bonding: Fix race at module unload
[linux-2.6] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2007 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  * napi: This parameter used to enable/disable NAPI (polling Rx)
46  *     Possible values '1' for enable and '0' for disable. Default is '1'
47  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48  *      Possible values '1' for enable and '0' for disable. Default is '0'
49  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50  *                 Possible values '1' for enable , '0' for disable.
51  *                 Default is '2' - which means disable in promisc mode
52  *                 and enable in non-promiscuous mode.
53  ************************************************************************/
54
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
76
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
82
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
86
87 #define DRV_VERSION "2.0.26.6"
88
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
92
93 static int rxd_size[2] = {32,48};
94 static int rxd_count[2] = {127,85};
95
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
97 {
98         int ret;
99
100         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103         return ret;
104 }
105
106 /*
107  * Cards with following subsystem_id have a link state indication
108  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109  * macro below identifies these cards given the subsystem_id.
110  */
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112         (dev_type == XFRAME_I_DEVICE) ?                 \
113                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
115
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC   1
120 #define LOW     2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
122 {
123         struct mac_info *mac_control;
124
125         mac_control = &sp->mac_control;
126         if (rxb_size <= rxd_count[sp->rxd_mode])
127                 return PANIC;
128         else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129                 return  LOW;
130         return 0;
131 }
132
133 static inline int is_s2io_card_up(const struct s2io_nic * sp)
134 {
135         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
136 }
137
138 /* Ethtool related variables and Macros. */
139 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
140         "Register test\t(offline)",
141         "Eeprom test\t(offline)",
142         "Link test\t(online)",
143         "RLDRAM test\t(offline)",
144         "BIST Test\t(offline)"
145 };
146
147 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
148         {"tmac_frms"},
149         {"tmac_data_octets"},
150         {"tmac_drop_frms"},
151         {"tmac_mcst_frms"},
152         {"tmac_bcst_frms"},
153         {"tmac_pause_ctrl_frms"},
154         {"tmac_ttl_octets"},
155         {"tmac_ucst_frms"},
156         {"tmac_nucst_frms"},
157         {"tmac_any_err_frms"},
158         {"tmac_ttl_less_fb_octets"},
159         {"tmac_vld_ip_octets"},
160         {"tmac_vld_ip"},
161         {"tmac_drop_ip"},
162         {"tmac_icmp"},
163         {"tmac_rst_tcp"},
164         {"tmac_tcp"},
165         {"tmac_udp"},
166         {"rmac_vld_frms"},
167         {"rmac_data_octets"},
168         {"rmac_fcs_err_frms"},
169         {"rmac_drop_frms"},
170         {"rmac_vld_mcst_frms"},
171         {"rmac_vld_bcst_frms"},
172         {"rmac_in_rng_len_err_frms"},
173         {"rmac_out_rng_len_err_frms"},
174         {"rmac_long_frms"},
175         {"rmac_pause_ctrl_frms"},
176         {"rmac_unsup_ctrl_frms"},
177         {"rmac_ttl_octets"},
178         {"rmac_accepted_ucst_frms"},
179         {"rmac_accepted_nucst_frms"},
180         {"rmac_discarded_frms"},
181         {"rmac_drop_events"},
182         {"rmac_ttl_less_fb_octets"},
183         {"rmac_ttl_frms"},
184         {"rmac_usized_frms"},
185         {"rmac_osized_frms"},
186         {"rmac_frag_frms"},
187         {"rmac_jabber_frms"},
188         {"rmac_ttl_64_frms"},
189         {"rmac_ttl_65_127_frms"},
190         {"rmac_ttl_128_255_frms"},
191         {"rmac_ttl_256_511_frms"},
192         {"rmac_ttl_512_1023_frms"},
193         {"rmac_ttl_1024_1518_frms"},
194         {"rmac_ip"},
195         {"rmac_ip_octets"},
196         {"rmac_hdr_err_ip"},
197         {"rmac_drop_ip"},
198         {"rmac_icmp"},
199         {"rmac_tcp"},
200         {"rmac_udp"},
201         {"rmac_err_drp_udp"},
202         {"rmac_xgmii_err_sym"},
203         {"rmac_frms_q0"},
204         {"rmac_frms_q1"},
205         {"rmac_frms_q2"},
206         {"rmac_frms_q3"},
207         {"rmac_frms_q4"},
208         {"rmac_frms_q5"},
209         {"rmac_frms_q6"},
210         {"rmac_frms_q7"},
211         {"rmac_full_q0"},
212         {"rmac_full_q1"},
213         {"rmac_full_q2"},
214         {"rmac_full_q3"},
215         {"rmac_full_q4"},
216         {"rmac_full_q5"},
217         {"rmac_full_q6"},
218         {"rmac_full_q7"},
219         {"rmac_pause_cnt"},
220         {"rmac_xgmii_data_err_cnt"},
221         {"rmac_xgmii_ctrl_err_cnt"},
222         {"rmac_accepted_ip"},
223         {"rmac_err_tcp"},
224         {"rd_req_cnt"},
225         {"new_rd_req_cnt"},
226         {"new_rd_req_rtry_cnt"},
227         {"rd_rtry_cnt"},
228         {"wr_rtry_rd_ack_cnt"},
229         {"wr_req_cnt"},
230         {"new_wr_req_cnt"},
231         {"new_wr_req_rtry_cnt"},
232         {"wr_rtry_cnt"},
233         {"wr_disc_cnt"},
234         {"rd_rtry_wr_ack_cnt"},
235         {"txp_wr_cnt"},
236         {"txd_rd_cnt"},
237         {"txd_wr_cnt"},
238         {"rxd_rd_cnt"},
239         {"rxd_wr_cnt"},
240         {"txf_rd_cnt"},
241         {"rxf_wr_cnt"}
242 };
243
244 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
245         {"rmac_ttl_1519_4095_frms"},
246         {"rmac_ttl_4096_8191_frms"},
247         {"rmac_ttl_8192_max_frms"},
248         {"rmac_ttl_gt_max_frms"},
249         {"rmac_osized_alt_frms"},
250         {"rmac_jabber_alt_frms"},
251         {"rmac_gt_max_alt_frms"},
252         {"rmac_vlan_frms"},
253         {"rmac_len_discard"},
254         {"rmac_fcs_discard"},
255         {"rmac_pf_discard"},
256         {"rmac_da_discard"},
257         {"rmac_red_discard"},
258         {"rmac_rts_discard"},
259         {"rmac_ingm_full_discard"},
260         {"link_fault_cnt"}
261 };
262
263 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
264         {"\n DRIVER STATISTICS"},
265         {"single_bit_ecc_errs"},
266         {"double_bit_ecc_errs"},
267         {"parity_err_cnt"},
268         {"serious_err_cnt"},
269         {"soft_reset_cnt"},
270         {"fifo_full_cnt"},
271         {"ring_0_full_cnt"},
272         {"ring_1_full_cnt"},
273         {"ring_2_full_cnt"},
274         {"ring_3_full_cnt"},
275         {"ring_4_full_cnt"},
276         {"ring_5_full_cnt"},
277         {"ring_6_full_cnt"},
278         {"ring_7_full_cnt"},
279         {"alarm_transceiver_temp_high"},
280         {"alarm_transceiver_temp_low"},
281         {"alarm_laser_bias_current_high"},
282         {"alarm_laser_bias_current_low"},
283         {"alarm_laser_output_power_high"},
284         {"alarm_laser_output_power_low"},
285         {"warn_transceiver_temp_high"},
286         {"warn_transceiver_temp_low"},
287         {"warn_laser_bias_current_high"},
288         {"warn_laser_bias_current_low"},
289         {"warn_laser_output_power_high"},
290         {"warn_laser_output_power_low"},
291         {"lro_aggregated_pkts"},
292         {"lro_flush_both_count"},
293         {"lro_out_of_sequence_pkts"},
294         {"lro_flush_due_to_max_pkts"},
295         {"lro_avg_aggr_pkts"},
296         {"mem_alloc_fail_cnt"},
297         {"pci_map_fail_cnt"},
298         {"watchdog_timer_cnt"},
299         {"mem_allocated"},
300         {"mem_freed"},
301         {"link_up_cnt"},
302         {"link_down_cnt"},
303         {"link_up_time"},
304         {"link_down_time"},
305         {"tx_tcode_buf_abort_cnt"},
306         {"tx_tcode_desc_abort_cnt"},
307         {"tx_tcode_parity_err_cnt"},
308         {"tx_tcode_link_loss_cnt"},
309         {"tx_tcode_list_proc_err_cnt"},
310         {"rx_tcode_parity_err_cnt"},
311         {"rx_tcode_abort_cnt"},
312         {"rx_tcode_parity_abort_cnt"},
313         {"rx_tcode_rda_fail_cnt"},
314         {"rx_tcode_unkn_prot_cnt"},
315         {"rx_tcode_fcs_err_cnt"},
316         {"rx_tcode_buf_size_err_cnt"},
317         {"rx_tcode_rxd_corrupt_cnt"},
318         {"rx_tcode_unkn_err_cnt"},
319         {"tda_err_cnt"},
320         {"pfc_err_cnt"},
321         {"pcc_err_cnt"},
322         {"tti_err_cnt"},
323         {"tpa_err_cnt"},
324         {"sm_err_cnt"},
325         {"lso_err_cnt"},
326         {"mac_tmac_err_cnt"},
327         {"mac_rmac_err_cnt"},
328         {"xgxs_txgxs_err_cnt"},
329         {"xgxs_rxgxs_err_cnt"},
330         {"rc_err_cnt"},
331         {"prc_pcix_err_cnt"},
332         {"rpa_err_cnt"},
333         {"rda_err_cnt"},
334         {"rti_err_cnt"},
335         {"mc_err_cnt"}
336 };
337
338 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
339 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
340                                         ETH_GSTRING_LEN
341 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
342
343 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
344 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
345
346 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
347 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
348
349 #define S2IO_TEST_LEN   sizeof(s2io_gstrings) / ETH_GSTRING_LEN
350 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
351
352 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
353                         init_timer(&timer);                     \
354                         timer.function = handle;                \
355                         timer.data = (unsigned long) arg;       \
356                         mod_timer(&timer, (jiffies + exp))      \
357
358 /* copy mac addr to def_mac_addr array */
359 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
360 {
361         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
362         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
363         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
364         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
365         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
366         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
367 }
368 /* Add the vlan */
369 static void s2io_vlan_rx_register(struct net_device *dev,
370                                         struct vlan_group *grp)
371 {
372         struct s2io_nic *nic = dev->priv;
373         unsigned long flags;
374
375         spin_lock_irqsave(&nic->tx_lock, flags);
376         nic->vlgrp = grp;
377         spin_unlock_irqrestore(&nic->tx_lock, flags);
378 }
379
380 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
381 static int vlan_strip_flag;
382
383 /*
384  * Constants to be programmed into the Xena's registers, to configure
385  * the XAUI.
386  */
387
388 #define END_SIGN        0x0
389 static const u64 herc_act_dtx_cfg[] = {
390         /* Set address */
391         0x8000051536750000ULL, 0x80000515367500E0ULL,
392         /* Write data */
393         0x8000051536750004ULL, 0x80000515367500E4ULL,
394         /* Set address */
395         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
396         /* Write data */
397         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
398         /* Set address */
399         0x801205150D440000ULL, 0x801205150D4400E0ULL,
400         /* Write data */
401         0x801205150D440004ULL, 0x801205150D4400E4ULL,
402         /* Set address */
403         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
404         /* Write data */
405         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
406         /* Done */
407         END_SIGN
408 };
409
410 static const u64 xena_dtx_cfg[] = {
411         /* Set address */
412         0x8000051500000000ULL, 0x80000515000000E0ULL,
413         /* Write data */
414         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
415         /* Set address */
416         0x8001051500000000ULL, 0x80010515000000E0ULL,
417         /* Write data */
418         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
419         /* Set address */
420         0x8002051500000000ULL, 0x80020515000000E0ULL,
421         /* Write data */
422         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
423         END_SIGN
424 };
425
426 /*
427  * Constants for Fixing the MacAddress problem seen mostly on
428  * Alpha machines.
429  */
430 static const u64 fix_mac[] = {
431         0x0060000000000000ULL, 0x0060600000000000ULL,
432         0x0040600000000000ULL, 0x0000600000000000ULL,
433         0x0020600000000000ULL, 0x0060600000000000ULL,
434         0x0020600000000000ULL, 0x0060600000000000ULL,
435         0x0020600000000000ULL, 0x0060600000000000ULL,
436         0x0020600000000000ULL, 0x0060600000000000ULL,
437         0x0020600000000000ULL, 0x0060600000000000ULL,
438         0x0020600000000000ULL, 0x0060600000000000ULL,
439         0x0020600000000000ULL, 0x0060600000000000ULL,
440         0x0020600000000000ULL, 0x0060600000000000ULL,
441         0x0020600000000000ULL, 0x0060600000000000ULL,
442         0x0020600000000000ULL, 0x0060600000000000ULL,
443         0x0020600000000000ULL, 0x0000600000000000ULL,
444         0x0040600000000000ULL, 0x0060600000000000ULL,
445         END_SIGN
446 };
447
448 MODULE_LICENSE("GPL");
449 MODULE_VERSION(DRV_VERSION);
450
451
452 /* Module Loadable parameters. */
453 S2IO_PARM_INT(tx_fifo_num, 1);
454 S2IO_PARM_INT(rx_ring_num, 1);
455
456
457 S2IO_PARM_INT(rx_ring_mode, 1);
458 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
459 S2IO_PARM_INT(rmac_pause_time, 0x100);
460 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
461 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
462 S2IO_PARM_INT(shared_splits, 0);
463 S2IO_PARM_INT(tmac_util_period, 5);
464 S2IO_PARM_INT(rmac_util_period, 5);
465 S2IO_PARM_INT(l3l4hdr_size, 128);
466 /* Frequency of Rx desc syncs expressed as power of 2 */
467 S2IO_PARM_INT(rxsync_frequency, 3);
468 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
469 S2IO_PARM_INT(intr_type, 2);
470 /* Large receive offload feature */
471 static unsigned int lro_enable;
472 module_param_named(lro, lro_enable, uint, 0);
473
474 /* Max pkts to be aggregated by LRO at one time. If not specified,
475  * aggregation happens until we hit max IP pkt size(64K)
476  */
477 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
478 S2IO_PARM_INT(indicate_max_pkts, 0);
479
480 S2IO_PARM_INT(napi, 1);
481 S2IO_PARM_INT(ufo, 0);
482 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
483
484 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
485     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
486 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
487     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
488 static unsigned int rts_frm_len[MAX_RX_RINGS] =
489     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
490
491 module_param_array(tx_fifo_len, uint, NULL, 0);
492 module_param_array(rx_ring_sz, uint, NULL, 0);
493 module_param_array(rts_frm_len, uint, NULL, 0);
494
495 /*
496  * S2IO device table.
497  * This table lists all the devices that this driver supports.
498  */
499 static struct pci_device_id s2io_tbl[] __devinitdata = {
500         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
501          PCI_ANY_ID, PCI_ANY_ID},
502         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
503          PCI_ANY_ID, PCI_ANY_ID},
504         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
505          PCI_ANY_ID, PCI_ANY_ID},
506         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
507          PCI_ANY_ID, PCI_ANY_ID},
508         {0,}
509 };
510
511 MODULE_DEVICE_TABLE(pci, s2io_tbl);
512
513 static struct pci_error_handlers s2io_err_handler = {
514         .error_detected = s2io_io_error_detected,
515         .slot_reset = s2io_io_slot_reset,
516         .resume = s2io_io_resume,
517 };
518
519 static struct pci_driver s2io_driver = {
520       .name = "S2IO",
521       .id_table = s2io_tbl,
522       .probe = s2io_init_nic,
523       .remove = __devexit_p(s2io_rem_nic),
524       .err_handler = &s2io_err_handler,
525 };
526
527 /* A simplifier macro used both by init and free shared_mem Fns(). */
528 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
529
530 /**
531  * init_shared_mem - Allocation and Initialization of Memory
532  * @nic: Device private variable.
533  * Description: The function allocates all the memory areas shared
534  * between the NIC and the driver. This includes Tx descriptors,
535  * Rx descriptors and the statistics block.
536  */
537
538 static int init_shared_mem(struct s2io_nic *nic)
539 {
540         u32 size;
541         void *tmp_v_addr, *tmp_v_addr_next;
542         dma_addr_t tmp_p_addr, tmp_p_addr_next;
543         struct RxD_block *pre_rxd_blk = NULL;
544         int i, j, blk_cnt;
545         int lst_size, lst_per_page;
546         struct net_device *dev = nic->dev;
547         unsigned long tmp;
548         struct buffAdd *ba;
549
550         struct mac_info *mac_control;
551         struct config_param *config;
552         unsigned long long mem_allocated = 0;
553
554         mac_control = &nic->mac_control;
555         config = &nic->config;
556
557
558         /* Allocation and initialization of TXDLs in FIOFs */
559         size = 0;
560         for (i = 0; i < config->tx_fifo_num; i++) {
561                 size += config->tx_cfg[i].fifo_len;
562         }
563         if (size > MAX_AVAILABLE_TXDS) {
564                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
565                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
566                 return -EINVAL;
567         }
568
569         lst_size = (sizeof(struct TxD) * config->max_txds);
570         lst_per_page = PAGE_SIZE / lst_size;
571
572         for (i = 0; i < config->tx_fifo_num; i++) {
573                 int fifo_len = config->tx_cfg[i].fifo_len;
574                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
575                 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
576                                                           GFP_KERNEL);
577                 if (!mac_control->fifos[i].list_info) {
578                         DBG_PRINT(INFO_DBG,
579                                   "Malloc failed for list_info\n");
580                         return -ENOMEM;
581                 }
582                 mem_allocated += list_holder_size;
583         }
584         for (i = 0; i < config->tx_fifo_num; i++) {
585                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
586                                                 lst_per_page);
587                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
588                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
589                     config->tx_cfg[i].fifo_len - 1;
590                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
591                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
592                     config->tx_cfg[i].fifo_len - 1;
593                 mac_control->fifos[i].fifo_no = i;
594                 mac_control->fifos[i].nic = nic;
595                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
596
597                 for (j = 0; j < page_num; j++) {
598                         int k = 0;
599                         dma_addr_t tmp_p;
600                         void *tmp_v;
601                         tmp_v = pci_alloc_consistent(nic->pdev,
602                                                      PAGE_SIZE, &tmp_p);
603                         if (!tmp_v) {
604                                 DBG_PRINT(INFO_DBG,
605                                           "pci_alloc_consistent ");
606                                 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
607                                 return -ENOMEM;
608                         }
609                         /* If we got a zero DMA address(can happen on
610                          * certain platforms like PPC), reallocate.
611                          * Store virtual address of page we don't want,
612                          * to be freed later.
613                          */
614                         if (!tmp_p) {
615                                 mac_control->zerodma_virt_addr = tmp_v;
616                                 DBG_PRINT(INIT_DBG,
617                                 "%s: Zero DMA address for TxDL. ", dev->name);
618                                 DBG_PRINT(INIT_DBG,
619                                 "Virtual address %p\n", tmp_v);
620                                 tmp_v = pci_alloc_consistent(nic->pdev,
621                                                      PAGE_SIZE, &tmp_p);
622                                 if (!tmp_v) {
623                                         DBG_PRINT(INFO_DBG,
624                                           "pci_alloc_consistent ");
625                                         DBG_PRINT(INFO_DBG, "failed for TxDL\n");
626                                         return -ENOMEM;
627                                 }
628                                 mem_allocated += PAGE_SIZE;
629                         }
630                         while (k < lst_per_page) {
631                                 int l = (j * lst_per_page) + k;
632                                 if (l == config->tx_cfg[i].fifo_len)
633                                         break;
634                                 mac_control->fifos[i].list_info[l].list_virt_addr =
635                                     tmp_v + (k * lst_size);
636                                 mac_control->fifos[i].list_info[l].list_phy_addr =
637                                     tmp_p + (k * lst_size);
638                                 k++;
639                         }
640                 }
641         }
642
643         nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
644         if (!nic->ufo_in_band_v)
645                 return -ENOMEM;
646          mem_allocated += (size * sizeof(u64));
647
648         /* Allocation and initialization of RXDs in Rings */
649         size = 0;
650         for (i = 0; i < config->rx_ring_num; i++) {
651                 if (config->rx_cfg[i].num_rxd %
652                     (rxd_count[nic->rxd_mode] + 1)) {
653                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
654                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
655                                   i);
656                         DBG_PRINT(ERR_DBG, "RxDs per Block");
657                         return FAILURE;
658                 }
659                 size += config->rx_cfg[i].num_rxd;
660                 mac_control->rings[i].block_count =
661                         config->rx_cfg[i].num_rxd /
662                         (rxd_count[nic->rxd_mode] + 1 );
663                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
664                         mac_control->rings[i].block_count;
665         }
666         if (nic->rxd_mode == RXD_MODE_1)
667                 size = (size * (sizeof(struct RxD1)));
668         else
669                 size = (size * (sizeof(struct RxD3)));
670
671         for (i = 0; i < config->rx_ring_num; i++) {
672                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
673                 mac_control->rings[i].rx_curr_get_info.offset = 0;
674                 mac_control->rings[i].rx_curr_get_info.ring_len =
675                     config->rx_cfg[i].num_rxd - 1;
676                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
677                 mac_control->rings[i].rx_curr_put_info.offset = 0;
678                 mac_control->rings[i].rx_curr_put_info.ring_len =
679                     config->rx_cfg[i].num_rxd - 1;
680                 mac_control->rings[i].nic = nic;
681                 mac_control->rings[i].ring_no = i;
682
683                 blk_cnt = config->rx_cfg[i].num_rxd /
684                                 (rxd_count[nic->rxd_mode] + 1);
685                 /*  Allocating all the Rx blocks */
686                 for (j = 0; j < blk_cnt; j++) {
687                         struct rx_block_info *rx_blocks;
688                         int l;
689
690                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
691                         size = SIZE_OF_BLOCK; //size is always page size
692                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
693                                                           &tmp_p_addr);
694                         if (tmp_v_addr == NULL) {
695                                 /*
696                                  * In case of failure, free_shared_mem()
697                                  * is called, which should free any
698                                  * memory that was alloced till the
699                                  * failure happened.
700                                  */
701                                 rx_blocks->block_virt_addr = tmp_v_addr;
702                                 return -ENOMEM;
703                         }
704                         mem_allocated += size;
705                         memset(tmp_v_addr, 0, size);
706                         rx_blocks->block_virt_addr = tmp_v_addr;
707                         rx_blocks->block_dma_addr = tmp_p_addr;
708                         rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
709                                                   rxd_count[nic->rxd_mode],
710                                                   GFP_KERNEL);
711                         if (!rx_blocks->rxds)
712                                 return -ENOMEM;
713                         mem_allocated +=
714                         (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
715                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
716                                 rx_blocks->rxds[l].virt_addr =
717                                         rx_blocks->block_virt_addr +
718                                         (rxd_size[nic->rxd_mode] * l);
719                                 rx_blocks->rxds[l].dma_addr =
720                                         rx_blocks->block_dma_addr +
721                                         (rxd_size[nic->rxd_mode] * l);
722                         }
723                 }
724                 /* Interlinking all Rx Blocks */
725                 for (j = 0; j < blk_cnt; j++) {
726                         tmp_v_addr =
727                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
728                         tmp_v_addr_next =
729                                 mac_control->rings[i].rx_blocks[(j + 1) %
730                                               blk_cnt].block_virt_addr;
731                         tmp_p_addr =
732                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
733                         tmp_p_addr_next =
734                                 mac_control->rings[i].rx_blocks[(j + 1) %
735                                               blk_cnt].block_dma_addr;
736
737                         pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
738                         pre_rxd_blk->reserved_2_pNext_RxD_block =
739                             (unsigned long) tmp_v_addr_next;
740                         pre_rxd_blk->pNext_RxD_Blk_physical =
741                             (u64) tmp_p_addr_next;
742                 }
743         }
744         if (nic->rxd_mode == RXD_MODE_3B) {
745                 /*
746                  * Allocation of Storages for buffer addresses in 2BUFF mode
747                  * and the buffers as well.
748                  */
749                 for (i = 0; i < config->rx_ring_num; i++) {
750                         blk_cnt = config->rx_cfg[i].num_rxd /
751                            (rxd_count[nic->rxd_mode]+ 1);
752                         mac_control->rings[i].ba =
753                                 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
754                                      GFP_KERNEL);
755                         if (!mac_control->rings[i].ba)
756                                 return -ENOMEM;
757                         mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
758                         for (j = 0; j < blk_cnt; j++) {
759                                 int k = 0;
760                                 mac_control->rings[i].ba[j] =
761                                         kmalloc((sizeof(struct buffAdd) *
762                                                 (rxd_count[nic->rxd_mode] + 1)),
763                                                 GFP_KERNEL);
764                                 if (!mac_control->rings[i].ba[j])
765                                         return -ENOMEM;
766                                 mem_allocated += (sizeof(struct buffAdd) *  \
767                                         (rxd_count[nic->rxd_mode] + 1));
768                                 while (k != rxd_count[nic->rxd_mode]) {
769                                         ba = &mac_control->rings[i].ba[j][k];
770
771                                         ba->ba_0_org = (void *) kmalloc
772                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
773                                         if (!ba->ba_0_org)
774                                                 return -ENOMEM;
775                                         mem_allocated +=
776                                                 (BUF0_LEN + ALIGN_SIZE);
777                                         tmp = (unsigned long)ba->ba_0_org;
778                                         tmp += ALIGN_SIZE;
779                                         tmp &= ~((unsigned long) ALIGN_SIZE);
780                                         ba->ba_0 = (void *) tmp;
781
782                                         ba->ba_1_org = (void *) kmalloc
783                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
784                                         if (!ba->ba_1_org)
785                                                 return -ENOMEM;
786                                         mem_allocated
787                                                 += (BUF1_LEN + ALIGN_SIZE);
788                                         tmp = (unsigned long) ba->ba_1_org;
789                                         tmp += ALIGN_SIZE;
790                                         tmp &= ~((unsigned long) ALIGN_SIZE);
791                                         ba->ba_1 = (void *) tmp;
792                                         k++;
793                                 }
794                         }
795                 }
796         }
797
798         /* Allocation and initialization of Statistics block */
799         size = sizeof(struct stat_block);
800         mac_control->stats_mem = pci_alloc_consistent
801             (nic->pdev, size, &mac_control->stats_mem_phy);
802
803         if (!mac_control->stats_mem) {
804                 /*
805                  * In case of failure, free_shared_mem() is called, which
806                  * should free any memory that was alloced till the
807                  * failure happened.
808                  */
809                 return -ENOMEM;
810         }
811         mem_allocated += size;
812         mac_control->stats_mem_sz = size;
813
814         tmp_v_addr = mac_control->stats_mem;
815         mac_control->stats_info = (struct stat_block *) tmp_v_addr;
816         memset(tmp_v_addr, 0, size);
817         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
818                   (unsigned long long) tmp_p_addr);
819         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
820         return SUCCESS;
821 }
822
823 /**
824  * free_shared_mem - Free the allocated Memory
825  * @nic:  Device private variable.
826  * Description: This function is to free all memory locations allocated by
827  * the init_shared_mem() function and return it to the kernel.
828  */
829
830 static void free_shared_mem(struct s2io_nic *nic)
831 {
832         int i, j, blk_cnt, size;
833         u32 ufo_size = 0;
834         void *tmp_v_addr;
835         dma_addr_t tmp_p_addr;
836         struct mac_info *mac_control;
837         struct config_param *config;
838         int lst_size, lst_per_page;
839         struct net_device *dev;
840         int page_num = 0;
841
842         if (!nic)
843                 return;
844
845         dev = nic->dev;
846
847         mac_control = &nic->mac_control;
848         config = &nic->config;
849
850         lst_size = (sizeof(struct TxD) * config->max_txds);
851         lst_per_page = PAGE_SIZE / lst_size;
852
853         for (i = 0; i < config->tx_fifo_num; i++) {
854                 ufo_size += config->tx_cfg[i].fifo_len;
855                 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
856                                                         lst_per_page);
857                 for (j = 0; j < page_num; j++) {
858                         int mem_blks = (j * lst_per_page);
859                         if (!mac_control->fifos[i].list_info)
860                                 return;
861                         if (!mac_control->fifos[i].list_info[mem_blks].
862                                  list_virt_addr)
863                                 break;
864                         pci_free_consistent(nic->pdev, PAGE_SIZE,
865                                             mac_control->fifos[i].
866                                             list_info[mem_blks].
867                                             list_virt_addr,
868                                             mac_control->fifos[i].
869                                             list_info[mem_blks].
870                                             list_phy_addr);
871                         nic->mac_control.stats_info->sw_stat.mem_freed
872                                                 += PAGE_SIZE;
873                 }
874                 /* If we got a zero DMA address during allocation,
875                  * free the page now
876                  */
877                 if (mac_control->zerodma_virt_addr) {
878                         pci_free_consistent(nic->pdev, PAGE_SIZE,
879                                             mac_control->zerodma_virt_addr,
880                                             (dma_addr_t)0);
881                         DBG_PRINT(INIT_DBG,
882                                 "%s: Freeing TxDL with zero DMA addr. ",
883                                 dev->name);
884                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
885                                 mac_control->zerodma_virt_addr);
886                         nic->mac_control.stats_info->sw_stat.mem_freed
887                                                 += PAGE_SIZE;
888                 }
889                 kfree(mac_control->fifos[i].list_info);
890                 nic->mac_control.stats_info->sw_stat.mem_freed +=
891                 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
892         }
893
894         size = SIZE_OF_BLOCK;
895         for (i = 0; i < config->rx_ring_num; i++) {
896                 blk_cnt = mac_control->rings[i].block_count;
897                 for (j = 0; j < blk_cnt; j++) {
898                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
899                                 block_virt_addr;
900                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
901                                 block_dma_addr;
902                         if (tmp_v_addr == NULL)
903                                 break;
904                         pci_free_consistent(nic->pdev, size,
905                                             tmp_v_addr, tmp_p_addr);
906                         nic->mac_control.stats_info->sw_stat.mem_freed += size;
907                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
908                         nic->mac_control.stats_info->sw_stat.mem_freed +=
909                         ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
910                 }
911         }
912
913         if (nic->rxd_mode == RXD_MODE_3B) {
914                 /* Freeing buffer storage addresses in 2BUFF mode. */
915                 for (i = 0; i < config->rx_ring_num; i++) {
916                         blk_cnt = config->rx_cfg[i].num_rxd /
917                             (rxd_count[nic->rxd_mode] + 1);
918                         for (j = 0; j < blk_cnt; j++) {
919                                 int k = 0;
920                                 if (!mac_control->rings[i].ba[j])
921                                         continue;
922                                 while (k != rxd_count[nic->rxd_mode]) {
923                                         struct buffAdd *ba =
924                                                 &mac_control->rings[i].ba[j][k];
925                                         kfree(ba->ba_0_org);
926                                         nic->mac_control.stats_info->sw_stat.\
927                                         mem_freed += (BUF0_LEN + ALIGN_SIZE);
928                                         kfree(ba->ba_1_org);
929                                         nic->mac_control.stats_info->sw_stat.\
930                                         mem_freed += (BUF1_LEN + ALIGN_SIZE);
931                                         k++;
932                                 }
933                                 kfree(mac_control->rings[i].ba[j]);
934                                 nic->mac_control.stats_info->sw_stat.mem_freed +=
935                                         (sizeof(struct buffAdd) *
936                                         (rxd_count[nic->rxd_mode] + 1));
937                         }
938                         kfree(mac_control->rings[i].ba);
939                         nic->mac_control.stats_info->sw_stat.mem_freed +=
940                         (sizeof(struct buffAdd *) * blk_cnt);
941                 }
942         }
943
944         if (mac_control->stats_mem) {
945                 pci_free_consistent(nic->pdev,
946                                     mac_control->stats_mem_sz,
947                                     mac_control->stats_mem,
948                                     mac_control->stats_mem_phy);
949                 nic->mac_control.stats_info->sw_stat.mem_freed +=
950                         mac_control->stats_mem_sz;
951         }
952         if (nic->ufo_in_band_v) {
953                 kfree(nic->ufo_in_band_v);
954                 nic->mac_control.stats_info->sw_stat.mem_freed
955                         += (ufo_size * sizeof(u64));
956         }
957 }
958
959 /**
960  * s2io_verify_pci_mode -
961  */
962
963 static int s2io_verify_pci_mode(struct s2io_nic *nic)
964 {
965         struct XENA_dev_config __iomem *bar0 = nic->bar0;
966         register u64 val64 = 0;
967         int     mode;
968
969         val64 = readq(&bar0->pci_mode);
970         mode = (u8)GET_PCI_MODE(val64);
971
972         if ( val64 & PCI_MODE_UNKNOWN_MODE)
973                 return -1;      /* Unknown PCI mode */
974         return mode;
975 }
976
977 #define NEC_VENID   0x1033
978 #define NEC_DEVID   0x0125
979 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
980 {
981         struct pci_dev *tdev = NULL;
982         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
983                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
984                         if (tdev->bus == s2io_pdev->bus->parent)
985                                 pci_dev_put(tdev);
986                                 return 1;
987                 }
988         }
989         return 0;
990 }
991
992 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
993 /**
994  * s2io_print_pci_mode -
995  */
996 static int s2io_print_pci_mode(struct s2io_nic *nic)
997 {
998         struct XENA_dev_config __iomem *bar0 = nic->bar0;
999         register u64 val64 = 0;
1000         int     mode;
1001         struct config_param *config = &nic->config;
1002
1003         val64 = readq(&bar0->pci_mode);
1004         mode = (u8)GET_PCI_MODE(val64);
1005
1006         if ( val64 & PCI_MODE_UNKNOWN_MODE)
1007                 return -1;      /* Unknown PCI mode */
1008
1009         config->bus_speed = bus_speed[mode];
1010
1011         if (s2io_on_nec_bridge(nic->pdev)) {
1012                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1013                                                         nic->dev->name);
1014                 return mode;
1015         }
1016
1017         if (val64 & PCI_MODE_32_BITS) {
1018                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1019         } else {
1020                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1021         }
1022
1023         switch(mode) {
1024                 case PCI_MODE_PCI_33:
1025                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1026                         break;
1027                 case PCI_MODE_PCI_66:
1028                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1029                         break;
1030                 case PCI_MODE_PCIX_M1_66:
1031                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1032                         break;
1033                 case PCI_MODE_PCIX_M1_100:
1034                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1035                         break;
1036                 case PCI_MODE_PCIX_M1_133:
1037                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1038                         break;
1039                 case PCI_MODE_PCIX_M2_66:
1040                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1041                         break;
1042                 case PCI_MODE_PCIX_M2_100:
1043                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1044                         break;
1045                 case PCI_MODE_PCIX_M2_133:
1046                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1047                         break;
1048                 default:
1049                         return -1;      /* Unsupported bus speed */
1050         }
1051
1052         return mode;
1053 }
1054
1055 /**
1056  *  init_nic - Initialization of hardware
1057  *  @nic: device peivate variable
1058  *  Description: The function sequentially configures every block
1059  *  of the H/W from their reset values.
