Merge branch 'fixes-jgarzik' of git://git.kernel.org/pub/scm/linux/kernel/git/linvill...
[linux-2.6] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
166
167 #include "ipw2100.h"
168
169 #define IPW2100_VERSION "git-1.2.2"
170
171 #define DRV_NAME        "ipw2100"
172 #define DRV_VERSION     IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
175
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define IPW2100_RX_DEBUG        /* Reception debugging */
179 #endif
180
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
194
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
201
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
207
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
209
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213         if (ipw2100_debug_level & (level)) { \
214                 printk(KERN_DEBUG "ipw2100: %c %s ", \
215                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
216                 printk(message); \
217         } \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif                          /* CONFIG_IPW2100_DEBUG */
222
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225         "undefined",
226         "unused",               /* HOST_ATTENTION */
227         "HOST_COMPLETE",
228         "unused",               /* SLEEP */
229         "unused",               /* HOST_POWER_DOWN */
230         "unused",
231         "SYSTEM_CONFIG",
232         "unused",               /* SET_IMR */
233         "SSID",
234         "MANDATORY_BSSID",
235         "AUTHENTICATION_TYPE",
236         "ADAPTER_ADDRESS",
237         "PORT_TYPE",
238         "INTERNATIONAL_MODE",
239         "CHANNEL",
240         "RTS_THRESHOLD",
241         "FRAG_THRESHOLD",
242         "POWER_MODE",
243         "TX_RATES",
244         "BASIC_TX_RATES",
245         "WEP_KEY_INFO",
246         "unused",
247         "unused",
248         "unused",
249         "unused",
250         "WEP_KEY_INDEX",
251         "WEP_FLAGS",
252         "ADD_MULTICAST",
253         "CLEAR_ALL_MULTICAST",
254         "BEACON_INTERVAL",
255         "ATIM_WINDOW",
256         "CLEAR_STATISTICS",
257         "undefined",
258         "undefined",
259         "undefined",
260         "undefined",
261         "TX_POWER_INDEX",
262         "undefined",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "BROADCAST_SCAN",
269         "CARD_DISABLE",
270         "PREFERRED_BSSID",
271         "SET_SCAN_OPTIONS",
272         "SCAN_DWELL_TIME",
273         "SWEEP_TABLE",
274         "AP_OR_STATION_TABLE",
275         "GROUP_ORDINALS",
276         "SHORT_RETRY_LIMIT",
277         "LONG_RETRY_LIMIT",
278         "unused",               /* SAVE_CALIBRATION */
279         "unused",               /* RESTORE_CALIBRATION */
280         "undefined",
281         "undefined",
282         "undefined",
283         "HOST_PRE_POWER_DOWN",
284         "unused",               /* HOST_INTERRUPT_COALESCING */
285         "undefined",
286         "CARD_DISABLE_PHY_OFF",
287         "MSDU_TX_RATES" "undefined",
288         "undefined",
289         "SET_STATION_STAT_BITS",
290         "CLEAR_STATIONS_STAT_BITS",
291         "LEAP_ROGUE_MODE",
292         "SET_SECURITY_INFORMATION",
293         "DISASSOCIATION_BSSID",
294         "SET_WPA_ASS_IE"
295 };
296 #endif
297
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
302
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
306
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308                                struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310                                 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312                                  size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314                                     size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316                                      struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318                                   struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
322
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
324 {
325         *val = readl((void __iomem *)(dev->base_addr + reg));
326         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
327 }
328
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
330 {
331         writel(val, (void __iomem *)(dev->base_addr + reg));
332         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
333 }
334
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336                                       u16 * val)
337 {
338         *val = readw((void __iomem *)(dev->base_addr + reg));
339         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
340 }
341
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
343 {
344         *val = readb((void __iomem *)(dev->base_addr + reg));
345         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
346 }
347
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
349 {
350         writew(val, (void __iomem *)(dev->base_addr + reg));
351         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
352 }
353
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
355 {
356         writeb(val, (void __iomem *)(dev->base_addr + reg));
357         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
358 }
359
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
361 {
362         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363                        addr & IPW_REG_INDIRECT_ADDR_MASK);
364         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
365 }
366
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
368 {
369         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370                        addr & IPW_REG_INDIRECT_ADDR_MASK);
371         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
372 }
373
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
375 {
376         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377                        addr & IPW_REG_INDIRECT_ADDR_MASK);
378         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
379 }
380
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
382 {
383         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384                        addr & IPW_REG_INDIRECT_ADDR_MASK);
385         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
386 }
387
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
389 {
390         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391                        addr & IPW_REG_INDIRECT_ADDR_MASK);
392         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
393 }
394
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
396 {
397         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398                        addr & IPW_REG_INDIRECT_ADDR_MASK);
399         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
400 }
401
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
403 {
404         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405                        addr & IPW_REG_INDIRECT_ADDR_MASK);
406 }
407
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
409 {
410         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
411 }
412
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414                                     const u8 * buf)
415 {
416         u32 aligned_addr;
417         u32 aligned_len;
418         u32 dif_len;
419         u32 i;
420
421         /* read first nibble byte by byte */
422         aligned_addr = addr & (~0x3);
423         dif_len = addr - aligned_addr;
424         if (dif_len) {
425                 /* Start reading at aligned_addr + dif_len */
426                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427                                aligned_addr);
428                 for (i = dif_len; i < 4; i++, buf++)
429                         write_register_byte(dev,
430                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
431                                             *buf);
432
433                 len -= dif_len;
434                 aligned_addr += 4;
435         }
436
437         /* read DWs through autoincrement registers */
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439         aligned_len = len & (~0x3);
440         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
442
443         /* copy the last nibble */
444         dif_len = len - aligned_len;
445         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446         for (i = 0; i < dif_len; i++, buf++)
447                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448                                     *buf);
449 }
450
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452                                    u8 * buf)
453 {
454         u32 aligned_addr;
455         u32 aligned_len;
456         u32 dif_len;
457         u32 i;
458
459         /* read first nibble byte by byte */
460         aligned_addr = addr & (~0x3);
461         dif_len = addr - aligned_addr;
462         if (dif_len) {
463                 /* Start reading at aligned_addr + dif_len */
464                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465                                aligned_addr);
466                 for (i = dif_len; i < 4; i++, buf++)
467                         read_register_byte(dev,
468                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
469                                            buf);
470
471                 len -= dif_len;
472                 aligned_addr += 4;
473         }
474
475         /* read DWs through autoincrement registers */
476         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477         aligned_len = len & (~0x3);
478         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
480
481         /* copy the last nibble */
482         dif_len = len - aligned_len;
483         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484         for (i = 0; i < dif_len; i++, buf++)
485                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
486 }
487
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
489 {
490         return (dev->base_addr &&
491                 (readl
492                  ((void __iomem *)(dev->base_addr +
493                                    IPW_REG_DOA_DEBUG_AREA_START))
494                  == IPW_DATA_DOA_DEBUG_VALUE));
495 }
496
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498                                void *val, u32 * len)
499 {
500         struct ipw2100_ordinals *ordinals = &priv->ordinals;
501         u32 addr;
502         u32 field_info;
503         u16 field_len;
504         u16 field_count;
505         u32 total_length;
506
507         if (ordinals->table1_addr == 0) {
508                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509                        "before they have been loaded.\n");
510                 return -EINVAL;
511         }
512
513         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
516
517                         printk(KERN_WARNING DRV_NAME
518                                ": ordinal buffer length too small, need %zd\n",
519                                IPW_ORD_TAB_1_ENTRY_SIZE);
520
521                         return -EINVAL;
522                 }
523
524                 read_nic_dword(priv->net_dev,
525                                ordinals->table1_addr + (ord << 2), &addr);
526                 read_nic_dword(priv->net_dev, addr, val);
527
528                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
529
530                 return 0;
531         }
532
533         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
534
535                 ord -= IPW_START_ORD_TAB_2;
536
537                 /* get the address of statistic */
538                 read_nic_dword(priv->net_dev,
539                                ordinals->table2_addr + (ord << 3), &addr);
540
541                 /* get the second DW of statistics ;
542                  * two 16-bit words - first is length, second is count */
543                 read_nic_dword(priv->net_dev,
544                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
545                                &field_info);
546
547                 /* get each entry length */
548                 field_len = *((u16 *) & field_info);
549
550                 /* get number of entries */
551                 field_count = *(((u16 *) & field_info) + 1);
552
553                 /* abort if no enought memory */
554                 total_length = field_len * field_count;
555                 if (total_length > *len) {
556                         *len = total_length;
557                         return -EINVAL;
558                 }
559
560                 *len = total_length;
561                 if (!total_length)
562                         return 0;
563
564                 /* read the ordinal data from the SRAM */
565                 read_nic_memory(priv->net_dev, addr, total_length, val);
566
567                 return 0;
568         }
569
570         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571                "in table 2\n", ord);
572
573         return -EINVAL;
574 }
575
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577                                u32 * len)
578 {
579         struct ipw2100_ordinals *ordinals = &priv->ordinals;
580         u32 addr;
581
582         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585                         IPW_DEBUG_INFO("wrong size\n");
586                         return -EINVAL;
587                 }
588
589                 read_nic_dword(priv->net_dev,
590                                ordinals->table1_addr + (ord << 2), &addr);
591
592                 write_nic_dword(priv->net_dev, addr, *val);
593
594                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
595
596                 return 0;
597         }
598
599         IPW_DEBUG_INFO("wrong table\n");
600         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601                 return -EINVAL;
602
603         return -EINVAL;
604 }
605
606 static char *snprint_line(char *buf, size_t count,
607                           const u8 * data, u32 len, u32 ofs)
608 {
609         int out, i, j, l;
610         char c;
611
612         out = snprintf(buf, count, "%08X", ofs);
613
614         for (l = 0, i = 0; i < 2; i++) {
615                 out += snprintf(buf + out, count - out, " ");
616                 for (j = 0; j < 8 && l < len; j++, l++)
617                         out += snprintf(buf + out, count - out, "%02X ",
618                                         data[(i * 8 + j)]);
619                 for (; j < 8; j++)
620                         out += snprintf(buf + out, count - out, "   ");
621         }
622
623         out += snprintf(buf + out, count - out, " ");
624         for (l = 0, i = 0; i < 2; i++) {
625                 out += snprintf(buf + out, count - out, " ");
626                 for (j = 0; j < 8 && l < len; j++, l++) {
627                         c = data[(i * 8 + j)];
628                         if (!isascii(c) || !isprint(c))
629                                 c = '.';
630
631                         out += snprintf(buf + out, count - out, "%c", c);
632                 }
633
634                 for (; j < 8; j++)
635                         out += snprintf(buf + out, count - out, " ");
636         }
637
638         return buf;
639 }
640
641 static void printk_buf(int level, const u8 * data, u32 len)
642 {
643         char line[81];
644         u32 ofs = 0;
645         if (!(ipw2100_debug_level & level))
646                 return;
647
648         while (len) {
649                 printk(KERN_DEBUG "%s\n",
650                        snprint_line(line, sizeof(line), &data[ofs],
651                                     min(len, 16U), ofs));
652                 ofs += 16;
653                 len -= min(len, 16U);
654         }
655 }
656
657 #define MAX_RESET_BACKOFF 10
658
659 static void schedule_reset(struct ipw2100_priv *priv)
660 {
661         unsigned long now = get_seconds();
662
663         /* If we haven't received a reset request within the backoff period,
664          * then we can reset the backoff interval so this reset occurs
665          * immediately */
666         if (priv->reset_backoff &&
667             (now - priv->last_reset > priv->reset_backoff))
668                 priv->reset_backoff = 0;
669
670         priv->last_reset = get_seconds();
671
672         if (!(priv->status & STATUS_RESET_PENDING)) {
673                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674                                priv->net_dev->name, priv->reset_backoff);
675                 netif_carrier_off(priv->net_dev);
676                 netif_stop_queue(priv->net_dev);
677                 priv->status |= STATUS_RESET_PENDING;
678                 if (priv->reset_backoff)
679                         queue_delayed_work(priv->workqueue, &priv->reset_work,
680                                            priv->reset_backoff * HZ);
681                 else
682                         queue_delayed_work(priv->workqueue, &priv->reset_work,
683                                            0);
684
685                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686                         priv->reset_backoff++;
687
688                 wake_up_interruptible(&priv->wait_command_queue);
689         } else
690                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691                                priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697                                    struct host_command *cmd)
698 {
699         struct list_head *element;
700         struct ipw2100_tx_packet *packet;
701         unsigned long flags;
702         int err = 0;
703
704         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705                      command_types[cmd->host_command], cmd->host_command,
706                      cmd->host_command_length);
707         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708                    cmd->host_command_length);
709
710         spin_lock_irqsave(&priv->low_lock, flags);
711
712         if (priv->fatal_error) {
713                 IPW_DEBUG_INFO
714                     ("Attempt to send command while hardware in fatal error condition.\n");
715                 err = -EIO;
716                 goto fail_unlock;
717         }
718
719         if (!(priv->status & STATUS_RUNNING)) {
720                 IPW_DEBUG_INFO
721                     ("Attempt to send command while hardware is not running.\n");
722                 err = -EIO;
723                 goto fail_unlock;
724         }
725
726         if (priv->status & STATUS_CMD_ACTIVE) {
727                 IPW_DEBUG_INFO
728                     ("Attempt to send command while another command is pending.\n");
729                 err = -EBUSY;
730                 goto fail_unlock;
731         }
732
733         if (list_empty(&priv->msg_free_list)) {
734                 IPW_DEBUG_INFO("no available msg buffers\n");
735                 goto fail_unlock;
736         }
737
738         priv->status |= STATUS_CMD_ACTIVE;
739         priv->messages_sent++;
740
741         element = priv->msg_free_list.next;
742
743         packet = list_entry(element, struct ipw2100_tx_packet, list);
744         packet->jiffy_start = jiffies;
745
746         /* initialize the firmware command packet */
747         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749         packet->info.c_struct.cmd->host_command_len_reg =
750             cmd->host_command_length;
751         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754                cmd->host_command_parameters,
755                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757         list_del(element);
758         DEC_STAT(&priv->msg_free_stat);
759
760         list_add_tail(element, &priv->msg_pend_list);
761         INC_STAT(&priv->msg_pend_stat);
762
763         ipw2100_tx_send_commands(priv);
764         ipw2100_tx_send_data(priv);
765
766         spin_unlock_irqrestore(&priv->low_lock, flags);
767
768         /*
769          * We must wait for this command to complete before another
770          * command can be sent...  but if we wait more than 3 seconds
771          * then there is a problem.
772          */
773
774         err =
775             wait_event_interruptible_timeout(priv->wait_command_queue,
776                                              !(priv->
777                                                status & STATUS_CMD_ACTIVE),
778                                              HOST_COMPLETE_TIMEOUT);
779
780         if (err == 0) {
781                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784                 priv->status &= ~STATUS_CMD_ACTIVE;
785                 schedule_reset(priv);
786                 return -EIO;
787         }
788
789         if (priv->fatal_error) {
790                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791                        priv->net_dev->name);
792                 return -EIO;
793         }
794
795         /* !!!!! HACK TEST !!!!!
796          * When lots of debug trace statements are enabled, the driver
797          * doesn't seem to have as many firmware restart cycles...
798          *
799          * As a test, we're sticking in a 1/100s delay here */
800         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802         return 0;
803
804       fail_unlock:
805         spin_unlock_irqrestore(&priv->low_lock, flags);
806
807         return err;
808 }
809
810 /*
811  * Verify the values and data access of the hardware
812  * No locks needed or used.  No functions called.
813  */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816         u32 data1, data2;
817         u32 address;
818
819         u32 val1 = 0x76543210;
820         u32 val2 = 0xFEDCBA98;
821
822         /* Domain 0 check - all values should be DOA_DEBUG */
823         for (address = IPW_REG_DOA_DEBUG_AREA_START;
824              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825                 read_register(priv->net_dev, address, &data1);
826                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827                         return -EIO;
828         }
829
830         /* Domain 1 check - use arbitrary read/write compare  */
831         for (address = 0; address < 5; address++) {
832                 /* The memory area is not used now */
833                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834                                val1);
835                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836                                val2);
837                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838                               &data1);
839                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840                               &data2);
841                 if (val1 == data1 && val2 == data2)
842                         return 0;
843         }
844
845         return -EIO;
846 }
847
848 /*
849  *
850  * Loop until the CARD_DISABLED bit is the same value as the
851  * supplied parameter
852  *
853  * TODO: See if it would be more efficient to do a wait/wake
854  *       cycle and have the completion event trigger the wakeup
855  *
856  */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860         int i;
861         u32 card_state;
862         u32 len = sizeof(card_state);
863         int err;
864
865         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867                                           &card_state, &len);
868                 if (err) {
869                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870                                        "failed.\n");
871                         return 0;
872                 }
873
874                 /* We'll break out if either the HW state says it is
875                  * in the state we want, or if HOST_COMPLETE command
876                  * finishes */
877                 if ((card_state == state) ||
878                     ((priv->status & STATUS_ENABLED) ?
879                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880                         if (state == IPW_HW_STATE_ENABLED)
881                                 priv->status |= STATUS_ENABLED;
882                         else
883                                 priv->status &= ~STATUS_ENABLED;
884
885                         return 0;
886                 }
887
888                 udelay(50);
889         }
890
891         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892                        state ? "DISABLED" : "ENABLED");
893         return -EIO;
894 }
895
896 /*********************************************************************
897     Procedure   :   sw_reset_and_clock
898     Purpose     :   Asserts s/w reset, asserts clock initialization
899                     and waits for clock stabilization
900  ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903         int i;
904         u32 r;
905
906         // assert s/w reset
907         write_register(priv->net_dev, IPW_REG_RESET_REG,
908                        IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910         // wait for clock stabilization
911         for (i = 0; i < 1000; i++) {
912                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914                 // check clock ready bit
915                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917                         break;
918         }
919
920         if (i == 1000)
921                 return -EIO;    // TODO: better error value
922
923         /* set "initialization complete" bit to move adapter to
924          * D0 state */
925         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928         /* wait for clock stabilization */
929         for (i = 0; i < 10000; i++) {
930                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932                 /* check clock ready bit */
933                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935                         break;
936         }
937
938         if (i == 10000)
939                 return -EIO;    /* TODO: better error value */
940
941         /* set D0 standby bit */
942         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946         return 0;
947 }
948
949 /*********************************************************************
950     Procedure   :   ipw2100_download_firmware
951     Purpose     :   Initiaze adapter after power on.
952                     The sequence is:
953                     1. assert s/w reset first!
954                     2. awake clocks & wait for clock stabilization
955                     3. hold ARC (don't ask me why...)
956                     4. load Dino ucode and reset/clock init again
957                     5. zero-out shared mem
958                     6. download f/w
959  *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962         u32 address;
963         int err;
964
965 #ifndef CONFIG_PM
966         /* Fetch the firmware and microcode */
967         struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970         if (priv->fatal_error) {
971                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972                                 "fatal error %d.  Interface must be brought down.\n",
973                                 priv->net_dev->name, priv->fatal_error);
974                 return -EINVAL;
975         }
976 #ifdef CONFIG_PM
977         if (!ipw2100_firmware.version) {
978                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979                 if (err) {
980                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981                                         priv->net_dev->name, err);
982                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
983                         goto fail;
984                 }
985         }
986 #else
987         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988         if (err) {
989                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990                                 priv->net_dev->name, err);
991                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992                 goto fail;
993         }
994 #endif
995         priv->firmware_version = ipw2100_firmware.version;
996
997         /* s/w reset and clock stabilization */
998         err = sw_reset_and_clock(priv);
999         if (err) {
1000                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001                                 priv->net_dev->name, err);
1002                 goto fail;
1003         }
1004
1005         err = ipw2100_verify(priv);
1006         if (err) {
1007                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008                                 priv->net_dev->name, err);
1009                 goto fail;
1010         }
1011
1012         /* Hold ARC */
1013         write_nic_dword(priv->net_dev,
1014                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016         /* allow ARC to run */
1017         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019         /* load microcode */
1020         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021         if (err) {
1022                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023                        priv->net_dev->name, err);
1024                 goto fail;
1025         }
1026
1027         /* release ARC */
1028         write_nic_dword(priv->net_dev,
1029                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031         /* s/w reset and clock stabilization (again!!!) */
1032         err = sw_reset_and_clock(priv);
1033         if (err) {
1034                 printk(KERN_ERR DRV_NAME
1035                        ": %s: sw_reset_and_clock failed: %d\n",
1036                        priv->net_dev->name, err);
1037                 goto fail;
1038         }
1039
1040         /* load f/w */
1041         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042         if (err) {
1043                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044                                 priv->net_dev->name, err);
1045                 goto fail;
1046         }
1047 #ifndef CONFIG_PM
1048         /*
1049          * When the .resume method of the driver is called, the other
1050          * part of the system, i.e. the ide driver could still stay in
1051          * the suspend stage. This prevents us from loading the firmware
1052          * from the disk.  --YZ
1053          */
1054
1055         /* free any storage allocated for firmware image */
1056         ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059         /* zero out Domain 1 area indirectly (Si requirement) */
1060         for (address = IPW_HOST_FW_SHARED_AREA0;
1061              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062                 write_nic_dword(priv->net_dev, address, 0);
1063         for (address = IPW_HOST_FW_SHARED_AREA1;
1064              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065                 write_nic_dword(priv->net_dev, address, 0);
1066         for (address = IPW_HOST_FW_SHARED_AREA2;
1067              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068                 write_nic_dword(priv->net_dev, address, 0);
1069         for (address = IPW_HOST_FW_SHARED_AREA3;
1070              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071                 write_nic_dword(priv->net_dev, address, 0);
1072         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074                 write_nic_dword(priv->net_dev, address, 0);
1075
1076         return 0;
1077
1078       fail:
1079         ipw2100_release_firmware(priv, &ipw2100_firmware);
1080         return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085         if (priv->status & STATUS_INT_ENABLED)
1086                 return;
1087         priv->status |= STATUS_INT_ENABLED;
1088         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093         if (!(priv->status & STATUS_INT_ENABLED))
1094                 return;
1095         priv->status &= ~STATUS_INT_ENABLED;
1096         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101         struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103         IPW_DEBUG_INFO("enter\n");
1104
1105         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106                       &ord->table1_addr);
1107
1108         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109                       &ord->table2_addr);
1110
1111         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114         ord->table2_size &= 0x0000FFFF;
1115
1116         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118         IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123         u32 reg = 0;
1124         /*
1125          * Set GPIO 3 writable by FW; GPIO 1 writable
1126          * by driver and enable clock
1127          */
1128         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129                IPW_BIT_GPIO_LED_OFF);
1130         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138         unsigned short value = 0;
1139         u32 reg = 0;
1140         int i;
1141
1142         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143                 priv->status &= ~STATUS_RF_KILL_HW;
1144                 return 0;
1145         }
1146
1147         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148                 udelay(RF_KILL_CHECK_DELAY);
1149                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151         }
1152
1153         if (value == 0)
1154                 priv->status |= STATUS_RF_KILL_HW;
1155         else
1156                 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158         return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163         u32 addr, len;
1164         u32 val;
1165
1166         /*
1167          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168          */
1169         len = sizeof(addr);
1170         if (ipw2100_get_ordinal
1171             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173                                __LINE__);
1174                 return -EIO;
1175         }
1176
1177         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179         /*
1180          * EEPROM version is the byte at offset 0xfd in firmware
1181          * We read 4 bytes, then shift out the byte we actually want */
1182         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183         priv->eeprom_version = (val >> 24) & 0xFF;
1184         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186         /*
1187          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188          *
1189          *  notice that the EEPROM bit is reverse polarity, i.e.
1190          *     bit = 0  signifies HW RF kill switch is supported
1191          *     bit = 1  signifies HW RF kill switch is NOT supported
1192          */
1193         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194         if (!((val >> 24) & 0x01))
1195                 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200         return 0;
1201 }
1202
1203 /*
1204  * Start firmware execution after power on and intialization
1205  * The sequence is:
1206  *  1. Release ARC
1207  *  2. Wait for f/w initialization completes;
1208  */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211         int i;
1212         u32 inta, inta_mask, gpio;
1213
1214         IPW_DEBUG_INFO("enter\n");
1215
1216         if (priv->status & STATUS_RUNNING)
1217                 return 0;
1218
1219         /*
1220          * Initialize the hw - drive adapter to DO state by setting
1221          * init_done bit. Wait for clk_ready bit and Download
1222          * fw & dino ucode
1223          */
1224         if (ipw2100_download_firmware(priv)) {
1225                 printk(KERN_ERR DRV_NAME
1226                        ": %s: Failed to power on the adapter.\n",
1227                        priv->net_dev->name);
1228                 return -EIO;
1229         }
1230
1231         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232          * in the firmware RBD and TBD ring queue */
1233         ipw2100_queues_initialize(priv);
1234
1235         ipw2100_hw_set_gpio(priv);
1236
1237         /* TODO -- Look at disabling interrupts here to make sure none
1238          * get fired during FW initialization */
1239
1240         /* Release ARC - clear reset bit */
1241         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243         /* wait for f/w intialization complete */
1244         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245         i = 5000;
1246         do {
1247                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248                 /* Todo... wait for sync command ... */
1249
1250                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252                 /* check "init done" bit */
1253                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254                         /* reset "init done" bit */
1255                         write_register(priv->net_dev, IPW_REG_INTA,
1256                                        IPW2100_INTA_FW_INIT_DONE);
1257                         break;
1258                 }
1259
1260                 /* check error conditions : we check these after the firmware
1261                  * check so that if there is an error, the interrupt handler
1262                  * will see it and the adapter will be reset */
1263                 if (inta &
1264                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265                         /* clear error conditions */
1266                         write_register(priv->net_dev, IPW_REG_INTA,
1267                                        IPW2100_INTA_FATAL_ERROR |
1268                                        IPW2100_INTA_PARITY_ERROR);
1269                 }
1270         } while (i--);
1271
1272         /* Clear out any pending INTAs since we aren't supposed to have
1273          * interrupts enabled at this point... */
1274         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276         inta &= IPW_INTERRUPT_MASK;
1277         /* Clear out any pending interrupts */
1278         if (inta & inta_mask)
1279                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282                      i ? "SUCCESS" : "FAILED");
1283
1284         if (!i) {
1285                 printk(KERN_WARNING DRV_NAME
1286                        ": %s: Firmware did not initialize.\n",
1287                        priv->net_dev->name);
1288                 return -EIO;
1289         }
1290
1291         /* allow firmware to write to GPIO1 & GPIO3 */
1292         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298         /* Ready to receive commands */
1299         priv->status |= STATUS_RUNNING;
1300
1301         /* The adapter has been reset; we are not associated */
1302         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304         IPW_DEBUG_INFO("exit\n");
1305
1306         return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311         if (!priv->fatal_error)
1312                 return;
1313
1314         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316         priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322         u32 reg;
1323         int i;
1324
1325         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327         ipw2100_hw_set_gpio(priv);
1328
1329         /* Step 1. Stop Master Assert */
1330         write_register(priv->net_dev, IPW_REG_RESET_REG,
1331                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333         /* Step 2. Wait for stop Master Assert
1334          *         (not more then 50us, otherwise ret error */
1335         i = 5;
1336         do {
1337                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341                         break;
1342         } while (i--);
1343
1344         priv->status &= ~STATUS_RESET_PENDING;
1345
1346         if (!i) {
1347                 IPW_DEBUG_INFO
1348                     ("exit - waited too long for master assert stop\n");
1349                 return -EIO;
1350         }
1351
1352         write_register(priv->net_dev, IPW_REG_RESET_REG,
1353                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355         /* Reset any fatal_error conditions */
1356         ipw2100_reset_fatalerror(priv);
1357
1358         /* At this point, the adapter is now stopped and disabled */
1359         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360                           STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362         return 0;
1363 }
1364
1365 /*
1366  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367  *
1368  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369  *
1370  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371  * if STATUS_ASSN_LOST is sent.
1372  */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378         struct host_command cmd = {
1379                 .host_command = CARD_DISABLE_PHY_OFF,
1380                 .host_command_sequence = 0,
1381                 .host_command_length = 0,
1382         };
1383         int err, i;
1384         u32 val1, val2;
1385
1386         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388         /* Turn off the radio */
1389         err = ipw2100_hw_send_command(priv, &cmd);
1390         if (err)
1391                 return err;
1392
1393         for (i = 0; i < 2500; i++) {
1394                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398                     (val2 & IPW2100_COMMAND_PHY_OFF))
1399                         return 0;
1400
1401                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402         }
1403
1404         return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409         struct host_command cmd = {
1410                 .host_command = HOST_COMPLETE,
1411                 .host_command_sequence = 0,
1412                 .host_command_length = 0
1413         };
1414         int err = 0;
1415
1416         IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418         if (priv->status & STATUS_ENABLED)
1419                 return 0;
1420
1421         mutex_lock(&priv->adapter_mutex);
1422
1423         if (rf_kill_active(priv)) {
1424                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425                 goto fail_up;
1426         }
1427
1428         err = ipw2100_hw_send_command(priv, &cmd);
1429         if (err) {
1430                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431                 goto fail_up;
1432         }
1433
1434         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435         if (err) {
1436                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437                                priv->net_dev->name);
1438                 goto fail_up;
1439         }
1440
1441         if (priv->stop_hang_check) {
1442                 priv->stop_hang_check = 0;
1443                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444         }
1445
1446       fail_up:
1447         mutex_unlock(&priv->adapter_mutex);
1448         return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455         struct host_command cmd = {
1456                 .host_command = HOST_PRE_POWER_DOWN,
1457                 .host_command_sequence = 0,
1458                 .host_command_length = 0,
1459         };
1460         int err, i;
1461         u32 reg;
1462
1463         if (!(priv->status & STATUS_RUNNING))
1464                 return 0;
1465
1466         priv->status |= STATUS_STOPPING;
1467
1468         /* We can only shut down the card if the firmware is operational.  So,
1469          * if we haven't reset since a fatal_error, then we can not send the
1470          * shutdown commands. */
1471         if (!priv->fatal_error) {
1472                 /* First, make sure the adapter is enabled so that the PHY_OFF
1473                  * command can shut it down */
1474                 ipw2100_enable_adapter(priv);
1475
1476                 err = ipw2100_hw_phy_off(priv);
1477                 if (err)
1478                         printk(KERN_WARNING DRV_NAME
1479                                ": Error disabling radio %d\n", err);
1480
1481                 /*
1482                  * If in D0-standby mode going directly to D3 may cause a
1483                  * PCI bus violation.  Therefore we must change out of the D0
1484                  * state.
