2 * linux/arch/x86_64/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
33 #include <asm/processor.h>
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgalloc.h>
39 #include <asm/fixmap.h>
43 #include <asm/mmu_context.h>
44 #include <asm/proto.h>
46 #include <asm/sections.h>
47 #include <asm/kdebug.h>
49 #include <asm/cacheflush.h>
52 * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
53 * The direct mapping extends to max_pfn_mapped, so that we can directly access
54 * apertures, ACPI and other tables without having to play with fixmaps.
56 unsigned long max_low_pfn_mapped;
57 unsigned long max_pfn_mapped;
59 static unsigned long dma_reserve __initdata;
61 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
64 #ifdef CONFIG_DIRECT_GBPAGES
69 static int __init parse_direct_gbpages_off(char *arg)
74 early_param("nogbpages", parse_direct_gbpages_off);
76 static int __init parse_direct_gbpages_on(char *arg)
81 early_param("gbpages", parse_direct_gbpages_on);
84 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
85 * physical space so we can cache the place of the first one and move
86 * around without checking the pgd every time.
91 unsigned long __supported_pte_mask __read_mostly = ~0UL;
92 EXPORT_SYMBOL_GPL(__supported_pte_mask);
94 static int do_not_nx __cpuinitdata;
98 * Control non-executable mappings for 64-bit processes.
100 * on Enable (default)
103 static int __init nonx_setup(char *str)
107 if (!strncmp(str, "on", 2)) {
108 __supported_pte_mask |= _PAGE_NX;
110 } else if (!strncmp(str, "off", 3)) {
112 __supported_pte_mask &= ~_PAGE_NX;
116 early_param("noexec", nonx_setup);
118 void __cpuinit check_efer(void)
122 rdmsrl(MSR_EFER, efer);
123 if (!(efer & EFER_NX) || do_not_nx)
124 __supported_pte_mask &= ~_PAGE_NX;
127 int force_personality32;
131 * Control non executable heap for 32bit processes.
132 * To control the stack too use noexec=off
134 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
135 * off PROT_READ implies PROT_EXEC
137 static int __init nonx32_setup(char *str)
139 if (!strcmp(str, "on"))
140 force_personality32 &= ~READ_IMPLIES_EXEC;
141 else if (!strcmp(str, "off"))
142 force_personality32 |= READ_IMPLIES_EXEC;
145 __setup("noexec32=", nonx32_setup);
148 * NOTE: This function is marked __ref because it calls __init function
149 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
151 static __ref void *spp_getpage(void)
156 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
158 ptr = alloc_bootmem_pages(PAGE_SIZE);
160 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
161 panic("set_pte_phys: cannot allocate page data %s\n",
162 after_bootmem ? "after bootmem" : "");
165 pr_debug("spp_getpage %p\n", ptr);
171 set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
177 pud = pud_page + pud_index(vaddr);
178 if (pud_none(*pud)) {
179 pmd = (pmd_t *) spp_getpage();
180 pud_populate(&init_mm, pud, pmd);
181 if (pmd != pmd_offset(pud, 0)) {
182 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
183 pmd, pmd_offset(pud, 0));
187 pmd = pmd_offset(pud, vaddr);
188 if (pmd_none(*pmd)) {
189 pte = (pte_t *) spp_getpage();
190 pmd_populate_kernel(&init_mm, pmd, pte);
191 if (pte != pte_offset_kernel(pmd, 0)) {
192 printk(KERN_ERR "PAGETABLE BUG #02!\n");
197 pte = pte_offset_kernel(pmd, vaddr);
198 if (!pte_none(*pte) && pte_val(new_pte) &&
199 pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
201 set_pte(pte, new_pte);
204 * It's enough to flush this one mapping.
205 * (PGE mappings get flushed as well)
207 __flush_tlb_one(vaddr);
211 set_pte_vaddr(unsigned long vaddr, pte_t pteval)
216 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
218 pgd = pgd_offset_k(vaddr);
219 if (pgd_none(*pgd)) {
221 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
224 pud_page = (pud_t*)pgd_page_vaddr(*pgd);
225 set_pte_vaddr_pud(pud_page, vaddr, pteval);
229 * Create large page table mappings for a range of physical addresses.
