2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
43 #include <linux/slab.h>
44 #include <linux/poll.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <asm/futex.h>
58 #include "rtmutex_common.h"
60 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
63 * Priority Inheritance state:
65 struct futex_pi_state {
67 * list of 'owned' pi_state instances - these have to be
68 * cleaned up in do_exit() if the task exits prematurely:
70 struct list_head list;
75 struct rt_mutex pi_mutex;
77 struct task_struct *owner;
84 * We use this hashed waitqueue instead of a normal wait_queue_t, so
85 * we can wake only the relevant ones (hashed queues may be shared).
87 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
88 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
89 * The order of wakup is always to make the first condition true, then
90 * wake up q->waiters, then make the second condition true.
93 struct plist_node list;
94 wait_queue_head_t waiters;
96 /* Which hash list lock to use: */
99 /* Key which the futex is hashed on: */
102 /* For fd, sigio sent using these: */
106 /* Optional priority inheritance state: */
107 struct futex_pi_state *pi_state;
108 struct task_struct *task;
112 * Split the global futex_lock into every hash list lock.
114 struct futex_hash_bucket {
116 struct plist_head chain;
119 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
121 /* Futex-fs vfsmount entry: */
122 static struct vfsmount *futex_mnt;
125 * Take mm->mmap_sem, when futex is shared
127 static inline void futex_lock_mm(struct rw_semaphore *fshared)
134 * Release mm->mmap_sem, when the futex is shared
136 static inline void futex_unlock_mm(struct rw_semaphore *fshared)
143 * We hash on the keys returned from get_futex_key (see below).
145 static struct futex_hash_bucket *hash_futex(union futex_key *key)
147 u32 hash = jhash2((u32*)&key->both.word,
148 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
150 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
154 * Return 1 if two futex_keys are equal, 0 otherwise.
156 static inline int match_futex(union futex_key *key1, union futex_key *key2)
158 return (key1->both.word == key2->both.word
159 && key1->both.ptr == key2->both.ptr
160 && key1->both.offset == key2->both.offset);
164 * get_futex_key - Get parameters which are the keys for a futex.
165 * @uaddr: virtual address of the futex
166 * @shared: NULL for a PROCESS_PRIVATE futex,
167 * ¤t->mm->mmap_sem for a PROCESS_SHARED futex
168 * @key: address where result is stored.
170 * Returns a negative error code or 0
171 * The key words are stored in *key on success.
173 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
174 * offset_within_page). For private mappings, it's (uaddr, current->mm).
175 * We can usually work out the index without swapping in the page.
177 * fshared is NULL for PROCESS_PRIVATE futexes
178 * For other futexes, it points to ¤t->mm->mmap_sem and
179 * caller must have taken the reader lock. but NOT any spinlocks.
181 int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
182 union futex_key *key)
184 unsigned long address = (unsigned long)uaddr;
185 struct mm_struct *mm = current->mm;
186 struct vm_area_struct *vma;
191 * The futex address must be "naturally" aligned.
193 key->both.offset = address % PAGE_SIZE;
194 if (unlikely((address % sizeof(u32)) != 0))
196 address -= key->both.offset;
199 * PROCESS_PRIVATE futexes are fast.
200 * As the mm cannot disappear under us and the 'key' only needs
201 * virtual address, we dont even have to find the underlying vma.
202 * Note : We do have to check 'uaddr' is a valid user address,
203 * but access_ok() should be faster than find_vma()
206 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
208 key->private.mm = mm;
209 key->private.address = address;
213 * The futex is hashed differently depending on whether
214 * it's in a shared or private mapping. So check vma first.
216 vma = find_extend_vma(mm, address);
223 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
224 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
227 * Private mappings are handled in a simple way.
229 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
230 * it's a read-only handle, it's expected that futexes attach to
231 * the object not the particular process. Therefore we use
232 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
233 * mappings of _writable_ handles.
235 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
236 key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
237 key->private.mm = mm;
238 key->private.address = address;
243 * Linear file mappings are also simple.
245 key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
246 key->both.offset |= FUT_OFF_INODE; /* inode-based key. */
247 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
248 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
254 * We could walk the page table to read the non-linear
255 * pte, and get the page index without fetching the page
256 * from swap. But that's a lot of code to duplicate here
257 * for a rare case, so we simply fetch the page.
