2 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
3 * Copyright (c) 2001 Intel Corp.
4 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
5 * Copyright (c) 2002 NEC Corp.
6 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
7 * Copyright (c) 2004 Silicon Graphics, Inc
8 * Russ Anderson <rja@sgi.com>
9 * Jesse Barnes <jbarnes@sgi.com>
10 * Jack Steiner <steiner@sgi.com>
14 * Platform initialization for Discontig Memory
17 #include <linux/kernel.h>
19 #include <linux/swap.h>
20 #include <linux/bootmem.h>
21 #include <linux/acpi.h>
22 #include <linux/efi.h>
23 #include <linux/nodemask.h>
24 #include <asm/pgalloc.h>
26 #include <asm/meminit.h>
28 #include <asm/sections.h>
31 * Track per-node information needed to setup the boot memory allocator, the
32 * per-node areas, and the real VM.
34 struct early_node_data {
35 struct ia64_node_data *node_data;
36 unsigned long pernode_addr;
37 unsigned long pernode_size;
38 struct bootmem_data bootmem_data;
39 unsigned long num_physpages;
40 #ifdef CONFIG_ZONE_DMA
41 unsigned long num_dma_physpages;
43 unsigned long min_pfn;
44 unsigned long max_pfn;
47 static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
48 static nodemask_t memory_less_mask __initdata;
50 static pg_data_t *pgdat_list[MAX_NUMNODES];
53 * To prevent cache aliasing effects, align per-node structures so that they
54 * start at addresses that are strided by node number.
56 #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
57 #define NODEDATA_ALIGN(addr, node) \
58 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
59 (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
62 * build_node_maps - callback to setup bootmem structs for each node
63 * @start: physical start of range
64 * @len: length of range
65 * @node: node where this range resides
67 * We allocate a struct bootmem_data for each piece of memory that we wish to
68 * treat as a virtually contiguous block (i.e. each node). Each such block
69 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
70 * if necessary. Any non-existent pages will simply be part of the virtual
71 * memmap. We also update min_low_pfn and max_low_pfn here as we receive
72 * memory ranges from the caller.
74 static int __init build_node_maps(unsigned long start, unsigned long len,
77 unsigned long cstart, epfn, end = start + len;
78 struct bootmem_data *bdp = &mem_data[node].bootmem_data;
80 epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
81 cstart = GRANULEROUNDDOWN(start);
83 if (!bdp->node_low_pfn) {
84 bdp->node_boot_start = cstart;
85 bdp->node_low_pfn = epfn;
87 bdp->node_boot_start = min(cstart, bdp->node_boot_start);
88 bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
91 min_low_pfn = min(min_low_pfn, bdp->node_boot_start>>PAGE_SHIFT);
92 max_low_pfn = max(max_low_pfn, bdp->node_low_pfn);
98 * early_nr_cpus_node - return number of cpus on a given node
99 * @node: node to check
101 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
102 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
103 * called yet. Note that node 0 will also count all non-existent cpus.
105 static int __meminit early_nr_cpus_node(int node)
109 for (cpu = 0; cpu < NR_CPUS; cpu++)
110 if (node == node_cpuid[cpu].nid)
117 * compute_pernodesize - compute size of pernode data
118 * @node: the node id.
120 static unsigned long __meminit compute_pernodesize(int node)
122 unsigned long pernodesize = 0, cpus;
124 cpus = early_nr_cpus_node(node);
125 pernodesize += PERCPU_PAGE_SIZE * cpus;
126 pernodesize += node * L1_CACHE_BYTES;
127 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
128 pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
129 pernodesize = PAGE_ALIGN(pernodesize);
134 * per_cpu_node_setup - setup per-cpu areas on each node
135 * @cpu_data: per-cpu area on this node
136 * @node: node to setup
138 * Copy the static per-cpu data into the region we just set aside and then
139 * setup __per_cpu_offset for each CPU on this node. Return a pointer to
140 * the end of the area.
142 static void *per_cpu_node_setup(void *cpu_data, int node)
147 for (cpu = 0; cpu < NR_CPUS; cpu++) {
148 if (node == node_cpuid[cpu].nid) {
149 memcpy(__va(cpu_data), __phys_per_cpu_start,
150 __per_cpu_end - __per_cpu_start);
151 __per_cpu_offset[cpu] = (char*)__va(cpu_data) -
153 cpu_data += PERCPU_PAGE_SIZE;
161 * fill_pernode - initialize pernode data.
162 * @node: the node id.
