1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * File open, close, extend, truncate
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/capability.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
38 #define MLOG_MASK_PREFIX ML_INODE
39 #include <cluster/masklog.h>
47 #include "extent_map.h"
57 #include "buffer_head_io.h"
59 static int ocfs2_sync_inode(struct inode *inode)
61 filemap_fdatawrite(inode->i_mapping);
62 return sync_mapping_buffers(inode->i_mapping);
65 static int ocfs2_file_open(struct inode *inode, struct file *file)
68 int mode = file->f_flags;
69 struct ocfs2_inode_info *oi = OCFS2_I(inode);
71 mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode, file,
72 file->f_path.dentry->d_name.len, file->f_path.dentry->d_name.name);
74 spin_lock(&oi->ip_lock);
76 /* Check that the inode hasn't been wiped from disk by another
77 * node. If it hasn't then we're safe as long as we hold the
78 * spin lock until our increment of open count. */
79 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
80 spin_unlock(&oi->ip_lock);
87 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
90 spin_unlock(&oi->ip_lock);
97 static int ocfs2_file_release(struct inode *inode, struct file *file)
99 struct ocfs2_inode_info *oi = OCFS2_I(inode);
101 mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode, file,
102 file->f_path.dentry->d_name.len,
103 file->f_path.dentry->d_name.name);
105 spin_lock(&oi->ip_lock);
106 if (!--oi->ip_open_count)
107 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
108 spin_unlock(&oi->ip_lock);
115 static int ocfs2_sync_file(struct file *file,
116 struct dentry *dentry,
121 struct inode *inode = dentry->d_inode;
122 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
124 mlog_entry("(0x%p, 0x%p, %d, '%.*s')\n", file, dentry, datasync,
125 dentry->d_name.len, dentry->d_name.name);
127 err = ocfs2_sync_inode(dentry->d_inode);
131 journal = osb->journal->j_journal;
132 err = journal_force_commit(journal);
137 return (err < 0) ? -EIO : 0;
140 int ocfs2_should_update_atime(struct inode *inode,
141 struct vfsmount *vfsmnt)
144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
146 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
149 if ((inode->i_flags & S_NOATIME) ||
150 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
154 * We can be called with no vfsmnt structure - NFSD will
157 * Note that our action here is different than touch_atime() -
158 * if we can't tell whether this is a noatime mount, then we
159 * don't know whether to trust the value of s_atime_quantum.
164 if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
165 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
168 if (vfsmnt->mnt_flags & MNT_RELATIME) {
169 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
170 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
177 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
183 int ocfs2_update_inode_atime(struct inode *inode,
184 struct buffer_head *bh)
187 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
192 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
193 if (handle == NULL) {
199 inode->i_atime = CURRENT_TIME;
200 ret = ocfs2_mark_inode_dirty(handle, inode, bh);
204 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
210 static int ocfs2_set_inode_size(handle_t *handle,
212 struct buffer_head *fe_bh,
218 i_size_write(inode, new_i_size);
219 inode->i_blocks = ocfs2_inode_sector_count(inode);
220 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
222 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
233 static int ocfs2_simple_size_update(struct inode *inode,
234 struct buffer_head *di_bh,
238 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
239 handle_t *handle = NULL;
241 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
242 if (handle == NULL) {
248 ret = ocfs2_set_inode_size(handle, inode, di_bh,
253 ocfs2_commit_trans(osb, handle);
258 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
260 struct buffer_head *fe_bh,
265 struct ocfs2_dinode *di;
270 /* TODO: This needs to actually orphan the inode in this
273 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
274 if (IS_ERR(handle)) {
275 status = PTR_ERR(handle);
280 status = ocfs2_journal_access(handle, inode, fe_bh,
281 OCFS2_JOURNAL_ACCESS_WRITE);
288 * Do this before setting i_size.
290 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
291 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
298 i_size_write(inode, new_i_size);
299 inode->i_blocks = ocfs2_align_bytes_to_sectors(new_i_size);
300 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
302 di = (struct ocfs2_dinode *) fe_bh->b_data;
303 di->i_size = cpu_to_le64(new_i_size);
304 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
305 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
307 status = ocfs2_journal_dirty(handle, fe_bh);
312 ocfs2_commit_trans(osb, handle);
319 static int ocfs2_truncate_file(struct inode *inode,
320 struct buffer_head *di_bh,
324 struct ocfs2_dinode *fe = NULL;
325 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
326 struct ocfs2_truncate_context *tc = NULL;
328 mlog_entry("(inode = %llu, new_i_size = %llu\n",
329 (unsigned long long)OCFS2_I(inode)->ip_blkno,
330 (unsigned long long)new_i_size);
332 fe = (struct ocfs2_dinode *) di_bh->b_data;
333 if (!OCFS2_IS_VALID_DINODE(fe)) {
334 OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
339 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
340 "Inode %llu, inode i_size = %lld != di "
341 "i_size = %llu, i_flags = 0x%x\n",
342 (unsigned long long)OCFS2_I(inode)->ip_blkno,
344 (unsigned long long)le64_to_cpu(fe->i_size),
345 le32_to_cpu(fe->i_flags));
347 if (new_i_size > le64_to_cpu(fe->i_size)) {
348 mlog(0, "asked to truncate file with size (%llu) to size (%llu)!\n",
349 (unsigned long long)le64_to_cpu(fe->i_size),
350 (unsigned long long)new_i_size);
356 mlog(0, "inode %llu, i_size = %llu, new_i_size = %llu\n",
357 (unsigned long long)le64_to_cpu(fe->i_blkno),
358 (unsigned long long)le64_to_cpu(fe->i_size),
359 (unsigned long long)new_i_size);
361 /* lets handle the simple truncate cases before doing any more
362 * cluster locking. */
363 if (new_i_size == le64_to_cpu(fe->i_size))
366 down_write(&OCFS2_I(inode)->ip_alloc_sem);
368 /* This forces other nodes to sync and drop their pages. Do
369 * this even if we have a truncate without allocation change -
370 * ocfs2 cluster sizes can be much greater than page size, so
371 * we have to truncate them anyway. */
372 status = ocfs2_data_lock(inode, 1);
374 up_write(&OCFS2_I(inode)->ip_alloc_sem);
380 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
381 truncate_inode_pages(inode->i_mapping, new_i_size);
383 /* alright, we're going to need to do a full blown alloc size
384 * change. Orphan the inode so that recovery can complete the
385 * truncate if necessary. This does the task of marking
387 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
390 goto bail_unlock_data;
393 status = ocfs2_prepare_truncate(osb, inode, di_bh, &tc);
396 goto bail_unlock_data;
399 status = ocfs2_commit_truncate(osb, inode, di_bh, tc);
402 goto bail_unlock_data;
405 /* TODO: orphan dir cleanup here. */
407 ocfs2_data_unlock(inode, 1);
409 up_write(&OCFS2_I(inode)->ip_alloc_sem);
418 * extend allocation only here.