231 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
238 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
239 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
240 pgd = pgd_offset_k((unsigned long)__va(phys));
241 if (pgd_none(*pgd)) {
242 pud = (pud_t *) spp_getpage();
243 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
246 pud = pud_offset(pgd, (unsigned long)__va(phys));
247 if (pud_none(*pud)) {
248 pmd = (pmd_t *) spp_getpage();
249 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
252 pmd = pmd_offset(pud, phys);
253 BUG_ON(!pmd_none(*pmd));
254 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
258 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
260 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
263 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
265 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
269 * The head.S code sets up the kernel high mapping:
271 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
273 * phys_addr holds the negative offset to the kernel, which is added
274 * to the compile time generated pmds. This results in invalid pmds up
275 * to the point where we hit the physaddr 0 mapping.
277 * We limit the mappings to the region from _text to _end. _end is
278 * rounded up to the 2MB boundary. This catches the invalid pmds as
279 * well, as they are located before _text:
281 void __init cleanup_highmap(void)
283 unsigned long vaddr = __START_KERNEL_map;
284 unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
285 pmd_t *pmd = level2_kernel_pgt;
286 pmd_t *last_pmd = pmd + PTRS_PER_PMD;
288 for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
291 if (vaddr < (unsigned long) _text || vaddr > end)
292 set_pmd(pmd, __pmd(0));
296 static unsigned long __initdata table_start;
297 static unsigned long __meminitdata table_end;
298 static unsigned long __meminitdata table_top;
300 static __ref void *alloc_low_page(unsigned long *phys)
302 unsigned long pfn = table_end++;
306 adr = (void *)get_zeroed_page(GFP_ATOMIC);
312 if (pfn >= table_top)
313 panic("alloc_low_page: ran out of memory");
315 adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
316 memset(adr, 0, PAGE_SIZE);
317 *phys = pfn * PAGE_SIZE;
321 static __ref void unmap_low_page(void *adr)
326 early_iounmap(adr, PAGE_SIZE);
329 static unsigned long __meminit
330 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
334 unsigned long last_map_addr = end;
337 pte_t *pte = pte_page + pte_index(addr);
339 for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
342 if (!after_bootmem) {
343 for(; i < PTRS_PER_PTE; i++, pte++)
344 set_pte(pte, __pte(0));
350 * We will re-use the existing mapping.
351 * Xen for example has some special requirements, like mapping
352 * pagetable pages as RO. So assume someone who pre-setup
353 * these mappings are more intelligent.
359 printk(" pte=%p addr=%lx pte=%016lx\n",
360 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
362 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
363 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
366 update_page_count(PG_LEVEL_4K, pages);
368 return last_map_addr;
371 static unsigned long __meminit
372 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
375 pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
377 return phys_pte_init(pte, address, end, prot);
380 static unsigned long __meminit
381 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
382 unsigned long page_size_mask, pgprot_t prot)
384 unsigned long pages = 0;
385 unsigned long last_map_addr = end;
387 int i = pmd_index(address);
389 for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
390 unsigned long pte_phys;
391 pmd_t *pmd = pmd_page + pmd_index(address);
393 pgprot_t new_prot = prot;
395 if (address >= end) {
396 if (!after_bootmem) {
397 for (; i < PTRS_PER_PMD; i++, pmd++)
398 set_pmd(pmd, __pmd(0));
404 if (!pmd_large(*pmd)) {
405 spin_lock(&init_mm.page_table_lock);
406 last_map_addr = phys_pte_update(pmd, address,
408 spin_unlock(&init_mm.page_table_lock);
412 * If we are ok with PG_LEVEL_2M mapping, then we will
413 * use the existing mapping,
415 * Otherwise, we will split the large page mapping but
416 * use the same existing protection bits except for
417 * large page, so that we don't violate Intel's TLB
418 * Application note (317080) which says, while changing
419 * the page sizes, new and old translations should
420 * not differ with respect to page frame and
423 if (page_size_mask & (1 << PG_LEVEL_2M))
425 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
428 if (page_size_mask & (1<<PG_LEVEL_2M)) {
430 spin_lock(&init_mm.page_table_lock);
431 set_pte((pte_t *)pmd,
432 pfn_pte(address >> PAGE_SHIFT,
433 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
434 spin_unlock(&init_mm.page_table_lock);
435 last_map_addr = (address & PMD_MASK) + PMD_SIZE;
439 pte = alloc_low_page(&pte_phys);
440 last_map_addr = phys_pte_init(pte, address, end, new_prot);
443 spin_lock(&init_mm.page_table_lock);
444 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
445 spin_unlock(&init_mm.page_table_lock);
