2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/config.h>
36 #include <linux/errno.h>
37 #include <linux/module.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/param.h>
41 #include <linux/string.h>
43 #include <linux/interrupt.h>
44 #include <linux/timex.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/time.h>
47 #include <linux/init.h>
48 #include <linux/profile.h>
49 #include <linux/cpu.h>
50 #include <linux/security.h>
51 #include <linux/percpu.h>
52 #include <linux/rtc.h>
53 #include <linux/jiffies.h>
56 #include <asm/processor.h>
57 #include <asm/nvram.h>
58 #include <asm/cache.h>
59 #include <asm/machdep.h>
60 #include <asm/uaccess.h>
64 #include <asm/div64.h>
66 #include <asm/vdso_datapage.h>
68 #include <asm/firmware.h>
70 #ifdef CONFIG_PPC_ISERIES
71 #include <asm/iseries/it_lp_queue.h>
72 #include <asm/iseries/hv_call_xm.h>
76 /* keep track of when we need to update the rtc */
77 time_t last_rtc_update;
78 extern int piranha_simulator;
79 #ifdef CONFIG_PPC_ISERIES
80 unsigned long iSeries_recal_titan = 0;
81 unsigned long iSeries_recal_tb = 0;
82 static unsigned long first_settimeofday = 1;
85 /* The decrementer counts down by 128 every 128ns on a 601. */
86 #define DECREMENTER_COUNT_601 (1000000000 / HZ)
88 #define XSEC_PER_SEC (1024*1024)
91 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
93 /* compute ((xsec << 12) * max) >> 32 */
94 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
97 unsigned long tb_ticks_per_jiffy;
98 unsigned long tb_ticks_per_usec = 100; /* sane default */
99 EXPORT_SYMBOL(tb_ticks_per_usec);
100 unsigned long tb_ticks_per_sec;
104 #define TICKLEN_SCALE (SHIFT_SCALE - 10)
105 u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
106 u64 ticklen_to_xs; /* 0.64 fraction */
108 /* If last_tick_len corresponds to about 1/HZ seconds, then
109 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
110 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
112 DEFINE_SPINLOCK(rtc_lock);
113 EXPORT_SYMBOL_GPL(rtc_lock);
116 unsigned tb_to_ns_shift;
118 struct gettimeofday_struct do_gtod;
120 extern unsigned long wall_jiffies;
122 extern struct timezone sys_tz;
123 static long timezone_offset;
125 unsigned long ppc_proc_freq;
126 unsigned long ppc_tb_freq;
128 u64 tb_last_jiffy __cacheline_aligned_in_smp;
129 unsigned long tb_last_stamp;
132 * Note that on ppc32 this only stores the bottom 32 bits of
133 * the timebase value, but that's enough to tell when a jiffy
136 DEFINE_PER_CPU(unsigned long, last_jiffy);
138 void __delay(unsigned long loops)
146 /* the RTCL register wraps at 1000000000 */
147 diff = get_rtcl() - start;
150 } while (diff < loops);
153 while (get_tbl() - start < loops)
158 EXPORT_SYMBOL(__delay);
160 void udelay(unsigned long usecs)
162 __delay(tb_ticks_per_usec * usecs);
164 EXPORT_SYMBOL(udelay);
166 static __inline__ void timer_check_rtc(void)
169 * update the rtc when needed, this should be performed on the
170 * right fraction of a second. Half or full second ?
171 * Full second works on mk48t59 clocks, others need testing.
172 * Note that this update is basically only used through
173 * the adjtimex system calls. Setting the HW clock in
174 * any other way is a /dev/rtc and userland business.
175 * This is still wrong by -0.5/+1.5 jiffies because of the
176 * timer interrupt resolution and possible delay, but here we
177 * hit a quantization limit which can only be solved by higher
178 * resolution timers and decoupling time management from timer
179 * interrupts. This is also wrong on the clocks
180 * which require being written at the half second boundary.
181 * We should have an rtc call that only sets the minutes and
182 * seconds like on Intel to avoid problems with non UTC clocks.
184 if (ppc_md.set_rtc_time && ntp_synced() &&
185 xtime.tv_sec - last_rtc_update >= 659 &&
186 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
188 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
191 if (ppc_md.set_rtc_time(&tm) == 0)
192 last_rtc_update = xtime.tv_sec + 1;
194 /* Try again one minute later */
195 last_rtc_update += 60;
200 * This version of gettimeofday has microsecond resolution.