419 * we'll update all the disk stuff, and oip->alloc_size
421 * expect stuff to be locked, a transaction started and enough data /
422 * metadata reservations in the contexts.
424 * Will return -EAGAIN, and a reason if a restart is needed.
425 * If passed in, *reason will always be set, even in error.
427 int ocfs2_do_extend_allocation(struct ocfs2_super *osb,
432 struct buffer_head *fe_bh,
434 struct ocfs2_alloc_context *data_ac,
435 struct ocfs2_alloc_context *meta_ac,
436 enum ocfs2_alloc_restarted *reason_ret)
440 struct ocfs2_dinode *fe = (struct ocfs2_dinode *) fe_bh->b_data;
441 enum ocfs2_alloc_restarted reason = RESTART_NONE;
442 u32 bit_off, num_bits;
446 BUG_ON(!clusters_to_add);
449 flags = OCFS2_EXT_UNWRITTEN;
451 free_extents = ocfs2_num_free_extents(osb, inode, fe);
452 if (free_extents < 0) {
453 status = free_extents;
458 /* there are two cases which could cause us to EAGAIN in the
459 * we-need-more-metadata case:
460 * 1) we haven't reserved *any*
461 * 2) we are so fragmented, we've needed to add metadata too
463 if (!free_extents && !meta_ac) {
464 mlog(0, "we haven't reserved any metadata!\n");
466 reason = RESTART_META;
468 } else if ((!free_extents)
469 && (ocfs2_alloc_context_bits_left(meta_ac)
470 < ocfs2_extend_meta_needed(fe))) {
471 mlog(0, "filesystem is really fragmented...\n");
473 reason = RESTART_META;
477 status = ocfs2_claim_clusters(osb, handle, data_ac, 1,
478 &bit_off, &num_bits);
480 if (status != -ENOSPC)
485 BUG_ON(num_bits > clusters_to_add);
487 /* reserve our write early -- insert_extent may update the inode */
488 status = ocfs2_journal_access(handle, inode, fe_bh,
489 OCFS2_JOURNAL_ACCESS_WRITE);
495 block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
496 mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
497 num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
498 status = ocfs2_insert_extent(osb, handle, inode, fe_bh,
499 *logical_offset, block, num_bits,
506 status = ocfs2_journal_dirty(handle, fe_bh);
512 clusters_to_add -= num_bits;
513 *logical_offset += num_bits;
515 if (clusters_to_add) {
516 mlog(0, "need to alloc once more, clusters = %u, wanted = "
517 "%u\n", fe->i_clusters, clusters_to_add);
519 reason = RESTART_TRANS;
525 *reason_ret = reason;
530 * For a given allocation, determine which allocators will need to be
531 * accessed, and lock them, reserving the appropriate number of bits.
533 * Sparse file systems call this from ocfs2_write_begin_nolock()
534 * and ocfs2_allocate_unwritten_extents().
536 * File systems which don't support holes call this from
537 * ocfs2_extend_allocation().
539 int ocfs2_lock_allocators(struct inode *inode, struct ocfs2_dinode *di,
540 u32 clusters_to_add, u32 extents_to_split,
541 struct ocfs2_alloc_context **data_ac,
542 struct ocfs2_alloc_context **meta_ac)
544 int ret = 0, num_free_extents;
545 unsigned int max_recs_needed = clusters_to_add + 2 * extents_to_split;
546 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
552 BUG_ON(clusters_to_add != 0 && data_ac == NULL);
554 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u, "
555 "clusters_to_add = %u, extents_to_split = %u\n",
556 (unsigned long long)OCFS2_I(inode)->ip_blkno, i_size_read(inode),
557 le32_to_cpu(di->i_clusters), clusters_to_add, extents_to_split);
559 num_free_extents = ocfs2_num_free_extents(osb, inode, di);
560 if (num_free_extents < 0) {
561 ret = num_free_extents;
567 * Sparse allocation file systems need to be more conservative
568 * with reserving room for expansion - the actual allocation
569 * happens while we've got a journal handle open so re-taking
570 * a cluster lock (because we ran out of room for another
571 * extent) will violate ordering rules.
573 * Most of the time we'll only be seeing this 1 cluster at a time
576 * Always lock for any unwritten extents - we might want to
577 * add blocks during a split.
579 if (!num_free_extents ||
580 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) {
581 ret = ocfs2_reserve_new_metadata(osb, di, meta_ac);
589 if (clusters_to_add == 0)
592 ret = ocfs2_reserve_clusters(osb, clusters_to_add, data_ac);
602 ocfs2_free_alloc_context(*meta_ac);
607 * We cannot have an error and a non null *data_ac.