447 update_page_count(PG_LEVEL_2M, pages);
448 return last_map_addr;
451 static unsigned long __meminit
452 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
453 unsigned long page_size_mask, pgprot_t prot)
455 pmd_t *pmd = pmd_offset(pud, 0);
456 unsigned long last_map_addr;
458 last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
460 return last_map_addr;
463 static unsigned long __meminit
464 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
465 unsigned long page_size_mask)
467 unsigned long pages = 0;
468 unsigned long last_map_addr = end;
469 int i = pud_index(addr);
471 for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
472 unsigned long pmd_phys;
473 pud_t *pud = pud_page + pud_index(addr);
475 pgprot_t prot = PAGE_KERNEL;
480 if (!after_bootmem &&
481 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
482 set_pud(pud, __pud(0));
487 if (!pud_large(*pud)) {
488 last_map_addr = phys_pmd_update(pud, addr, end,
489 page_size_mask, prot);
493 * If we are ok with PG_LEVEL_1G mapping, then we will
494 * use the existing mapping.
496 * Otherwise, we will split the gbpage mapping but use
497 * the same existing protection bits except for large
498 * page, so that we don't violate Intel's TLB
499 * Application note (317080) which says, while changing
500 * the page sizes, new and old translations should
501 * not differ with respect to page frame and
504 if (page_size_mask & (1 << PG_LEVEL_1G))
506 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
509 if (page_size_mask & (1<<PG_LEVEL_1G)) {
511 spin_lock(&init_mm.page_table_lock);
512 set_pte((pte_t *)pud,
513 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
514 spin_unlock(&init_mm.page_table_lock);
515 last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
519 pmd = alloc_low_page(&pmd_phys);
520 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
524 spin_lock(&init_mm.page_table_lock);
525 pud_populate(&init_mm, pud, __va(pmd_phys));
526 spin_unlock(&init_mm.page_table_lock);
530 update_page_count(PG_LEVEL_1G, pages);
532 return last_map_addr;
535 static unsigned long __meminit
536 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
537 unsigned long page_size_mask)
541 pud = (pud_t *)pgd_page_vaddr(*pgd);
543 return phys_pud_init(pud, addr, end, page_size_mask);
546 static void __init find_early_table_space(unsigned long end, int use_pse,
549 unsigned long puds, pmds, ptes, tables, start;
551 puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
552 tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
555 extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
556 pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
558 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
559 tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
563 extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
564 ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
566 ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
567 tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
570 * RED-PEN putting page tables only on node 0 could
571 * cause a hotspot and fill up ZONE_DMA. The page tables
572 * need roughly 0.5KB per GB.
575 table_start = find_e820_area(start, end, tables, PAGE_SIZE);
576 if (table_start == -1UL)
577 panic("Cannot find space for the kernel page tables");
579 table_start >>= PAGE_SHIFT;
580 table_end = table_start;
581 table_top = table_start + (tables >> PAGE_SHIFT);
583 printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
584 end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
587 static void __init init_gbpages(void)
589 if (direct_gbpages && cpu_has_gbpages)
590 printk(KERN_INFO "Using GB pages for direct mapping\n");
595 static unsigned long __init kernel_physical_mapping_init(unsigned long start,
597 unsigned long page_size_mask)
600 unsigned long next, last_map_addr = end;
602 start = (unsigned long)__va(start);
603 end = (unsigned long)__va(end);
605 for (; start < end; start = next) {
606 pgd_t *pgd = pgd_offset_k(start);
607 unsigned long pud_phys;
610 next = (start + PGDIR_SIZE) & PGDIR_MASK;
615 last_map_addr = phys_pud_update(pgd, __pa(start),
616 __pa(end), page_size_mask);
620 pud = alloc_low_page(&pud_phys);
621 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
625 spin_lock(&init_mm.page_table_lock);
626 pgd_populate(&init_mm, pgd, __va(pud_phys));
627 spin_unlock(&init_mm.page_table_lock);
631 return last_map_addr;
637 unsigned page_size_mask;
640 #define NR_RANGE_MR 5
642 static int save_mr(struct map_range *mr, int nr_range,
643 unsigned long start_pfn, unsigned long end_pfn,
644 unsigned long page_size_mask)
647 if (start_pfn < end_pfn) {
648 if (nr_range >= NR_RANGE_MR)
649 panic("run out of range for init_memory_mapping\n");
650 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
651 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
652 mr[nr_range].page_size_mask = page_size_mask;
660 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
661 * This runs before bootmem is initialized and gets pages directly from
662 * the physical memory. To access them they are temporarily mapped.
