B:
525         default:
526                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
527                 break;
528         }
529
530         /*
531          * RT2525E and RT5222 need to flip TX I/Q
532          */
533         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
534             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
535                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
536                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
537                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
538
539                 /*
540                  * RT2525E does not need RX I/Q Flip.
541                  */
542                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
543                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
544         } else {
545                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
546                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
547         }
548
549         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
550         rt2500pci_bbp_write(rt2x00dev, 14, r14);
551         rt2500pci_bbp_write(rt2x00dev, 2, r2);
552 }
553
554 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
555                                       struct rt2x00lib_conf *libconf)
556 {
557         u32 reg;
558
559         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
560         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
561         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
562
563         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
564         rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
565         rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
566         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
567
568         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
569         rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
570         rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
571         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
572
573         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
574         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
575         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
576         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
577
578         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
579         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
580                            libconf->conf->beacon_int * 16);
581         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
582                            libconf->conf->beacon_int * 16);
583         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
584 }
585
586 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
587                              struct rt2x00lib_conf *libconf,
588                              const unsigned int flags)
589 {
590         if (flags & CONFIG_UPDATE_PHYMODE)
591                 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
592         if (flags & CONFIG_UPDATE_CHANNEL)
593                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
594                                          libconf->conf->power_level);
595         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
596                 rt2500pci_config_txpower(rt2x00dev,
597                                          libconf->conf->power_level);
598         if (flags & CONFIG_UPDATE_ANTENNA)
599                 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
600         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
601                 rt2500pci_config_duration(rt2x00dev, libconf);
602 }
603
604 /*
605  * Link tuning
606  */
607 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
608                                  struct link_qual *qual)
609 {
610         u32 reg;
611
612         /*
613          * Update FCS error count from register.
614          */
615         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
616         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
617
618         /*
619          * Update False CCA count from register.
620          */
621         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
622         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
623 }
624
625 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
626 {
627         rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
628         rt2x00dev->link.vgc_level = 0x48;
629 }
630
631 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
632 {
633         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
634         u8 r17;
635
636         /*
637          * To prevent collisions with MAC ASIC on chipsets
638          * up to version C the link tuning should halt after 20
639          * seconds while being associated.
640          */
641         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
642             rt2x00dev->intf_associated &&
643             rt2x00dev->link.count > 20)
644                 return;
645
646         rt2500pci_bbp_read(rt2x00dev, 17, &r17);
647
648         /*
649          * Chipset versions C and lower should directly continue
650          * to the dynamic CCA tuning. Chipset version D and higher
651          * should go straight to dynamic CCA tuning when they
652          * are not associated.
653          */
654         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
655             !rt2x00dev->intf_associated)
656                 goto dynamic_cca_tune;
657
658         /*
659          * A too low RSSI will cause too much false CCA which will
660          * then corrupt the R17 tuning. To remidy this the tuning should
661          * be stopped (While making sure the R17 value will not exceed limits)
662          */
663         if (rssi < -80 && rt2x00dev->link.count > 20) {
664                 if (r17 >= 0x41) {
665                         r17 = rt2x00dev->link.vgc_level;
666                         rt2500pci_bbp_write(rt2x00dev, 17, r17);
667                 }
668                 return;
669         }
670
671         /*
672          * Special big-R17 for short distance
673          */
674         if (rssi >= -58) {
675                 if (r17 != 0x50)
676                         rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
677                 return;
678         }
679
680         /*
681          * Special mid-R17 for middle distance
682          */
683         if (rssi >= -74) {
684                 if (r17 != 0x41)
685                         rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
686                 return;
687         }
688
689         /*
690          * Leave short or middle distance condition, restore r17
691          * to the dynamic tuning range.
692          */
693         if (r17 >= 0x41) {
694                 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
695                 return;
696         }
697
698 dynamic_cca_tune:
699
700         /*
701          * R17 is inside the dynamic tuning range,
702          * start tuning the link based on the false cca counter.
703          */
704         if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
705                 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
706                 rt2x00dev->link.vgc_level = r17;
707         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
708                 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
709                 rt2x00dev->link.vgc_level = r17;
710         }
711 }
712
713 /*
714  * Initialization functions.