259 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
262 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
268 EXPORT_SYMBOL_GPL(get_futex_key);
271 * Take a reference to the resource addressed by a key.
272 * Can be called while holding spinlocks.
275 inline void get_futex_key_refs(union futex_key *key)
277 if (key->both.ptr == 0)
279 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
281 atomic_inc(&key->shared.inode->i_count);
283 case FUT_OFF_MMSHARED:
284 atomic_inc(&key->private.mm->mm_count);
288 EXPORT_SYMBOL_GPL(get_futex_key_refs);
291 * Drop a reference to the resource addressed by a key.
292 * The hash bucket spinlock must not be held.
294 void drop_futex_key_refs(union futex_key *key)
298 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
300 iput(key->shared.inode);
302 case FUT_OFF_MMSHARED:
303 mmdrop(key->private.mm);
307 EXPORT_SYMBOL_GPL(drop_futex_key_refs);
309 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
314 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
320 static int get_futex_value_locked(u32 *dest, u32 __user *from)
325 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
328 return ret ? -EFAULT : 0;
333 * if fshared is non NULL, current->mm->mmap_sem is already held
335 static int futex_handle_fault(unsigned long address,
336 struct rw_semaphore *fshared, int attempt)
338 struct vm_area_struct * vma;
339 struct mm_struct *mm = current->mm;
346 down_read(&mm->mmap_sem);
347 vma = find_vma(mm, address);
348 if (vma && address >= vma->vm_start &&
349 (vma->vm_flags & VM_WRITE)) {
351 fault = handle_mm_fault(mm, vma, address, 1);
352 if (unlikely((fault & VM_FAULT_ERROR))) {
354 /* XXX: let's do this when we verify it is OK */
355 if (ret & VM_FAULT_OOM)
360 if (fault & VM_FAULT_MAJOR)
367 up_read(&mm->mmap_sem);
374 static int refill_pi_state_cache(void)
376 struct futex_pi_state *pi_state;
378 if (likely(current->pi_state_cache))
381 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
386 INIT_LIST_HEAD(&pi_state->list);
387 /* pi_mutex gets initialized later */
388 pi_state->owner = NULL;
389 atomic_set(&pi_state->refcount, 1);
391 current->pi_state_cache = pi_state;
396 static struct futex_pi_state * alloc_pi_state(void)
398 struct futex_pi_state *pi_state = current->pi_state_cache;
401 current->pi_state_cache = NULL;
406 static void free_pi_state(struct futex_pi_state *pi_state)
408 if (!atomic_dec_and_test(&pi_state->refcount))
412 * If pi_state->owner is NULL, the owner is most probably dying
413 * and has cleaned up the pi_state already
415 if (pi_state->owner) {
416 spin_lock_irq(&pi_state->owner->pi_lock);
417 list_del_init(&pi_state->list);
418 spin_unlock_irq(&pi_state->owner->pi_lock);
420 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
423 if (current->pi_state_cache)
427 * pi_state->list is already empty.
428 * clear pi_state->owner.
429 * refcount is at 0 - put it back to 1.
431 pi_state->owner = NULL;
432 atomic_set(&pi_state->refcount, 1);
433 current->pi_state_cache = pi_state;
438 * Look up the task based on what TID userspace gave us.
441 static struct task_struct * futex_find_get_task(pid_t pid)
443 struct task_struct *p;
446 p = find_task_by_pid(pid);
448 if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
459 * This task is holding PI mutexes at exit time => bad.
460 * Kernel cleans up PI-state, but userspace is likely hosed.
461 * (Robust-futex cleanup is separate and might save the day for userspace.)