664 unsigned long __init_refok init_memory_mapping(unsigned long start,
667 unsigned long last_map_addr = 0;
668 unsigned long page_size_mask = 0;
669 unsigned long start_pfn, end_pfn;
671 struct map_range mr[NR_RANGE_MR];
673 int use_pse, use_gbpages;
675 printk(KERN_INFO "init_memory_mapping\n");
678 * Find space for the kernel direct mapping tables.
680 * Later we should allocate these tables in the local node of the
681 * memory mapped. Unfortunately this is done currently before the
682 * nodes are discovered.
687 #ifdef CONFIG_DEBUG_PAGEALLOC
689 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
690 * This will simplify cpa(), which otherwise needs to support splitting
691 * large pages into small in interrupt context, etc.
693 use_pse = use_gbpages = 0;
695 use_pse = cpu_has_pse;
696 use_gbpages = direct_gbpages;
700 page_size_mask |= 1 << PG_LEVEL_1G;
702 page_size_mask |= 1 << PG_LEVEL_2M;
704 memset(mr, 0, sizeof(mr));
707 /* head if not big page alignment ?*/
708 start_pfn = start >> PAGE_SHIFT;
709 end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
710 << (PMD_SHIFT - PAGE_SHIFT);
711 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
713 /* big page (2M) range*/
714 start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
715 << (PMD_SHIFT - PAGE_SHIFT);
716 end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
717 << (PUD_SHIFT - PAGE_SHIFT);
718 if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
719 end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
720 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
721 page_size_mask & (1<<PG_LEVEL_2M));
723 /* big page (1G) range */
725 end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
726 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
728 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
730 /* tail is not big page (1G) alignment */
732 end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
733 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
734 page_size_mask & (1<<PG_LEVEL_2M));
736 /* tail is not big page (2M) alignment */
738 end_pfn = end>>PAGE_SHIFT;
739 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
741 /* try to merge same page size and continuous */
742 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
743 unsigned long old_start;
744 if (mr[i].end != mr[i+1].start ||
745 mr[i].page_size_mask != mr[i+1].page_size_mask)
748 old_start = mr[i].start;
749 memmove(&mr[i], &mr[i+1],
750 (nr_range - 1 - i) * sizeof (struct map_range));
751 mr[i].start = old_start;
755 for (i = 0; i < nr_range; i++)
756 printk(KERN_DEBUG " %010lx - %010lx page %s\n",
757 mr[i].start, mr[i].end,
758 (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
759 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
762 find_early_table_space(end, use_pse, use_gbpages);
764 for (i = 0; i < nr_range; i++)
765 last_map_addr = kernel_physical_mapping_init(
766 mr[i].start, mr[i].end,
767 mr[i].page_size_mask);
770 mmu_cr4_features = read_cr4();
773 if (!after_bootmem && table_end > table_start)
774 reserve_early(table_start << PAGE_SHIFT,
775 table_end << PAGE_SHIFT, "PGTABLE");
777 printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
781 early_memtest(start, end);
783 return last_map_addr >> PAGE_SHIFT;
787 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
789 unsigned long bootmap_size, bootmap;
791 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
792 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
795 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
796 /* don't touch min_low_pfn */
797 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
799 e820_register_active_regions(0, start_pfn, end_pfn);
800 free_bootmem_with_active_regions(0, end_pfn);
801 early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
802 reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
805 void __init paging_init(void)
807 unsigned long max_zone_pfns[MAX_NR_ZONES];
809 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
810 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
811 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
812 max_zone_pfns[ZONE_NORMAL] = max_pfn;
814 memory_present(0, 0, max_pfn);
816 free_area_init_nodes(max_zone_pfns);
821 * Memory hotplug specific functions
823 #ifdef CONFIG_MEMORY_HOTPLUG
825 * Memory is added always to NORMAL zone. This means you will never get
826 * additional DMA/DMA32 memory.