715  */
716 static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
717                                    struct queue_entry *entry)
718 {
719         struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
720         u32 word;
721
722         rt2x00_desc_read(priv_rx->desc, 1, &word);
723         rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->data_dma);
724         rt2x00_desc_write(priv_rx->desc, 1, word);
725
726         rt2x00_desc_read(priv_rx->desc, 0, &word);
727         rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
728         rt2x00_desc_write(priv_rx->desc, 0, word);
729 }
730
731 static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
732                                    struct queue_entry *entry)
733 {
734         struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
735         u32 word;
736
737         rt2x00_desc_read(priv_tx->desc, 1, &word);
738         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->data_dma);
739         rt2x00_desc_write(priv_tx->desc, 1, word);
740
741         rt2x00_desc_read(priv_tx->desc, 0, &word);
742         rt2x00_set_field32(&word, TXD_W0_VALID, 0);
743         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
744         rt2x00_desc_write(priv_tx->desc, 0, word);
745 }
746
747 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
748 {
749         struct queue_entry_priv_pci_rx *priv_rx;
750         struct queue_entry_priv_pci_tx *priv_tx;
751         u32 reg;
752
753         /*
754          * Initialize registers.
755          */
756         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
757         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
758         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
759         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
760         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
761         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
762
763         priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
764         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
765         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
766                            priv_tx->desc_dma);
767         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
768
769         priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
770         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
771         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
772                            priv_tx->desc_dma);
773         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
774
775         priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
776         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
777         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
778                            priv_tx->desc_dma);
779         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
780
781         priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
782         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
783         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
784                            priv_tx->desc_dma);
785         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
786
787         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
788         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
789         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
790         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
791
792         priv_rx = rt2x00dev->rx->entries[0].priv_data;
793         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
794         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_rx->desc_dma);
795         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
796
797         return 0;
798 }
799
800 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
801 {
802         u32 reg;
803
804         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
805         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
806         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
807         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
808
809         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
810         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
811         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
812         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
813         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
814
815         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
816         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
817                            rt2x00dev->rx->data_size / 128);
818         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
819
820         /*
821          * Always use CWmin and CWmax set in descriptor.
822          */
823         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
824         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
825         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
826
827         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
828         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
829         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
830         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
831         rt2x00_set_field32(&reg, CSR14_TCFP, 0);
832         rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
833         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
834         rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
835         rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
836         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
837
838         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
839
840         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
841         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
842         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
843         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
844         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
845         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
846         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
847         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
848         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
849         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
850
851         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
852         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
853         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
854         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
855         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
856         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
857
858         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
859         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
860         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
861         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
862         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
863         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
864
865         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
866         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
867         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
868         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
869         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
870         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
871
872         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
873         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
874         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
875         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
876         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
877         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
878         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
879         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
880         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
881         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
882
883         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
884         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
885         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
886         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
887         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
888         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
889         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
890         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
891         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
892
893         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
894
895         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
896         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
897
898         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
899                 return -EBUSY;
900
901         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
902         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
903
904         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
905         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
906         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
907
908         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
909         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
910         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
911         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
912         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
913         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
914         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
915         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
916
917         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
918
919         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
920
921         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
922         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
923         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
924         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
925         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
926
927         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
928         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
929         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
930         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
931
932         /*
933          * We must clear the FCS and FIFO error count.
934          * These registers are cleared on read,
935          * so we may pass a useless variable to store the value.
936          */
937         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
938         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
939
940         return 0;
941 }
942
943 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
944 {
945         unsigned int i;
946         u16 eeprom;
947         u8 reg_id;
948         u8 value;
949
950         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
951                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
952                 if ((value != 0xff) && (value != 0x00))
953                         goto continue_csr_init;
954                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
955                 udelay(REGISTER_BUSY_DELAY);
956         }
957
958         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
959         return -EACCES;
960
961 continue_csr_init:
962         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
963         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
964         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
965         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
966         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
967         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
968         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
969         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
970         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
971         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
972         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
973         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
974         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
975         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
976         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
977         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
978         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
979         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
980         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
981         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
982         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
983         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
984         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
985         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
986         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
987         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
988         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
989         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
990         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
991         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
992
993         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
994                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
995
996                 if (eeprom != 0xffff && eeprom != 0x0000) {
997                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
998                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
999                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1000                 }
1001         }
1002
1003         return 0;
1004 }
1005
1006 /*
1007  * Device state switch handlers.