202 static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
204 unsigned long sec, usec;
206 struct gettimeofday_vars *temp_varp;
207 u64 temp_tb_to_xs, temp_stamp_xsec;
210 * These calculations are faster (gets rid of divides)
211 * if done in units of 1/2^20 rather than microseconds.
212 * The conversion to microseconds at the end is done
213 * without a divide (and in fact, without a multiply)
215 temp_varp = do_gtod.varp;
216 tb_ticks = tb_val - temp_varp->tb_orig_stamp;
217 temp_tb_to_xs = temp_varp->tb_to_xs;
218 temp_stamp_xsec = temp_varp->stamp_xsec;
219 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
220 sec = xsec / XSEC_PER_SEC;
221 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
222 usec = SCALE_XSEC(usec, 1000000);
228 void do_gettimeofday(struct timeval *tv)
231 /* do this the old way */
232 unsigned long flags, seq;
233 unsigned int sec, nsec, usec;
236 seq = read_seqbegin_irqsave(&xtime_lock, flags);
238 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
239 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
241 while (usec >= 1000000) {
249 __do_gettimeofday(tv, get_tb());
252 EXPORT_SYMBOL(do_gettimeofday);
255 * There are two copies of tb_to_xs and stamp_xsec so that no
256 * lock is needed to access and use these values in
257 * do_gettimeofday. We alternate the copies and as long as a
258 * reasonable time elapses between changes, there will never
259 * be inconsistent values. ntpd has a minimum of one minute
262 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
266 struct gettimeofday_vars *temp_varp;
268 temp_idx = (do_gtod.var_idx == 0);
269 temp_varp = &do_gtod.vars[temp_idx];
271 temp_varp->tb_to_xs = new_tb_to_xs;
272 temp_varp->tb_orig_stamp = new_tb_stamp;
273 temp_varp->stamp_xsec = new_stamp_xsec;
275 do_gtod.varp = temp_varp;
276 do_gtod.var_idx = temp_idx;
279 * tb_update_count is used to allow the userspace gettimeofday code
280 * to assure itself that it sees a consistent view of the tb_to_xs and
281 * stamp_xsec variables. It reads the tb_update_count, then reads
282 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
283 * the two values of tb_update_count match and are even then the
284 * tb_to_xs and stamp_xsec values are consistent. If not, then it
285 * loops back and reads them again until this criteria is met.
286 * We expect the caller to have done the first increment of
287 * vdso_data->tb_update_count already.
289 vdso_data->tb_orig_stamp = new_tb_stamp;
290 vdso_data->stamp_xsec = new_stamp_xsec;
291 vdso_data->tb_to_xs = new_tb_to_xs;
292 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
293 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
295 ++(vdso_data->tb_update_count);
299 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
300 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
301 * difference tb - tb_orig_stamp small enough to always fit inside a
302 * 32 bits number. This is a requirement of our fast 32 bits userland
303 * implementation in the vdso. If we "miss" a call to this function
304 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
305 * with a too big difference, then the vdso will fallback to calling
308 static __inline__ void timer_recalc_offset(u64 cur_tb)
310 unsigned long offset;
313 u64 tb, xsec_old, xsec_new;
314 struct gettimeofday_vars *varp;
318 tlen = current_tick_length();
319 offset = cur_tb - do_gtod.varp->tb_orig_stamp;
320 if (tlen == last_tick_len && offset < 0x80000000u)
322 if (tlen != last_tick_len) {
323 t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
324 last_tick_len = tlen;
326 t2x = do_gtod.varp->tb_to_xs;
327 new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
328 do_div(new_stamp_xsec, 1000000000);
329 new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
331 ++vdso_data->tb_update_count;
335 * Make sure time doesn't go backwards for userspace gettimeofday.
339 xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
341 xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
342 if (xsec_new < xsec_old)
343 new_stamp_xsec += xsec_old - xsec_new;
345 update_gtod(cur_tb, new_stamp_xsec, t2x);
349 unsigned long profile_pc(struct pt_regs *regs)
351 unsigned long pc = instruction_pointer(regs);
353 if (in_lock_functions(pc))
358 EXPORT_SYMBOL(profile_pc);
361 #ifdef CONFIG_PPC_ISERIES
364 * This function recalibrates the timebase based on the 49-bit time-of-day
365 * value in the Titan chip. The Titan is much more accurate than the value
366 * returned by the service processor for the timebase frequency.