163 * @pernode: physical address of pernode data
164 * @pernodesize: size of the pernode data
166 static void __init fill_pernode(int node, unsigned long pernode,
167 unsigned long pernodesize)
170 int cpus = early_nr_cpus_node(node);
171 struct bootmem_data *bdp = &mem_data[node].bootmem_data;
173 mem_data[node].pernode_addr = pernode;
174 mem_data[node].pernode_size = pernodesize;
175 memset(__va(pernode), 0, pernodesize);
177 cpu_data = (void *)pernode;
178 pernode += PERCPU_PAGE_SIZE * cpus;
179 pernode += node * L1_CACHE_BYTES;
181 pgdat_list[node] = __va(pernode);
182 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
184 mem_data[node].node_data = __va(pernode);
185 pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
187 pgdat_list[node]->bdata = bdp;
188 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
190 cpu_data = per_cpu_node_setup(cpu_data, node);
196 * find_pernode_space - allocate memory for memory map and per-node structures
197 * @start: physical start of range
198 * @len: length of range
199 * @node: node where this range resides
201 * This routine reserves space for the per-cpu data struct, the list of
202 * pg_data_ts and the per-node data struct. Each node will have something like
203 * the following in the first chunk of addr. space large enough to hold it.
205 * ________________________
207 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
208 * | PERCPU_PAGE_SIZE * | start and length big enough
209 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
210 * |------------------------|
211 * | local pg_data_t * |
212 * |------------------------|
213 * | local ia64_node_data |
214 * |------------------------|
216 * |________________________|
218 * Once this space has been set aside, the bootmem maps are initialized. We
219 * could probably move the allocation of the per-cpu and ia64_node_data space
220 * outside of this function and use alloc_bootmem_node(), but doing it here
221 * is straightforward and we get the alignments we want so...
223 static int __init find_pernode_space(unsigned long start, unsigned long len,
227 unsigned long pernodesize = 0, pernode, pages, mapsize;
228 struct bootmem_data *bdp = &mem_data[node].bootmem_data;
230 epfn = (start + len) >> PAGE_SHIFT;
232 pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT);
233 mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
236 * Make sure this memory falls within this node's usable memory
237 * since we may have thrown some away in build_maps().
239 if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn)
242 /* Don't setup this node's local space twice... */
243 if (mem_data[node].pernode_addr)
247 * Calculate total size needed, incl. what's necessary
248 * for good alignment and alias prevention.
250 pernodesize = compute_pernodesize(node);
251 pernode = NODEDATA_ALIGN(start, node);
253 /* Is this range big enough for what we want to store here? */
254 if (start + len > (pernode + pernodesize + mapsize))
255 fill_pernode(node, pernode, pernodesize);
261 * free_node_bootmem - free bootmem allocator memory for use
262 * @start: physical start of range
263 * @len: length of range
264 * @node: node where this range resides
266 * Simply calls the bootmem allocator to free the specified ranged from
267 * the given pg_data_t's bdata struct. After this function has been called
268 * for all the entries in the EFI memory map, the bootmem allocator will
269 * be ready to service allocation requests.
271 static int __init free_node_bootmem(unsigned long start, unsigned long len,
274 free_bootmem_node(pgdat_list[node], start, len);
280 * reserve_pernode_space - reserve memory for per-node space
282 * Reserve the space used by the bootmem maps & per-node space in the boot
283 * allocator so that when we actually create the real mem maps we don't
286 static void __init reserve_pernode_space(void)
288 unsigned long base, size, pages;
289 struct bootmem_data *bdp;
292 for_each_online_node(node) {
293 pg_data_t *pdp = pgdat_list[node];
295 if (node_isset(node, memory_less_mask))
300 /* First the bootmem_map itself */
301 pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT);
302 size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
303 base = __pa(bdp->node_bootmem_map);
304 reserve_bootmem_node(pdp, base, size);
306 /* Now the per-node space */
307 size = mem_data[node].pernode_size;
308 base = __pa(mem_data[node].pernode_addr);
309 reserve_bootmem_node(pdp, base, size);
313 static void __meminit scatter_node_data(void)
319 * for_each_online_node() can't be used at here.
320 * node_online_map is not set for hot-added nodes at this time,
321 * because we are halfway through initialization of the new node's
322 * structures. If for_each_online_node() is used, a new node's
323 * pg_data_ptrs will be not initialized. Insted of using it,
324 * pgdat_list[] is checked.
326 for_each_node(node) {
327 if (pgdat_list[node]) {
328 dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
329 memcpy(dst, pgdat_list, sizeof(pgdat_list));
335 * initialize_pernode_data - fixup per-cpu & per-node pointers
337 * Each node's per-node area has a copy of the global pg_data_t list, so
338 * we copy that to each node here, as well as setting the per-cpu pointer
339 * to the local node data structure. The active_cpus field of the per-node
340 * structure gets setup by the platform_cpu_init() function later.