1008  */
1009 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1010                                 enum dev_state state)
1011 {
1012         u32 reg;
1013
1014         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1015         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1016                            state == STATE_RADIO_RX_OFF);
1017         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1018 }
1019
1020 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1021                                  enum dev_state state)
1022 {
1023         int mask = (state == STATE_RADIO_IRQ_OFF);
1024         u32 reg;
1025
1026         /*
1027          * When interrupts are being enabled, the interrupt registers
1028          * should clear the register to assure a clean state.
1029          */
1030         if (state == STATE_RADIO_IRQ_ON) {
1031                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1032                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1033         }
1034
1035         /*
1036          * Only toggle the interrupts bits we are going to use.
1037          * Non-checked interrupt bits are disabled by default.
1038          */
1039         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1040         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1041         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1042         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1043         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1044         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1045         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1046 }
1047
1048 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1049 {
1050         /*
1051          * Initialize all registers.
1052          */
1053         if (rt2500pci_init_queues(rt2x00dev) ||
1054             rt2500pci_init_registers(rt2x00dev) ||
1055             rt2500pci_init_bbp(rt2x00dev)) {
1056                 ERROR(rt2x00dev, "Register initialization failed.\n");
1057                 return -EIO;
1058         }
1059
1060         /*
1061          * Enable interrupts.
1062          */
1063         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1064
1065         return 0;
1066 }
1067
1068 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1069 {
1070         u32 reg;
1071
1072         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1073
1074         /*
1075          * Disable synchronisation.
1076          */
1077         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1078
1079         /*
1080          * Cancel RX and TX.
1081          */
1082         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1083         rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1084         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1085
1086         /*
1087          * Disable interrupts.
1088          */
1089         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1090 }
1091
1092 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1093                                enum dev_state state)
1094 {
1095         u32 reg;
1096         unsigned int i;
1097         char put_to_sleep;
1098         char bbp_state;
1099         char rf_state;
1100
1101         put_to_sleep = (state != STATE_AWAKE);
1102
1103         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1104         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1105         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1106         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1107         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1108         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1109
1110         /*
1111          * Device is not guaranteed to be in the requested state yet.
1112          * We must wait until the register indicates that the
1113          * device has entered the correct state.
1114          */
1115         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1116                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1117                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1118                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1119                 if (bbp_state == state && rf_state == state)
1120                         return 0;
1121                 msleep(10);
1122         }
1123
1124         NOTICE(rt2x00dev, "Device failed to enter state %d, "
1125                "current device state: bbp %d and rf %d.\n",
1126                state, bbp_state, rf_state);
1127
1128         return -EBUSY;
1129 }
1130
1131 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1132                                       enum dev_state state)
1133 {
1134         int retval = 0;
1135
1136         switch (state) {
1137         case STATE_RADIO_ON:
1138                 retval = rt2500pci_enable_radio(rt2x00dev);
1139                 break;
1140         case STATE_RADIO_OFF:
1141                 rt2500pci_disable_radio(rt2x00dev);
1142                 break;
1143         case STATE_RADIO_RX_ON:
1144         case STATE_RADIO_RX_ON_LINK:
1145                 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1146                 break;
1147         case STATE_RADIO_RX_OFF:
1148         case STATE_RADIO_RX_OFF_LINK:
1149                 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1150                 break;
1151         case STATE_DEEP_SLEEP:
1152         case STATE_SLEEP:
1153         case STATE_STANDBY:
1154         case STATE_AWAKE:
1155                 retval = rt2500pci_set_state(rt2x00dev, state);
1156                 break;
1157         default:
1158                 retval = -ENOTSUPP;
1159                 break;
1160         }
1161
1162         return retval;
1163 }
1164
1165 /*
1166  * TX descriptor initialization
1167  */
1168 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1169                                     struct sk_buff *skb,
1170                                     struct txentry_desc *txdesc,
1171                                     struct ieee80211_tx_control *control)
1172 {
1173         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1174         __le32 *txd = skbdesc->desc;
1175         u32 word;
1176
1177         /*
1178          * Start writing the descriptor words.
