x86: x86 ptrace generic requests
[linux-2.6] / arch / x86 / kernel / efi.c
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *      David Mosberger-Tang <davidm@hpl.hp.com>
9  *      Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *      Fenghua Yu <fenghua.yu@intel.com>
12  *      Bibo Mao <bibo.mao@intel.com>
13  *      Chandramouli Narayanan <mouli@linux.intel.com>
14  *      Huang Ying <ying.huang@intel.com>
15  *
16  * Copied from efi_32.c to eliminate the duplicated code between EFI
17  * 32/64 support code. --ying 2007-10-26
18  *
19  * All EFI Runtime Services are not implemented yet as EFI only
20  * supports physical mode addressing on SoftSDV. This is to be fixed
21  * in a future version.  --drummond 1999-07-20
22  *
23  * Implemented EFI runtime services and virtual mode calls.  --davidm
24  *
25  * Goutham Rao: <goutham.rao@intel.com>
26  *      Skip non-WB memory and ignore empty memory ranges.
27  */
28
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/efi.h>
32 #include <linux/bootmem.h>
33 #include <linux/spinlock.h>
34 #include <linux/uaccess.h>
35 #include <linux/time.h>
36 #include <linux/io.h>
37 #include <linux/reboot.h>
38 #include <linux/bcd.h>
39
40 #include <asm/setup.h>
41 #include <asm/efi.h>
42 #include <asm/time.h>
43
44 #define EFI_DEBUG       1
45 #define PFX             "EFI: "
46
47 int efi_enabled;
48 EXPORT_SYMBOL(efi_enabled);
49
50 struct efi efi;
51 EXPORT_SYMBOL(efi);
52
53 struct efi_memory_map memmap;
54
55 struct efi efi_phys __initdata;
56 static efi_system_table_t efi_systab __initdata;
57
58 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
59 {
60         return efi_call_virt2(get_time, tm, tc);
61 }
62
63 static efi_status_t virt_efi_set_time(efi_time_t *tm)
64 {
65         return efi_call_virt1(set_time, tm);
66 }
67
68 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
69                                              efi_bool_t *pending,
70                                              efi_time_t *tm)
71 {
72         return efi_call_virt3(get_wakeup_time,
73                               enabled, pending, tm);
74 }
75
76 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
77 {
78         return efi_call_virt2(set_wakeup_time,
79                               enabled, tm);
80 }
81
82 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
83                                           efi_guid_t *vendor,
84                                           u32 *attr,
85                                           unsigned long *data_size,
86                                           void *data)
87 {
88         return efi_call_virt5(get_variable,
89                               name, vendor, attr,
90                               data_size, data);
91 }
92
93 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
94                                                efi_char16_t *name,
95                                                efi_guid_t *vendor)
96 {
97         return efi_call_virt3(get_next_variable,
98                               name_size, name, vendor);
99 }
100
101 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
102                                           efi_guid_t *vendor,
103                                           unsigned long attr,
104                                           unsigned long data_size,
105                                           void *data)
106 {
107         return efi_call_virt5(set_variable,
108                               name, vendor, attr,
109                               data_size, data);
110 }
111
112 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
113 {
114         return efi_call_virt1(get_next_high_mono_count, count);
115 }
116
117 static void virt_efi_reset_system(int reset_type,
118                                   efi_status_t status,
119                                   unsigned long data_size,
120                                   efi_char16_t *data)
121 {
122         efi_call_virt4(reset_system, reset_type, status,
123                        data_size, data);
124 }
125
126 static efi_status_t virt_efi_set_virtual_address_map(
127         unsigned long memory_map_size,
128         unsigned long descriptor_size,
129         u32 descriptor_version,
130         efi_memory_desc_t *virtual_map)
131 {
132         return efi_call_virt4(set_virtual_address_map,
133                               memory_map_size, descriptor_size,
134                               descriptor_version, virtual_map);
135 }
136
137 static efi_status_t __init phys_efi_set_virtual_address_map(
138         unsigned long memory_map_size,
139         unsigned long descriptor_size,
140         u32 descriptor_version,
141         efi_memory_desc_t *virtual_map)
142 {
143         efi_status_t status;
144
145         efi_call_phys_prelog();
146         status = efi_call_phys4(efi_phys.set_virtual_address_map,
147                                 memory_map_size, descriptor_size,
148                                 descriptor_version, virtual_map);
149         efi_call_phys_epilog();
150         return status;
151 }
152
153 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