369 static void iSeries_tb_recal(void)
371 struct div_result divres;
372 unsigned long titan, tb;
374 titan = HvCallXm_loadTod();
375 if ( iSeries_recal_titan ) {
376 unsigned long tb_ticks = tb - iSeries_recal_tb;
377 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
378 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
379 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
380 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
382 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
383 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
385 if ( tick_diff < 0 ) {
386 tick_diff = -tick_diff;
390 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
391 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
392 new_tb_ticks_per_jiffy, sign, tick_diff );
393 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
394 tb_ticks_per_sec = new_tb_ticks_per_sec;
395 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
396 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
397 tb_to_xs = divres.result_low;
398 do_gtod.varp->tb_to_xs = tb_to_xs;
399 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
400 vdso_data->tb_to_xs = tb_to_xs;
403 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
404 " new tb_ticks_per_jiffy = %lu\n"
405 " old tb_ticks_per_jiffy = %lu\n",
406 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
410 iSeries_recal_titan = titan;
411 iSeries_recal_tb = tb;
416 * For iSeries shared processors, we have to let the hypervisor
417 * set the hardware decrementer. We set a virtual decrementer
418 * in the lppaca and call the hypervisor if the virtual
419 * decrementer is less than the current value in the hardware
420 * decrementer. (almost always the new decrementer value will
421 * be greater than the current hardware decementer so the hypervisor
422 * call will not be needed)
426 * timer_interrupt - gets called when the decrementer overflows,
427 * with interrupts disabled.
429 void timer_interrupt(struct pt_regs * regs)
432 int cpu = smp_processor_id();
436 if (atomic_read(&ppc_n_lost_interrupts) != 0)
442 profile_tick(CPU_PROFILING, regs);
444 #ifdef CONFIG_PPC_ISERIES
445 get_lppaca()->int_dword.fields.decr_int = 0;
448 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
449 >= tb_ticks_per_jiffy) {
450 /* Update last_jiffy */
451 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
452 /* Handle RTCL overflow on 601 */
453 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
454 per_cpu(last_jiffy, cpu) -= 1000000000;
457 * We cannot disable the decrementer, so in the period
458 * between this cpu's being marked offline in cpu_online_map
459 * and calling stop-self, it is taking timer interrupts.
460 * Avoid calling into the scheduler rebalancing code if this
463 if (!cpu_is_offline(cpu))
464 update_process_times(user_mode(regs));
467 * No need to check whether cpu is offline here; boot_cpuid
468 * should have been fixed up by now.
470 if (cpu != boot_cpuid)
473 write_seqlock(&xtime_lock);
474 tb_last_jiffy += tb_ticks_per_jiffy;
475 tb_last_stamp = per_cpu(last_jiffy, cpu);
477 timer_recalc_offset(tb_last_jiffy);
479 write_sequnlock(&xtime_lock);
482 next_dec = tb_ticks_per_jiffy - ticks;
485 #ifdef CONFIG_PPC_ISERIES
486 if (hvlpevent_is_pending())
487 process_hvlpevents(regs);
491 /* collect purr register values often, for accurate calculations */
492 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
493 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
494 cu->current_tb = mfspr(SPRN_PURR);
501 void wakeup_decrementer(void)
506 * The timebase gets saved on sleep and restored on wakeup,
507 * so all we need to do is to reset the decrementer.
509 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
510 if (ticks < tb_ticks_per_jiffy)
511 ticks = tb_ticks_per_jiffy - ticks;
518 void __init smp_space_timers(unsigned int max_cpus)
521 unsigned long offset = tb_ticks_per_jiffy / max_cpus;
522 unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
524 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
525 previous_tb -= tb_ticks_per_jiffy;
527 if (i != boot_cpuid) {
528 previous_tb += offset;
529 per_cpu(last_jiffy, i) = previous_tb;
536 * Scheduler clock - returns current time in nanosec units.
538 * Note: mulhdu(a, b) (multiply high double unsigned) returns
539 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
540 * are 64-bit unsigned numbers.
542 unsigned long long sched_clock(void)
546 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
549 int do_settimeofday(struct timespec *tv)
551 time_t wtm_sec, new_sec = tv->tv_sec;
552 long wtm_nsec, new_nsec = tv->tv_nsec;
555 unsigned long tb_delta;
557 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
560 write_seqlock_irqsave(&xtime_lock, flags);
563 * Updating the RTC is not the job of this code. If the time is
564 * stepped under NTP, the RTC will be updated after STA_UNSYNC
565 * is cleared. Tools like clock/hwclock either copy the RTC
566 * to the system time, in which case there is no point in writing
567 * to the RTC again, or write to the RTC but then they don't call
568 * settimeofday to perform this operation.
570 #ifdef CONFIG_PPC_ISERIES
571 if (first_settimeofday) {
573 first_settimeofday = 0;
577 /* Make userspace gettimeofday spin until we're done. */
578 ++vdso_data->tb_update_count;
582 * Subtract off the number of nanoseconds since the
583 * beginning of the last tick.