1179          */
1180         rt2x00_desc_read(txd, 2, &word);
1181         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1182         rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1183         rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1184         rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1185         rt2x00_desc_write(txd, 2, word);
1186
1187         rt2x00_desc_read(txd, 3, &word);
1188         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1189         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1190         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1191         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1192         rt2x00_desc_write(txd, 3, word);
1193
1194         rt2x00_desc_read(txd, 10, &word);
1195         rt2x00_set_field32(&word, TXD_W10_RTS,
1196                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1197         rt2x00_desc_write(txd, 10, word);
1198
1199         rt2x00_desc_read(txd, 0, &word);
1200         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1201         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1202         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1203                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1204         rt2x00_set_field32(&word, TXD_W0_ACK,
1205                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1206         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1207                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1208         rt2x00_set_field32(&word, TXD_W0_OFDM,
1209                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1210         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1211         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1212         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1213                            !!(control->flags &
1214                               IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1215         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1216         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1217         rt2x00_desc_write(txd, 0, word);
1218 }
1219
1220 /*
1221  * TX data initialization
1222  */
1223 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1224                                     const unsigned int queue)
1225 {
1226         u32 reg;
1227
1228         if (queue == RT2X00_BCN_QUEUE_BEACON) {
1229                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1230                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1231                         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1232                         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1233                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1234                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1235                 }
1236                 return;
1237         }
1238
1239         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1240         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
1241                            (queue == IEEE80211_TX_QUEUE_DATA0));
1242         rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
1243                            (queue == IEEE80211_TX_QUEUE_DATA1));
1244         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
1245                            (queue == RT2X00_BCN_QUEUE_ATIM));
1246         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1247 }
1248
1249 /*
1250  * RX control handlers
1251  */
1252 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1253                                   struct rxdone_entry_desc *rxdesc)
1254 {
1255         struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1256         u32 word0;
1257         u32 word2;
1258
1259         rt2x00_desc_read(priv_rx->desc, 0, &word0);
1260         rt2x00_desc_read(priv_rx->desc, 2, &word2);
1261
1262         rxdesc->flags = 0;
1263         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1264                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1265         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1266                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1267
1268         /*
1269          * Obtain the status about this packet.
1270          * When frame was received with an OFDM bitrate,
1271          * the signal is the PLCP value. If it was received with
1272          * a CCK bitrate the signal is the rate in 100kbit/s.
1273          */
1274         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1275         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1276             entry->queue->rt2x00dev->rssi_offset;
1277         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1278
1279         rxdesc->dev_flags = 0;
1280         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1281                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1282         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1283                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1284 }
1285
1286 /*
1287  * Interrupt functions.
1288  */
1289 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1290                              const enum ieee80211_tx_queue queue_idx)
1291 {
1292         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1293         struct queue_entry_priv_pci_tx *priv_tx;
1294         struct queue_entry *entry;
1295         struct txdone_entry_desc txdesc;
1296         u32 word;
1297
1298         while (!rt2x00queue_empty(queue)) {
1299                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1300                 priv_tx = entry->priv_data;
1301                 rt2x00_desc_read(priv_tx->desc, 0, &word);
1302
1303                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1304                     !rt2x00_get_field32(word, TXD_W0_VALID))
1305                         break;
1306
1307                 /*
1308                  * Obtain the status about this packet.
1309                  */
1310                 txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
1311                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1312
1313                 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1314         }
1315 }
1316
1317 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1318 {
1319         struct rt2x00_dev *rt2x00dev = dev_instance;
1320         u32 reg;
1321
1322         /*
1323          * Get the interrupt sources & saved to local variable.
1324          * Write register value back to clear pending interrupts.
1325          */
1326         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1327         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1328
1329         if (!reg)
1330                 return IRQ_NONE;
1331
1332         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1333                 return IRQ_HANDLED;
1334
1335         /*
1336          * Handle interrupts, walk through all bits
1337          * and run the tasks, the bits are checked in order of
1338          * priority.
1339          */
1340
1341         /*
1342          * 1 - Beacon timer expired interrupt.
1343          */
1344         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1345                 rt2x00lib_beacondone(rt2x00dev);
1346
1347         /*
1348          * 2 - Rx ring done interrupt.
1349          */
1350         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1351                 rt2x00pci_rxdone(rt2x00dev);
1352
1353         /*
1354          * 3 - Atim ring transmit done interrupt.
1355          */
1356         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1357                 rt2500pci_txdone(rt2x00dev, RT2X00_BCN_QUEUE_ATIM);
1358
1359         /*
1360          * 4 - Priority ring transmit done interrupt.