1060  *  Return Value:  SUCCESS on success and
1061  *  '-1' on failure (endian settings incorrect).
1062  */
1063
1064 static int init_nic(struct s2io_nic *nic)
1065 {
1066         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1067         struct net_device *dev = nic->dev;
1068         register u64 val64 = 0;
1069         void __iomem *add;
1070         u32 time;
1071         int i, j;
1072         struct mac_info *mac_control;
1073         struct config_param *config;
1074         int dtx_cnt = 0;
1075         unsigned long long mem_share;
1076         int mem_size;
1077
1078         mac_control = &nic->mac_control;
1079         config = &nic->config;
1080
1081         /* to set the swapper controle on the card */
1082         if(s2io_set_swapper(nic)) {
1083                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1084                 return -EIO;
1085         }
1086
1087         /*
1088          * Herc requires EOI to be removed from reset before XGXS, so..
1089          */
1090         if (nic->device_type & XFRAME_II_DEVICE) {
1091                 val64 = 0xA500000000ULL;
1092                 writeq(val64, &bar0->sw_reset);
1093                 msleep(500);
1094                 val64 = readq(&bar0->sw_reset);
1095         }
1096
1097         /* Remove XGXS from reset state */
1098         val64 = 0;
1099         writeq(val64, &bar0->sw_reset);
1100         msleep(500);
1101         val64 = readq(&bar0->sw_reset);
1102
1103         /*  Enable Receiving broadcasts */
1104         add = &bar0->mac_cfg;
1105         val64 = readq(&bar0->mac_cfg);
1106         val64 |= MAC_RMAC_BCAST_ENABLE;
1107         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1108         writel((u32) val64, add);
1109         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1110         writel((u32) (val64 >> 32), (add + 4));
1111
1112         /* Read registers in all blocks */
1113         val64 = readq(&bar0->mac_int_mask);
1114         val64 = readq(&bar0->mc_int_mask);
1115         val64 = readq(&bar0->xgxs_int_mask);
1116
1117         /*  Set MTU */
1118         val64 = dev->mtu;
1119         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1120
1121         if (nic->device_type & XFRAME_II_DEVICE) {
1122                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1123                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1124                                           &bar0->dtx_control, UF);
1125                         if (dtx_cnt & 0x1)
1126                                 msleep(1); /* Necessary!! */
1127                         dtx_cnt++;
1128                 }
1129         } else {
1130                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1131                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1132                                           &bar0->dtx_control, UF);
1133                         val64 = readq(&bar0->dtx_control);
1134                         dtx_cnt++;
1135                 }
1136         }
1137
1138         /*  Tx DMA Initialization */
1139         val64 = 0;
1140         writeq(val64, &bar0->tx_fifo_partition_0);
1141         writeq(val64, &bar0->tx_fifo_partition_1);
1142         writeq(val64, &bar0->tx_fifo_partition_2);
1143         writeq(val64, &bar0->tx_fifo_partition_3);
1144
1145
1146         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1147                 val64 |=
1148                     vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1149                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1150                                     ((i * 32) + 5), 3);
1151
1152                 if (i == (config->tx_fifo_num - 1)) {
1153                         if (i % 2 == 0)
1154                                 i++;
1155                 }
1156
1157                 switch (i) {
1158                 case 1:
1159                         writeq(val64, &bar0->tx_fifo_partition_0);
1160                         val64 = 0;
1161                         break;
1162                 case 3:
1163                         writeq(val64, &bar0->tx_fifo_partition_1);
1164                         val64 = 0;
1165                         break;
1166                 case 5:
1167                         writeq(val64, &bar0->tx_fifo_partition_2);
1168                         val64 = 0;
1169                         break;
1170                 case 7:
1171                         writeq(val64, &bar0->tx_fifo_partition_3);
1172                         break;
1173                 }
1174         }
1175
1176         /*
1177          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1178          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1179          */
1180         if ((nic->device_type == XFRAME_I_DEVICE) &&
1181                 (nic->pdev->revision < 4))
1182                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1183
1184         val64 = readq(&bar0->tx_fifo_partition_0);
1185         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1186                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1187
1188         /*
1189          * Initialization of Tx_PA_CONFIG register to ignore packet
1190          * integrity checking.
1191          */
1192         val64 = readq(&bar0->tx_pa_cfg);
1193         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1194             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1195         writeq(val64, &bar0->tx_pa_cfg);
1196
1197         /* Rx DMA intialization. */
1198         val64 = 0;
1199         for (i = 0; i < config->rx_ring_num; i++) {
1200                 val64 |=
1201                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1202                          3);
1203         }
1204         writeq(val64, &bar0->rx_queue_priority);
1205
1206         /*
1207          * Allocating equal share of memory to all the
1208          * configured Rings.
1209          */
1210         val64 = 0;
1211         if (nic->device_type & XFRAME_II_DEVICE)
1212                 mem_size = 32;
1213         else
1214                 mem_size = 64;
1215
1216         for (i = 0; i < config->rx_ring_num; i++) {
1217                 switch (i) {
1218                 case 0:
1219                         mem_share = (mem_size / config->rx_ring_num +
1220                                      mem_size % config->rx_ring_num);
1221                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1222                         continue;
1223                 case 1:
1224                         mem_share = (mem_size / config->rx_ring_num);
1225                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1226                         continue;
1227                 case 2:
1228                         mem_share = (mem_size / config->rx_ring_num);
1229                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1230                         continue;
1231                 case 3:
1232                         mem_share = (mem_size / config->rx_ring_num);
1233                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1234                         continue;
1235                 case 4:
1236                         mem_share = (mem_size / config->rx_ring_num);
1237                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1238                         continue;
1239                 case 5:
1240                         mem_share = (mem_size / config->rx_ring_num);
1241                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1242                         continue;
1243                 case 6:
1244                         mem_share = (mem_size / config->rx_ring_num);
1245                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1246                         continue;
1247                 case 7:
1248                         mem_share = (mem_size / config->rx_ring_num);
1249                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1250                         continue;
1251                 }
1252         }
1253         writeq(val64, &bar0->rx_queue_cfg);
1254
1255         /*
1256          * Filling Tx round robin registers
1257          * as per the number of FIFOs
1258          */
1259         switch (config->tx_fifo_num) {
1260         case 1:
1261                 val64 = 0x0000000000000000ULL;
1262                 writeq(val64, &bar0->tx_w_round_robin_0);
1263                 writeq(val64, &bar0->tx_w_round_robin_1);
1264                 writeq(val64, &bar0->tx_w_round_robin_2);
1265                 writeq(val64, &bar0->tx_w_round_robin_3);
1266                 writeq(val64, &bar0->tx_w_round_robin_4);
1267                 break;
1268         case 2:
1269                 val64 = 0x0000010000010000ULL;
1270                 writeq(val64, &bar0->tx_w_round_robin_0);
1271                 val64 = 0x0100000100000100ULL;
1272                 writeq(val64, &bar0->tx_w_round_robin_1);
1273                 val64 = 0x0001000001000001ULL;
1274                 writeq(val64, &bar0->tx_w_round_robin_2);
1275                 val64 = 0x0000010000010000ULL;
1276                 writeq(val64, &bar0->tx_w_round_robin_3);
1277                 val64 = 0x0100000000000000ULL;
1278                 writeq(val64, &bar0->tx_w_round_robin_4);
1279                 break;
1280         case 3:
1281                 val64 = 0x0001000102000001ULL;
1282                 writeq(val64, &bar0->tx_w_round_robin_0);
1283                 val64 = 0x0001020000010001ULL;
1284                 writeq(val64, &bar0->tx_w_round_robin_1);
1285                 val64 = 0x0200000100010200ULL;
1286                 writeq(val64, &bar0->tx_w_round_robin_2);
1287                 val64 = 0x0001000102000001ULL;
1288                 writeq(val64, &bar0->tx_w_round_robin_3);
1289                 val64 = 0x0001020000000000ULL;
1290                 writeq(val64, &bar0->tx_w_round_robin_4);
1291                 break;
1292         case 4:
1293                 val64 = 0x0001020300010200ULL;
1294                 writeq(val64, &bar0->tx_w_round_robin_0);
1295                 val64 = 0x0100000102030001ULL;
1296                 writeq(val64, &bar0->tx_w_round_robin_1);
1297                 val64 = 0x0200010000010203ULL;
1298                 writeq(val64, &bar0->tx_w_round_robin_2);
1299                 val64 = 0x0001020001000001ULL;
1300                 writeq(val64, &bar0->tx_w_round_robin_3);
1301                 val64 = 0x0203000100000000ULL;
1302                 writeq(val64, &bar0->tx_w_round_robin_4);
1303                 break;
1304         case 5:
1305                 val64 = 0x0001000203000102ULL;
1306                 writeq(val64, &bar0->tx_w_round_robin_0);
1307                 val64 = 0x0001020001030004ULL;
1308                 writeq(val64, &bar0->tx_w_round_robin_1);
1309                 val64 = 0x0001000203000102ULL;
1310                 writeq(val64, &bar0->tx_w_round_robin_2);
1311                 val64 = 0x0001020001030004ULL;
1312                 writeq(val64, &bar0->tx_w_round_robin_3);
1313                 val64 = 0x0001000000000000ULL;
1314                 writeq(val64, &bar0->tx_w_round_robin_4);
1315                 break;
1316         case 6:
1317                 val64 = 0x0001020304000102ULL;
1318                 writeq(val64, &bar0->tx_w_round_robin_0);
1319                 val64 = 0x0304050001020001ULL;
1320                 writeq(val64, &bar0->tx_w_round_robin_1);
1321                 val64 = 0x0203000100000102ULL;
1322                 writeq(val64, &bar0->tx_w_round_robin_2);
1323                 val64 = 0x0304000102030405ULL;
1324                 writeq(val64, &bar0->tx_w_round_robin_3);
1325                 val64 = 0x0001000200000000ULL;
1326                 writeq(val64, &bar0->tx_w_round_robin_4);
1327                 break;
1328         case 7:
1329                 val64 = 0x0001020001020300ULL;
1330                 writeq(val64, &bar0->tx_w_round_robin_0);
1331                 val64 = 0x0102030400010203ULL;
1332                 writeq(val64, &bar0->tx_w_round_robin_1);
1333                 val64 = 0x0405060001020001ULL;
1334                 writeq(val64, &bar0->tx_w_round_robin_2);
1335                 val64 = 0x0304050000010200ULL;
1336                 writeq(val64, &bar0->tx_w_round_robin_3);
1337                 val64 = 0x0102030000000000ULL;
1338                 writeq(val64, &bar0->tx_w_round_robin_4);
1339                 break;
1340         case 8:
1341                 val64 = 0x0001020300040105ULL;
1342                 writeq(val64, &bar0->tx_w_round_robin_0);
1343                 val64 = 0x0200030106000204ULL;
1344                 writeq(val64, &bar0->tx_w_round_robin_1);
1345                 val64 = 0x0103000502010007ULL;
1346                 writeq(val64, &bar0->tx_w_round_robin_2);
1347                 val64 = 0x0304010002060500ULL;
1348                 writeq(val64, &bar0->tx_w_round_robin_3);
1349                 val64 = 0x0103020400000000ULL;
1350                 writeq(val64, &bar0->tx_w_round_robin_4);
1351                 break;
1352         }
1353
1354         /* Enable all configured Tx FIFO partitions */
1355         val64 = readq(&bar0->tx_fifo_partition_0);
1356         val64 |= (TX_FIFO_PARTITION_EN);
1357         writeq(val64, &bar0->tx_fifo_partition_0);
1358
1359         /* Filling the Rx round robin registers as per the
1360          * number of Rings and steering based on QoS.
1361          */
1362         switch (config->rx_ring_num) {
1363         case 1:
1364                 val64 = 0x8080808080808080ULL;
1365                 writeq(val64, &bar0->rts_qos_steering);
1366                 break;
1367         case 2:
1368                 val64 = 0x0000010000010000ULL;
1369                 writeq(val64, &bar0->rx_w_round_robin_0);
1370                 val64 = 0x0100000100000100ULL;
1371                 writeq(val64, &bar0->rx_w_round_robin_1);
1372                 val64 = 0x0001000001000001ULL;
1373                 writeq(val64, &bar0->rx_w_round_robin_2);
1374                 val64 = 0x0000010000010000ULL;
1375                 writeq(val64, &bar0->rx_w_round_robin_3);
1376                 val64 = 0x0100000000000000ULL;
1377                 writeq(val64, &bar0->rx_w_round_robin_4);
1378
1379                 val64 = 0x8080808040404040ULL;
1380                 writeq(val64, &bar0->rts_qos_steering);
1381                 break;
1382         case 3:
1383                 val64 = 0x0001000102000001ULL;
1384                 writeq(val64, &bar0->rx_w_round_robin_0);
1385                 val64 = 0x0001020000010001ULL;
1386                 writeq(val64, &bar0->rx_w_round_robin_1);
1387                 val64 = 0x0200000100010200ULL;
1388                 writeq(val64, &bar0->rx_w_round_robin_2);
1389                 val64 = 0x0001000102000001ULL;
1390                 writeq(val64, &bar0->rx_w_round_robin_3);
1391                 val64 = 0x0001020000000000ULL;
1392                 writeq(val64, &bar0->rx_w_round_robin_4);
1393
1394                 val64 = 0x8080804040402020ULL;
1395                 writeq(val64, &bar0->rts_qos_steering);
1396                 break;
1397         case 4:
1398                 val64 = 0x0001020300010200ULL;
1399                 writeq(val64, &bar0->rx_w_round_robin_0);
1400                 val64 = 0x0100000102030001ULL;
1401                 writeq(val64, &bar0->rx_w_round_robin_1);
1402                 val64 = 0x0200010000010203ULL;
1403                 writeq(val64, &bar0->rx_w_round_robin_2);
1404                 val64 = 0x0001020001000001ULL;
1405                 writeq(val64, &bar0->rx_w_round_robin_3);
1406                 val64 = 0x0203000100000000ULL;
1407                 writeq(val64, &bar0->rx_w_round_robin_4);
1408
1409                 val64 = 0x8080404020201010ULL;
1410                 writeq(val64, &bar0->rts_qos_steering);
1411                 break;
1412         case 5:
1413                 val64 = 0x0001000203000102ULL;
1414                 writeq(val64, &bar0->rx_w_round_robin_0);
1415                 val64 = 0x0001020001030004ULL;
1416                 writeq(val64, &bar0->rx_w_round_robin_1);
1417                 val64 = 0x0001000203000102ULL;
1418                 writeq(val64, &bar0->rx_w_round_robin_2);
1419                 val64 = 0x0001020001030004ULL;
1420                 writeq(val64, &bar0->rx_w_round_robin_3);
1421                 val64 = 0x0001000000000000ULL;
1422                 writeq(val64, &bar0->rx_w_round_robin_4);
1423
1424                 val64 = 0x8080404020201008ULL;
1425                 writeq(val64, &bar0->rts_qos_steering);
1426                 break;
1427         case 6:
1428                 val64 = 0x0001020304000102ULL;
1429                 writeq(val64, &bar0->rx_w_round_robin_0);
1430                 val64 = 0x0304050001020001ULL;
1431                 writeq(val64, &bar0->rx_w_round_robin_1);
1432                 val64 = 0x0203000100000102ULL;
1433                 writeq(val64, &bar0->rx_w_round_robin_2);
1434                 val64 = 0x0304000102030405ULL;
1435                 writeq(val64, &bar0->rx_w_round_robin_3);
1436                 val64 = 0x0001000200000000ULL;
1437                 writeq(val64, &bar0->rx_w_round_robin_4);
1438
1439                 val64 = 0x8080404020100804ULL;
1440                 writeq(val64, &bar0->rts_qos_steering);
1441                 break;
1442         case 7:
1443                 val64 = 0x0001020001020300ULL;
1444                 writeq(val64, &bar0->rx_w_round_robin_0);
1445                 val64 = 0x0102030400010203ULL;
1446                 writeq(val64, &bar0->rx_w_round_robin_1);
1447                 val64 = 0x0405060001020001ULL;
1448                 writeq(val64, &bar0->rx_w_round_robin_2);
1449                 val64 = 0x0304050000010200ULL;
1450                 writeq(val64, &bar0->rx_w_round_robin_3);
1451                 val64 = 0x0102030000000000ULL;
1452                 writeq(val64, &bar0->rx_w_round_robin_4);
1453
1454                 val64 = 0x8080402010080402ULL;
1455                 writeq(val64, &bar0->rts_qos_steering);
1456                 break;
1457         case 8:
1458                 val64 = 0x0001020300040105ULL;
1459                 writeq(val64, &bar0->rx_w_round_robin_0);
1460                 val64 = 0x0200030106000204ULL;
1461                 writeq(val64, &bar0->rx_w_round_robin_1);
1462                 val64 = 0x0103000502010007ULL;
1463                 writeq(val64, &bar0->rx_w_round_robin_2);
1464                 val64 = 0x0304010002060500ULL;
1465                 writeq(val64, &bar0->rx_w_round_robin_3);
1466                 val64 = 0x0103020400000000ULL;
1467                 writeq(val64, &bar0->rx_w_round_robin_4);
1468
1469                 val64 = 0x8040201008040201ULL;
1470                 writeq(val64, &bar0->rts_qos_steering);
1471                 break;
1472         }
1473
1474         /* UDP Fix */
1475         val64 = 0;
1476         for (i = 0; i < 8; i++)
1477                 writeq(val64, &bar0->rts_frm_len_n[i]);
1478
1479         /* Set the default rts frame length for the rings configured */
1480         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1481         for (i = 0 ; i < config->rx_ring_num ; i++)
1482                 writeq(val64, &bar0->rts_frm_len_n[i]);
1483
1484         /* Set the frame length for the configured rings
1485          * desired by the user
1486          */
1487         for (i = 0; i < config->rx_ring_num; i++) {
1488                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1489                  * specified frame length steering.
1490                  * If the user provides the frame length then program
1491                  * the rts_frm_len register for those values or else
1492                  * leave it as it is.
1493                  */
1494                 if (rts_frm_len[i] != 0) {
1495                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1496                                 &bar0->rts_frm_len_n[i]);
1497                 }
1498         }
1499
1500         /* Disable differentiated services steering logic */
1501         for (i = 0; i < 64; i++) {
1502                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1503                         DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1504                                 dev->name);
1505                         DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1506                         return -ENODEV;
1507                 }
1508         }
1509
1510         /* Program statistics memory */
1511         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1512
1513         if (nic->device_type == XFRAME_II_DEVICE) {
1514                 val64 = STAT_BC(0x320);
1515                 writeq(val64, &bar0->stat_byte_cnt);
1516         }
1517
1518         /*
1519          * Initializing the sampling rate for the device to calculate the
1520          * bandwidth utilization.
1521          */
1522         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1523             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1524         writeq(val64, &bar0->mac_link_util);
1525
1526
1527         /*
1528          * Initializing the Transmit and Receive Traffic Interrupt
1529          * Scheme.
1530          */
1531         /*
1532          * TTI Initialization. Default Tx timer gets us about
1533          * 250 interrupts per sec. Continuous interrupts are enabled
1534          * by default.
1535          */
1536         if (nic->device_type == XFRAME_II_DEVICE) {
1537                 int count = (nic->config.bus_speed * 125)/2;
1538                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1539         } else {
1540
1541                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1542         }
1543         val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1544             TTI_DATA1_MEM_TX_URNG_B(0x10) |
1545             TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1546                 if (use_continuous_tx_intrs)
1547                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1548         writeq(val64, &bar0->tti_data1_mem);
1549
1550         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1551             TTI_DATA2_MEM_TX_UFC_B(0x20) |
1552             TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1553         writeq(val64, &bar0->tti_data2_mem);
1554
1555         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1556         writeq(val64, &bar0->tti_command_mem);
1557
1558         /*
1559          * Once the operation completes, the Strobe bit of the command
1560          * register will be reset. We poll for this particular condition
1561          * We wait for a maximum of 500ms for the operation to complete,
1562          * if it's not complete by then we return error.
1563          */
1564         time = 0;
1565         while (TRUE) {
1566                 val64 = readq(&bar0->tti_command_mem);
1567                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1568                         break;
1569                 }
1570                 if (time > 10) {
1571                         DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1572                                   dev->name);
1573                         return -ENODEV;
1574                 }
1575                 msleep(50);
1576                 time++;
1577         }
1578
1579         /* RTI Initialization */
1580         if (nic->device_type == XFRAME_II_DEVICE) {
1581                 /*
1582                  * Programmed to generate Apprx 500 Intrs per
1583                  * second
1584                  */
1585                 int count = (nic->config.bus_speed * 125)/4;
1586                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1587         } else
1588                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1589         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1590                  RTI_DATA1_MEM_RX_URNG_B(0x10) |
1591                  RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1592
1593         writeq(val64, &bar0->rti_data1_mem);
1594
1595         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1596                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1597         if (nic->config.intr_type == MSI_X)
1598             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1599                         RTI_DATA2_MEM_RX_UFC_D(0x40));
1600         else
1601             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1602                         RTI_DATA2_MEM_RX_UFC_D(0x80));
1603         writeq(val64, &bar0->rti_data2_mem);
1604
1605         for (i = 0; i < config->rx_ring_num; i++) {
1606                 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1607                                 | RTI_CMD_MEM_OFFSET(i);
1608                 writeq(val64, &bar0->rti_command_mem);
1609
1610                 /*
1611                  * Once the operation completes, the Strobe bit of the
1612                  * command register will be reset. We poll for this
1613                  * particular condition. We wait for a maximum of 500ms
1614                  * for the operation to complete, if it's not complete
1615                  * by then we return error.
1616                  */
1617                 time = 0;
1618                 while (TRUE) {
1619                         val64 = readq(&bar0->rti_command_mem);
1620                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1621                                 break;
1622
1623                         if (time > 10) {
1624                                 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1625                                           dev->name);
1626                                 return -ENODEV;
1627                         }
1628                         time++;
1629                         msleep(50);
1630                 }
1631         }
1632
1633         /*
1634          * Initializing proper values as Pause threshold into all
1635          * the 8 Queues on Rx side.
1636          */
1637         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1638         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1639
1640         /* Disable RMAC PAD STRIPPING */
1641         add = &bar0->mac_cfg;
1642         val64 = readq(&bar0->mac_cfg);
1643         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1644         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1645         writel((u32) (val64), add);
1646         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1647         writel((u32) (val64 >> 32), (add + 4));
1648         val64 = readq(&bar0->mac_cfg);
1649
1650         /* Enable FCS stripping by adapter */
1651         add = &bar0->mac_cfg;
1652         val64 = readq(&bar0->mac_cfg);
1653         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1654         if (nic->device_type == XFRAME_II_DEVICE)
1655                 writeq(val64, &bar0->mac_cfg);
1656         else {
1657                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1658                 writel((u32) (val64), add);
1659                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1660                 writel((u32) (val64 >> 32), (add + 4));
1661         }
1662
1663         /*
1664          * Set the time value to be inserted in the pause frame
1665          * generated by xena.
1666          */
1667         val64 = readq(&bar0->rmac_pause_cfg);
1668         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1669         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1670         writeq(val64, &bar0->rmac_pause_cfg);
1671
1672         /*
1673          * Set the Threshold Limit for Generating the pause frame
1674          * If the amount of data in any Queue exceeds ratio of
1675          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1676          * pause frame is generated
1677          */
1678         val64 = 0;
1679         for (i = 0; i < 4; i++) {
1680                 val64 |=
1681                     (((u64) 0xFF00 | nic->mac_control.
1682                       mc_pause_threshold_q0q3)
1683                      << (i * 2 * 8));
1684         }
1685         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1686
1687         val64 = 0;
1688         for (i = 0; i < 4; i++) {
1689                 val64 |=
1690                     (((u64) 0xFF00 | nic->mac_control.
1691                       mc_pause_threshold_q4q7)
1692                      << (i * 2 * 8));
1693         }
1694         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1695
1696         /*
1697          * TxDMA will stop Read request if the number of read split has
1698          * exceeded the limit pointed by shared_splits
1699          */
1700         val64 = readq(&bar0->pic_control);
1701         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1702         writeq(val64, &bar0->pic_control);
1703
1704         if (nic->config.bus_speed == 266) {
1705                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1706                 writeq(0x0, &bar0->read_retry_delay);
1707                 writeq(0x0, &bar0->write_retry_delay);
1708         }
1709
1710         /*
1711          * Programming the Herc to split every write transaction
1712          * that does not start on an ADB to reduce disconnects.
1713          */
1714         if (nic->device_type == XFRAME_II_DEVICE) {
1715                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1716                         MISC_LINK_STABILITY_PRD(3);
1717                 writeq(val64, &bar0->misc_control);
1718                 val64 = readq(&bar0->pic_control2);
1719                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1720                 writeq(val64, &bar0->pic_control2);
1721         }
1722         if (strstr(nic->product_name, "CX4")) {
1723                 val64 = TMAC_AVG_IPG(0x17);
1724                 writeq(val64, &bar0->tmac_avg_ipg);
1725         }
1726
1727         return SUCCESS;
1728 }
1729 #define LINK_UP_DOWN_INTERRUPT          1
1730 #define MAC_RMAC_ERR_TIMER              2
1731
1732 static int s2io_link_fault_indication(struct s2io_nic *nic)
1733 {
1734         if (nic->config.intr_type != INTA)
1735                 return MAC_RMAC_ERR_TIMER;
1736         if (nic->device_type == XFRAME_II_DEVICE)
1737                 return LINK_UP_DOWN_INTERRUPT;
1738         else
1739                 return MAC_RMAC_ERR_TIMER;
1740 }
1741
1742 /**
1743  *  do_s2io_write_bits -  update alarm bits in alarm register
1744  *  @value: alarm bits
1745  *  @flag: interrupt status
1746  *  @addr: address value
1747  *  Description: update alarm bits in alarm register
1748  *  Return Value:
1749  *  NONE.
1750  */
1751 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1752 {
1753         u64 temp64;
1754
1755         temp64 = readq(addr);
1756
1757         if(flag == ENABLE_INTRS)
1758                 temp64 &= ~((u64) value);
1759         else
1760                 temp64 |= ((u64) value);
1761         writeq(temp64, addr);
1762 }
1763
1764 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1765 {
1766         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1767         register u64 gen_int_mask = 0;
1768
1769         if (mask & TX_DMA_INTR) {
1770
1771                 gen_int_mask |= TXDMA_INT_M;
1772
1773                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1774                                 TXDMA_PCC_INT | TXDMA_TTI_INT |
1775                                 TXDMA_LSO_INT | TXDMA_TPA_INT |
1776                                 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1777
1778                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1779                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1780                                 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1781                                 &bar0->pfc_err_mask);
1782
1783                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1784                                 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1785                                 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1786
1787                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1788                                 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1789                                 PCC_N_SERR | PCC_6_COF_OV_ERR |
1790                                 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1791                                 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1792                                 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1793
1794                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1795                                 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1796
1797                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1798                                 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1799                                 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1800                                 flag, &bar0->lso_err_mask);
1801
1802                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1803                                 flag, &bar0->tpa_err_mask);
1804
1805                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1806
1807         }
1808
1809         if (mask & TX_MAC_INTR) {
1810                 gen_int_mask |= TXMAC_INT_M;
1811                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1812                                 &bar0->mac_int_mask);
1813                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1814                                 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1815                                 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1816                                 flag, &bar0->mac_tmac_err_mask);
1817         }
1818
1819         if (mask & TX_XGXS_INTR) {
1820                 gen_int_mask |= TXXGXS_INT_M;
1821                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1822                                 &bar0->xgxs_int_mask);
1823                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1824                                 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1825                                 flag, &bar0->xgxs_txgxs_err_mask);
1826         }
1827
1828         if (mask & RX_DMA_INTR) {
1829                 gen_int_mask |= RXDMA_INT_M;
1830                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1831                                 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1832                                 flag, &bar0->rxdma_int_mask);
1833                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1834                                 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1835                                 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1836                                 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1837                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1838                                 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1839                                 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1840                                 &bar0->prc_pcix_err_mask);
1841                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1842                                 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1843                                 &bar0->rpa_err_mask);
1844                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1845                                 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1846                                 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1847                                 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1848                                 flag, &bar0->rda_err_mask);
1849                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1850                                 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1851                                 flag, &bar0->rti_err_mask);
1852         }
1853
1854         if (mask & RX_MAC_INTR) {
1855                 gen_int_mask |= RXMAC_INT_M;
1856                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1857                                 &bar0->mac_int_mask);
1858                 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1859                                 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1860                                 RMAC_DOUBLE_ECC_ERR |
1861                                 RMAC_LINK_STATE_CHANGE_INT,
1862                                 flag, &bar0->mac_rmac_err_mask);
1863         }
1864
1865         if (mask & RX_XGXS_INTR)
1866         {
1867                 gen_int_mask |= RXXGXS_INT_M;
1868                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1869                                 &bar0->xgxs_int_mask);
1870                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1871                                 &bar0->xgxs_rxgxs_err_mask);
1872         }
1873
1874         if (mask & MC_INTR) {
1875                 gen_int_mask |= MC_INT_M;
1876                 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
1877                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1878                                 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1879                                 &bar0->mc_err_mask);
1880         }
1881         nic->general_int_mask = gen_int_mask;
1882
1883         /* Remove this line when alarm interrupts are enabled */
1884         nic->general_int_mask = 0;
1885 }
1886 /**
1887  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1888  *  @nic: device private variable,
1889  *  @mask: A mask indicating which Intr block must be modified and,
1890  *  @flag: A flag indicating whether to enable or disable the Intrs.
1891  *  Description: This function will either disable or enable the interrupts
1892  *  depending on the flag argument. The mask argument can be used to
1893  *  enable/disable any Intr block.
1894  *  Return Value: NONE.
1895  */
1896
1897 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1898 {
1899         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1900         register u64 temp64 = 0, intr_mask = 0;
1901
1902         intr_mask = nic->general_int_mask;
1903
1904         /*  Top level interrupt classification */
1905         /*  PIC Interrupts */
1906         if (mask & TX_PIC_INTR) {
1907                 /*  Enable PIC Intrs in the general intr mask register */
1908                 intr_mask |= TXPIC_INT_M;
1909                 if (flag == ENABLE_INTRS) {
1910                         /*
1911                          * If Hercules adapter enable GPIO otherwise
1912                          * disable all PCIX, Flash, MDIO, IIC and GPIO
1913                          * interrupts for now.