463 void exit_pi_state_list(struct task_struct *curr)
465 struct list_head *next, *head = &curr->pi_state_list;
466 struct futex_pi_state *pi_state;
467 struct futex_hash_bucket *hb;
471 * We are a ZOMBIE and nobody can enqueue itself on
472 * pi_state_list anymore, but we have to be careful
473 * versus waiters unqueueing themselves:
475 spin_lock_irq(&curr->pi_lock);
476 while (!list_empty(head)) {
479 pi_state = list_entry(next, struct futex_pi_state, list);
481 hb = hash_futex(&key);
482 spin_unlock_irq(&curr->pi_lock);
484 spin_lock(&hb->lock);
486 spin_lock_irq(&curr->pi_lock);
488 * We dropped the pi-lock, so re-check whether this
489 * task still owns the PI-state:
491 if (head->next != next) {
492 spin_unlock(&hb->lock);
496 WARN_ON(pi_state->owner != curr);
497 WARN_ON(list_empty(&pi_state->list));
498 list_del_init(&pi_state->list);
499 pi_state->owner = NULL;
500 spin_unlock_irq(&curr->pi_lock);
502 rt_mutex_unlock(&pi_state->pi_mutex);
504 spin_unlock(&hb->lock);
506 spin_lock_irq(&curr->pi_lock);
508 spin_unlock_irq(&curr->pi_lock);
512 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
513 union futex_key *key, struct futex_pi_state **ps)
515 struct futex_pi_state *pi_state = NULL;
516 struct futex_q *this, *next;
517 struct plist_head *head;
518 struct task_struct *p;
519 pid_t pid = uval & FUTEX_TID_MASK;
523 plist_for_each_entry_safe(this, next, head, list) {
524 if (match_futex(&this->key, key)) {
526 * Another waiter already exists - bump up
527 * the refcount and return its pi_state:
529 pi_state = this->pi_state;
531 * Userspace might have messed up non PI and PI futexes
533 if (unlikely(!pi_state))
536 WARN_ON(!atomic_read(&pi_state->refcount));
537 WARN_ON(pid && pi_state->owner &&
538 pi_state->owner->pid != pid);
540 atomic_inc(&pi_state->refcount);
548 * We are the first waiter - try to look up the real owner and attach
549 * the new pi_state to it, but bail out when TID = 0
553 p = futex_find_get_task(pid);
558 * We need to look at the task state flags to figure out,
559 * whether the task is exiting. To protect against the do_exit
560 * change of the task flags, we do this protected by
563 spin_lock_irq(&p->pi_lock);
564 if (unlikely(p->flags & PF_EXITING)) {
566 * The task is on the way out. When PF_EXITPIDONE is
567 * set, we know that the task has finished the
570 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
572 spin_unlock_irq(&p->pi_lock);
577 pi_state = alloc_pi_state();
580 * Initialize the pi_mutex in locked state and make 'p'
583 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
585 /* Store the key for possible exit cleanups: */
586 pi_state->key = *key;
588 WARN_ON(!list_empty(&pi_state->list));
589 list_add(&pi_state->list, &p->pi_state_list);
591 spin_unlock_irq(&p->pi_lock);
601 * The hash bucket lock must be held when this is called.
602 * Afterwards, the futex_q must not be accessed.
604 static void wake_futex(struct futex_q *q)
606 plist_del(&q->list, &q->list.plist);
608 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
610 * The lock in wake_up_all() is a crucial memory barrier after the
611 * plist_del() and also before assigning to q->lock_ptr.
613 wake_up_all(&q->waiters);
615 * The waiting task can free the futex_q as soon as this is written,
616 * without taking any locks. This must come last.
618 * A memory barrier is required here to prevent the following store
619 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
620 * at the end of wake_up_all() does not prevent this store from
627 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
629 struct task_struct *new_owner;
630 struct futex_pi_state *pi_state = this->pi_state;
636 spin_lock(&pi_state->pi_mutex.wait_lock);
637 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
640 * This happens when we have stolen the lock and the original
641 * pending owner did not enqueue itself back on the rt_mutex.
642 * Thats not a tragedy. We know that way, that a lock waiter
643 * is on the fly. We make the futex_q waiter the pending owner.
646 new_owner = this->task;
649 * We pass it to the next owner. (The WAITERS bit is always
650 * kept enabled while there is PI state around. We must also
651 * preserve the owner died bit.)