614 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
615 u32 clusters_to_add, int mark_unwritten)
618 int restart_func = 0;
621 struct buffer_head *bh = NULL;
622 struct ocfs2_dinode *fe = NULL;
623 handle_t *handle = NULL;
624 struct ocfs2_alloc_context *data_ac = NULL;
625 struct ocfs2_alloc_context *meta_ac = NULL;
626 enum ocfs2_alloc_restarted why;
627 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
629 mlog_entry("(clusters_to_add = %u)\n", clusters_to_add);
632 * This function only exists for file systems which don't
635 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
637 status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
638 OCFS2_BH_CACHED, inode);
644 fe = (struct ocfs2_dinode *) bh->b_data;
645 if (!OCFS2_IS_VALID_DINODE(fe)) {
646 OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
652 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
654 status = ocfs2_lock_allocators(inode, fe, clusters_to_add, 0, &data_ac,
661 credits = ocfs2_calc_extend_credits(osb->sb, fe, clusters_to_add);
662 handle = ocfs2_start_trans(osb, credits);
663 if (IS_ERR(handle)) {
664 status = PTR_ERR(handle);
670 restarted_transaction:
671 /* reserve a write to the file entry early on - that we if we
672 * run out of credits in the allocation path, we can still
674 status = ocfs2_journal_access(handle, inode, bh,
675 OCFS2_JOURNAL_ACCESS_WRITE);
681 prev_clusters = OCFS2_I(inode)->ip_clusters;
683 status = ocfs2_do_extend_allocation(osb,
693 if ((status < 0) && (status != -EAGAIN)) {
694 if (status != -ENOSPC)
699 status = ocfs2_journal_dirty(handle, bh);
705 spin_lock(&OCFS2_I(inode)->ip_lock);
706 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
707 spin_unlock(&OCFS2_I(inode)->ip_lock);
709 if (why != RESTART_NONE && clusters_to_add) {
710 if (why == RESTART_META) {
711 mlog(0, "restarting function.\n");
714 BUG_ON(why != RESTART_TRANS);
716 mlog(0, "restarting transaction.\n");
717 /* TODO: This can be more intelligent. */
718 credits = ocfs2_calc_extend_credits(osb->sb,
721 status = ocfs2_extend_trans(handle, credits);
723 /* handle still has to be committed at
729 goto restarted_transaction;
733 mlog(0, "fe: i_clusters = %u, i_size=%llu\n",
734 le32_to_cpu(fe->i_clusters),
735 (unsigned long long)le64_to_cpu(fe->i_size));
736 mlog(0, "inode: ip_clusters=%u, i_size=%lld\n",
737 OCFS2_I(inode)->ip_clusters, i_size_read(inode));
741 ocfs2_commit_trans(osb, handle);
745 ocfs2_free_alloc_context(data_ac);
749 ocfs2_free_alloc_context(meta_ac);
752 if ((!status) && restart_func) {
765 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
766 u32 clusters_to_add, int mark_unwritten)
771 * The alloc sem blocks peope in read/write from reading our
772 * allocation until we're done changing it. We depend on
773 * i_mutex to block other extend/truncate calls while we're
776 down_write(&OCFS2_I(inode)->ip_alloc_sem);
777 ret = __ocfs2_extend_allocation(inode, logical_start, clusters_to_add,
779 up_write(&OCFS2_I(inode)->ip_alloc_sem);
784 /* Some parts of this taken from generic_cont_expand, which turned out
785 * to be too fragile to do exactly what we need without us having to
786 * worry about recursive locking in ->prepare_write() and
787 * ->commit_write(). */
788 static int ocfs2_write_zero_page(struct inode *inode,
791 struct address_space *mapping = inode->i_mapping;
795 handle_t *handle = NULL;
798 offset = (size & (PAGE_CACHE_SIZE-1)); /* Within page */
799 /* ugh. in prepare/commit_write, if from==to==start of block, we
800 ** skip the prepare. make sure we never send an offset for the start
803 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
806 index = size >> PAGE_CACHE_SHIFT;
808 page = grab_cache_page(mapping, index);
815 ret = ocfs2_prepare_write_nolock(inode, page, offset, offset);
821 if (ocfs2_should_order_data(inode)) {
822 handle = ocfs2_start_walk_page_trans(inode, page, offset,
824 if (IS_ERR(handle)) {
825 ret = PTR_ERR(handle);
831 /* must not update i_size! */
832 ret = block_commit_write(page, offset, offset);
839 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
842 page_cache_release(page);
847 static int ocfs2_zero_extend(struct inode *inode,
852 struct super_block *sb = inode->i_sb;
854 start_off = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
855 while (start_off < zero_to_size) {
856 ret = ocfs2_write_zero_page(inode, start_off);
862 start_off += sb->s_blocksize;
865 * Very large extends have the potential to lock up
866 * the cpu for extended periods of time.
876 * A tail_to_skip value > 0 indicates that we're being called from
877 * ocfs2_file_aio_write(). This has the following implications:
879 * - we don't want to update i_size
880 * - di_bh will be NULL, which is fine because it's only used in the
881 * case where we want to update i_size.
882 * - ocfs2_zero_extend() will then only be filling the hole created
883 * between i_size and the start of the write.