1914                          * TODO
1915                          */
1916                         if (s2io_link_fault_indication(nic) ==
1917                                         LINK_UP_DOWN_INTERRUPT ) {
1918                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
1919                                                 &bar0->pic_int_mask);
1920                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
1921                                                 &bar0->gpio_int_mask);
1922                         } else
1923                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1924                 } else if (flag == DISABLE_INTRS) {
1925                         /*
1926                          * Disable PIC Intrs in the general
1927                          * intr mask register
1928                          */
1929                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1930                 }
1931         }
1932
1933         /*  Tx traffic interrupts */
1934         if (mask & TX_TRAFFIC_INTR) {
1935                 intr_mask |= TXTRAFFIC_INT_M;
1936                 if (flag == ENABLE_INTRS) {
1937                         /*
1938                          * Enable all the Tx side interrupts
1939                          * writing 0 Enables all 64 TX interrupt levels
1940                          */
1941                         writeq(0x0, &bar0->tx_traffic_mask);
1942                 } else if (flag == DISABLE_INTRS) {
1943                         /*
1944                          * Disable Tx Traffic Intrs in the general intr mask
1945                          * register.
1946                          */
1947                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1948                 }
1949         }
1950
1951         /*  Rx traffic interrupts */
1952         if (mask & RX_TRAFFIC_INTR) {
1953                 intr_mask |= RXTRAFFIC_INT_M;
1954                 if (flag == ENABLE_INTRS) {
1955                         /* writing 0 Enables all 8 RX interrupt levels */
1956                         writeq(0x0, &bar0->rx_traffic_mask);
1957                 } else if (flag == DISABLE_INTRS) {
1958                         /*
1959                          * Disable Rx Traffic Intrs in the general intr mask
1960                          * register.
1961                          */
1962                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1963                 }
1964         }
1965
1966         temp64 = readq(&bar0->general_int_mask);
1967         if (flag == ENABLE_INTRS)
1968                 temp64 &= ~((u64) intr_mask);
1969         else
1970                 temp64 = DISABLE_ALL_INTRS;
1971         writeq(temp64, &bar0->general_int_mask);
1972
1973         nic->general_int_mask = readq(&bar0->general_int_mask);
1974 }
1975
1976 /**
1977  *  verify_pcc_quiescent- Checks for PCC quiescent state
1978  *  Return: 1 If PCC is quiescence
1979  *          0 If PCC is not quiescence
1980  */
1981 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1982 {
1983         int ret = 0, herc;
1984         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1985         u64 val64 = readq(&bar0->adapter_status);
1986
1987         herc = (sp->device_type == XFRAME_II_DEVICE);
1988
1989         if (flag == FALSE) {
1990                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1991                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1992                                 ret = 1;
1993                 } else {
1994                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1995                                 ret = 1;
1996                 }
1997         } else {
1998                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1999                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2000                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2001                                 ret = 1;
2002                 } else {
2003                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2004                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2005                                 ret = 1;
2006                 }
2007         }
2008
2009         return ret;
2010 }
2011 /**
2012  *  verify_xena_quiescence - Checks whether the H/W is ready
2013  *  Description: Returns whether the H/W is ready to go or not. Depending
2014  *  on whether adapter enable bit was written or not the comparison
2015  *  differs and the calling function passes the input argument flag to
2016  *  indicate this.
2017  *  Return: 1 If xena is quiescence
2018  *          0 If Xena is not quiescence
2019  */
2020
2021 static int verify_xena_quiescence(struct s2io_nic *sp)
2022 {
2023         int  mode;
2024         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2025         u64 val64 = readq(&bar0->adapter_status);
2026         mode = s2io_verify_pci_mode(sp);
2027
2028         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2029                 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2030                 return 0;
2031         }
2032         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2033         DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2034                 return 0;
2035         }
2036         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2037                 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2038                 return 0;
2039         }
2040         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2041                 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2042                 return 0;
2043         }
2044         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2045                 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2046                 return 0;
2047         }
2048         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2049                 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2050                 return 0;
2051         }
2052         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2053                 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2054                 return 0;
2055         }
2056         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2057                 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2058                 return 0;
2059         }
2060
2061         /*
2062          * In PCI 33 mode, the P_PLL is not used, and therefore,
2063          * the the P_PLL_LOCK bit in the adapter_status register will
2064          * not be asserted.
2065          */
2066         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2067                 sp->device_type == XFRAME_II_DEVICE && mode !=
2068                 PCI_MODE_PCI_33) {
2069                 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2070                 return 0;
2071         }
2072         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2073                         ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2074                 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2075                 return 0;
2076         }
2077         return 1;
2078 }
2079
2080 /**
2081  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2082  * @sp: Pointer to device specifc structure
2083  * Description :
2084  * New procedure to clear mac address reading  problems on Alpha platforms
2085  *
2086  */
2087
2088 static void fix_mac_address(struct s2io_nic * sp)
2089 {
2090         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2091         u64 val64;
2092         int i = 0;
2093
2094         while (fix_mac[i] != END_SIGN) {
2095                 writeq(fix_mac[i++], &bar0->gpio_control);
2096                 udelay(10);
2097                 val64 = readq(&bar0->gpio_control);
2098         }
2099 }
2100
2101 /**
2102  *  start_nic - Turns the device on
2103  *  @nic : device private variable.
2104  *  Description:
2105  *  This function actually turns the device on. Before this  function is
2106  *  called,all Registers are configured from their reset states
2107  *  and shared memory is allocated but the NIC is still quiescent. On
2108  *  calling this function, the device interrupts are cleared and the NIC is
2109  *  literally switched on by writing into the adapter control register.
2110  *  Return Value:
2111  *  SUCCESS on success and -1 on failure.
2112  */
2113
2114 static int start_nic(struct s2io_nic *nic)
2115 {
2116         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2117         struct net_device *dev = nic->dev;
2118         register u64 val64 = 0;
2119         u16 subid, i;
2120         struct mac_info *mac_control;
2121         struct config_param *config;
2122
2123         mac_control = &nic->mac_control;
2124         config = &nic->config;
2125
2126         /*  PRC Initialization and configuration */
2127         for (i = 0; i < config->rx_ring_num; i++) {
2128                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2129                        &bar0->prc_rxd0_n[i]);
2130
2131                 val64 = readq(&bar0->prc_ctrl_n[i]);
2132                 if (nic->rxd_mode == RXD_MODE_1)
2133                         val64 |= PRC_CTRL_RC_ENABLED;
2134                 else
2135                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2136                 if (nic->device_type == XFRAME_II_DEVICE)
2137                         val64 |= PRC_CTRL_GROUP_READS;
2138                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2139                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2140                 writeq(val64, &bar0->prc_ctrl_n[i]);
2141         }
2142
2143         if (nic->rxd_mode == RXD_MODE_3B) {
2144                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2145                 val64 = readq(&bar0->rx_pa_cfg);
2146                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2147                 writeq(val64, &bar0->rx_pa_cfg);
2148         }
2149
2150         if (vlan_tag_strip == 0) {
2151                 val64 = readq(&bar0->rx_pa_cfg);
2152                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2153                 writeq(val64, &bar0->rx_pa_cfg);
2154                 vlan_strip_flag = 0;
2155         }
2156
2157         /*
2158          * Enabling MC-RLDRAM. After enabling the device, we timeout
2159          * for around 100ms, which is approximately the time required
2160          * for the device to be ready for operation.
2161          */
2162         val64 = readq(&bar0->mc_rldram_mrs);
2163         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2164         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2165         val64 = readq(&bar0->mc_rldram_mrs);
2166
2167         msleep(100);    /* Delay by around 100 ms. */
2168
2169         /* Enabling ECC Protection. */
2170         val64 = readq(&bar0->adapter_control);
2171         val64 &= ~ADAPTER_ECC_EN;
2172         writeq(val64, &bar0->adapter_control);
2173
2174         /*
2175          * Verify if the device is ready to be enabled, if so enable
2176          * it.
2177          */
2178         val64 = readq(&bar0->adapter_status);
2179         if (!verify_xena_quiescence(nic)) {
2180                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2181                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2182                           (unsigned long long) val64);
2183                 return FAILURE;
2184         }
2185
2186         /*
2187          * With some switches, link might be already up at this point.
2188          * Because of this weird behavior, when we enable laser,
2189          * we may not get link. We need to handle this. We cannot
2190          * figure out which switch is misbehaving. So we are forced to
2191          * make a global change.
2192          */
2193
2194         /* Enabling Laser. */
2195         val64 = readq(&bar0->adapter_control);
2196         val64 |= ADAPTER_EOI_TX_ON;
2197         writeq(val64, &bar0->adapter_control);
2198
2199         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2200                 /*
2201                  * Dont see link state interrupts initally on some switches,
2202                  * so directly scheduling the link state task here.
2203                  */
2204                 schedule_work(&nic->set_link_task);
2205         }
2206         /* SXE-002: Initialize link and activity LED */
2207         subid = nic->pdev->subsystem_device;
2208         if (((subid & 0xFF) >= 0x07) &&
2209             (nic->device_type == XFRAME_I_DEVICE)) {
2210                 val64 = readq(&bar0->gpio_control);
2211                 val64 |= 0x0000800000000000ULL;
2212                 writeq(val64, &bar0->gpio_control);
2213                 val64 = 0x0411040400000000ULL;
2214                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2215         }
2216
2217         return SUCCESS;
2218 }
2219 /**
2220  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2221  */
2222 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2223                                         TxD *txdlp, int get_off)
2224 {
2225         struct s2io_nic *nic = fifo_data->nic;
2226         struct sk_buff *skb;
2227         struct TxD *txds;
2228         u16 j, frg_cnt;
2229
2230         txds = txdlp;
2231         if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2232                 pci_unmap_single(nic->pdev, (dma_addr_t)
2233                         txds->Buffer_Pointer, sizeof(u64),
2234                         PCI_DMA_TODEVICE);
2235                 txds++;
2236         }
2237
2238         skb = (struct sk_buff *) ((unsigned long)
2239                         txds->Host_Control);
2240         if (!skb) {
2241                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2242                 return NULL;
2243         }
2244         pci_unmap_single(nic->pdev, (dma_addr_t)
2245                          txds->Buffer_Pointer,
2246                          skb->len - skb->data_len,
2247                          PCI_DMA_TODEVICE);
2248         frg_cnt = skb_shinfo(skb)->nr_frags;
2249         if (frg_cnt) {
2250                 txds++;
2251                 for (j = 0; j < frg_cnt; j++, txds++) {
2252                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2253                         if (!txds->Buffer_Pointer)
2254                                 break;
2255                         pci_unmap_page(nic->pdev, (dma_addr_t)
2256                                         txds->Buffer_Pointer,
2257                                        frag->size, PCI_DMA_TODEVICE);
2258                 }
2259         }
2260         memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2261         return(skb);
2262 }
2263
2264 /**
2265  *  free_tx_buffers - Free all queued Tx buffers
2266  *  @nic : device private variable.
2267  *  Description:
2268  *  Free all queued Tx buffers.
2269  *  Return Value: void
2270 */
2271
2272 static void free_tx_buffers(struct s2io_nic *nic)
2273 {
2274         struct net_device *dev = nic->dev;
2275         struct sk_buff *skb;
2276         struct TxD *txdp;
2277         int i, j;
2278         struct mac_info *mac_control;
2279         struct config_param *config;
2280         int cnt = 0;
2281
2282         mac_control = &nic->mac_control;
2283         config = &nic->config;
2284
2285         for (i = 0; i < config->tx_fifo_num; i++) {
2286                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2287                         txdp = (struct TxD *) \
2288                         mac_control->fifos[i].list_info[j].list_virt_addr;
2289                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2290                         if (skb) {
2291                                 nic->mac_control.stats_info->sw_stat.mem_freed
2292                                         += skb->truesize;
2293                                 dev_kfree_skb(skb);
2294                                 cnt++;
2295                         }
2296                 }
2297                 DBG_PRINT(INTR_DBG,
2298                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2299                           dev->name, cnt, i);
2300                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2301                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2302         }
2303 }
2304
2305 /**
2306  *   stop_nic -  To stop the nic
2307  *   @nic ; device private variable.
2308  *   Description:
2309  *   This function does exactly the opposite of what the start_nic()
2310  *   function does. This function is called to stop the device.
2311  *   Return Value:
2312  *   void.
2313  */
2314
2315 static void stop_nic(struct s2io_nic *nic)
2316 {
2317         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2318         register u64 val64 = 0;
2319         u16 interruptible;
2320         struct mac_info *mac_control;
2321         struct config_param *config;
2322
2323         mac_control = &nic->mac_control;
2324         config = &nic->config;
2325
2326         /*  Disable all interrupts */
2327         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2328         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2329         interruptible |= TX_PIC_INTR;
2330         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2331
2332         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2333         val64 = readq(&bar0->adapter_control);
2334         val64 &= ~(ADAPTER_CNTL_EN);
2335         writeq(val64, &bar0->adapter_control);
2336 }
2337
2338 /**
2339  *  fill_rx_buffers - Allocates the Rx side skbs
2340  *  @nic:  device private variable
2341  *  @ring_no: ring number
2342  *  Description:
2343  *  The function allocates Rx side skbs and puts the physical
2344  *  address of these buffers into the RxD buffer pointers, so that the NIC
2345  *  can DMA the received frame into these locations.
2346  *  The NIC supports 3 receive modes, viz
2347  *  1. single buffer,
2348  *  2. three buffer and
2349  *  3. Five buffer modes.
2350  *  Each mode defines how many fragments the received frame will be split
2351  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2352  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2353  *  is split into 3 fragments. As of now only single buffer mode is
2354  *  supported.
2355  *   Return Value:
2356  *  SUCCESS on success or an appropriate -ve value on failure.
2357  */
2358
2359 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2360 {
2361         struct net_device *dev = nic->dev;
2362         struct sk_buff *skb;
2363         struct RxD_t *rxdp;
2364         int off, off1, size, block_no, block_no1;
2365         u32 alloc_tab = 0;
2366         u32 alloc_cnt;
2367         struct mac_info *mac_control;
2368         struct config_param *config;
2369         u64 tmp;
2370         struct buffAdd *ba;
2371         unsigned long flags;
2372         struct RxD_t *first_rxdp = NULL;
2373         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2374         struct RxD1 *rxdp1;
2375         struct RxD3 *rxdp3;
2376         struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2377
2378         mac_control = &nic->mac_control;
2379         config = &nic->config;
2380         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2381             atomic_read(&nic->rx_bufs_left[ring_no]);
2382
2383         block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2384         off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2385         while (alloc_tab < alloc_cnt) {
2386                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2387                     block_index;
2388                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2389
2390                 rxdp = mac_control->rings[ring_no].
2391                                 rx_blocks[block_no].rxds[off].virt_addr;
2392
2393                 if ((block_no == block_no1) && (off == off1) &&
2394                                         (rxdp->Host_Control)) {
2395                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2396                                   dev->name);
2397                         DBG_PRINT(INTR_DBG, " info equated\n");
2398                         goto end;
2399                 }
2400                 if (off && (off == rxd_count[nic->rxd_mode])) {
2401                         mac_control->rings[ring_no].rx_curr_put_info.
2402                             block_index++;
2403                         if (mac_control->rings[ring_no].rx_curr_put_info.
2404                             block_index == mac_control->rings[ring_no].
2405                                         block_count)
2406                                 mac_control->rings[ring_no].rx_curr_put_info.
2407                                         block_index = 0;
2408                         block_no = mac_control->rings[ring_no].
2409                                         rx_curr_put_info.block_index;
2410                         if (off == rxd_count[nic->rxd_mode])
2411                                 off = 0;
2412                         mac_control->rings[ring_no].rx_curr_put_info.
2413                                 offset = off;
2414                         rxdp = mac_control->rings[ring_no].
2415                                 rx_blocks[block_no].block_virt_addr;
2416                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2417                                   dev->name, rxdp);
2418                 }
2419                 if(!napi) {
2420                         spin_lock_irqsave(&nic->put_lock, flags);
2421                         mac_control->rings[ring_no].put_pos =
2422                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2423                         spin_unlock_irqrestore(&nic->put_lock, flags);
2424                 } else {
2425                         mac_control->rings[ring_no].put_pos =
2426                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2427                 }
2428                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2429                         ((nic->rxd_mode == RXD_MODE_3B) &&
2430                                 (rxdp->Control_2 & s2BIT(0)))) {
2431                         mac_control->rings[ring_no].rx_curr_put_info.
2432                                         offset = off;
2433                         goto end;
2434                 }
2435                 /* calculate size of skb based on ring mode */
2436                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2437                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2438                 if (nic->rxd_mode == RXD_MODE_1)
2439                         size += NET_IP_ALIGN;
2440                 else
2441                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2442
2443                 /* allocate skb */
2444                 skb = dev_alloc_skb(size);
2445                 if(!skb) {
2446                         DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2447                         DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2448                         if (first_rxdp) {
2449                                 wmb();
2450                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2451                         }
2452                         nic->mac_control.stats_info->sw_stat. \
2453                                 mem_alloc_fail_cnt++;
2454                         return -ENOMEM ;
2455                 }
2456                 nic->mac_control.stats_info->sw_stat.mem_allocated
2457                         += skb->truesize;
2458                 if (nic->rxd_mode == RXD_MODE_1) {
2459                         /* 1 buffer mode - normal operation mode */
2460                         rxdp1 = (struct RxD1*)rxdp;
2461                         memset(rxdp, 0, sizeof(struct RxD1));
2462                         skb_reserve(skb, NET_IP_ALIGN);
2463                         rxdp1->Buffer0_ptr = pci_map_single
2464                             (nic->pdev, skb->data, size - NET_IP_ALIGN,
2465                                 PCI_DMA_FROMDEVICE);
2466                         if( (rxdp1->Buffer0_ptr == 0) ||
2467                                 (rxdp1->Buffer0_ptr ==
2468                                 DMA_ERROR_CODE))
2469                                 goto pci_map_failed;
2470
2471                         rxdp->Control_2 =
2472                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2473
2474                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2475                         /*
2476                          * 2 buffer mode -
2477                          * 2 buffer mode provides 128
2478                          * byte aligned receive buffers.
2479                          */
2480
2481                         rxdp3 = (struct RxD3*)rxdp;
2482                         /* save buffer pointers to avoid frequent dma mapping */
2483                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2484                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2485                         memset(rxdp, 0, sizeof(struct RxD3));
2486                         /* restore the buffer pointers for dma sync*/
2487                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2488                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2489
2490                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2491                         skb_reserve(skb, BUF0_LEN);
2492                         tmp = (u64)(unsigned long) skb->data;
2493                         tmp += ALIGN_SIZE;
2494                         tmp &= ~ALIGN_SIZE;
2495                         skb->data = (void *) (unsigned long)tmp;
2496                         skb_reset_tail_pointer(skb);
2497
2498                         if (!(rxdp3->Buffer0_ptr))
2499                                 rxdp3->Buffer0_ptr =
2500                                    pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2501                                            PCI_DMA_FROMDEVICE);
2502                         else
2503                                 pci_dma_sync_single_for_device(nic->pdev,
2504                                 (dma_addr_t) rxdp3->Buffer0_ptr,
2505                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2506                         if( (rxdp3->Buffer0_ptr == 0) ||
2507                                 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2508                                 goto pci_map_failed;
2509
2510                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2511                         if (nic->rxd_mode == RXD_MODE_3B) {
2512                                 /* Two buffer mode */
2513
2514                                 /*
2515                                  * Buffer2 will have L3/L4 header plus
2516                                  * L4 payload
2517                                  */
2518                                 rxdp3->Buffer2_ptr = pci_map_single
2519                                 (nic->pdev, skb->data, dev->mtu + 4,
2520                                                 PCI_DMA_FROMDEVICE);
2521
2522                                 if( (rxdp3->Buffer2_ptr == 0) ||
2523                                         (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2524                                         goto pci_map_failed;
2525
2526                                 rxdp3->Buffer1_ptr =
2527                                                 pci_map_single(nic->pdev,
2528                                                 ba->ba_1, BUF1_LEN,
2529                                                 PCI_DMA_FROMDEVICE);
2530                                 if( (rxdp3->Buffer1_ptr == 0) ||
2531                                         (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2532                                         pci_unmap_single
2533                                                 (nic->pdev,
2534                                                 (dma_addr_t)rxdp3->Buffer2_ptr,
2535                                                 dev->mtu + 4,
2536                                                 PCI_DMA_FROMDEVICE);
2537                                         goto pci_map_failed;
2538                                 }
2539                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2540                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2541                                                                 (dev->mtu + 4);
2542                         }
2543                         rxdp->Control_2 |= s2BIT(0);
2544                 }
2545                 rxdp->Host_Control = (unsigned long) (skb);
2546                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2547                         rxdp->Control_1 |= RXD_OWN_XENA;
2548                 off++;
2549                 if (off == (rxd_count[nic->rxd_mode] + 1))
2550                         off = 0;
2551                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2552
2553                 rxdp->Control_2 |= SET_RXD_MARKER;
2554                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2555                         if (first_rxdp) {
2556                                 wmb();
2557                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2558                         }
2559                         first_rxdp = rxdp;
2560                 }
2561                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2562                 alloc_tab++;
2563         }
2564
2565       end:
2566         /* Transfer ownership of first descriptor to adapter just before
2567          * exiting. Before that, use memory barrier so that ownership
2568          * and other fields are seen by adapter correctly.
2569          */
2570         if (first_rxdp) {
2571                 wmb();
2572                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2573         }
2574
2575         return SUCCESS;
2576 pci_map_failed:
2577         stats->pci_map_fail_cnt++;
2578         stats->mem_freed += skb->truesize;
2579         dev_kfree_skb_irq(skb);
2580         return -ENOMEM;
2581 }
2582
2583 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2584 {
2585         struct net_device *dev = sp->dev;
2586         int j;
2587         struct sk_buff *skb;
2588         struct RxD_t *rxdp;
2589         struct mac_info *mac_control;
2590         struct buffAdd *ba;
2591         struct RxD1 *rxdp1;
2592         struct RxD3 *rxdp3;
2593
2594         mac_control = &sp->mac_control;
2595         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2596                 rxdp = mac_control->rings[ring_no].
2597                                 rx_blocks[blk].rxds[j].virt_addr;
2598                 skb = (struct sk_buff *)
2599                         ((unsigned long) rxdp->Host_Control);
2600                 if (!skb) {
2601                         continue;
2602                 }
2603                 if (sp->rxd_mode == RXD_MODE_1) {
2604                         rxdp1 = (struct RxD1*)rxdp;
2605                         pci_unmap_single(sp->pdev, (dma_addr_t)
2606                                 rxdp1->Buffer0_ptr,
2607                                 dev->mtu +
2608                                 HEADER_ETHERNET_II_802_3_SIZE
2609                                 + HEADER_802_2_SIZE +
2610                                 HEADER_SNAP_SIZE,
2611                                 PCI_DMA_FROMDEVICE);
2612                         memset(rxdp, 0, sizeof(struct RxD1));
2613                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2614                         rxdp3 = (struct RxD3*)rxdp;
2615                         ba = &mac_control->rings[ring_no].
2616                                 ba[blk][j];
2617                         pci_unmap_single(sp->pdev, (dma_addr_t)
2618                                 rxdp3->Buffer0_ptr,
2619                                 BUF0_LEN,
2620                                 PCI_DMA_FROMDEVICE);
2621                         pci_unmap_single(sp->pdev, (dma_addr_t)
2622                                 rxdp3->Buffer1_ptr,
2623                                 BUF1_LEN,
2624                                 PCI_DMA_FROMDEVICE);
2625                         pci_unmap_single(sp->pdev, (dma_addr_t)
2626                                 rxdp3->Buffer2_ptr,
2627                                 dev->mtu + 4,
2628                                 PCI_DMA_FROMDEVICE);
2629                         memset(rxdp, 0, sizeof(struct RxD3));
2630                 }
2631                 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2632                 dev_kfree_skb(skb);
2633                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2634         }
2635 }
2636
2637 /**
2638  *  free_rx_buffers - Frees all Rx buffers
2639  *  @sp: device private variable.
2640  *  Description:
2641  *  This function will free all Rx buffers allocated by host.
2642  *  Return Value:
2643  *  NONE.
2644  */
2645
2646 static void free_rx_buffers(struct s2io_nic *sp)
2647 {
2648         struct net_device *dev = sp->dev;
2649         int i, blk = 0, buf_cnt = 0;
2650         struct mac_info *mac_control;
2651         struct config_param *config;
2652
2653         mac_control = &sp->mac_control;
2654         config = &sp->config;
2655
2656         for (i = 0; i < config->rx_ring_num; i++) {
2657                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2658                         free_rxd_blk(sp,i,blk);
2659
2660                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2661                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2662                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2663                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2664                 atomic_set(&sp->rx_bufs_left[i], 0);
2665                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2666                           dev->name, buf_cnt, i);
2667         }
2668 }
2669
2670 /**
2671  * s2io_poll - Rx interrupt handler for NAPI support
2672  * @napi : pointer to the napi structure.
2673  * @budget : The number of packets that were budgeted to be processed
2674  * during  one pass through the 'Poll" function.
2675  * Description:
2676  * Comes into picture only if NAPI support has been incorporated. It does
2677  * the same thing that rx_intr_handler does, but not in a interrupt context
2678  * also It will process only a given number of packets.
2679  * Return value:
2680  * 0 on success and 1 if there are No Rx packets to be processed.
2681  */
2682
2683 static int s2io_poll(struct napi_struct *napi, int budget)
2684 {
2685         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2686         struct net_device *dev = nic->dev;
2687         int pkt_cnt = 0, org_pkts_to_process;
2688         struct mac_info *mac_control;
2689         struct config_param *config;
2690         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2691         int i;
2692
2693         if (!is_s2io_card_up(nic))
2694                 return 0;
2695
2696         mac_control = &nic->mac_control;
2697         config = &nic->config;
2698
2699         nic->pkts_to_process = budget;
2700         org_pkts_to_process = nic->pkts_to_process;
2701
2702         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2703         readl(&bar0->rx_traffic_int);
2704
2705         for (i = 0; i < config->rx_ring_num; i++) {
2706                 rx_intr_handler(&mac_control->rings[i]);
2707                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2708                 if (!nic->pkts_to_process) {
2709                         /* Quota for the current iteration has been met */
2710                         goto no_rx;
2711                 }
2712         }
2713
2714         netif_rx_complete(dev, napi);
2715
2716         for (i = 0; i < config->rx_ring_num; i++) {
2717                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2718                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2719                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2720                         break;
2721                 }
2722         }
2723         /* Re enable the Rx interrupts. */
2724         writeq(0x0, &bar0->rx_traffic_mask);
2725         readl(&bar0->rx_traffic_mask);
2726         return pkt_cnt;
2727
2728 no_rx:
2729         for (i = 0; i < config->rx_ring_num; i++) {
2730                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2731                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2732                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2733                         break;
2734                 }
2735         }
2736         return pkt_cnt;
2737 }
2738
2739 #ifdef CONFIG_NET_POLL_CONTROLLER
2740 /**
2741  * s2io_netpoll - netpoll event handler entry point
2742  * @dev : pointer to the device structure.
2743  * Description:
2744  *      This function will be called by upper layer to check for events on the
2745  * interface in situations where interrupts are disabled. It is used for
2746  * specific in-kernel networking tasks, such as remote consoles and kernel
2747  * debugging over the network (example netdump in RedHat).
2748  */
2749 static void s2io_netpoll(struct net_device *dev)
2750 {
2751         struct s2io_nic *nic = dev->priv;
2752         struct mac_info *mac_control;
2753         struct config_param *config;
2754         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2755         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2756         int i;
2757
2758         if (pci_channel_offline(nic->pdev))
2759                 return;
2760
2761         disable_irq(dev->irq);
2762
2763         mac_control = &nic->mac_control;
2764         config = &nic->config;
2765
2766         writeq(val64, &bar0->rx_traffic_int);
2767         writeq(val64, &bar0->tx_traffic_int);
2768
2769         /* we need to free up the transmitted skbufs or else netpoll will
2770          * run out of skbs and will fail and eventually netpoll application such
2771          * as netdump will fail.
2772          */
2773         for (i = 0; i < config->tx_fifo_num; i++)
2774                 tx_intr_handler(&mac_control->fifos[i]);
2775
2776         /* check for received packet and indicate up to network */
2777         for (i = 0; i < config->rx_ring_num; i++)
2778                 rx_intr_handler(&mac_control->rings[i]);
2779
2780         for (i = 0; i < config->rx_ring_num; i++) {
2781                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2782                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2783                         DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2784                         break;
2785                 }
2786         }
2787         enable_irq(dev->irq);
2788         return;
2789 }
2790 #endif
2791
2792 /**
2793  *  rx_intr_handler - Rx interrupt handler
2794  *  @nic: device private variable.
2795  *  Description:
2796  *  If the interrupt is because of a received frame or if the
2797  *  receive ring contains fresh as yet un-processed frames,this function is
2798  *  called. It picks out the RxD at which place the last Rx processing had
2799  *  stopped and sends the skb to the OSM's Rx handler and then increments
2800  *  the offset.
2801  *  Return Value:
2802  *  NONE.
2803  */
2804 static void rx_intr_handler(struct ring_info *ring_data)
2805 {
2806         struct s2io_nic *nic = ring_data->nic;
2807         struct net_device *dev = (struct net_device *) nic->dev;
2808         int get_block, put_block, put_offset;
2809         struct rx_curr_get_info get_info, put_info;
2810         struct RxD_t *rxdp;
2811         struct sk_buff *skb;
2812         int pkt_cnt = 0;
2813         int i;
2814         struct RxD1* rxdp1;
2815         struct RxD3* rxdp3;
2816
2817         spin_lock(&nic->rx_lock);
2818
2819         get_info = ring_data->rx_curr_get_info;
2820         get_block = get_info.block_index;
2821         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2822         put_block = put_info.block_index;
2823         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2824         if (!napi) {
2825                 spin_lock(&nic->put_lock);
2826                 put_offset = ring_data->put_pos;
2827                 spin_unlock(&nic->put_lock);
2828         } else
2829                 put_offset = ring_data->put_pos;
2830
2831         while (RXD_IS_UP2DT(rxdp)) {
2832                 /*
2833                  * If your are next to put index then it's
2834                  * FIFO full condition
2835                  */
2836                 if ((get_block == put_block) &&
2837                     (get_info.offset + 1) == put_info.offset) {
2838                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2839                         break;
2840                 }
2841                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2842                 if (skb == NULL) {
2843                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2844                                   dev->name);
2845                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2846                         spin_unlock(&nic->rx_lock);
2847                         return;
2848                 }
2849                 if (nic->rxd_mode == RXD_MODE_1) {
2850                         rxdp1 = (struct RxD1*)rxdp;
2851                         pci_unmap_single(nic->pdev, (dma_addr_t)
2852                                 rxdp1->Buffer0_ptr,
2853                                 dev->mtu +
2854                                 HEADER_ETHERNET_II_802_3_SIZE +
2855                                 HEADER_802_2_SIZE +
2856                                 HEADER_SNAP_SIZE,
2857                                 PCI_DMA_FROMDEVICE);
2858                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2859                         rxdp3 = (struct RxD3*)rxdp;
2860                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2861                                 rxdp3->Buffer0_ptr,
2862                                 BUF0_LEN, PCI_DMA_FROMDEVICE);
2863                         pci_unmap_single(nic->pdev, (dma_addr_t)
2864                                 rxdp3->Buffer2_ptr,
2865                                 dev->mtu + 4,
2866                                 PCI_DMA_FROMDEVICE);
2867                 }
2868                 prefetch(skb->data);
2869                 rx_osm_handler(ring_data, rxdp);
2870                 get_info.offset++;
2871                 ring_data->rx_curr_get_info.offset = get_info.offset;
2872                 rxdp = ring_data->rx_blocks[get_block].