1485                  *
1486                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487                  * hardware from going into standby mode and will transition
1488                  * out of D0-standby if it is already in that state.
1489                  *
1490                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491                  * driver upon completion.  Once received, the driver can
1492                  * proceed to the D3 state.
1493                  *
1494                  * Prepare for power down command to fw.  This command would
1495                  * take HW out of D0-standby and prepare it for D3 state.
1496                  *
1497                  * Currently FW does not support event notification for this
1498                  * event. Therefore, skip waiting for it.  Just wait a fixed
1499                  * 100ms
1500                  */
1501                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503                 err = ipw2100_hw_send_command(priv, &cmd);
1504                 if (err)
1505                         printk(KERN_WARNING DRV_NAME ": "
1506                                "%s: Power down command failed: Error %d\n",
1507                                priv->net_dev->name, err);
1508                 else
1509                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510         }
1511
1512         priv->status &= ~STATUS_ENABLED;
1513
1514         /*
1515          * Set GPIO 3 writable by FW; GPIO 1 writable
1516          * by driver and enable clock
1517          */
1518         ipw2100_hw_set_gpio(priv);
1519
1520         /*
1521          * Power down adapter.  Sequence:
1522          * 1. Stop master assert (RESET_REG[9]=1)
1523          * 2. Wait for stop master (RESET_REG[8]==1)
1524          * 3. S/w reset assert (RESET_REG[7] = 1)
1525          */
1526
1527         /* Stop master assert */
1528         write_register(priv->net_dev, IPW_REG_RESET_REG,
1529                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531         /* wait stop master not more than 50 usec.
1532          * Otherwise return error. */
1533         for (i = 5; i > 0; i--) {
1534                 udelay(10);
1535
1536                 /* Check master stop bit */
1537                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540                         break;
1541         }
1542
1543         if (i == 0)
1544                 printk(KERN_WARNING DRV_NAME
1545                        ": %s: Could now power down adapter.\n",
1546                        priv->net_dev->name);
1547
1548         /* assert s/w reset */
1549         write_register(priv->net_dev, IPW_REG_RESET_REG,
1550                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554         return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559         struct host_command cmd = {
1560                 .host_command = CARD_DISABLE,
1561                 .host_command_sequence = 0,
1562                 .host_command_length = 0
1563         };
1564         int err = 0;
1565
1566         IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568         if (!(priv->status & STATUS_ENABLED))
1569                 return 0;
1570
1571         /* Make sure we clear the associated state */
1572         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574         if (!priv->stop_hang_check) {
1575                 priv->stop_hang_check = 1;
1576                 cancel_delayed_work(&priv->hang_check);
1577         }
1578
1579         mutex_lock(&priv->adapter_mutex);
1580
1581         err = ipw2100_hw_send_command(priv, &cmd);
1582         if (err) {
1583                 printk(KERN_WARNING DRV_NAME
1584                        ": exit - failed to send CARD_DISABLE command\n");
1585                 goto fail_up;
1586         }
1587
1588         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589         if (err) {
1590                 printk(KERN_WARNING DRV_NAME
1591                        ": exit - card failed to change to DISABLED\n");
1592                 goto fail_up;
1593         }
1594
1595         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597       fail_up:
1598         mutex_unlock(&priv->adapter_mutex);
1599         return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604         struct host_command cmd = {
1605                 .host_command = SET_SCAN_OPTIONS,
1606                 .host_command_sequence = 0,
1607                 .host_command_length = 8
1608         };
1609         int err;
1610
1611         IPW_DEBUG_INFO("enter\n");
1612
1613         IPW_DEBUG_SCAN("setting scan options\n");
1614
1615         cmd.host_command_parameters[0] = 0;
1616
1617         if (!(priv->config & CFG_ASSOCIATE))
1618                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621         if (priv->config & CFG_PASSIVE_SCAN)
1622                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624         cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626         err = ipw2100_hw_send_command(priv, &cmd);
1627
1628         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629                      cmd.host_command_parameters[0]);
1630
1631         return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636         struct host_command cmd = {
1637                 .host_command = BROADCAST_SCAN,
1638                 .host_command_sequence = 0,
1639                 .host_command_length = 4
1640         };
1641         int err;
1642
1643         IPW_DEBUG_HC("START_SCAN\n");
1644
1645         cmd.host_command_parameters[0] = 0;
1646
1647         /* No scanning if in monitor mode */
1648         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649                 return 1;
1650
1651         if (priv->status & STATUS_SCANNING) {
1652                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653                 return 0;
1654         }
1655
1656         IPW_DEBUG_INFO("enter\n");
1657
1658         /* Not clearing here; doing so makes iwlist always return nothing...
1659          *
1660          * We should modify the table logic to use aging tables vs. clearing
1661          * the table on each scan start.
1662          */
1663         IPW_DEBUG_SCAN("starting scan\n");
1664
1665         priv->status |= STATUS_SCANNING;
1666         err = ipw2100_hw_send_command(priv, &cmd);
1667         if (err)
1668                 priv->status &= ~STATUS_SCANNING;
1669
1670         IPW_DEBUG_INFO("exit\n");
1671
1672         return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676         {                       /* Restricted */
1677          "---",
1678          .bg_channels = 14,
1679          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680                 {2427, 4}, {2432, 5}, {2437, 6},
1681                 {2442, 7}, {2447, 8}, {2452, 9},
1682                 {2457, 10}, {2462, 11}, {2467, 12},
1683                 {2472, 13}, {2484, 14}},
1684          },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689         unsigned long flags;
1690         int rc = 0;
1691         u32 lock;
1692         u32 ord_len = sizeof(lock);
1693
1694         /* Quite if manually disabled. */
1695         if (priv->status & STATUS_RF_KILL_SW) {
1696                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697                                "switch\n", priv->net_dev->name);
1698                 return 0;
1699         }
1700
1701         /* the ipw2100 hardware really doesn't want power management delays
1702          * longer than 175usec
1703          */
1704         modify_acceptable_latency("ipw2100", 175);
1705
1706         /* If the interrupt is enabled, turn it off... */
1707         spin_lock_irqsave(&priv->low_lock, flags);
1708         ipw2100_disable_interrupts(priv);
1709
1710         /* Reset any fatal_error conditions */
1711         ipw2100_reset_fatalerror(priv);
1712         spin_unlock_irqrestore(&priv->low_lock, flags);
1713
1714         if (priv->status & STATUS_POWERED ||
1715             (priv->status & STATUS_RESET_PENDING)) {
1716                 /* Power cycle the card ... */
1717                 if (ipw2100_power_cycle_adapter(priv)) {
1718                         printk(KERN_WARNING DRV_NAME
1719                                ": %s: Could not cycle adapter.\n",
1720                                priv->net_dev->name);
1721                         rc = 1;
1722                         goto exit;
1723                 }
1724         } else
1725                 priv->status |= STATUS_POWERED;
1726
1727         /* Load the firmware, start the clocks, etc. */
1728         if (ipw2100_start_adapter(priv)) {
1729                 printk(KERN_ERR DRV_NAME
1730                        ": %s: Failed to start the firmware.\n",
1731                        priv->net_dev->name);
1732                 rc = 1;
1733                 goto exit;
1734         }
1735
1736         ipw2100_initialize_ordinals(priv);
1737
1738         /* Determine capabilities of this particular HW configuration */
1739         if (ipw2100_get_hw_features(priv)) {
1740                 printk(KERN_ERR DRV_NAME
1741                        ": %s: Failed to determine HW features.\n",
1742                        priv->net_dev->name);
1743                 rc = 1;
1744                 goto exit;
1745         }
1746
1747         /* Initialize the geo */
1748         if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1750                 return 0;
1751         }
1752         priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1753
1754         lock = LOCK_NONE;
1755         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756                 printk(KERN_ERR DRV_NAME
1757                        ": %s: Failed to clear ordinal lock.\n",
1758                        priv->net_dev->name);
1759                 rc = 1;
1760                 goto exit;
1761         }
1762
1763         priv->status &= ~STATUS_SCANNING;
1764
1765         if (rf_kill_active(priv)) {
1766                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767                        priv->net_dev->name);
1768
1769                 if (priv->stop_rf_kill) {
1770                         priv->stop_rf_kill = 0;
1771                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1772                                            round_jiffies(HZ));
1773                 }
1774
1775                 deferred = 1;
1776         }
1777
1778         /* Turn on the interrupt so that commands can be processed */
1779         ipw2100_enable_interrupts(priv);
1780
1781         /* Send all of the commands that must be sent prior to
1782          * HOST_COMPLETE */
1783         if (ipw2100_adapter_setup(priv)) {
1784                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1785                        priv->net_dev->name);
1786                 rc = 1;
1787                 goto exit;
1788         }
1789
1790         if (!deferred) {
1791                 /* Enable the adapter - sends HOST_COMPLETE */
1792                 if (ipw2100_enable_adapter(priv)) {
1793                         printk(KERN_ERR DRV_NAME ": "
1794                                "%s: failed in call to enable adapter.\n",
1795                                priv->net_dev->name);
1796                         ipw2100_hw_stop_adapter(priv);
1797                         rc = 1;
1798                         goto exit;
1799                 }
1800
1801                 /* Start a scan . . . */
1802                 ipw2100_set_scan_options(priv);
1803                 ipw2100_start_scan(priv);
1804         }
1805
1806       exit:
1807         return rc;
1808 }
1809
1810 /* Called by register_netdev() */
1811 static int ipw2100_net_init(struct net_device *dev)
1812 {
1813         struct ipw2100_priv *priv = ieee80211_priv(dev);
1814         return ipw2100_up(priv, 1);
1815 }
1816
1817 static void ipw2100_down(struct ipw2100_priv *priv)
1818 {
1819         unsigned long flags;
1820         union iwreq_data wrqu = {
1821                 .ap_addr = {
1822                             .sa_family = ARPHRD_ETHER}
1823         };
1824         int associated = priv->status & STATUS_ASSOCIATED;
1825
1826         /* Kill the RF switch timer */
1827         if (!priv->stop_rf_kill) {
1828                 priv->stop_rf_kill = 1;
1829                 cancel_delayed_work(&priv->rf_kill);
1830         }
1831
1832         /* Kill the firmare hang check timer */
1833         if (!priv->stop_hang_check) {
1834                 priv->stop_hang_check = 1;
1835                 cancel_delayed_work(&priv->hang_check);
1836         }
1837
1838         /* Kill any pending resets */
1839         if (priv->status & STATUS_RESET_PENDING)
1840                 cancel_delayed_work(&priv->reset_work);
1841
1842         /* Make sure the interrupt is on so that FW commands will be
1843          * processed correctly */
1844         spin_lock_irqsave(&priv->low_lock, flags);
1845         ipw2100_enable_interrupts(priv);
1846         spin_unlock_irqrestore(&priv->low_lock, flags);
1847
1848         if (ipw2100_hw_stop_adapter(priv))
1849                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1850                        priv->net_dev->name);
1851
1852         /* Do not disable the interrupt until _after_ we disable
1853          * the adaptor.  Otherwise the CARD_DISABLE command will never
1854          * be ack'd by the firmware */
1855         spin_lock_irqsave(&priv->low_lock, flags);
1856         ipw2100_disable_interrupts(priv);
1857         spin_unlock_irqrestore(&priv->low_lock, flags);
1858
1859         modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1860
1861 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1862         if (priv->config & CFG_C3_DISABLED) {
1863                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1864                 acpi_set_cstate_limit(priv->cstate_limit);
1865                 priv->config &= ~CFG_C3_DISABLED;
1866         }
1867 #endif
1868
1869         /* We have to signal any supplicant if we are disassociating */
1870         if (associated)
1871                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1872
1873         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1874         netif_carrier_off(priv->net_dev);
1875         netif_stop_queue(priv->net_dev);
1876 }
1877
1878 static void ipw2100_reset_adapter(struct work_struct *work)
1879 {
1880         struct ipw2100_priv *priv =
1881                 container_of(work, struct ipw2100_priv, reset_work.work);
1882         unsigned long flags;
1883         union iwreq_data wrqu = {
1884                 .ap_addr = {
1885                             .sa_family = ARPHRD_ETHER}
1886         };
1887         int associated = priv->status & STATUS_ASSOCIATED;
1888
1889         spin_lock_irqsave(&priv->low_lock, flags);
1890         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1891         priv->resets++;
1892         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1893         priv->status |= STATUS_SECURITY_UPDATED;
1894
1895         /* Force a power cycle even if interface hasn't been opened
1896          * yet */
1897         cancel_delayed_work(&priv->reset_work);
1898         priv->status |= STATUS_RESET_PENDING;
1899         spin_unlock_irqrestore(&priv->low_lock, flags);
1900
1901         mutex_lock(&priv->action_mutex);
1902         /* stop timed checks so that they don't interfere with reset */
1903         priv->stop_hang_check = 1;
1904         cancel_delayed_work(&priv->hang_check);
1905
1906         /* We have to signal any supplicant if we are disassociating */
1907         if (associated)
1908                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1909
1910         ipw2100_up(priv, 0);
1911         mutex_unlock(&priv->action_mutex);
1912
1913 }
1914
1915 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1916 {
1917
1918 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1919         int ret, len, essid_len;
1920         char essid[IW_ESSID_MAX_SIZE];
1921         u32 txrate;
1922         u32 chan;
1923         char *txratename;
1924         u8 bssid[ETH_ALEN];
1925         DECLARE_MAC_BUF(mac);
1926
1927         /*
1928          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1929          *      an actual MAC of the AP. Seems like FW sets this
1930          *      address too late. Read it later and expose through
1931          *      /proc or schedule a later task to query and update
1932          */
1933
1934         essid_len = IW_ESSID_MAX_SIZE;
1935         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1936                                   essid, &essid_len);
1937         if (ret) {
1938                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1939                                __LINE__);
1940                 return;
1941         }
1942
1943         len = sizeof(u32);
1944         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1945         if (ret) {
1946                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1947                                __LINE__);
1948                 return;
1949         }
1950
1951         len = sizeof(u32);
1952         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1953         if (ret) {
1954                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1955                                __LINE__);
1956                 return;
1957         }
1958         len = ETH_ALEN;
1959         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1960         if (ret) {
1961                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1962                                __LINE__);
1963                 return;
1964         }
1965         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1966
1967         switch (txrate) {
1968         case TX_RATE_1_MBIT:
1969                 txratename = "1Mbps";
1970                 break;
1971         case TX_RATE_2_MBIT:
1972                 txratename = "2Mbsp";
1973                 break;
1974         case TX_RATE_5_5_MBIT:
1975                 txratename = "5.5Mbps";
1976                 break;
1977         case TX_RATE_11_MBIT:
1978                 txratename = "11Mbps";
1979                 break;
1980         default:
1981                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1982                 txratename = "unknown rate";
1983                 break;
1984         }
1985
1986         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1987                        "%s)\n",
1988                        priv->net_dev->name, escape_essid(essid, essid_len),
1989                        txratename, chan, print_mac(mac, bssid));
1990
1991         /* now we copy read ssid into dev */
1992         if (!(priv->config & CFG_STATIC_ESSID)) {
1993                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1994                 memcpy(priv->essid, essid, priv->essid_len);
1995         }
1996         priv->channel = chan;
1997         memcpy(priv->bssid, bssid, ETH_ALEN);
1998
1999         priv->status |= STATUS_ASSOCIATING;
2000         priv->connect_start = get_seconds();
2001
2002         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2003 }
2004
2005 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2006                              int length, int batch_mode)
2007 {
2008         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2009         struct host_command cmd = {
2010                 .host_command = SSID,
2011                 .host_command_sequence = 0,
2012                 .host_command_length = ssid_len
2013         };
2014         int err;
2015
2016         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2017
2018         if (ssid_len)
2019                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2020
2021         if (!batch_mode) {
2022                 err = ipw2100_disable_adapter(priv);
2023                 if (err)
2024                         return err;
2025         }
2026
2027         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2028          * disable auto association -- so we cheat by setting a bogus SSID */
2029         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2030                 int i;
2031                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2032                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2033                         bogus[i] = 0x18 + i;
2034                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2035         }
2036
2037         /* NOTE:  We always send the SSID command even if the provided ESSID is
2038          * the same as what we currently think is set. */
2039
2040         err = ipw2100_hw_send_command(priv, &cmd);
2041         if (!err) {
2042                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2043                 memcpy(priv->essid, essid, ssid_len);
2044                 priv->essid_len = ssid_len;
2045         }
2046
2047         if (!batch_mode) {
2048                 if (ipw2100_enable_adapter(priv))
2049                         err = -EIO;
2050         }
2051
2052         return err;
2053 }
2054
2055 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2056 {
2057         DECLARE_MAC_BUF(mac);
2058
2059         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2060                   "disassociated: '%s' %s \n",
2061                   escape_essid(priv->essid, priv->essid_len),
2062                   print_mac(mac, priv->bssid));
2063
2064         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2065
2066         if (priv->status & STATUS_STOPPING) {
2067                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2068                 return;
2069         }
2070
2071         memset(priv->bssid, 0, ETH_ALEN);
2072         memset(priv->ieee->bssid, 0, ETH_ALEN);
2073
2074         netif_carrier_off(priv->net_dev);
2075         netif_stop_queue(priv->net_dev);
2076
2077         if (!(priv->status & STATUS_RUNNING))
2078                 return;
2079
2080         if (priv->status & STATUS_SECURITY_UPDATED)
2081                 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2082
2083         queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2084 }
2085
2086 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2087 {
2088         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2089                        priv->net_dev->name);
2090
2091         /* RF_KILL is now enabled (else we wouldn't be here) */
2092         priv->status |= STATUS_RF_KILL_HW;
2093
2094 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2095         if (priv->config & CFG_C3_DISABLED) {
2096                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2097                 acpi_set_cstate_limit(priv->cstate_limit);
2098                 priv->config &= ~CFG_C3_DISABLED;
2099         }
2100 #endif
2101
2102         /* Make sure the RF Kill check timer is running */
2103         priv->stop_rf_kill = 0;
2104         cancel_delayed_work(&priv->rf_kill);
2105         queue_delayed_work(priv->workqueue, &priv->rf_kill, round_jiffies(HZ));
2106 }
2107
2108 static void send_scan_event(void *data)
2109 {
2110         struct ipw2100_priv *priv = data;
2111         union iwreq_data wrqu;
2112
2113         wrqu.data.length = 0;
2114         wrqu.data.flags = 0;
2115         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2116 }
2117
2118 static void ipw2100_scan_event_later(struct work_struct *work)
2119 {
2120         send_scan_event(container_of(work, struct ipw2100_priv,
2121                                         scan_event_later.work));
2122 }
2123
2124 static void ipw2100_scan_event_now(struct work_struct *work)
2125 {
2126         send_scan_event(container_of(work, struct ipw2100_priv,
2127                                         scan_event_now));
2128 }
2129
2130 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2131 {
2132         IPW_DEBUG_SCAN("scan complete\n");
2133         /* Age the scan results... */
2134         priv->ieee->scans++;
2135         priv->status &= ~STATUS_SCANNING;
2136
2137         /* Only userspace-requested scan completion events go out immediately */
2138         if (!priv->user_requested_scan) {
2139                 if (!delayed_work_pending(&priv->scan_event_later))
2140                         queue_delayed_work(priv->workqueue,
2141                                         &priv->scan_event_later,
2142                                         round_jiffies(msecs_to_jiffies(4000)));
2143         } else {
2144                 priv->user_requested_scan = 0;
2145                 cancel_delayed_work(&priv->scan_event_later);
2146                 queue_work(priv->workqueue, &priv->scan_event_now);
2147         }
2148 }
2149
2150 #ifdef CONFIG_IPW2100_DEBUG
2151 #define IPW2100_HANDLER(v, f) { v, f, # v }
2152 struct ipw2100_status_indicator {
2153         int status;
2154         void (*cb) (struct ipw2100_priv * priv, u32 status);
2155         char *name;
2156 };
2157 #else
2158 #define IPW2100_HANDLER(v, f) { v, f }
2159 struct ipw2100_status_indicator {
2160         int status;
2161         void (*cb) (struct ipw2100_priv * priv, u32 status);
2162 };
2163 #endif                          /* CONFIG_IPW2100_DEBUG */
2164
2165 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2166 {
2167         IPW_DEBUG_SCAN("Scanning...\n");
2168         priv->status |= STATUS_SCANNING;
2169 }
2170
2171 static const struct ipw2100_status_indicator status_handlers[] = {
2172         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2173         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2174         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2175         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2176         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2177         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2178         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2179         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2180         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2181         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2182         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2183         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2184         IPW2100_HANDLER(-1, NULL)
2185 };
2186
2187 static void isr_status_change(struct ipw2100_priv *priv, int status)
2188 {
2189         int i;
2190
2191         if (status == IPW_STATE_SCANNING &&
2192             priv->status & STATUS_ASSOCIATED &&
2193             !(priv->status & STATUS_SCANNING)) {
2194                 IPW_DEBUG_INFO("Scan detected while associated, with "
2195                                "no scan request.  Restarting firmware.\n");
2196
2197                 /* Wake up any sleeping jobs */
2198                 schedule_reset(priv);
2199         }
2200
2201         for (i = 0; status_handlers[i].status != -1; i++) {
2202                 if (status == status_handlers[i].status) {
2203                         IPW_DEBUG_NOTIF("Status change: %s\n",
2204                                         status_handlers[i].name);
2205                         if (status_handlers[i].cb)
2206                                 status_handlers[i].cb(priv, status);
2207                         priv->wstats.status = status;
2208                         return;
2209                 }
2210         }
2211
2212         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2213 }
2214
2215 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2216                                     struct ipw2100_cmd_header *cmd)
2217 {
2218 #ifdef CONFIG_IPW2100_DEBUG
2219         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2220                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2221                              command_types[cmd->host_command_reg],
2222                              cmd->host_command_reg);
2223         }
2224 #endif
2225         if (cmd->host_command_reg == HOST_COMPLETE)
2226                 priv->status |= STATUS_ENABLED;
2227
2228         if (cmd->host_command_reg == CARD_DISABLE)
2229                 priv->status &= ~STATUS_ENABLED;
2230
2231         priv->status &= ~STATUS_CMD_ACTIVE;
2232
2233         wake_up_interruptible(&priv->wait_command_queue);
2234 }
2235
2236 #ifdef CONFIG_IPW2100_DEBUG
2237 static const char *frame_types[] = {
2238         "COMMAND_STATUS_VAL",
2239         "STATUS_CHANGE_VAL",
2240         "P80211_DATA_VAL",
2241         "P8023_DATA_VAL",
2242         "HOST_NOTIFICATION_VAL"
2243 };
2244 #endif
2245
2246 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2247                                     struct ipw2100_rx_packet *packet)
2248 {
2249         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2250         if (!packet->skb)
2251                 return -ENOMEM;
2252
2253         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2254         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2255                                           sizeof(struct ipw2100_rx),
2256                                           PCI_DMA_FROMDEVICE);
2257         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2258          *       dma_addr */
2259
2260         return 0;
2261 }
2262
2263 #define SEARCH_ERROR   0xffffffff
2264 #define SEARCH_FAIL    0xfffffffe
2265 #define SEARCH_SUCCESS 0xfffffff0
2266 #define SEARCH_DISCARD 0
2267 #define SEARCH_SNAPSHOT 1
2268
2269 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2270 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2271 {
2272         int i;
2273         if (!priv->snapshot[0])
2274                 return;
2275         for (i = 0; i < 0x30; i++)
2276                 kfree(priv->snapshot[i]);
2277         priv->snapshot[0] = NULL;
2278 }
2279
2280 #ifdef IPW2100_DEBUG_C3
2281 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2282 {
2283         int i;
2284         if (priv->snapshot[0])
2285                 return 1;
2286         for (i = 0; i < 0x30; i++) {
2287                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2288                 if (!priv->snapshot[i]) {
2289                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2290                                        "buffer %d\n", priv->net_dev->name, i);
2291                         while (i > 0)
2292                                 kfree(priv->snapshot[--i]);
2293                         priv->snapshot[0] = NULL;
2294                         return 0;
2295                 }
2296         }
2297
2298         return 1;
2299 }
2300
2301 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2302                                     size_t len, int mode)
2303 {
2304         u32 i, j;
2305         u32 tmp;
2306         u8 *s, *d;
2307         u32 ret;
2308
2309         s = in_buf;
2310         if (mode == SEARCH_SNAPSHOT) {
2311                 if (!ipw2100_snapshot_alloc(priv))
2312                         mode = SEARCH_DISCARD;
2313         }
2314
2315         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2316                 read_nic_dword(priv->net_dev, i, &tmp);
2317                 if (mode == SEARCH_SNAPSHOT)
2318                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2319                 if (ret == SEARCH_FAIL) {
2320                         d = (u8 *) & tmp;
2321                         for (j = 0; j < 4; j++) {
2322                                 if (*s != *d) {
2323                                         s = in_buf;
2324                                         continue;
2325                                 }
2326
2327                                 s++;
2328                                 d++;
2329
2330                                 if ((s - in_buf) == len)
2331                                         ret = (i + j) - len + 1;
2332                         }
2333                 } else if (mode == SEARCH_DISCARD)
2334                         return ret;
2335         }
2336
2337         return ret;
2338 }
2339 #endif
2340
2341 /*
2342  *
2343  * 0) Disconnect the SKB from the firmware (just unmap)
2344  * 1) Pack the ETH header into the SKB
2345  * 2) Pass the SKB to the network stack
2346  *
2347  * When packet is provided by the firmware, it contains the following:
2348  *
2349  * .  ieee80211_hdr
2350  * .  ieee80211_snap_hdr
2351  *
2352  * The size of the constructed ethernet
2353  *
2354  */
2355 #ifdef IPW2100_RX_DEBUG
2356 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2357 #endif
2358
2359 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2360 {
2361 #ifdef IPW2100_DEBUG_C3
2362         struct ipw2100_status *status = &priv->status_queue.drv[i];
2363         u32 match, reg;
2364         int j;
2365 #endif
2366 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2367         int limit;
2368 #endif
2369
2370         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2371                        i * sizeof(struct ipw2100_status));
2372
2373 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2374         IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2375         limit = acpi_get_cstate_limit();
2376         if (limit > 2) {
2377                 priv->cstate_limit = limit;
2378                 acpi_set_cstate_limit(2);
2379                 priv->config |= CFG_C3_DISABLED;
2380         }
2381 #endif
2382
2383 #ifdef IPW2100_DEBUG_C3
2384         /* Halt the fimrware so we can get a good image */
2385         write_register(priv->net_dev, IPW_REG_RESET_REG,
2386                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2387         j = 5;
2388         do {
2389                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2390                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2391
2392                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2393                         break;
2394         } while (j--);
2395
2396         match = ipw2100_match_buf(priv, (u8 *) status,
2397                                   sizeof(struct ipw2100_status),
2398                                   SEARCH_SNAPSHOT);
2399         if (match < SEARCH_SUCCESS)
2400                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2401                                "offset 0x%06X, length %d:\n",
2402                                priv->net_dev->name, match,
2403                                sizeof(struct ipw2100_status));
2404         else
2405                 IPW_DEBUG_INFO("%s: No DMA status match in "
2406                                "Firmware.\n", priv->net_dev->name);
2407
2408         printk_buf((u8 *) priv->status_queue.drv,
2409                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2410 #endif
2411
2412         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2413         priv->ieee->stats.rx_errors++;
2414         schedule_reset(priv);
2415 }
2416
2417 static void isr_rx(struct ipw2100_priv *priv, int i,
2418                           struct ieee80211_rx_stats *stats)
2419 {
2420         struct ipw2100_status *status = &priv->status_queue.drv[i];
2421         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2422
2423         IPW_DEBUG_RX("Handler...\n");
2424
2425         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2426                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2427                                "  Dropping.\n",
2428                                priv->net_dev->name,
2429                                status->frame_size, skb_tailroom(packet->skb));
2430                 priv->ieee->stats.rx_errors++;
2431                 return;
2432         }
2433
2434         if (unlikely(!netif_running(priv->net_dev))) {
2435                 priv->ieee->stats.rx_errors++;
2436                 priv->wstats.discard.misc++;
2437                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2438                 return;
2439         }
2440
2441         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2442                      !(priv->status & STATUS_ASSOCIATED))) {
2443                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2444                 priv->wstats.discard.misc++;
2445                 return;
2446         }
2447
2448         pci_unmap_single(priv->pci_dev,
2449                          packet->dma_addr,
2450                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2451
2452         skb_put(packet->skb, status->frame_size);
2453
2454 #ifdef IPW2100_RX_DEBUG
2455         /* Make a copy of the frame so we can dump it to the logs if
2456          * ieee80211_rx fails */
2457         skb_copy_from_linear_data(packet->skb, packet_data,
2458                                   min_t(u32, status->frame_size,
2459                                              IPW_RX_NIC_BUFFER_LENGTH));
2460 #endif
2461
2462         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2463 #ifdef IPW2100_RX_DEBUG
2464                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2465                                priv->net_dev->name);
2466                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2467 #endif
2468                 priv->ieee->stats.rx_errors++;
2469
2470                 /* ieee80211_rx failed, so it didn't free the SKB */
2471                 dev_kfree_skb_any(packet->skb);
2472                 packet->skb = NULL;
2473         }
2474
2475         /* We need to allocate a new SKB and attach it to the RDB. */
2476         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2477                 printk(KERN_WARNING DRV_NAME ": "
2478                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2479                        "adapter.\n", priv->net_dev->name);
2480                 /* TODO: schedule adapter shutdown */
2481                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2482         }
2483
2484         /* Update the RDB entry */
2485         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2486 }
2487
2488 #ifdef CONFIG_IPW2100_MONITOR
2489
2490 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2491                    struct ieee80211_rx_stats *stats)
2492 {
2493         struct ipw2100_status *status = &priv->status_queue.drv[i];
2494         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2495
2496         /* Magic struct that slots into the radiotap header -- no reason
2497          * to build this manually element by element, we can write it much
2498          * more efficiently than we can parse it. ORDER MATTERS HERE */
2499         struct ipw_rt_hdr {
2500                 struct ieee80211_radiotap_header rt_hdr;
2501                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2502         } *ipw_rt;
2503
2504         IPW_DEBUG_RX("Handler...\n");
2505
2506         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2507                                 sizeof(struct ipw_rt_hdr))) {
2508                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2509                                "  Dropping.\n",
2510                                priv->net_dev->name,
2511                                status->frame_size,
2512                                skb_tailroom(packet->skb));
2513                 priv->ieee->stats.rx_errors++;
2514                 return;
2515         }
2516
2517         if (unlikely(!netif_running(priv->net_dev))) {
2518                 priv->ieee->stats.rx_errors++;
2519                 priv->wstats.discard.misc++;
2520                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2521                 return;
2522         }
2523
2524         if (unlikely(priv->config & CFG_CRC_CHECK &&
2525                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2526                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2527                 priv->ieee->stats.rx_errors++;
2528                 return;
2529         }
2530
2531         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2532                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2533         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2534                 packet->skb->data, status->frame_size);
2535
2536         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2537
2538         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2539         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2540         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2541
2542         ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2543
2544         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2545
2546         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2547
2548         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2549                 priv->ieee->stats.rx_errors++;
2550
2551                 /* ieee80211_rx failed, so it didn't free the SKB */
2552                 dev_kfree_skb_any(packet->skb);
2553                 packet->skb = NULL;
2554         }
2555
2556         /* We need to allocate a new SKB and attach it to the RDB. */
2557         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2558                 IPW_DEBUG_WARNING(
2559                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2560                         "adapter.\n", priv->net_dev->name);
2561                 /* TODO: schedule adapter shutdown */
2562                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2563         }
2564
2565         /* Update the RDB entry */
2566         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2567 }
2568
2569 #endif
2570
2571 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2572 {
2573         struct ipw2100_status *status = &priv->status_queue.drv[i];
2574         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2575         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2576
2577         switch (frame_type) {
2578         case COMMAND_STATUS_VAL:
2579                 return (status->frame_size != sizeof(u->rx_data.command));
2580         case STATUS_CHANGE_VAL:
2581                 return (status->frame_size != sizeof(u->rx_data.status));
2582         case HOST_NOTIFICATION_VAL:
2583                 return (status->frame_size < sizeof(u->rx_data.notification));
2584         case P80211_DATA_VAL:
2585         case P8023_DATA_VAL:
2586 #ifdef CONFIG_IPW2100_MONITOR
2587                 return 0;
2588 #else
2589                 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2590                 case IEEE80211_FTYPE_MGMT:
2591                 case IEEE80211_FTYPE_CTL:
2592                         return 0;
2593                 case IEEE80211_FTYPE_DATA:
2594                         return (status->frame_size >
2595                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2596                 }
2597 #endif
2598         }
2599
2600         return 1;
2601 }
2602
2603 /*
2604  * ipw2100 interrupts are disabled at this point, and the ISR
2605  * is the only code that calls this method.  So, we do not need
2606  * to play with any locks.