584 * Note that since we don't increment jiffies_64 anywhere other
585 * than in do_timer (since we don't have a lost tick problem),
586 * wall_jiffies will always be the same as jiffies,
587 * and therefore the (jiffies - wall_jiffies) computation
590 tb_delta = tb_ticks_since(tb_last_stamp);
591 tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
592 new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
594 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
595 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
597 set_normalized_timespec(&xtime, new_sec, new_nsec);
598 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
600 /* In case of a large backwards jump in time with NTP, we want the
601 * clock to be updated as soon as the PLL is again in lock.
603 last_rtc_update = new_sec - 658;
607 new_xsec = xtime.tv_nsec;
609 new_xsec *= XSEC_PER_SEC;
610 do_div(new_xsec, NSEC_PER_SEC);
612 new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
613 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
615 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
616 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
618 write_sequnlock_irqrestore(&xtime_lock, flags);
623 EXPORT_SYMBOL(do_settimeofday);
625 void __init generic_calibrate_decr(void)
627 struct device_node *cpu;
632 * The cpu node should have a timebase-frequency property
633 * to tell us the rate at which the decrementer counts.
635 cpu = of_find_node_by_type(NULL, "cpu");
637 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
640 fp = (unsigned int *)get_property(cpu, "timebase-frequency",
648 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
651 ppc_proc_freq = DEFAULT_PROC_FREQ;
654 fp = (unsigned int *)get_property(cpu, "clock-frequency",
662 /* Set the time base to zero */
666 /* Clear any pending timer interrupts */
667 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
669 /* Enable decrementer interrupt */
670 mtspr(SPRN_TCR, TCR_DIE);
673 printk(KERN_ERR "WARNING: Estimating processor frequency "
679 unsigned long get_boot_time(void)
683 if (ppc_md.get_boot_time)
684 return ppc_md.get_boot_time();
685 if (!ppc_md.get_rtc_time)
687 ppc_md.get_rtc_time(&tm);
688 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
689 tm.tm_hour, tm.tm_min, tm.tm_sec);
692 /* This function is only called on the boot processor */
693 void __init time_init(void)
696 unsigned long tm = 0;
697 struct div_result res;
701 if (ppc_md.time_init != NULL)
702 timezone_offset = ppc_md.time_init();
705 /* 601 processor: dec counts down by 128 every 128ns */
706 ppc_tb_freq = 1000000000;
707 tb_last_stamp = get_rtcl();
708 tb_last_jiffy = tb_last_stamp;
710 /* Normal PowerPC with timebase register */
711 ppc_md.calibrate_decr();
712 printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
713 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
714 printk(KERN_INFO "time_init: processor frequency = %lu.%.6lu MHz\n",
715 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
716 tb_last_stamp = tb_last_jiffy = get_tb();
719 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
720 tb_ticks_per_sec = ppc_tb_freq;
721 tb_ticks_per_usec = ppc_tb_freq / 1000000;
722 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
725 * Calculate the length of each tick in ns. It will not be
726 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
727 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
730 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
731 do_div(x, ppc_tb_freq);
733 last_tick_len = x << TICKLEN_SCALE;
736 * Compute ticklen_to_xs, which is a factor which gets multiplied
737 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
739 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
740 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
741 * which turns out to be N = 51 - SHIFT_HZ.
742 * This gives the result as a 0.64 fixed-point fraction.
743 * That value is reduced by an offset amounting to 1 xsec per
744 * 2^31 timebase ticks to avoid problems with time going backwards
745 * by 1 xsec when we do timer_recalc_offset due to losing the
746 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
747 * since there are 2^20 xsec in a second.
749 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
750 tb_ticks_per_jiffy << SHIFT_HZ, &res);
751 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
752 ticklen_to_xs = res.result_low;
754 /* Compute tb_to_xs from tick_nsec */
755 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
758 * Compute scale factor for sched_clock.
759 * The calibrate_decr() function has set tb_ticks_per_sec,
760 * which is the timebase frequency.
761 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
762 * the 128-bit result as a 64.64 fixed-point number.