2873                                 rxds[get_info.offset].virt_addr;
2874                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2875                         get_info.offset = 0;
2876                         ring_data->rx_curr_get_info.offset = get_info.offset;
2877                         get_block++;
2878                         if (get_block == ring_data->block_count)
2879                                 get_block = 0;
2880                         ring_data->rx_curr_get_info.block_index = get_block;
2881                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2882                 }
2883
2884                 nic->pkts_to_process -= 1;
2885                 if ((napi) && (!nic->pkts_to_process))
2886                         break;
2887                 pkt_cnt++;
2888                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2889                         break;
2890         }
2891         if (nic->lro) {
2892                 /* Clear all LRO sessions before exiting */
2893                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2894                         struct lro *lro = &nic->lro0_n[i];
2895                         if (lro->in_use) {
2896                                 update_L3L4_header(nic, lro);
2897                                 queue_rx_frame(lro->parent);
2898                                 clear_lro_session(lro);
2899                         }
2900                 }
2901         }
2902
2903         spin_unlock(&nic->rx_lock);
2904 }
2905
2906 /**
2907  *  tx_intr_handler - Transmit interrupt handler
2908  *  @nic : device private variable
2909  *  Description:
2910  *  If an interrupt was raised to indicate DMA complete of the
2911  *  Tx packet, this function is called. It identifies the last TxD
2912  *  whose buffer was freed and frees all skbs whose data have already
2913  *  DMA'ed into the NICs internal memory.
2914  *  Return Value:
2915  *  NONE
2916  */
2917
2918 static void tx_intr_handler(struct fifo_info *fifo_data)
2919 {
2920         struct s2io_nic *nic = fifo_data->nic;
2921         struct net_device *dev = (struct net_device *) nic->dev;
2922         struct tx_curr_get_info get_info, put_info;
2923         struct sk_buff *skb;
2924         struct TxD *txdlp;
2925         u8 err_mask;
2926
2927         get_info = fifo_data->tx_curr_get_info;
2928         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2929         txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2930             list_virt_addr;
2931         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2932                (get_info.offset != put_info.offset) &&
2933                (txdlp->Host_Control)) {
2934                 /* Check for TxD errors */
2935                 if (txdlp->Control_1 & TXD_T_CODE) {
2936                         unsigned long long err;
2937                         err = txdlp->Control_1 & TXD_T_CODE;
2938                         if (err & 0x1) {
2939                                 nic->mac_control.stats_info->sw_stat.
2940                                                 parity_err_cnt++;
2941                         }
2942
2943                         /* update t_code statistics */
2944                         err_mask = err >> 48;
2945                         switch(err_mask) {
2946                                 case 2:
2947                                         nic->mac_control.stats_info->sw_stat.
2948                                                         tx_buf_abort_cnt++;
2949                                 break;
2950
2951                                 case 3:
2952                                         nic->mac_control.stats_info->sw_stat.
2953                                                         tx_desc_abort_cnt++;
2954                                 break;
2955
2956                                 case 7:
2957                                         nic->mac_control.stats_info->sw_stat.
2958                                                         tx_parity_err_cnt++;
2959                                 break;
2960
2961                                 case 10:
2962                                         nic->mac_control.stats_info->sw_stat.
2963                                                         tx_link_loss_cnt++;
2964                                 break;
2965
2966                                 case 15:
2967                                         nic->mac_control.stats_info->sw_stat.
2968                                                         tx_list_proc_err_cnt++;
2969                                 break;
2970                         }
2971                 }
2972
2973                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2974                 if (skb == NULL) {
2975                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
2976                         __FUNCTION__);
2977                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2978                         return;
2979                 }
2980
2981                 /* Updating the statistics block */
2982                 nic->stats.tx_bytes += skb->len;
2983                 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2984                 dev_kfree_skb_irq(skb);
2985
2986                 get_info.offset++;
2987                 if (get_info.offset == get_info.fifo_len + 1)
2988                         get_info.offset = 0;
2989                 txdlp = (struct TxD *) fifo_data->list_info
2990                     [get_info.offset].list_virt_addr;
2991                 fifo_data->tx_curr_get_info.offset =
2992                     get_info.offset;
2993         }
2994
2995         spin_lock(&nic->tx_lock);
2996         if (netif_queue_stopped(dev))
2997                 netif_wake_queue(dev);
2998         spin_unlock(&nic->tx_lock);
2999 }
3000
3001 /**
3002  *  s2io_mdio_write - Function to write in to MDIO registers
3003  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3004  *  @addr     : address value
3005  *  @value    : data value
3006  *  @dev      : pointer to net_device structure
3007  *  Description:
3008  *  This function is used to write values to the MDIO registers
3009  *  NONE
3010  */
3011 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3012 {
3013         u64 val64 = 0x0;
3014         struct s2io_nic *sp = dev->priv;
3015         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3016
3017         //address transaction
3018         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3019                         | MDIO_MMD_DEV_ADDR(mmd_type)
3020                         | MDIO_MMS_PRT_ADDR(0x0);
3021         writeq(val64, &bar0->mdio_control);
3022         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3023         writeq(val64, &bar0->mdio_control);
3024         udelay(100);
3025
3026         //Data transaction
3027         val64 = 0x0;
3028         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3029                         | MDIO_MMD_DEV_ADDR(mmd_type)
3030                         | MDIO_MMS_PRT_ADDR(0x0)
3031                         | MDIO_MDIO_DATA(value)
3032                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
3033         writeq(val64, &bar0->mdio_control);
3034         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3035         writeq(val64, &bar0->mdio_control);
3036         udelay(100);
3037
3038         val64 = 0x0;
3039         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3040         | MDIO_MMD_DEV_ADDR(mmd_type)
3041         | MDIO_MMS_PRT_ADDR(0x0)
3042         | MDIO_OP(MDIO_OP_READ_TRANS);
3043         writeq(val64, &bar0->mdio_control);
3044         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3045         writeq(val64, &bar0->mdio_control);
3046         udelay(100);
3047
3048 }
3049
3050 /**
3051  *  s2io_mdio_read - Function to write in to MDIO registers
3052  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3053  *  @addr     : address value
3054  *  @dev      : pointer to net_device structure
3055  *  Description:
3056  *  This function is used to read values to the MDIO registers
3057  *  NONE
3058  */
3059 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3060 {
3061         u64 val64 = 0x0;
3062         u64 rval64 = 0x0;
3063         struct s2io_nic *sp = dev->priv;
3064         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3065
3066         /* address transaction */
3067         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3068                         | MDIO_MMD_DEV_ADDR(mmd_type)
3069                         | MDIO_MMS_PRT_ADDR(0x0);
3070         writeq(val64, &bar0->mdio_control);
3071         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3072         writeq(val64, &bar0->mdio_control);
3073         udelay(100);
3074
3075         /* Data transaction */
3076         val64 = 0x0;
3077         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3078                         | MDIO_MMD_DEV_ADDR(mmd_type)
3079                         | MDIO_MMS_PRT_ADDR(0x0)
3080                         | MDIO_OP(MDIO_OP_READ_TRANS);
3081         writeq(val64, &bar0->mdio_control);
3082         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3083         writeq(val64, &bar0->mdio_control);
3084         udelay(100);
3085
3086         /* Read the value from regs */
3087         rval64 = readq(&bar0->mdio_control);
3088         rval64 = rval64 & 0xFFFF0000;
3089         rval64 = rval64 >> 16;
3090         return rval64;
3091 }
3092 /**
3093  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3094  *  @counter      : couter value to be updated
3095  *  @flag         : flag to indicate the status
3096  *  @type         : counter type
3097  *  Description:
3098  *  This function is to check the status of the xpak counters value
3099  *  NONE
3100  */
3101
3102 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3103 {
3104         u64 mask = 0x3;
3105         u64 val64;
3106         int i;
3107         for(i = 0; i <index; i++)
3108                 mask = mask << 0x2;
3109
3110         if(flag > 0)
3111         {
3112                 *counter = *counter + 1;
3113                 val64 = *regs_stat & mask;
3114                 val64 = val64 >> (index * 0x2);
3115                 val64 = val64 + 1;
3116                 if(val64 == 3)
3117                 {
3118                         switch(type)
3119                         {
3120                         case 1:
3121                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3122                                           "service. Excessive temperatures may "
3123                                           "result in premature transceiver "
3124                                           "failure \n");
3125                         break;
3126                         case 2:
3127                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3128                                           "service Excessive bias currents may "
3129                                           "indicate imminent laser diode "
3130                                           "failure \n");
3131                         break;
3132                         case 3:
3133                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3134                                           "service Excessive laser output "
3135                                           "power may saturate far-end "
3136                                           "receiver\n");
3137                         break;
3138                         default:
3139                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3140                                           "type \n");
3141                         }
3142                         val64 = 0x0;
3143                 }
3144                 val64 = val64 << (index * 0x2);
3145                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3146
3147         } else {
3148                 *regs_stat = *regs_stat & (~mask);
3149         }
3150 }
3151
3152 /**
3153  *  s2io_updt_xpak_counter - Function to update the xpak counters
3154  *  @dev         : pointer to net_device struct
3155  *  Description:
3156  *  This function is to upate the status of the xpak counters value
3157  *  NONE
3158  */
3159 static void s2io_updt_xpak_counter(struct net_device *dev)
3160 {
3161         u16 flag  = 0x0;
3162         u16 type  = 0x0;
3163         u16 val16 = 0x0;
3164         u64 val64 = 0x0;
3165         u64 addr  = 0x0;
3166
3167         struct s2io_nic *sp = dev->priv;
3168         struct stat_block *stat_info = sp->mac_control.stats_info;
3169
3170         /* Check the communication with the MDIO slave */
3171         addr = 0x0000;
3172         val64 = 0x0;
3173         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3174         if((val64 == 0xFFFF) || (val64 == 0x0000))
3175         {
3176                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3177                           "Returned %llx\n", (unsigned long long)val64);
3178                 return;
3179         }
3180
3181         /* Check for the expecte value of 2040 at PMA address 0x0000 */
3182         if(val64 != 0x2040)
3183         {
3184                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3185                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3186                           (unsigned long long)val64);
3187                 return;
3188         }
3189
3190         /* Loading the DOM register to MDIO register */
3191         addr = 0xA100;
3192         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3193         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3194
3195         /* Reading the Alarm flags */
3196         addr = 0xA070;
3197         val64 = 0x0;
3198         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3199
3200         flag = CHECKBIT(val64, 0x7);
3201         type = 1;
3202         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3203                                 &stat_info->xpak_stat.xpak_regs_stat,
3204                                 0x0, flag, type);
3205
3206         if(CHECKBIT(val64, 0x6))
3207                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3208
3209         flag = CHECKBIT(val64, 0x3);
3210         type = 2;
3211         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3212                                 &stat_info->xpak_stat.xpak_regs_stat,
3213                                 0x2, flag, type);
3214
3215         if(CHECKBIT(val64, 0x2))
3216                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3217
3218         flag = CHECKBIT(val64, 0x1);
3219         type = 3;
3220         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3221                                 &stat_info->xpak_stat.xpak_regs_stat,
3222                                 0x4, flag, type);
3223
3224         if(CHECKBIT(val64, 0x0))
3225                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3226
3227         /* Reading the Warning flags */
3228         addr = 0xA074;
3229         val64 = 0x0;
3230         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3231
3232         if(CHECKBIT(val64, 0x7))
3233                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3234
3235         if(CHECKBIT(val64, 0x6))
3236                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3237
3238         if(CHECKBIT(val64, 0x3))
3239                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3240
3241         if(CHECKBIT(val64, 0x2))
3242                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3243
3244         if(CHECKBIT(val64, 0x1))
3245                 stat_info->xpak_stat.warn_laser_output_power_high++;
3246
3247         if(CHECKBIT(val64, 0x0))
3248                 stat_info->xpak_stat.warn_laser_output_power_low++;
3249 }
3250
3251 /**
3252  *  wait_for_cmd_complete - waits for a command to complete.
3253  *  @sp : private member of the device structure, which is a pointer to the
3254  *  s2io_nic structure.
3255  *  Description: Function that waits for a command to Write into RMAC
3256  *  ADDR DATA registers to be completed and returns either success or
3257  *  error depending on whether the command was complete or not.
3258  *  Return value:
3259  *   SUCCESS on success and FAILURE on failure.
3260  */
3261
3262 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3263                                 int bit_state)
3264 {
3265         int ret = FAILURE, cnt = 0, delay = 1;
3266         u64 val64;
3267
3268         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3269                 return FAILURE;
3270
3271         do {
3272                 val64 = readq(addr);
3273                 if (bit_state == S2IO_BIT_RESET) {
3274                         if (!(val64 & busy_bit)) {
3275                                 ret = SUCCESS;
3276                                 break;
3277                         }
3278                 } else {
3279                         if (!(val64 & busy_bit)) {
3280                                 ret = SUCCESS;
3281                                 break;
3282                         }
3283                 }
3284
3285                 if(in_interrupt())
3286                         mdelay(delay);
3287                 else
3288                         msleep(delay);
3289
3290                 if (++cnt >= 10)
3291                         delay = 50;
3292         } while (cnt < 20);
3293         return ret;
3294 }
3295 /*
3296  * check_pci_device_id - Checks if the device id is supported
3297  * @id : device id
3298  * Description: Function to check if the pci device id is supported by driver.
3299  * Return value: Actual device id if supported else PCI_ANY_ID
3300  */
3301 static u16 check_pci_device_id(u16 id)
3302 {
3303         switch (id) {
3304         case PCI_DEVICE_ID_HERC_WIN:
3305         case PCI_DEVICE_ID_HERC_UNI:
3306                 return XFRAME_II_DEVICE;
3307         case PCI_DEVICE_ID_S2IO_UNI:
3308         case PCI_DEVICE_ID_S2IO_WIN:
3309                 return XFRAME_I_DEVICE;
3310         default:
3311                 return PCI_ANY_ID;
3312         }
3313 }
3314
3315 /**
3316  *  s2io_reset - Resets the card.
3317  *  @sp : private member of the device structure.
3318  *  Description: Function to Reset the card. This function then also
3319  *  restores the previously saved PCI configuration space registers as
3320  *  the card reset also resets the configuration space.
3321  *  Return value:
3322  *  void.
3323  */
3324
3325 static void s2io_reset(struct s2io_nic * sp)
3326 {
3327         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3328         u64 val64;
3329         u16 subid, pci_cmd;
3330         int i;
3331         u16 val16;
3332         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3333         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3334
3335         DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3336                         __FUNCTION__, sp->dev->name);
3337
3338         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3339         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3340
3341         val64 = SW_RESET_ALL;
3342         writeq(val64, &bar0->sw_reset);
3343         if (strstr(sp->product_name, "CX4")) {
3344                 msleep(750);
3345         }
3346         msleep(250);
3347         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3348
3349                 /* Restore the PCI state saved during initialization. */
3350                 pci_restore_state(sp->pdev);
3351                 pci_read_config_word(sp->pdev, 0x2, &val16);
3352                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3353                         break;
3354                 msleep(200);
3355         }
3356
3357         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3358                 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3359         }
3360
3361         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3362
3363         s2io_init_pci(sp);
3364
3365         /* Set swapper to enable I/O register access */
3366         s2io_set_swapper(sp);
3367
3368         /* Restore the MSIX table entries from local variables */
3369         restore_xmsi_data(sp);
3370
3371         /* Clear certain PCI/PCI-X fields after reset */
3372         if (sp->device_type == XFRAME_II_DEVICE) {
3373                 /* Clear "detected parity error" bit */
3374                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3375
3376                 /* Clearing PCIX Ecc status register */
3377                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3378
3379                 /* Clearing PCI_STATUS error reflected here */
3380                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3381         }
3382
3383         /* Reset device statistics maintained by OS */
3384         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3385
3386         up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3387         down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3388         up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3389         down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3390         reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3391         mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3392         mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3393         watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3394         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3395         memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3396         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3397         sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3398         sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3399         sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3400         sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3401         sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3402         sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3403         sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3404         sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3405
3406         /* SXE-002: Configure link and activity LED to turn it off */
3407         subid = sp->pdev->subsystem_device;
3408         if (((subid & 0xFF) >= 0x07) &&
3409             (sp->device_type == XFRAME_I_DEVICE)) {
3410                 val64 = readq(&bar0->gpio_control);
3411                 val64 |= 0x0000800000000000ULL;
3412                 writeq(val64, &bar0->gpio_control);
3413                 val64 = 0x0411040400000000ULL;
3414                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3415         }
3416
3417         /*
3418          * Clear spurious ECC interrupts that would have occured on
3419          * XFRAME II cards after reset.
3420          */
3421         if (sp->device_type == XFRAME_II_DEVICE) {
3422                 val64 = readq(&bar0->pcc_err_reg);
3423                 writeq(val64, &bar0->pcc_err_reg);
3424         }
3425
3426         /* restore the previously assigned mac address */
3427         do_s2io_prog_unicast(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3428
3429         sp->device_enabled_once = FALSE;
3430 }
3431
3432 /**
3433  *  s2io_set_swapper - to set the swapper controle on the card
3434  *  @sp : private member of the device structure,
3435  *  pointer to the s2io_nic structure.
3436  *  Description: Function to set the swapper control on the card
3437  *  correctly depending on the 'endianness' of the system.
3438  *  Return value:
3439  *  SUCCESS on success and FAILURE on failure.
3440  */
3441
3442 static int s2io_set_swapper(struct s2io_nic * sp)
3443 {
3444         struct net_device *dev = sp->dev;
3445         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3446         u64 val64, valt, valr;
3447
3448         /*
3449          * Set proper endian settings and verify the same by reading
3450          * the PIF Feed-back register.
3451          */
3452
3453         val64 = readq(&bar0->pif_rd_swapper_fb);
3454         if (val64 != 0x0123456789ABCDEFULL) {
3455                 int i = 0;
3456                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3457                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3458                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3459                                 0};                     /* FE=0, SE=0 */
3460
3461                 while(i<4) {
3462                         writeq(value[i], &bar0->swapper_ctrl);
3463                         val64 = readq(&bar0->pif_rd_swapper_fb);
3464                         if (val64 == 0x0123456789ABCDEFULL)
3465                                 break;
3466                         i++;
3467                 }
3468                 if (i == 4) {
3469                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3470                                 dev->name);
3471                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3472                                 (unsigned long long) val64);
3473                         return FAILURE;
3474                 }
3475                 valr = value[i];
3476         } else {
3477                 valr = readq(&bar0->swapper_ctrl);
3478         }
3479
3480         valt = 0x0123456789ABCDEFULL;
3481         writeq(valt, &bar0->xmsi_address);
3482         val64 = readq(&bar0->xmsi_address);
3483
3484         if(val64 != valt) {
3485                 int i = 0;
3486                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3487                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3488                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3489                                 0};                     /* FE=0, SE=0 */
3490
3491                 while(i<4) {
3492                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3493                         writeq(valt, &bar0->xmsi_address);
3494                         val64 = readq(&bar0->xmsi_address);
3495                         if(val64 == valt)
3496                                 break;
3497                         i++;
3498                 }
3499                 if(i == 4) {
3500                         unsigned long long x = val64;
3501                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3502                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3503                         return FAILURE;
3504                 }
3505         }
3506         val64 = readq(&bar0->swapper_ctrl);
3507         val64 &= 0xFFFF000000000000ULL;
3508
3509 #ifdef  __BIG_ENDIAN
3510         /*
3511          * The device by default set to a big endian format, so a
3512          * big endian driver need not set anything.
3513          */
3514         val64 |= (SWAPPER_CTRL_TXP_FE |
3515                  SWAPPER_CTRL_TXP_SE |
3516                  SWAPPER_CTRL_TXD_R_FE |
3517                  SWAPPER_CTRL_TXD_W_FE |
3518                  SWAPPER_CTRL_TXF_R_FE |
3519                  SWAPPER_CTRL_RXD_R_FE |
3520                  SWAPPER_CTRL_RXD_W_FE |
3521                  SWAPPER_CTRL_RXF_W_FE |
3522                  SWAPPER_CTRL_XMSI_FE |
3523                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3524         if (sp->config.intr_type == INTA)
3525                 val64 |= SWAPPER_CTRL_XMSI_SE;
3526         writeq(val64, &bar0->swapper_ctrl);
3527 #else
3528         /*
3529          * Initially we enable all bits to make it accessible by the
3530          * driver, then we selectively enable only those bits that
3531          * we want to set.
3532          */
3533         val64 |= (SWAPPER_CTRL_TXP_FE |
3534                  SWAPPER_CTRL_TXP_SE |
3535                  SWAPPER_CTRL_TXD_R_FE |
3536                  SWAPPER_CTRL_TXD_R_SE |
3537                  SWAPPER_CTRL_TXD_W_FE |
3538                  SWAPPER_CTRL_TXD_W_SE |
3539                  SWAPPER_CTRL_TXF_R_FE |
3540                  SWAPPER_CTRL_RXD_R_FE |
3541                  SWAPPER_CTRL_RXD_R_SE |
3542                  SWAPPER_CTRL_RXD_W_FE |
3543                  SWAPPER_CTRL_RXD_W_SE |
3544                  SWAPPER_CTRL_RXF_W_FE |
3545                  SWAPPER_CTRL_XMSI_FE |
3546                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3547         if (sp->config.intr_type == INTA)
3548                 val64 |= SWAPPER_CTRL_XMSI_SE;
3549         writeq(val64, &bar0->swapper_ctrl);
3550 #endif
3551         val64 = readq(&bar0->swapper_ctrl);
3552
3553         /*
3554          * Verifying if endian settings are accurate by reading a
3555          * feedback register.
3556          */
3557         val64 = readq(&bar0->pif_rd_swapper_fb);
3558         if (val64 != 0x0123456789ABCDEFULL) {
3559                 /* Endian settings are incorrect, calls for another dekko. */
3560                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3561                           dev->name);
3562                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3563                           (unsigned long long) val64);
3564                 return FAILURE;
3565         }
3566
3567         return SUCCESS;
3568 }
3569
3570 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3571 {
3572         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3573         u64 val64;
3574         int ret = 0, cnt = 0;
3575
3576         do {
3577                 val64 = readq(&bar0->xmsi_access);
3578                 if (!(val64 & s2BIT(15)))
3579                         break;
3580                 mdelay(1);
3581                 cnt++;
3582         } while(cnt < 5);
3583         if (cnt == 5) {
3584                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3585                 ret = 1;
3586         }
3587
3588         return ret;
3589 }
3590
3591 static void restore_xmsi_data(struct s2io_nic *nic)
3592 {
3593         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3594         u64 val64;
3595         int i;
3596
3597         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3598                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3599                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3600                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
3601                 writeq(val64, &bar0->xmsi_access);
3602                 if (wait_for_msix_trans(nic, i)) {
3603                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3604                         continue;
3605                 }
3606         }
3607 }
3608
3609 static void store_xmsi_data(struct s2io_nic *nic)
3610 {
3611         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3612         u64 val64, addr, data;
3613         int i;
3614
3615         /* Store and display */
3616         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3617                 val64 = (s2BIT(15) | vBIT(i, 26, 6));
3618                 writeq(val64, &bar0->xmsi_access);
3619                 if (wait_for_msix_trans(nic, i)) {
3620                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3621                         continue;
3622                 }
3623                 addr = readq(&bar0->xmsi_address);
3624                 data = readq(&bar0->xmsi_data);
3625                 if (addr && data) {
3626                         nic->msix_info[i].addr = addr;
3627                         nic->msix_info[i].data = data;
3628                 }
3629         }
3630 }
3631
3632 static int s2io_enable_msi_x(struct s2io_nic *nic)
3633 {
3634         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3635         u64 tx_mat, rx_mat;
3636         u16 msi_control; /* Temp variable */
3637         int ret, i, j, msix_indx = 1;
3638
3639         nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
3640                                GFP_KERNEL);
3641         if (!nic->entries) {
3642                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3643                         __FUNCTION__);
3644                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3645                 return -ENOMEM;
3646         }
3647         nic->mac_control.stats_info->sw_stat.mem_allocated
3648                 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3649
3650         nic->s2io_entries =
3651                 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
3652                                    GFP_KERNEL);
3653         if (!nic->s2io_entries) {
3654                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3655                         __FUNCTION__);
3656                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3657                 kfree(nic->entries);
3658                 nic->mac_control.stats_info->sw_stat.mem_freed
3659                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3660                 return -ENOMEM;
3661         }
3662          nic->mac_control.stats_info->sw_stat.mem_allocated
3663                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3664
3665         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3666                 nic->entries[i].entry = i;
3667                 nic->s2io_entries[i].entry = i;
3668                 nic->s2io_entries[i].arg = NULL;
3669                 nic->s2io_entries[i].in_use = 0;
3670         }
3671
3672         tx_mat = readq(&bar0->tx_mat0_n[0]);
3673         for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3674                 tx_mat |= TX_MAT_SET(i, msix_indx);
3675                 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3676                 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3677                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3678         }
3679         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3680
3681         rx_mat = readq(&bar0->rx_mat);
3682         for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3683                 rx_mat |= RX_MAT_SET(j, msix_indx);
3684                 nic->s2io_entries[msix_indx].arg
3685                         = &nic->mac_control.rings[j];
3686                 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3687                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3688         }
3689         writeq(rx_mat, &bar0->rx_mat);
3690
3691         nic->avail_msix_vectors = 0;
3692         ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3693         /* We fail init if error or we get less vectors than min required */
3694         if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3695                 nic->avail_msix_vectors = ret;
3696                 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3697         }
3698         if (ret) {
3699                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3700                 kfree(nic->entries);
3701                 nic->mac_control.stats_info->sw_stat.mem_freed
3702                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3703                 kfree(nic->s2io_entries);
3704                 nic->mac_control.stats_info->sw_stat.mem_freed
3705                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3706                 nic->entries = NULL;
3707                 nic->s2io_entries = NULL;
3708                 nic->avail_msix_vectors = 0;
3709                 return -ENOMEM;
3710         }
3711         if (!nic->avail_msix_vectors)
3712                 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3713
3714         /*
3715          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3716          * in the herc NIC. (Temp change, needs to be removed later)
3717          */
3718         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3719         msi_control |= 0x1; /* Enable MSI */
3720         pci_write_config_word(nic->pdev, 0x42, msi_control);
3721
3722         return 0;
3723 }
3724
3725 /* Handle software interrupt used during MSI(X) test */
3726 static irqreturn_t __devinit s2io_test_intr(int irq, void *dev_id)
3727 {
3728         struct s2io_nic *sp = dev_id;
3729
3730         sp->msi_detected = 1;
3731         wake_up(&sp->msi_wait);
3732
3733         return IRQ_HANDLED;
3734 }
3735
3736 /* Test interrupt path by forcing a a software IRQ */
3737 static int __devinit s2io_test_msi(struct s2io_nic *sp)
3738 {
3739         struct pci_dev *pdev = sp->pdev;
3740         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3741         int err;
3742         u64 val64, saved64;
3743
3744         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3745                         sp->name, sp);
3746         if (err) {
3747                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3748                        sp->dev->name, pci_name(pdev), pdev->irq);
3749                 return err;
3750         }
3751
3752         init_waitqueue_head (&sp->msi_wait);
3753         sp->msi_detected = 0;
3754
3755         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3756         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3757         val64 |= SCHED_INT_CTRL_TIMER_EN;
3758         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3759         writeq(val64, &bar0->scheduled_int_ctrl);
3760
3761         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3762
3763         if (!sp->msi_detected) {
3764                 /* MSI(X) test failed, go back to INTx mode */
3765                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated"
3766                         "using MSI(X) during test\n", sp->dev->name,
3767                         pci_name(pdev));
3768
3769                 err = -EOPNOTSUPP;
3770         }
3771
3772         free_irq(sp->entries[1].vector, sp);
3773
3774         writeq(saved64, &bar0->scheduled_int_ctrl);
3775
3776         return err;
3777 }
3778
3779 static void remove_msix_isr(struct s2io_nic *sp)
3780 {
3781         int i;
3782         u16 msi_control;
3783
3784         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3785                 if (sp->s2io_entries[i].in_use ==
3786                         MSIX_REGISTERED_SUCCESS) {
3787                         int vector = sp->entries[i].vector;
3788                         void *arg = sp->s2io_entries[i].arg;
3789                         free_irq(vector, arg);
3790                 }
3791         }
3792
3793         kfree(sp->entries);
3794         kfree(sp->s2io_entries);
3795         sp->entries = NULL;
3796         sp->s2io_entries = NULL;
3797
3798         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3799         msi_control &= 0xFFFE; /* Disable MSI */
3800         pci_write_config_word(sp->pdev, 0x42, msi_control);
3801
3802         pci_disable_msix(sp->pdev);
3803 }
3804
3805 static void remove_inta_isr(struct s2io_nic *sp)
3806 {
3807         struct net_device *dev = sp->dev;
3808
3809         free_irq(sp->pdev->irq, dev);
3810 }
3811
3812 /* ********************************************************* *
3813  * Functions defined below concern the OS part of the driver *
3814  * ********************************************************* */
3815
3816 /**
3817  *  s2io_open - open entry point of the driver
3818  *  @dev : pointer to the device structure.
3819  *  Description:
3820  *  This function is the open entry point of the driver. It mainly calls a
3821  *  function to allocate Rx buffers and inserts them into the buffer
3822  *  descriptors and then enables the Rx part of the NIC.
3823  *  Return value:
3824  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3825  *   file on failure.
3826  */
3827
3828 static int s2io_open(struct net_device *dev)
3829 {
3830         struct s2io_nic *sp = dev->priv;
3831         int err = 0;
3832
3833         /*
3834          * Make sure you have link off by default every time
3835          * Nic is initialized
3836          */
3837         netif_carrier_off(dev);
3838         sp->last_link_state = 0;
3839
3840         napi_enable(&sp->napi);
3841
3842         if (sp->config.intr_type == MSI_X) {
3843                 int ret = s2io_enable_msi_x(sp);
3844
3845                 if (!ret) {
3846                         ret = s2io_test_msi(sp);
3847                         /* rollback MSI-X, will re-enable during add_isr() */
3848                         remove_msix_isr(sp);
3849                 }
3850                 if (ret) {
3851
3852                         DBG_PRINT(ERR_DBG,
3853                           "%s: MSI-X requested but failed to enable\n",
3854                           dev->name);
3855                         sp->config.intr_type = INTA;
3856                 }
3857         }
3858
3859         /* NAPI doesn't work well with MSI(X) */
3860          if (sp->config.intr_type != INTA) {
3861                 if(sp->config.napi)
3862                         sp->config.napi = 0;
3863         }
3864
3865         /* Initialize H/W and enable interrupts */
3866         err = s2io_card_up(sp);
3867         if (err) {
3868                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3869                           dev->name);
3870                 goto hw_init_failed;
3871         }
3872
3873         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3874                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3875                 s2io_card_down(sp);
3876                 err = -ENODEV;
3877                 goto hw_init_failed;
3878         }
3879
3880         netif_start_queue(dev);
3881         return 0;
3882
3883 hw_init_failed:
3884         napi_disable(&sp->napi);
3885         if (sp->config.intr_type == MSI_X) {
3886                 if (sp->entries) {
3887                         kfree(sp->entries);
3888                         sp->mac_control.stats_info->sw_stat.mem_freed
3889                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3890                 }
3891                 if (sp->s2io_entries) {
3892                         kfree(sp->s2io_entries);
3893                         sp->mac_control.stats_info->sw_stat.mem_freed
3894                         += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3895                 }
3896         }
3897         return err;
3898 }
3899
3900 /**
3901  *  s2io_close -close entry point of the driver
3902  *  @dev : device pointer.
3903  *  Description:
3904  *  This is the stop entry point of the driver. It needs to undo exactly
3905  *  whatever was done by the open entry point,thus it's usually referred to
3906  *  as the close function.Among other things this function mainly stops the
3907  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3908  *  Return value:
3909  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3910  *  file on failure.
3911  */
3912
3913 static int s2io_close(struct net_device *dev)
3914 {
3915         struct s2io_nic *sp = dev->priv;
3916
3917         /* Return if the device is already closed               *
3918         *  Can happen when s2io_card_up failed in change_mtu    *
3919         */
3920         if (!is_s2io_card_up(sp))
3921                 return 0;
3922
3923         netif_stop_queue(dev);
3924         napi_disable(&sp->napi);
3925         /* Reset card, kill tasklet and free Tx and Rx buffers. */
3926         s2io_card_down(sp);
3927
3928         return 0;
3929 }
3930
3931 /**
3932  *  s2io_xmit - Tx entry point of te driver
3933  *  @skb : the socket buffer containing the Tx data.
3934  *  @dev : device pointer.
3935  *  Description :
3936  *  This function is the Tx entry point of the driver. S2IO NIC supports
3937  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
3938  *  NOTE: when device cant queue the pkt,just the trans_start variable will
3939  *  not be upadted.
3940  *  Return value:
3941  *  0 on success & 1 on failure.