885 static int ocfs2_extend_file(struct inode *inode,
886 struct buffer_head *di_bh,
891 u32 clusters_to_add = 0;
893 BUG_ON(!tail_to_skip && !di_bh);
895 /* setattr sometimes calls us like this. */
899 if (i_size_read(inode) == new_i_size)
901 BUG_ON(new_i_size < i_size_read(inode));
903 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
904 BUG_ON(tail_to_skip != 0);
905 goto out_update_size;
908 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size) -
909 OCFS2_I(inode)->ip_clusters;
912 * protect the pages that ocfs2_zero_extend is going to be
913 * pulling into the page cache.. we do this before the
914 * metadata extend so that we don't get into the situation
915 * where we've extended the metadata but can't get the data
918 ret = ocfs2_data_lock(inode, 1);
924 if (clusters_to_add) {
925 ret = ocfs2_extend_allocation(inode,
926 OCFS2_I(inode)->ip_clusters,
935 * Call this even if we don't add any clusters to the tree. We
936 * still need to zero the area between the old i_size and the
939 ret = ocfs2_zero_extend(inode, (u64)new_i_size - tail_to_skip);
947 /* We're being called from ocfs2_setattr() which wants
948 * us to update i_size */
949 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
955 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
956 ocfs2_data_unlock(inode, 1);
962 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
964 int status = 0, size_change;
965 struct inode *inode = dentry->d_inode;
966 struct super_block *sb = inode->i_sb;
967 struct ocfs2_super *osb = OCFS2_SB(sb);
968 struct buffer_head *bh = NULL;
969 handle_t *handle = NULL;
971 mlog_entry("(0x%p, '%.*s')\n", dentry,
972 dentry->d_name.len, dentry->d_name.name);
974 if (attr->ia_valid & ATTR_MODE)
975 mlog(0, "mode change: %d\n", attr->ia_mode);
976 if (attr->ia_valid & ATTR_UID)
977 mlog(0, "uid change: %d\n", attr->ia_uid);
978 if (attr->ia_valid & ATTR_GID)
979 mlog(0, "gid change: %d\n", attr->ia_gid);
980 if (attr->ia_valid & ATTR_SIZE)
981 mlog(0, "size change...\n");
982 if (attr->ia_valid & (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME))
983 mlog(0, "time change...\n");
985 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
986 | ATTR_GID | ATTR_UID | ATTR_MODE)
987 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) {
988 mlog(0, "can't handle attrs: 0x%x\n", attr->ia_valid);
992 status = inode_change_ok(inode, attr);
996 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
998 status = ocfs2_rw_lock(inode, 1);
1005 status = ocfs2_meta_lock(inode, &bh, 1);
1007 if (status != -ENOENT)
1009 goto bail_unlock_rw;
1012 if (size_change && attr->ia_size != i_size_read(inode)) {
1013 if (i_size_read(inode) > attr->ia_size)
1014 status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1016 status = ocfs2_extend_file(inode, bh, attr->ia_size, 0);
1018 if (status != -ENOSPC)
1025 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1026 if (IS_ERR(handle)) {
1027 status = PTR_ERR(handle);
1033 * This will intentionally not wind up calling vmtruncate(),
1034 * since all the work for a size change has been done above.
1035 * Otherwise, we could get into problems with truncate as
1036 * ip_alloc_sem is used there to protect against i_size
1039 status = inode_setattr(inode, attr);
1045 status = ocfs2_mark_inode_dirty(handle, inode, bh);
1050 ocfs2_commit_trans(osb, handle);
1052 ocfs2_meta_unlock(inode, 1);
1055 ocfs2_rw_unlock(inode, 1);
1064 int ocfs2_getattr(struct vfsmount *mnt,
1065 struct dentry *dentry,
1068 struct inode *inode = dentry->d_inode;
1069 struct super_block *sb = dentry->d_inode->i_sb;
1070 struct ocfs2_super *osb = sb->s_fs_info;
1075 err = ocfs2_inode_revalidate(dentry);
1082 generic_fillattr(inode, stat);
1084 /* We set the blksize from the cluster size for performance */
1085 stat->blksize = osb->s_clustersize;
1093 int ocfs2_permission(struct inode *inode, int mask, struct nameidata *nd)
1099 ret = ocfs2_meta_lock(inode, NULL, 0);
1106 ret = generic_permission(inode, mask, NULL);
1108 ocfs2_meta_unlock(inode, 0);
1114 static int __ocfs2_write_remove_suid(struct inode *inode,
1115 struct buffer_head *bh)
1119 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1120 struct ocfs2_dinode *di;
1122 mlog_entry("(Inode %llu, mode 0%o)\n",
1123 (unsigned long long)OCFS2_I(inode)->ip_blkno, inode->i_mode);
1125 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1126 if (handle == NULL) {
1132 ret = ocfs2_journal_access(handle, inode, bh,
1133 OCFS2_JOURNAL_ACCESS_WRITE);
1139 inode->i_mode &= ~S_ISUID;
1140 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1141 inode->i_mode &= ~S_ISGID;
1143 di = (struct ocfs2_dinode *) bh->b_data;
1144 di->i_mode = cpu_to_le16(inode->i_mode);
1146 ret = ocfs2_journal_dirty(handle, bh);
1151 ocfs2_commit_trans(osb, handle);
1158 * Will look for holes and unwritten extents in the range starting at
1159 * pos for count bytes (inclusive).
1161 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1165 unsigned int extent_flags;
1166 u32 cpos, clusters, extent_len, phys_cpos;
1167 struct super_block *sb = inode->i_sb;
1169 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1170 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1173 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1180 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1185 if (extent_len > clusters)
1186 extent_len = clusters;
1188 clusters -= extent_len;
1195 static int ocfs2_write_remove_suid(struct inode *inode)
1198 struct buffer_head *bh = NULL;
1199 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1201 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
1202 oi->ip_blkno, &bh, OCFS2_BH_CACHED, inode);
1208 ret = __ocfs2_write_remove_suid(inode, bh);
1215 * Allocate enough extents to cover the region starting at byte offset
1216 * start for len bytes. Existing extents are skipped, any extents
1217 * added are marked as "unwritten".