2607  *
2608  * RX Queue works as follows:
2609  *
2610  * Read index - firmware places packet in entry identified by the
2611  *              Read index and advances Read index.  In this manner,
2612  *              Read index will always point to the next packet to
2613  *              be filled--but not yet valid.
2614  *
2615  * Write index - driver fills this entry with an unused RBD entry.
2616  *               This entry has not filled by the firmware yet.
2617  *
2618  * In between the W and R indexes are the RBDs that have been received
2619  * but not yet processed.
2620  *
2621  * The process of handling packets will start at WRITE + 1 and advance
2622  * until it reaches the READ index.
2623  *
2624  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2625  *
2626  */
2627 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2628 {
2629         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2630         struct ipw2100_status_queue *sq = &priv->status_queue;
2631         struct ipw2100_rx_packet *packet;
2632         u16 frame_type;
2633         u32 r, w, i, s;
2634         struct ipw2100_rx *u;
2635         struct ieee80211_rx_stats stats = {
2636                 .mac_time = jiffies,
2637         };
2638
2639         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2640         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2641
2642         if (r >= rxq->entries) {
2643                 IPW_DEBUG_RX("exit - bad read index\n");
2644                 return;
2645         }
2646
2647         i = (rxq->next + 1) % rxq->entries;
2648         s = i;
2649         while (i != r) {
2650                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2651                    r, rxq->next, i); */
2652
2653                 packet = &priv->rx_buffers[i];
2654
2655                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2656                  * the correct values */
2657                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2658                                             sq->nic +
2659                                             sizeof(struct ipw2100_status) * i,
2660                                             sizeof(struct ipw2100_status),
2661                                             PCI_DMA_FROMDEVICE);
2662
2663                 /* Sync the DMA for the RX buffer so CPU is sure to get
2664                  * the correct values */
2665                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2666                                             sizeof(struct ipw2100_rx),
2667                                             PCI_DMA_FROMDEVICE);
2668
2669                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2670                         ipw2100_corruption_detected(priv, i);
2671                         goto increment;
2672                 }
2673
2674                 u = packet->rxp;
2675                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2676                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2677                 stats.len = sq->drv[i].frame_size;
2678
2679                 stats.mask = 0;
2680                 if (stats.rssi != 0)
2681                         stats.mask |= IEEE80211_STATMASK_RSSI;
2682                 stats.freq = IEEE80211_24GHZ_BAND;
2683
2684                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2685                              priv->net_dev->name, frame_types[frame_type],
2686                              stats.len);
2687
2688                 switch (frame_type) {
2689                 case COMMAND_STATUS_VAL:
2690                         /* Reset Rx watchdog */
2691                         isr_rx_complete_command(priv, &u->rx_data.command);
2692                         break;
2693
2694                 case STATUS_CHANGE_VAL:
2695                         isr_status_change(priv, u->rx_data.status);
2696                         break;
2697
2698                 case P80211_DATA_VAL:
2699                 case P8023_DATA_VAL:
2700 #ifdef CONFIG_IPW2100_MONITOR
2701                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2702                                 isr_rx_monitor(priv, i, &stats);
2703                                 break;
2704                         }
2705 #endif
2706                         if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2707                                 break;
2708                         switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2709                         case IEEE80211_FTYPE_MGMT:
2710                                 ieee80211_rx_mgt(priv->ieee,
2711                                                  &u->rx_data.header, &stats);
2712                                 break;
2713
2714                         case IEEE80211_FTYPE_CTL:
2715                                 break;
2716
2717                         case IEEE80211_FTYPE_DATA:
2718                                 isr_rx(priv, i, &stats);
2719                                 break;
2720
2721                         }
2722                         break;
2723                 }
2724
2725               increment:
2726                 /* clear status field associated with this RBD */
2727                 rxq->drv[i].status.info.field = 0;
2728
2729                 i = (i + 1) % rxq->entries;
2730         }
2731
2732         if (i != s) {
2733                 /* backtrack one entry, wrapping to end if at 0 */
2734                 rxq->next = (i ? i : rxq->entries) - 1;
2735
2736                 write_register(priv->net_dev,
2737                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2738         }
2739 }
2740
2741 /*
2742  * __ipw2100_tx_process
2743  *
2744  * This routine will determine whether the next packet on
2745  * the fw_pend_list has been processed by the firmware yet.
2746  *
2747  * If not, then it does nothing and returns.
2748  *
2749  * If so, then it removes the item from the fw_pend_list, frees
2750  * any associated storage, and places the item back on the
2751  * free list of its source (either msg_free_list or tx_free_list)
2752  *
2753  * TX Queue works as follows:
2754  *
2755  * Read index - points to the next TBD that the firmware will
2756  *              process.  The firmware will read the data, and once
2757  *              done processing, it will advance the Read index.
2758  *
2759  * Write index - driver fills this entry with an constructed TBD
2760  *               entry.  The Write index is not advanced until the
2761  *               packet has been configured.
2762  *
2763  * In between the W and R indexes are the TBDs that have NOT been
2764  * processed.  Lagging behind the R index are packets that have
2765  * been processed but have not been freed by the driver.
2766  *
2767  * In order to free old storage, an internal index will be maintained
2768  * that points to the next packet to be freed.  When all used
2769  * packets have been freed, the oldest index will be the same as the
2770  * firmware's read index.
2771  *
2772  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2773  *
2774  * Because the TBD structure can not contain arbitrary data, the
2775  * driver must keep an internal queue of cached allocations such that
2776  * it can put that data back into the tx_free_list and msg_free_list
2777  * for use by future command and data packets.
2778  *
2779  */
2780 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2781 {
2782         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2783         struct ipw2100_bd *tbd;
2784         struct list_head *element;
2785         struct ipw2100_tx_packet *packet;
2786         int descriptors_used;
2787         int e, i;
2788         u32 r, w, frag_num = 0;
2789
2790         if (list_empty(&priv->fw_pend_list))
2791                 return 0;
2792
2793         element = priv->fw_pend_list.next;
2794
2795         packet = list_entry(element, struct ipw2100_tx_packet, list);
2796         tbd = &txq->drv[packet->index];
2797
2798         /* Determine how many TBD entries must be finished... */
2799         switch (packet->type) {
2800         case COMMAND:
2801                 /* COMMAND uses only one slot; don't advance */
2802                 descriptors_used = 1;
2803                 e = txq->oldest;
2804                 break;
2805
2806         case DATA:
2807                 /* DATA uses two slots; advance and loop position. */
2808                 descriptors_used = tbd->num_fragments;
2809                 frag_num = tbd->num_fragments - 1;
2810                 e = txq->oldest + frag_num;
2811                 e %= txq->entries;
2812                 break;
2813
2814         default:
2815                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2816                        priv->net_dev->name);
2817                 return 0;
2818         }
2819
2820         /* if the last TBD is not done by NIC yet, then packet is
2821          * not ready to be released.
2822          *
2823          */
2824         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2825                       &r);
2826         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2827                       &w);
2828         if (w != txq->next)
2829                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2830                        priv->net_dev->name);
2831
2832         /*
2833          * txq->next is the index of the last packet written txq->oldest is
2834          * the index of the r is the index of the next packet to be read by
2835          * firmware
2836          */
2837
2838         /*
2839          * Quick graphic to help you visualize the following
2840          * if / else statement
2841          *
2842          * ===>|                     s---->|===============
2843          *                               e>|
2844          * | a | b | c | d | e | f | g | h | i | j | k | l
2845          *       r---->|
2846          *               w
2847          *
2848          * w - updated by driver
2849          * r - updated by firmware
2850          * s - start of oldest BD entry (txq->oldest)
2851          * e - end of oldest BD entry
2852          *
2853          */
2854         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2855                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2856                 return 0;
2857         }
2858
2859         list_del(element);
2860         DEC_STAT(&priv->fw_pend_stat);
2861
2862 #ifdef CONFIG_IPW2100_DEBUG
2863         {
2864                 int i = txq->oldest;
2865                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2866                              &txq->drv[i],
2867                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2868                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2869
2870                 if (packet->type == DATA) {
2871                         i = (i + 1) % txq->entries;
2872
2873                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2874                                      &txq->drv[i],
2875                                      (u32) (txq->nic + i *
2876                                             sizeof(struct ipw2100_bd)),
2877                                      (u32) txq->drv[i].host_addr,
2878                                      txq->drv[i].buf_length);
2879                 }
2880         }
2881 #endif
2882
2883         switch (packet->type) {
2884         case DATA:
2885                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2886                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2887                                "Expecting DATA TBD but pulled "
2888                                "something else: ids %d=%d.\n",
2889                                priv->net_dev->name, txq->oldest, packet->index);
2890
2891                 /* DATA packet; we have to unmap and free the SKB */
2892                 for (i = 0; i < frag_num; i++) {
2893                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2894
2895                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2896                                      (packet->index + 1 + i) % txq->entries,
2897                                      tbd->host_addr, tbd->buf_length);
2898
2899                         pci_unmap_single(priv->pci_dev,
2900                                          tbd->host_addr,
2901                                          tbd->buf_length, PCI_DMA_TODEVICE);
2902                 }
2903
2904                 ieee80211_txb_free(packet->info.d_struct.txb);
2905                 packet->info.d_struct.txb = NULL;
2906
2907                 list_add_tail(element, &priv->tx_free_list);
2908                 INC_STAT(&priv->tx_free_stat);
2909
2910                 /* We have a free slot in the Tx queue, so wake up the
2911                  * transmit layer if it is stopped. */
2912                 if (priv->status & STATUS_ASSOCIATED)
2913                         netif_wake_queue(priv->net_dev);
2914
2915                 /* A packet was processed by the hardware, so update the
2916                  * watchdog */
2917                 priv->net_dev->trans_start = jiffies;
2918
2919                 break;
2920
2921         case COMMAND:
2922                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2923                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2924                                "Expecting COMMAND TBD but pulled "
2925                                "something else: ids %d=%d.\n",
2926                                priv->net_dev->name, txq->oldest, packet->index);
2927
2928 #ifdef CONFIG_IPW2100_DEBUG
2929                 if (packet->info.c_struct.cmd->host_command_reg <
2930                     ARRAY_SIZE(command_types))
2931                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2932                                      command_types[packet->info.c_struct.cmd->
2933                                                    host_command_reg],
2934                                      packet->info.c_struct.cmd->
2935                                      host_command_reg,
2936                                      packet->info.c_struct.cmd->cmd_status_reg);
2937 #endif
2938
2939                 list_add_tail(element, &priv->msg_free_list);
2940                 INC_STAT(&priv->msg_free_stat);
2941                 break;
2942         }
2943
2944         /* advance oldest used TBD pointer to start of next entry */
2945         txq->oldest = (e + 1) % txq->entries;
2946         /* increase available TBDs number */
2947         txq->available += descriptors_used;
2948         SET_STAT(&priv->txq_stat, txq->available);
2949
2950         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2951                      jiffies - packet->jiffy_start);
2952
2953         return (!list_empty(&priv->fw_pend_list));
2954 }
2955
2956 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2957 {
2958         int i = 0;
2959
2960         while (__ipw2100_tx_process(priv) && i < 200)
2961                 i++;
2962
2963         if (i == 200) {
2964                 printk(KERN_WARNING DRV_NAME ": "
2965                        "%s: Driver is running slow (%d iters).\n",
2966                        priv->net_dev->name, i);
2967         }
2968 }
2969
2970 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2971 {
2972         struct list_head *element;
2973         struct ipw2100_tx_packet *packet;
2974         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2975         struct ipw2100_bd *tbd;
2976         int next = txq->next;
2977
2978         while (!list_empty(&priv->msg_pend_list)) {
2979                 /* if there isn't enough space in TBD queue, then
2980                  * don't stuff a new one in.
2981                  * NOTE: 3 are needed as a command will take one,
2982                  *       and there is a minimum of 2 that must be
2983                  *       maintained between the r and w indexes
2984                  */
2985                 if (txq->available <= 3) {
2986                         IPW_DEBUG_TX("no room in tx_queue\n");
2987                         break;
2988                 }
2989
2990                 element = priv->msg_pend_list.next;
2991                 list_del(element);
2992                 DEC_STAT(&priv->msg_pend_stat);
2993
2994                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2995
2996                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2997                              &txq->drv[txq->next],
2998                              (void *)(txq->nic + txq->next *
2999                                       sizeof(struct ipw2100_bd)));
3000
3001                 packet->index = txq->next;
3002
3003                 tbd = &txq->drv[txq->next];
3004
3005                 /* initialize TBD */
3006                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3007                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3008                 /* not marking number of fragments causes problems
3009                  * with f/w debug version */
3010                 tbd->num_fragments = 1;
3011                 tbd->status.info.field =
3012                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3013                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3014
3015                 /* update TBD queue counters */
3016                 txq->next++;
3017                 txq->next %= txq->entries;
3018                 txq->available--;
3019                 DEC_STAT(&priv->txq_stat);
3020
3021                 list_add_tail(element, &priv->fw_pend_list);
3022                 INC_STAT(&priv->fw_pend_stat);
3023         }
3024
3025         if (txq->next != next) {
3026                 /* kick off the DMA by notifying firmware the
3027                  * write index has moved; make sure TBD stores are sync'd */
3028                 wmb();
3029                 write_register(priv->net_dev,
3030                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3031                                txq->next);
3032         }
3033 }
3034
3035 /*
3036  * ipw2100_tx_send_data
3037  *
3038  */
3039 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3040 {
3041         struct list_head *element;
3042         struct ipw2100_tx_packet *packet;
3043         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3044         struct ipw2100_bd *tbd;
3045         int next = txq->next;
3046         int i = 0;
3047         struct ipw2100_data_header *ipw_hdr;
3048         struct ieee80211_hdr_3addr *hdr;
3049
3050         while (!list_empty(&priv->tx_pend_list)) {
3051                 /* if there isn't enough space in TBD queue, then
3052                  * don't stuff a new one in.
3053                  * NOTE: 4 are needed as a data will take two,
3054                  *       and there is a minimum of 2 that must be
3055                  *       maintained between the r and w indexes
3056                  */
3057                 element = priv->tx_pend_list.next;
3058                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3059
3060                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3061                              IPW_MAX_BDS)) {
3062                         /* TODO: Support merging buffers if more than
3063                          * IPW_MAX_BDS are used */
3064                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
3065                                        "Increase fragmentation level.\n",
3066                                        priv->net_dev->name);
3067                 }
3068
3069                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3070                         IPW_DEBUG_TX("no room in tx_queue\n");
3071                         break;
3072                 }
3073
3074                 list_del(element);
3075                 DEC_STAT(&priv->tx_pend_stat);
3076
3077                 tbd = &txq->drv[txq->next];
3078
3079                 packet->index = txq->next;
3080
3081                 ipw_hdr = packet->info.d_struct.data;
3082                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3083                     fragments[0]->data;
3084
3085                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3086                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3087                            Addr3 = DA */
3088                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3089                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3090                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3091                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3092                            Addr3 = BSSID */
3093                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3094                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3095                 }
3096
3097                 ipw_hdr->host_command_reg = SEND;
3098                 ipw_hdr->host_command_reg1 = 0;
3099
3100                 /* For now we only support host based encryption */
3101                 ipw_hdr->needs_encryption = 0;
3102                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3103                 if (packet->info.d_struct.txb->nr_frags > 1)
3104                         ipw_hdr->fragment_size =
3105                             packet->info.d_struct.txb->frag_size -
3106                             IEEE80211_3ADDR_LEN;
3107                 else
3108                         ipw_hdr->fragment_size = 0;
3109
3110                 tbd->host_addr = packet->info.d_struct.data_phys;
3111                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3112                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3113                 tbd->status.info.field =
3114                     IPW_BD_STATUS_TX_FRAME_802_3 |
3115                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3116                 txq->next++;
3117                 txq->next %= txq->entries;
3118
3119                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3120                              packet->index, tbd->host_addr, tbd->buf_length);
3121 #ifdef CONFIG_IPW2100_DEBUG
3122                 if (packet->info.d_struct.txb->nr_frags > 1)
3123                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3124                                        packet->info.d_struct.txb->nr_frags);
3125 #endif
3126
3127                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3128                         tbd = &txq->drv[txq->next];
3129                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3130                                 tbd->status.info.field =
3131                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3132                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3133                         else
3134                                 tbd->status.info.field =
3135                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3136                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3137
3138                         tbd->buf_length = packet->info.d_struct.txb->
3139                             fragments[i]->len - IEEE80211_3ADDR_LEN;
3140
3141                         tbd->host_addr = pci_map_single(priv->pci_dev,
3142                                                         packet->info.d_struct.
3143                                                         txb->fragments[i]->
3144                                                         data +
3145                                                         IEEE80211_3ADDR_LEN,
3146                                                         tbd->buf_length,
3147                                                         PCI_DMA_TODEVICE);
3148
3149                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3150                                      txq->next, tbd->host_addr,
3151                                      tbd->buf_length);
3152
3153                         pci_dma_sync_single_for_device(priv->pci_dev,
3154                                                        tbd->host_addr,
3155                                                        tbd->buf_length,
3156                                                        PCI_DMA_TODEVICE);
3157
3158                         txq->next++;
3159                         txq->next %= txq->entries;
3160                 }
3161
3162                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3163                 SET_STAT(&priv->txq_stat, txq->available);
3164
3165                 list_add_tail(element, &priv->fw_pend_list);
3166                 INC_STAT(&priv->fw_pend_stat);
3167         }
3168
3169         if (txq->next != next) {
3170                 /* kick off the DMA by notifying firmware the
3171                  * write index has moved; make sure TBD stores are sync'd */
3172                 write_register(priv->net_dev,
3173                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3174                                txq->next);
3175         }
3176         return;
3177 }
3178
3179 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3180 {
3181         struct net_device *dev = priv->net_dev;
3182         unsigned long flags;
3183         u32 inta, tmp;
3184
3185         spin_lock_irqsave(&priv->low_lock, flags);
3186         ipw2100_disable_interrupts(priv);
3187
3188         read_register(dev, IPW_REG_INTA, &inta);
3189
3190         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3191                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3192
3193         priv->in_isr++;
3194         priv->interrupts++;
3195
3196         /* We do not loop and keep polling for more interrupts as this
3197          * is frowned upon and doesn't play nicely with other potentially
3198          * chained IRQs */
3199         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3200                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3201
3202         if (inta & IPW2100_INTA_FATAL_ERROR) {
3203                 printk(KERN_WARNING DRV_NAME
3204                        ": Fatal interrupt. Scheduling firmware restart.\n");
3205                 priv->inta_other++;
3206                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3207
3208                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3209                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3210                                priv->net_dev->name, priv->fatal_error);
3211
3212                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3213                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3214                                priv->net_dev->name, tmp);
3215
3216                 /* Wake up any sleeping jobs */
3217                 schedule_reset(priv);
3218         }
3219
3220         if (inta & IPW2100_INTA_PARITY_ERROR) {
3221                 printk(KERN_ERR DRV_NAME
3222                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3223                 priv->inta_other++;
3224                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3225         }
3226
3227         if (inta & IPW2100_INTA_RX_TRANSFER) {
3228                 IPW_DEBUG_ISR("RX interrupt\n");
3229
3230                 priv->rx_interrupts++;
3231
3232                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3233
3234                 __ipw2100_rx_process(priv);
3235                 __ipw2100_tx_complete(priv);
3236         }
3237
3238         if (inta & IPW2100_INTA_TX_TRANSFER) {
3239                 IPW_DEBUG_ISR("TX interrupt\n");
3240
3241                 priv->tx_interrupts++;
3242
3243                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3244
3245                 __ipw2100_tx_complete(priv);
3246                 ipw2100_tx_send_commands(priv);
3247                 ipw2100_tx_send_data(priv);
3248         }
3249
3250         if (inta & IPW2100_INTA_TX_COMPLETE) {
3251                 IPW_DEBUG_ISR("TX complete\n");
3252                 priv->inta_other++;
3253                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3254
3255                 __ipw2100_tx_complete(priv);
3256         }
3257
3258         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3259                 /* ipw2100_handle_event(dev); */
3260                 priv->inta_other++;
3261                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3262         }
3263
3264         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3265                 IPW_DEBUG_ISR("FW init done interrupt\n");
3266                 priv->inta_other++;
3267
3268                 read_register(dev, IPW_REG_INTA, &tmp);
3269                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3270                            IPW2100_INTA_PARITY_ERROR)) {
3271                         write_register(dev, IPW_REG_INTA,
3272                                        IPW2100_INTA_FATAL_ERROR |
3273                                        IPW2100_INTA_PARITY_ERROR);
3274                 }
3275
3276                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3277         }
3278
3279         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3280                 IPW_DEBUG_ISR("Status change interrupt\n");
3281                 priv->inta_other++;
3282                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3283         }
3284
3285         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3286                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3287                 priv->inta_other++;
3288                 write_register(dev, IPW_REG_INTA,
3289                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3290         }
3291
3292         priv->in_isr--;
3293         ipw2100_enable_interrupts(priv);
3294
3295         spin_unlock_irqrestore(&priv->low_lock, flags);
3296
3297         IPW_DEBUG_ISR("exit\n");
3298 }
3299
3300 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3301 {
3302         struct ipw2100_priv *priv = data;
3303         u32 inta, inta_mask;
3304
3305         if (!data)
3306                 return IRQ_NONE;
3307
3308         spin_lock(&priv->low_lock);
3309
3310         /* We check to see if we should be ignoring interrupts before
3311          * we touch the hardware.  During ucode load if we try and handle
3312          * an interrupt we can cause keyboard problems as well as cause
3313          * the ucode to fail to initialize */
3314         if (!(priv->status & STATUS_INT_ENABLED)) {
3315                 /* Shared IRQ */
3316                 goto none;
3317         }
3318
3319         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3320         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3321
3322         if (inta == 0xFFFFFFFF) {
3323                 /* Hardware disappeared */
3324                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3325                 goto none;
3326         }
3327
3328         inta &= IPW_INTERRUPT_MASK;
3329
3330         if (!(inta & inta_mask)) {
3331                 /* Shared interrupt */
3332                 goto none;
3333         }
3334
3335         /* We disable the hardware interrupt here just to prevent unneeded
3336          * calls to be made.  We disable this again within the actual
3337          * work tasklet, so if another part of the code re-enables the
3338          * interrupt, that is fine */
3339         ipw2100_disable_interrupts(priv);
3340
3341         tasklet_schedule(&priv->irq_tasklet);
3342         spin_unlock(&priv->low_lock);
3343
3344         return IRQ_HANDLED;
3345       none:
3346         spin_unlock(&priv->low_lock);
3347         return IRQ_NONE;
3348 }
3349
3350 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3351                       int pri)
3352 {
3353         struct ipw2100_priv *priv = ieee80211_priv(dev);
3354         struct list_head *element;
3355         struct ipw2100_tx_packet *packet;
3356         unsigned long flags;
3357
3358         spin_lock_irqsave(&priv->low_lock, flags);
3359
3360         if (!(priv->status & STATUS_ASSOCIATED)) {
3361                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3362                 priv->ieee->stats.tx_carrier_errors++;
3363                 netif_stop_queue(dev);
3364                 goto fail_unlock;
3365         }
3366
3367         if (list_empty(&priv->tx_free_list))
3368                 goto fail_unlock;
3369
3370         element = priv->tx_free_list.next;
3371         packet = list_entry(element, struct ipw2100_tx_packet, list);
3372
3373         packet->info.d_struct.txb = txb;
3374
3375         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3376         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3377
3378         packet->jiffy_start = jiffies;
3379
3380         list_del(element);
3381         DEC_STAT(&priv->tx_free_stat);
3382
3383         list_add_tail(element, &priv->tx_pend_list);
3384         INC_STAT(&priv->tx_pend_stat);
3385
3386         ipw2100_tx_send_data(priv);
3387
3388         spin_unlock_irqrestore(&priv->low_lock, flags);
3389         return 0;
3390
3391       fail_unlock:
3392         netif_stop_queue(dev);
3393         spin_unlock_irqrestore(&priv->low_lock, flags);
3394         return 1;
3395 }
3396
3397 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3398 {
3399         int i, j, err = -EINVAL;
3400         void *v;
3401         dma_addr_t p;
3402
3403         priv->msg_buffers =
3404             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3405                                                 sizeof(struct
3406                                                        ipw2100_tx_packet),
3407                                                 GFP_KERNEL);
3408         if (!priv->msg_buffers) {
3409                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3410                        "buffers.\n", priv->net_dev->name);
3411                 return -ENOMEM;
3412         }
3413
3414         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3415                 v = pci_alloc_consistent(priv->pci_dev,
3416                                          sizeof(struct ipw2100_cmd_header), &p);
3417                 if (!v) {
3418                         printk(KERN_ERR DRV_NAME ": "
3419                                "%s: PCI alloc failed for msg "
3420                                "buffers.\n", priv->net_dev->name);
3421                         err = -ENOMEM;
3422                         break;
3423                 }
3424
3425                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3426
3427                 priv->msg_buffers[i].type = COMMAND;
3428                 priv->msg_buffers[i].info.c_struct.cmd =
3429                     (struct ipw2100_cmd_header *)v;
3430                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3431         }
3432
3433         if (i == IPW_COMMAND_POOL_SIZE)
3434                 return 0;
3435
3436         for (j = 0; j < i; j++) {
3437                 pci_free_consistent(priv->pci_dev,
3438                                     sizeof(struct ipw2100_cmd_header),
3439                                     priv->msg_buffers[j].info.c_struct.cmd,
3440                                     priv->msg_buffers[j].info.c_struct.
3441                                     cmd_phys);
3442         }
3443
3444         kfree(priv->msg_buffers);
3445         priv->msg_buffers = NULL;
3446
3447         return err;
3448 }
3449
3450 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3451 {
3452         int i;
3453
3454         INIT_LIST_HEAD(&priv->msg_free_list);
3455         INIT_LIST_HEAD(&priv->msg_pend_list);
3456
3457         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3458                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3459         SET_STAT(&priv->msg_free_stat, i);
3460
3461         return 0;
3462 }
3463
3464 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3465 {
3466         int i;
3467
3468         if (!priv->msg_buffers)
3469                 return;
3470
3471         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3472                 pci_free_consistent(priv->pci_dev,
3473                                     sizeof(struct ipw2100_cmd_header),
3474                                     priv->msg_buffers[i].info.c_struct.cmd,
3475                                     priv->msg_buffers[i].info.c_struct.