3942  */
3943
3944 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3945 {
3946         struct s2io_nic *sp = dev->priv;
3947         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3948         register u64 val64;
3949         struct TxD *txdp;
3950         struct TxFIFO_element __iomem *tx_fifo;
3951         unsigned long flags;
3952         u16 vlan_tag = 0;
3953         int vlan_priority = 0;
3954         struct mac_info *mac_control;
3955         struct config_param *config;
3956         int offload_type;
3957         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
3958
3959         mac_control = &sp->mac_control;
3960         config = &sp->config;
3961
3962         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3963
3964         if (unlikely(skb->len <= 0)) {
3965                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3966                 dev_kfree_skb_any(skb);
3967                 return 0;
3968 }
3969
3970         spin_lock_irqsave(&sp->tx_lock, flags);
3971         if (!is_s2io_card_up(sp)) {
3972                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3973                           dev->name);
3974                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3975                 dev_kfree_skb(skb);
3976                 return 0;
3977         }
3978
3979         queue = 0;
3980         /* Get Fifo number to Transmit based on vlan priority */
3981         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3982                 vlan_tag = vlan_tx_tag_get(skb);
3983                 vlan_priority = vlan_tag >> 13;
3984                 queue = config->fifo_mapping[vlan_priority];
3985         }
3986
3987         put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3988         get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3989         txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
3990                 list_virt_addr;
3991
3992         queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3993         /* Avoid "put" pointer going beyond "get" pointer */
3994         if (txdp->Host_Control ||
3995                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3996                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3997                 netif_stop_queue(dev);
3998                 dev_kfree_skb(skb);
3999                 spin_unlock_irqrestore(&sp->tx_lock, flags);
4000                 return 0;
4001         }
4002
4003         offload_type = s2io_offload_type(skb);
4004         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4005                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4006                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4007         }
4008         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4009                 txdp->Control_2 |=
4010                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4011                      TXD_TX_CKO_UDP_EN);
4012         }
4013         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4014         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4015         txdp->Control_2 |= config->tx_intr_type;
4016
4017         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4018                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4019                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4020         }
4021
4022         frg_len = skb->len - skb->data_len;
4023         if (offload_type == SKB_GSO_UDP) {
4024                 int ufo_size;
4025
4026                 ufo_size = s2io_udp_mss(skb);
4027                 ufo_size &= ~7;
4028                 txdp->Control_1 |= TXD_UFO_EN;
4029                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4030                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4031 #ifdef __BIG_ENDIAN
4032                 sp->ufo_in_band_v[put_off] =
4033                                 (u64)skb_shinfo(skb)->ip6_frag_id;
4034 #else
4035                 sp->ufo_in_band_v[put_off] =
4036                                 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4037 #endif
4038                 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4039                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4040                                         sp->ufo_in_band_v,
4041                                         sizeof(u64), PCI_DMA_TODEVICE);
4042                 if((txdp->Buffer_Pointer == 0) ||
4043                         (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4044                         goto pci_map_failed;
4045                 txdp++;
4046         }
4047
4048         txdp->Buffer_Pointer = pci_map_single
4049             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4050         if((txdp->Buffer_Pointer == 0) ||
4051                 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4052                 goto pci_map_failed;
4053
4054         txdp->Host_Control = (unsigned long) skb;
4055         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4056         if (offload_type == SKB_GSO_UDP)
4057                 txdp->Control_1 |= TXD_UFO_EN;
4058
4059         frg_cnt = skb_shinfo(skb)->nr_frags;
4060         /* For fragmented SKB. */
4061         for (i = 0; i < frg_cnt; i++) {
4062                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4063                 /* A '0' length fragment will be ignored */
4064                 if (!frag->size)
4065                         continue;
4066                 txdp++;
4067                 txdp->Buffer_Pointer = (u64) pci_map_page
4068                     (sp->pdev, frag->page, frag->page_offset,
4069                      frag->size, PCI_DMA_TODEVICE);
4070                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4071                 if (offload_type == SKB_GSO_UDP)
4072                         txdp->Control_1 |= TXD_UFO_EN;
4073         }
4074         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4075
4076         if (offload_type == SKB_GSO_UDP)
4077                 frg_cnt++; /* as Txd0 was used for inband header */
4078
4079         tx_fifo = mac_control->tx_FIFO_start[queue];
4080         val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4081         writeq(val64, &tx_fifo->TxDL_Pointer);
4082
4083         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4084                  TX_FIFO_LAST_LIST);
4085         if (offload_type)
4086                 val64 |= TX_FIFO_SPECIAL_FUNC;
4087
4088         writeq(val64, &tx_fifo->List_Control);
4089
4090         mmiowb();
4091
4092         put_off++;
4093         if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4094                 put_off = 0;
4095         mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4096
4097         /* Avoid "put" pointer going beyond "get" pointer */
4098         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4099                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4100                 DBG_PRINT(TX_DBG,
4101                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4102                           put_off, get_off);
4103                 netif_stop_queue(dev);
4104         }
4105         mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4106         dev->trans_start = jiffies;
4107         spin_unlock_irqrestore(&sp->tx_lock, flags);
4108
4109         return 0;
4110 pci_map_failed:
4111         stats->pci_map_fail_cnt++;
4112         netif_stop_queue(dev);
4113         stats->mem_freed += skb->truesize;
4114         dev_kfree_skb(skb);
4115         spin_unlock_irqrestore(&sp->tx_lock, flags);
4116         return 0;
4117 }
4118
4119 static void
4120 s2io_alarm_handle(unsigned long data)
4121 {
4122         struct s2io_nic *sp = (struct s2io_nic *)data;
4123         struct net_device *dev = sp->dev;
4124
4125         s2io_handle_errors(dev);
4126         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4127 }
4128
4129 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4130 {
4131         int rxb_size, level;
4132
4133         if (!sp->lro) {
4134                 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4135                 level = rx_buffer_level(sp, rxb_size, rng_n);
4136
4137                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4138                         int ret;
4139                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4140                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
4141                         if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4142                                 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4143                                           __FUNCTION__);
4144                                 clear_bit(0, (&sp->tasklet_status));
4145                                 return -1;
4146                         }
4147                         clear_bit(0, (&sp->tasklet_status));
4148                 } else if (level == LOW)
4149                         tasklet_schedule(&sp->task);
4150
4151         } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4152                         DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4153                         DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4154         }
4155         return 0;
4156 }
4157
4158 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4159 {
4160         struct ring_info *ring = (struct ring_info *)dev_id;
4161         struct s2io_nic *sp = ring->nic;
4162
4163         if (!is_s2io_card_up(sp))
4164                 return IRQ_HANDLED;
4165
4166         rx_intr_handler(ring);
4167         s2io_chk_rx_buffers(sp, ring->ring_no);
4168
4169         return IRQ_HANDLED;
4170 }
4171
4172 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4173 {
4174         struct fifo_info *fifo = (struct fifo_info *)dev_id;
4175         struct s2io_nic *sp = fifo->nic;
4176
4177         if (!is_s2io_card_up(sp))
4178                 return IRQ_HANDLED;
4179
4180         tx_intr_handler(fifo);
4181         return IRQ_HANDLED;
4182 }
4183 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4184 {
4185         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4186         u64 val64;
4187
4188         val64 = readq(&bar0->pic_int_status);
4189         if (val64 & PIC_INT_GPIO) {
4190                 val64 = readq(&bar0->gpio_int_reg);
4191                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4192                     (val64 & GPIO_INT_REG_LINK_UP)) {
4193                         /*
4194                          * This is unstable state so clear both up/down
4195                          * interrupt and adapter to re-evaluate the link state.
4196                          */
4197                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4198                         val64 |= GPIO_INT_REG_LINK_UP;
4199                         writeq(val64, &bar0->gpio_int_reg);
4200                         val64 = readq(&bar0->gpio_int_mask);
4201                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4202                                    GPIO_INT_MASK_LINK_DOWN);
4203                         writeq(val64, &bar0->gpio_int_mask);
4204                 }
4205                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4206                         val64 = readq(&bar0->adapter_status);
4207                                 /* Enable Adapter */
4208                         val64 = readq(&bar0->adapter_control);
4209                         val64 |= ADAPTER_CNTL_EN;
4210                         writeq(val64, &bar0->adapter_control);
4211                         val64 |= ADAPTER_LED_ON;
4212                         writeq(val64, &bar0->adapter_control);
4213                         if (!sp->device_enabled_once)
4214                                 sp->device_enabled_once = 1;
4215
4216                         s2io_link(sp, LINK_UP);
4217                         /*
4218                          * unmask link down interrupt and mask link-up
4219                          * intr
4220                          */
4221                         val64 = readq(&bar0->gpio_int_mask);
4222                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4223                         val64 |= GPIO_INT_MASK_LINK_UP;
4224                         writeq(val64, &bar0->gpio_int_mask);
4225
4226                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4227                         val64 = readq(&bar0->adapter_status);
4228                         s2io_link(sp, LINK_DOWN);
4229                         /* Link is down so unmaks link up interrupt */
4230                         val64 = readq(&bar0->gpio_int_mask);
4231                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4232                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4233                         writeq(val64, &bar0->gpio_int_mask);
4234
4235                         /* turn off LED */
4236                         val64 = readq(&bar0->adapter_control);
4237                         val64 = val64 &(~ADAPTER_LED_ON);
4238                         writeq(val64, &bar0->adapter_control);
4239                 }
4240         }
4241         val64 = readq(&bar0->gpio_int_mask);
4242 }
4243
4244 /**
4245  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4246  *  @value: alarm bits
4247  *  @addr: address value
4248  *  @cnt: counter variable
4249  *  Description: Check for alarm and increment the counter
4250  *  Return Value:
4251  *  1 - if alarm bit set
4252  *  0 - if alarm bit is not set
4253  */
4254 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4255                           unsigned long long *cnt)
4256 {
4257         u64 val64;
4258         val64 = readq(addr);
4259         if ( val64 & value ) {
4260                 writeq(val64, addr);
4261                 (*cnt)++;
4262                 return 1;
4263         }
4264         return 0;
4265
4266 }
4267
4268 /**
4269  *  s2io_handle_errors - Xframe error indication handler
4270  *  @nic: device private variable
4271  *  Description: Handle alarms such as loss of link, single or
4272  *  double ECC errors, critical and serious errors.
4273  *  Return Value:
4274  *  NONE
4275  */
4276 static void s2io_handle_errors(void * dev_id)
4277 {
4278         struct net_device *dev = (struct net_device *) dev_id;
4279         struct s2io_nic *sp = dev->priv;
4280         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4281         u64 temp64 = 0,val64=0;
4282         int i = 0;
4283
4284         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4285         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4286
4287         if (!is_s2io_card_up(sp))
4288                 return;
4289
4290         if (pci_channel_offline(sp->pdev))
4291                 return;
4292
4293         memset(&sw_stat->ring_full_cnt, 0,
4294                 sizeof(sw_stat->ring_full_cnt));
4295
4296         /* Handling the XPAK counters update */
4297         if(stats->xpak_timer_count < 72000) {
4298                 /* waiting for an hour */
4299                 stats->xpak_timer_count++;
4300         } else {
4301                 s2io_updt_xpak_counter(dev);
4302                 /* reset the count to zero */
4303                 stats->xpak_timer_count = 0;
4304         }
4305
4306         /* Handling link status change error Intr */
4307         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4308                 val64 = readq(&bar0->mac_rmac_err_reg);
4309                 writeq(val64, &bar0->mac_rmac_err_reg);
4310                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4311                         schedule_work(&sp->set_link_task);
4312         }
4313
4314         /* In case of a serious error, the device will be Reset. */
4315         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4316                                 &sw_stat->serious_err_cnt))
4317                 goto reset;
4318
4319         /* Check for data parity error */
4320         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4321                                 &sw_stat->parity_err_cnt))
4322                 goto reset;
4323
4324         /* Check for ring full counter */
4325         if (sp->device_type == XFRAME_II_DEVICE) {
4326                 val64 = readq(&bar0->ring_bump_counter1);
4327                 for (i=0; i<4; i++) {
4328                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4329                         temp64 >>= 64 - ((i+1)*16);
4330                         sw_stat->ring_full_cnt[i] += temp64;
4331                 }
4332
4333                 val64 = readq(&bar0->ring_bump_counter2);
4334                 for (i=0; i<4; i++) {
4335                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4336                         temp64 >>= 64 - ((i+1)*16);
4337                          sw_stat->ring_full_cnt[i+4] += temp64;
4338                 }
4339         }
4340
4341         val64 = readq(&bar0->txdma_int_status);
4342         /*check for pfc_err*/
4343         if (val64 & TXDMA_PFC_INT) {
4344                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4345                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4346                                 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4347                                 &sw_stat->pfc_err_cnt))
4348                         goto reset;
4349                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4350                                 &sw_stat->pfc_err_cnt);
4351         }
4352
4353         /*check for tda_err*/
4354         if (val64 & TXDMA_TDA_INT) {
4355                 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4356                                 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4357                                 &sw_stat->tda_err_cnt))
4358                         goto reset;
4359                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4360                                 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4361         }
4362         /*check for pcc_err*/
4363         if (val64 & TXDMA_PCC_INT) {
4364                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4365                                 | PCC_N_SERR | PCC_6_COF_OV_ERR
4366                                 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4367                                 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4368                                 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4369                                 &sw_stat->pcc_err_cnt))
4370                         goto reset;
4371                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4372                                 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4373         }
4374
4375         /*check for tti_err*/
4376         if (val64 & TXDMA_TTI_INT) {
4377                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4378                                 &sw_stat->tti_err_cnt))
4379                         goto reset;
4380                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4381                                 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4382         }
4383
4384         /*check for lso_err*/
4385         if (val64 & TXDMA_LSO_INT) {
4386                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4387                                 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4388                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4389                         goto reset;
4390                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4391                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4392         }
4393
4394         /*check for tpa_err*/
4395         if (val64 & TXDMA_TPA_INT) {
4396                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4397                         &sw_stat->tpa_err_cnt))
4398                         goto reset;
4399                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4400                         &sw_stat->tpa_err_cnt);
4401         }
4402
4403         /*check for sm_err*/
4404         if (val64 & TXDMA_SM_INT) {
4405                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4406                         &sw_stat->sm_err_cnt))
4407                         goto reset;
4408         }
4409
4410         val64 = readq(&bar0->mac_int_status);
4411         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4412                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4413                                 &bar0->mac_tmac_err_reg,
4414                                 &sw_stat->mac_tmac_err_cnt))
4415                         goto reset;
4416                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4417                                 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4418                                 &bar0->mac_tmac_err_reg,
4419                                 &sw_stat->mac_tmac_err_cnt);
4420         }
4421
4422         val64 = readq(&bar0->xgxs_int_status);
4423         if (val64 & XGXS_INT_STATUS_TXGXS) {
4424                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4425                                 &bar0->xgxs_txgxs_err_reg,
4426                                 &sw_stat->xgxs_txgxs_err_cnt))
4427                         goto reset;
4428                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4429                                 &bar0->xgxs_txgxs_err_reg,
4430                                 &sw_stat->xgxs_txgxs_err_cnt);
4431         }
4432
4433         val64 = readq(&bar0->rxdma_int_status);
4434         if (val64 & RXDMA_INT_RC_INT_M) {
4435                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4436                                 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4437                                 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4438                         goto reset;
4439                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4440                                 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4441                                 &sw_stat->rc_err_cnt);
4442                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4443                                 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4444                                 &sw_stat->prc_pcix_err_cnt))
4445                         goto reset;
4446                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4447                                 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4448                                 &sw_stat->prc_pcix_err_cnt);
4449         }
4450
4451         if (val64 & RXDMA_INT_RPA_INT_M) {
4452                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4453                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4454                         goto reset;
4455                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4456                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4457         }
4458
4459         if (val64 & RXDMA_INT_RDA_INT_M) {
4460                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4461                                 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4462                                 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4463                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4464                         goto reset;
4465                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4466                                 | RDA_MISC_ERR | RDA_PCIX_ERR,
4467                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4468         }
4469
4470         if (val64 & RXDMA_INT_RTI_INT_M) {
4471                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4472                                 &sw_stat->rti_err_cnt))
4473                         goto reset;
4474                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4475                                 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4476         }
4477
4478         val64 = readq(&bar0->mac_int_status);
4479         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4480                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4481                                 &bar0->mac_rmac_err_reg,
4482                                 &sw_stat->mac_rmac_err_cnt))
4483                         goto reset;
4484                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4485                                 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4486                                 &sw_stat->mac_rmac_err_cnt);
4487         }
4488
4489         val64 = readq(&bar0->xgxs_int_status);
4490         if (val64 & XGXS_INT_STATUS_RXGXS) {
4491                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4492                                 &bar0->xgxs_rxgxs_err_reg,
4493                                 &sw_stat->xgxs_rxgxs_err_cnt))
4494                         goto reset;
4495         }
4496
4497         val64 = readq(&bar0->mc_int_status);
4498         if(val64 & MC_INT_STATUS_MC_INT) {
4499                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4500                                 &sw_stat->mc_err_cnt))
4501                         goto reset;
4502
4503                 /* Handling Ecc errors */
4504                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4505                         writeq(val64, &bar0->mc_err_reg);
4506                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4507                                 sw_stat->double_ecc_errs++;
4508                                 if (sp->device_type != XFRAME_II_DEVICE) {
4509                                         /*
4510                                          * Reset XframeI only if critical error
4511                                          */
4512                                         if (val64 &
4513                                                 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4514                                                 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4515                                                                 goto reset;
4516                                         }
4517                         } else
4518                                 sw_stat->single_ecc_errs++;
4519                 }
4520         }
4521         return;
4522
4523 reset:
4524         netif_stop_queue(dev);
4525         schedule_work(&sp->rst_timer_task);
4526         sw_stat->soft_reset_cnt++;
4527         return;
4528 }
4529
4530 /**
4531  *  s2io_isr - ISR handler of the device .
4532  *  @irq: the irq of the device.
4533  *  @dev_id: a void pointer to the dev structure of the NIC.
4534  *  Description:  This function is the ISR handler of the device. It
4535  *  identifies the reason for the interrupt and calls the relevant
4536  *  service routines. As a contongency measure, this ISR allocates the
4537  *  recv buffers, if their numbers are below the panic value which is
4538  *  presently set to 25% of the original number of rcv buffers allocated.
4539  *  Return value:
4540  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4541  *   IRQ_NONE: will be returned if interrupt is not from our device
4542  */
4543 static irqreturn_t s2io_isr(int irq, void *dev_id)
4544 {
4545         struct net_device *dev = (struct net_device *) dev_id;
4546         struct s2io_nic *sp = dev->priv;
4547         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4548         int i;
4549         u64 reason = 0;
4550         struct mac_info *mac_control;
4551         struct config_param *config;
4552
4553         /* Pretend we handled any irq's from a disconnected card */
4554         if (pci_channel_offline(sp->pdev))
4555                 return IRQ_NONE;
4556
4557         if (!is_s2io_card_up(sp))
4558                 return IRQ_NONE;
4559
4560         mac_control = &sp->mac_control;
4561         config = &sp->config;
4562
4563         /*
4564          * Identify the cause for interrupt and call the appropriate
4565          * interrupt handler. Causes for the interrupt could be;
4566          * 1. Rx of packet.
4567          * 2. Tx complete.
4568          * 3. Link down.
4569          */
4570         reason = readq(&bar0->general_int_status);
4571
4572         if (unlikely(reason == S2IO_MINUS_ONE) ) {
4573                 /* Nothing much can be done. Get out */
4574                 return IRQ_HANDLED;
4575         }
4576
4577         if (reason & (GEN_INTR_RXTRAFFIC |
4578                 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4579         {
4580                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4581
4582                 if (config->napi) {
4583                         if (reason & GEN_INTR_RXTRAFFIC) {
4584                                 if (likely(netif_rx_schedule_prep(dev,
4585                                                         &sp->napi))) {
4586                                         __netif_rx_schedule(dev, &sp->napi);
4587                                         writeq(S2IO_MINUS_ONE,
4588                                                &bar0->rx_traffic_mask);
4589                                 } else
4590                                         writeq(S2IO_MINUS_ONE,
4591                                                &bar0->rx_traffic_int);
4592                         }
4593                 } else {
4594                         /*
4595                          * rx_traffic_int reg is an R1 register, writing all 1's
4596                          * will ensure that the actual interrupt causing bit
4597                          * get's cleared and hence a read can be avoided.
4598                          */
4599                         if (reason & GEN_INTR_RXTRAFFIC)
4600                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4601
4602                         for (i = 0; i < config->rx_ring_num; i++)
4603                                 rx_intr_handler(&mac_control->rings[i]);
4604                 }
4605
4606                 /*
4607                  * tx_traffic_int reg is an R1 register, writing all 1's
4608                  * will ensure that the actual interrupt causing bit get's
4609                  * cleared and hence a read can be avoided.
4610                  */
4611                 if (reason & GEN_INTR_TXTRAFFIC)
4612                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4613
4614                 for (i = 0; i < config->tx_fifo_num; i++)
4615                         tx_intr_handler(&mac_control->fifos[i]);
4616
4617                 if (reason & GEN_INTR_TXPIC)
4618                         s2io_txpic_intr_handle(sp);
4619
4620                 /*
4621                  * Reallocate the buffers from the interrupt handler itself.
4622                  */
4623                 if (!config->napi) {
4624                         for (i = 0; i < config->rx_ring_num; i++)
4625                                 s2io_chk_rx_buffers(sp, i);
4626                 }
4627                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4628                 readl(&bar0->general_int_status);
4629
4630                 return IRQ_HANDLED;
4631
4632         }
4633         else if (!reason) {
4634                 /* The interrupt was not raised by us */
4635                 return IRQ_NONE;
4636         }
4637
4638         return IRQ_HANDLED;
4639 }
4640
4641 /**
4642  * s2io_updt_stats -
4643  */
4644 static void s2io_updt_stats(struct s2io_nic *sp)
4645 {
4646         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4647         u64 val64;
4648         int cnt = 0;
4649
4650         if (is_s2io_card_up(sp)) {
4651                 /* Apprx 30us on a 133 MHz bus */
4652                 val64 = SET_UPDT_CLICKS(10) |
4653                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4654                 writeq(val64, &bar0->stat_cfg);
4655                 do {
4656                         udelay(100);
4657                         val64 = readq(&bar0->stat_cfg);
4658                         if (!(val64 & s2BIT(0)))
4659                                 break;
4660                         cnt++;
4661                         if (cnt == 5)
4662                                 break; /* Updt failed */
4663                 } while(1);
4664         }
4665 }
4666
4667 /**
4668  *  s2io_get_stats - Updates the device statistics structure.
4669  *  @dev : pointer to the device structure.
4670  *  Description:
4671  *  This function updates the device statistics structure in the s2io_nic
4672  *  structure and returns a pointer to the same.
4673  *  Return value:
4674  *  pointer to the updated net_device_stats structure.
4675  */
4676
4677 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4678 {
4679         struct s2io_nic *sp = dev->priv;
4680         struct mac_info *mac_control;
4681         struct config_param *config;
4682
4683
4684         mac_control = &sp->mac_control;
4685         config = &sp->config;
4686
4687         /* Configure Stats for immediate updt */
4688         s2io_updt_stats(sp);
4689
4690         sp->stats.tx_packets =
4691                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4692         sp->stats.tx_errors =
4693                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4694         sp->stats.rx_errors =
4695                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4696         sp->stats.multicast =
4697                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4698         sp->stats.rx_length_errors =
4699                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4700
4701         return (&sp->stats);
4702 }
4703
4704 /**
4705  *  s2io_set_multicast - entry point for multicast address enable/disable.
4706  *  @dev : pointer to the device structure
4707  *  Description:
4708  *  This function is a driver entry point which gets called by the kernel
4709  *  whenever multicast addresses must be enabled/disabled. This also gets
4710  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4711  *  determine, if multicast address must be enabled or if promiscuous mode
4712  *  is to be disabled etc.
4713  *  Return value:
4714  *  void.
4715  */
4716
4717 static void s2io_set_multicast(struct net_device *dev)
4718 {
4719         int i, j, prev_cnt;
4720         struct dev_mc_list *mclist;
4721         struct s2io_nic *sp = dev->priv;
4722         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4723         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4724             0xfeffffffffffULL;
4725         u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4726         void __iomem *add;
4727
4728         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4729                 /*  Enable all Multicast addresses */
4730                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4731                        &bar0->rmac_addr_data0_mem);
4732                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4733                        &bar0->rmac_addr_data1_mem);
4734                 val64 = RMAC_ADDR_CMD_MEM_WE |
4735                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4736                     RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4737                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4738                 /* Wait till command completes */
4739                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4740                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4741                                         S2IO_BIT_RESET);
4742
4743                 sp->m_cast_flg = 1;
4744                 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4745         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4746                 /*  Disable all Multicast addresses */
4747                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4748                        &bar0->rmac_addr_data0_mem);
4749                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4750                        &bar0->rmac_addr_data1_mem);
4751                 val64 = RMAC_ADDR_CMD_MEM_WE |
4752                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4753                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4754                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4755                 /* Wait till command completes */
4756                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4757                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4758                                         S2IO_BIT_RESET);
4759
4760                 sp->m_cast_flg = 0;
4761                 sp->all_multi_pos = 0;
4762         }
4763
4764         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4765                 /*  Put the NIC into promiscuous mode */
4766                 add = &bar0->mac_cfg;
4767                 val64 = readq(&bar0->mac_cfg);
4768                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4769
4770                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4771                 writel((u32) val64, add);
4772                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4773                 writel((u32) (val64 >> 32), (add + 4));
4774
4775                 if (vlan_tag_strip != 1) {
4776                         val64 = readq(&bar0->rx_pa_cfg);
4777                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4778                         writeq(val64, &bar0->rx_pa_cfg);
4779                         vlan_strip_flag = 0;
4780                 }
4781
4782                 val64 = readq(&bar0->mac_cfg);
4783                 sp->promisc_flg = 1;
4784                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4785                           dev->name);
4786         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4787                 /*  Remove the NIC from promiscuous mode */
4788                 add = &bar0->mac_cfg;
4789                 val64 = readq(&bar0->mac_cfg);
4790                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4791
4792                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4793                 writel((u32) val64, add);
4794                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4795                 writel((u32) (val64 >> 32), (add + 4));
4796
4797                 if (vlan_tag_strip != 0) {
4798                         val64 = readq(&bar0->rx_pa_cfg);
4799                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4800                         writeq(val64, &bar0->rx_pa_cfg);
4801                         vlan_strip_flag = 1;
4802                 }
4803
4804                 val64 = readq(&bar0->mac_cfg);
4805                 sp->promisc_flg = 0;
4806                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4807                           dev->name);
4808         }
4809
4810         /*  Update individual M_CAST address list */
4811         if ((!sp->m_cast_flg) && dev->mc_count) {
4812                 if (dev->mc_count >
4813                     (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4814                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4815                                   dev->name);
4816                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
4817                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4818                         return;
4819                 }
4820
4821                 prev_cnt = sp->mc_addr_count;
4822                 sp->mc_addr_count = dev->mc_count;
4823
4824                 /* Clear out the previous list of Mc in the H/W. */
4825                 for (i = 0; i < prev_cnt; i++) {
4826                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4827                                &bar0->rmac_addr_data0_mem);
4828                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4829                                 &bar0->rmac_addr_data1_mem);
4830                         val64 = RMAC_ADDR_CMD_MEM_WE |
4831                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4832                             RMAC_ADDR_CMD_MEM_OFFSET
4833                             (MAC_MC_ADDR_START_OFFSET + i);
4834                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4835
4836                         /* Wait for command completes */
4837                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4838                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4839                                         S2IO_BIT_RESET)) {
4840                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4841                                           dev->name);
4842                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4843                                 return;
4844                         }
4845                 }
4846
4847                 /* Create the new Rx filter list and update the same in H/W. */
4848                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4849                      i++, mclist = mclist->next) {
4850                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4851                                ETH_ALEN);
4852                         mac_addr = 0;
4853                         for (j = 0; j < ETH_ALEN; j++) {
4854                                 mac_addr |= mclist->dmi_addr[j];
4855                                 mac_addr <<= 8;
4856                         }
4857                         mac_addr >>= 8;
4858                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4859                                &bar0->rmac_addr_data0_mem);
4860                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4861                                 &bar0->rmac_addr_data1_mem);
4862                         val64 = RMAC_ADDR_CMD_MEM_WE |
4863                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4864                             RMAC_ADDR_CMD_MEM_OFFSET
4865                             (i + MAC_MC_ADDR_START_OFFSET);
4866                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4867
4868                         /* Wait for command completes */
4869                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4870                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4871                                         S2IO_BIT_RESET)) {
4872                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4873                                           dev->name);
4874                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4875                                 return;
4876                         }
4877                 }
4878         }
4879 }
4880
4881 /* add unicast MAC address to CAM */
4882 static int do_s2io_add_unicast(struct s2io_nic *sp, u64 addr, int off)
4883 {
4884         u64 val64;
4885         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4886
4887         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
4888                 &bar0->rmac_addr_data0_mem);
4889
4890         val64 =
4891                 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4892                 RMAC_ADDR_CMD_MEM_OFFSET(off);
4893         writeq(val64, &bar0->rmac_addr_cmd_mem);
4894
4895         /* Wait till command completes */
4896         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4897                 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4898                 S2IO_BIT_RESET)) {
4899                 DBG_PRINT(INFO_DBG, "add_mac_addr failed\n");
4900                 return FAILURE;
4901         }
4902         return SUCCESS;
4903 }
4904
4905 /**
4906  * s2io_set_mac_addr driver entry point
4907  */
4908 static int s2io_set_mac_addr(struct net_device *dev, void *p)
4909 {
4910         struct sockaddr *addr = p;
4911
4912         if (!is_valid_ether_addr(addr->sa_data))
4913                 return -EINVAL;
4914
4915         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4916
4917         /* store the MAC address in CAM */
4918         return (do_s2io_prog_unicast(dev, dev->dev_addr));
4919 }
4920
4921 /**
4922  *  do_s2io_prog_unicast - Programs the Xframe mac address
4923  *  @dev : pointer to the device structure.
4924  *  @addr: a uchar pointer to the new mac address which is to be set.
4925  *  Description : This procedure will program the Xframe to receive
4926  *  frames with new Mac Address
4927  *  Return value: SUCCESS on success and an appropriate (-)ve integer
4928  *  as defined in errno.h file on failure.
4929  */
4930 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
4931 {
4932         struct s2io_nic *sp = dev->priv;
4933         register u64 mac_addr = 0, perm_addr = 0;
4934         int i;
4935
4936         /*
4937         * Set the new MAC address as the new unicast filter and reflect this
4938         * change on the device address registered with the OS. It will be
4939         * at offset 0.
4940         */
4941         for (i = 0; i < ETH_ALEN; i++) {
4942                 mac_addr <<= 8;
4943                 mac_addr |= addr[i];
4944                 perm_addr <<= 8;
4945                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
4946         }
4947
4948         /* check if the dev_addr is different than perm_addr */
4949         if (mac_addr == perm_addr)
4950                 return SUCCESS;
4951
4952         /* Update the internal structure with this new mac address */
4953         do_s2io_copy_mac_addr(sp, 0, mac_addr);
4954         return (do_s2io_add_unicast(sp, mac_addr, 0));
4955 }
4956
4957 /**
4958  * s2io_ethtool_sset - Sets different link parameters.
4959  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
4960  * @info: pointer to the structure with parameters given by ethtool to set
4961  * link information.
4962  * Description:
4963  * The function sets different link parameters provided by the user onto
4964  * the NIC.
4965  * Return value:
4966  * 0 on success.
4967 */
4968
4969 static int s2io_ethtool_sset(struct net_device *dev,
4970                              struct ethtool_cmd *info)
4971 {
4972         struct s2io_nic *sp = dev->priv;
4973         if ((info->autoneg == AUTONEG_ENABLE) ||
4974             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4975                 return -EINVAL;
4976         else {
4977                 s2io_close(sp->dev);
4978                 s2io_open(sp->dev);
4979         }
4980
4981         return 0;
4982 }
4983
4984 /**
4985  * s2io_ethtol_gset - Return link specific information.
4986  * @sp : private member of the device structure, pointer to the
4987  *      s2io_nic structure.
4988  * @info : pointer to the structure with parameters given by ethtool
4989  * to return link information.
4990  * Description:
4991  * Returns link specific information like speed, duplex etc.. to ethtool.
4992  * Return value :
4993  * return 0 on success.
4994  */
4995
4996 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4997 {
4998         struct s2io_nic *sp = dev->priv;
4999         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5000         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5001         info->port = PORT_FIBRE;
5002
5003         /* info->transceiver */
5004         info->transceiver = XCVR_EXTERNAL;
5005
5006         if (netif_carrier_ok(sp->dev)) {
5007                 info->speed = 10000;
5008                 info->duplex = DUPLEX_FULL;
5009         } else {
5010                 info->speed = -1;
5011                 info->duplex = -1;
5012         }
5013
5014         info->autoneg = AUTONEG_DISABLE;
5015         return 0;
5016 }
5017
5018 /**
5019  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5020  * @sp : private member of the device structure, which is a pointer to the
5021  * s2io_nic structure.