154                                              efi_time_cap_t *tc)
155 {
156         efi_status_t status;
157
158         efi_call_phys_prelog();
159         status = efi_call_phys2(efi_phys.get_time, tm, tc);
160         efi_call_phys_epilog();
161         return status;
162 }
163
164 int efi_set_rtc_mmss(unsigned long nowtime)
165 {
166         int real_seconds, real_minutes;
167         efi_status_t    status;
168         efi_time_t      eft;
169         efi_time_cap_t  cap;
170
171         status = efi.get_time(&eft, &cap);
172         if (status != EFI_SUCCESS) {
173                 printk(KERN_ERR "Oops: efitime: can't read time!\n");
174                 return -1;
175         }
176
177         real_seconds = nowtime % 60;
178         real_minutes = nowtime / 60;
179         if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
180                 real_minutes += 30;
181         real_minutes %= 60;
182         eft.minute = real_minutes;
183         eft.second = real_seconds;
184
185         status = efi.set_time(&eft);
186         if (status != EFI_SUCCESS) {
187                 printk(KERN_ERR "Oops: efitime: can't write time!\n");
188                 return -1;
189         }
190         return 0;
191 }
192
193 unsigned long efi_get_time(void)
194 {
195         efi_status_t status;
196         efi_time_t eft;
197         efi_time_cap_t cap;
198
199         status = efi.get_time(&eft, &cap);
200         if (status != EFI_SUCCESS)
201                 printk(KERN_ERR "Oops: efitime: can't read time!\n");
202
203         return mktime(eft.year, eft.month, eft.day, eft.hour,
204                       eft.minute, eft.second);
205 }
206
207 #if EFI_DEBUG
208 static void __init print_efi_memmap(void)
209 {
210         efi_memory_desc_t *md;
211         void *p;
212         int i;
213
214         for (p = memmap.map, i = 0;
215              p < memmap.map_end;
216              p += memmap.desc_size, i++) {
217                 md = p;
218                 printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
219                         "range=[0x%016llx-0x%016llx) (%lluMB)\n",
220                         i, md->type, md->attribute, md->phys_addr,
221                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
222                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
223         }
224 }
225 #endif  /*  EFI_DEBUG  */
226
227 void __init efi_init(void)
228 {
229         efi_config_table_t *config_tables;
230         efi_runtime_services_t *runtime;
231         efi_char16_t *c16;
232         char vendor[100] = "unknown";
233         int i = 0;
234         void *tmp;
235
236 #ifdef CONFIG_X86_32
237         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
238         memmap.phys_map = (void *)boot_params.efi_info.efi_memmap;
239 #else
240         efi_phys.systab = (efi_system_table_t *)
241                 (boot_params.efi_info.efi_systab |
242                  ((__u64)boot_params.efi_info.efi_systab_hi<<32));
243         memmap.phys_map = (void *)
244                 (boot_params.efi_info.efi_memmap |
245                  ((__u64)boot_params.efi_info.efi_memmap_hi<<32));
246 #endif
247         memmap.nr_map = boot_params.efi_info.efi_memmap_size /
248                 boot_params.efi_info.efi_memdesc_size;
249         memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
250         memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
251
252         efi.systab = efi_early_ioremap((unsigned long)efi_phys.systab,
253                                        sizeof(efi_system_table_t));
254         if (efi.systab == NULL)
255                 printk(KERN_ERR "Couldn't map the EFI system table!\n");
256         memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
257         efi_early_iounmap(efi.systab, sizeof(efi_system_table_t));
258         efi.systab = &efi_systab;
259
260         /*
261          * Verify the EFI Table
262          */
263         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
264                 printk(KERN_ERR "EFI system table signature incorrect!\n");
265         if ((efi.systab->hdr.revision >> 16) == 0)
266                 printk(KERN_ERR "Warning: EFI system table version "
267                        "%d.%02d, expected 1.00 or greater!\n",
268                        efi.systab->hdr.revision >> 16,
269                        efi.systab->hdr.revision & 0xffff);
270
271         /*
272          * Show what we know for posterity
273          */
274         c16 = tmp = efi_early_ioremap(efi.systab->fw_vendor, 2);
275         if (c16) {
276                 for (i = 0; i < sizeof(vendor) && *c16; ++i)
277                         vendor[i] = *c16++;
278                 vendor[i] = '\0';
279         } else
280                 printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
281         efi_early_iounmap(tmp, 2);
282
283         printk(KERN_INFO "EFI v%u.%.02u by %s \n",
284                efi.systab->hdr.revision >> 16,
285                efi.systab->hdr.revision & 0xffff, vendor);
286
287         /*
288          * Let's see what config tables the firmware passed to us.