3476                                     cmd_phys);
3477         }
3478
3479         kfree(priv->msg_buffers);
3480         priv->msg_buffers = NULL;
3481 }
3482
3483 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3484                         char *buf)
3485 {
3486         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3487         char *out = buf;
3488         int i, j;
3489         u32 val;
3490
3491         for (i = 0; i < 16; i++) {
3492                 out += sprintf(out, "[%08X] ", i * 16);
3493                 for (j = 0; j < 16; j += 4) {
3494                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3495                         out += sprintf(out, "%08X ", val);
3496                 }
3497                 out += sprintf(out, "\n");
3498         }
3499
3500         return out - buf;
3501 }
3502
3503 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3504
3505 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3506                         char *buf)
3507 {
3508         struct ipw2100_priv *p = d->driver_data;
3509         return sprintf(buf, "0x%08x\n", (int)p->config);
3510 }
3511
3512 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3513
3514 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3515                            char *buf)
3516 {
3517         struct ipw2100_priv *p = d->driver_data;
3518         return sprintf(buf, "0x%08x\n", (int)p->status);
3519 }
3520
3521 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3522
3523 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3524                                char *buf)
3525 {
3526         struct ipw2100_priv *p = d->driver_data;
3527         return sprintf(buf, "0x%08x\n", (int)p->capability);
3528 }
3529
3530 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3531
3532 #define IPW2100_REG(x) { IPW_ ##x, #x }
3533 static const struct {
3534         u32 addr;
3535         const char *name;
3536 } hw_data[] = {
3537 IPW2100_REG(REG_GP_CNTRL),
3538             IPW2100_REG(REG_GPIO),
3539             IPW2100_REG(REG_INTA),
3540             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3541 #define IPW2100_NIC(x, s) { x, #x, s }
3542 static const struct {
3543         u32 addr;
3544         const char *name;
3545         size_t size;
3546 } nic_data[] = {
3547 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3548             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3549 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3550 static const struct {
3551         u8 index;
3552         const char *name;
3553         const char *desc;
3554 } ord_data[] = {
3555 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3556             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3557                                 "successful Host Tx's (MSDU)"),
3558             IPW2100_ORD(STAT_TX_DIR_DATA,
3559                                 "successful Directed Tx's (MSDU)"),
3560             IPW2100_ORD(STAT_TX_DIR_DATA1,
3561                                 "successful Directed Tx's (MSDU) @ 1MB"),
3562             IPW2100_ORD(STAT_TX_DIR_DATA2,
3563                                 "successful Directed Tx's (MSDU) @ 2MB"),
3564             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3565                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3566             IPW2100_ORD(STAT_TX_DIR_DATA11,
3567                                 "successful Directed Tx's (MSDU) @ 11MB"),
3568             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3569                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3570             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3571                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3572             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3573                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3574             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3575                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3576             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3577             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3578             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3579             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3580             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3581             IPW2100_ORD(STAT_TX_ASSN_RESP,
3582                                 "successful Association response Tx's"),
3583             IPW2100_ORD(STAT_TX_REASSN,
3584                                 "successful Reassociation Tx's"),
3585             IPW2100_ORD(STAT_TX_REASSN_RESP,
3586                                 "successful Reassociation response Tx's"),
3587             IPW2100_ORD(STAT_TX_PROBE,
3588                                 "probes successfully transmitted"),
3589             IPW2100_ORD(STAT_TX_PROBE_RESP,
3590                                 "probe responses successfully transmitted"),
3591             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3592             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3593             IPW2100_ORD(STAT_TX_DISASSN,
3594                                 "successful Disassociation TX"),
3595             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3596             IPW2100_ORD(STAT_TX_DEAUTH,
3597                                 "successful Deauthentication TX"),
3598             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3599                                 "Total successful Tx data bytes"),
3600             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3601             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3602             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3603             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3604             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3605             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3606             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3607                                 "times max tries in a hop failed"),
3608             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3609                                 "times disassociation failed"),
3610             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3611             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3612             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3613             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3614             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3615             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3616             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3617                                 "directed packets at 5.5MB"),
3618             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3619             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3620             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3621                                 "nondirected packets at 1MB"),
3622             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3623                                 "nondirected packets at 2MB"),
3624             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3625                                 "nondirected packets at 5.5MB"),
3626             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3627                                 "nondirected packets at 11MB"),
3628             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3629             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3630                                                                     "Rx CTS"),
3631             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3632             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3633             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3634             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3635             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3636             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3637             IPW2100_ORD(STAT_RX_REASSN_RESP,
3638                                 "Reassociation response Rx's"),
3639             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3640             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3641             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3642             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3643             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3644             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3645             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3646             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3647                                 "Total rx data bytes received"),
3648             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3649             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3650             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3651             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3652             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3653             IPW2100_ORD(STAT_RX_DUPLICATE1,
3654                                 "duplicate rx packets at 1MB"),
3655             IPW2100_ORD(STAT_RX_DUPLICATE2,
3656                                 "duplicate rx packets at 2MB"),
3657             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3658                                 "duplicate rx packets at 5.5MB"),
3659             IPW2100_ORD(STAT_RX_DUPLICATE11,
3660                                 "duplicate rx packets at 11MB"),
3661             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3662             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3663             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3664             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3665             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3666                                 "rx frames with invalid protocol"),
3667             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3668             IPW2100_ORD(STAT_RX_NO_BUFFER,
3669                                 "rx frames rejected due to no buffer"),
3670             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3671                                 "rx frames dropped due to missing fragment"),
3672             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3673                                 "rx frames dropped due to non-sequential fragment"),
3674             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3675                                 "rx frames dropped due to unmatched 1st frame"),
3676             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3677                                 "rx frames dropped due to uncompleted frame"),
3678             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3679                                 "ICV errors during decryption"),
3680             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3681             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3682             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3683                                 "poll response timeouts"),
3684             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3685                                 "timeouts waiting for last {broad,multi}cast pkt"),
3686             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3687             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3688             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3689             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3690             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3691                                 "current calculation of % missed beacons"),
3692             IPW2100_ORD(STAT_PERCENT_RETRIES,
3693                                 "current calculation of % missed tx retries"),
3694             IPW2100_ORD(ASSOCIATED_AP_PTR,
3695                                 "0 if not associated, else pointer to AP table entry"),
3696             IPW2100_ORD(AVAILABLE_AP_CNT,
3697                                 "AP's decsribed in the AP table"),
3698             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3699             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3700             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3701             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3702                                 "failures due to response fail"),
3703             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3704             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3705             IPW2100_ORD(STAT_ROAM_INHIBIT,
3706                                 "times roaming was inhibited due to activity"),
3707             IPW2100_ORD(RSSI_AT_ASSN,
3708                                 "RSSI of associated AP at time of association"),
3709             IPW2100_ORD(STAT_ASSN_CAUSE1,
3710                                 "reassociation: no probe response or TX on hop"),
3711             IPW2100_ORD(STAT_ASSN_CAUSE2,
3712                                 "reassociation: poor tx/rx quality"),
3713             IPW2100_ORD(STAT_ASSN_CAUSE3,
3714                                 "reassociation: tx/rx quality (excessive AP load"),
3715             IPW2100_ORD(STAT_ASSN_CAUSE4,
3716                                 "reassociation: AP RSSI level"),
3717             IPW2100_ORD(STAT_ASSN_CAUSE5,
3718                                 "reassociations due to load leveling"),
3719             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3720             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3721                                 "times authentication response failed"),
3722             IPW2100_ORD(STATION_TABLE_CNT,
3723                                 "entries in association table"),
3724             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3725             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3726             IPW2100_ORD(COUNTRY_CODE,
3727                                 "IEEE country code as recv'd from beacon"),
3728             IPW2100_ORD(COUNTRY_CHANNELS,
3729                                 "channels suported by country"),
3730             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3731             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3732             IPW2100_ORD(ANTENNA_DIVERSITY,
3733                                 "TRUE if antenna diversity is disabled"),
3734             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3735             IPW2100_ORD(OUR_FREQ,
3736                                 "current radio freq lower digits - channel ID"),
3737             IPW2100_ORD(RTC_TIME, "current RTC time"),
3738             IPW2100_ORD(PORT_TYPE, "operating mode"),
3739             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3740             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3741             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3742             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3743             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3744             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3745             IPW2100_ORD(CAPABILITIES,
3746                                 "Management frame capability field"),
3747             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3748             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3749             IPW2100_ORD(RTS_THRESHOLD,
3750                                 "Min packet length for RTS handshaking"),
3751             IPW2100_ORD(INT_MODE, "International mode"),
3752             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3753                                 "protocol frag threshold"),
3754             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3755                                 "EEPROM offset in SRAM"),
3756             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3757                                 "EEPROM size in SRAM"),
3758             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3759             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3760                                 "EEPROM IBSS 11b channel set"),
3761             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3762             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3763             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3764             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3765             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3766
3767 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3768                               char *buf)
3769 {
3770         int i;
3771         struct ipw2100_priv *priv = dev_get_drvdata(d);
3772         struct net_device *dev = priv->net_dev;
3773         char *out = buf;
3774         u32 val = 0;
3775
3776         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3777
3778         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3779                 read_register(dev, hw_data[i].addr, &val);
3780                 out += sprintf(out, "%30s [%08X] : %08X\n",
3781                                hw_data[i].name, hw_data[i].addr, val);
3782         }
3783
3784         return out - buf;
3785 }
3786
3787 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3788
3789 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3790                              char *buf)
3791 {
3792         struct ipw2100_priv *priv = dev_get_drvdata(d);
3793         struct net_device *dev = priv->net_dev;
3794         char *out = buf;
3795         int i;
3796
3797         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3798
3799         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3800                 u8 tmp8;
3801                 u16 tmp16;
3802                 u32 tmp32;
3803
3804                 switch (nic_data[i].size) {
3805                 case 1:
3806                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3807                         out += sprintf(out, "%30s [%08X] : %02X\n",
3808                                        nic_data[i].name, nic_data[i].addr,
3809                                        tmp8);
3810                         break;
3811                 case 2:
3812                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3813                         out += sprintf(out, "%30s [%08X] : %04X\n",
3814                                        nic_data[i].name, nic_data[i].addr,
3815                                        tmp16);
3816                         break;
3817                 case 4:
3818                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3819                         out += sprintf(out, "%30s [%08X] : %08X\n",
3820                                        nic_data[i].name, nic_data[i].addr,
3821                                        tmp32);
3822                         break;
3823                 }
3824         }
3825         return out - buf;
3826 }
3827
3828 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3829
3830 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3831                            char *buf)
3832 {
3833         struct ipw2100_priv *priv = dev_get_drvdata(d);
3834         struct net_device *dev = priv->net_dev;
3835         static unsigned long loop = 0;
3836         int len = 0;
3837         u32 buffer[4];
3838         int i;
3839         char line[81];
3840
3841         if (loop >= 0x30000)
3842                 loop = 0;
3843
3844         /* sysfs provides us PAGE_SIZE buffer */
3845         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3846
3847                 if (priv->snapshot[0])
3848                         for (i = 0; i < 4; i++)
3849                                 buffer[i] =
3850                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3851                 else
3852                         for (i = 0; i < 4; i++)
3853                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3854
3855                 if (priv->dump_raw)
3856                         len += sprintf(buf + len,
3857                                        "%c%c%c%c"
3858                                        "%c%c%c%c"
3859                                        "%c%c%c%c"
3860                                        "%c%c%c%c",
3861                                        ((u8 *) buffer)[0x0],
3862                                        ((u8 *) buffer)[0x1],
3863                                        ((u8 *) buffer)[0x2],
3864                                        ((u8 *) buffer)[0x3],
3865                                        ((u8 *) buffer)[0x4],
3866                                        ((u8 *) buffer)[0x5],
3867                                        ((u8 *) buffer)[0x6],
3868                                        ((u8 *) buffer)[0x7],
3869                                        ((u8 *) buffer)[0x8],
3870                                        ((u8 *) buffer)[0x9],
3871                                        ((u8 *) buffer)[0xa],
3872                                        ((u8 *) buffer)[0xb],
3873                                        ((u8 *) buffer)[0xc],
3874                                        ((u8 *) buffer)[0xd],
3875                                        ((u8 *) buffer)[0xe],
3876                                        ((u8 *) buffer)[0xf]);
3877                 else
3878                         len += sprintf(buf + len, "%s\n",
3879                                        snprint_line(line, sizeof(line),
3880                                                     (u8 *) buffer, 16, loop));
3881                 loop += 16;
3882         }
3883
3884         return len;
3885 }
3886
3887 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3888                             const char *buf, size_t count)
3889 {
3890         struct ipw2100_priv *priv = dev_get_drvdata(d);
3891         struct net_device *dev = priv->net_dev;
3892         const char *p = buf;
3893
3894         (void)dev;              /* kill unused-var warning for debug-only code */
3895
3896         if (count < 1)
3897                 return count;
3898
3899         if (p[0] == '1' ||
3900             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3901                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3902                                dev->name);
3903                 priv->dump_raw = 1;
3904
3905         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3906                                    tolower(p[1]) == 'f')) {
3907                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3908                                dev->name);
3909                 priv->dump_raw = 0;
3910
3911         } else if (tolower(p[0]) == 'r') {
3912                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3913                 ipw2100_snapshot_free(priv);
3914
3915         } else
3916                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3917                                "reset = clear memory snapshot\n", dev->name);
3918
3919         return count;
3920 }
3921
3922 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3923
3924 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3925                              char *buf)
3926 {
3927         struct ipw2100_priv *priv = dev_get_drvdata(d);
3928         u32 val = 0;
3929         int len = 0;
3930         u32 val_len;
3931         static int loop = 0;
3932
3933         if (priv->status & STATUS_RF_KILL_MASK)
3934                 return 0;
3935
3936         if (loop >= ARRAY_SIZE(ord_data))
3937                 loop = 0;
3938
3939         /* sysfs provides us PAGE_SIZE buffer */
3940         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3941                 val_len = sizeof(u32);
3942
3943                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3944                                         &val_len))
3945                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3946                                        ord_data[loop].index,
3947                                        ord_data[loop].desc);
3948                 else
3949                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3950                                        ord_data[loop].index, val,
3951                                        ord_data[loop].desc);
3952                 loop++;
3953         }
3954
3955         return len;
3956 }
3957
3958 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3959
3960 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3961                           char *buf)
3962 {
3963         struct ipw2100_priv *priv = dev_get_drvdata(d);
3964         char *out = buf;
3965
3966         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3967                        priv->interrupts, priv->tx_interrupts,
3968                        priv->rx_interrupts, priv->inta_other);
3969         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3970         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3971 #ifdef CONFIG_IPW2100_DEBUG
3972         out += sprintf(out, "packet mismatch image: %s\n",
3973                        priv->snapshot[0] ? "YES" : "NO");
3974 #endif
3975
3976         return out - buf;
3977 }
3978
3979 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3980
3981 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3982 {
3983         int err;
3984
3985         if (mode == priv->ieee->iw_mode)
3986                 return 0;
3987
3988         err = ipw2100_disable_adapter(priv);
3989         if (err) {
3990                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3991                        priv->net_dev->name, err);
3992                 return err;
3993         }
3994
3995         switch (mode) {
3996         case IW_MODE_INFRA:
3997                 priv->net_dev->type = ARPHRD_ETHER;
3998                 break;
3999         case IW_MODE_ADHOC:
4000                 priv->net_dev->type = ARPHRD_ETHER;
4001                 break;
4002 #ifdef CONFIG_IPW2100_MONITOR
4003         case IW_MODE_MONITOR:
4004                 priv->last_mode = priv->ieee->iw_mode;
4005                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4006                 break;
4007 #endif                          /* CONFIG_IPW2100_MONITOR */
4008         }
4009
4010         priv->ieee->iw_mode = mode;
4011
4012 #ifdef CONFIG_PM
4013         /* Indicate ipw2100_download_firmware download firmware
4014          * from disk instead of memory. */
4015         ipw2100_firmware.version = 0;
4016 #endif
4017
4018         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
4019         priv->reset_backoff = 0;
4020         schedule_reset(priv);
4021
4022         return 0;
4023 }
4024
4025 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4026                               char *buf)
4027 {
4028         struct ipw2100_priv *priv = dev_get_drvdata(d);
4029         int len = 0;
4030
4031 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4032
4033         if (priv->status & STATUS_ASSOCIATED)
4034                 len += sprintf(buf + len, "connected: %lu\n",
4035                                get_seconds() - priv->connect_start);
4036         else
4037                 len += sprintf(buf + len, "not connected\n");
4038
4039         DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4040         DUMP_VAR(status, "08lx");
4041         DUMP_VAR(config, "08lx");
4042         DUMP_VAR(capability, "08lx");
4043
4044         len +=
4045             sprintf(buf + len, "last_rtc: %lu\n",
4046                     (unsigned long)priv->last_rtc);
4047
4048         DUMP_VAR(fatal_error, "d");
4049         DUMP_VAR(stop_hang_check, "d");
4050         DUMP_VAR(stop_rf_kill, "d");
4051         DUMP_VAR(messages_sent, "d");
4052
4053         DUMP_VAR(tx_pend_stat.value, "d");
4054         DUMP_VAR(tx_pend_stat.hi, "d");
4055
4056         DUMP_VAR(tx_free_stat.value, "d");
4057         DUMP_VAR(tx_free_stat.lo, "d");
4058
4059         DUMP_VAR(msg_free_stat.value, "d");
4060         DUMP_VAR(msg_free_stat.lo, "d");
4061
4062         DUMP_VAR(msg_pend_stat.value, "d");
4063         DUMP_VAR(msg_pend_stat.hi, "d");
4064
4065         DUMP_VAR(fw_pend_stat.value, "d");
4066         DUMP_VAR(fw_pend_stat.hi, "d");
4067
4068         DUMP_VAR(txq_stat.value, "d");
4069         DUMP_VAR(txq_stat.lo, "d");
4070
4071         DUMP_VAR(ieee->scans, "d");
4072         DUMP_VAR(reset_backoff, "d");
4073
4074         return len;
4075 }
4076
4077 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4078
4079 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4080                             char *buf)
4081 {
4082         struct ipw2100_priv *priv = dev_get_drvdata(d);
4083         char essid[IW_ESSID_MAX_SIZE + 1];
4084         u8 bssid[ETH_ALEN];
4085         u32 chan = 0;
4086         char *out = buf;
4087         int length;
4088         int ret;
4089         DECLARE_MAC_BUF(mac);
4090
4091         if (priv->status & STATUS_RF_KILL_MASK)
4092                 return 0;
4093
4094         memset(essid, 0, sizeof(essid));
4095         memset(bssid, 0, sizeof(bssid));
4096
4097         length = IW_ESSID_MAX_SIZE;
4098         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4099         if (ret)
4100                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4101                                __LINE__);
4102
4103         length = sizeof(bssid);
4104         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4105                                   bssid, &length);
4106         if (ret)
4107                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4108                                __LINE__);
4109
4110         length = sizeof(u32);
4111         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4112         if (ret)
4113                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4114                                __LINE__);
4115
4116         out += sprintf(out, "ESSID: %s\n", essid);
4117         out += sprintf(out, "BSSID:   %s\n", print_mac(mac, bssid));
4118         out += sprintf(out, "Channel: %d\n", chan);
4119
4120         return out - buf;
4121 }
4122
4123 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4124
4125 #ifdef CONFIG_IPW2100_DEBUG
4126 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4127 {
4128         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4129 }
4130
4131 static ssize_t store_debug_level(struct device_driver *d,
4132                                  const char *buf, size_t count)
4133 {
4134         char *p = (char *)buf;
4135         u32 val;
4136
4137         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4138                 p++;
4139                 if (p[0] == 'x' || p[0] == 'X')
4140                         p++;
4141                 val = simple_strtoul(p, &p, 16);
4142         } else
4143                 val = simple_strtoul(p, &p, 10);
4144         if (p == buf)
4145                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4146         else
4147                 ipw2100_debug_level = val;
4148
4149         return strnlen(buf, count);
4150 }
4151
4152 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4153                    store_debug_level);
4154 #endif                          /* CONFIG_IPW2100_DEBUG */
4155
4156 static ssize_t show_fatal_error(struct device *d,
4157                                 struct device_attribute *attr, char *buf)
4158 {
4159         struct ipw2100_priv *priv = dev_get_drvdata(d);
4160         char *out = buf;
4161         int i;
4162
4163         if (priv->fatal_error)
4164                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4165         else
4166                 out += sprintf(out, "0\n");
4167
4168         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4169                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4170                                         IPW2100_ERROR_QUEUE])
4171                         continue;
4172
4173                 out += sprintf(out, "%d. 0x%08X\n", i,
4174                                priv->fatal_errors[(priv->fatal_index - i) %
4175                                                   IPW2100_ERROR_QUEUE]);
4176         }
4177
4178         return out - buf;
4179 }
4180
4181 static ssize_t store_fatal_error(struct device *d,
4182                                  struct device_attribute *attr, const char *buf,
4183                                  size_t count)
4184 {
4185         struct ipw2100_priv *priv = dev_get_drvdata(d);
4186         schedule_reset(priv);
4187         return count;
4188 }
4189
4190 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4191                    store_fatal_error);
4192
4193 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4194                              char *buf)
4195 {
4196         struct ipw2100_priv *priv = dev_get_drvdata(d);
4197         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4198 }
4199
4200 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4201                               const char *buf, size_t count)
4202 {
4203         struct ipw2100_priv *priv = dev_get_drvdata(d);
4204         struct net_device *dev = priv->net_dev;
4205         char buffer[] = "00000000";
4206         unsigned long len =
4207             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4208         unsigned long val;
4209         char *p = buffer;
4210
4211         (void)dev;              /* kill unused-var warning for debug-only code */
4212
4213         IPW_DEBUG_INFO("enter\n");
4214
4215         strncpy(buffer, buf, len);
4216         buffer[len] = 0;
4217
4218         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4219                 p++;
4220                 if (p[0] == 'x' || p[0] == 'X')
4221                         p++;
4222                 val = simple_strtoul(p, &p, 16);
4223         } else
4224                 val = simple_strtoul(p, &p, 10);
4225         if (p == buffer) {
4226                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4227         } else {
4228                 priv->ieee->scan_age = val;
4229                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4230         }
4231
4232         IPW_DEBUG_INFO("exit\n");
4233         return len;
4234 }
4235
4236 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4237
4238 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4239                             char *buf)
4240 {
4241         /* 0 - RF kill not enabled
4242            1 - SW based RF kill active (sysfs)
4243            2 - HW based RF kill active
4244            3 - Both HW and SW baed RF kill active */
4245         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4246         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4247             (rf_kill_active(priv) ? 0x2 : 0x0);
4248         return sprintf(buf, "%i\n", val);
4249 }
4250
4251 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4252 {
4253         if ((disable_radio ? 1 : 0) ==
4254             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4255                 return 0;
4256
4257         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4258                           disable_radio ? "OFF" : "ON");
4259
4260         mutex_lock(&priv->action_mutex);
4261
4262         if (disable_radio) {
4263                 priv->status |= STATUS_RF_KILL_SW;
4264                 ipw2100_down(priv);
4265         } else {
4266                 priv->status &= ~STATUS_RF_KILL_SW;
4267                 if (rf_kill_active(priv)) {
4268                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4269                                           "disabled by HW switch\n");
4270                         /* Make sure the RF_KILL check timer is running */
4271                         priv->stop_rf_kill = 0;
4272                         cancel_delayed_work(&priv->rf_kill);
4273                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
4274                                            round_jiffies(HZ));
4275                 } else
4276                         schedule_reset(priv);
4277         }
4278
4279         mutex_unlock(&priv->action_mutex);
4280         return 1;
4281 }
4282
4283 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4284                              const char *buf, size_t count)
4285 {
4286         struct ipw2100_priv *priv = dev_get_drvdata(d);
4287         ipw_radio_kill_sw(priv, buf[0] == '1');
4288         return count;
4289 }
4290
4291 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4292
4293 static struct attribute *ipw2100_sysfs_entries[] = {
4294         &dev_attr_hardware.attr,
4295         &dev_attr_registers.attr,
4296         &dev_attr_ordinals.attr,
4297         &dev_attr_pci.attr,
4298         &dev_attr_stats.attr,
4299         &dev_attr_internals.attr,
4300         &dev_attr_bssinfo.attr,
4301         &dev_attr_memory.attr,
4302         &dev_attr_scan_age.attr,
4303         &dev_attr_fatal_error.attr,
4304         &dev_attr_rf_kill.attr,
4305         &dev_attr_cfg.attr,
4306         &dev_attr_status.attr,
4307         &dev_attr_capability.attr,
4308         NULL,
4309 };
4310
4311 static struct attribute_group ipw2100_attribute_group = {
4312         .attrs = ipw2100_sysfs_entries,
4313 };
4314
4315 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4316 {
4317         struct ipw2100_status_queue *q = &priv->status_queue;
4318
4319         IPW_DEBUG_INFO("enter\n");
4320
4321         q->size = entries * sizeof(struct ipw2100_status);
4322         q->drv =
4323             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4324                                                           q->size, &q->nic);
4325         if (!q->drv) {
4326                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4327                 return -ENOMEM;
4328         }
4329
4330         memset(q->drv, 0, q->size);
4331
4332         IPW_DEBUG_INFO("exit\n");
4333
4334         return 0;
4335 }
4336
4337 static void status_queue_free(struct ipw2100_priv *priv)
4338 {
4339         IPW_DEBUG_INFO("enter\n");
4340
4341         if (priv->status_queue.drv) {
4342                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4343                                     priv->status_queue.drv,
4344                                     priv->status_queue.nic);
4345                 priv->status_queue.drv = NULL;
4346         }
4347
4348         IPW_DEBUG_INFO("exit\n");
4349 }
4350
4351 static int bd_queue_allocate(struct ipw2100_priv *priv,
4352                              struct ipw2100_bd_queue *q, int entries)
4353 {
4354         IPW_DEBUG_INFO("enter\n");
4355
4356         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4357
4358         q->entries = entries;
4359         q->size = entries * sizeof(struct ipw2100_bd);
4360         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4361         if (!q->drv) {
4362                 IPW_DEBUG_INFO
4363                     ("can't allocate shared memory for buffer descriptors\n");
4364                 return -ENOMEM;
4365         }
4366         memset(q->drv, 0, q->size);
4367
4368         IPW_DEBUG_INFO("exit\n");
4369
4370         return 0;
4371 }
4372
4373 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4374 {
4375         IPW_DEBUG_INFO("enter\n");
4376
4377         if (!q)
4378                 return;
4379
4380         if (q->drv) {
4381                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4382                 q->drv = NULL;
4383         }
4384
4385         IPW_DEBUG_INFO("exit\n");
4386 }
4387
4388 static void bd_queue_initialize(struct ipw2100_priv *priv,
4389                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4390                                 u32 r, u32 w)
4391 {
4392         IPW_DEBUG_INFO("enter\n");
4393
4394         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4395                        (u32) q->nic);
4396
4397         write_register(priv->net_dev, base, q->nic);
4398         write_register(priv->net_dev, size, q->entries);
4399         write_register(priv->net_dev, r, q->oldest);
4400         write_register(priv->net_dev, w, q->next);
4401
4402         IPW_DEBUG_INFO("exit\n");
4403 }
4404
4405 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4406 {
4407         if (priv->workqueue) {
4408                 priv->stop_rf_kill = 1;
4409                 priv->stop_hang_check = 1;
4410                 cancel_delayed_work(&priv->reset_work);
4411                 cancel_delayed_work(&priv->security_work);
4412                 cancel_delayed_work(&priv->wx_event_work);
4413                 cancel_delayed_work(&priv->hang_check);
4414                 cancel_delayed_work(&priv->rf_kill);
4415                 cancel_delayed_work(&priv->scan_event_later);
4416                 destroy_workqueue(priv->workqueue);
4417                 priv->workqueue = NULL;
4418         }
4419 }
4420
4421 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4422 {
4423         int i, j, err = -EINVAL;
4424         void *v;
4425         dma_addr_t p;
4426
4427         IPW_DEBUG_INFO("enter\n");
4428
4429         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4430         if (err) {
4431                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4432                                 priv->net_dev->name);
4433                 return err;
4434         }
4435
4436         priv->tx_buffers =
4437             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4438                                                 sizeof(struct
4439                                                        ipw2100_tx_packet),
4440                                                 GFP_ATOMIC);
4441         if (!priv->tx_buffers) {
4442                 printk(KERN_ERR DRV_NAME
4443                        ": %s: alloc failed form tx buffers.\n",
4444                        priv->net_dev->name);
4445                 bd_queue_free(priv, &priv->tx_queue);
4446                 return -ENOMEM;
4447         }
4448
4449         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4450                 v = pci_alloc_consistent(priv->pci_dev,
4451                                          sizeof(struct ipw2100_data_header),
4452                                          &p);
4453                 if (!v) {
4454                         printk(KERN_ERR DRV_NAME
4455                                ": %s: PCI alloc failed for tx " "buffers.\n",
4456                                priv->net_dev->name);
4457                         err = -ENOMEM;
4458                         break;
4459                 }
4460
4461                 priv->tx_buffers[i].type = DATA;
4462                 priv->tx_buffers[i].info.d_struct.data =
4463                     (struct ipw2100_data_header *)v;
4464                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4465                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4466         }
4467
4468         if (i == TX_PENDED_QUEUE_LENGTH)
4469                 return 0;
4470
4471         for (j = 0; j < i; j++) {
4472                 pci_free_consistent(priv->pci_dev,
4473                                     sizeof(struct ipw2100_data_header),
4474                                     priv->tx_buffers[j].info.d_struct.data,
4475                                     priv->tx_buffers[j].info.d_struct.
4476                                     data_phys);
4477         }
4478
4479         kfree(priv->tx_buffers);
4480         priv->tx_buffers = NULL;
4481
4482         return err;
4483 }
4484
4485 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4486 {
4487         int i;
4488
4489         IPW_DEBUG_INFO("enter\n");
4490
4491         /*
4492          * reinitialize packet info lists
4493          */
4494         INIT_LIST_HEAD(&priv->fw_pend_list);
4495         INIT_STAT(&priv->fw_pend_stat);
4496
4497         /*
4498          * reinitialize lists
4499          */
4500         INIT_LIST_HEAD(&priv->tx_pend_list);
4501         INIT_LIST_HEAD(&priv->tx_free_list);
4502         INIT_STAT(&priv->tx_pend_stat);
4503         INIT_STAT(&priv->tx_free_stat);
4504
4505         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4506                 /* We simply drop any SKBs that have been queued for
4507                  * transmit */
4508                 if (priv->tx_buffers[i].info.d_struct.txb) {
4509                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4510                                            txb);
4511                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4512                 }
4513
4514                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4515         }
4516
4517         SET_STAT(&priv->tx_free_stat, i);
4518
4519         priv->tx_queue.oldest = 0;
4520         priv->tx_queue.available = priv->tx_queue.entries;
4521         priv->tx_queue.next = 0;
4522         INIT_STAT(&priv->txq_stat);
4523         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4524
4525         bd_queue_initialize(priv, &priv->tx_queue,
4526                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4527                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4528                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4529                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4530
4531         IPW_DEBUG_INFO("exit\n");
4532
4533 }
4534
4535 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4536 {
4537         int i;
4538
4539         IPW_DEBUG_INFO("enter\n");
4540
4541         bd_queue_free(priv, &priv->tx_queue);
4542
4543         if (!priv->tx_buffers)
4544                 return;
4545
4546         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4547                 if (priv->tx_buffers[i].info.d_struct.txb) {
4548                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4549                                            txb);
4550                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4551                 }
4552                 if (priv->tx_buffers[i].info.d_struct.data)
4553                         pci_free_consistent(priv->pci_dev,
4554                                             sizeof(struct ipw2100_data_header),
4555                                             priv->tx_buffers[i].info.d_struct.