342 static void __init initialize_pernode_data(void)
349 /* Set the node_data pointer for each per-cpu struct */
350 for (cpu = 0; cpu < NR_CPUS; cpu++) {
351 node = node_cpuid[cpu].nid;
352 per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data;
356 struct cpuinfo_ia64 *cpu0_cpu_info;
358 node = node_cpuid[cpu].nid;
359 cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
360 ((char *)&per_cpu__cpu_info - __per_cpu_start));
361 cpu0_cpu_info->node_data = mem_data[node].node_data;
363 #endif /* CONFIG_SMP */
367 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
368 * node but fall back to any other node when __alloc_bootmem_node fails
371 * @pernodesize: size of this node's pernode data
373 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
377 int bestnode = -1, node, anynode = 0;
379 for_each_online_node(node) {
380 if (node_isset(node, memory_less_mask))
382 else if (node_distance(nid, node) < best) {
383 best = node_distance(nid, node);
392 ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
393 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
399 * memory_less_nodes - allocate and initialize CPU only nodes pernode
402 static void __init memory_less_nodes(void)
404 unsigned long pernodesize;
408 for_each_node_mask(node, memory_less_mask) {
409 pernodesize = compute_pernodesize(node);
410 pernode = memory_less_node_alloc(node, pernodesize);
411 fill_pernode(node, __pa(pernode), pernodesize);
418 * find_memory - walk the EFI memory map and setup the bootmem allocator
420 * Called early in boot to setup the bootmem allocator, and to
421 * allocate the per-cpu and per-node structures.
423 void __init find_memory(void)
429 if (num_online_nodes() == 0) {
430 printk(KERN_ERR "node info missing!\n");
434 nodes_or(memory_less_mask, memory_less_mask, node_online_map);
438 /* These actually end up getting called by call_pernode_memory() */
439 efi_memmap_walk(filter_rsvd_memory, build_node_maps);
440 efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
442 for_each_online_node(node)
443 if (mem_data[node].bootmem_data.node_low_pfn) {
444 node_clear(node, memory_less_mask);
445 mem_data[node].min_pfn = ~0UL;
448 efi_memmap_walk(register_active_ranges, NULL);
451 * Initialize the boot memory maps in reverse order since that's
452 * what the bootmem allocator expects
454 for (node = MAX_NUMNODES - 1; node >= 0; node--) {
455 unsigned long pernode, pernodesize, map;
456 struct bootmem_data *bdp;
458 if (!node_online(node))
460 else if (node_isset(node, memory_less_mask))
463 bdp = &mem_data[node].bootmem_data;
464 pernode = mem_data[node].pernode_addr;
465 pernodesize = mem_data[node].pernode_size;
466 map = pernode + pernodesize;
468 init_bootmem_node(pgdat_list[node],
470 bdp->node_boot_start>>PAGE_SHIFT,
474 efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
476 reserve_pernode_space();
478 initialize_pernode_data();
480 max_pfn = max_low_pfn;
487 * per_cpu_init - setup per-cpu variables
489 * find_pernode_space() does most of this already, we just need to set
490 * local_per_cpu_offset
492 void __cpuinit *per_cpu_init(void)
495 static int first_time = 1;
498 if (smp_processor_id() != 0)
499 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
503 for (cpu = 0; cpu < NR_CPUS; cpu++)
504 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
507 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
509 #endif /* CONFIG_SMP */
512 * show_mem - give short summary of memory stats
514 * Shows a simple page count of reserved and used pages in the system.
515 * For discontig machines, it does this on a per-pgdat basis.