1219 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1223 u32 cpos, phys_cpos, clusters, alloc_size;
1226 * We consider both start and len to be inclusive.
1228 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1229 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1233 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1241 * Hole or existing extent len can be arbitrary, so
1242 * cap it to our own allocation request.
1244 if (alloc_size > clusters)
1245 alloc_size = clusters;
1249 * We already have an allocation at this
1250 * region so we can safely skip it.
1255 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1264 clusters -= alloc_size;
1272 static int __ocfs2_remove_inode_range(struct inode *inode,
1273 struct buffer_head *di_bh,
1274 u32 cpos, u32 phys_cpos, u32 len,
1275 struct ocfs2_cached_dealloc_ctxt *dealloc)
1278 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
1279 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1280 struct inode *tl_inode = osb->osb_tl_inode;
1282 struct ocfs2_alloc_context *meta_ac = NULL;
1283 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1285 ret = ocfs2_lock_allocators(inode, di, 0, 1, NULL, &meta_ac);
1291 mutex_lock(&tl_inode->i_mutex);
1293 if (ocfs2_truncate_log_needs_flush(osb)) {
1294 ret = __ocfs2_flush_truncate_log(osb);
1301 handle = ocfs2_start_trans(osb, OCFS2_REMOVE_EXTENT_CREDITS);
1302 if (handle == NULL) {
1308 ret = ocfs2_journal_access(handle, inode, di_bh,
1309 OCFS2_JOURNAL_ACCESS_WRITE);
1315 ret = ocfs2_remove_extent(inode, di_bh, cpos, len, handle, meta_ac,
1322 OCFS2_I(inode)->ip_clusters -= len;
1323 di->i_clusters = cpu_to_le32(OCFS2_I(inode)->ip_clusters);
1325 ret = ocfs2_journal_dirty(handle, di_bh);
1331 ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
1336 ocfs2_commit_trans(osb, handle);
1338 mutex_unlock(&tl_inode->i_mutex);
1341 ocfs2_free_alloc_context(meta_ac);
1347 * Truncate a byte range, avoiding pages within partial clusters. This
1348 * preserves those pages for the zeroing code to write to.
1350 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1353 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1355 struct address_space *mapping = inode->i_mapping;
1357 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1358 end = byte_start + byte_len;
1359 end = end & ~(osb->s_clustersize - 1);
1362 unmap_mapping_range(mapping, start, end - start, 0);
1363 truncate_inode_pages_range(mapping, start, end - 1);
1367 static int ocfs2_zero_partial_clusters(struct inode *inode,
1371 u64 tmpend, end = start + len;
1372 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1373 unsigned int csize = osb->s_clustersize;
1377 * The "start" and "end" values are NOT necessarily part of
1378 * the range whose allocation is being deleted. Rather, this
1379 * is what the user passed in with the request. We must zero
1380 * partial clusters here. There's no need to worry about
1381 * physical allocation - the zeroing code knows to skip holes.
1383 mlog(0, "byte start: %llu, end: %llu\n",
1384 (unsigned long long)start, (unsigned long long)end);
1387 * If both edges are on a cluster boundary then there's no
1388 * zeroing required as the region is part of the allocation to
1391 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1394 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1395 if (handle == NULL) {
1402 * We want to get the byte offset of the end of the 1st cluster.
1404 tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1408 mlog(0, "1st range: start: %llu, tmpend: %llu\n",
1409 (unsigned long long)start, (unsigned long long)tmpend);
1411 ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1417 * This may make start and end equal, but the zeroing
1418 * code will skip any work in that case so there's no
1419 * need to catch it up here.
1421 start = end & ~(osb->s_clustersize - 1);
1423 mlog(0, "2nd range: start: %llu, end: %llu\n",
1424 (unsigned long long)start, (unsigned long long)end);
1426 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1431 ocfs2_commit_trans(osb, handle);
1436 static int ocfs2_remove_inode_range(struct inode *inode,
1437 struct buffer_head *di_bh, u64 byte_start,
1441 u32 trunc_start, trunc_len, cpos, phys_cpos, alloc_size;
1442 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1443 struct ocfs2_cached_dealloc_ctxt dealloc;
1445 ocfs2_init_dealloc_ctxt(&dealloc);
1450 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1451 trunc_len = (byte_start + byte_len) >> osb->s_clustersize_bits;
1452 if (trunc_len >= trunc_start)
1453 trunc_len -= trunc_start;
1457 mlog(0, "Inode: %llu, start: %llu, len: %llu, cstart: %u, clen: %u\n",
1458 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1459 (unsigned long long)byte_start,
1460 (unsigned long long)byte_len, trunc_start, trunc_len);
1462 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1470 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1477 if (alloc_size > trunc_len)
1478 alloc_size = trunc_len;
1480 /* Only do work for non-holes */
1481 if (phys_cpos != 0) {
1482 ret = __ocfs2_remove_inode_range(inode, di_bh, cpos,
1483 phys_cpos, alloc_size,
1492 trunc_len -= alloc_size;
1495 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1498 ocfs2_schedule_truncate_log_flush(osb, 1);
1499 ocfs2_run_deallocs(osb, &dealloc);
1505 * Parts of this function taken from xfs_change_file_space()
1507 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1508 struct ocfs2_space_resv *sr)
1512 struct inode *inode = file->f_path.dentry->d_inode;
1513 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1514 struct buffer_head *di_bh = NULL;
1516 unsigned long long max_off = ocfs2_max_file_offset(inode->i_sb->s_blocksize_bits);
1518 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1519 !ocfs2_writes_unwritten_extents(osb))
1521 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1522 !ocfs2_sparse_alloc(osb))
1525 if (!S_ISREG(inode->i_mode))
1528 if (!(file->f_mode & FMODE_WRITE))
1531 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1534 mutex_lock(&inode->i_mutex);
1537 * This prevents concurrent writes on other nodes
1539 ret = ocfs2_rw_lock(inode, 1);
1545 ret = ocfs2_meta_lock(inode, &di_bh, 1);
1551 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1553 goto out_meta_unlock;
1556 switch (sr->l_whence) {
1557 case 0: /*SEEK_SET*/
1559 case 1: /*SEEK_CUR*/
1560 sr->l_start += file->f_pos;
1562 case 2: /*SEEK_END*/
1563 sr->l_start += i_size_read(inode);
1567 goto out_meta_unlock;
1571 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1574 || sr->l_start > max_off
1575 || (sr->l_start + llen) < 0
1576 || (sr->l_start + llen) > max_off) {
1578 goto out_meta_unlock;
1581 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) {
1582 if (sr->l_len <= 0) {
1584 goto out_meta_unlock;
1588 if (should_remove_suid(file->f_path.dentry)) {
1589 ret = __ocfs2_write_remove_suid(inode, di_bh);
1592 goto out_meta_unlock;
1596 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1598 case OCFS2_IOC_RESVSP:
1599 case OCFS2_IOC_RESVSP64:
1601 * This takes unsigned offsets, but the signed ones we
1602 * pass have been checked against overflow above.