1361          */
1362         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1363                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1364
1365         /*
1366          * 5 - Tx ring transmit done interrupt.
1367          */
1368         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1369                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1370
1371         return IRQ_HANDLED;
1372 }
1373
1374 /*
1375  * Device probe functions.
1376  */
1377 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1378 {
1379         struct eeprom_93cx6 eeprom;
1380         u32 reg;
1381         u16 word;
1382         u8 *mac;
1383
1384         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1385
1386         eeprom.data = rt2x00dev;
1387         eeprom.register_read = rt2500pci_eepromregister_read;
1388         eeprom.register_write = rt2500pci_eepromregister_write;
1389         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1390             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1391         eeprom.reg_data_in = 0;
1392         eeprom.reg_data_out = 0;
1393         eeprom.reg_data_clock = 0;
1394         eeprom.reg_chip_select = 0;
1395
1396         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1397                                EEPROM_SIZE / sizeof(u16));
1398
1399         /*
1400          * Start validation of the data that has been read.
1401          */
1402         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1403         if (!is_valid_ether_addr(mac)) {
1404                 DECLARE_MAC_BUF(macbuf);
1405
1406                 random_ether_addr(mac);
1407                 EEPROM(rt2x00dev, "MAC: %s\n",
1408                        print_mac(macbuf, mac));
1409         }
1410
1411         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1412         if (word == 0xffff) {
1413                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1414                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1415                                    ANTENNA_SW_DIVERSITY);
1416                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1417                                    ANTENNA_SW_DIVERSITY);
1418                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1419                                    LED_MODE_DEFAULT);
1420                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1421                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1422                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1423                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1424                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1425         }
1426
1427         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1428         if (word == 0xffff) {
1429                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1430                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1431                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1432                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1433                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1434         }
1435
1436         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1437         if (word == 0xffff) {
1438                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1439                                    DEFAULT_RSSI_OFFSET);
1440                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1441                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1442         }
1443
1444         return 0;
1445 }
1446
1447 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1448 {
1449         u32 reg;
1450         u16 value;
1451         u16 eeprom;
1452
1453         /*
1454          * Read EEPROM word for configuration.
1455          */
1456         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1457
1458         /*
1459          * Identify RF chipset.
1460          */
1461         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1462         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1463         rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1464
1465         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1466             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1467             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1468             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1469             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1470             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1471                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1472                 return -ENODEV;
1473         }
1474
1475         /*
1476          * Identify default antenna configuration.
1477          */
1478         rt2x00dev->default_ant.tx =
1479             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1480         rt2x00dev->default_ant.rx =
1481             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1482
1483         /*
1484          * Store led mode, for correct led behaviour.
1485          */
1486 #ifdef CONFIG_RT2500PCI_LEDS
1487         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1488
1489         rt2x00dev->led_radio.rt2x00dev = rt2x00dev;
1490         rt2x00dev->led_radio.type = LED_TYPE_RADIO;
1491         rt2x00dev->led_radio.led_dev.brightness_set =
1492             rt2500pci_brightness_set;
1493         rt2x00dev->led_radio.led_dev.blink_set =
1494             rt2500pci_blink_set;
1495         rt2x00dev->led_radio.flags = LED_INITIALIZED;
1496
1497         if (value == LED_MODE_TXRX_ACTIVITY) {
1498                 rt2x00dev->led_qual.rt2x00dev = rt2x00dev;
1499                 rt2x00dev->led_qual.type = LED_TYPE_ACTIVITY;
1500                 rt2x00dev->led_qual.led_dev.brightness_set =
1501                     rt2500pci_brightness_set;
1502                 rt2x00dev->led_qual.led_dev.blink_set =
1503                     rt2500pci_blink_set;
1504                 rt2x00dev->led_qual.flags = LED_INITIALIZED;
1505         }
1506 #endif /* CONFIG_RT2500PCI_LEDS */
1507
1508         /*
1509          * Detect if this device has an hardware controlled radio.
1510          */
1511 #ifdef CONFIG_RT2500PCI_RFKILL
1512         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1513                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1514 #endif /* CONFIG_RT2500PCI_RFKILL */
1515
1516         /*
1517          * Check if the BBP tuning should be enabled.
1518          */
1519         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1520
1521         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1522                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1523
1524         /*
1525          * Read the RSSI <-> dBm offset information.