653 if (!(uval & FUTEX_OWNER_DIED)) {
656 newval = FUTEX_WAITERS | new_owner->pid;
658 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
660 if (curval == -EFAULT)
665 spin_unlock(&pi_state->pi_mutex.wait_lock);
670 spin_lock_irq(&pi_state->owner->pi_lock);
671 WARN_ON(list_empty(&pi_state->list));
672 list_del_init(&pi_state->list);
673 spin_unlock_irq(&pi_state->owner->pi_lock);
675 spin_lock_irq(&new_owner->pi_lock);
676 WARN_ON(!list_empty(&pi_state->list));
677 list_add(&pi_state->list, &new_owner->pi_state_list);
678 pi_state->owner = new_owner;
679 spin_unlock_irq(&new_owner->pi_lock);
681 spin_unlock(&pi_state->pi_mutex.wait_lock);
682 rt_mutex_unlock(&pi_state->pi_mutex);
687 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
692 * There is no waiter, so we unlock the futex. The owner died
693 * bit has not to be preserved here. We are the owner:
695 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
697 if (oldval == -EFAULT)
706 * Express the locking dependencies for lockdep:
709 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
712 spin_lock(&hb1->lock);
714 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
715 } else { /* hb1 > hb2 */
716 spin_lock(&hb2->lock);
717 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
722 * Wake up all waiters hashed on the physical page that is mapped
723 * to this virtual address:
725 static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
728 struct futex_hash_bucket *hb;
729 struct futex_q *this, *next;
730 struct plist_head *head;
734 futex_lock_mm(fshared);
736 ret = get_futex_key(uaddr, fshared, &key);
737 if (unlikely(ret != 0))
740 hb = hash_futex(&key);
741 spin_lock(&hb->lock);
744 plist_for_each_entry_safe(this, next, head, list) {
745 if (match_futex (&this->key, &key)) {
746 if (this->pi_state) {
751 if (++ret >= nr_wake)
756 spin_unlock(&hb->lock);
758 futex_unlock_mm(fshared);
763 * Wake up all waiters hashed on the physical page that is mapped
764 * to this virtual address:
767 futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
769 int nr_wake, int nr_wake2, int op)
771 union futex_key key1, key2;
772 struct futex_hash_bucket *hb1, *hb2;
773 struct plist_head *head;
774 struct futex_q *this, *next;
775 int ret, op_ret, attempt = 0;
778 futex_lock_mm(fshared);
780 ret = get_futex_key(uaddr1, fshared, &key1);
781 if (unlikely(ret != 0))
783 ret = get_futex_key(uaddr2, fshared, &key2);
784 if (unlikely(ret != 0))
787 hb1 = hash_futex(&key1);
788 hb2 = hash_futex(&key2);
791 double_lock_hb(hb1, hb2);
793 op_ret = futex_atomic_op_inuser(op, uaddr2);
794 if (unlikely(op_ret < 0)) {
797 spin_unlock(&hb1->lock);
799 spin_unlock(&hb2->lock);
803 * we don't get EFAULT from MMU faults if we don't have an MMU,
804 * but we might get them from range checking
810 if (unlikely(op_ret != -EFAULT)) {
816 * futex_atomic_op_inuser needs to both read and write
817 * *(int __user *)uaddr2, but we can't modify it
818 * non-atomically. Therefore, if get_user below is not
819 * enough, we need to handle the fault ourselves, while
820 * still holding the mmap_sem.
823 ret = futex_handle_fault((unsigned long)uaddr2,
831 * If we would have faulted, release mmap_sem,
832 * fault it in and start all over again.
834 futex_unlock_mm(fshared);
836 ret = get_user(dummy, uaddr2);
845 plist_for_each_entry_safe(this, next, head, list) {
846 if (match_futex (&this->key, &key1)) {
848 if (++ret >= nr_wake)
857 plist_for_each_entry_safe(this, next, head, list) {
858 if (match_futex (&this->key, &key2)) {
860 if (++op_ret >= nr_wake2)
867 spin_unlock(&hb1->lock);
869 spin_unlock(&hb2->lock);
871 futex_unlock_mm(fshared);
877 * Requeue all waiters hashed on one physical page to another
880 static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
882 int nr_wake, int nr_requeue, u32 *cmpval)
884 union futex_key key1, key2;
885 struct futex_hash_bucket *hb1, *hb2;
886 struct plist_head *head1;
887 struct futex_q *this, *next;
888 int ret, drop_count = 0;
891 futex_lock_mm(fshared);
893 ret = get_futex_key(uaddr1, fshared, &key1);
894 if (unlikely(ret != 0))
896 ret = get_futex_key(uaddr2, fshared, &key2);
897 if (unlikely(ret != 0))
900 hb1 = hash_futex(&key1);
901 hb2 = hash_futex(&key2);
903 double_lock_hb(hb1, hb2);
905 if (likely(cmpval != NULL)) {
908 ret = get_futex_value_locked(&curval, uaddr1);
911 spin_unlock(&hb1->lock);
913 spin_unlock(&hb2->lock);
916 * If we would have faulted, release mmap_sem, fault
917 * it in and start all over again.