519 int i, total_reserved = 0;
520 int total_shared = 0, total_cached = 0;
521 unsigned long total_present = 0;
524 printk(KERN_INFO "Mem-info:\n");
526 printk(KERN_INFO "Free swap: %6ldkB\n",
527 nr_swap_pages<<(PAGE_SHIFT-10));
528 printk(KERN_INFO "Node memory in pages:\n");
529 for_each_online_pgdat(pgdat) {
530 unsigned long present;
532 int shared = 0, cached = 0, reserved = 0;
534 pgdat_resize_lock(pgdat, &flags);
535 present = pgdat->node_present_pages;
536 for(i = 0; i < pgdat->node_spanned_pages; i++) {
538 if (pfn_valid(pgdat->node_start_pfn + i))
539 page = pfn_to_page(pgdat->node_start_pfn + i);
541 i = vmemmap_find_next_valid_pfn(pgdat->node_id,
545 if (PageReserved(page))
547 else if (PageSwapCache(page))
549 else if (page_count(page))
550 shared += page_count(page)-1;
552 pgdat_resize_unlock(pgdat, &flags);
553 total_present += present;
554 total_reserved += reserved;
555 total_cached += cached;
556 total_shared += shared;
557 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
558 "shrd: %10d, swpd: %10d\n", pgdat->node_id,
559 present, reserved, shared, cached);
561 printk(KERN_INFO "%ld pages of RAM\n", total_present);
562 printk(KERN_INFO "%d reserved pages\n", total_reserved);
563 printk(KERN_INFO "%d pages shared\n", total_shared);
564 printk(KERN_INFO "%d pages swap cached\n", total_cached);
565 printk(KERN_INFO "Total of %ld pages in page table cache\n",
566 pgtable_quicklist_total_size());
567 printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
571 * call_pernode_memory - use SRAT to call callback functions with node info
572 * @start: physical start of range
573 * @len: length of range
574 * @arg: function to call for each range
576 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
577 * out to which node a block of memory belongs. Ignore memory that we cannot
578 * identify, and split blocks that run across multiple nodes.
580 * Take this opportunity to round the start address up and the end address
581 * down to page boundaries.
583 void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
585 unsigned long rs, re, end = start + len;
586 void (*func)(unsigned long, unsigned long, int);
589 start = PAGE_ALIGN(start);
596 if (!num_node_memblks) {
597 /* No SRAT table, so assume one node (node 0) */
599 (*func)(start, end - start, 0);
603 for (i = 0; i < num_node_memblks; i++) {
604 rs = max(start, node_memblk[i].start_paddr);
605 re = min(end, node_memblk[i].start_paddr +
606 node_memblk[i].size);
609 (*func)(rs, re - rs, node_memblk[i].nid);
617 * count_node_pages - callback to build per-node memory info structures
618 * @start: physical start of range
619 * @len: length of range
620 * @node: node where this range resides
622 * Each node has it's own number of physical pages, DMAable pages, start, and
623 * end page frame number. This routine will be called by call_pernode_memory()
624 * for each piece of usable memory and will setup these values for each node.
625 * Very similar to build_maps().
627 static __init int count_node_pages(unsigned long start, unsigned long len, int node)
629 unsigned long end = start + len;
631 mem_data[node].num_physpages += len >> PAGE_SHIFT;
632 #ifdef CONFIG_ZONE_DMA
633 if (start <= __pa(MAX_DMA_ADDRESS))
634 mem_data[node].num_dma_physpages +=
635 (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
637 start = GRANULEROUNDDOWN(start);
638 start = ORDERROUNDDOWN(start);
639 end = GRANULEROUNDUP(end);
640 mem_data[node].max_pfn = max(mem_data[node].max_pfn,
642 mem_data[node].min_pfn = min(mem_data[node].min_pfn,
643 start >> PAGE_SHIFT);
649 * paging_init - setup page tables
651 * paging_init() sets up the page tables for each node of the system and frees
652 * the bootmem allocator memory for general use.
654 void __init paging_init(void)
656 unsigned long max_dma;
657 unsigned long pfn_offset = 0;
658 unsigned long max_pfn = 0;
660 unsigned long max_zone_pfns[MAX_NR_ZONES];
662 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
664 efi_memmap_walk(filter_rsvd_memory, count_node_pages);
666 sparse_memory_present_with_active_regions(MAX_NUMNODES);
669 #ifdef CONFIG_VIRTUAL_MEM_MAP
670 vmalloc_end -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
671 sizeof(struct page));
672 vmem_map = (struct page *) vmalloc_end;
673 efi_memmap_walk(create_mem_map_page_table, NULL);
674 printk("Virtual mem_map starts at 0x%p\n", vmem_map);
677 for_each_online_node(node) {
678 num_physpages += mem_data[node].num_physpages;
679 pfn_offset = mem_data[node].min_pfn;
681 #ifdef CONFIG_VIRTUAL_MEM_MAP
682 NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
684 if (mem_data[node].max_pfn > max_pfn)
685 max_pfn = mem_data[node].max_pfn;
688 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
689 #ifdef CONFIG_ZONE_DMA
690 max_zone_pfns[ZONE_DMA] = max_dma;
692 max_zone_pfns[ZONE_NORMAL] = max_pfn;
693 free_area_init_nodes(max_zone_pfns);
695 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
698 pg_data_t *arch_alloc_nodedata(int nid)
700 unsigned long size = compute_pernodesize(nid);
702 return kzalloc(size, GFP_KERNEL);
705 void arch_free_nodedata(pg_data_t *pgdat)
710 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
712 pgdat_list[update_node] = update_pgdat;