1526          */
1527         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1528         rt2x00dev->rssi_offset =
1529             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1530
1531         return 0;
1532 }
1533
1534 /*
1535  * RF value list for RF2522
1536  * Supports: 2.4 GHz
1537  */
1538 static const struct rf_channel rf_vals_bg_2522[] = {
1539         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1540         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1541         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1542         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1543         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1544         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1545         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1546         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1547         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1548         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1549         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1550         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1551         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1552         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1553 };
1554
1555 /*
1556  * RF value list for RF2523
1557  * Supports: 2.4 GHz
1558  */
1559 static const struct rf_channel rf_vals_bg_2523[] = {
1560         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1561         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1562         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1563         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1564         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1565         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1566         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1567         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1568         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1569         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1570         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1571         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1572         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1573         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1574 };
1575
1576 /*
1577  * RF value list for RF2524
1578  * Supports: 2.4 GHz
1579  */
1580 static const struct rf_channel rf_vals_bg_2524[] = {
1581         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1582         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1583         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1584         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1585         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1586         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1587         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1588         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1589         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1590         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1591         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1592         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1593         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1594         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1595 };
1596
1597 /*
1598  * RF value list for RF2525
1599  * Supports: 2.4 GHz
1600  */
1601 static const struct rf_channel rf_vals_bg_2525[] = {
1602         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1603         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1604         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1605         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1606         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1607         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1608         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1609         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1610         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1611         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1612         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1613         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1614         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1615         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1616 };
1617
1618 /*
1619  * RF value list for RF2525e
1620  * Supports: 2.4 GHz
1621  */
1622 static const struct rf_channel rf_vals_bg_2525e[] = {
1623         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1624         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1625         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1626         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1627         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1628         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1629         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1630         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1631         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1632         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1633         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1634         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1635         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1636         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1637 };
1638
1639 /*
1640  * RF value list for RF5222
1641  * Supports: 2.4 GHz & 5.2 GHz
1642  */
1643 static const struct rf_channel rf_vals_5222[] = {
1644         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1645         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1646         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1647         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1648         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1649         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1650         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1651         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1652         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1653         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1654         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1655         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1656         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1657         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1658
1659         /* 802.11 UNI / HyperLan 2 */
1660         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1661         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1662         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1663         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1664         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1665         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1666         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1667         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1668
1669         /* 802.11 HyperLan 2 */
1670         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1671         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1672         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1673         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1674         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1675         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1676         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1677         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1678         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1679         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1680
1681         /* 802.11 UNII */
1682         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1683         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1684         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1685         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1686         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1687 };
1688
1689 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1690 {
1691         struct hw_mode_spec *spec = &rt2x00dev->spec;
1692         u8 *txpower;
1693         unsigned int i;
1694
1695         /*
1696          * Initialize all hw fields.
1697          */
1698         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1699         rt2x00dev->hw->extra_tx_headroom = 0;
1700         rt2x00dev->hw->max_signal = MAX_SIGNAL;
1701         rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1702         rt2x00dev->hw->queues = 2;
1703
1704         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1705         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1706                                 rt2x00_eeprom_addr(rt2x00dev,
1707                                                    EEPROM_MAC_ADDR_0));
1708
1709         /*
1710          * Convert tx_power array in eeprom.
1711          */
1712         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1713         for (i = 0; i < 14; i++)
1714                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1715
1716         /*
1717          * Initialize hw_mode information.
1718          */
1719         spec->supported_bands = SUPPORT_BAND_2GHZ;
1720         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1721         spec->tx_power_a = NULL;
1722         spec->tx_power_bg = txpower;
1723         spec->tx_power_default = DEFAULT_TXPOWER;
1724
1725         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1726                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1727                 spec->channels = rf_vals_bg_2522;
1728         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1729                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1730                 spec->channels = rf_vals_bg_2523;
1731         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1732                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1733                 spec->channels = rf_vals_bg_2524;
1734         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1735                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1736                 spec->channels = rf_vals_bg_2525;
1737         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1738                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1739                 spec->channels = rf_vals_bg_2525e;
1740         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1741                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1742                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1743                 spec->channels = rf_vals_5222;
1744         }
1745 }
1746
1747 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1748 {
1749         int retval;
1750
1751         /*
1752          * Allocate eeprom data.