919 futex_unlock_mm(fshared);
921 ret = get_user(curval, uaddr1);
928 if (curval != *cmpval) {
935 plist_for_each_entry_safe(this, next, head1, list) {
936 if (!match_futex (&this->key, &key1))
938 if (++ret <= nr_wake) {
942 * If key1 and key2 hash to the same bucket, no need to
945 if (likely(head1 != &hb2->chain)) {
946 plist_del(&this->list, &hb1->chain);
947 plist_add(&this->list, &hb2->chain);
948 this->lock_ptr = &hb2->lock;
949 #ifdef CONFIG_DEBUG_PI_LIST
950 this->list.plist.lock = &hb2->lock;
954 get_futex_key_refs(&key2);
957 if (ret - nr_wake >= nr_requeue)
963 spin_unlock(&hb1->lock);
965 spin_unlock(&hb2->lock);
967 /* drop_futex_key_refs() must be called outside the spinlocks. */
968 while (--drop_count >= 0)
969 drop_futex_key_refs(&key1);
972 futex_unlock_mm(fshared);
976 /* The key must be already stored in q->key. */
977 static inline struct futex_hash_bucket *
978 queue_lock(struct futex_q *q, int fd, struct file *filp)
980 struct futex_hash_bucket *hb;
985 init_waitqueue_head(&q->waiters);
987 get_futex_key_refs(&q->key);
988 hb = hash_futex(&q->key);
989 q->lock_ptr = &hb->lock;
991 spin_lock(&hb->lock);
995 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1000 * The priority used to register this element is
1001 * - either the real thread-priority for the real-time threads
1002 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1003 * - or MAX_RT_PRIO for non-RT threads.
1004 * Thus, all RT-threads are woken first in priority order, and
1005 * the others are woken last, in FIFO order.
1007 prio = min(current->normal_prio, MAX_RT_PRIO);
1009 plist_node_init(&q->list, prio);
1010 #ifdef CONFIG_DEBUG_PI_LIST
1011 q->list.plist.lock = &hb->lock;
1013 plist_add(&q->list, &hb->chain);
1015 spin_unlock(&hb->lock);
1019 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1021 spin_unlock(&hb->lock);
1022 drop_futex_key_refs(&q->key);
1026 * queue_me and unqueue_me must be called as a pair, each
1027 * exactly once. They are called with the hashed spinlock held.
1030 /* The key must be already stored in q->key. */
1031 static void queue_me(struct futex_q *q, int fd, struct file *filp)
1033 struct futex_hash_bucket *hb;
1035 hb = queue_lock(q, fd, filp);
1039 /* Return 1 if we were still queued (ie. 0 means we were woken) */
1040 static int unqueue_me(struct futex_q *q)
1042 spinlock_t *lock_ptr;
1045 /* In the common case we don't take the spinlock, which is nice. */
1047 lock_ptr = q->lock_ptr;
1049 if (lock_ptr != NULL) {
1050 spin_lock(lock_ptr);
1052 * q->lock_ptr can change between reading it and
1053 * spin_lock(), causing us to take the wrong lock. This
1054 * corrects the race condition.
1056 * Reasoning goes like this: if we have the wrong lock,
1057 * q->lock_ptr must have changed (maybe several times)
1058 * between reading it and the spin_lock(). It can
1059 * change again after the spin_lock() but only if it was
1060 * already changed before the spin_lock(). It cannot,
1061 * however, change back to the original value. Therefore
1062 * we can detect whether we acquired the correct lock.