4556                                             data,
4557                                             priv->tx_buffers[i].info.d_struct.
4558                                             data_phys);
4559         }
4560
4561         kfree(priv->tx_buffers);
4562         priv->tx_buffers = NULL;
4563
4564         IPW_DEBUG_INFO("exit\n");
4565 }
4566
4567 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4568 {
4569         int i, j, err = -EINVAL;
4570
4571         IPW_DEBUG_INFO("enter\n");
4572
4573         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4574         if (err) {
4575                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4576                 return err;
4577         }
4578
4579         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4580         if (err) {
4581                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4582                 bd_queue_free(priv, &priv->rx_queue);
4583                 return err;
4584         }
4585
4586         /*
4587          * allocate packets
4588          */
4589         priv->rx_buffers = (struct ipw2100_rx_packet *)
4590             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4591                     GFP_KERNEL);
4592         if (!priv->rx_buffers) {
4593                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4594
4595                 bd_queue_free(priv, &priv->rx_queue);
4596
4597                 status_queue_free(priv);
4598
4599                 return -ENOMEM;
4600         }
4601
4602         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4603                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4604
4605                 err = ipw2100_alloc_skb(priv, packet);
4606                 if (unlikely(err)) {
4607                         err = -ENOMEM;
4608                         break;
4609                 }
4610
4611                 /* The BD holds the cache aligned address */
4612                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4613                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4614                 priv->status_queue.drv[i].status_fields = 0;
4615         }
4616
4617         if (i == RX_QUEUE_LENGTH)
4618                 return 0;
4619
4620         for (j = 0; j < i; j++) {
4621                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4622                                  sizeof(struct ipw2100_rx_packet),
4623                                  PCI_DMA_FROMDEVICE);
4624                 dev_kfree_skb(priv->rx_buffers[j].skb);
4625         }
4626
4627         kfree(priv->rx_buffers);
4628         priv->rx_buffers = NULL;
4629
4630         bd_queue_free(priv, &priv->rx_queue);
4631
4632         status_queue_free(priv);
4633
4634         return err;
4635 }
4636
4637 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4638 {
4639         IPW_DEBUG_INFO("enter\n");
4640
4641         priv->rx_queue.oldest = 0;
4642         priv->rx_queue.available = priv->rx_queue.entries - 1;
4643         priv->rx_queue.next = priv->rx_queue.entries - 1;
4644
4645         INIT_STAT(&priv->rxq_stat);
4646         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4647
4648         bd_queue_initialize(priv, &priv->rx_queue,
4649                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4650                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4651                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4652                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4653
4654         /* set up the status queue */
4655         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4656                        priv->status_queue.nic);
4657
4658         IPW_DEBUG_INFO("exit\n");
4659 }
4660
4661 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4662 {
4663         int i;
4664
4665         IPW_DEBUG_INFO("enter\n");
4666
4667         bd_queue_free(priv, &priv->rx_queue);
4668         status_queue_free(priv);
4669
4670         if (!priv->rx_buffers)
4671                 return;
4672
4673         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4674                 if (priv->rx_buffers[i].rxp) {
4675                         pci_unmap_single(priv->pci_dev,
4676                                          priv->rx_buffers[i].dma_addr,
4677                                          sizeof(struct ipw2100_rx),
4678                                          PCI_DMA_FROMDEVICE);
4679                         dev_kfree_skb(priv->rx_buffers[i].skb);
4680                 }
4681         }
4682
4683         kfree(priv->rx_buffers);
4684         priv->rx_buffers = NULL;
4685
4686         IPW_DEBUG_INFO("exit\n");
4687 }
4688
4689 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4690 {
4691         u32 length = ETH_ALEN;
4692         u8 addr[ETH_ALEN];
4693         DECLARE_MAC_BUF(mac);
4694
4695         int err;
4696
4697         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4698         if (err) {
4699                 IPW_DEBUG_INFO("MAC address read failed\n");
4700                 return -EIO;
4701         }
4702
4703         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4704         IPW_DEBUG_INFO("card MAC is %s\n",
4705                        print_mac(mac, priv->net_dev->dev_addr));
4706
4707         return 0;
4708 }
4709
4710 /********************************************************************
4711  *
4712  * Firmware Commands
4713  *
4714  ********************************************************************/
4715
4716 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4717 {
4718         struct host_command cmd = {
4719                 .host_command = ADAPTER_ADDRESS,
4720                 .host_command_sequence = 0,
4721                 .host_command_length = ETH_ALEN
4722         };
4723         int err;
4724
4725         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4726
4727         IPW_DEBUG_INFO("enter\n");
4728
4729         if (priv->config & CFG_CUSTOM_MAC) {
4730                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4731                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4732         } else
4733                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4734                        ETH_ALEN);
4735
4736         err = ipw2100_hw_send_command(priv, &cmd);
4737
4738         IPW_DEBUG_INFO("exit\n");
4739         return err;
4740 }
4741
4742 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4743                                  int batch_mode)
4744 {
4745         struct host_command cmd = {
4746                 .host_command = PORT_TYPE,
4747                 .host_command_sequence = 0,
4748                 .host_command_length = sizeof(u32)
4749         };
4750         int err;
4751
4752         switch (port_type) {
4753         case IW_MODE_INFRA:
4754                 cmd.host_command_parameters[0] = IPW_BSS;
4755                 break;
4756         case IW_MODE_ADHOC:
4757                 cmd.host_command_parameters[0] = IPW_IBSS;
4758                 break;
4759         }
4760
4761         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4762                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4763
4764         if (!batch_mode) {
4765                 err = ipw2100_disable_adapter(priv);
4766                 if (err) {
4767                         printk(KERN_ERR DRV_NAME
4768                                ": %s: Could not disable adapter %d\n",
4769                                priv->net_dev->name, err);
4770                         return err;
4771                 }
4772         }
4773
4774         /* send cmd to firmware */
4775         err = ipw2100_hw_send_command(priv, &cmd);
4776
4777         if (!batch_mode)
4778                 ipw2100_enable_adapter(priv);
4779
4780         return err;
4781 }
4782
4783 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4784                                int batch_mode)
4785 {
4786         struct host_command cmd = {
4787                 .host_command = CHANNEL,
4788                 .host_command_sequence = 0,
4789                 .host_command_length = sizeof(u32)
4790         };
4791         int err;
4792
4793         cmd.host_command_parameters[0] = channel;
4794
4795         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4796
4797         /* If BSS then we don't support channel selection */
4798         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4799                 return 0;
4800
4801         if ((channel != 0) &&
4802             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4803                 return -EINVAL;
4804
4805         if (!batch_mode) {
4806                 err = ipw2100_disable_adapter(priv);
4807                 if (err)
4808                         return err;
4809         }
4810
4811         err = ipw2100_hw_send_command(priv, &cmd);
4812         if (err) {
4813                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4814                 return err;
4815         }
4816
4817         if (channel)
4818                 priv->config |= CFG_STATIC_CHANNEL;
4819         else
4820                 priv->config &= ~CFG_STATIC_CHANNEL;
4821
4822         priv->channel = channel;
4823
4824         if (!batch_mode) {
4825                 err = ipw2100_enable_adapter(priv);
4826                 if (err)
4827                         return err;
4828         }
4829
4830         return 0;
4831 }
4832
4833 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4834 {
4835         struct host_command cmd = {
4836                 .host_command = SYSTEM_CONFIG,
4837                 .host_command_sequence = 0,
4838                 .host_command_length = 12,
4839         };
4840         u32 ibss_mask, len = sizeof(u32);
4841         int err;
4842
4843         /* Set system configuration */
4844
4845         if (!batch_mode) {
4846                 err = ipw2100_disable_adapter(priv);
4847                 if (err)
4848                         return err;
4849         }
4850
4851         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4852                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4853
4854         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4855             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4856
4857         if (!(priv->config & CFG_LONG_PREAMBLE))
4858                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4859
4860         err = ipw2100_get_ordinal(priv,
4861                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4862                                   &ibss_mask, &len);
4863         if (err)
4864                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4865
4866         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4867         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4868
4869         /* 11b only */
4870         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4871
4872         err = ipw2100_hw_send_command(priv, &cmd);
4873         if (err)
4874                 return err;
4875
4876 /* If IPv6 is configured in the kernel then we don't want to filter out all
4877  * of the multicast packets as IPv6 needs some. */
4878 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4879         cmd.host_command = ADD_MULTICAST;
4880         cmd.host_command_sequence = 0;
4881         cmd.host_command_length = 0;
4882
4883         ipw2100_hw_send_command(priv, &cmd);
4884 #endif
4885         if (!batch_mode) {
4886                 err = ipw2100_enable_adapter(priv);
4887                 if (err)
4888                         return err;
4889         }
4890
4891         return 0;
4892 }
4893
4894 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4895                                 int batch_mode)
4896 {
4897         struct host_command cmd = {
4898                 .host_command = BASIC_TX_RATES,
4899                 .host_command_sequence = 0,
4900                 .host_command_length = 4
4901         };
4902         int err;
4903
4904         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4905
4906         if (!batch_mode) {
4907                 err = ipw2100_disable_adapter(priv);
4908                 if (err)
4909                         return err;
4910         }
4911
4912         /* Set BASIC TX Rate first */
4913         ipw2100_hw_send_command(priv, &cmd);
4914
4915         /* Set TX Rate */
4916         cmd.host_command = TX_RATES;
4917         ipw2100_hw_send_command(priv, &cmd);
4918
4919         /* Set MSDU TX Rate */
4920         cmd.host_command = MSDU_TX_RATES;
4921         ipw2100_hw_send_command(priv, &cmd);
4922
4923         if (!batch_mode) {
4924                 err = ipw2100_enable_adapter(priv);
4925                 if (err)
4926                         return err;
4927         }
4928
4929         priv->tx_rates = rate;
4930
4931         return 0;
4932 }
4933
4934 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4935 {
4936         struct host_command cmd = {
4937                 .host_command = POWER_MODE,
4938                 .host_command_sequence = 0,
4939                 .host_command_length = 4
4940         };
4941         int err;
4942
4943         cmd.host_command_parameters[0] = power_level;
4944
4945         err = ipw2100_hw_send_command(priv, &cmd);
4946         if (err)
4947                 return err;
4948
4949         if (power_level == IPW_POWER_MODE_CAM)
4950                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4951         else
4952                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4953
4954 #ifdef IPW2100_TX_POWER
4955         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4956                 /* Set beacon interval */
4957                 cmd.host_command = TX_POWER_INDEX;
4958                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4959
4960                 err = ipw2100_hw_send_command(priv, &cmd);
4961                 if (err)
4962                         return err;
4963         }
4964 #endif
4965
4966         return 0;
4967 }
4968
4969 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4970 {
4971         struct host_command cmd = {
4972                 .host_command = RTS_THRESHOLD,
4973                 .host_command_sequence = 0,
4974                 .host_command_length = 4
4975         };
4976         int err;
4977
4978         if (threshold & RTS_DISABLED)
4979                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4980         else
4981                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4982
4983         err = ipw2100_hw_send_command(priv, &cmd);
4984         if (err)
4985                 return err;
4986
4987         priv->rts_threshold = threshold;
4988
4989         return 0;
4990 }
4991
4992 #if 0
4993 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4994                                         u32 threshold, int batch_mode)
4995 {
4996         struct host_command cmd = {
4997                 .host_command = FRAG_THRESHOLD,
4998                 .host_command_sequence = 0,
4999                 .host_command_length = 4,
5000                 .host_command_parameters[0] = 0,
5001         };
5002         int err;
5003
5004         if (!batch_mode) {
5005                 err = ipw2100_disable_adapter(priv);
5006                 if (err)
5007                         return err;
5008         }
5009
5010         if (threshold == 0)
5011                 threshold = DEFAULT_FRAG_THRESHOLD;
5012         else {
5013                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5014                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5015         }
5016
5017         cmd.host_command_parameters[0] = threshold;
5018
5019         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5020
5021         err = ipw2100_hw_send_command(priv, &cmd);
5022
5023         if (!batch_mode)
5024                 ipw2100_enable_adapter(priv);
5025
5026         if (!err)
5027                 priv->frag_threshold = threshold;
5028
5029         return err;
5030 }
5031 #endif
5032
5033 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5034 {
5035         struct host_command cmd = {
5036                 .host_command = SHORT_RETRY_LIMIT,
5037                 .host_command_sequence = 0,
5038                 .host_command_length = 4
5039         };
5040         int err;
5041
5042         cmd.host_command_parameters[0] = retry;
5043
5044         err = ipw2100_hw_send_command(priv, &cmd);
5045         if (err)
5046                 return err;
5047
5048         priv->short_retry_limit = retry;
5049
5050         return 0;
5051 }
5052
5053 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5054 {
5055         struct host_command cmd = {
5056                 .host_command = LONG_RETRY_LIMIT,
5057                 .host_command_sequence = 0,
5058                 .host_command_length = 4
5059         };
5060         int err;
5061
5062         cmd.host_command_parameters[0] = retry;
5063
5064         err = ipw2100_hw_send_command(priv, &cmd);
5065         if (err)
5066                 return err;
5067
5068         priv->long_retry_limit = retry;
5069
5070         return 0;
5071 }
5072
5073 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5074                                        int batch_mode)
5075 {
5076         struct host_command cmd = {
5077                 .host_command = MANDATORY_BSSID,
5078                 .host_command_sequence = 0,
5079                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5080         };
5081         int err;
5082
5083 #ifdef CONFIG_IPW2100_DEBUG
5084         DECLARE_MAC_BUF(mac);
5085         if (bssid != NULL)
5086                 IPW_DEBUG_HC("MANDATORY_BSSID: %s\n",
5087                              print_mac(mac, bssid));
5088         else
5089                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5090 #endif
5091         /* if BSSID is empty then we disable mandatory bssid mode */
5092         if (bssid != NULL)
5093                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5094
5095         if (!batch_mode) {
5096                 err = ipw2100_disable_adapter(priv);
5097                 if (err)
5098                         return err;
5099         }
5100
5101         err = ipw2100_hw_send_command(priv, &cmd);
5102
5103         if (!batch_mode)
5104                 ipw2100_enable_adapter(priv);
5105
5106         return err;
5107 }
5108
5109 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5110 {
5111         struct host_command cmd = {
5112                 .host_command = DISASSOCIATION_BSSID,
5113                 .host_command_sequence = 0,
5114                 .host_command_length = ETH_ALEN
5115         };
5116         int err;
5117         int len;
5118
5119         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5120
5121         len = ETH_ALEN;
5122         /* The Firmware currently ignores the BSSID and just disassociates from
5123          * the currently associated AP -- but in the off chance that a future
5124          * firmware does use the BSSID provided here, we go ahead and try and
5125          * set it to the currently associated AP's BSSID */
5126         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5127
5128         err = ipw2100_hw_send_command(priv, &cmd);
5129
5130         return err;
5131 }
5132
5133 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5134                               struct ipw2100_wpa_assoc_frame *, int)
5135     __attribute__ ((unused));
5136
5137 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5138                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5139                               int batch_mode)
5140 {
5141         struct host_command cmd = {
5142                 .host_command = SET_WPA_IE,
5143                 .host_command_sequence = 0,
5144                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5145         };
5146         int err;
5147
5148         IPW_DEBUG_HC("SET_WPA_IE\n");
5149
5150         if (!batch_mode) {
5151                 err = ipw2100_disable_adapter(priv);
5152                 if (err)
5153                         return err;
5154         }
5155
5156         memcpy(cmd.host_command_parameters, wpa_frame,
5157                sizeof(struct ipw2100_wpa_assoc_frame));
5158
5159         err = ipw2100_hw_send_command(priv, &cmd);
5160
5161         if (!batch_mode) {
5162                 if (ipw2100_enable_adapter(priv))
5163                         err = -EIO;
5164         }
5165
5166         return err;
5167 }
5168
5169 struct security_info_params {
5170         u32 allowed_ciphers;
5171         u16 version;
5172         u8 auth_mode;
5173         u8 replay_counters_number;
5174         u8 unicast_using_group;
5175 } __attribute__ ((packed));
5176
5177 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5178                                             int auth_mode,
5179                                             int security_level,
5180                                             int unicast_using_group,
5181                                             int batch_mode)
5182 {
5183         struct host_command cmd = {
5184                 .host_command = SET_SECURITY_INFORMATION,
5185                 .host_command_sequence = 0,
5186                 .host_command_length = sizeof(struct security_info_params)
5187         };
5188         struct security_info_params *security =
5189             (struct security_info_params *)&cmd.host_command_parameters;
5190         int err;
5191         memset(security, 0, sizeof(*security));
5192
5193         /* If shared key AP authentication is turned on, then we need to
5194          * configure the firmware to try and use it.
5195          *
5196          * Actual data encryption/decryption is handled by the host. */
5197         security->auth_mode = auth_mode;
5198         security->unicast_using_group = unicast_using_group;
5199
5200         switch (security_level) {
5201         default:
5202         case SEC_LEVEL_0:
5203                 security->allowed_ciphers = IPW_NONE_CIPHER;
5204                 break;
5205         case SEC_LEVEL_1:
5206                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5207                     IPW_WEP104_CIPHER;
5208                 break;
5209         case SEC_LEVEL_2:
5210                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5211                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5212                 break;
5213         case SEC_LEVEL_2_CKIP:
5214                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5215                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5216                 break;
5217         case SEC_LEVEL_3:
5218                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5219                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5220                 break;
5221         }
5222
5223         IPW_DEBUG_HC
5224             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5225              security->auth_mode, security->allowed_ciphers, security_level);
5226
5227         security->replay_counters_number = 0;
5228
5229         if (!batch_mode) {
5230                 err = ipw2100_disable_adapter(priv);
5231                 if (err)
5232                         return err;
5233         }
5234
5235         err = ipw2100_hw_send_command(priv, &cmd);
5236
5237         if (!batch_mode)
5238                 ipw2100_enable_adapter(priv);
5239
5240         return err;
5241 }
5242
5243 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5244 {
5245         struct host_command cmd = {
5246                 .host_command = TX_POWER_INDEX,
5247                 .host_command_sequence = 0,
5248                 .host_command_length = 4
5249         };
5250         int err = 0;
5251         u32 tmp = tx_power;
5252
5253         if (tx_power != IPW_TX_POWER_DEFAULT)
5254                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5255                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5256
5257         cmd.host_command_parameters[0] = tmp;
5258
5259         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5260                 err = ipw2100_hw_send_command(priv, &cmd);
5261         if (!err)
5262                 priv->tx_power = tx_power;
5263
5264         return 0;
5265 }
5266
5267 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5268                                             u32 interval, int batch_mode)
5269 {
5270         struct host_command cmd = {
5271                 .host_command = BEACON_INTERVAL,
5272                 .host_command_sequence = 0,
5273                 .host_command_length = 4
5274         };
5275         int err;
5276
5277         cmd.host_command_parameters[0] = interval;
5278
5279         IPW_DEBUG_INFO("enter\n");
5280
5281         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5282                 if (!batch_mode) {
5283                         err = ipw2100_disable_adapter(priv);
5284                         if (err)
5285                                 return err;
5286                 }
5287
5288                 ipw2100_hw_send_command(priv, &cmd);
5289
5290                 if (!batch_mode) {
5291                         err = ipw2100_enable_adapter(priv);
5292                         if (err)
5293                                 return err;
5294                 }
5295         }
5296
5297         IPW_DEBUG_INFO("exit\n");
5298
5299         return 0;
5300 }
5301
5302 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5303 {
5304         ipw2100_tx_initialize(priv);
5305         ipw2100_rx_initialize(priv);
5306         ipw2100_msg_initialize(priv);
5307 }
5308
5309 void ipw2100_queues_free(struct ipw2100_priv *priv)
5310 {
5311         ipw2100_tx_free(priv);
5312         ipw2100_rx_free(priv);
5313         ipw2100_msg_free(priv);
5314 }
5315
5316 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5317 {
5318         if (ipw2100_tx_allocate(priv) ||
5319             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5320                 goto fail;
5321
5322         return 0;
5323
5324       fail:
5325         ipw2100_tx_free(priv);
5326         ipw2100_rx_free(priv);
5327         ipw2100_msg_free(priv);
5328         return -ENOMEM;
5329 }
5330
5331 #define IPW_PRIVACY_CAPABLE 0x0008
5332
5333 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5334                                  int batch_mode)
5335 {
5336         struct host_command cmd = {
5337                 .host_command = WEP_FLAGS,
5338                 .host_command_sequence = 0,
5339                 .host_command_length = 4
5340         };
5341         int err;
5342
5343         cmd.host_command_parameters[0] = flags;
5344
5345         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5346
5347         if (!batch_mode) {
5348                 err = ipw2100_disable_adapter(priv);
5349                 if (err) {
5350                         printk(KERN_ERR DRV_NAME
5351                                ": %s: Could not disable adapter %d\n",
5352                                priv->net_dev->name, err);
5353                         return err;
5354                 }
5355         }
5356
5357         /* send cmd to firmware */
5358         err = ipw2100_hw_send_command(priv, &cmd);
5359
5360         if (!batch_mode)
5361                 ipw2100_enable_adapter(priv);
5362
5363         return err;
5364 }
5365
5366 struct ipw2100_wep_key {
5367         u8 idx;
5368         u8 len;
5369         u8 key[13];
5370 };
5371
5372 /* Macros to ease up priting WEP keys */
5373 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5374 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5375 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5376 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5377
5378 /**
5379  * Set a the wep key
5380  *
5381  * @priv: struct to work on
5382  * @idx: index of the key we want to set
5383  * @key: ptr to the key data to set
5384  * @len: length of the buffer at @key
5385  * @batch_mode: FIXME perform the operation in batch mode, not
5386  *              disabling the device.
5387  *
5388  * @returns 0 if OK, < 0 errno code on error.
5389  *
5390  * Fill out a command structure with the new wep key, length an
5391  * index and send it down the wire.
5392  */
5393 static int ipw2100_set_key(struct ipw2100_priv *priv,
5394                            int idx, char *key, int len, int batch_mode)
5395 {
5396         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5397         struct host_command cmd = {
5398                 .host_command = WEP_KEY_INFO,
5399                 .host_command_sequence = 0,
5400                 .host_command_length = sizeof(struct ipw2100_wep_key),
5401         };
5402         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5403         int err;
5404
5405         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5406                      idx, keylen, len);
5407
5408         /* NOTE: We don't check cached values in case the firmware was reset
5409          * or some other problem is occurring.  If the user is setting the key,
5410          * then we push the change */
5411
5412         wep_key->idx = idx;
5413         wep_key->len = keylen;
5414
5415         if (keylen) {
5416                 memcpy(wep_key->key, key, len);
5417                 memset(wep_key->key + len, 0, keylen - len);
5418         }
5419
5420         /* Will be optimized out on debug not being configured in */
5421         if (keylen == 0)
5422                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5423                               priv->net_dev->name, wep_key->idx);
5424         else if (keylen == 5)
5425                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5426                               priv->net_dev->name, wep_key->idx, wep_key->len,
5427                               WEP_STR_64(wep_key->key));
5428         else
5429                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5430                               "\n",
5431                               priv->net_dev->name, wep_key->idx, wep_key->len,
5432                               WEP_STR_128(wep_key->key));
5433
5434         if (!batch_mode) {
5435                 err = ipw2100_disable_adapter(priv);
5436                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5437                 if (err) {
5438                         printk(KERN_ERR DRV_NAME
5439                                ": %s: Could not disable adapter %d\n",
5440                                priv->net_dev->name, err);
5441                         return err;
5442                 }
5443         }
5444
5445         /* send cmd to firmware */
5446         err = ipw2100_hw_send_command(priv, &cmd);
5447
5448         if (!batch_mode) {
5449                 int err2 = ipw2100_enable_adapter(priv);
5450                 if (err == 0)
5451                         err = err2;
5452         }
5453         return err;
5454 }
5455
5456 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5457                                  int idx, int batch_mode)
5458 {
5459         struct host_command cmd = {
5460                 .host_command = WEP_KEY_INDEX,
5461                 .host_command_sequence = 0,
5462                 .host_command_length = 4,
5463                 .host_command_parameters = {idx},
5464         };
5465         int err;
5466
5467         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5468
5469         if (idx < 0 || idx > 3)
5470                 return -EINVAL;
5471
5472         if (!batch_mode) {
5473                 err = ipw2100_disable_adapter(priv);
5474                 if (err) {
5475                         printk(KERN_ERR DRV_NAME
5476                                ": %s: Could not disable adapter %d\n",
5477                                priv->net_dev->name, err);
5478                         return err;
5479                 }
5480         }
5481
5482         /* send cmd to firmware */
5483         err = ipw2100_hw_send_command(priv, &cmd);
5484
5485         if (!batch_mode)
5486                 ipw2100_enable_adapter(priv);
5487
5488         return err;
5489 }
5490
5491 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5492 {
5493         int i, err, auth_mode, sec_level, use_group;
5494
5495         if (!(priv->status & STATUS_RUNNING))
5496                 return 0;
5497
5498         if (!batch_mode) {
5499                 err = ipw2100_disable_adapter(priv);
5500                 if (err)
5501                         return err;
5502         }
5503
5504         if (!priv->ieee->sec.enabled) {
5505                 err =
5506                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5507                                                      SEC_LEVEL_0, 0, 1);
5508         } else {
5509                 auth_mode = IPW_AUTH_OPEN;
5510                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5511                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5512                                 auth_mode = IPW_AUTH_SHARED;
5513                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5514                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5515                 }
5516
5517                 sec_level = SEC_LEVEL_0;
5518                 if (priv->ieee->sec.flags & SEC_LEVEL)
5519                         sec_level = priv->ieee->sec.level;
5520
5521                 use_group = 0;
5522                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5523                         use_group = priv->ieee->sec.unicast_uses_group;
5524
5525                 err =
5526                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5527                                                      use_group, 1);
5528         }
5529
5530         if (err)
5531                 goto exit;
5532
5533         if (priv->ieee->sec.enabled) {
5534                 for (i = 0; i < 4; i++) {
5535                         if (!(priv->ieee->sec.flags & (1 << i))) {
5536                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5537                                 priv->ieee->sec.key_sizes[i] = 0;
5538                         } else {
5539                                 err = ipw2100_set_key(priv, i,
5540                                                       priv->ieee->sec.keys[i],
5541                                                       priv->ieee->sec.
5542                                                       key_sizes[i], 1);
5543                                 if (err)
5544                                         goto exit;
5545                         }
5546                 }
5547
5548                 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5549         }
5550
5551         /* Always enable privacy so the Host can filter WEP packets if
5552          * encrypted data is sent up */
5553         err =
5554             ipw2100_set_wep_flags(priv,
5555                                   priv->ieee->sec.
5556                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5557         if (err)
5558                 goto exit;
5559
5560         priv->status &= ~STATUS_SECURITY_UPDATED;
5561
5562       exit:
5563         if (!batch_mode)
5564                 ipw2100_enable_adapter(priv);
5565
5566         return err;
5567 }
5568
5569 static void ipw2100_security_work(struct work_struct *work)
5570 {
5571         struct ipw2100_priv *priv =
5572                 container_of(work, struct ipw2100_priv, security_work.work);
5573
5574         /* If we happen to have reconnected before we get a chance to
5575          * process this, then update the security settings--which causes
5576          * a disassociation to occur */
5577         if (!(priv->status & STATUS_ASSOCIATED) &&
5578             priv->status & STATUS_SECURITY_UPDATED)
5579                 ipw2100_configure_security(priv, 0);
5580 }
5581
5582 static void shim__set_security(struct net_device *dev,
5583                                struct ieee80211_security *sec)
5584 {
5585         struct ipw2100_priv *priv = ieee80211_priv(dev);
5586         int i, force_update = 0;
5587
5588         mutex_lock(&priv->action_mutex);
5589         if (!(priv->status & STATUS_INITIALIZED))
5590                 goto done;
5591
5592         for (i = 0; i < 4; i++) {
5593                 if (sec->flags & (1 << i)) {
5594                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5595                         if (sec->key_sizes[i] == 0)
5596                                 priv->ieee->sec.flags &= ~(1 << i);
5597                         else
5598                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5599                                        sec->key_sizes[i]);
5600                         if (sec->level == SEC_LEVEL_1) {
5601                                 priv->ieee->sec.flags |= (1 << i);
5602                                 priv->status |= STATUS_SECURITY_UPDATED;
5603                         } else
5604                                 priv->ieee->sec.flags &= ~(1 << i);
5605                 }
5606         }
5607
5608         if ((sec->flags & SEC_ACTIVE_KEY) &&
5609             priv->ieee->sec.active_key != sec->active_key) {
5610                 if (sec->active_key <= 3) {
5611                         priv->ieee->sec.active_key = sec->active_key;
5612                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5613                 } else
5614                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5615
5616                 priv->status |= STATUS_SECURITY_UPDATED;
5617         }
5618
5619         if ((sec->flags & SEC_AUTH_MODE) &&
5620             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5621                 priv->ieee->sec.auth_mode = sec->auth_mode;
5622                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5623                 priv->status |= STATUS_SECURITY_UPDATED;
5624         }
5625
5626         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5627                 priv->ieee->sec.flags |= SEC_ENABLED;
5628                 priv->ieee->sec.enabled = sec->enabled;
5629                 priv->status |= STATUS_SECURITY_UPDATED;
5630                 force_update = 1;
5631         }
5632
5633         if (sec->flags & SEC_ENCRYPT)
5634                 priv->ieee->sec.encrypt = sec->encrypt;
5635
5636         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5637                 priv->ieee->sec.level = sec->level;
5638                 priv->ieee->sec.flags |= SEC_LEVEL;
5639                 priv->status |= STATUS_SECURITY_UPDATED;
5640         }
5641
5642         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5643                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5644                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5645                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5646                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5647                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5648                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5649                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5650                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5651                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5652
5653 /* As a temporary work around to enable WPA until we figure out why
5654  * wpa_supplicant toggles the security capability of the driver, which
5655  * forces a disassocation with force_update...