5022  * @info : pointer to the structure with parameters given by ethtool to
5023  * return driver information.
5024  * Description:
5025  * Returns driver specefic information like name, version etc.. to ethtool.
5026  * Return value:
5027  *  void
5028  */
5029
5030 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5031                                   struct ethtool_drvinfo *info)
5032 {
5033         struct s2io_nic *sp = dev->priv;
5034
5035         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5036         strncpy(info->version, s2io_driver_version, sizeof(info->version));
5037         strncpy(info->fw_version, "", sizeof(info->fw_version));
5038         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5039         info->regdump_len = XENA_REG_SPACE;
5040         info->eedump_len = XENA_EEPROM_SPACE;
5041 }
5042
5043 /**
5044  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5045  *  @sp: private member of the device structure, which is a pointer to the
5046  *  s2io_nic structure.
5047  *  @regs : pointer to the structure with parameters given by ethtool for
5048  *  dumping the registers.
5049  *  @reg_space: The input argumnet into which all the registers are dumped.
5050  *  Description:
5051  *  Dumps the entire register space of xFrame NIC into the user given
5052  *  buffer area.
5053  * Return value :
5054  * void .
5055 */
5056
5057 static void s2io_ethtool_gregs(struct net_device *dev,
5058                                struct ethtool_regs *regs, void *space)
5059 {
5060         int i;
5061         u64 reg;
5062         u8 *reg_space = (u8 *) space;
5063         struct s2io_nic *sp = dev->priv;
5064
5065         regs->len = XENA_REG_SPACE;
5066         regs->version = sp->pdev->subsystem_device;
5067
5068         for (i = 0; i < regs->len; i += 8) {
5069                 reg = readq(sp->bar0 + i);
5070                 memcpy((reg_space + i), &reg, 8);
5071         }
5072 }
5073
5074 /**
5075  *  s2io_phy_id  - timer function that alternates adapter LED.
5076  *  @data : address of the private member of the device structure, which
5077  *  is a pointer to the s2io_nic structure, provided as an u32.
5078  * Description: This is actually the timer function that alternates the
5079  * adapter LED bit of the adapter control bit to set/reset every time on
5080  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5081  *  once every second.
5082 */
5083 static void s2io_phy_id(unsigned long data)
5084 {
5085         struct s2io_nic *sp = (struct s2io_nic *) data;
5086         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5087         u64 val64 = 0;
5088         u16 subid;
5089
5090         subid = sp->pdev->subsystem_device;
5091         if ((sp->device_type == XFRAME_II_DEVICE) ||
5092                    ((subid & 0xFF) >= 0x07)) {
5093                 val64 = readq(&bar0->gpio_control);
5094                 val64 ^= GPIO_CTRL_GPIO_0;
5095                 writeq(val64, &bar0->gpio_control);
5096         } else {
5097                 val64 = readq(&bar0->adapter_control);
5098                 val64 ^= ADAPTER_LED_ON;
5099                 writeq(val64, &bar0->adapter_control);
5100         }
5101
5102         mod_timer(&sp->id_timer, jiffies + HZ / 2);
5103 }
5104
5105 /**
5106  * s2io_ethtool_idnic - To physically identify the nic on the system.
5107  * @sp : private member of the device structure, which is a pointer to the
5108  * s2io_nic structure.
5109  * @id : pointer to the structure with identification parameters given by
5110  * ethtool.
5111  * Description: Used to physically identify the NIC on the system.
5112  * The Link LED will blink for a time specified by the user for
5113  * identification.
5114  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5115  * identification is possible only if it's link is up.
5116  * Return value:
5117  * int , returns 0 on success
5118  */
5119
5120 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5121 {
5122         u64 val64 = 0, last_gpio_ctrl_val;
5123         struct s2io_nic *sp = dev->priv;
5124         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5125         u16 subid;
5126
5127         subid = sp->pdev->subsystem_device;
5128         last_gpio_ctrl_val = readq(&bar0->gpio_control);
5129         if ((sp->device_type == XFRAME_I_DEVICE) &&
5130                 ((subid & 0xFF) < 0x07)) {
5131                 val64 = readq(&bar0->adapter_control);
5132                 if (!(val64 & ADAPTER_CNTL_EN)) {
5133                         printk(KERN_ERR
5134                                "Adapter Link down, cannot blink LED\n");
5135                         return -EFAULT;
5136                 }
5137         }
5138         if (sp->id_timer.function == NULL) {
5139                 init_timer(&sp->id_timer);
5140                 sp->id_timer.function = s2io_phy_id;
5141                 sp->id_timer.data = (unsigned long) sp;
5142         }
5143         mod_timer(&sp->id_timer, jiffies);
5144         if (data)
5145                 msleep_interruptible(data * HZ);
5146         else
5147                 msleep_interruptible(MAX_FLICKER_TIME);
5148         del_timer_sync(&sp->id_timer);
5149
5150         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5151                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5152                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5153         }
5154
5155         return 0;
5156 }
5157
5158 static void s2io_ethtool_gringparam(struct net_device *dev,
5159                                     struct ethtool_ringparam *ering)
5160 {
5161         struct s2io_nic *sp = dev->priv;
5162         int i,tx_desc_count=0,rx_desc_count=0;
5163
5164         if (sp->rxd_mode == RXD_MODE_1)
5165                 ering->rx_max_pending = MAX_RX_DESC_1;
5166         else if (sp->rxd_mode == RXD_MODE_3B)
5167                 ering->rx_max_pending = MAX_RX_DESC_2;
5168
5169         ering->tx_max_pending = MAX_TX_DESC;
5170         for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5171                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5172
5173         DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5174         ering->tx_pending = tx_desc_count;
5175         rx_desc_count = 0;
5176         for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5177                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5178
5179         ering->rx_pending = rx_desc_count;
5180
5181         ering->rx_mini_max_pending = 0;
5182         ering->rx_mini_pending = 0;
5183         if(sp->rxd_mode == RXD_MODE_1)
5184                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5185         else if (sp->rxd_mode == RXD_MODE_3B)
5186                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5187         ering->rx_jumbo_pending = rx_desc_count;
5188 }
5189
5190 /**
5191  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5192  * @sp : private member of the device structure, which is a pointer to the
5193  *      s2io_nic structure.
5194  * @ep : pointer to the structure with pause parameters given by ethtool.
5195  * Description:
5196  * Returns the Pause frame generation and reception capability of the NIC.
5197  * Return value:
5198  *  void
5199  */
5200 static void s2io_ethtool_getpause_data(struct net_device *dev,
5201                                        struct ethtool_pauseparam *ep)
5202 {
5203         u64 val64;
5204         struct s2io_nic *sp = dev->priv;
5205         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5206
5207         val64 = readq(&bar0->rmac_pause_cfg);
5208         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5209                 ep->tx_pause = TRUE;
5210         if (val64 & RMAC_PAUSE_RX_ENABLE)
5211                 ep->rx_pause = TRUE;
5212         ep->autoneg = FALSE;
5213 }
5214
5215 /**
5216  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5217  * @sp : private member of the device structure, which is a pointer to the
5218  *      s2io_nic structure.
5219  * @ep : pointer to the structure with pause parameters given by ethtool.
5220  * Description:
5221  * It can be used to set or reset Pause frame generation or reception
5222  * support of the NIC.
5223  * Return value:
5224  * int, returns 0 on Success
5225  */
5226
5227 static int s2io_ethtool_setpause_data(struct net_device *dev,
5228                                struct ethtool_pauseparam *ep)
5229 {
5230         u64 val64;
5231         struct s2io_nic *sp = dev->priv;
5232         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5233
5234         val64 = readq(&bar0->rmac_pause_cfg);
5235         if (ep->tx_pause)
5236                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5237         else
5238                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5239         if (ep->rx_pause)
5240                 val64 |= RMAC_PAUSE_RX_ENABLE;
5241         else
5242                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5243         writeq(val64, &bar0->rmac_pause_cfg);
5244         return 0;
5245 }
5246
5247 /**
5248  * read_eeprom - reads 4 bytes of data from user given offset.
5249  * @sp : private member of the device structure, which is a pointer to the
5250  *      s2io_nic structure.
5251  * @off : offset at which the data must be written
5252  * @data : Its an output parameter where the data read at the given
5253  *      offset is stored.
5254  * Description:
5255  * Will read 4 bytes of data from the user given offset and return the
5256  * read data.
5257  * NOTE: Will allow to read only part of the EEPROM visible through the
5258  *   I2C bus.
5259  * Return value:
5260  *  -1 on failure and 0 on success.
5261  */
5262
5263 #define S2IO_DEV_ID             5
5264 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5265 {
5266         int ret = -1;
5267         u32 exit_cnt = 0;
5268         u64 val64;
5269         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5270
5271         if (sp->device_type == XFRAME_I_DEVICE) {
5272                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5273                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5274                     I2C_CONTROL_CNTL_START;
5275                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5276
5277                 while (exit_cnt < 5) {
5278                         val64 = readq(&bar0->i2c_control);
5279                         if (I2C_CONTROL_CNTL_END(val64)) {
5280                                 *data = I2C_CONTROL_GET_DATA(val64);
5281                                 ret = 0;
5282                                 break;
5283                         }
5284                         msleep(50);
5285                         exit_cnt++;
5286                 }
5287         }
5288
5289         if (sp->device_type == XFRAME_II_DEVICE) {
5290                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5291                         SPI_CONTROL_BYTECNT(0x3) |
5292                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5293                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5294                 val64 |= SPI_CONTROL_REQ;
5295                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5296                 while (exit_cnt < 5) {
5297                         val64 = readq(&bar0->spi_control);
5298                         if (val64 & SPI_CONTROL_NACK) {
5299                                 ret = 1;
5300                                 break;
5301                         } else if (val64 & SPI_CONTROL_DONE) {
5302                                 *data = readq(&bar0->spi_data);
5303                                 *data &= 0xffffff;
5304                                 ret = 0;
5305                                 break;
5306                         }
5307                         msleep(50);
5308                         exit_cnt++;
5309                 }
5310         }
5311         return ret;
5312 }
5313
5314 /**
5315  *  write_eeprom - actually writes the relevant part of the data value.
5316  *  @sp : private member of the device structure, which is a pointer to the
5317  *       s2io_nic structure.
5318  *  @off : offset at which the data must be written
5319  *  @data : The data that is to be written
5320  *  @cnt : Number of bytes of the data that are actually to be written into
5321  *  the Eeprom. (max of 3)
5322  * Description:
5323  *  Actually writes the relevant part of the data value into the Eeprom
5324  *  through the I2C bus.
5325  * Return value:
5326  *  0 on success, -1 on failure.
5327  */
5328
5329 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5330 {
5331         int exit_cnt = 0, ret = -1;
5332         u64 val64;
5333         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5334
5335         if (sp->device_type == XFRAME_I_DEVICE) {
5336                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5337                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5338                     I2C_CONTROL_CNTL_START;
5339                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5340
5341                 while (exit_cnt < 5) {
5342                         val64 = readq(&bar0->i2c_control);
5343                         if (I2C_CONTROL_CNTL_END(val64)) {
5344                                 if (!(val64 & I2C_CONTROL_NACK))
5345                                         ret = 0;
5346                                 break;
5347                         }
5348                         msleep(50);
5349                         exit_cnt++;
5350                 }
5351         }
5352
5353         if (sp->device_type == XFRAME_II_DEVICE) {
5354                 int write_cnt = (cnt == 8) ? 0 : cnt;
5355                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5356
5357                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5358                         SPI_CONTROL_BYTECNT(write_cnt) |
5359                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5360                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5361                 val64 |= SPI_CONTROL_REQ;
5362                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5363                 while (exit_cnt < 5) {
5364                         val64 = readq(&bar0->spi_control);
5365                         if (val64 & SPI_CONTROL_NACK) {
5366                                 ret = 1;
5367                                 break;
5368                         } else if (val64 & SPI_CONTROL_DONE) {
5369                                 ret = 0;
5370                                 break;
5371                         }
5372                         msleep(50);
5373                         exit_cnt++;
5374                 }
5375         }
5376         return ret;
5377 }
5378 static void s2io_vpd_read(struct s2io_nic *nic)
5379 {
5380         u8 *vpd_data;
5381         u8 data;
5382         int i=0, cnt, fail = 0;
5383         int vpd_addr = 0x80;
5384
5385         if (nic->device_type == XFRAME_II_DEVICE) {
5386                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5387                 vpd_addr = 0x80;
5388         }
5389         else {
5390                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5391                 vpd_addr = 0x50;
5392         }
5393         strcpy(nic->serial_num, "NOT AVAILABLE");
5394
5395         vpd_data = kmalloc(256, GFP_KERNEL);
5396         if (!vpd_data) {
5397                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5398                 return;
5399         }
5400         nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5401
5402         for (i = 0; i < 256; i +=4 ) {
5403                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5404                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5405                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5406                 for (cnt = 0; cnt <5; cnt++) {
5407                         msleep(2);
5408                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5409                         if (data == 0x80)
5410                                 break;
5411                 }
5412                 if (cnt >= 5) {
5413                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5414                         fail = 1;
5415                         break;
5416                 }
5417                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5418                                       (u32 *)&vpd_data[i]);
5419         }
5420
5421         if(!fail) {
5422                 /* read serial number of adapter */
5423                 for (cnt = 0; cnt < 256; cnt++) {
5424                 if ((vpd_data[cnt] == 'S') &&
5425                         (vpd_data[cnt+1] == 'N') &&
5426                         (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5427                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5428                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5429                                         vpd_data[cnt+2]);
5430                                 break;
5431                         }
5432                 }
5433         }
5434
5435         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5436                 memset(nic->product_name, 0, vpd_data[1]);
5437                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5438         }
5439         kfree(vpd_data);
5440         nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5441 }
5442
5443 /**
5444  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5445  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5446  *  @eeprom : pointer to the user level structure provided by ethtool,
5447  *  containing all relevant information.
5448  *  @data_buf : user defined value to be written into Eeprom.
5449  *  Description: Reads the values stored in the Eeprom at given offset
5450  *  for a given length. Stores these values int the input argument data
5451  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5452  *  Return value:
5453  *  int  0 on success
5454  */
5455
5456 static int s2io_ethtool_geeprom(struct net_device *dev,
5457                          struct ethtool_eeprom *eeprom, u8 * data_buf)
5458 {
5459         u32 i, valid;
5460         u64 data;
5461         struct s2io_nic *sp = dev->priv;
5462
5463         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5464
5465         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5466                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5467
5468         for (i = 0; i < eeprom->len; i += 4) {
5469                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5470                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5471                         return -EFAULT;
5472                 }
5473                 valid = INV(data);
5474                 memcpy((data_buf + i), &valid, 4);
5475         }
5476         return 0;
5477 }
5478
5479 /**
5480  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5481  *  @sp : private member of the device structure, which is a pointer to the
5482  *  s2io_nic structure.
5483  *  @eeprom : pointer to the user level structure provided by ethtool,
5484  *  containing all relevant information.
5485  *  @data_buf ; user defined value to be written into Eeprom.
5486  *  Description:
5487  *  Tries to write the user provided value in the Eeprom, at the offset
5488  *  given by the user.
5489  *  Return value:
5490  *  0 on success, -EFAULT on failure.
5491  */
5492
5493 static int s2io_ethtool_seeprom(struct net_device *dev,
5494                                 struct ethtool_eeprom *eeprom,
5495                                 u8 * data_buf)
5496 {
5497         int len = eeprom->len, cnt = 0;
5498         u64 valid = 0, data;
5499         struct s2io_nic *sp = dev->priv;
5500
5501         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5502                 DBG_PRINT(ERR_DBG,
5503                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5504                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5505                           eeprom->magic);
5506                 return -EFAULT;
5507         }
5508
5509         while (len) {
5510                 data = (u32) data_buf[cnt] & 0x000000FF;
5511                 if (data) {
5512                         valid = (u32) (data << 24);
5513                 } else
5514                         valid = data;
5515
5516                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5517                         DBG_PRINT(ERR_DBG,
5518                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5519                         DBG_PRINT(ERR_DBG,
5520                                   "write into the specified offset\n");
5521                         return -EFAULT;
5522                 }
5523                 cnt++;
5524                 len--;
5525         }
5526
5527         return 0;
5528 }
5529
5530 /**
5531  * s2io_register_test - reads and writes into all clock domains.
5532  * @sp : private member of the device structure, which is a pointer to the
5533  * s2io_nic structure.
5534  * @data : variable that returns the result of each of the test conducted b
5535  * by the driver.
5536  * Description:
5537  * Read and write into all clock domains. The NIC has 3 clock domains,
5538  * see that registers in all the three regions are accessible.
5539  * Return value:
5540  * 0 on success.
5541  */
5542
5543 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5544 {
5545         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5546         u64 val64 = 0, exp_val;
5547         int fail = 0;
5548
5549         val64 = readq(&bar0->pif_rd_swapper_fb);
5550         if (val64 != 0x123456789abcdefULL) {
5551                 fail = 1;
5552                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5553         }
5554
5555         val64 = readq(&bar0->rmac_pause_cfg);
5556         if (val64 != 0xc000ffff00000000ULL) {
5557                 fail = 1;
5558                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5559         }
5560
5561         val64 = readq(&bar0->rx_queue_cfg);
5562         if (sp->device_type == XFRAME_II_DEVICE)
5563                 exp_val = 0x0404040404040404ULL;
5564         else
5565                 exp_val = 0x0808080808080808ULL;
5566         if (val64 != exp_val) {
5567                 fail = 1;
5568                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5569         }
5570
5571         val64 = readq(&bar0->xgxs_efifo_cfg);
5572         if (val64 != 0x000000001923141EULL) {
5573                 fail = 1;
5574                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5575         }
5576
5577         val64 = 0x5A5A5A5A5A5A5A5AULL;
5578         writeq(val64, &bar0->xmsi_data);
5579         val64 = readq(&bar0->xmsi_data);
5580         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5581                 fail = 1;
5582                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5583         }
5584
5585         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5586         writeq(val64, &bar0->xmsi_data);
5587         val64 = readq(&bar0->xmsi_data);
5588         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5589                 fail = 1;
5590                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5591         }
5592
5593         *data = fail;
5594         return fail;
5595 }
5596
5597 /**
5598  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5599  * @sp : private member of the device structure, which is a pointer to the
5600  * s2io_nic structure.
5601  * @data:variable that returns the result of each of the test conducted by
5602  * the driver.
5603  * Description:
5604  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5605  * register.
5606  * Return value:
5607  * 0 on success.
5608  */
5609
5610 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5611 {
5612         int fail = 0;
5613         u64 ret_data, org_4F0, org_7F0;
5614         u8 saved_4F0 = 0, saved_7F0 = 0;
5615         struct net_device *dev = sp->dev;
5616
5617         /* Test Write Error at offset 0 */
5618         /* Note that SPI interface allows write access to all areas
5619          * of EEPROM. Hence doing all negative testing only for Xframe I.
5620          */
5621         if (sp->device_type == XFRAME_I_DEVICE)
5622                 if (!write_eeprom(sp, 0, 0, 3))
5623                         fail = 1;
5624
5625         /* Save current values at offsets 0x4F0 and 0x7F0 */
5626         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5627                 saved_4F0 = 1;
5628         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5629                 saved_7F0 = 1;
5630
5631         /* Test Write at offset 4f0 */
5632         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5633                 fail = 1;
5634         if (read_eeprom(sp, 0x4F0, &ret_data))
5635                 fail = 1;
5636
5637         if (ret_data != 0x012345) {
5638                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5639                         "Data written %llx Data read %llx\n",
5640                         dev->name, (unsigned long long)0x12345,
5641                         (unsigned long long)ret_data);
5642                 fail = 1;
5643         }
5644
5645         /* Reset the EEPROM data go FFFF */
5646         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5647
5648         /* Test Write Request Error at offset 0x7c */
5649         if (sp->device_type == XFRAME_I_DEVICE)
5650                 if (!write_eeprom(sp, 0x07C, 0, 3))
5651                         fail = 1;
5652
5653         /* Test Write Request at offset 0x7f0 */
5654         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5655                 fail = 1;
5656         if (read_eeprom(sp, 0x7F0, &ret_data))
5657                 fail = 1;
5658
5659         if (ret_data != 0x012345) {
5660                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5661                         "Data written %llx Data read %llx\n",
5662                         dev->name, (unsigned long long)0x12345,
5663                         (unsigned long long)ret_data);
5664                 fail = 1;
5665         }
5666
5667         /* Reset the EEPROM data go FFFF */
5668         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5669
5670         if (sp->device_type == XFRAME_I_DEVICE) {
5671                 /* Test Write Error at offset 0x80 */
5672                 if (!write_eeprom(sp, 0x080, 0, 3))
5673                         fail = 1;
5674
5675                 /* Test Write Error at offset 0xfc */
5676                 if (!write_eeprom(sp, 0x0FC, 0, 3))
5677                         fail = 1;
5678
5679                 /* Test Write Error at offset 0x100 */
5680                 if (!write_eeprom(sp, 0x100, 0, 3))
5681                         fail = 1;
5682
5683                 /* Test Write Error at offset 4ec */
5684                 if (!write_eeprom(sp, 0x4EC, 0, 3))
5685                         fail = 1;
5686         }
5687
5688         /* Restore values at offsets 0x4F0 and 0x7F0 */
5689         if (saved_4F0)
5690                 write_eeprom(sp, 0x4F0, org_4F0, 3);
5691         if (saved_7F0)
5692                 write_eeprom(sp, 0x7F0, org_7F0, 3);
5693
5694         *data = fail;
5695         return fail;
5696 }
5697
5698 /**
5699  * s2io_bist_test - invokes the MemBist test of the card .
5700  * @sp : private member of the device structure, which is a pointer to the
5701  * s2io_nic structure.
5702  * @data:variable that returns the result of each of the test conducted by
5703  * the driver.
5704  * Description:
5705  * This invokes the MemBist test of the card. We give around
5706  * 2 secs time for the Test to complete. If it's still not complete
5707  * within this peiod, we consider that the test failed.
5708  * Return value:
5709  * 0 on success and -1 on failure.
5710  */
5711
5712 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5713 {
5714         u8 bist = 0;
5715         int cnt = 0, ret = -1;
5716
5717         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5718         bist |= PCI_BIST_START;
5719         pci_write_config_word(sp->pdev, PCI_BIST, bist);
5720
5721         while (cnt < 20) {
5722                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5723                 if (!(bist & PCI_BIST_START)) {
5724                         *data = (bist & PCI_BIST_CODE_MASK);
5725                         ret = 0;
5726                         break;
5727                 }
5728                 msleep(100);
5729                 cnt++;
5730         }
5731
5732         return ret;
5733 }
5734
5735 /**
5736  * s2io-link_test - verifies the link state of the nic
5737  * @sp ; private member of the device structure, which is a pointer to the
5738  * s2io_nic structure.
5739  * @data: variable that returns the result of each of the test conducted by
5740  * the driver.
5741  * Description:
5742  * The function verifies the link state of the NIC and updates the input
5743  * argument 'data' appropriately.
5744  * Return value:
5745  * 0 on success.
5746  */
5747
5748 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5749 {
5750         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5751         u64 val64;
5752
5753         val64 = readq(&bar0->adapter_status);
5754         if(!(LINK_IS_UP(val64)))
5755                 *data = 1;
5756         else
5757                 *data = 0;
5758
5759         return *data;
5760 }
5761
5762 /**
5763  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5764  * @sp - private member of the device structure, which is a pointer to the
5765  * s2io_nic structure.
5766  * @data - variable that returns the result of each of the test
5767  * conducted by the driver.
5768  * Description:
5769  *  This is one of the offline test that tests the read and write
5770  *  access to the RldRam chip on the NIC.
5771  * Return value:
5772  *  0 on success.
5773  */
5774
5775 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5776 {
5777         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5778         u64 val64;
5779         int cnt, iteration = 0, test_fail = 0;
5780
5781         val64 = readq(&bar0->adapter_control);
5782         val64 &= ~ADAPTER_ECC_EN;
5783         writeq(val64, &bar0->adapter_control);
5784
5785         val64 = readq(&bar0->mc_rldram_test_ctrl);
5786         val64 |= MC_RLDRAM_TEST_MODE;
5787         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5788
5789         val64 = readq(&bar0->mc_rldram_mrs);
5790         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5791         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5792
5793         val64 |= MC_RLDRAM_MRS_ENABLE;
5794         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5795
5796         while (iteration < 2) {
5797                 val64 = 0x55555555aaaa0000ULL;
5798                 if (iteration == 1) {
5799                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5800                 }
5801                 writeq(val64, &bar0->mc_rldram_test_d0);
5802
5803                 val64 = 0xaaaa5a5555550000ULL;
5804                 if (iteration == 1) {
5805                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5806                 }
5807                 writeq(val64, &bar0->mc_rldram_test_d1);
5808
5809                 val64 = 0x55aaaaaaaa5a0000ULL;
5810                 if (iteration == 1) {
5811                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5812                 }
5813                 writeq(val64, &bar0->mc_rldram_test_d2);
5814
5815                 val64 = (u64) (0x0000003ffffe0100ULL);
5816                 writeq(val64, &bar0->mc_rldram_test_add);
5817
5818                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5819                         MC_RLDRAM_TEST_GO;
5820                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5821
5822                 for (cnt = 0; cnt < 5; cnt++) {
5823                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5824                         if (val64 & MC_RLDRAM_TEST_DONE)
5825                                 break;
5826                         msleep(200);
5827                 }
5828
5829                 if (cnt == 5)
5830                         break;
5831
5832                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5833                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5834
5835                 for (cnt = 0; cnt < 5; cnt++) {
5836                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5837                         if (val64 & MC_RLDRAM_TEST_DONE)
5838                                 break;
5839                         msleep(500);
5840                 }
5841
5842                 if (cnt == 5)
5843                         break;
5844
5845                 val64 = readq(&bar0->mc_rldram_test_ctrl);
5846                 if (!(val64 & MC_RLDRAM_TEST_PASS))
5847                         test_fail = 1;
5848
5849                 iteration++;
5850         }
5851
5852         *data = test_fail;
5853
5854         /* Bring the adapter out of test mode */
5855         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5856
5857         return test_fail;
5858 }
5859
5860 /**
5861  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5862  *  @sp : private member of the device structure, which is a pointer to the
5863  *  s2io_nic structure.
5864  *  @ethtest : pointer to a ethtool command specific structure that will be
5865  *  returned to the user.
5866  *  @data : variable that returns the result of each of the test
5867  * conducted by the driver.
5868  * Description:
5869  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
5870  *  the health of the card.
5871  * Return value:
5872  *  void
5873  */
5874
5875 static void s2io_ethtool_test(struct net_device *dev,
5876                               struct ethtool_test *ethtest,
5877                               uint64_t * data)
5878 {
5879         struct s2io_nic *sp = dev->priv;
5880         int orig_state = netif_running(sp->dev);
5881
5882         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5883                 /* Offline Tests. */
5884                 if (orig_state)
5885                         s2io_close(sp->dev);
5886
5887                 if (s2io_register_test(sp, &data[0]))
5888                         ethtest->flags |= ETH_TEST_FL_FAILED;
5889
5890                 s2io_reset(sp);
5891
5892                 if (s2io_rldram_test(sp, &data[3]))
5893                         ethtest->flags |= ETH_TEST_FL_FAILED;
5894
5895                 s2io_reset(sp);
5896
5897                 if (s2io_eeprom_test(sp, &data[1]))
5898                         ethtest->flags |= ETH_TEST_FL_FAILED;
5899
5900                 if (s2io_bist_test(sp, &data[4]))
5901                         ethtest->flags |= ETH_TEST_FL_FAILED;
5902
5903                 if (orig_state)
5904                         s2io_open(sp->dev);
5905
5906                 data[2] = 0;
5907         } else {
5908                 /* Online Tests. */
5909                 if (!orig_state) {
5910                         DBG_PRINT(ERR_DBG,
5911                                   "%s: is not up, cannot run test\n",
5912                                   dev->name);
5913                         data[0] = -1;
5914                         data[1] = -1;
5915                         data[2] = -1;
5916                         data[3] = -1;
5917                         data[4] = -1;
5918                 }
5919
5920                 if (s2io_link_test(sp, &data[2]))
5921                         ethtest->flags |= ETH_TEST_FL_FAILED;
5922
5923                 data[0] = 0;
5924                 data[1] = 0;
5925                 data[3] = 0;
5926                 data[4] = 0;
5927         }
5928 }
5929
5930 static void s2io_get_ethtool_stats(struct net_device *dev,
5931                                    struct ethtool_stats *estats,
5932                                    u64 * tmp_stats)
5933 {
5934         int i = 0, k;
5935         struct s2io_nic *sp = dev->priv;
5936         struct stat_block *stat_info = sp->mac_control.stats_info;
5937
5938         s2io_updt_stats(sp);
5939         tmp_stats[i++] =
5940                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
5941                 le32_to_cpu(stat_info->tmac_frms);
5942         tmp_stats[i++] =
5943                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5944                 le32_to_cpu(stat_info->tmac_data_octets);
5945         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5946         tmp_stats[i++] =
5947                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5948                 le32_to_cpu(stat_info->tmac_mcst_frms);
5949         tmp_stats[i++] =
5950                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5951                 le32_to_cpu(stat_info->tmac_bcst_frms);
5952         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5953         tmp_stats[i++] =
5954                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5955                 le32_to_cpu(stat_info->tmac_ttl_octets);
5956         tmp_stats[i++] =
5957                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5958                 le32_to_cpu(stat_info->tmac_ucst_frms);
5959         tmp_stats[i++] =
5960                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5961                 le32_to_cpu(stat_info->tmac_nucst_frms);
5962         tmp_stats[i++] =
5963                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5964                 le32_to_cpu(stat_info->tmac_any_err_frms);
5965         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5966         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5967         tmp_stats[i++] =
5968                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5969                 le32_to_cpu(stat_info->tmac_vld_ip);
5970         tmp_stats[i++] =
5971                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5972                 le32_to_cpu(stat_info->tmac_drop_ip);
5973         tmp_stats[i++] =
5974                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5975                 le32_to_cpu(stat_info->tmac_icmp);
5976         tmp_stats[i++] =
5977                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5978                 le32_to_cpu(stat_info->tmac_rst_tcp);
5979         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5980         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5981                 le32_to_cpu(stat_info->tmac_udp);
5982         tmp_stats[i++] =
5983                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5984                 le32_to_cpu(stat_info->rmac_vld_frms);
5985         tmp_stats[i++] =
5986                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5987                 le32_to_cpu(stat_info->rmac_data_octets);
5988         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5989         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5990         tmp_stats[i++] =
5991                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5992                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5993         tmp_stats[i++] =
5994                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5995                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5996         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5997         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5998         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5999         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6000         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6001         tmp_stats[i++] =
6002                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6003                 le32_to_cpu(stat_info->rmac_ttl_octets);
6004         tmp_stats[i++] =
6005                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6006                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6007         tmp_stats[i++] =
6008                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6009                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6010         tmp_stats[i++] =
6011                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6012                 le32_to_cpu(stat_info->rmac_discarded_frms);
6013         tmp_stats[i++] =
6014                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6015                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6016         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6017         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6018         tmp_stats[i++] =
6019                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6020                 le32_to_cpu(stat_info->rmac_usized_frms);
6021         tmp_stats[i++] =
6022                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6023                 le32_to_cpu(stat_info->rmac_osized_frms);
6024         tmp_stats[i++] =
6025                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6026                 le32_to_cpu(stat_info->rmac_frag_frms);
6027         tmp_stats[i++] =
6028                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6029                 le32_to_cpu(stat_info->rmac_jabber_frms);
6030         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6031         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6032         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6033         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6034         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6035         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6036         tmp_stats[i++] =
6037                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6038                 le32_to_cpu(stat_info->rmac_ip);
6039         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6040         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6041         tmp_stats[i++] =
6042                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6043                 le32_to_cpu(stat_info->rmac_drop_ip);
6044         tmp_stats[i++] =
6045                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6046                 le32_to_cpu(stat_info->rmac_icmp);
6047         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6048         tmp_stats[i++] =
6049                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6050                 le32_to_cpu(stat_info->rmac_udp);
6051         tmp_stats[i++] =
6052                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6053                 le32_to_cpu(stat_info->rmac_err_drp_udp);
6054         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6055         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6056         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6057         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6058         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6059         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6060         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6061         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6062         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6063         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6064         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6065         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6066         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6067         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6068         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6069         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6070         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6071         tmp_stats[i++] =
6072                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6073                 le32_to_cpu(stat_info->rmac_pause_cnt);
6074         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6075         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6076         tmp_stats[i++] =
6077                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6078                 le32_to_cpu(stat_info->rmac_accepted_ip);
6079         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6080         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6081         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6082         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6083         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6084         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6085         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6086         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6087         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6088         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6089         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6090         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6091         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6092         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6093         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6094         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6095         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6096         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6097         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6098
6099         /* Enhanced statistics exist only for Hercules */
6100         if(sp->device_type == XFRAME_II_DEVICE) {
6101                 tmp_stats[i++] =
6102                                 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6103                 tmp_stats[i++] =
6104                                 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6105                 tmp_stats[i++] =
6106                                 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6107                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6108                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6109                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6110                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6111                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6112                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6113                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6114                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6115                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6116                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6117                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6118                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6119                 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6120         }
6121
6122         tmp_stats[i++] = 0;
6123         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6124         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6125         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6126         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6127         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6128         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6129         for (k = 0; k < MAX_RX_RINGS; k++)
6130                 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6131         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6132         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6133         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6134         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6135         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6136         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6137         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6138         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6139         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6140         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6141         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6142         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6143         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6144         tmp_stats[i++] = stat_info->sw_stat.sending_both;
6145         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6146         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6147         if (stat_info->sw_stat.num_aggregations) {
6148                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6149                 int count = 0;
6150                 /*
6151                  * Since 64-bit divide does not work on all platforms,
6152                  * do repeated subtraction.