828 int arch_add_memory(int nid, u64 start, u64 size)
830 struct pglist_data *pgdat = NODE_DATA(nid);
831 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
832 unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
833 unsigned long nr_pages = size >> PAGE_SHIFT;
836 last_mapped_pfn = init_memory_mapping(start, start + size-1);
837 if (last_mapped_pfn > max_pfn_mapped)
838 max_pfn_mapped = last_mapped_pfn;
840 ret = __add_pages(zone, start_pfn, nr_pages);
845 EXPORT_SYMBOL_GPL(arch_add_memory);
847 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
848 int memory_add_physaddr_to_nid(u64 start)
852 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
855 #endif /* CONFIG_MEMORY_HOTPLUG */
858 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
859 * is valid. The argument is a physical page number.
862 * On x86, access has to be given to the first megabyte of ram because that area
863 * contains bios code and data regions used by X and dosemu and similar apps.
864 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
865 * mmio resources as well as potential bios/acpi data regions.
867 int devmem_is_allowed(unsigned long pagenr)
871 if (!page_is_ram(pagenr))
877 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
878 kcore_modules, kcore_vsyscall;
880 void __init mem_init(void)
882 long codesize, reservedpages, datasize, initsize;
886 /* clear_bss() already clear the empty_zero_page */
890 /* this will put all low memory onto the freelists */
892 totalram_pages = numa_free_all_bootmem();
894 totalram_pages = free_all_bootmem();
896 reservedpages = max_pfn - totalram_pages -
897 absent_pages_in_range(0, max_pfn);
900 codesize = (unsigned long) &_etext - (unsigned long) &_text;
901 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
902 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
904 /* Register memory areas for /proc/kcore */
905 kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
906 kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
907 VMALLOC_END-VMALLOC_START);
908 kclist_add(&kcore_kernel, &_stext, _end - _stext);
909 kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
910 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
911 VSYSCALL_END - VSYSCALL_START);
913 printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
914 "%ldk reserved, %ldk data, %ldk init)\n",
915 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
916 max_pfn << (PAGE_SHIFT-10),
918 reservedpages << (PAGE_SHIFT-10),
923 void free_init_pages(char *what, unsigned long begin, unsigned long end)
925 unsigned long addr = begin;
931 * If debugging page accesses then do not free this memory but
932 * mark them not present - any buggy init-section access will
933 * create a kernel page fault:
935 #ifdef CONFIG_DEBUG_PAGEALLOC
936 printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
937 begin, PAGE_ALIGN(end));
938 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
940 printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
942 for (; addr < end; addr += PAGE_SIZE) {
943 ClearPageReserved(virt_to_page(addr));
944 init_page_count(virt_to_page(addr));
945 memset((void *)(addr & ~(PAGE_SIZE-1)),
946 POISON_FREE_INITMEM, PAGE_SIZE);
953 void free_initmem(void)
955 free_init_pages("unused kernel memory",
956 (unsigned long)(&__init_begin),
957 (unsigned long)(&__init_end));
960 #ifdef CONFIG_DEBUG_RODATA
961 const int rodata_test_data = 0xC3;
962 EXPORT_SYMBOL_GPL(rodata_test_data);
964 void mark_rodata_ro(void)
966 unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
967 unsigned long rodata_start =
968 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
970 #ifdef CONFIG_DYNAMIC_FTRACE
971 /* Dynamic tracing modifies the kernel text section */
972 start = rodata_start;
975 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
976 (end - start) >> 10);
977 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
980 * The rodata section (but not the kernel text!) should also be
983 set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
987 #ifdef CONFIG_CPA_DEBUG
988 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