5656  *
5657  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5658         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5659                 ipw2100_configure_security(priv, 0);
5660       done:
5661         mutex_unlock(&priv->action_mutex);
5662 }
5663
5664 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5665 {
5666         int err;
5667         int batch_mode = 1;
5668         u8 *bssid;
5669
5670         IPW_DEBUG_INFO("enter\n");
5671
5672         err = ipw2100_disable_adapter(priv);
5673         if (err)
5674                 return err;
5675 #ifdef CONFIG_IPW2100_MONITOR
5676         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5677                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5678                 if (err)
5679                         return err;
5680
5681                 IPW_DEBUG_INFO("exit\n");
5682
5683                 return 0;
5684         }
5685 #endif                          /* CONFIG_IPW2100_MONITOR */
5686
5687         err = ipw2100_read_mac_address(priv);
5688         if (err)
5689                 return -EIO;
5690
5691         err = ipw2100_set_mac_address(priv, batch_mode);
5692         if (err)
5693                 return err;
5694
5695         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5696         if (err)
5697                 return err;
5698
5699         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5700                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5701                 if (err)
5702                         return err;
5703         }
5704
5705         err = ipw2100_system_config(priv, batch_mode);
5706         if (err)
5707                 return err;
5708
5709         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5710         if (err)
5711                 return err;
5712
5713         /* Default to power mode OFF */
5714         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5715         if (err)
5716                 return err;
5717
5718         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5719         if (err)
5720                 return err;
5721
5722         if (priv->config & CFG_STATIC_BSSID)
5723                 bssid = priv->bssid;
5724         else
5725                 bssid = NULL;
5726         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5727         if (err)
5728                 return err;
5729
5730         if (priv->config & CFG_STATIC_ESSID)
5731                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5732                                         batch_mode);
5733         else
5734                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5735         if (err)
5736                 return err;
5737
5738         err = ipw2100_configure_security(priv, batch_mode);
5739         if (err)
5740                 return err;
5741
5742         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5743                 err =
5744                     ipw2100_set_ibss_beacon_interval(priv,
5745                                                      priv->beacon_interval,
5746                                                      batch_mode);
5747                 if (err)
5748                         return err;
5749
5750                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5751                 if (err)
5752                         return err;
5753         }
5754
5755         /*
5756            err = ipw2100_set_fragmentation_threshold(
5757            priv, priv->frag_threshold, batch_mode);
5758            if (err)
5759            return err;
5760          */
5761
5762         IPW_DEBUG_INFO("exit\n");
5763
5764         return 0;
5765 }
5766
5767 /*************************************************************************
5768  *
5769  * EXTERNALLY CALLED METHODS
5770  *
5771  *************************************************************************/
5772
5773 /* This method is called by the network layer -- not to be confused with
5774  * ipw2100_set_mac_address() declared above called by this driver (and this
5775  * method as well) to talk to the firmware */
5776 static int ipw2100_set_address(struct net_device *dev, void *p)
5777 {
5778         struct ipw2100_priv *priv = ieee80211_priv(dev);
5779         struct sockaddr *addr = p;
5780         int err = 0;
5781
5782         if (!is_valid_ether_addr(addr->sa_data))
5783                 return -EADDRNOTAVAIL;
5784
5785         mutex_lock(&priv->action_mutex);
5786
5787         priv->config |= CFG_CUSTOM_MAC;
5788         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5789
5790         err = ipw2100_set_mac_address(priv, 0);
5791         if (err)
5792                 goto done;
5793
5794         priv->reset_backoff = 0;
5795         mutex_unlock(&priv->action_mutex);
5796         ipw2100_reset_adapter(&priv->reset_work.work);
5797         return 0;
5798
5799       done:
5800         mutex_unlock(&priv->action_mutex);
5801         return err;
5802 }
5803
5804 static int ipw2100_open(struct net_device *dev)
5805 {
5806         struct ipw2100_priv *priv = ieee80211_priv(dev);
5807         unsigned long flags;
5808         IPW_DEBUG_INFO("dev->open\n");
5809
5810         spin_lock_irqsave(&priv->low_lock, flags);
5811         if (priv->status & STATUS_ASSOCIATED) {
5812                 netif_carrier_on(dev);
5813                 netif_start_queue(dev);
5814         }
5815         spin_unlock_irqrestore(&priv->low_lock, flags);
5816
5817         return 0;
5818 }
5819
5820 static int ipw2100_close(struct net_device *dev)
5821 {
5822         struct ipw2100_priv *priv = ieee80211_priv(dev);
5823         unsigned long flags;
5824         struct list_head *element;
5825         struct ipw2100_tx_packet *packet;
5826
5827         IPW_DEBUG_INFO("enter\n");
5828
5829         spin_lock_irqsave(&priv->low_lock, flags);
5830
5831         if (priv->status & STATUS_ASSOCIATED)
5832                 netif_carrier_off(dev);
5833         netif_stop_queue(dev);
5834
5835         /* Flush the TX queue ... */
5836         while (!list_empty(&priv->tx_pend_list)) {
5837                 element = priv->tx_pend_list.next;
5838                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5839
5840                 list_del(element);
5841                 DEC_STAT(&priv->tx_pend_stat);
5842
5843                 ieee80211_txb_free(packet->info.d_struct.txb);
5844                 packet->info.d_struct.txb = NULL;
5845
5846                 list_add_tail(element, &priv->tx_free_list);
5847                 INC_STAT(&priv->tx_free_stat);
5848         }
5849         spin_unlock_irqrestore(&priv->low_lock, flags);
5850
5851         IPW_DEBUG_INFO("exit\n");
5852
5853         return 0;
5854 }
5855
5856 /*
5857  * TODO:  Fix this function... its just wrong
5858  */
5859 static void ipw2100_tx_timeout(struct net_device *dev)
5860 {
5861         struct ipw2100_priv *priv = ieee80211_priv(dev);
5862
5863         priv->ieee->stats.tx_errors++;
5864
5865 #ifdef CONFIG_IPW2100_MONITOR
5866         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5867                 return;
5868 #endif
5869
5870         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5871                        dev->name);
5872         schedule_reset(priv);
5873 }
5874
5875 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5876 {
5877         /* This is called when wpa_supplicant loads and closes the driver
5878          * interface. */
5879         priv->ieee->wpa_enabled = value;
5880         return 0;
5881 }
5882
5883 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5884 {
5885
5886         struct ieee80211_device *ieee = priv->ieee;
5887         struct ieee80211_security sec = {
5888                 .flags = SEC_AUTH_MODE,
5889         };
5890         int ret = 0;
5891
5892         if (value & IW_AUTH_ALG_SHARED_KEY) {
5893                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5894                 ieee->open_wep = 0;
5895         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5896                 sec.auth_mode = WLAN_AUTH_OPEN;
5897                 ieee->open_wep = 1;
5898         } else if (value & IW_AUTH_ALG_LEAP) {
5899                 sec.auth_mode = WLAN_AUTH_LEAP;
5900                 ieee->open_wep = 1;
5901         } else
5902                 return -EINVAL;
5903
5904         if (ieee->set_security)
5905                 ieee->set_security(ieee->dev, &sec);
5906         else
5907                 ret = -EOPNOTSUPP;
5908
5909         return ret;
5910 }
5911
5912 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5913                                     char *wpa_ie, int wpa_ie_len)
5914 {
5915
5916         struct ipw2100_wpa_assoc_frame frame;
5917
5918         frame.fixed_ie_mask = 0;
5919
5920         /* copy WPA IE */
5921         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5922         frame.var_ie_len = wpa_ie_len;
5923
5924         /* make sure WPA is enabled */
5925         ipw2100_wpa_enable(priv, 1);
5926         ipw2100_set_wpa_ie(priv, &frame, 0);
5927 }
5928
5929 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5930                                     struct ethtool_drvinfo *info)
5931 {
5932         struct ipw2100_priv *priv = ieee80211_priv(dev);
5933         char fw_ver[64], ucode_ver[64];
5934
5935         strcpy(info->driver, DRV_NAME);
5936         strcpy(info->version, DRV_VERSION);
5937
5938         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5939         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5940
5941         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5942                  fw_ver, priv->eeprom_version, ucode_ver);
5943
5944         strcpy(info->bus_info, pci_name(priv->pci_dev));
5945 }
5946
5947 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5948 {
5949         struct ipw2100_priv *priv = ieee80211_priv(dev);
5950         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5951 }
5952
5953 static const struct ethtool_ops ipw2100_ethtool_ops = {
5954         .get_link = ipw2100_ethtool_get_link,
5955         .get_drvinfo = ipw_ethtool_get_drvinfo,
5956 };
5957
5958 static void ipw2100_hang_check(struct work_struct *work)
5959 {
5960         struct ipw2100_priv *priv =
5961                 container_of(work, struct ipw2100_priv, hang_check.work);
5962         unsigned long flags;
5963         u32 rtc = 0xa5a5a5a5;
5964         u32 len = sizeof(rtc);
5965         int restart = 0;
5966
5967         spin_lock_irqsave(&priv->low_lock, flags);
5968
5969         if (priv->fatal_error != 0) {
5970                 /* If fatal_error is set then we need to restart */
5971                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5972                                priv->net_dev->name);
5973
5974                 restart = 1;
5975         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5976                    (rtc == priv->last_rtc)) {
5977                 /* Check if firmware is hung */
5978                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5979                                priv->net_dev->name);
5980
5981                 restart = 1;
5982         }
5983
5984         if (restart) {
5985                 /* Kill timer */
5986                 priv->stop_hang_check = 1;
5987                 priv->hangs++;
5988
5989                 /* Restart the NIC */
5990                 schedule_reset(priv);
5991         }
5992
5993         priv->last_rtc = rtc;
5994
5995         if (!priv->stop_hang_check)
5996                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5997
5998         spin_unlock_irqrestore(&priv->low_lock, flags);
5999 }
6000
6001 static void ipw2100_rf_kill(struct work_struct *work)
6002 {
6003         struct ipw2100_priv *priv =
6004                 container_of(work, struct ipw2100_priv, rf_kill.work);
6005         unsigned long flags;
6006
6007         spin_lock_irqsave(&priv->low_lock, flags);
6008
6009         if (rf_kill_active(priv)) {
6010                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6011                 if (!priv->stop_rf_kill)
6012                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
6013                                            round_jiffies(HZ));
6014                 goto exit_unlock;
6015         }
6016
6017         /* RF Kill is now disabled, so bring the device back up */
6018
6019         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6020                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6021                                   "device\n");
6022                 schedule_reset(priv);
6023         } else
6024                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6025                                   "enabled\n");
6026
6027       exit_unlock:
6028         spin_unlock_irqrestore(&priv->low_lock, flags);
6029 }
6030
6031 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6032
6033 /* Look into using netdev destructor to shutdown ieee80211? */
6034
6035 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6036                                                void __iomem * base_addr,
6037                                                unsigned long mem_start,
6038                                                unsigned long mem_len)
6039 {
6040         struct ipw2100_priv *priv;
6041         struct net_device *dev;
6042
6043         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6044         if (!dev)
6045                 return NULL;
6046         priv = ieee80211_priv(dev);
6047         priv->ieee = netdev_priv(dev);
6048         priv->pci_dev = pci_dev;
6049         priv->net_dev = dev;
6050
6051         priv->ieee->hard_start_xmit = ipw2100_tx;
6052         priv->ieee->set_security = shim__set_security;
6053
6054         priv->ieee->perfect_rssi = -20;
6055         priv->ieee->worst_rssi = -85;
6056
6057         dev->open = ipw2100_open;
6058         dev->stop = ipw2100_close;
6059         dev->init = ipw2100_net_init;
6060         dev->ethtool_ops = &ipw2100_ethtool_ops;
6061         dev->tx_timeout = ipw2100_tx_timeout;
6062         dev->wireless_handlers = &ipw2100_wx_handler_def;
6063         priv->wireless_data.ieee80211 = priv->ieee;
6064         dev->wireless_data = &priv->wireless_data;
6065         dev->set_mac_address = ipw2100_set_address;
6066         dev->watchdog_timeo = 3 * HZ;
6067         dev->irq = 0;
6068
6069         dev->base_addr = (unsigned long)base_addr;
6070         dev->mem_start = mem_start;
6071         dev->mem_end = dev->mem_start + mem_len - 1;
6072
6073         /* NOTE: We don't use the wireless_handlers hook
6074          * in dev as the system will start throwing WX requests
6075          * to us before we're actually initialized and it just
6076          * ends up causing problems.  So, we just handle
6077          * the WX extensions through the ipw2100_ioctl interface */
6078
6079         /* memset() puts everything to 0, so we only have explicitely set
6080          * those values that need to be something else */
6081
6082         /* If power management is turned on, default to AUTO mode */
6083         priv->power_mode = IPW_POWER_AUTO;
6084
6085 #ifdef CONFIG_IPW2100_MONITOR
6086         priv->config |= CFG_CRC_CHECK;
6087 #endif
6088         priv->ieee->wpa_enabled = 0;
6089         priv->ieee->drop_unencrypted = 0;
6090         priv->ieee->privacy_invoked = 0;
6091         priv->ieee->ieee802_1x = 1;
6092
6093         /* Set module parameters */
6094         switch (mode) {
6095         case 1:
6096                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6097                 break;
6098 #ifdef CONFIG_IPW2100_MONITOR
6099         case 2:
6100                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6101                 break;
6102 #endif
6103         default:
6104         case 0:
6105                 priv->ieee->iw_mode = IW_MODE_INFRA;
6106                 break;
6107         }
6108
6109         if (disable == 1)
6110                 priv->status |= STATUS_RF_KILL_SW;
6111
6112         if (channel != 0 &&
6113             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6114                 priv->config |= CFG_STATIC_CHANNEL;
6115                 priv->channel = channel;
6116         }
6117
6118         if (associate)
6119                 priv->config |= CFG_ASSOCIATE;
6120
6121         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6122         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6123         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6124         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6125         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6126         priv->tx_power = IPW_TX_POWER_DEFAULT;
6127         priv->tx_rates = DEFAULT_TX_RATES;
6128
6129         strcpy(priv->nick, "ipw2100");
6130
6131         spin_lock_init(&priv->low_lock);
6132         mutex_init(&priv->action_mutex);
6133         mutex_init(&priv->adapter_mutex);
6134
6135         init_waitqueue_head(&priv->wait_command_queue);
6136
6137         netif_carrier_off(dev);
6138
6139         INIT_LIST_HEAD(&priv->msg_free_list);
6140         INIT_LIST_HEAD(&priv->msg_pend_list);
6141         INIT_STAT(&priv->msg_free_stat);
6142         INIT_STAT(&priv->msg_pend_stat);
6143
6144         INIT_LIST_HEAD(&priv->tx_free_list);
6145         INIT_LIST_HEAD(&priv->tx_pend_list);
6146         INIT_STAT(&priv->tx_free_stat);
6147         INIT_STAT(&priv->tx_pend_stat);
6148
6149         INIT_LIST_HEAD(&priv->fw_pend_list);
6150         INIT_STAT(&priv->fw_pend_stat);
6151
6152         priv->workqueue = create_workqueue(DRV_NAME);
6153
6154         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6155         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6156         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6157         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6158         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6159         INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6160         INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6161
6162         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6163                      ipw2100_irq_tasklet, (unsigned long)priv);
6164
6165         /* NOTE:  We do not start the deferred work for status checks yet */
6166         priv->stop_rf_kill = 1;
6167         priv->stop_hang_check = 1;
6168
6169         return dev;
6170 }
6171
6172 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6173                                 const struct pci_device_id *ent)
6174 {
6175         unsigned long mem_start, mem_len, mem_flags;
6176         void __iomem *base_addr = NULL;
6177         struct net_device *dev = NULL;
6178         struct ipw2100_priv *priv = NULL;
6179         int err = 0;
6180         int registered = 0;
6181         u32 val;
6182
6183         IPW_DEBUG_INFO("enter\n");
6184
6185         mem_start = pci_resource_start(pci_dev, 0);
6186         mem_len = pci_resource_len(pci_dev, 0);
6187         mem_flags = pci_resource_flags(pci_dev, 0);
6188
6189         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6190                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6191                 err = -ENODEV;
6192                 goto fail;
6193         }
6194
6195         base_addr = ioremap_nocache(mem_start, mem_len);
6196         if (!base_addr) {
6197                 printk(KERN_WARNING DRV_NAME
6198                        "Error calling ioremap_nocache.\n");
6199                 err = -EIO;
6200                 goto fail;
6201         }
6202
6203         /* allocate and initialize our net_device */
6204         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6205         if (!dev) {
6206                 printk(KERN_WARNING DRV_NAME
6207                        "Error calling ipw2100_alloc_device.\n");
6208                 err = -ENOMEM;
6209                 goto fail;
6210         }
6211
6212         /* set up PCI mappings for device */
6213         err = pci_enable_device(pci_dev);
6214         if (err) {
6215                 printk(KERN_WARNING DRV_NAME
6216                        "Error calling pci_enable_device.\n");
6217                 return err;
6218         }
6219
6220         priv = ieee80211_priv(dev);
6221
6222         pci_set_master(pci_dev);
6223         pci_set_drvdata(pci_dev, priv);
6224
6225         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6226         if (err) {
6227                 printk(KERN_WARNING DRV_NAME
6228                        "Error calling pci_set_dma_mask.\n");
6229                 pci_disable_device(pci_dev);
6230                 return err;
6231         }
6232
6233         err = pci_request_regions(pci_dev, DRV_NAME);
6234         if (err) {
6235                 printk(KERN_WARNING DRV_NAME
6236                        "Error calling pci_request_regions.\n");
6237                 pci_disable_device(pci_dev);
6238                 return err;
6239         }
6240
6241         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6242          * PCI Tx retries from interfering with C3 CPU state */
6243         pci_read_config_dword(pci_dev, 0x40, &val);
6244         if ((val & 0x0000ff00) != 0)
6245                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6246
6247         pci_set_power_state(pci_dev, PCI_D0);
6248
6249         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6250                 printk(KERN_WARNING DRV_NAME
6251                        "Device not found via register read.\n");
6252                 err = -ENODEV;
6253                 goto fail;
6254         }
6255
6256         SET_NETDEV_DEV(dev, &pci_dev->dev);
6257
6258         /* Force interrupts to be shut off on the device */
6259         priv->status |= STATUS_INT_ENABLED;
6260         ipw2100_disable_interrupts(priv);
6261
6262         /* Allocate and initialize the Tx/Rx queues and lists */
6263         if (ipw2100_queues_allocate(priv)) {
6264                 printk(KERN_WARNING DRV_NAME
6265                        "Error calling ipw2100_queues_allocate.\n");
6266                 err = -ENOMEM;
6267                 goto fail;
6268         }
6269         ipw2100_queues_initialize(priv);
6270
6271         err = request_irq(pci_dev->irq,
6272                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6273         if (err) {
6274                 printk(KERN_WARNING DRV_NAME
6275                        "Error calling request_irq: %d.\n", pci_dev->irq);
6276                 goto fail;
6277         }
6278         dev->irq = pci_dev->irq;
6279
6280         IPW_DEBUG_INFO("Attempting to register device...\n");
6281
6282         printk(KERN_INFO DRV_NAME
6283                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6284
6285         /* Bring up the interface.  Pre 0.46, after we registered the
6286          * network device we would call ipw2100_up.  This introduced a race
6287          * condition with newer hotplug configurations (network was coming
6288          * up and making calls before the device was initialized).
6289          *
6290          * If we called ipw2100_up before we registered the device, then the
6291          * device name wasn't registered.  So, we instead use the net_dev->init
6292          * member to call a function that then just turns and calls ipw2100_up.
6293          * net_dev->init is called after name allocation but before the
6294          * notifier chain is called */
6295         err = register_netdev(dev);
6296         if (err) {
6297                 printk(KERN_WARNING DRV_NAME
6298                        "Error calling register_netdev.\n");
6299                 goto fail;
6300         }
6301
6302         mutex_lock(&priv->action_mutex);
6303         registered = 1;
6304
6305         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6306
6307         /* perform this after register_netdev so that dev->name is set */
6308         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6309         if (err)
6310                 goto fail_unlock;
6311
6312         /* If the RF Kill switch is disabled, go ahead and complete the
6313          * startup sequence */
6314         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6315                 /* Enable the adapter - sends HOST_COMPLETE */
6316                 if (ipw2100_enable_adapter(priv)) {
6317                         printk(KERN_WARNING DRV_NAME
6318                                ": %s: failed in call to enable adapter.\n",
6319                                priv->net_dev->name);
6320                         ipw2100_hw_stop_adapter(priv);
6321                         err = -EIO;
6322                         goto fail_unlock;
6323                 }
6324
6325                 /* Start a scan . . . */
6326                 ipw2100_set_scan_options(priv);
6327                 ipw2100_start_scan(priv);
6328         }
6329
6330         IPW_DEBUG_INFO("exit\n");
6331
6332         priv->status |= STATUS_INITIALIZED;
6333
6334         mutex_unlock(&priv->action_mutex);
6335
6336         return 0;
6337
6338       fail_unlock:
6339         mutex_unlock(&priv->action_mutex);
6340
6341       fail:
6342         if (dev) {
6343                 if (registered)
6344                         unregister_netdev(dev);
6345
6346                 ipw2100_hw_stop_adapter(priv);
6347
6348                 ipw2100_disable_interrupts(priv);
6349
6350                 if (dev->irq)
6351                         free_irq(dev->irq, priv);
6352
6353                 ipw2100_kill_workqueue(priv);
6354
6355                 /* These are safe to call even if they weren't allocated */
6356                 ipw2100_queues_free(priv);
6357                 sysfs_remove_group(&pci_dev->dev.kobj,
6358                                    &ipw2100_attribute_group);
6359
6360                 free_ieee80211(dev);
6361                 pci_set_drvdata(pci_dev, NULL);
6362         }
6363
6364         if (base_addr)
6365                 iounmap(base_addr);
6366
6367         pci_release_regions(pci_dev);
6368         pci_disable_device(pci_dev);
6369
6370         return err;
6371 }
6372
6373 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6374 {
6375         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6376         struct net_device *dev;
6377
6378         if (priv) {
6379                 mutex_lock(&priv->action_mutex);
6380
6381                 priv->status &= ~STATUS_INITIALIZED;
6382
6383                 dev = priv->net_dev;
6384                 sysfs_remove_group(&pci_dev->dev.kobj,
6385                                    &ipw2100_attribute_group);
6386
6387 #ifdef CONFIG_PM
6388                 if (ipw2100_firmware.version)
6389                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6390 #endif
6391                 /* Take down the hardware */
6392                 ipw2100_down(priv);
6393
6394                 /* Release the mutex so that the network subsystem can
6395                  * complete any needed calls into the driver... */
6396                 mutex_unlock(&priv->action_mutex);
6397
6398                 /* Unregister the device first - this results in close()
6399                  * being called if the device is open.  If we free storage
6400                  * first, then close() will crash. */
6401                 unregister_netdev(dev);
6402
6403                 /* ipw2100_down will ensure that there is no more pending work
6404                  * in the workqueue's, so we can safely remove them now. */
6405                 ipw2100_kill_workqueue(priv);
6406
6407                 ipw2100_queues_free(priv);
6408
6409                 /* Free potential debugging firmware snapshot */
6410                 ipw2100_snapshot_free(priv);
6411
6412                 if (dev->irq)
6413                         free_irq(dev->irq, priv);
6414
6415                 if (dev->base_addr)
6416                         iounmap((void __iomem *)dev->base_addr);
6417
6418                 free_ieee80211(dev);
6419         }
6420
6421         pci_release_regions(pci_dev);
6422         pci_disable_device(pci_dev);
6423
6424         IPW_DEBUG_INFO("exit\n");
6425 }
6426
6427 #ifdef CONFIG_PM
6428 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6429 {
6430         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6431         struct net_device *dev = priv->net_dev;
6432
6433         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6434
6435         mutex_lock(&priv->action_mutex);
6436         if (priv->status & STATUS_INITIALIZED) {
6437                 /* Take down the device; powers it off, etc. */
6438                 ipw2100_down(priv);
6439         }
6440
6441         /* Remove the PRESENT state of the device */
6442         netif_device_detach(dev);
6443
6444         pci_save_state(pci_dev);
6445         pci_disable_device(pci_dev);
6446         pci_set_power_state(pci_dev, PCI_D3hot);
6447
6448         mutex_unlock(&priv->action_mutex);
6449
6450         return 0;
6451 }
6452
6453 static int ipw2100_resume(struct pci_dev *pci_dev)
6454 {
6455         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6456         struct net_device *dev = priv->net_dev;
6457         int err;
6458         u32 val;
6459
6460         if (IPW2100_PM_DISABLED)
6461                 return 0;
6462
6463         mutex_lock(&priv->action_mutex);
6464
6465         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6466
6467         pci_set_power_state(pci_dev, PCI_D0);
6468         err = pci_enable_device(pci_dev);
6469         if (err) {
6470                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6471                        dev->name);
6472                 return err;
6473         }
6474         pci_restore_state(pci_dev);
6475
6476         /*
6477          * Suspend/Resume resets the PCI configuration space, so we have to
6478          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6479          * from interfering with C3 CPU state. pci_restore_state won't help
6480          * here since it only restores the first 64 bytes pci config header.
6481          */
6482         pci_read_config_dword(pci_dev, 0x40, &val);
6483         if ((val & 0x0000ff00) != 0)
6484                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6485
6486         /* Set the device back into the PRESENT state; this will also wake
6487          * the queue of needed */
6488         netif_device_attach(dev);
6489
6490         /* Bring the device back up */
6491         if (!(priv->status & STATUS_RF_KILL_SW))
6492                 ipw2100_up(priv, 0);
6493
6494         mutex_unlock(&priv->action_mutex);
6495
6496         return 0;
6497 }
6498 #endif
6499
6500 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6501
6502 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6503         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6504         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6505         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6506         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6507         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6508         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6509         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6510         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6511         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6512         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6513         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6514         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6515         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6516
6517         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6518         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6519         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6520         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6521         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6522
6523         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6524         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6525         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6526         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6527         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6528         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6529         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6530
6531         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6532
6533         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6534         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6535         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6536         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6537         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6538         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6539         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6540
6541         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6542         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6543         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6544         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6545         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6546         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6547
6548         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6549         {0,},
6550 };
6551
6552 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6553
6554 static struct pci_driver ipw2100_pci_driver = {
6555         .name = DRV_NAME,
6556         .id_table = ipw2100_pci_id_table,
6557         .probe = ipw2100_pci_init_one,
6558         .remove = __devexit_p(ipw2100_pci_remove_one),
6559 #ifdef CONFIG_PM
6560         .suspend = ipw2100_suspend,
6561         .resume = ipw2100_resume,
6562 #endif
6563 };
6564
6565 /**
6566  * Initialize the ipw2100 driver/module
6567  *
6568  * @returns 0 if ok, < 0 errno node con error.
6569  *
6570  * Note: we cannot init the /proc stuff until the PCI driver is there,
6571  * or we risk an unlikely race condition on someone accessing
6572  * uninitialized data in the PCI dev struct through /proc.