6153                  */
6154                 while (tmp >= stat_info->sw_stat.num_aggregations) {
6155                         tmp -= stat_info->sw_stat.num_aggregations;
6156                         count++;
6157                 }
6158                 tmp_stats[i++] = count;
6159         }
6160         else
6161                 tmp_stats[i++] = 0;
6162         tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6163         tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6164         tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6165         tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6166         tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6167         tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6168         tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6169         tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6170         tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6171
6172         tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6173         tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6174         tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6175         tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6176         tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6177
6178         tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6179         tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6180         tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6181         tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6182         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6183         tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6184         tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6185         tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6186         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6187         tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6188         tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6189         tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6190         tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6191         tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6192         tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6193         tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6194         tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6195         tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6196         tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6197         tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6198         tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6199         tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6200         tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6201         tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6202         tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6203         tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6204 }
6205
6206 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6207 {
6208         return (XENA_REG_SPACE);
6209 }
6210
6211
6212 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6213 {
6214         struct s2io_nic *sp = dev->priv;
6215
6216         return (sp->rx_csum);
6217 }
6218
6219 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6220 {
6221         struct s2io_nic *sp = dev->priv;
6222
6223         if (data)
6224                 sp->rx_csum = 1;
6225         else
6226                 sp->rx_csum = 0;
6227
6228         return 0;
6229 }
6230
6231 static int s2io_get_eeprom_len(struct net_device *dev)
6232 {
6233         return (XENA_EEPROM_SPACE);
6234 }
6235
6236 static int s2io_get_sset_count(struct net_device *dev, int sset)
6237 {
6238         struct s2io_nic *sp = dev->priv;
6239
6240         switch (sset) {
6241         case ETH_SS_TEST:
6242                 return S2IO_TEST_LEN;
6243         case ETH_SS_STATS:
6244                 switch(sp->device_type) {
6245                 case XFRAME_I_DEVICE:
6246                         return XFRAME_I_STAT_LEN;
6247                 case XFRAME_II_DEVICE:
6248                         return XFRAME_II_STAT_LEN;
6249                 default:
6250                         return 0;
6251                 }
6252         default:
6253                 return -EOPNOTSUPP;
6254         }
6255 }
6256
6257 static void s2io_ethtool_get_strings(struct net_device *dev,
6258                                      u32 stringset, u8 * data)
6259 {
6260         int stat_size = 0;
6261         struct s2io_nic *sp = dev->priv;
6262
6263         switch (stringset) {
6264         case ETH_SS_TEST:
6265                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6266                 break;
6267         case ETH_SS_STATS:
6268                 stat_size = sizeof(ethtool_xena_stats_keys);
6269                 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6270                 if(sp->device_type == XFRAME_II_DEVICE) {
6271                         memcpy(data + stat_size,
6272                                 &ethtool_enhanced_stats_keys,
6273                                 sizeof(ethtool_enhanced_stats_keys));
6274                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6275                 }
6276
6277                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6278                         sizeof(ethtool_driver_stats_keys));
6279         }
6280 }
6281
6282 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6283 {
6284         if (data)
6285                 dev->features |= NETIF_F_IP_CSUM;
6286         else
6287                 dev->features &= ~NETIF_F_IP_CSUM;
6288
6289         return 0;
6290 }
6291
6292 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6293 {
6294         return (dev->features & NETIF_F_TSO) != 0;
6295 }
6296 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6297 {
6298         if (data)
6299                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6300         else
6301                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6302
6303         return 0;
6304 }
6305
6306 static const struct ethtool_ops netdev_ethtool_ops = {
6307         .get_settings = s2io_ethtool_gset,
6308         .set_settings = s2io_ethtool_sset,
6309         .get_drvinfo = s2io_ethtool_gdrvinfo,
6310         .get_regs_len = s2io_ethtool_get_regs_len,
6311         .get_regs = s2io_ethtool_gregs,
6312         .get_link = ethtool_op_get_link,
6313         .get_eeprom_len = s2io_get_eeprom_len,
6314         .get_eeprom = s2io_ethtool_geeprom,
6315         .set_eeprom = s2io_ethtool_seeprom,
6316         .get_ringparam = s2io_ethtool_gringparam,
6317         .get_pauseparam = s2io_ethtool_getpause_data,
6318         .set_pauseparam = s2io_ethtool_setpause_data,
6319         .get_rx_csum = s2io_ethtool_get_rx_csum,
6320         .set_rx_csum = s2io_ethtool_set_rx_csum,
6321         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6322         .set_sg = ethtool_op_set_sg,
6323         .get_tso = s2io_ethtool_op_get_tso,
6324         .set_tso = s2io_ethtool_op_set_tso,
6325         .set_ufo = ethtool_op_set_ufo,
6326         .self_test = s2io_ethtool_test,
6327         .get_strings = s2io_ethtool_get_strings,
6328         .phys_id = s2io_ethtool_idnic,
6329         .get_ethtool_stats = s2io_get_ethtool_stats,
6330         .get_sset_count = s2io_get_sset_count,
6331 };
6332
6333 /**
6334  *  s2io_ioctl - Entry point for the Ioctl
6335  *  @dev :  Device pointer.
6336  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6337  *  a proprietary structure used to pass information to the driver.
6338  *  @cmd :  This is used to distinguish between the different commands that
6339  *  can be passed to the IOCTL functions.
6340  *  Description:
6341  *  Currently there are no special functionality supported in IOCTL, hence
6342  *  function always return EOPNOTSUPPORTED
6343  */
6344
6345 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6346 {
6347         return -EOPNOTSUPP;
6348 }
6349
6350 /**
6351  *  s2io_change_mtu - entry point to change MTU size for the device.
6352  *   @dev : device pointer.
6353  *   @new_mtu : the new MTU size for the device.
6354  *   Description: A driver entry point to change MTU size for the device.
6355  *   Before changing the MTU the device must be stopped.
6356  *  Return value:
6357  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6358  *   file on failure.
6359  */
6360
6361 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6362 {
6363         struct s2io_nic *sp = dev->priv;
6364         int ret = 0;
6365
6366         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6367                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6368                           dev->name);
6369                 return -EPERM;
6370         }
6371
6372         dev->mtu = new_mtu;
6373         if (netif_running(dev)) {
6374                 s2io_card_down(sp);
6375                 netif_stop_queue(dev);
6376                 ret = s2io_card_up(sp);
6377                 if (ret) {
6378                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6379                                   __FUNCTION__);
6380                         return ret;
6381                 }
6382                 if (netif_queue_stopped(dev))
6383                         netif_wake_queue(dev);
6384         } else { /* Device is down */
6385                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6386                 u64 val64 = new_mtu;
6387
6388                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6389         }
6390
6391         return ret;
6392 }
6393
6394 /**
6395  *  s2io_tasklet - Bottom half of the ISR.
6396  *  @dev_adr : address of the device structure in dma_addr_t format.
6397  *  Description:
6398  *  This is the tasklet or the bottom half of the ISR. This is
6399  *  an extension of the ISR which is scheduled by the scheduler to be run
6400  *  when the load on the CPU is low. All low priority tasks of the ISR can
6401  *  be pushed into the tasklet. For now the tasklet is used only to
6402  *  replenish the Rx buffers in the Rx buffer descriptors.
6403  *  Return value:
6404  *  void.
6405  */
6406
6407 static void s2io_tasklet(unsigned long dev_addr)
6408 {
6409         struct net_device *dev = (struct net_device *) dev_addr;
6410         struct s2io_nic *sp = dev->priv;
6411         int i, ret;
6412         struct mac_info *mac_control;
6413         struct config_param *config;
6414
6415         mac_control = &sp->mac_control;
6416         config = &sp->config;
6417
6418         if (!TASKLET_IN_USE) {
6419                 for (i = 0; i < config->rx_ring_num; i++) {
6420                         ret = fill_rx_buffers(sp, i);
6421                         if (ret == -ENOMEM) {
6422                                 DBG_PRINT(INFO_DBG, "%s: Out of ",
6423                                           dev->name);
6424                                 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6425                                 break;
6426                         } else if (ret == -EFILL) {
6427                                 DBG_PRINT(INFO_DBG,
6428                                           "%s: Rx Ring %d is full\n",
6429                                           dev->name, i);
6430                                 break;
6431                         }
6432                 }
6433                 clear_bit(0, (&sp->tasklet_status));
6434         }
6435 }
6436
6437 /**
6438  * s2io_set_link - Set the LInk status
6439  * @data: long pointer to device private structue
6440  * Description: Sets the link status for the adapter
6441  */
6442
6443 static void s2io_set_link(struct work_struct *work)
6444 {
6445         struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6446         struct net_device *dev = nic->dev;
6447         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6448         register u64 val64;
6449         u16 subid;
6450
6451         rtnl_lock();
6452
6453         if (!netif_running(dev))
6454                 goto out_unlock;
6455
6456         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6457                 /* The card is being reset, no point doing anything */
6458                 goto out_unlock;
6459         }
6460
6461         subid = nic->pdev->subsystem_device;
6462         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6463                 /*
6464                  * Allow a small delay for the NICs self initiated
6465                  * cleanup to complete.
6466                  */
6467                 msleep(100);
6468         }
6469
6470         val64 = readq(&bar0->adapter_status);
6471         if (LINK_IS_UP(val64)) {
6472                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6473                         if (verify_xena_quiescence(nic)) {
6474                                 val64 = readq(&bar0->adapter_control);
6475                                 val64 |= ADAPTER_CNTL_EN;
6476                                 writeq(val64, &bar0->adapter_control);
6477                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6478                                         nic->device_type, subid)) {
6479                                         val64 = readq(&bar0->gpio_control);
6480                                         val64 |= GPIO_CTRL_GPIO_0;
6481                                         writeq(val64, &bar0->gpio_control);
6482                                         val64 = readq(&bar0->gpio_control);
6483                                 } else {
6484                                         val64 |= ADAPTER_LED_ON;
6485                                         writeq(val64, &bar0->adapter_control);
6486                                 }
6487                                 nic->device_enabled_once = TRUE;
6488                         } else {
6489                                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6490                                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6491                                 netif_stop_queue(dev);
6492                         }
6493                 }
6494                 val64 = readq(&bar0->adapter_control);
6495                 val64 |= ADAPTER_LED_ON;
6496                 writeq(val64, &bar0->adapter_control);
6497                 s2io_link(nic, LINK_UP);
6498         } else {
6499                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6500                                                       subid)) {
6501                         val64 = readq(&bar0->gpio_control);
6502                         val64 &= ~GPIO_CTRL_GPIO_0;
6503                         writeq(val64, &bar0->gpio_control);
6504                         val64 = readq(&bar0->gpio_control);
6505                 }
6506                 /* turn off LED */
6507                 val64 = readq(&bar0->adapter_control);
6508                 val64 = val64 &(~ADAPTER_LED_ON);
6509                 writeq(val64, &bar0->adapter_control);
6510                 s2io_link(nic, LINK_DOWN);
6511         }
6512         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6513
6514 out_unlock:
6515         rtnl_unlock();
6516 }
6517
6518 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6519                                 struct buffAdd *ba,
6520                                 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6521                                 u64 *temp2, int size)
6522 {
6523         struct net_device *dev = sp->dev;
6524         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6525
6526         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6527                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6528                 /* allocate skb */
6529                 if (*skb) {
6530                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6531                         /*
6532                          * As Rx frame are not going to be processed,
6533                          * using same mapped address for the Rxd
6534                          * buffer pointer
6535                          */
6536                         rxdp1->Buffer0_ptr = *temp0;
6537                 } else {
6538                         *skb = dev_alloc_skb(size);
6539                         if (!(*skb)) {
6540                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6541                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6542                                 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6543                                 sp->mac_control.stats_info->sw_stat. \
6544                                         mem_alloc_fail_cnt++;
6545                                 return -ENOMEM ;
6546                         }
6547                         sp->mac_control.stats_info->sw_stat.mem_allocated
6548                                 += (*skb)->truesize;
6549                         /* storing the mapped addr in a temp variable
6550                          * such it will be used for next rxd whose
6551                          * Host Control is NULL
6552                          */
6553                         rxdp1->Buffer0_ptr = *temp0 =
6554                                 pci_map_single( sp->pdev, (*skb)->data,
6555                                         size - NET_IP_ALIGN,
6556                                         PCI_DMA_FROMDEVICE);
6557                         if( (rxdp1->Buffer0_ptr == 0) ||
6558                                 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6559                                 goto memalloc_failed;
6560                         }
6561                         rxdp->Host_Control = (unsigned long) (*skb);
6562                 }
6563         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6564                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6565                 /* Two buffer Mode */
6566                 if (*skb) {
6567                         rxdp3->Buffer2_ptr = *temp2;
6568                         rxdp3->Buffer0_ptr = *temp0;
6569                         rxdp3->Buffer1_ptr = *temp1;
6570                 } else {
6571                         *skb = dev_alloc_skb(size);
6572                         if (!(*skb)) {
6573                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6574                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6575                                 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6576                                 sp->mac_control.stats_info->sw_stat. \
6577                                         mem_alloc_fail_cnt++;
6578                                 return -ENOMEM;
6579                         }
6580                         sp->mac_control.stats_info->sw_stat.mem_allocated
6581                                 += (*skb)->truesize;
6582                         rxdp3->Buffer2_ptr = *temp2 =
6583                                 pci_map_single(sp->pdev, (*skb)->data,
6584                                                dev->mtu + 4,
6585                                                PCI_DMA_FROMDEVICE);
6586                         if( (rxdp3->Buffer2_ptr == 0) ||
6587                                 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6588                                 goto memalloc_failed;
6589                         }
6590                         rxdp3->Buffer0_ptr = *temp0 =
6591                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6592                                                 PCI_DMA_FROMDEVICE);
6593                         if( (rxdp3->Buffer0_ptr == 0) ||
6594                                 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6595                                 pci_unmap_single (sp->pdev,
6596                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6597                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6598                                 goto memalloc_failed;
6599                         }
6600                         rxdp->Host_Control = (unsigned long) (*skb);
6601
6602                         /* Buffer-1 will be dummy buffer not used */
6603                         rxdp3->Buffer1_ptr = *temp1 =
6604                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6605                                                 PCI_DMA_FROMDEVICE);
6606                         if( (rxdp3->Buffer1_ptr == 0) ||
6607                                 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6608                                 pci_unmap_single (sp->pdev,
6609                                         (dma_addr_t)rxdp3->Buffer0_ptr,
6610                                         BUF0_LEN, PCI_DMA_FROMDEVICE);
6611                                 pci_unmap_single (sp->pdev,
6612                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6613                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6614                                 goto memalloc_failed;
6615                         }
6616                 }
6617         }
6618         return 0;
6619         memalloc_failed:
6620                 stats->pci_map_fail_cnt++;
6621                 stats->mem_freed += (*skb)->truesize;
6622                 dev_kfree_skb(*skb);
6623                 return -ENOMEM;
6624 }
6625
6626 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6627                                 int size)
6628 {
6629         struct net_device *dev = sp->dev;
6630         if (sp->rxd_mode == RXD_MODE_1) {
6631                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6632         } else if (sp->rxd_mode == RXD_MODE_3B) {
6633                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6634                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6635                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6636         }
6637 }
6638
6639 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6640 {
6641         int i, j, k, blk_cnt = 0, size;
6642         struct mac_info * mac_control = &sp->mac_control;
6643         struct config_param *config = &sp->config;
6644         struct net_device *dev = sp->dev;
6645         struct RxD_t *rxdp = NULL;
6646         struct sk_buff *skb = NULL;
6647         struct buffAdd *ba = NULL;
6648         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6649
6650         /* Calculate the size based on ring mode */
6651         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6652                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6653         if (sp->rxd_mode == RXD_MODE_1)
6654                 size += NET_IP_ALIGN;
6655         else if (sp->rxd_mode == RXD_MODE_3B)
6656                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6657
6658         for (i = 0; i < config->rx_ring_num; i++) {
6659                 blk_cnt = config->rx_cfg[i].num_rxd /
6660                         (rxd_count[sp->rxd_mode] +1);
6661
6662                 for (j = 0; j < blk_cnt; j++) {
6663                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6664                                 rxdp = mac_control->rings[i].
6665                                         rx_blocks[j].rxds[k].virt_addr;
6666                                 if(sp->rxd_mode == RXD_MODE_3B)
6667                                         ba = &mac_control->rings[i].ba[j][k];
6668                                 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6669                                                        &skb,(u64 *)&temp0_64,
6670                                                        (u64 *)&temp1_64,
6671                                                        (u64 *)&temp2_64,
6672                                                         size) == ENOMEM) {
6673                                         return 0;
6674                                 }
6675
6676                                 set_rxd_buffer_size(sp, rxdp, size);
6677                                 wmb();
6678                                 /* flip the Ownership bit to Hardware */
6679                                 rxdp->Control_1 |= RXD_OWN_XENA;
6680                         }
6681                 }
6682         }
6683         return 0;
6684
6685 }
6686
6687 static int s2io_add_isr(struct s2io_nic * sp)
6688 {
6689         int ret = 0;
6690         struct net_device *dev = sp->dev;
6691         int err = 0;
6692
6693         if (sp->config.intr_type == MSI_X)
6694                 ret = s2io_enable_msi_x(sp);
6695         if (ret) {
6696                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6697                 sp->config.intr_type = INTA;
6698         }
6699
6700         /* Store the values of the MSIX table in the struct s2io_nic structure */
6701         store_xmsi_data(sp);
6702
6703         /* After proper initialization of H/W, register ISR */
6704         if (sp->config.intr_type == MSI_X) {
6705                 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6706
6707                 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6708                         if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6709                                 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6710                                         dev->name, i);
6711                                 err = request_irq(sp->entries[i].vector,
6712                                           s2io_msix_fifo_handle, 0, sp->desc[i],
6713                                                   sp->s2io_entries[i].arg);
6714                                 /* If either data or addr is zero print it */
6715                                 if(!(sp->msix_info[i].addr &&
6716                                         sp->msix_info[i].data)) {
6717                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6718                                                 "Data:0x%lx\n",sp->desc[i],
6719                                                 (unsigned long long)
6720                                                 sp->msix_info[i].addr,
6721                                                 (unsigned long)
6722                                                 ntohl(sp->msix_info[i].data));
6723                                 } else {
6724                                         msix_tx_cnt++;
6725                                 }
6726                         } else {
6727                                 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6728                                         dev->name, i);
6729                                 err = request_irq(sp->entries[i].vector,
6730                                           s2io_msix_ring_handle, 0, sp->desc[i],
6731                                                   sp->s2io_entries[i].arg);
6732                                 /* If either data or addr is zero print it */
6733                                 if(!(sp->msix_info[i].addr &&
6734                                         sp->msix_info[i].data)) {
6735                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6736                                                 "Data:0x%lx\n",sp->desc[i],
6737                                                 (unsigned long long)
6738                                                 sp->msix_info[i].addr,
6739                                                 (unsigned long)
6740                                                 ntohl(sp->msix_info[i].data));
6741                                 } else {
6742                                         msix_rx_cnt++;
6743                                 }
6744                         }
6745                         if (err) {
6746                                 remove_msix_isr(sp);
6747                                 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6748                                           "failed\n", dev->name, i);
6749                                 DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
6750                                                  dev->name);
6751                                 sp->config.intr_type = INTA;
6752                                 break;
6753                         }
6754                         sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6755                 }
6756                 if (!err) {
6757                         printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
6758                                 msix_tx_cnt);
6759                         printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
6760                                 msix_rx_cnt);
6761                 }
6762         }
6763         if (sp->config.intr_type == INTA) {
6764                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6765                                 sp->name, dev);
6766                 if (err) {
6767                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6768                                   dev->name);
6769                         return -1;
6770                 }
6771         }
6772         return 0;
6773 }
6774 static void s2io_rem_isr(struct s2io_nic * sp)
6775 {
6776         if (sp->config.intr_type == MSI_X)
6777                 remove_msix_isr(sp);
6778         else
6779                 remove_inta_isr(sp);
6780 }
6781
6782 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
6783 {
6784         int cnt = 0;
6785         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6786         unsigned long flags;
6787         register u64 val64 = 0;
6788
6789         if (!is_s2io_card_up(sp))
6790                 return;
6791
6792         del_timer_sync(&sp->alarm_timer);
6793         /* If s2io_set_link task is executing, wait till it completes. */
6794         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
6795                 msleep(50);
6796         }
6797         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
6798
6799         /* disable Tx and Rx traffic on the NIC */
6800         if (do_io)
6801                 stop_nic(sp);
6802
6803         s2io_rem_isr(sp);
6804
6805         /* Kill tasklet. */
6806         tasklet_kill(&sp->task);
6807
6808         /* Check if the device is Quiescent and then Reset the NIC */
6809         while(do_io) {
6810                 /* As per the HW requirement we need to replenish the
6811                  * receive buffer to avoid the ring bump. Since there is
6812                  * no intention of processing the Rx frame at this pointwe are
6813                  * just settting the ownership bit of rxd in Each Rx
6814                  * ring to HW and set the appropriate buffer size
6815                  * based on the ring mode
6816                  */
6817                 rxd_owner_bit_reset(sp);
6818
6819                 val64 = readq(&bar0->adapter_status);
6820                 if (verify_xena_quiescence(sp)) {
6821                         if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6822                         break;
6823                 }
6824
6825                 msleep(50);
6826                 cnt++;
6827                 if (cnt == 10) {
6828                         DBG_PRINT(ERR_DBG,
6829                                   "s2io_close:Device not Quiescent ");
6830                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6831                                   (unsigned long long) val64);
6832                         break;
6833                 }
6834         }
6835         if (do_io)
6836                 s2io_reset(sp);
6837
6838         spin_lock_irqsave(&sp->tx_lock, flags);
6839         /* Free all Tx buffers */
6840         free_tx_buffers(sp);
6841         spin_unlock_irqrestore(&sp->tx_lock, flags);
6842
6843         /* Free all Rx buffers */
6844         spin_lock_irqsave(&sp->rx_lock, flags);
6845         free_rx_buffers(sp);
6846         spin_unlock_irqrestore(&sp->rx_lock, flags);
6847
6848         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
6849 }
6850
6851 static void s2io_card_down(struct s2io_nic * sp)
6852 {
6853         do_s2io_card_down(sp, 1);
6854 }
6855
6856 static int s2io_card_up(struct s2io_nic * sp)
6857 {
6858         int i, ret = 0;
6859         struct mac_info *mac_control;
6860         struct config_param *config;
6861         struct net_device *dev = (struct net_device *) sp->dev;
6862         u16 interruptible;
6863
6864         /* Initialize the H/W I/O registers */
6865         ret = init_nic(sp);
6866         if (ret != 0) {
6867                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6868                           dev->name);
6869                 if (ret != -EIO)
6870                         s2io_reset(sp);
6871                 return ret;
6872         }
6873
6874         /*
6875          * Initializing the Rx buffers. For now we are considering only 1
6876          * Rx ring and initializing buffers into 30 Rx blocks
6877          */
6878         mac_control = &sp->mac_control;
6879         config = &sp->config;
6880
6881         for (i = 0; i < config->rx_ring_num; i++) {
6882                 if ((ret = fill_rx_buffers(sp, i))) {
6883                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6884                                   dev->name);
6885                         s2io_reset(sp);
6886                         free_rx_buffers(sp);
6887                         return -ENOMEM;
6888                 }
6889                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6890                           atomic_read(&sp->rx_bufs_left[i]));
6891         }
6892         /* Maintain the state prior to the open */
6893         if (sp->promisc_flg)
6894                 sp->promisc_flg = 0;
6895         if (sp->m_cast_flg) {
6896                 sp->m_cast_flg = 0;
6897                 sp->all_multi_pos= 0;
6898         }
6899
6900         /* Setting its receive mode */
6901         s2io_set_multicast(dev);
6902
6903         if (sp->lro) {
6904                 /* Initialize max aggregatable pkts per session based on MTU */
6905                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6906                 /* Check if we can use(if specified) user provided value */
6907                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6908                         sp->lro_max_aggr_per_sess = lro_max_pkts;
6909         }
6910
6911         /* Enable Rx Traffic and interrupts on the NIC */
6912         if (start_nic(sp)) {
6913                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6914                 s2io_reset(sp);
6915                 free_rx_buffers(sp);
6916                 return -ENODEV;
6917         }
6918
6919         /* Add interrupt service routine */
6920         if (s2io_add_isr(sp) != 0) {
6921                 if (sp->config.intr_type == MSI_X)
6922                         s2io_rem_isr(sp);
6923                 s2io_reset(sp);
6924                 free_rx_buffers(sp);
6925                 return -ENODEV;
6926         }
6927
6928         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6929
6930         /* Enable tasklet for the device */
6931         tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6932
6933         /*  Enable select interrupts */
6934         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
6935         if (sp->config.intr_type != INTA)
6936                 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6937         else {
6938                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6939                 interruptible |= TX_PIC_INTR;
6940                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6941         }
6942
6943         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
6944         return 0;
6945 }
6946
6947 /**
6948  * s2io_restart_nic - Resets the NIC.
6949  * @data : long pointer to the device private structure
6950  * Description:
6951  * This function is scheduled to be run by the s2io_tx_watchdog
6952  * function after 0.5 secs to reset the NIC. The idea is to reduce
6953  * the run time of the watch dog routine which is run holding a
6954  * spin lock.
6955  */
6956
6957 static void s2io_restart_nic(struct work_struct *work)
6958 {
6959         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6960         struct net_device *dev = sp->dev;
6961
6962         rtnl_lock();
6963
6964         if (!netif_running(dev))
6965                 goto out_unlock;
6966
6967         s2io_card_down(sp);
6968         if (s2io_card_up(sp)) {
6969                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6970                           dev->name);
6971         }
6972         netif_wake_queue(dev);
6973         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6974                   dev->name);
6975 out_unlock:
6976         rtnl_unlock();
6977 }
6978
6979 /**
6980  *  s2io_tx_watchdog - Watchdog for transmit side.
6981  *  @dev : Pointer to net device structure
6982  *  Description:
6983  *  This function is triggered if the Tx Queue is stopped
6984  *  for a pre-defined amount of time when the Interface is still up.
6985  *  If the Interface is jammed in such a situation, the hardware is
6986  *  reset (by s2io_close) and restarted again (by s2io_open) to
6987  *  overcome any problem that might have been caused in the hardware.
6988  *  Return value:
6989  *  void
6990  */
6991
6992 static void s2io_tx_watchdog(struct net_device *dev)
6993 {
6994         struct s2io_nic *sp = dev->priv;
6995
6996         if (netif_carrier_ok(dev)) {
6997                 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
6998                 schedule_work(&sp->rst_timer_task);
6999                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7000         }
7001 }
7002
7003 /**
7004  *   rx_osm_handler - To perform some OS related operations on SKB.
7005  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7006  *   @skb : the socket buffer pointer.
7007  *   @len : length of the packet
7008  *   @cksum : FCS checksum of the frame.
7009  *   @ring_no : the ring from which this RxD was extracted.
7010  *   Description:
7011  *   This function is called by the Rx interrupt serivce routine to perform
7012  *   some OS related operations on the SKB before passing it to the upper
7013  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7014  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7015  *   to the upper layer. If the checksum is wrong, it increments the Rx
7016  *   packet error count, frees the SKB and returns error.
7017  *   Return value:
7018  *   SUCCESS on success and -1 on failure.
7019  */
7020 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7021 {
7022         struct s2io_nic *sp = ring_data->nic;
7023         struct net_device *dev = (struct net_device *) sp->dev;
7024         struct sk_buff *skb = (struct sk_buff *)
7025                 ((unsigned long) rxdp->Host_Control);
7026         int ring_no = ring_data->ring_no;
7027         u16 l3_csum, l4_csum;
7028         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7029         struct lro *lro;
7030         u8 err_mask;
7031
7032         skb->dev = dev;
7033
7034         if (err) {
7035                 /* Check for parity error */
7036                 if (err & 0x1) {
7037                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7038                 }
7039                 err_mask = err >> 48;
7040                 switch(err_mask) {
7041                         case 1:
7042                                 sp->mac_control.stats_info->sw_stat.
7043                                 rx_parity_err_cnt++;
7044                         break;
7045
7046                         case 2:
7047                                 sp->mac_control.stats_info->sw_stat.
7048                                 rx_abort_cnt++;
7049                         break;
7050
7051                         case 3:
7052                                 sp->mac_control.stats_info->sw_stat.
7053                                 rx_parity_abort_cnt++;
7054                         break;
7055
7056                         case 4:
7057                                 sp->mac_control.stats_info->sw_stat.
7058                                 rx_rda_fail_cnt++;
7059                         break;
7060
7061                         case 5:
7062                                 sp->mac_control.stats_info->sw_stat.
7063                                 rx_unkn_prot_cnt++;
7064                         break;
7065
7066                         case 6:
7067                                 sp->mac_control.stats_info->sw_stat.
7068                                 rx_fcs_err_cnt++;
7069                         break;
7070
7071                         case 7:
7072                                 sp->mac_control.stats_info->sw_stat.
7073                                 rx_buf_size_err_cnt++;
7074                         break;
7075
7076                         case 8:
7077                                 sp->mac_control.stats_info->sw_stat.
7078                                 rx_rxd_corrupt_cnt++;
7079                         break;
7080
7081                         case 15:
7082                                 sp->mac_control.stats_info->sw_stat.
7083                                 rx_unkn_err_cnt++;
7084                         break;
7085                 }
7086                 /*
7087                 * Drop the packet if bad transfer code. Exception being
7088                 * 0x5, which could be due to unsupported IPv6 extension header.
7089                 * In this case, we let stack handle the packet.
7090                 * Note that in this case, since checksum will be incorrect,
7091                 * stack will validate the same.
7092                 */
7093                 if (err_mask != 0x5) {
7094                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7095                                 dev->name, err_mask);
7096                         sp->stats.rx_crc_errors++;
7097                         sp->mac_control.stats_info->sw_stat.mem_freed
7098                                 += skb->truesize;
7099                         dev_kfree_skb(skb);
7100                         atomic_dec(&sp->rx_bufs_left[ring_no]);
7101                         rxdp->Host_Control = 0;
7102                         return 0;
7103                 }
7104         }
7105
7106         /* Updating statistics */
7107         sp->stats.rx_packets++;
7108         rxdp->Host_Control = 0;
7109         if (sp->rxd_mode == RXD_MODE_1) {
7110                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7111
7112                 sp->stats.rx_bytes += len;
7113                 skb_put(skb, len);
7114
7115         } else if (sp->rxd_mode == RXD_MODE_3B) {
7116                 int get_block = ring_data->rx_curr_get_info.block_index;
7117                 int get_off = ring_data->rx_curr_get_info.offset;
7118                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7119                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7120                 unsigned char *buff = skb_push(skb, buf0_len);
7121
7122                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7123                 sp->stats.rx_bytes += buf0_len + buf2_len;
7124                 memcpy(buff, ba->ba_0, buf0_len);
7125                 skb_put(skb, buf2_len);
7126         }
7127
7128         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7129             (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7130             (sp->rx_csum)) {
7131                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7132                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7133                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7134                         /*
7135                          * NIC verifies if the Checksum of the received
7136                          * frame is Ok or not and accordingly returns
7137                          * a flag in the RxD.