289          */
290         config_tables = efi_early_ioremap(
291                 efi.systab->tables,
292                 efi.systab->nr_tables * sizeof(efi_config_table_t));
293         if (config_tables == NULL)
294                 printk(KERN_ERR "Could not map EFI Configuration Table!\n");
295
296         printk(KERN_INFO);
297         for (i = 0; i < efi.systab->nr_tables; i++) {
298                 if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
299                         efi.mps = config_tables[i].table;
300                         printk(" MPS=0x%lx ", config_tables[i].table);
301                 } else if (!efi_guidcmp(config_tables[i].guid,
302                                         ACPI_20_TABLE_GUID)) {
303                         efi.acpi20 = config_tables[i].table;
304                         printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
305                 } else if (!efi_guidcmp(config_tables[i].guid,
306                                         ACPI_TABLE_GUID)) {
307                         efi.acpi = config_tables[i].table;
308                         printk(" ACPI=0x%lx ", config_tables[i].table);
309                 } else if (!efi_guidcmp(config_tables[i].guid,
310                                         SMBIOS_TABLE_GUID)) {
311                         efi.smbios = config_tables[i].table;
312                         printk(" SMBIOS=0x%lx ", config_tables[i].table);
313                 } else if (!efi_guidcmp(config_tables[i].guid,
314                                         HCDP_TABLE_GUID)) {
315                         efi.hcdp = config_tables[i].table;
316                         printk(" HCDP=0x%lx ", config_tables[i].table);
317                 } else if (!efi_guidcmp(config_tables[i].guid,
318                                         UGA_IO_PROTOCOL_GUID)) {
319                         efi.uga = config_tables[i].table;
320                         printk(" UGA=0x%lx ", config_tables[i].table);
321                 }
322         }
323         printk("\n");
324         efi_early_iounmap(config_tables,
325                           efi.systab->nr_tables * sizeof(efi_config_table_t));
326
327         /*
328          * Check out the runtime services table. We need to map
329          * the runtime services table so that we can grab the physical
330          * address of several of the EFI runtime functions, needed to
331          * set the firmware into virtual mode.
332          */
333         runtime = efi_early_ioremap((unsigned long)efi.systab->runtime,
334                                     sizeof(efi_runtime_services_t));
335         if (runtime != NULL) {
336                 /*
337                  * We will only need *early* access to the following
338                  * two EFI runtime services before set_virtual_address_map
339                  * is invoked.
340                  */
341                 efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
342                 efi_phys.set_virtual_address_map =
343                         (efi_set_virtual_address_map_t *)
344                         runtime->set_virtual_address_map;
345                 /*
346                  * Make efi_get_time can be called before entering
347                  * virtual mode.
348                  */
349                 efi.get_time = phys_efi_get_time;
350         } else
351                 printk(KERN_ERR "Could not map the EFI runtime service "
352                        "table!\n");
353         efi_early_iounmap(runtime, sizeof(efi_runtime_services_t));
354
355         /* Map the EFI memory map */
356         memmap.map = efi_early_ioremap((unsigned long)memmap.phys_map,
357                                        memmap.nr_map * memmap.desc_size);
358         if (memmap.map == NULL)
359                 printk(KERN_ERR "Could not map the EFI memory map!\n");
360         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
361         if (memmap.desc_size != sizeof(efi_memory_desc_t))
362                 printk(KERN_WARNING "Kernel-defined memdesc"
363                        "doesn't match the one from EFI!\n");
364
365 #ifdef CONFIG_X86_64
366         /* Setup for EFI runtime service */
367         reboot_type = BOOT_EFI;
368
369 #endif
370 #if EFI_DEBUG
371         print_efi_memmap();
372 #endif
373 }
374
375 /*
376  * This function will switch the EFI runtime services to virtual mode.