6573  */
6574 static int __init ipw2100_init(void)
6575 {
6576         int ret;
6577
6578         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6579         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6580
6581         ret = pci_register_driver(&ipw2100_pci_driver);
6582         if (ret)
6583                 goto out;
6584
6585         set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6586 #ifdef CONFIG_IPW2100_DEBUG
6587         ipw2100_debug_level = debug;
6588         ret = driver_create_file(&ipw2100_pci_driver.driver,
6589                                  &driver_attr_debug_level);
6590 #endif
6591
6592 out:
6593         return ret;
6594 }
6595
6596 /**
6597  * Cleanup ipw2100 driver registration
6598  */
6599 static void __exit ipw2100_exit(void)
6600 {
6601         /* FIXME: IPG: check that we have no instances of the devices open */
6602 #ifdef CONFIG_IPW2100_DEBUG
6603         driver_remove_file(&ipw2100_pci_driver.driver,
6604                            &driver_attr_debug_level);
6605 #endif
6606         pci_unregister_driver(&ipw2100_pci_driver);
6607         remove_acceptable_latency("ipw2100");
6608 }
6609
6610 module_init(ipw2100_init);
6611 module_exit(ipw2100_exit);
6612
6613 #define WEXT_USECHANNELS 1
6614
6615 static const long ipw2100_frequencies[] = {
6616         2412, 2417, 2422, 2427,
6617         2432, 2437, 2442, 2447,
6618         2452, 2457, 2462, 2467,
6619         2472, 2484
6620 };
6621
6622 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6623                     sizeof(ipw2100_frequencies[0]))
6624
6625 static const long ipw2100_rates_11b[] = {
6626         1000000,
6627         2000000,
6628         5500000,
6629         11000000
6630 };
6631
6632 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6633
6634 static int ipw2100_wx_get_name(struct net_device *dev,
6635                                struct iw_request_info *info,
6636                                union iwreq_data *wrqu, char *extra)
6637 {
6638         /*
6639          * This can be called at any time.  No action lock required
6640          */
6641
6642         struct ipw2100_priv *priv = ieee80211_priv(dev);
6643         if (!(priv->status & STATUS_ASSOCIATED))
6644                 strcpy(wrqu->name, "unassociated");
6645         else
6646                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6647
6648         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6649         return 0;
6650 }
6651
6652 static int ipw2100_wx_set_freq(struct net_device *dev,
6653                                struct iw_request_info *info,
6654                                union iwreq_data *wrqu, char *extra)
6655 {
6656         struct ipw2100_priv *priv = ieee80211_priv(dev);
6657         struct iw_freq *fwrq = &wrqu->freq;
6658         int err = 0;
6659
6660         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6661                 return -EOPNOTSUPP;
6662
6663         mutex_lock(&priv->action_mutex);
6664         if (!(priv->status & STATUS_INITIALIZED)) {
6665                 err = -EIO;
6666                 goto done;
6667         }
6668
6669         /* if setting by freq convert to channel */
6670         if (fwrq->e == 1) {
6671                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6672                         int f = fwrq->m / 100000;
6673                         int c = 0;
6674
6675                         while ((c < REG_MAX_CHANNEL) &&
6676                                (f != ipw2100_frequencies[c]))
6677                                 c++;
6678
6679                         /* hack to fall through */
6680                         fwrq->e = 0;
6681                         fwrq->m = c + 1;
6682                 }
6683         }
6684
6685         if (fwrq->e > 0 || fwrq->m > 1000) {
6686                 err = -EOPNOTSUPP;
6687                 goto done;
6688         } else {                /* Set the channel */
6689                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6690                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6691         }
6692
6693       done:
6694         mutex_unlock(&priv->action_mutex);
6695         return err;
6696 }
6697
6698 static int ipw2100_wx_get_freq(struct net_device *dev,
6699                                struct iw_request_info *info,
6700                                union iwreq_data *wrqu, char *extra)
6701 {
6702         /*
6703          * This can be called at any time.  No action lock required
6704          */
6705
6706         struct ipw2100_priv *priv = ieee80211_priv(dev);
6707
6708         wrqu->freq.e = 0;
6709
6710         /* If we are associated, trying to associate, or have a statically
6711          * configured CHANNEL then return that; otherwise return ANY */
6712         if (priv->config & CFG_STATIC_CHANNEL ||
6713             priv->status & STATUS_ASSOCIATED)
6714                 wrqu->freq.m = priv->channel;
6715         else
6716                 wrqu->freq.m = 0;
6717
6718         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6719         return 0;
6720
6721 }
6722
6723 static int ipw2100_wx_set_mode(struct net_device *dev,
6724                                struct iw_request_info *info,
6725                                union iwreq_data *wrqu, char *extra)
6726 {
6727         struct ipw2100_priv *priv = ieee80211_priv(dev);
6728         int err = 0;
6729
6730         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6731
6732         if (wrqu->mode == priv->ieee->iw_mode)
6733                 return 0;
6734
6735         mutex_lock(&priv->action_mutex);
6736         if (!(priv->status & STATUS_INITIALIZED)) {
6737                 err = -EIO;
6738                 goto done;
6739         }
6740
6741         switch (wrqu->mode) {
6742 #ifdef CONFIG_IPW2100_MONITOR
6743         case IW_MODE_MONITOR:
6744                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6745                 break;
6746 #endif                          /* CONFIG_IPW2100_MONITOR */
6747         case IW_MODE_ADHOC:
6748                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6749                 break;
6750         case IW_MODE_INFRA:
6751         case IW_MODE_AUTO:
6752         default:
6753                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6754                 break;
6755         }
6756
6757       done:
6758         mutex_unlock(&priv->action_mutex);
6759         return err;
6760 }
6761
6762 static int ipw2100_wx_get_mode(struct net_device *dev,
6763                                struct iw_request_info *info,
6764                                union iwreq_data *wrqu, char *extra)
6765 {
6766         /*
6767          * This can be called at any time.  No action lock required
6768          */
6769
6770         struct ipw2100_priv *priv = ieee80211_priv(dev);
6771
6772         wrqu->mode = priv->ieee->iw_mode;
6773         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6774
6775         return 0;
6776 }
6777
6778 #define POWER_MODES 5
6779
6780 /* Values are in microsecond */
6781 static const s32 timeout_duration[POWER_MODES] = {
6782         350000,
6783         250000,
6784         75000,
6785         37000,
6786         25000,
6787 };
6788
6789 static const s32 period_duration[POWER_MODES] = {
6790         400000,
6791         700000,
6792         1000000,
6793         1000000,
6794         1000000
6795 };
6796
6797 static int ipw2100_wx_get_range(struct net_device *dev,
6798                                 struct iw_request_info *info,
6799                                 union iwreq_data *wrqu, char *extra)
6800 {
6801         /*
6802          * This can be called at any time.  No action lock required
6803          */
6804
6805         struct ipw2100_priv *priv = ieee80211_priv(dev);
6806         struct iw_range *range = (struct iw_range *)extra;
6807         u16 val;
6808         int i, level;
6809
6810         wrqu->data.length = sizeof(*range);
6811         memset(range, 0, sizeof(*range));
6812
6813         /* Let's try to keep this struct in the same order as in
6814          * linux/include/wireless.h
6815          */
6816
6817         /* TODO: See what values we can set, and remove the ones we can't
6818          * set, or fill them with some default data.
6819          */
6820
6821         /* ~5 Mb/s real (802.11b) */
6822         range->throughput = 5 * 1000 * 1000;
6823
6824 //      range->sensitivity;     /* signal level threshold range */
6825
6826         range->max_qual.qual = 100;
6827         /* TODO: Find real max RSSI and stick here */
6828         range->max_qual.level = 0;
6829         range->max_qual.noise = 0;
6830         range->max_qual.updated = 7;    /* Updated all three */
6831
6832         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6833         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6834         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6835         range->avg_qual.noise = 0;
6836         range->avg_qual.updated = 7;    /* Updated all three */
6837
6838         range->num_bitrates = RATE_COUNT;
6839
6840         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6841                 range->bitrate[i] = ipw2100_rates_11b[i];
6842         }
6843
6844         range->min_rts = MIN_RTS_THRESHOLD;
6845         range->max_rts = MAX_RTS_THRESHOLD;
6846         range->min_frag = MIN_FRAG_THRESHOLD;
6847         range->max_frag = MAX_FRAG_THRESHOLD;
6848
6849         range->min_pmp = period_duration[0];    /* Minimal PM period */
6850         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6851         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6852         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6853
6854         /* How to decode max/min PM period */
6855         range->pmp_flags = IW_POWER_PERIOD;
6856         /* How to decode max/min PM period */
6857         range->pmt_flags = IW_POWER_TIMEOUT;
6858         /* What PM options are supported */
6859         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6860
6861         range->encoding_size[0] = 5;
6862         range->encoding_size[1] = 13;   /* Different token sizes */
6863         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6864         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6865 //      range->encoding_login_index;            /* token index for login token */
6866
6867         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6868                 range->txpower_capa = IW_TXPOW_DBM;
6869                 range->num_txpower = IW_MAX_TXPOWER;
6870                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6871                      i < IW_MAX_TXPOWER;
6872                      i++, level -=
6873                      ((IPW_TX_POWER_MAX_DBM -
6874                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6875                         range->txpower[i] = level / 16;
6876         } else {
6877                 range->txpower_capa = 0;
6878                 range->num_txpower = 0;
6879         }
6880
6881         /* Set the Wireless Extension versions */
6882         range->we_version_compiled = WIRELESS_EXT;
6883         range->we_version_source = 18;
6884
6885 //      range->retry_capa;      /* What retry options are supported */
6886 //      range->retry_flags;     /* How to decode max/min retry limit */
6887 //      range->r_time_flags;    /* How to decode max/min retry life */
6888 //      range->min_retry;       /* Minimal number of retries */
6889 //      range->max_retry;       /* Maximal number of retries */
6890 //      range->min_r_time;      /* Minimal retry lifetime */
6891 //      range->max_r_time;      /* Maximal retry lifetime */
6892
6893         range->num_channels = FREQ_COUNT;
6894
6895         val = 0;
6896         for (i = 0; i < FREQ_COUNT; i++) {
6897                 // TODO: Include only legal frequencies for some countries
6898 //              if (local->channel_mask & (1 << i)) {
6899                 range->freq[val].i = i + 1;
6900                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6901                 range->freq[val].e = 1;
6902                 val++;
6903 //              }
6904                 if (val == IW_MAX_FREQUENCIES)
6905                         break;
6906         }
6907         range->num_frequency = val;
6908
6909         /* Event capability (kernel + driver) */
6910         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6911                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6912         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6913
6914         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6915                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6916
6917         IPW_DEBUG_WX("GET Range\n");
6918
6919         return 0;
6920 }
6921
6922 static int ipw2100_wx_set_wap(struct net_device *dev,
6923                               struct iw_request_info *info,
6924                               union iwreq_data *wrqu, char *extra)
6925 {
6926         struct ipw2100_priv *priv = ieee80211_priv(dev);
6927         int err = 0;
6928
6929         static const unsigned char any[] = {
6930                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6931         };
6932         static const unsigned char off[] = {
6933                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6934         };
6935         DECLARE_MAC_BUF(mac);
6936
6937         // sanity checks
6938         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6939                 return -EINVAL;
6940
6941         mutex_lock(&priv->action_mutex);
6942         if (!(priv->status & STATUS_INITIALIZED)) {
6943                 err = -EIO;
6944                 goto done;
6945         }
6946
6947         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6948             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6949                 /* we disable mandatory BSSID association */
6950                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6951                 priv->config &= ~CFG_STATIC_BSSID;
6952                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6953                 goto done;
6954         }
6955
6956         priv->config |= CFG_STATIC_BSSID;
6957         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6958
6959         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6960
6961         IPW_DEBUG_WX("SET BSSID -> %s\n",
6962                      print_mac(mac, wrqu->ap_addr.sa_data));
6963
6964       done:
6965         mutex_unlock(&priv->action_mutex);
6966         return err;
6967 }
6968
6969 static int ipw2100_wx_get_wap(struct net_device *dev,
6970                               struct iw_request_info *info,
6971                               union iwreq_data *wrqu, char *extra)
6972 {
6973         /*
6974          * This can be called at any time.  No action lock required
6975          */
6976
6977         struct ipw2100_priv *priv = ieee80211_priv(dev);
6978         DECLARE_MAC_BUF(mac);
6979
6980         /* If we are associated, trying to associate, or have a statically
6981          * configured BSSID then return that; otherwise return ANY */
6982         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6983                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6984                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6985         } else
6986                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6987
6988         IPW_DEBUG_WX("Getting WAP BSSID: %s\n",
6989                      print_mac(mac, wrqu->ap_addr.sa_data));
6990         return 0;
6991 }
6992
6993 static int ipw2100_wx_set_essid(struct net_device *dev,
6994                                 struct iw_request_info *info,
6995                                 union iwreq_data *wrqu, char *extra)
6996 {
6997         struct ipw2100_priv *priv = ieee80211_priv(dev);
6998         char *essid = "";       /* ANY */
6999         int length = 0;
7000         int err = 0;
7001
7002         mutex_lock(&priv->action_mutex);
7003         if (!(priv->status & STATUS_INITIALIZED)) {
7004                 err = -EIO;
7005                 goto done;
7006         }
7007
7008         if (wrqu->essid.flags && wrqu->essid.length) {
7009                 length = wrqu->essid.length;
7010                 essid = extra;
7011         }
7012
7013         if (length == 0) {
7014                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7015                 priv->config &= ~CFG_STATIC_ESSID;
7016                 err = ipw2100_set_essid(priv, NULL, 0, 0);
7017                 goto done;
7018         }
7019
7020         length = min(length, IW_ESSID_MAX_SIZE);
7021
7022         priv->config |= CFG_STATIC_ESSID;
7023
7024         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7025                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7026                 err = 0;
7027                 goto done;
7028         }
7029
7030         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
7031                      length);
7032
7033         priv->essid_len = length;
7034         memcpy(priv->essid, essid, priv->essid_len);
7035
7036         err = ipw2100_set_essid(priv, essid, length, 0);
7037
7038       done:
7039         mutex_unlock(&priv->action_mutex);
7040         return err;
7041 }
7042
7043 static int ipw2100_wx_get_essid(struct net_device *dev,
7044                                 struct iw_request_info *info,
7045                                 union iwreq_data *wrqu, char *extra)
7046 {
7047         /*
7048          * This can be called at any time.  No action lock required
7049          */
7050
7051         struct ipw2100_priv *priv = ieee80211_priv(dev);
7052
7053         /* If we are associated, trying to associate, or have a statically
7054          * configured ESSID then return that; otherwise return ANY */
7055         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7056                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7057                              escape_essid(priv->essid, priv->essid_len));
7058                 memcpy(extra, priv->essid, priv->essid_len);
7059                 wrqu->essid.length = priv->essid_len;
7060                 wrqu->essid.flags = 1;  /* active */
7061         } else {
7062                 IPW_DEBUG_WX("Getting essid: ANY\n");
7063                 wrqu->essid.length = 0;
7064                 wrqu->essid.flags = 0;  /* active */
7065         }
7066
7067         return 0;
7068 }
7069
7070 static int ipw2100_wx_set_nick(struct net_device *dev,
7071                                struct iw_request_info *info,
7072                                union iwreq_data *wrqu, char *extra)
7073 {
7074         /*
7075          * This can be called at any time.  No action lock required
7076          */
7077
7078         struct ipw2100_priv *priv = ieee80211_priv(dev);
7079
7080         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7081                 return -E2BIG;
7082
7083         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7084         memset(priv->nick, 0, sizeof(priv->nick));
7085         memcpy(priv->nick, extra, wrqu->data.length);
7086
7087         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7088
7089         return 0;
7090 }
7091
7092 static int ipw2100_wx_get_nick(struct net_device *dev,
7093                                struct iw_request_info *info,
7094                                union iwreq_data *wrqu, char *extra)
7095 {
7096         /*
7097          * This can be called at any time.  No action lock required
7098          */
7099
7100         struct ipw2100_priv *priv = ieee80211_priv(dev);
7101
7102         wrqu->data.length = strlen(priv->nick);
7103         memcpy(extra, priv->nick, wrqu->data.length);
7104         wrqu->data.flags = 1;   /* active */
7105
7106         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7107
7108         return 0;
7109 }
7110
7111 static int ipw2100_wx_set_rate(struct net_device *dev,
7112                                struct iw_request_info *info,
7113                                union iwreq_data *wrqu, char *extra)
7114 {
7115         struct ipw2100_priv *priv = ieee80211_priv(dev);
7116         u32 target_rate = wrqu->bitrate.value;
7117         u32 rate;
7118         int err = 0;
7119
7120         mutex_lock(&priv->action_mutex);
7121         if (!(priv->status & STATUS_INITIALIZED)) {
7122                 err = -EIO;
7123                 goto done;
7124         }
7125
7126         rate = 0;
7127
7128         if (target_rate == 1000000 ||
7129             (!wrqu->bitrate.fixed && target_rate > 1000000))
7130                 rate |= TX_RATE_1_MBIT;
7131         if (target_rate == 2000000 ||
7132             (!wrqu->bitrate.fixed && target_rate > 2000000))
7133                 rate |= TX_RATE_2_MBIT;
7134         if (target_rate == 5500000 ||
7135             (!wrqu->bitrate.fixed && target_rate > 5500000))
7136                 rate |= TX_RATE_5_5_MBIT;
7137         if (target_rate == 11000000 ||
7138             (!wrqu->bitrate.fixed && target_rate > 11000000))
7139                 rate |= TX_RATE_11_MBIT;
7140         if (rate == 0)
7141                 rate = DEFAULT_TX_RATES;
7142
7143         err = ipw2100_set_tx_rates(priv, rate, 0);
7144
7145         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7146       done:
7147         mutex_unlock(&priv->action_mutex);
7148         return err;
7149 }
7150
7151 static int ipw2100_wx_get_rate(struct net_device *dev,
7152                                struct iw_request_info *info,
7153                                union iwreq_data *wrqu, char *extra)
7154 {
7155         struct ipw2100_priv *priv = ieee80211_priv(dev);
7156         int val;
7157         int len = sizeof(val);
7158         int err = 0;
7159
7160         if (!(priv->status & STATUS_ENABLED) ||
7161             priv->status & STATUS_RF_KILL_MASK ||
7162             !(priv->status & STATUS_ASSOCIATED)) {
7163                 wrqu->bitrate.value = 0;
7164                 return 0;
7165         }
7166
7167         mutex_lock(&priv->action_mutex);
7168         if (!(priv->status & STATUS_INITIALIZED)) {
7169                 err = -EIO;
7170                 goto done;
7171         }
7172
7173         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7174         if (err) {
7175                 IPW_DEBUG_WX("failed querying ordinals.\n");
7176                 return err;
7177         }
7178
7179         switch (val & TX_RATE_MASK) {
7180         case TX_RATE_1_MBIT:
7181                 wrqu->bitrate.value = 1000000;
7182                 break;
7183         case TX_RATE_2_MBIT:
7184                 wrqu->bitrate.value = 2000000;
7185                 break;
7186         case TX_RATE_5_5_MBIT:
7187                 wrqu->bitrate.value = 5500000;
7188                 break;
7189         case TX_RATE_11_MBIT:
7190                 wrqu->bitrate.value = 11000000;
7191                 break;
7192         default:
7193                 wrqu->bitrate.value = 0;
7194         }
7195
7196         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7197
7198       done:
7199         mutex_unlock(&priv->action_mutex);
7200         return err;
7201 }
7202
7203 static int ipw2100_wx_set_rts(struct net_device *dev,
7204                               struct iw_request_info *info,
7205                               union iwreq_data *wrqu, char *extra)
7206 {
7207         struct ipw2100_priv *priv = ieee80211_priv(dev);
7208         int value, err;
7209
7210         /* Auto RTS not yet supported */
7211         if (wrqu->rts.fixed == 0)
7212                 return -EINVAL;
7213
7214         mutex_lock(&priv->action_mutex);
7215         if (!(priv->status & STATUS_INITIALIZED)) {
7216                 err = -EIO;
7217                 goto done;
7218         }
7219
7220         if (wrqu->rts.disabled)
7221                 value = priv->rts_threshold | RTS_DISABLED;
7222         else {
7223                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7224                         err = -EINVAL;
7225                         goto done;
7226                 }
7227                 value = wrqu->rts.value;
7228         }
7229
7230         err = ipw2100_set_rts_threshold(priv, value);
7231
7232         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7233       done:
7234         mutex_unlock(&priv->action_mutex);
7235         return err;
7236 }
7237
7238 static int ipw2100_wx_get_rts(struct net_device *dev,
7239                               struct iw_request_info *info,
7240                               union iwreq_data *wrqu, char *extra)
7241 {
7242         /*
7243          * This can be called at any time.  No action lock required
7244          */
7245
7246         struct ipw2100_priv *priv = ieee80211_priv(dev);
7247
7248         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7249         wrqu->rts.fixed = 1;    /* no auto select */
7250
7251         /* If RTS is set to the default value, then it is disabled */
7252         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7253
7254         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7255
7256         return 0;
7257 }
7258
7259 static int ipw2100_wx_set_txpow(struct net_device *dev,
7260                                 struct iw_request_info *info,
7261                                 union iwreq_data *wrqu, char *extra)
7262 {
7263         struct ipw2100_priv *priv = ieee80211_priv(dev);
7264         int err = 0, value;
7265         
7266         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7267                 return -EINPROGRESS;
7268
7269         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7270                 return 0;
7271
7272         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7273                 return -EINVAL;
7274
7275         if (wrqu->txpower.fixed == 0)
7276                 value = IPW_TX_POWER_DEFAULT;
7277         else {
7278                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7279                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7280                         return -EINVAL;
7281
7282                 value = wrqu->txpower.value;
7283         }
7284
7285         mutex_lock(&priv->action_mutex);
7286         if (!(priv->status & STATUS_INITIALIZED)) {
7287                 err = -EIO;
7288                 goto done;
7289         }
7290
7291         err = ipw2100_set_tx_power(priv, value);
7292
7293         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7294
7295       done:
7296         mutex_unlock(&priv->action_mutex);
7297         return err;
7298 }
7299
7300 static int ipw2100_wx_get_txpow(struct net_device *dev,
7301                                 struct iw_request_info *info,
7302                                 union iwreq_data *wrqu, char *extra)
7303 {
7304         /*
7305          * This can be called at any time.  No action lock required
7306          */
7307
7308         struct ipw2100_priv *priv = ieee80211_priv(dev);
7309
7310         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7311
7312         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7313                 wrqu->txpower.fixed = 0;
7314                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7315         } else {
7316                 wrqu->txpower.fixed = 1;
7317                 wrqu->txpower.value = priv->tx_power;
7318         }
7319
7320         wrqu->txpower.flags = IW_TXPOW_DBM;
7321
7322         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7323
7324         return 0;
7325 }
7326
7327 static int ipw2100_wx_set_frag(struct net_device *dev,
7328                                struct iw_request_info *info,
7329                                union iwreq_data *wrqu, char *extra)
7330 {
7331         /*
7332          * This can be called at any time.  No action lock required
7333          */
7334
7335         struct ipw2100_priv *priv = ieee80211_priv(dev);
7336
7337         if (!wrqu->frag.fixed)
7338                 return -EINVAL;
7339
7340         if (wrqu->frag.disabled) {
7341                 priv->frag_threshold |= FRAG_DISABLED;
7342                 priv->ieee->fts = DEFAULT_FTS;
7343         } else {
7344                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7345                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7346                         return -EINVAL;
7347
7348                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7349                 priv->frag_threshold = priv->ieee->fts;
7350         }
7351
7352         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7353
7354         return 0;
7355 }
7356
7357 static int ipw2100_wx_get_frag(struct net_device *dev,
7358                                struct iw_request_info *info,
7359                                union iwreq_data *wrqu, char *extra)
7360 {
7361         /*
7362          * This can be called at any time.  No action lock required
7363          */
7364
7365         struct ipw2100_priv *priv = ieee80211_priv(dev);
7366         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7367         wrqu->frag.fixed = 0;   /* no auto select */
7368         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7369
7370         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7371
7372         return 0;
7373 }
7374
7375 static int ipw2100_wx_set_retry(struct net_device *dev,
7376                                 struct iw_request_info *info,
7377                                 union iwreq_data *wrqu, char *extra)
7378 {
7379         struct ipw2100_priv *priv = ieee80211_priv(dev);
7380         int err = 0;
7381
7382         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7383                 return -EINVAL;
7384
7385         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7386                 return 0;
7387
7388         mutex_lock(&priv->action_mutex);
7389         if (!(priv->status & STATUS_INITIALIZED)) {
7390                 err = -EIO;
7391                 goto done;
7392         }
7393
7394         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7395                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7396                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7397                              wrqu->retry.value);
7398                 goto done;
7399         }
7400
7401         if (wrqu->retry.flags & IW_RETRY_LONG) {
7402                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7403                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7404                              wrqu->retry.value);
7405                 goto done;
7406         }
7407
7408         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7409         if (!err)
7410                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7411
7412         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7413
7414       done:
7415         mutex_unlock(&priv->action_mutex);
7416         return err;
7417 }
7418
7419 static int ipw2100_wx_get_retry(struct net_device *dev,
7420                                 struct iw_request_info *info,
7421                                 union iwreq_data *wrqu, char *extra)
7422 {
7423         /*
7424          * This can be called at any time.  No action lock required
7425          */
7426
7427         struct ipw2100_priv *priv = ieee80211_priv(dev);
7428
7429         wrqu->retry.disabled = 0;       /* can't be disabled */
7430
7431         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7432                 return -EINVAL;
7433
7434         if (wrqu->retry.flags & IW_RETRY_LONG) {
7435                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7436                 wrqu->retry.value = priv->long_retry_limit;
7437         } else {
7438                 wrqu->retry.flags =
7439                     (priv->short_retry_limit !=
7440                      priv->long_retry_limit) ?
7441                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7442
7443                 wrqu->retry.value = priv->short_retry_limit;
7444         }
7445
7446         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7447
7448         return 0;
7449 }
7450
7451 static int ipw2100_wx_set_scan(struct net_device *dev,
7452                                struct iw_request_info *info,
7453                                union iwreq_data *wrqu, char *extra)
7454 {
7455         struct ipw2100_priv *priv = ieee80211_priv(dev);
7456         int err = 0;
7457
7458         mutex_lock(&priv->action_mutex);
7459         if (!(priv->status & STATUS_INITIALIZED)) {
7460                 err = -EIO;
7461                 goto done;
7462         }
7463
7464         IPW_DEBUG_WX("Initiating scan...\n");
7465
7466         priv->user_requested_scan = 1;
7467         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7468                 IPW_DEBUG_WX("Start scan failed.\n");
7469
7470                 /* TODO: Mark a scan as pending so when hardware initialized
7471                  *       a scan starts */
7472         }
7473
7474       done:
7475         mutex_unlock(&priv->action_mutex);
7476         return err;
7477 }
7478
7479 static int ipw2100_wx_get_scan(struct net_device *dev,
7480                                struct iw_request_info *info,
7481                                union iwreq_data *wrqu, char *extra)
7482 {
7483         /*
7484          * This can be called at any time.  No action lock required
7485          */
7486
7487         struct ipw2100_priv *priv = ieee80211_priv(dev);
7488         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7489 }
7490
7491 /*
7492  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7493  */
7494 static int ipw2100_wx_set_encode(struct net_device *dev,
7495                                  struct iw_request_info *info,
7496                                  union iwreq_data *wrqu, char *key)
7497 {
7498         /*
7499          * No check of STATUS_INITIALIZED required
7500          */
7501
7502         struct ipw2100_priv *priv = ieee80211_priv(dev);
7503         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7504 }
7505
7506 static int ipw2100_wx_get_encode(struct net_device *dev,
7507                                  struct iw_request_info *info,
7508                                  union iwreq_data *wrqu, char *key)
7509 {
7510         /*
7511          * This can be called at any time.  No action lock required
7512          */
7513
7514         struct ipw2100_priv *priv = ieee80211_priv(dev);
7515         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7516 }
7517
7518 static int ipw2100_wx_set_power(struct net_device *dev,
7519                                 struct iw_request_info *info,
7520                                 union iwreq_data *wrqu, char *extra)
7521 {
7522         struct ipw2100_priv *priv = ieee80211_priv(dev);
7523         int err = 0;
7524
7525         mutex_lock(&priv->action_mutex);
7526         if (!(priv->status & STATUS_INITIALIZED)) {
7527                 err = -EIO;
7528                 goto done;
7529         }
7530
7531         if (wrqu->power.disabled) {
7532                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7533                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7534                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7535                 goto done;
7536         }
7537
7538         switch (wrqu->power.flags & IW_POWER_MODE) {
7539         case IW_POWER_ON:       /* If not specified */
7540         case IW_POWER_MODE:     /* If set all mask */
7541         case IW_POWER_ALL_R:    /* If explicitely state all */
7542                 break;
7543         default:                /* Otherwise we don't support it */
7544                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7545                              wrqu->power.flags);
7546                 err = -EOPNOTSUPP;
7547                 goto done;
7548         }
7549
7550         /* If the user hasn't specified a power management mode yet, default
7551          * to BATTERY */
7552         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7553         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7554
7555         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7556
7557       done:
7558         mutex_unlock(&priv->action_mutex);
7559         return err;
7560
7561 }
7562
7563 static int ipw2100_wx_get_power(struct net_device *dev,
7564                                 struct iw_request_info *info,
7565                                 union iwreq_data *wrqu, char *extra)
7566 {
7567         /*
7568          * This can be called at any time.  No action lock required
7569          */
7570
7571         struct ipw2100_priv *priv = ieee80211_priv(dev);
7572
7573         if (!(priv->power_mode & IPW_POWER_ENABLED))
7574                 wrqu->power.disabled = 1;
7575         else {
7576                 wrqu->power.disabled = 0;
7577                 wrqu->power.flags = 0;
7578         }
7579
7580         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7581
7582         return 0;
7583 }
7584
7585 /*
7586  * WE-18 WPA support
7587  */
7588
7589 /* SIOCSIWGENIE */
7590 static int ipw2100_wx_set_genie(struct net_device *dev,
7591                                 struct iw_request_info *info,
7592                                 union iwreq_data *wrqu, char *extra)
7593 {
7594
7595         struct ipw2100_priv *priv = ieee80211_priv(dev);
7596         struct ieee80211_device *ieee = priv->ieee;
7597         u8 *buf;
7598
7599         if (!ieee->wpa_enabled)
7600                 return -EOPNOTSUPP;
7601
7602         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7603             (wrqu->data.length && extra == NULL))
7604                 return -EINVAL;
7605
7606         if (wrqu->data.length) {
7607                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7608                 if (buf == NULL)
7609                         return -ENOMEM;
7610
7611                 kfree(ieee->wpa_ie);
7612                 ieee->wpa_ie = buf;
7613                 ieee->wpa_ie_len = wrqu->data.length;
7614         } else {
7615                 kfree(ieee->wpa_ie);
7616                 ieee->wpa_ie = NULL;
7617                 ieee->wpa_ie_len = 0;
7618         }
7619
7620         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7621
7622         return 0;
7623 }
7624
7625 /* SIOCGIWGENIE */
7626 static int ipw2100_wx_get_genie(struct net_device *dev,
7627                                 struct iw_request_info *info,
7628                                 union iwreq_data *wrqu, char *extra)
7629 {
7630         struct ipw2100_priv *priv = ieee80211_priv(dev);
7631         struct ieee80211_device *ieee = priv->ieee;
7632
7633         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7634                 wrqu->data.length = 0;
7635                 return 0;
7636         }
7637
7638         if (wrqu->data.length < ieee->wpa_ie_len)
7639                 return -E2BIG;
7640
7641         wrqu->data.length = ieee->wpa_ie_len;
7642         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7643
7644         return 0;
7645 }
7646
7647 /* SIOCSIWAUTH */
7648 static int ipw2100_wx_set_auth(struct net_device *dev,
7649                                struct iw_request_info *info,
7650                                union iwreq_data *wrqu, char *extra)
7651 {
7652         struct ipw2100_priv *priv = ieee80211_priv(dev);
7653         struct ieee80211_device *ieee = priv->ieee;
7654         struct iw_param *param = &wrqu->param;
7655         struct ieee80211_crypt_data *crypt;
7656         unsigned long flags;
7657         int ret = 0;
7658
7659         switch (param->flags & IW_AUTH_INDEX) {
7660         case IW_AUTH_WPA_VERSION:
7661         case IW_AUTH_CIPHER_PAIRWISE:
7662         case IW_AUTH_CIPHER_GROUP:
7663         case IW_AUTH_KEY_MGMT:
7664                 /*
7665                  * ipw2200 does not use these parameters
7666                  */
7667                 break;
7668
7669         case IW_AUTH_TKIP_COUNTERMEASURES:
7670                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7671                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7672                         break;
7673
7674                 flags = crypt->ops->get_flags(crypt->priv);
7675
7676                 if (param->value)
7677                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7678                 else
7679                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7680
7681                 crypt->ops->set_flags(flags, crypt->priv);
7682
7683                 break;
7684
7685         case IW_AUTH_DROP_UNENCRYPTED:{
7686                         /* HACK:
7687                          *
7688                          * wpa_supplicant calls set_wpa_enabled when the driver
7689                          * is loaded and unloaded, regardless of if WPA is being
7690                          * used.  No other calls are made which can be used to
7691                          * determine if encryption will be used or not prior to
7692                          * association being expected.  If encryption is not being
7693                          * used, drop_unencrypted is set to false, else true -- we
7694                          * can use this to determine if the CAP_PRIVACY_ON bit should
7695                          * be set.