7138                          */
7139                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7140                         if (sp->lro) {
7141                                 u32 tcp_len;
7142                                 u8 *tcp;
7143                                 int ret = 0;
7144
7145                                 ret = s2io_club_tcp_session(skb->data, &tcp,
7146                                                             &tcp_len, &lro,
7147                                                             rxdp, sp);
7148                                 switch (ret) {
7149                                         case 3: /* Begin anew */
7150                                                 lro->parent = skb;
7151                                                 goto aggregate;
7152                                         case 1: /* Aggregate */
7153                                         {
7154                                                 lro_append_pkt(sp, lro,
7155                                                         skb, tcp_len);
7156                                                 goto aggregate;
7157                                         }
7158                                         case 4: /* Flush session */
7159                                         {
7160                                                 lro_append_pkt(sp, lro,
7161                                                         skb, tcp_len);
7162                                                 queue_rx_frame(lro->parent);
7163                                                 clear_lro_session(lro);
7164                                                 sp->mac_control.stats_info->
7165                                                     sw_stat.flush_max_pkts++;
7166                                                 goto aggregate;
7167                                         }
7168                                         case 2: /* Flush both */
7169                                                 lro->parent->data_len =
7170                                                         lro->frags_len;
7171                                                 sp->mac_control.stats_info->
7172                                                      sw_stat.sending_both++;
7173                                                 queue_rx_frame(lro->parent);
7174                                                 clear_lro_session(lro);
7175                                                 goto send_up;
7176                                         case 0: /* sessions exceeded */
7177                                         case -1: /* non-TCP or not
7178                                                   * L2 aggregatable
7179                                                   */
7180                                         case 5: /*
7181                                                  * First pkt in session not
7182                                                  * L3/L4 aggregatable
7183                                                  */
7184                                                 break;
7185                                         default:
7186                                                 DBG_PRINT(ERR_DBG,
7187                                                         "%s: Samadhana!!\n",
7188                                                          __FUNCTION__);
7189                                                 BUG();
7190                                 }
7191                         }
7192                 } else {
7193                         /*
7194                          * Packet with erroneous checksum, let the
7195                          * upper layers deal with it.
7196                          */
7197                         skb->ip_summed = CHECKSUM_NONE;
7198                 }
7199         } else {
7200                 skb->ip_summed = CHECKSUM_NONE;
7201         }
7202         sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7203         if (!sp->lro) {
7204                 skb->protocol = eth_type_trans(skb, dev);
7205                 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
7206                         vlan_strip_flag)) {
7207                         /* Queueing the vlan frame to the upper layer */
7208                         if (napi)
7209                                 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
7210                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
7211                         else
7212                                 vlan_hwaccel_rx(skb, sp->vlgrp,
7213                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
7214                 } else {
7215                         if (napi)
7216                                 netif_receive_skb(skb);
7217                         else
7218                                 netif_rx(skb);
7219                 }
7220         } else {
7221 send_up:
7222                 queue_rx_frame(skb);
7223         }
7224         dev->last_rx = jiffies;
7225 aggregate:
7226         atomic_dec(&sp->rx_bufs_left[ring_no]);
7227         return SUCCESS;
7228 }
7229
7230 /**
7231  *  s2io_link - stops/starts the Tx queue.
7232  *  @sp : private member of the device structure, which is a pointer to the
7233  *  s2io_nic structure.
7234  *  @link : inidicates whether link is UP/DOWN.
7235  *  Description:
7236  *  This function stops/starts the Tx queue depending on whether the link
7237  *  status of the NIC is is down or up. This is called by the Alarm
7238  *  interrupt handler whenever a link change interrupt comes up.
7239  *  Return value:
7240  *  void.
7241  */
7242
7243 static void s2io_link(struct s2io_nic * sp, int link)
7244 {
7245         struct net_device *dev = (struct net_device *) sp->dev;
7246
7247         if (link != sp->last_link_state) {
7248                 if (link == LINK_DOWN) {
7249                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7250                         netif_carrier_off(dev);
7251                         if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7252                         sp->mac_control.stats_info->sw_stat.link_up_time =
7253                                 jiffies - sp->start_time;
7254                         sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7255                 } else {
7256                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7257                         if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7258                         sp->mac_control.stats_info->sw_stat.link_down_time =
7259                                 jiffies - sp->start_time;
7260                         sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7261                         netif_carrier_on(dev);
7262                 }
7263         }
7264         sp->last_link_state = link;
7265         sp->start_time = jiffies;
7266 }
7267
7268 /**
7269  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7270  *  @sp : private member of the device structure, which is a pointer to the
7271  *  s2io_nic structure.
7272  *  Description:
7273  *  This function initializes a few of the PCI and PCI-X configuration registers
7274  *  with recommended values.
7275  *  Return value:
7276  *  void
7277  */
7278
7279 static void s2io_init_pci(struct s2io_nic * sp)
7280 {
7281         u16 pci_cmd = 0, pcix_cmd = 0;
7282
7283         /* Enable Data Parity Error Recovery in PCI-X command register. */
7284         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7285                              &(pcix_cmd));
7286         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7287                               (pcix_cmd | 1));
7288         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7289                              &(pcix_cmd));
7290
7291         /* Set the PErr Response bit in PCI command register. */
7292         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7293         pci_write_config_word(sp->pdev, PCI_COMMAND,
7294                               (pci_cmd | PCI_COMMAND_PARITY));
7295         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7296 }
7297
7298 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7299 {
7300         if ( tx_fifo_num > 8) {
7301                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
7302                          "supported\n");
7303                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
7304                 tx_fifo_num = 8;
7305         }
7306         if ( rx_ring_num > 8) {
7307                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7308                          "supported\n");
7309                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7310                 rx_ring_num = 8;
7311         }
7312         if (*dev_intr_type != INTA)
7313                 napi = 0;
7314
7315         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7316                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7317                           "Defaulting to INTA\n");
7318                 *dev_intr_type = INTA;
7319         }
7320
7321         if ((*dev_intr_type == MSI_X) &&
7322                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7323                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7324                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7325                                         "Defaulting to INTA\n");
7326                 *dev_intr_type = INTA;
7327         }
7328
7329         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7330                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7331                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7332                 rx_ring_mode = 1;
7333         }
7334         return SUCCESS;
7335 }
7336
7337 /**
7338  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7339  * or Traffic class respectively.
7340  * @nic: device peivate variable
7341  * Description: The function configures the receive steering to
7342  * desired receive ring.
7343  * Return Value:  SUCCESS on success and
7344  * '-1' on failure (endian settings incorrect).
7345  */
7346 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7347 {
7348         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7349         register u64 val64 = 0;
7350
7351         if (ds_codepoint > 63)
7352                 return FAILURE;
7353
7354         val64 = RTS_DS_MEM_DATA(ring);
7355         writeq(val64, &bar0->rts_ds_mem_data);
7356
7357         val64 = RTS_DS_MEM_CTRL_WE |
7358                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7359                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7360
7361         writeq(val64, &bar0->rts_ds_mem_ctrl);
7362
7363         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7364                                 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7365                                 S2IO_BIT_RESET);
7366 }
7367
7368 /**
7369  *  s2io_init_nic - Initialization of the adapter .
7370  *  @pdev : structure containing the PCI related information of the device.
7371  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7372  *  Description:
7373  *  The function initializes an adapter identified by the pci_dec structure.
7374  *  All OS related initialization including memory and device structure and
7375  *  initlaization of the device private variable is done. Also the swapper
7376  *  control register is initialized to enable read and write into the I/O
7377  *  registers of the device.
7378  *  Return value:
7379  *  returns 0 on success and negative on failure.
7380  */
7381
7382 static int __devinit
7383 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7384 {
7385         struct s2io_nic *sp;
7386         struct net_device *dev;
7387         int i, j, ret;
7388         int dma_flag = FALSE;
7389         u32 mac_up, mac_down;
7390         u64 val64 = 0, tmp64 = 0;
7391         struct XENA_dev_config __iomem *bar0 = NULL;
7392         u16 subid;
7393         struct mac_info *mac_control;
7394         struct config_param *config;
7395         int mode;
7396         u8 dev_intr_type = intr_type;
7397         DECLARE_MAC_BUF(mac);
7398
7399         if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7400                 return ret;
7401
7402         if ((ret = pci_enable_device(pdev))) {
7403                 DBG_PRINT(ERR_DBG,
7404                           "s2io_init_nic: pci_enable_device failed\n");
7405                 return ret;
7406         }
7407
7408         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7409                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7410                 dma_flag = TRUE;
7411                 if (pci_set_consistent_dma_mask
7412                     (pdev, DMA_64BIT_MASK)) {
7413                         DBG_PRINT(ERR_DBG,
7414                                   "Unable to obtain 64bit DMA for \
7415                                         consistent allocations\n");
7416                         pci_disable_device(pdev);
7417                         return -ENOMEM;
7418                 }
7419         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7420                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7421         } else {
7422                 pci_disable_device(pdev);
7423                 return -ENOMEM;
7424         }
7425         if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7426                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7427                 pci_disable_device(pdev);
7428                 return -ENODEV;
7429         }
7430
7431         dev = alloc_etherdev(sizeof(struct s2io_nic));
7432         if (dev == NULL) {
7433                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7434                 pci_disable_device(pdev);
7435                 pci_release_regions(pdev);
7436                 return -ENODEV;
7437         }
7438
7439         pci_set_master(pdev);
7440         pci_set_drvdata(pdev, dev);
7441         SET_NETDEV_DEV(dev, &pdev->dev);
7442
7443         /*  Private member variable initialized to s2io NIC structure */
7444         sp = dev->priv;
7445         memset(sp, 0, sizeof(struct s2io_nic));
7446         sp->dev = dev;
7447         sp->pdev = pdev;
7448         sp->high_dma_flag = dma_flag;
7449         sp->device_enabled_once = FALSE;
7450         if (rx_ring_mode == 1)
7451                 sp->rxd_mode = RXD_MODE_1;
7452         if (rx_ring_mode == 2)
7453                 sp->rxd_mode = RXD_MODE_3B;
7454
7455         sp->config.intr_type = dev_intr_type;
7456
7457         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7458                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7459                 sp->device_type = XFRAME_II_DEVICE;
7460         else
7461                 sp->device_type = XFRAME_I_DEVICE;
7462
7463         sp->lro = lro_enable;
7464
7465         /* Initialize some PCI/PCI-X fields of the NIC. */
7466         s2io_init_pci(sp);
7467
7468         /*
7469          * Setting the device configuration parameters.
7470          * Most of these parameters can be specified by the user during
7471          * module insertion as they are module loadable parameters. If
7472          * these parameters are not not specified during load time, they
7473          * are initialized with default values.
7474          */
7475         mac_control = &sp->mac_control;
7476         config = &sp->config;
7477
7478         config->napi = napi;
7479
7480         /* Tx side parameters. */
7481         config->tx_fifo_num = tx_fifo_num;
7482         for (i = 0; i < MAX_TX_FIFOS; i++) {
7483                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7484                 config->tx_cfg[i].fifo_priority = i;
7485         }
7486
7487         /* mapping the QoS priority to the configured fifos */
7488         for (i = 0; i < MAX_TX_FIFOS; i++)
7489                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7490
7491         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7492         for (i = 0; i < config->tx_fifo_num; i++) {
7493                 config->tx_cfg[i].f_no_snoop =
7494                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7495                 if (config->tx_cfg[i].fifo_len < 65) {
7496                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7497                         break;
7498                 }
7499         }
7500         /* + 2 because one Txd for skb->data and one Txd for UFO */
7501         config->max_txds = MAX_SKB_FRAGS + 2;
7502
7503         /* Rx side parameters. */
7504         config->rx_ring_num = rx_ring_num;
7505         for (i = 0; i < MAX_RX_RINGS; i++) {
7506                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7507                     (rxd_count[sp->rxd_mode] + 1);
7508                 config->rx_cfg[i].ring_priority = i;
7509         }
7510
7511         for (i = 0; i < rx_ring_num; i++) {
7512                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7513                 config->rx_cfg[i].f_no_snoop =
7514                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7515         }
7516
7517         /*  Setting Mac Control parameters */
7518         mac_control->rmac_pause_time = rmac_pause_time;
7519         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7520         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7521
7522
7523         /* Initialize Ring buffer parameters. */
7524         for (i = 0; i < config->rx_ring_num; i++)
7525                 atomic_set(&sp->rx_bufs_left[i], 0);
7526
7527         /*  initialize the shared memory used by the NIC and the host */
7528         if (init_shared_mem(sp)) {
7529                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7530                           dev->name);
7531                 ret = -ENOMEM;
7532                 goto mem_alloc_failed;
7533         }
7534
7535         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7536                                      pci_resource_len(pdev, 0));
7537         if (!sp->bar0) {
7538                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7539                           dev->name);
7540                 ret = -ENOMEM;
7541                 goto bar0_remap_failed;
7542         }
7543
7544         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7545                                      pci_resource_len(pdev, 2));
7546         if (!sp->bar1) {
7547                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7548                           dev->name);
7549                 ret = -ENOMEM;
7550                 goto bar1_remap_failed;
7551         }
7552
7553         dev->irq = pdev->irq;
7554         dev->base_addr = (unsigned long) sp->bar0;
7555
7556         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7557         for (j = 0; j < MAX_TX_FIFOS; j++) {
7558                 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7559                     (sp->bar1 + (j * 0x00020000));
7560         }
7561
7562         /*  Driver entry points */
7563         dev->open = &s2io_open;
7564         dev->stop = &s2io_close;
7565         dev->hard_start_xmit = &s2io_xmit;
7566         dev->get_stats = &s2io_get_stats;
7567         dev->set_multicast_list = &s2io_set_multicast;
7568         dev->do_ioctl = &s2io_ioctl;
7569         dev->set_mac_address = &s2io_set_mac_addr;
7570         dev->change_mtu = &s2io_change_mtu;
7571         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7572         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7573         dev->vlan_rx_register = s2io_vlan_rx_register;
7574
7575         /*
7576          * will use eth_mac_addr() for  dev->set_mac_address
7577          * mac address will be set every time dev->open() is called
7578          */
7579         netif_napi_add(dev, &sp->napi, s2io_poll, 32);
7580
7581 #ifdef CONFIG_NET_POLL_CONTROLLER
7582         dev->poll_controller = s2io_netpoll;
7583 #endif
7584
7585         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7586         if (sp->high_dma_flag == TRUE)
7587                 dev->features |= NETIF_F_HIGHDMA;
7588         dev->features |= NETIF_F_TSO;
7589         dev->features |= NETIF_F_TSO6;
7590         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7591                 dev->features |= NETIF_F_UFO;
7592                 dev->features |= NETIF_F_HW_CSUM;
7593         }
7594
7595         dev->tx_timeout = &s2io_tx_watchdog;
7596         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7597         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7598         INIT_WORK(&sp->set_link_task, s2io_set_link);
7599
7600         pci_save_state(sp->pdev);
7601
7602         /* Setting swapper control on the NIC, for proper reset operation */
7603         if (s2io_set_swapper(sp)) {
7604                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7605                           dev->name);
7606                 ret = -EAGAIN;
7607                 goto set_swap_failed;
7608         }
7609
7610         /* Verify if the Herc works on the slot its placed into */
7611         if (sp->device_type & XFRAME_II_DEVICE) {
7612                 mode = s2io_verify_pci_mode(sp);
7613                 if (mode < 0) {
7614                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7615                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7616                         ret = -EBADSLT;
7617                         goto set_swap_failed;
7618                 }
7619         }
7620
7621         /* Not needed for Herc */
7622         if (sp->device_type & XFRAME_I_DEVICE) {
7623                 /*
7624                  * Fix for all "FFs" MAC address problems observed on
7625                  * Alpha platforms
7626                  */
7627                 fix_mac_address(sp);
7628                 s2io_reset(sp);
7629         }
7630
7631         /*
7632          * MAC address initialization.
7633          * For now only one mac address will be read and used.
7634          */
7635         bar0 = sp->bar0;
7636         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7637             RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7638         writeq(val64, &bar0->rmac_addr_cmd_mem);
7639         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7640                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7641         tmp64 = readq(&bar0->rmac_addr_data0_mem);
7642         mac_down = (u32) tmp64;
7643         mac_up = (u32) (tmp64 >> 32);
7644
7645         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7646         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7647         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7648         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7649         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7650         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7651
7652         /*  Set the factory defined MAC address initially   */
7653         dev->addr_len = ETH_ALEN;
7654         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7655         memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
7656
7657          /* Store the values of the MSIX table in the s2io_nic structure */
7658         store_xmsi_data(sp);
7659         /* reset Nic and bring it to known state */
7660         s2io_reset(sp);
7661
7662         /*
7663          * Initialize the tasklet status and link state flags
7664          * and the card state parameter
7665          */
7666         sp->tasklet_status = 0;
7667         sp->state = 0;
7668
7669         /* Initialize spinlocks */
7670         spin_lock_init(&sp->tx_lock);
7671
7672         if (!napi)
7673                 spin_lock_init(&sp->put_lock);
7674         spin_lock_init(&sp->rx_lock);
7675
7676         /*
7677          * SXE-002: Configure link and activity LED to init state
7678          * on driver load.
7679          */
7680         subid = sp->pdev->subsystem_device;
7681         if ((subid & 0xFF) >= 0x07) {
7682                 val64 = readq(&bar0->gpio_control);
7683                 val64 |= 0x0000800000000000ULL;
7684                 writeq(val64, &bar0->gpio_control);
7685                 val64 = 0x0411040400000000ULL;
7686                 writeq(val64, (void __iomem *) bar0 + 0x2700);
7687                 val64 = readq(&bar0->gpio_control);
7688         }
7689
7690         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
7691
7692         if (register_netdev(dev)) {
7693                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7694                 ret = -ENODEV;
7695                 goto register_failed;
7696         }
7697         s2io_vpd_read(sp);
7698         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7699         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7700                   sp->product_name, pdev->revision);
7701         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7702                   s2io_driver_version);
7703         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
7704                   dev->name, print_mac(mac, dev->dev_addr));
7705         DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7706         if (sp->device_type & XFRAME_II_DEVICE) {
7707                 mode = s2io_print_pci_mode(sp);
7708                 if (mode < 0) {
7709                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7710                         ret = -EBADSLT;
7711                         unregister_netdev(dev);
7712                         goto set_swap_failed;
7713                 }
7714         }
7715         switch(sp->rxd_mode) {
7716                 case RXD_MODE_1:
7717                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7718                                                 dev->name);
7719                     break;
7720                 case RXD_MODE_3B:
7721                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7722                                                 dev->name);
7723                     break;
7724         }
7725
7726         if (napi)
7727                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7728         switch(sp->config.intr_type) {
7729                 case INTA:
7730                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7731                     break;
7732                 case MSI_X:
7733                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7734                     break;
7735         }
7736         if (sp->lro)
7737                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7738                           dev->name);
7739         if (ufo)
7740                 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7741                                         " enabled\n", dev->name);
7742         /* Initialize device name */
7743         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7744
7745         /*
7746          * Make Link state as off at this point, when the Link change
7747          * interrupt comes the state will be automatically changed to
7748          * the right state.
7749          */
7750         netif_carrier_off(dev);
7751
7752         return 0;
7753
7754       register_failed:
7755       set_swap_failed:
7756         iounmap(sp->bar1);
7757       bar1_remap_failed:
7758         iounmap(sp->bar0);
7759       bar0_remap_failed:
7760       mem_alloc_failed:
7761         free_shared_mem(sp);
7762         pci_disable_device(pdev);
7763         pci_release_regions(pdev);
7764         pci_set_drvdata(pdev, NULL);
7765         free_netdev(dev);
7766
7767         return ret;
7768 }
7769
7770 /**
7771  * s2io_rem_nic - Free the PCI device
7772  * @pdev: structure containing the PCI related information of the device.
7773  * Description: This function is called by the Pci subsystem to release a
7774  * PCI device and free up all resource held up by the device. This could
7775  * be in response to a Hot plug event or when the driver is to be removed
7776  * from memory.
7777  */
7778
7779 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7780 {
7781         struct net_device *dev =
7782             (struct net_device *) pci_get_drvdata(pdev);
7783         struct s2io_nic *sp;
7784
7785         if (dev == NULL) {
7786                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7787                 return;
7788         }
7789
7790         flush_scheduled_work();
7791
7792         sp = dev->priv;
7793         unregister_netdev(dev);
7794
7795         free_shared_mem(sp);
7796         iounmap(sp->bar0);
7797         iounmap(sp->bar1);
7798         pci_release_regions(pdev);
7799         pci_set_drvdata(pdev, NULL);
7800         free_netdev(dev);
7801         pci_disable_device(pdev);
7802 }
7803
7804 /**
7805  * s2io_starter - Entry point for the driver
7806  * Description: This function is the entry point for the driver. It verifies
7807  * the module loadable parameters and initializes PCI configuration space.
7808  */
7809
7810 static int __init s2io_starter(void)
7811 {
7812         return pci_register_driver(&s2io_driver);
7813 }
7814
7815 /**
7816  * s2io_closer - Cleanup routine for the driver
7817  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7818  */
7819
7820 static __exit void s2io_closer(void)
7821 {
7822         pci_unregister_driver(&s2io_driver);
7823         DBG_PRINT(INIT_DBG, "cleanup done\n");
7824 }
7825
7826 module_init(s2io_starter);
7827 module_exit(s2io_closer);
7828
7829 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7830                 struct tcphdr **tcp, struct RxD_t *rxdp)
7831 {
7832         int ip_off;
7833         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7834
7835         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7836                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7837                           __FUNCTION__);
7838                 return -1;
7839         }
7840
7841         /* TODO:
7842          * By default the VLAN field in the MAC is stripped by the card, if this
7843          * feature is turned off in rx_pa_cfg register, then the ip_off field
7844          * has to be shifted by a further 2 bytes
7845          */
7846         switch (l2_type) {
7847                 case 0: /* DIX type */
7848                 case 4: /* DIX type with VLAN */
7849                         ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7850                         break;
7851                 /* LLC, SNAP etc are considered non-mergeable */
7852                 default:
7853                         return -1;
7854         }
7855
7856         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7857         ip_len = (u8)((*ip)->ihl);
7858         ip_len <<= 2;
7859         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7860
7861         return 0;
7862 }
7863
7864 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7865                                   struct tcphdr *tcp)
7866 {
7867         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7868         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7869            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7870                 return -1;
7871         return 0;
7872 }
7873
7874 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7875 {
7876         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7877 }
7878
7879 static void initiate_new_session(struct lro *lro, u8 *l2h,
7880                      struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7881 {
7882         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7883         lro->l2h = l2h;
7884         lro->iph = ip;
7885         lro->tcph = tcp;
7886         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7887         lro->tcp_ack = ntohl(tcp->ack_seq);
7888         lro->sg_num = 1;
7889         lro->total_len = ntohs(ip->tot_len);
7890         lro->frags_len = 0;
7891         /*
7892          * check if we saw TCP timestamp. Other consistency checks have
7893          * already been done.
7894          */
7895         if (tcp->doff == 8) {
7896                 u32 *ptr;
7897                 ptr = (u32 *)(tcp+1);
7898                 lro->saw_ts = 1;
7899                 lro->cur_tsval = *(ptr+1);
7900                 lro->cur_tsecr = *(ptr+2);
7901         }
7902         lro->in_use = 1;
7903 }
7904
7905 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7906 {
7907         struct iphdr *ip = lro->iph;
7908         struct tcphdr *tcp = lro->tcph;
7909         __sum16 nchk;
7910         struct stat_block *statinfo = sp->mac_control.stats_info;
7911         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7912
7913         /* Update L3 header */
7914         ip->tot_len = htons(lro->total_len);
7915         ip->check = 0;
7916         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7917         ip->check = nchk;
7918
7919         /* Update L4 header */
7920         tcp->ack_seq = lro->tcp_ack;
7921         tcp->window = lro->window;
7922
7923         /* Update tsecr field if this session has timestamps enabled */
7924         if (lro->saw_ts) {
7925                 u32 *ptr = (u32 *)(tcp + 1);
7926                 *(ptr+2) = lro->cur_tsecr;
7927         }
7928
7929         /* Update counters required for calculation of
7930          * average no. of packets aggregated.
7931          */
7932         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7933         statinfo->sw_stat.num_aggregations++;
7934 }
7935
7936 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7937                 struct tcphdr *tcp, u32 l4_pyld)
7938 {
7939         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7940         lro->total_len += l4_pyld;
7941         lro->frags_len += l4_pyld;
7942         lro->tcp_next_seq += l4_pyld;
7943         lro->sg_num++;
7944
7945         /* Update ack seq no. and window ad(from this pkt) in LRO object */
7946         lro->tcp_ack = tcp->ack_seq;
7947         lro->window = tcp->window;
7948
7949         if (lro->saw_ts) {
7950                 u32 *ptr;
7951                 /* Update tsecr and tsval from this packet */
7952                 ptr = (u32 *) (tcp + 1);
7953                 lro->cur_tsval = *(ptr + 1);
7954                 lro->cur_tsecr = *(ptr + 2);
7955         }
7956 }
7957
7958 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7959                                     struct tcphdr *tcp, u32 tcp_pyld_len)
7960 {
7961         u8 *ptr;
7962
7963         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7964
7965         if (!tcp_pyld_len) {
7966                 /* Runt frame or a pure ack */
7967                 return -1;
7968         }
7969
7970         if (ip->ihl != 5) /* IP has options */
7971                 return -1;
7972
7973         /* If we see CE codepoint in IP header, packet is not mergeable */
7974         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7975                 return -1;
7976
7977         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7978         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7979                                     tcp->ece || tcp->cwr || !tcp->ack) {
7980                 /*
7981                  * Currently recognize only the ack control word and
7982                  * any other control field being set would result in
7983                  * flushing the LRO session
7984                  */
7985                 return -1;
7986         }
7987
7988         /*
7989          * Allow only one TCP timestamp option. Don't aggregate if
7990          * any other options are detected.
7991          */
7992         if (tcp->doff != 5 && tcp->doff != 8)
7993                 return -1;
7994
7995         if (tcp->doff == 8) {
7996                 ptr = (u8 *)(tcp + 1);
7997                 while (*ptr == TCPOPT_NOP)
7998                         ptr++;
7999                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8000                         return -1;
8001
8002                 /* Ensure timestamp value increases monotonically */
8003                 if (l_lro)
8004                         if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
8005                                 return -1;
8006
8007                 /* timestamp echo reply should be non-zero */
8008                 if (*((u32 *)(ptr+6)) == 0)
8009                         return -1;
8010         }
8011
8012         return 0;
8013 }
8014
8015 static int
8016 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8017                       struct RxD_t *rxdp, struct s2io_nic *sp)
8018 {
8019         struct iphdr *ip;
8020         struct tcphdr *tcph;
8021         int ret = 0, i;
8022
8023         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8024                                          rxdp))) {
8025                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8026                           ip->saddr, ip->daddr);
8027         } else {
8028                 return ret;
8029         }
8030
8031         tcph = (struct tcphdr *)*tcp;
8032         *tcp_len = get_l4_pyld_length(ip, tcph);
8033         for (i=0; i<MAX_LRO_SESSIONS; i++) {
8034                 struct lro *l_lro = &sp->lro0_n[i];
8035                 if (l_lro->in_use) {
8036                         if (check_for_socket_match(l_lro, ip, tcph))
8037                                 continue;
8038                         /* Sock pair matched */
8039                         *lro = l_lro;
8040
8041                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8042                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8043                                           "0x%x, actual 0x%x\n", __FUNCTION__,
8044                                           (*lro)->tcp_next_seq,
8045                                           ntohl(tcph->seq));
8046
8047                                 sp->mac_control.stats_info->
8048                                    sw_stat.outof_sequence_pkts++;
8049                                 ret = 2;
8050                                 break;
8051                         }
8052
8053                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8054                                 ret = 1; /* Aggregate */
8055                         else
8056                                 ret = 2; /* Flush both */
8057                         break;
8058                 }
8059         }
8060
8061         if (ret == 0) {
8062                 /* Before searching for available LRO objects,
8063                  * check if the pkt is L3/L4 aggregatable. If not
8064                  * don't create new LRO session. Just send this
8065                  * packet up.
8066                  */
8067                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8068                         return 5;
8069                 }
8070
8071                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8072                         struct lro *l_lro = &sp->lro0_n[i];
8073                         if (!(l_lro->in_use)) {
8074                                 *lro = l_lro;
8075                                 ret = 3; /* Begin anew */
8076                                 break;
8077                         }
8078                 }
8079         }
8080
8081         if (ret == 0) { /* sessions exceeded */
8082                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8083                           __FUNCTION__);
8084                 *lro = NULL;
8085                 return ret;
8086         }
8087
8088         switch (ret) {
8089                 case 3:
8090                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
8091                         break;
8092                 case 2:
8093                         update_L3L4_header(sp, *lro);
8094                         break;
8095                 case 1:
8096                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8097                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8098                                 update_L3L4_header(sp, *lro);
8099                                 ret = 4; /* Flush the LRO */
8100                         }
8101                         break;
8102                 default:
8103                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8104                                 __FUNCTION__);
8105                         break;
8106         }
8107
8108         return ret;
8109 }
8110
8111 static void clear_lro_session(struct lro *lro)
8112 {
8113         static u16 lro_struct_size = sizeof(struct lro);
8114
8115         memset(lro, 0, lro_struct_size);
8116 }
8117
8118 static void queue_rx_frame(struct sk_buff *skb)
8119 {
8120         struct net_device *dev = skb->dev;
8121
8122         skb->protocol = eth_type_trans(skb, dev);
8123         if (napi)
8124                 netif_receive_skb(skb);
8125         else
8126                 netif_rx(skb);
8127 }
8128
8129 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8130                            struct sk_buff *skb,
8131                            u32 tcp_len)
8132 {
8133         struct sk_buff *first = lro->parent;
8134
8135         first->len += tcp_len;
8136         first->data_len = lro->frags_len;
8137         skb_pull(skb, (skb->len - tcp_len));
8138         if (skb_shinfo(first)->frag_list)
8139                 lro->last_frag->next = skb;
8140         else
8141                 skb_shinfo(first)->frag_list = skb;
8142         first->truesize += skb->truesize;
8143         lro->last_frag = skb;
8144         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8145         return;
8146 }
8147
8148 /**
8149  * s2io_io_error_detected - called when PCI error is detected
8150  * @pdev: Pointer to PCI device
8151  * @state: The current pci connection state
8152  *
8153  * This function is called after a PCI bus error affecting
8154  * this device has been detected.
8155  */
8156 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8157                                                pci_channel_state_t state)
8158 {
8159         struct net_device *netdev = pci_get_drvdata(pdev);
8160         struct s2io_nic *sp = netdev->priv;
8161
8162         netif_device_detach(netdev);
8163
8164         if (netif_running(netdev)) {
8165                 /* Bring down the card, while avoiding PCI I/O */
8166                 do_s2io_card_down(sp, 0);
8167         }
8168         pci_disable_device(pdev);
8169
8170         return PCI_ERS_RESULT_NEED_RESET;
8171 }
8172
8173 /**
8174  * s2io_io_slot_reset - called after the pci bus has been reset.
8175  * @pdev: Pointer to PCI device
8176  *
8177  * Restart the card from scratch, as if from a cold-boot.
8178  * At this point, the card has exprienced a hard reset,
8179  * followed by fixups by BIOS, and has its config space
8180  * set up identically to what it was at cold boot.
8181  */
8182 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8183 {
8184         struct net_device *netdev = pci_get_drvdata(pdev);
8185         struct s2io_nic *sp = netdev->priv;
8186
8187         if (pci_enable_device(pdev)) {
8188                 printk(KERN_ERR "s2io: "
8189                        "Cannot re-enable PCI device after reset.\n");
8190                 return PCI_ERS_RESULT_DISCONNECT;
8191         }
8192
8193         pci_set_master(pdev);
8194         s2io_reset(sp);
8195
8196         return PCI_ERS_RESULT_RECOVERED;
8197 }
8198
8199 /**
8200  * s2io_io_resume - called when traffic can start flowing again.
8201  * @pdev: Pointer to PCI device
8202  *
8203  * This callback is called when the error recovery driver tells
8204  * us that its OK to resume normal operation.
8205  */
8206 static void s2io_io_resume(struct pci_dev *pdev)
8207 {
8208         struct net_device *netdev = pci_get_drvdata(pdev);
8209         struct s2io_nic *sp = netdev->priv;
8210
8211         if (netif_running(netdev)) {
8212                 if (s2io_card_up(sp)) {
8213                         printk(KERN_ERR "s2io: "
8214                                "Can't bring device back up after reset.\n");
8215                         return;
8216                 }
8217
8218                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8219                         s2io_card_down(sp);
8220                         printk(KERN_ERR "s2io: "
8221                                "Can't resetore mac addr after reset.\n");
8222                         return;
8223                 }
8224         }
8225
8226         netif_device_attach(netdev);
8227         netif_wake_queue(netdev);
8228 }