1753          */
1754         retval = rt2500pci_validate_eeprom(rt2x00dev);
1755         if (retval)
1756                 return retval;
1757
1758         retval = rt2500pci_init_eeprom(rt2x00dev);
1759         if (retval)
1760                 return retval;
1761
1762         /*
1763          * Initialize hw specifications.
1764          */
1765         rt2500pci_probe_hw_mode(rt2x00dev);
1766
1767         /*
1768          * This device requires the atim queue
1769          */
1770         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1771
1772         /*
1773          * Set the rssi offset.
1774          */
1775         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1776
1777         return 0;
1778 }
1779
1780 /*
1781  * IEEE80211 stack callback functions.
1782  */
1783 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1784                                      u32 short_retry, u32 long_retry)
1785 {
1786         struct rt2x00_dev *rt2x00dev = hw->priv;
1787         u32 reg;
1788
1789         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1790         rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1791         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1792         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1793
1794         return 0;
1795 }
1796
1797 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1798 {
1799         struct rt2x00_dev *rt2x00dev = hw->priv;
1800         u64 tsf;
1801         u32 reg;
1802
1803         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1804         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1805         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1806         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1807
1808         return tsf;
1809 }
1810
1811 static int rt2500pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
1812                                    struct ieee80211_tx_control *control)
1813 {
1814         struct rt2x00_dev *rt2x00dev = hw->priv;
1815         struct rt2x00_intf *intf = vif_to_intf(control->vif);
1816         struct queue_entry_priv_pci_tx *priv_tx;
1817         struct skb_frame_desc *skbdesc;
1818         u32 reg;
1819
1820         if (unlikely(!intf->beacon))
1821                 return -ENOBUFS;
1822
1823         priv_tx = intf->beacon->priv_data;
1824
1825         /*
1826          * Fill in skb descriptor
1827          */
1828         skbdesc = get_skb_frame_desc(skb);
1829         memset(skbdesc, 0, sizeof(*skbdesc));
1830         skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
1831         skbdesc->data = skb->data;
1832         skbdesc->data_len = skb->len;
1833         skbdesc->desc = priv_tx->desc;
1834         skbdesc->desc_len = intf->beacon->queue->desc_size;
1835         skbdesc->entry = intf->beacon;
1836
1837         /*
1838          * Disable beaconing while we are reloading the beacon data,
1839          * otherwise we might be sending out invalid data.
1840          */
1841         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1842         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1843         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1844         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1845         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1846
1847         /*
1848          * mac80211 doesn't provide the control->queue variable
1849          * for beacons. Set our own queue identification so
1850          * it can be used during descriptor initialization.
1851          */
1852         control->queue = RT2X00_BCN_QUEUE_BEACON;
1853         rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1854
1855         /*
1856          * Enable beacon generation.
1857          * Write entire beacon with descriptor to register,
1858          * and kick the beacon generator.
1859          */
1860         memcpy(priv_tx->data, skb->data, skb->len);
1861         rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, control->queue);
1862
1863         return 0;
1864 }
1865
1866 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1867 {
1868         struct rt2x00_dev *rt2x00dev = hw->priv;
1869         u32 reg;
1870
1871         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1872         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1873 }
1874
1875 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1876         .tx                     = rt2x00mac_tx,
1877         .start                  = rt2x00mac_start,
1878         .stop                   = rt2x00mac_stop,
1879         .add_interface          = rt2x00mac_add_interface,
1880         .remove_interface       = rt2x00mac_remove_interface,
1881         .config                 = rt2x00mac_config,
1882         .config_interface       = rt2x00mac_config_interface,
1883         .configure_filter       = rt2x00mac_configure_filter,