7696                          */
7697                         struct ieee80211_security sec = {
7698                                 .flags = SEC_ENABLED,
7699                                 .enabled = param->value,
7700                         };
7701                         priv->ieee->drop_unencrypted = param->value;
7702                         /* We only change SEC_LEVEL for open mode. Others
7703                          * are set by ipw_wpa_set_encryption.
7704                          */
7705                         if (!param->value) {
7706                                 sec.flags |= SEC_LEVEL;
7707                                 sec.level = SEC_LEVEL_0;
7708                         } else {
7709                                 sec.flags |= SEC_LEVEL;
7710                                 sec.level = SEC_LEVEL_1;
7711                         }
7712                         if (priv->ieee->set_security)
7713                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7714                         break;
7715                 }
7716
7717         case IW_AUTH_80211_AUTH_ALG:
7718                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7719                 break;
7720
7721         case IW_AUTH_WPA_ENABLED:
7722                 ret = ipw2100_wpa_enable(priv, param->value);
7723                 break;
7724
7725         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7726                 ieee->ieee802_1x = param->value;
7727                 break;
7728
7729                 //case IW_AUTH_ROAMING_CONTROL:
7730         case IW_AUTH_PRIVACY_INVOKED:
7731                 ieee->privacy_invoked = param->value;
7732                 break;
7733
7734         default:
7735                 return -EOPNOTSUPP;
7736         }
7737         return ret;
7738 }
7739
7740 /* SIOCGIWAUTH */
7741 static int ipw2100_wx_get_auth(struct net_device *dev,
7742                                struct iw_request_info *info,
7743                                union iwreq_data *wrqu, char *extra)
7744 {
7745         struct ipw2100_priv *priv = ieee80211_priv(dev);
7746         struct ieee80211_device *ieee = priv->ieee;
7747         struct ieee80211_crypt_data *crypt;
7748         struct iw_param *param = &wrqu->param;
7749         int ret = 0;
7750
7751         switch (param->flags & IW_AUTH_INDEX) {
7752         case IW_AUTH_WPA_VERSION:
7753         case IW_AUTH_CIPHER_PAIRWISE:
7754         case IW_AUTH_CIPHER_GROUP:
7755         case IW_AUTH_KEY_MGMT:
7756                 /*
7757                  * wpa_supplicant will control these internally
7758                  */
7759                 ret = -EOPNOTSUPP;
7760                 break;
7761
7762         case IW_AUTH_TKIP_COUNTERMEASURES:
7763                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7764                 if (!crypt || !crypt->ops->get_flags) {
7765                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7766                                           "crypt not set!\n");
7767                         break;
7768                 }
7769
7770                 param->value = (crypt->ops->get_flags(crypt->priv) &
7771                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7772
7773                 break;
7774
7775         case IW_AUTH_DROP_UNENCRYPTED:
7776                 param->value = ieee->drop_unencrypted;
7777                 break;
7778
7779         case IW_AUTH_80211_AUTH_ALG:
7780                 param->value = priv->ieee->sec.auth_mode;
7781                 break;
7782
7783         case IW_AUTH_WPA_ENABLED:
7784                 param->value = ieee->wpa_enabled;
7785                 break;
7786
7787         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7788                 param->value = ieee->ieee802_1x;
7789                 break;
7790
7791         case IW_AUTH_ROAMING_CONTROL:
7792         case IW_AUTH_PRIVACY_INVOKED:
7793                 param->value = ieee->privacy_invoked;
7794                 break;
7795
7796         default:
7797                 return -EOPNOTSUPP;
7798         }
7799         return 0;
7800 }
7801
7802 /* SIOCSIWENCODEEXT */
7803 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7804                                     struct iw_request_info *info,
7805                                     union iwreq_data *wrqu, char *extra)
7806 {
7807         struct ipw2100_priv *priv = ieee80211_priv(dev);
7808         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7809 }
7810
7811 /* SIOCGIWENCODEEXT */
7812 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7813                                     struct iw_request_info *info,
7814                                     union iwreq_data *wrqu, char *extra)
7815 {
7816         struct ipw2100_priv *priv = ieee80211_priv(dev);
7817         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7818 }
7819
7820 /* SIOCSIWMLME */
7821 static int ipw2100_wx_set_mlme(struct net_device *dev,
7822                                struct iw_request_info *info,
7823                                union iwreq_data *wrqu, char *extra)
7824 {
7825         struct ipw2100_priv *priv = ieee80211_priv(dev);
7826         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7827         u16 reason;
7828
7829         reason = cpu_to_le16(mlme->reason_code);
7830
7831         switch (mlme->cmd) {
7832         case IW_MLME_DEAUTH:
7833                 // silently ignore
7834                 break;
7835
7836         case IW_MLME_DISASSOC:
7837                 ipw2100_disassociate_bssid(priv);
7838                 break;
7839
7840         default:
7841                 return -EOPNOTSUPP;
7842         }
7843         return 0;
7844 }
7845
7846 /*
7847  *
7848  * IWPRIV handlers
7849  *
7850  */
7851 #ifdef CONFIG_IPW2100_MONITOR
7852 static int ipw2100_wx_set_promisc(struct net_device *dev,
7853                                   struct iw_request_info *info,
7854                                   union iwreq_data *wrqu, char *extra)
7855 {
7856         struct ipw2100_priv *priv = ieee80211_priv(dev);
7857         int *parms = (int *)extra;
7858         int enable = (parms[0] > 0);
7859         int err = 0;
7860
7861         mutex_lock(&priv->action_mutex);
7862         if (!(priv->status & STATUS_INITIALIZED)) {
7863                 err = -EIO;
7864                 goto done;
7865         }
7866
7867         if (enable) {
7868                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7869                         err = ipw2100_set_channel(priv, parms[1], 0);
7870                         goto done;
7871                 }
7872                 priv->channel = parms[1];
7873                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7874         } else {
7875                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7876                         err = ipw2100_switch_mode(priv, priv->last_mode);
7877         }
7878       done:
7879         mutex_unlock(&priv->action_mutex);
7880         return err;
7881 }
7882
7883 static int ipw2100_wx_reset(struct net_device *dev,
7884                             struct iw_request_info *info,
7885                             union iwreq_data *wrqu, char *extra)
7886 {
7887         struct ipw2100_priv *priv = ieee80211_priv(dev);
7888         if (priv->status & STATUS_INITIALIZED)
7889                 schedule_reset(priv);
7890         return 0;
7891 }
7892
7893 #endif
7894
7895 static int ipw2100_wx_set_powermode(struct net_device *dev,
7896                                     struct iw_request_info *info,
7897                                     union iwreq_data *wrqu, char *extra)
7898 {
7899         struct ipw2100_priv *priv = ieee80211_priv(dev);
7900         int err = 0, mode = *(int *)extra;
7901
7902         mutex_lock(&priv->action_mutex);
7903         if (!(priv->status & STATUS_INITIALIZED)) {
7904                 err = -EIO;
7905                 goto done;
7906         }
7907
7908         if ((mode < 0) || (mode > POWER_MODES))
7909                 mode = IPW_POWER_AUTO;
7910
7911         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7912                 err = ipw2100_set_power_mode(priv, mode);
7913       done:
7914         mutex_unlock(&priv->action_mutex);
7915         return err;
7916 }
7917
7918 #define MAX_POWER_STRING 80
7919 static int ipw2100_wx_get_powermode(struct net_device *dev,
7920                                     struct iw_request_info *info,
7921                                     union iwreq_data *wrqu, char *extra)
7922 {
7923         /*
7924          * This can be called at any time.  No action lock required
7925          */
7926
7927         struct ipw2100_priv *priv = ieee80211_priv(dev);
7928         int level = IPW_POWER_LEVEL(priv->power_mode);
7929         s32 timeout, period;
7930
7931         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7932                 snprintf(extra, MAX_POWER_STRING,
7933                          "Power save level: %d (Off)", level);
7934         } else {
7935                 switch (level) {
7936                 case IPW_POWER_MODE_CAM:
7937                         snprintf(extra, MAX_POWER_STRING,
7938                                  "Power save level: %d (None)", level);
7939                         break;
7940                 case IPW_POWER_AUTO:
7941                         snprintf(extra, MAX_POWER_STRING,
7942                                  "Power save level: %d (Auto)", level);
7943                         break;
7944                 default:
7945                         timeout = timeout_duration[level - 1] / 1000;
7946                         period = period_duration[level - 1] / 1000;
7947                         snprintf(extra, MAX_POWER_STRING,
7948                                  "Power save level: %d "
7949                                  "(Timeout %dms, Period %dms)",
7950                                  level, timeout, period);
7951                 }
7952         }
7953
7954         wrqu->data.length = strlen(extra) + 1;
7955
7956         return 0;
7957 }
7958
7959 static int ipw2100_wx_set_preamble(struct net_device *dev,
7960                                    struct iw_request_info *info,
7961                                    union iwreq_data *wrqu, char *extra)
7962 {
7963         struct ipw2100_priv *priv = ieee80211_priv(dev);
7964         int err, mode = *(int *)extra;
7965
7966         mutex_lock(&priv->action_mutex);
7967         if (!(priv->status & STATUS_INITIALIZED)) {
7968                 err = -EIO;
7969                 goto done;
7970         }
7971
7972         if (mode == 1)
7973                 priv->config |= CFG_LONG_PREAMBLE;
7974         else if (mode == 0)
7975                 priv->config &= ~CFG_LONG_PREAMBLE;
7976         else {
7977                 err = -EINVAL;
7978                 goto done;
7979         }
7980
7981         err = ipw2100_system_config(priv, 0);
7982
7983       done:
7984         mutex_unlock(&priv->action_mutex);
7985         return err;
7986 }
7987
7988 static int ipw2100_wx_get_preamble(struct net_device *dev,
7989                                    struct iw_request_info *info,
7990                                    union iwreq_data *wrqu, char *extra)
7991 {
7992         /*
7993          * This can be called at any time.  No action lock required
7994          */
7995
7996         struct ipw2100_priv *priv = ieee80211_priv(dev);
7997
7998         if (priv->config & CFG_LONG_PREAMBLE)
7999                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8000         else
8001                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8002
8003         return 0;
8004 }
8005
8006 #ifdef CONFIG_IPW2100_MONITOR
8007 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8008                                     struct iw_request_info *info,
8009                                     union iwreq_data *wrqu, char *extra)
8010 {
8011         struct ipw2100_priv *priv = ieee80211_priv(dev);
8012         int err, mode = *(int *)extra;
8013
8014         mutex_lock(&priv->action_mutex);
8015         if (!(priv->status & STATUS_INITIALIZED)) {
8016                 err = -EIO;
8017                 goto done;
8018         }
8019
8020         if (mode == 1)
8021                 priv->config |= CFG_CRC_CHECK;
8022         else if (mode == 0)
8023                 priv->config &= ~CFG_CRC_CHECK;
8024         else {
8025                 err = -EINVAL;
8026                 goto done;
8027         }
8028         err = 0;
8029
8030       done:
8031         mutex_unlock(&priv->action_mutex);
8032         return err;
8033 }
8034
8035 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8036                                     struct iw_request_info *info,
8037                                     union iwreq_data *wrqu, char *extra)
8038 {
8039         /*
8040          * This can be called at any time.  No action lock required
8041          */
8042
8043         struct ipw2100_priv *priv = ieee80211_priv(dev);
8044
8045         if (priv->config & CFG_CRC_CHECK)
8046                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8047         else
8048                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8049
8050         return 0;
8051 }
8052 #endif                          /* CONFIG_IPW2100_MONITOR */
8053
8054 static iw_handler ipw2100_wx_handlers[] = {
8055         NULL,                   /* SIOCSIWCOMMIT */
8056         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8057         NULL,                   /* SIOCSIWNWID */
8058         NULL,                   /* SIOCGIWNWID */
8059         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8060         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8061         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8062         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8063         NULL,                   /* SIOCSIWSENS */
8064         NULL,                   /* SIOCGIWSENS */
8065         NULL,                   /* SIOCSIWRANGE */
8066         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8067         NULL,                   /* SIOCSIWPRIV */
8068         NULL,                   /* SIOCGIWPRIV */
8069         NULL,                   /* SIOCSIWSTATS */
8070         NULL,                   /* SIOCGIWSTATS */
8071         NULL,                   /* SIOCSIWSPY */
8072         NULL,                   /* SIOCGIWSPY */
8073         NULL,                   /* SIOCGIWTHRSPY */
8074         NULL,                   /* SIOCWIWTHRSPY */
8075         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8076         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8077         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8078         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8079         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8080         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8081         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8082         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8083         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8084         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8085         NULL,                   /* -- hole -- */
8086         NULL,                   /* -- hole -- */
8087         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8088         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8089         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8090         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8091         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8092         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8093         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8094         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8095         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8096         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8097         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8098         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8099         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8100         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8101         NULL,                   /* -- hole -- */
8102         NULL,                   /* -- hole -- */
8103         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8104         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8105         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8106         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8107         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8108         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8109         NULL,                   /* SIOCSIWPMKSA */
8110 };
8111
8112 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8113 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8114 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8115 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8116 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8117 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8118 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8119 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8120
8121 static const struct iw_priv_args ipw2100_private_args[] = {
8122
8123 #ifdef CONFIG_IPW2100_MONITOR
8124         {
8125          IPW2100_PRIV_SET_MONITOR,
8126          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8127         {
8128          IPW2100_PRIV_RESET,
8129          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8130 #endif                          /* CONFIG_IPW2100_MONITOR */
8131
8132         {
8133          IPW2100_PRIV_SET_POWER,
8134          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8135         {
8136          IPW2100_PRIV_GET_POWER,
8137          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8138          "get_power"},
8139         {
8140          IPW2100_PRIV_SET_LONGPREAMBLE,
8141          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8142         {
8143          IPW2100_PRIV_GET_LONGPREAMBLE,
8144          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8145 #ifdef CONFIG_IPW2100_MONITOR
8146         {
8147          IPW2100_PRIV_SET_CRC_CHECK,
8148          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8149         {
8150          IPW2100_PRIV_GET_CRC_CHECK,
8151          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8152 #endif                          /* CONFIG_IPW2100_MONITOR */
8153 };
8154
8155 static iw_handler ipw2100_private_handler[] = {
8156 #ifdef CONFIG_IPW2100_MONITOR
8157         ipw2100_wx_set_promisc,
8158         ipw2100_wx_reset,
8159 #else                           /* CONFIG_IPW2100_MONITOR */
8160         NULL,
8161         NULL,
8162 #endif                          /* CONFIG_IPW2100_MONITOR */
8163         ipw2100_wx_set_powermode,
8164         ipw2100_wx_get_powermode,
8165         ipw2100_wx_set_preamble,
8166         ipw2100_wx_get_preamble,
8167 #ifdef CONFIG_IPW2100_MONITOR
8168         ipw2100_wx_set_crc_check,
8169         ipw2100_wx_get_crc_check,
8170 #else                           /* CONFIG_IPW2100_MONITOR */
8171         NULL,
8172         NULL,
8173 #endif                          /* CONFIG_IPW2100_MONITOR */
8174 };
8175
8176 /*
8177  * Get wireless statistics.
8178  * Called by /proc/net/wireless
8179  * Also called by SIOCGIWSTATS
8180  */
8181 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8182 {
8183         enum {
8184                 POOR = 30,
8185                 FAIR = 60,
8186                 GOOD = 80,
8187                 VERY_GOOD = 90,
8188                 EXCELLENT = 95,
8189                 PERFECT = 100
8190         };
8191         int rssi_qual;
8192         int tx_qual;
8193         int beacon_qual;
8194
8195         struct ipw2100_priv *priv = ieee80211_priv(dev);
8196         struct iw_statistics *wstats;
8197         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8198         u32 ord_len = sizeof(u32);
8199
8200         if (!priv)
8201                 return (struct iw_statistics *)NULL;
8202
8203         wstats = &priv->wstats;
8204
8205         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8206          * ipw2100_wx_wireless_stats seems to be called before fw is
8207          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8208          * and associated; if not associcated, the values are all meaningless
8209          * anyway, so set them all to NULL and INVALID */
8210         if (!(priv->status & STATUS_ASSOCIATED)) {
8211                 wstats->miss.beacon = 0;
8212                 wstats->discard.retries = 0;
8213                 wstats->qual.qual = 0;
8214                 wstats->qual.level = 0;
8215                 wstats->qual.noise = 0;
8216                 wstats->qual.updated = 7;
8217                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8218                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8219                 return wstats;
8220         }
8221
8222         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8223                                 &missed_beacons, &ord_len))
8224                 goto fail_get_ordinal;
8225
8226         /* If we don't have a connection the quality and level is 0 */
8227         if (!(priv->status & STATUS_ASSOCIATED)) {
8228                 wstats->qual.qual = 0;
8229                 wstats->qual.level = 0;
8230         } else {
8231                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8232                                         &rssi, &ord_len))
8233                         goto fail_get_ordinal;
8234                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8235                 if (rssi < 10)
8236                         rssi_qual = rssi * POOR / 10;
8237                 else if (rssi < 15)
8238                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8239                 else if (rssi < 20)
8240                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8241                 else if (rssi < 30)
8242                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8243                             10 + GOOD;
8244                 else
8245                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8246                             10 + VERY_GOOD;
8247
8248                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8249                                         &tx_retries, &ord_len))
8250                         goto fail_get_ordinal;
8251
8252                 if (tx_retries > 75)
8253                         tx_qual = (90 - tx_retries) * POOR / 15;
8254                 else if (tx_retries > 70)
8255                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8256                 else if (tx_retries > 65)
8257                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8258                 else if (tx_retries > 50)
8259                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8260                             15 + GOOD;
8261                 else
8262                         tx_qual = (50 - tx_retries) *
8263                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8264
8265                 if (missed_beacons > 50)
8266                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8267                 else if (missed_beacons > 40)
8268                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8269                             10 + POOR;
8270                 else if (missed_beacons > 32)
8271                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8272                             18 + FAIR;
8273                 else if (missed_beacons > 20)
8274                         beacon_qual = (32 - missed_beacons) *
8275                             (VERY_GOOD - GOOD) / 20 + GOOD;
8276                 else
8277                         beacon_qual = (20 - missed_beacons) *
8278                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8279
8280                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8281
8282 #ifdef CONFIG_IPW2100_DEBUG
8283                 if (beacon_qual == quality)
8284                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8285                 else if (tx_qual == quality)
8286                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8287                 else if (quality != 100)
8288                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8289                 else
8290                         IPW_DEBUG_WX("Quality not clamped.\n");
8291 #endif
8292
8293                 wstats->qual.qual = quality;
8294                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8295         }
8296
8297         wstats->qual.noise = 0;
8298         wstats->qual.updated = 7;
8299         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8300
8301         /* FIXME: this is percent and not a # */
8302         wstats->miss.beacon = missed_beacons;
8303
8304         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8305                                 &tx_failures, &ord_len))
8306                 goto fail_get_ordinal;
8307         wstats->discard.retries = tx_failures;
8308
8309         return wstats;
8310
8311       fail_get_ordinal:
8312         IPW_DEBUG_WX("failed querying ordinals.\n");
8313
8314         return (struct iw_statistics *)NULL;
8315 }
8316
8317 static struct iw_handler_def ipw2100_wx_handler_def = {
8318         .standard = ipw2100_wx_handlers,
8319         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8320         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8321         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8322         .private = (iw_handler *) ipw2100_private_handler,
8323         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8324         .get_wireless_stats = ipw2100_wx_wireless_stats,
8325 };
8326
8327 static void ipw2100_wx_event_work(struct work_struct *work)
8328 {
8329         struct ipw2100_priv *priv =
8330                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8331         union iwreq_data wrqu;
8332         int len = ETH_ALEN;
8333
8334         if (priv->status & STATUS_STOPPING)
8335                 return;
8336
8337         mutex_lock(&priv->action_mutex);
8338
8339         IPW_DEBUG_WX("enter\n");
8340
8341         mutex_unlock(&priv->action_mutex);
8342
8343         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8344
8345         /* Fetch BSSID from the hardware */
8346         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8347             priv->status & STATUS_RF_KILL_MASK ||
8348             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8349                                 &priv->bssid, &len)) {
8350                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8351         } else {
8352                 /* We now have the BSSID, so can finish setting to the full
8353                  * associated state */
8354                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8355                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8356                 priv->status &= ~STATUS_ASSOCIATING;
8357                 priv->status |= STATUS_ASSOCIATED;
8358                 netif_carrier_on(priv->net_dev);
8359                 netif_wake_queue(priv->net_dev);
8360         }
8361
8362         if (!(priv->status & STATUS_ASSOCIATED)) {
8363                 IPW_DEBUG_WX("Configuring ESSID\n");
8364                 mutex_lock(&priv->action_mutex);
8365                 /* This is a disassociation event, so kick the firmware to
8366                  * look for another AP */
8367                 if (priv->config & CFG_STATIC_ESSID)
8368                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8369                                           0);
8370                 else
8371                         ipw2100_set_essid(priv, NULL, 0, 0);
8372                 mutex_unlock(&priv->action_mutex);
8373         }
8374
8375         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8376 }
8377
8378 #define IPW2100_FW_MAJOR_VERSION 1
8379 #define IPW2100_FW_MINOR_VERSION 3
8380
8381 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8382 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8383
8384 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8385                              IPW2100_FW_MAJOR_VERSION)
8386
8387 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8388 "." __stringify(IPW2100_FW_MINOR_VERSION)
8389
8390 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8391
8392 /*
8393
8394 BINARY FIRMWARE HEADER FORMAT
8395
8396 offset      length   desc
8397 0           2        version
8398 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8399 4           4        fw_len
8400 8           4        uc_len
8401 C           fw_len   firmware data
8402 12 + fw_len uc_len   microcode data
8403
8404 */
8405
8406 struct ipw2100_fw_header {
8407         short version;
8408         short mode;
8409         unsigned int fw_size;
8410         unsigned int uc_size;
8411 } __attribute__ ((packed));
8412
8413 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8414 {
8415         struct ipw2100_fw_header *h =
8416             (struct ipw2100_fw_header *)fw->fw_entry->data;
8417
8418         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8419                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8420                        "(detected version id of %u). "
8421                        "See Documentation/networking/README.ipw2100\n",
8422                        h->version);
8423                 return 1;
8424         }
8425
8426         fw->version = h->version;
8427         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8428         fw->fw.size = h->fw_size;
8429         fw->uc.data = fw->fw.data + h->fw_size;
8430         fw->uc.size = h->uc_size;
8431
8432         return 0;
8433 }
8434
8435 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8436                                 struct ipw2100_fw *fw)
8437 {
8438         char *fw_name;
8439         int rc;
8440
8441         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8442                        priv->net_dev->name);
8443
8444         switch (priv->ieee->iw_mode) {
8445         case IW_MODE_ADHOC:
8446                 fw_name = IPW2100_FW_NAME("-i");
8447                 break;
8448 #ifdef CONFIG_IPW2100_MONITOR
8449         case IW_MODE_MONITOR:
8450                 fw_name = IPW2100_FW_NAME("-p");
8451                 break;
8452 #endif
8453         case IW_MODE_INFRA:
8454         default:
8455                 fw_name = IPW2100_FW_NAME("");
8456                 break;
8457         }
8458
8459         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8460
8461         if (rc < 0) {
8462                 printk(KERN_ERR DRV_NAME ": "
8463                        "%s: Firmware '%s' not available or load failed.\n",
8464                        priv->net_dev->name, fw_name);
8465                 return rc;
8466         }
8467         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8468                        fw->fw_entry->size);
8469
8470         ipw2100_mod_firmware_load(fw);
8471
8472         return 0;
8473 }
8474
8475 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8476                                      struct ipw2100_fw *fw)
8477 {
8478         fw->version = 0;
8479         if (fw->fw_entry)
8480                 release_firmware(fw->fw_entry);
8481         fw->fw_entry = NULL;
8482 }
8483
8484 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8485                                  size_t max)
8486 {
8487         char ver[MAX_FW_VERSION_LEN];
8488         u32 len = MAX_FW_VERSION_LEN;
8489         u32 tmp;
8490         int i;
8491         /* firmware version is an ascii string (max len of 14) */
8492         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8493                 return -EIO;
8494         tmp = max;
8495         if (len >= max)
8496                 len = max - 1;
8497         for (i = 0; i < len; i++)
8498                 buf[i] = ver[i];
8499         buf[i] = '\0';
8500         return tmp;
8501 }
8502
8503 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8504                                     size_t max)
8505 {
8506         u32 ver;
8507         u32 len = sizeof(ver);
8508         /* microcode version is a 32 bit integer */
8509         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8510                 return -EIO;
8511         return snprintf(buf, max, "%08X", ver);
8512 }
8513
8514 /*
8515  * On exit, the firmware will have been freed from the fw list
8516  */
8517 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8518 {
8519         /* firmware is constructed of N contiguous entries, each entry is
8520          * structured as:
8521          *
8522          * offset    sie         desc
8523          * 0         4           address to write to
8524          * 4         2           length of data run
8525          * 6         length      data
8526          */
8527         unsigned int addr;
8528         unsigned short len;
8529
8530         const unsigned char *firmware_data = fw->fw.data;
8531         unsigned int firmware_data_left = fw->fw.size;
8532
8533         while (firmware_data_left > 0) {
8534                 addr = *(u32 *) (firmware_data);
8535                 firmware_data += 4;
8536                 firmware_data_left -= 4;
8537
8538                 len = *(u16 *) (firmware_data);
8539                 firmware_data += 2;
8540                 firmware_data_left -= 2;
8541
8542                 if (len > 32) {
8543                         printk(KERN_ERR DRV_NAME ": "
8544                                "Invalid firmware run-length of %d bytes\n",
8545                                len);
8546                         return -EINVAL;
8547                 }
8548
8549                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8550                 firmware_data += len;
8551                 firmware_data_left -= len;
8552         }
8553
8554         return 0;
8555 }
8556
8557 struct symbol_alive_response {
8558         u8 cmd_id;
8559         u8 seq_num;
8560         u8 ucode_rev;
8561         u8 eeprom_valid;
8562         u16 valid_flags;
8563         u8 IEEE_addr[6];
8564         u16 flags;
8565         u16 pcb_rev;
8566         u16 clock_settle_time;  // 1us LSB
8567         u16 powerup_settle_time;        // 1us LSB
8568         u16 hop_settle_time;    // 1us LSB
8569         u8 date[3];             // month, day, year
8570         u8 time[2];             // hours, minutes
8571         u8 ucode_valid;
8572 };
8573
8574 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8575                                   struct ipw2100_fw *fw)
8576 {
8577         struct net_device *dev = priv->net_dev;
8578         const unsigned char *microcode_data = fw->uc.data;
8579         unsigned int microcode_data_left = fw->uc.size;
8580         void __iomem *reg = (void __iomem *)dev->base_addr;
8581
8582         struct symbol_alive_response response;
8583         int i, j;
8584         u8 data;
8585
8586         /* Symbol control */
8587         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8588         readl(reg);
8589         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8590         readl(reg);
8591
8592         /* HW config */
8593         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8594         readl(reg);
8595         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8596         readl(reg);
8597
8598         /* EN_CS_ACCESS bit to reset control store pointer */
8599         write_nic_byte(dev, 0x210000, 0x40);
8600         readl(reg);
8601         write_nic_byte(dev, 0x210000, 0x0);
8602         readl(reg);
8603         write_nic_byte(dev, 0x210000, 0x40);
8604         readl(reg);
8605
8606         /* copy microcode from buffer into Symbol */
8607
8608         while (microcode_data_left > 0) {
8609                 write_nic_byte(dev, 0x210010, *microcode_data++);
8610                 write_nic_byte(dev, 0x210010, *microcode_data++);
8611                 microcode_data_left -= 2;
8612         }
8613
8614         /* EN_CS_ACCESS bit to reset the control store pointer */
8615         write_nic_byte(dev, 0x210000, 0x0);
8616         readl(reg);
8617
8618         /* Enable System (Reg 0)
8619          * first enable causes garbage in RX FIFO */
8620         write_nic_byte(dev, 0x210000, 0x0);
8621         readl(reg);
8622         write_nic_byte(dev, 0x210000, 0x80);
8623         readl(reg);
8624
8625         /* Reset External Baseband Reg */
8626         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8627         readl(reg);
8628         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8629         readl(reg);
8630
8631         /* HW Config (Reg 5) */
8632         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8633         readl(reg);
8634         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8635         readl(reg);
8636
8637         /* Enable System (Reg 0)
8638          * second enable should be OK */
8639         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8640         readl(reg);
8641         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8642
8643         /* check Symbol is enabled - upped this from 5 as it wasn't always
8644          * catching the update */
8645         for (i = 0; i < 10; i++) {
8646                 udelay(10);
8647
8648                 /* check Dino is enabled bit */
8649                 read_nic_byte(dev, 0x210000, &data);
8650                 if (data & 0x1)
8651                         break;
8652         }
8653
8654         if (i == 10) {
8655                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8656                        dev->name);
8657                 return -EIO;
8658         }
8659
8660         /* Get Symbol alive response */
8661         for (i = 0; i < 30; i++) {
8662                 /* Read alive response structure */
8663                 for (j = 0;
8664                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8665                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8666
8667                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8668                         break;
8669                 udelay(10);
8670         }
8671
8672         if (i == 30) {
8673                 printk(KERN_ERR DRV_NAME
8674                        ": %s: No response from Symbol - hw not alive\n",
8675                        dev->name);
8676                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8677                 return -EIO;
8678         }
8679
8680         return 0;
8681 }