1604 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1607 case OCFS2_IOC_UNRESVSP:
1608 case OCFS2_IOC_UNRESVSP64:
1609 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1615 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1618 goto out_meta_unlock;
1622 * We update c/mtime for these changes
1624 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1625 if (IS_ERR(handle)) {
1626 ret = PTR_ERR(handle);
1628 goto out_meta_unlock;
1631 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1632 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1636 ocfs2_commit_trans(osb, handle);
1640 ocfs2_meta_unlock(inode, 1);
1642 ocfs2_rw_unlock(inode, 1);
1644 mutex_unlock(&inode->i_mutex);
1649 static int ocfs2_prepare_inode_for_write(struct dentry *dentry,
1655 int ret = 0, meta_level = appending;
1656 struct inode *inode = dentry->d_inode;
1658 loff_t newsize, saved_pos;
1661 * We sample i_size under a read level meta lock to see if our write
1662 * is extending the file, if it is we back off and get a write level
1666 ret = ocfs2_meta_lock(inode, NULL, meta_level);
1673 /* Clear suid / sgid if necessary. We do this here
1674 * instead of later in the write path because
1675 * remove_suid() calls ->setattr without any hint that
1676 * we may have already done our cluster locking. Since
1677 * ocfs2_setattr() *must* take cluster locks to
1678 * proceeed, this will lead us to recursively lock the
1679 * inode. There's also the dinode i_size state which
1680 * can be lost via setattr during extending writes (we
1681 * set inode->i_size at the end of a write. */
1682 if (should_remove_suid(dentry)) {
1683 if (meta_level == 0) {
1684 ocfs2_meta_unlock(inode, meta_level);
1689 ret = ocfs2_write_remove_suid(inode);
1696 /* work on a copy of ppos until we're sure that we won't have
1697 * to recalculate it due to relocking. */
1699 saved_pos = i_size_read(inode);
1700 mlog(0, "O_APPEND: inode->i_size=%llu\n", saved_pos);
1705 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
1706 loff_t end = saved_pos + count;
1709 * Skip the O_DIRECT checks if we don't need
1712 if (!direct_io || !(*direct_io))
1716 * Allowing concurrent direct writes means
1717 * i_size changes wouldn't be synchronized, so
1718 * one node could wind up truncating another
1721 if (end > i_size_read(inode)) {
1727 * We don't fill holes during direct io, so
1728 * check for them here. If any are found, the
1729 * caller will have to retake some cluster
1730 * locks and initiate the io as buffered.
1732 ret = ocfs2_check_range_for_holes(inode, saved_pos,
1743 * The rest of this loop is concerned with legacy file
1744 * systems which don't support sparse files.
1747 newsize = count + saved_pos;
1749 mlog(0, "pos=%lld newsize=%lld cursize=%lld\n",
1750 (long long) saved_pos, (long long) newsize,
1751 (long long) i_size_read(inode));
1753 /* No need for a higher level metadata lock if we're
1754 * never going past i_size. */
1755 if (newsize <= i_size_read(inode))
1758 if (meta_level == 0) {
1759 ocfs2_meta_unlock(inode, meta_level);
1764 spin_lock(&OCFS2_I(inode)->ip_lock);
1765 clusters = ocfs2_clusters_for_bytes(inode->i_sb, newsize) -
1766 OCFS2_I(inode)->ip_clusters;
1767 spin_unlock(&OCFS2_I(inode)->ip_lock);
1769 mlog(0, "Writing at EOF, may need more allocation: "
1770 "i_size = %lld, newsize = %lld, need %u clusters\n",
1771 (long long) i_size_read(inode), (long long) newsize,
1774 /* We only want to continue the rest of this loop if
1775 * our extend will actually require more
1780 ret = ocfs2_extend_file(inode, NULL, newsize, count);
1793 ocfs2_meta_unlock(inode, meta_level);
1800 ocfs2_set_next_iovec(const struct iovec **iovp, size_t *basep, size_t bytes)
1802 const struct iovec *iov = *iovp;
1803 size_t base = *basep;
1806 int copy = min(bytes, iov->iov_len - base);
1810 if (iov->iov_len == base) {
1819 static struct page * ocfs2_get_write_source(char **ret_src_buf,
1820 const struct iovec *cur_iov,
1824 char *buf = cur_iov->iov_base + iov_offset;
1825 struct page *src_page = NULL;
1828 off = (unsigned long)(buf) & ~PAGE_CACHE_MASK;
1830 if (!segment_eq(get_fs(), KERNEL_DS)) {
1832 * Pull in the user page. We want to do this outside
1833 * of the meta data locks in order to preserve locking
1834 * order in case of page fault.