1884         .get_stats              = rt2x00mac_get_stats,
1885         .set_retry_limit        = rt2500pci_set_retry_limit,
1886         .bss_info_changed       = rt2x00mac_bss_info_changed,
1887         .conf_tx                = rt2x00mac_conf_tx,
1888         .get_tx_stats           = rt2x00mac_get_tx_stats,
1889         .get_tsf                = rt2500pci_get_tsf,
1890         .beacon_update          = rt2500pci_beacon_update,
1891         .tx_last_beacon         = rt2500pci_tx_last_beacon,
1892 };
1893
1894 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1895         .irq_handler            = rt2500pci_interrupt,
1896         .probe_hw               = rt2500pci_probe_hw,
1897         .initialize             = rt2x00pci_initialize,
1898         .uninitialize           = rt2x00pci_uninitialize,
1899         .init_rxentry           = rt2500pci_init_rxentry,
1900         .init_txentry           = rt2500pci_init_txentry,
1901         .set_device_state       = rt2500pci_set_device_state,
1902         .rfkill_poll            = rt2500pci_rfkill_poll,
1903         .link_stats             = rt2500pci_link_stats,
1904         .reset_tuner            = rt2500pci_reset_tuner,
1905         .link_tuner             = rt2500pci_link_tuner,
1906         .write_tx_desc          = rt2500pci_write_tx_desc,
1907         .write_tx_data          = rt2x00pci_write_tx_data,
1908         .kick_tx_queue          = rt2500pci_kick_tx_queue,
1909         .fill_rxdone            = rt2500pci_fill_rxdone,
1910         .config_filter          = rt2500pci_config_filter,
1911         .config_intf            = rt2500pci_config_intf,
1912         .config_erp             = rt2500pci_config_erp,
1913         .config                 = rt2500pci_config,
1914 };
1915
1916 static const struct data_queue_desc rt2500pci_queue_rx = {
1917         .entry_num              = RX_ENTRIES,
1918         .data_size              = DATA_FRAME_SIZE,
1919         .desc_size              = RXD_DESC_SIZE,
1920         .priv_size              = sizeof(struct queue_entry_priv_pci_rx),
1921 };
1922
1923 static const struct data_queue_desc rt2500pci_queue_tx = {
1924         .entry_num              = TX_ENTRIES,
1925         .data_size              = DATA_FRAME_SIZE,
1926         .desc_size              = TXD_DESC_SIZE,
1927         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1928 };
1929
1930 static const struct data_queue_desc rt2500pci_queue_bcn = {
1931         .entry_num              = BEACON_ENTRIES,
1932         .data_size              = MGMT_FRAME_SIZE,
1933         .desc_size              = TXD_DESC_SIZE,
1934         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1935 };
1936
1937 static const struct data_queue_desc rt2500pci_queue_atim = {
1938         .entry_num              = ATIM_ENTRIES,
1939         .data_size              = DATA_FRAME_SIZE,
1940         .desc_size              = TXD_DESC_SIZE,
1941         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1942 };
1943
1944 static const struct rt2x00_ops rt2500pci_ops = {
1945         .name           = KBUILD_MODNAME,
1946         .max_sta_intf   = 1,
1947         .max_ap_intf    = 1,
1948         .eeprom_size    = EEPROM_SIZE,
1949         .rf_size        = RF_SIZE,
1950         .rx             = &rt2500pci_queue_rx,
1951         .tx             = &rt2500pci_queue_tx,
1952         .bcn            = &rt2500pci_queue_bcn,
1953         .atim           = &rt2500pci_queue_atim,
1954         .lib            = &rt2500pci_rt2x00_ops,
1955         .hw             = &rt2500pci_mac80211_ops,
1956 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1957         .debugfs        = &rt2500pci_rt2x00debug,
1958 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1959 };
1960
1961 /*
1962  * RT2500pci module information.
1963  */
1964 static struct pci_device_id rt2500pci_device_table[] = {
1965         { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1966         { 0, }
1967 };
1968
1969 MODULE_AUTHOR(DRV_PROJECT);
1970 MODULE_VERSION(DRV_VERSION);
1971 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1972 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1973 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1974 MODULE_LICENSE("GPL");
1975
1976 static struct pci_driver rt2500pci_driver = {
1977         .name           = KBUILD_MODNAME,
1978         .id_table       = rt2500pci_device_table,
1979         .probe          = rt2x00pci_probe,
1980         .remove         = __devexit_p(rt2x00pci_remove),
1981         .suspend        = rt2x00pci_suspend,
1982         .resume         = rt2x00pci_resume,
1983 };
1984
1985 static int __init rt2500pci_init(void)
1986 {
1987         return pci_register_driver(&rt2500pci_driver);
1988 }
1989
1990 static void __exit rt2500pci_exit(void)
1991 {
1992         pci_unregister_driver(&rt2500pci_driver);
1993 }
1994
1995 module_init(rt2500pci_init);
1996 module_exit(rt2500pci_exit);