989 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
991 printk(KERN_INFO "Testing CPA: again\n");
992 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
998 #ifdef CONFIG_BLK_DEV_INITRD
999 void free_initrd_mem(unsigned long start, unsigned long end)
1001 free_init_pages("initrd memory", start, end);
1005 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
1012 unsigned long pfn = phys >> PAGE_SHIFT;
1014 if (pfn >= max_pfn) {
1016 * This can happen with kdump kernels when accessing
1019 if (pfn < max_pfn_mapped)
1022 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
1027 /* Should check here against the e820 map to avoid double free */
1029 nid = phys_to_nid(phys);
1030 next_nid = phys_to_nid(phys + len - 1);
1031 if (nid == next_nid)
1032 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
1034 ret = reserve_bootmem(phys, len, flags);
1040 reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
1043 if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
1044 dma_reserve += len / PAGE_SIZE;
1045 set_dma_reserve(dma_reserve);
1051 int kern_addr_valid(unsigned long addr)
1053 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1059 if (above != 0 && above != -1UL)
1062 pgd = pgd_offset_k(addr);
1066 pud = pud_offset(pgd, addr);
1070 pmd = pmd_offset(pud, addr);
1074 if (pmd_large(*pmd))
1075 return pfn_valid(pmd_pfn(*pmd));
1077 pte = pte_offset_kernel(pmd, addr);
1081 return pfn_valid(pte_pfn(*pte));
1085 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
1086 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1087 * not need special handling anymore:
1089 static struct vm_area_struct gate_vma = {
1090 .vm_start = VSYSCALL_START,
1091 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
1092 .vm_page_prot = PAGE_READONLY_EXEC,
1093 .vm_flags = VM_READ | VM_EXEC
1096 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
1098 #ifdef CONFIG_IA32_EMULATION
1099 if (test_tsk_thread_flag(tsk, TIF_IA32))
1105 int in_gate_area(struct task_struct *task, unsigned long addr)
1107 struct vm_area_struct *vma = get_gate_vma(task);
1112 return (addr >= vma->vm_start) && (addr < vma->vm_end);
1116 * Use this when you have no reliable task/vma, typically from interrupt
1117 * context. It is less reliable than using the task's vma and may give
1120 int in_gate_area_no_task(unsigned long addr)
1122 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1125 const char *arch_vma_name(struct vm_area_struct *vma)
1127 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1129 if (vma == &gate_vma)
1130 return "[vsyscall]";
1134 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1136 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1138 static long __meminitdata addr_start, addr_end;
1139 static void __meminitdata *p_start, *p_end;
1140 static int __meminitdata node_start;
1143 vmemmap_populate(struct page *start_page, unsigned long size, int node)
1145 unsigned long addr = (unsigned long)start_page;
1146 unsigned long end = (unsigned long)(start_page + size);
1152 for (; addr < end; addr = next) {
1155 pgd = vmemmap_pgd_populate(addr, node);
1159 pud = vmemmap_pud_populate(pgd, addr, node);
1164 next = (addr + PAGE_SIZE) & PAGE_MASK;
1165 pmd = vmemmap_pmd_populate(pud, addr, node);
1170 p = vmemmap_pte_populate(pmd, addr, node);
1175 addr_end = addr + PAGE_SIZE;
1176 p_end = p + PAGE_SIZE;
1178 next = pmd_addr_end(addr, end);
1180 pmd = pmd_offset(pud, addr);
1181 if (pmd_none(*pmd)) {
1184 p = vmemmap_alloc_block(PMD_SIZE, node);
1188 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1190 set_pmd(pmd, __pmd(pte_val(entry)));
1192 /* check to see if we have contiguous blocks */
1193 if (p_end != p || node_start != node) {
1195 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1196 addr_start, addr_end-1, p_start, p_end-1, node_start);
1202 addr_end = addr + PMD_SIZE;
1203 p_end = p + PMD_SIZE;
1205 vmemmap_verify((pte_t *)pmd, node, addr, next);
1212 void __meminit vmemmap_populate_print_last(void)
1215 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1216 addr_start, addr_end-1, p_start, p_end-1, node_start);