1836 ret = get_user_pages(current, current->mm,
1837 (unsigned long)buf & PAGE_CACHE_MASK, 1,
1838 0, 0, &src_page, NULL);
1840 *ret_src_buf = kmap(src_page) + off;
1842 src_page = ERR_PTR(-EFAULT);
1850 static void ocfs2_put_write_source(struct page *page)
1854 page_cache_release(page);
1858 static ssize_t ocfs2_file_buffered_write(struct file *file, loff_t *ppos,
1859 const struct iovec *iov,
1860 unsigned long nr_segs,
1862 ssize_t o_direct_written)
1865 ssize_t copied, total = 0;
1866 size_t iov_offset = 0, bytes;
1868 const struct iovec *cur_iov = iov;
1869 struct page *user_page, *page;
1870 char * uninitialized_var(buf);
1875 * handle partial DIO write. Adjust cur_iov if needed.
1877 ocfs2_set_next_iovec(&cur_iov, &iov_offset, o_direct_written);
1882 user_page = ocfs2_get_write_source(&buf, cur_iov, iov_offset);
1883 if (IS_ERR(user_page)) {
1884 ret = PTR_ERR(user_page);
1888 /* Stay within our page boundaries */
1889 bytes = min((PAGE_CACHE_SIZE - ((unsigned long)pos & ~PAGE_CACHE_MASK)),
1890 (PAGE_CACHE_SIZE - ((unsigned long)buf & ~PAGE_CACHE_MASK)));
1891 /* Stay within the vector boundary */
1892 bytes = min_t(size_t, bytes, cur_iov->iov_len - iov_offset);
1893 /* Stay within count */
1894 bytes = min(bytes, count);
1897 ret = ocfs2_write_begin(file, file->f_mapping, pos, bytes, 0,
1904 dst = kmap_atomic(page, KM_USER0);
1905 memcpy(dst + (pos & (PAGE_CACHE_SIZE - 1)), buf, bytes);
1906 kunmap_atomic(dst, KM_USER0);
1907 flush_dcache_page(page);
1908 ocfs2_put_write_source(user_page);
1910 copied = ocfs2_write_end(file, file->f_mapping, pos, bytes,
1911 bytes, page, fsdata);
1919 *ppos = pos + copied;
1922 ocfs2_set_next_iovec(&cur_iov, &iov_offset, copied);
1926 return total ? total : ret;
1929 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb,
1930 const struct iovec *iov,
1931 unsigned long nr_segs,
1934 int ret, direct_io, appending, rw_level, have_alloc_sem = 0;
1935 int can_do_direct, sync = 0;
1936 ssize_t written = 0;
1937 size_t ocount; /* original count */
1938 size_t count; /* after file limit checks */
1939 loff_t *ppos = &iocb->ki_pos;
1940 struct file *file = iocb->ki_filp;
1941 struct inode *inode = file->f_path.dentry->d_inode;
1943 mlog_entry("(0x%p, %u, '%.*s')\n", file,
1944 (unsigned int)nr_segs,
1945 file->f_path.dentry->d_name.len,
1946 file->f_path.dentry->d_name.name);
1948 if (iocb->ki_left == 0)
1951 ret = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1957 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
1959 appending = file->f_flags & O_APPEND ? 1 : 0;
1960 direct_io = file->f_flags & O_DIRECT ? 1 : 0;
1962 mutex_lock(&inode->i_mutex);
1965 /* to match setattr's i_mutex -> i_alloc_sem -> rw_lock ordering */
1967 down_read(&inode->i_alloc_sem);
1971 /* concurrent O_DIRECT writes are allowed */
1972 rw_level = !direct_io;
1973 ret = ocfs2_rw_lock(inode, rw_level);
1979 can_do_direct = direct_io;
1980 ret = ocfs2_prepare_inode_for_write(file->f_path.dentry, ppos,
1981 iocb->ki_left, appending,
1989 * We can't complete the direct I/O as requested, fall back to
1992 if (direct_io && !can_do_direct) {
1993 ocfs2_rw_unlock(inode, rw_level);
1994 up_read(&inode->i_alloc_sem);
2004 if (!sync && ((file->f_flags & O_SYNC) || IS_SYNC(inode)))
2008 * XXX: Is it ok to execute these checks a second time?
2010 ret = generic_write_checks(file, ppos, &count, S_ISBLK(inode->i_mode));
2015 * Set pos so that sync_page_range_nolock() below understands
2016 * where to start from. We might've moved it around via the
2017 * calls above. The range we want to actually sync starts from
2023 /* communicate with ocfs2_dio_end_io */
2024 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2027 written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos,
2028 ppos, count, ocount);
2034 written = ocfs2_file_buffered_write(file, ppos, iov, nr_segs,
2038 if (ret != -EFAULT || ret != -ENOSPC)
2045 /* buffered aio wouldn't have proper lock coverage today */
2046 BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT));
2049 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2050 * function pointer which is called when o_direct io completes so that
2051 * it can unlock our rw lock. (it's the clustered equivalent of
2052 * i_alloc_sem; protects truncate from racing with pending ios).
2053 * Unfortunately there are error cases which call end_io and others
2054 * that don't. so we don't have to unlock the rw_lock if either an
2055 * async dio is going to do it in the future or an end_io after an
2056 * error has already done it.