763 * We then shift that number right until it is less than 1.0,
764 * giving us the scale factor and shift count to use in
767 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
768 scale = res.result_low;
769 for (shift = 0; res.result_high != 0; ++shift) {
770 scale = (scale >> 1) | (res.result_high << 63);
771 res.result_high >>= 1;
773 tb_to_ns_scale = scale;
774 tb_to_ns_shift = shift;
776 #ifdef CONFIG_PPC_ISERIES
777 if (!piranha_simulator)
779 tm = get_boot_time();
781 write_seqlock_irqsave(&xtime_lock, flags);
783 /* If platform provided a timezone (pmac), we correct the time */
784 if (timezone_offset) {
785 sys_tz.tz_minuteswest = -timezone_offset / 60;
786 sys_tz.tz_dsttime = 0;
787 tm -= timezone_offset;
792 do_gtod.varp = &do_gtod.vars[0];
794 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
795 __get_cpu_var(last_jiffy) = tb_last_stamp;
796 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
797 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
798 do_gtod.varp->tb_to_xs = tb_to_xs;
799 do_gtod.tb_to_us = tb_to_us;
801 vdso_data->tb_orig_stamp = tb_last_jiffy;
802 vdso_data->tb_update_count = 0;
803 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
804 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
805 vdso_data->tb_to_xs = tb_to_xs;
809 last_rtc_update = xtime.tv_sec;
810 set_normalized_timespec(&wall_to_monotonic,
811 -xtime.tv_sec, -xtime.tv_nsec);
812 write_sequnlock_irqrestore(&xtime_lock, flags);
814 /* Not exact, but the timer interrupt takes care of this */
815 set_dec(tb_ticks_per_jiffy);
820 #define STARTOFTIME 1970
821 #define SECDAY 86400L
822 #define SECYR (SECDAY * 365)
823 #define leapyear(year) ((year) % 4 == 0 && \
824 ((year) % 100 != 0 || (year) % 400 == 0))
825 #define days_in_year(a) (leapyear(a) ? 366 : 365)
826 #define days_in_month(a) (month_days[(a) - 1])
828 static int month_days[12] = {
829 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
833 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
835 void GregorianDay(struct rtc_time * tm)
840 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
842 lastYear = tm->tm_year - 1;
845 * Number of leap corrections to apply up to end of last year
847 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
850 * This year is a leap year if it is divisible by 4 except when it is
851 * divisible by 100 unless it is divisible by 400
853 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
855 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
857 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
860 tm->tm_wday = day % 7;
863 void to_tm(int tim, struct rtc_time * tm)
866 register long hms, day;
871 /* Hours, minutes, seconds are easy */
872 tm->tm_hour = hms / 3600;
873 tm->tm_min = (hms % 3600) / 60;
874 tm->tm_sec = (hms % 3600) % 60;
876 /* Number of years in days */
877 for (i = STARTOFTIME; day >= days_in_year(i); i++)
878 day -= days_in_year(i);
881 /* Number of months in days left */
882 if (leapyear(tm->tm_year))
883 days_in_month(FEBRUARY) = 29;
884 for (i = 1; day >= days_in_month(i); i++)
885 day -= days_in_month(i);
886 days_in_month(FEBRUARY) = 28;
889 /* Days are what is left over (+1) from all that. */
890 tm->tm_mday = day + 1;
893 * Determine the day of week
898 /* Auxiliary function to compute scaling factors */
899 /* Actually the choice of a timebase running at 1/4 the of the bus
900 * frequency giving resolution of a few tens of nanoseconds is quite nice.
901 * It makes this computation very precise (27-28 bits typically) which
902 * is optimistic considering the stability of most processor clock
903 * oscillators and the precision with which the timebase frequency
904 * is measured but does not harm.
906 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
908 unsigned mlt=0, tmp, err;
909 /* No concern for performance, it's done once: use a stupid
910 * but safe and compact method to find the multiplier.
913 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
914 if (mulhwu(inscale, mlt|tmp) < outscale)
918 /* We might still be off by 1 for the best approximation.
919 * A side effect of this is that if outscale is too large
920 * the returned value will be zero.
921 * Many corner cases have been checked and seem to work,
922 * some might have been forgotten in the test however.
925 err = inscale * (mlt+1);
926 if (err <= inscale/2)
932 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
935 void div128_by_32(u64 dividend_high, u64 dividend_low,
936 unsigned divisor, struct div_result *dr)
938 unsigned long a, b, c, d;
939 unsigned long w, x, y, z;
942 a = dividend_high >> 32;
943 b = dividend_high & 0xffffffff;
944 c = dividend_low >> 32;
945 d = dividend_low & 0xffffffff;
948 ra = ((u64)(a - (w * divisor)) << 32) + b;
950 rb = ((u64) do_div(ra, divisor) << 32) + c;
953 rc = ((u64) do_div(rb, divisor) << 32) + d;
959 dr->result_high = ((u64)w << 32) + x;
960 dr->result_low = ((u64)y << 32) + z;