377  * Essentially, look through the EFI memmap and map every region that
378  * has the runtime attribute bit set in its memory descriptor and update
379  * that memory descriptor with the virtual address obtained from ioremap().
380  * This enables the runtime services to be called without having to
381  * thunk back into physical mode for every invocation.
382  */
383 void __init efi_enter_virtual_mode(void)
384 {
385         efi_memory_desc_t *md;
386         efi_status_t status;
387         unsigned long end;
388         void *p;
389
390         efi.systab = NULL;
391         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
392                 md = p;
393                 if (!(md->attribute & EFI_MEMORY_RUNTIME))
394                         continue;
395                 if ((md->attribute & EFI_MEMORY_WB) &&
396                     (((md->phys_addr + (md->num_pages<<EFI_PAGE_SHIFT)) >>
397                       PAGE_SHIFT) < end_pfn_map))
398                         md->virt_addr = (unsigned long)__va(md->phys_addr);
399                 else
400                         md->virt_addr = (unsigned long)
401                                 efi_ioremap(md->phys_addr,
402                                             md->num_pages << EFI_PAGE_SHIFT);
403                 if (!md->virt_addr)
404                         printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
405                                (unsigned long long)md->phys_addr);
406                 end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT);
407                 if ((md->phys_addr <= (unsigned long)efi_phys.systab) &&
408                     ((unsigned long)efi_phys.systab < end))
409                         efi.systab = (efi_system_table_t *)(unsigned long)
410                                 (md->virt_addr - md->phys_addr +
411                                  (unsigned long)efi_phys.systab);
412         }
413
414         BUG_ON(!efi.systab);
415
416         status = phys_efi_set_virtual_address_map(
417                 memmap.desc_size * memmap.nr_map,
418                 memmap.desc_size,
419                 memmap.desc_version,
420                 memmap.phys_map);
421
422         if (status != EFI_SUCCESS) {
423                 printk(KERN_ALERT "Unable to switch EFI into virtual mode "
424                        "(status=%lx)!\n", status);
425                 panic("EFI call to SetVirtualAddressMap() failed!");
426         }
427
428         /*
429          * Now that EFI is in virtual mode, update the function
430          * pointers in the runtime service table to the new virtual addresses.
431          *
432          * Call EFI services through wrapper functions.
433          */
434         efi.get_time = virt_efi_get_time;
435         efi.set_time = virt_efi_set_time;
436         efi.get_wakeup_time = virt_efi_get_wakeup_time;
437         efi.set_wakeup_time = virt_efi_set_wakeup_time;
438         efi.get_variable = virt_efi_get_variable;
439         efi.get_next_variable = virt_efi_get_next_variable;
440         efi.set_variable = virt_efi_set_variable;
441         efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
442         efi.reset_system = virt_efi_reset_system;
443         efi.set_virtual_address_map = virt_efi_set_virtual_address_map;
444 #ifdef CONFIG_X86_64
445         runtime_code_page_mkexec();
446 #endif
447 }
448
449 /*
450  * Convenience functions to obtain memory types and attributes
451  */
452 u32 efi_mem_type(unsigned long phys_addr)
453 {
454         efi_memory_desc_t *md;
455         void *p;
456
457         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
458                 md = p;
459                 if ((md->phys_addr <= phys_addr) &&
460                     (phys_addr < (md->phys_addr +
461                                   (md->num_pages << EFI_PAGE_SHIFT))))
462                         return md->type;
463         }
464         return 0;
465 }
466
467 u64 efi_mem_attributes(unsigned long phys_addr)
468 {
469         efi_memory_desc_t *md;
470         void *p;
471
472         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
473                 md = p;
474                 if ((md->phys_addr <= phys_addr) &&
475                     (phys_addr < (md->phys_addr +
476                                   (md->num_pages << EFI_PAGE_SHIFT))))
477                         return md->attribute;
478         }
479         return 0;
480 }