2058 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2065 ocfs2_rw_unlock(inode, rw_level);
2069 up_read(&inode->i_alloc_sem);
2071 if (written > 0 && sync) {
2074 err = sync_page_range_nolock(inode, file->f_mapping, pos, count);
2079 mutex_unlock(&inode->i_mutex);
2082 return written ? written : ret;
2085 static int ocfs2_splice_write_actor(struct pipe_inode_info *pipe,
2086 struct pipe_buffer *buf,
2087 struct splice_desc *sd)
2091 struct file *file = sd->u.file;
2092 unsigned int offset;
2093 struct page *page = NULL;
2097 ret = buf->ops->confirm(pipe, buf);
2101 offset = sd->pos & ~PAGE_CACHE_MASK;
2103 if (count + offset > PAGE_CACHE_SIZE)
2104 count = PAGE_CACHE_SIZE - offset;
2106 ret = ocfs2_write_begin(file, file->f_mapping, sd->pos, count, 0,
2113 src = buf->ops->map(pipe, buf, 1);
2114 dst = kmap_atomic(page, KM_USER1);
2115 memcpy(dst + offset, src + buf->offset, count);
2116 kunmap_atomic(page, KM_USER1);
2117 buf->ops->unmap(pipe, buf, src);
2119 copied = ocfs2_write_end(file, file->f_mapping, sd->pos, count, count,
2128 return copied ? copied : ret;
2131 static ssize_t __ocfs2_file_splice_write(struct pipe_inode_info *pipe,
2138 struct address_space *mapping = out->f_mapping;
2139 struct inode *inode = mapping->host;
2140 struct splice_desc sd = {
2147 ret = __splice_from_pipe(pipe, &sd, ocfs2_splice_write_actor);
2151 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
2152 err = generic_osync_inode(inode, mapping,
2153 OSYNC_METADATA|OSYNC_DATA);
2162 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe,
2169 struct inode *inode = out->f_path.dentry->d_inode;
2171 mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", out, pipe,
2173 out->f_path.dentry->d_name.len,
2174 out->f_path.dentry->d_name.name);
2176 inode_double_lock(inode, pipe->inode);
2178 ret = ocfs2_rw_lock(inode, 1);
2184 ret = ocfs2_prepare_inode_for_write(out->f_path.dentry, ppos, len, 0,
2191 /* ok, we're done with i_size and alloc work */
2192 ret = __ocfs2_file_splice_write(pipe, out, ppos, len, flags);
2195 ocfs2_rw_unlock(inode, 1);
2197 inode_double_unlock(inode, pipe->inode);
2203 static ssize_t ocfs2_file_splice_read(struct file *in,
2205 struct pipe_inode_info *pipe,
2210 struct inode *inode = in->f_path.dentry->d_inode;
2212 mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", in, pipe,
2214 in->f_path.dentry->d_name.len,
2215 in->f_path.dentry->d_name.name);
2218 * See the comment in ocfs2_file_aio_read()
2220 ret = ocfs2_meta_lock(inode, NULL, 0);
2225 ocfs2_meta_unlock(inode, 0);
2227 ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2234 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb,
2235 const struct iovec *iov,
2236 unsigned long nr_segs,
2239 int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2240 struct file *filp = iocb->ki_filp;
2241 struct inode *inode = filp->f_path.dentry->d_inode;
2243 mlog_entry("(0x%p, %u, '%.*s')\n", filp,
2244 (unsigned int)nr_segs,
2245 filp->f_path.dentry->d_name.len,
2246 filp->f_path.dentry->d_name.name);
2255 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2256 * need locks to protect pending reads from racing with truncate.
2258 if (filp->f_flags & O_DIRECT) {
2259 down_read(&inode->i_alloc_sem);
2262 ret = ocfs2_rw_lock(inode, 0);
2268 /* communicate with ocfs2_dio_end_io */
2269 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2273 * We're fine letting folks race truncates and extending
2274 * writes with read across the cluster, just like they can
2275 * locally. Hence no rw_lock during read.
2277 * Take and drop the meta data lock to update inode fields
2278 * like i_size. This allows the checks down below
2279 * generic_file_aio_read() a chance of actually working.
2281 ret = ocfs2_meta_lock_atime(inode, filp->f_vfsmnt, &lock_level);
2286 ocfs2_meta_unlock(inode, lock_level);
2288 ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos);
2290 mlog(ML_ERROR, "generic_file_aio_read returned -EINVAL\n");
2292 /* buffered aio wouldn't have proper lock coverage today */
2293 BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
2295 /* see ocfs2_file_aio_write */
2296 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2303 up_read(&inode->i_alloc_sem);
2305 ocfs2_rw_unlock(inode, rw_level);
2311 const struct inode_operations ocfs2_file_iops = {
2312 .setattr = ocfs2_setattr,
2313 .getattr = ocfs2_getattr,
2314 .permission = ocfs2_permission,
2317 const struct inode_operations ocfs2_special_file_iops = {
2318 .setattr = ocfs2_setattr,
2319 .getattr = ocfs2_getattr,
2320 .permission = ocfs2_permission,
2323 const struct file_operations ocfs2_fops = {
2324 .read = do_sync_read,
2325 .write = do_sync_write,
2327 .fsync = ocfs2_sync_file,
2328 .release = ocfs2_file_release,
2329 .open = ocfs2_file_open,
2330 .aio_read = ocfs2_file_aio_read,
2331 .aio_write = ocfs2_file_aio_write,
2332 .ioctl = ocfs2_ioctl,
2333 #ifdef CONFIG_COMPAT
2334 .compat_ioctl = ocfs2_compat_ioctl,
2336 .splice_read = ocfs2_file_splice_read,
2337 .splice_write = ocfs2_file_splice_write,
2340 const struct file_operations ocfs2_dops = {
2341 .read = generic_read_dir,
2342 .readdir = ocfs2_readdir,
2343 .fsync = ocfs2_sync_file,
2344 .ioctl = ocfs2_ioctl,
2345 #ifdef CONFIG_COMPAT
2346 .compat_ioctl = ocfs2_compat_ioctl,