1064 if (unlikely(lock_ptr != q->lock_ptr)) {
1065 spin_unlock(lock_ptr);
1068 WARN_ON(plist_node_empty(&q->list));
1069 plist_del(&q->list, &q->list.plist);
1071 BUG_ON(q->pi_state);
1073 spin_unlock(lock_ptr);
1077 drop_futex_key_refs(&q->key);
1082 * PI futexes can not be requeued and must remove themself from the
1083 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1086 static void unqueue_me_pi(struct futex_q *q)
1088 WARN_ON(plist_node_empty(&q->list));
1089 plist_del(&q->list, &q->list.plist);
1091 BUG_ON(!q->pi_state);
1092 free_pi_state(q->pi_state);
1095 spin_unlock(q->lock_ptr);
1097 drop_futex_key_refs(&q->key);
1101 * Fixup the pi_state owner with current.
1103 * Must be called with hash bucket lock held and mm->sem held for non
1106 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1107 struct task_struct *curr)
1109 u32 newtid = curr->pid | FUTEX_WAITERS;
1110 struct futex_pi_state *pi_state = q->pi_state;
1111 u32 uval, curval, newval;
1115 if (pi_state->owner != NULL) {
1116 spin_lock_irq(&pi_state->owner->pi_lock);
1117 WARN_ON(list_empty(&pi_state->list));
1118 list_del_init(&pi_state->list);
1119 spin_unlock_irq(&pi_state->owner->pi_lock);
1121 newtid |= FUTEX_OWNER_DIED;
1123 pi_state->owner = curr;
1125 spin_lock_irq(&curr->pi_lock);
1126 WARN_ON(!list_empty(&pi_state->list));
1127 list_add(&pi_state->list, &curr->pi_state_list);
1128 spin_unlock_irq(&curr->pi_lock);
1131 * We own it, so we have to replace the pending owner
1132 * TID. This must be atomic as we have preserve the
1133 * owner died bit here.
1135 ret = get_futex_value_locked(&uval, uaddr);
1138 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1140 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1142 if (curval == -EFAULT)
1152 * In case we must use restart_block to restart a futex_wait,
1153 * we encode in the 'arg3' shared capability
1155 #define ARG3_SHARED 1
1157 static long futex_wait_restart(struct restart_block *restart);
1159 static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
1160 u32 val, ktime_t *abs_time)
1162 struct task_struct *curr = current;
1163 DECLARE_WAITQUEUE(wait, curr);
1164 struct futex_hash_bucket *hb;
1168 struct hrtimer_sleeper t;
1173 futex_lock_mm(fshared);
1175 ret = get_futex_key(uaddr, fshared, &q.key);
1176 if (unlikely(ret != 0))
1177 goto out_release_sem;
1179 hb = queue_lock(&q, -1, NULL);
1182 * Access the page AFTER the futex is queued.
1183 * Order is important:
1185 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1186 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1188 * The basic logical guarantee of a futex is that it blocks ONLY
1189 * if cond(var) is known to be true at the time of blocking, for
1190 * any cond. If we queued after testing *uaddr, that would open
1191 * a race condition where we could block indefinitely with
1192 * cond(var) false, which would violate the guarantee.
1194 * A consequence is that futex_wait() can return zero and absorb
1195 * a wakeup when *uaddr != val on entry to the syscall. This is
1198 * for shared futexes, we hold the mmap semaphore, so the mapping
1199 * cannot have changed since we looked it up in get_futex_key.
1201 ret = get_futex_value_locked(&uval, uaddr);
1203 if (unlikely(ret)) {
1204 queue_unlock(&q, hb);
1207 * If we would have faulted, release mmap_sem, fault it in and
1208 * start all over again.
1210 futex_unlock_mm(fshared);
1212 ret = get_user(uval, uaddr);
1220 goto out_unlock_release_sem;
1222 /* Only actually queue if *uaddr contained val. */
1226 * Now the futex is queued and we have checked the data, we
1227 * don't want to hold mmap_sem while we sleep.
1229 futex_unlock_mm(fshared);
1232 * There might have been scheduling since the queue_me(), as we
1233 * cannot hold a spinlock across the get_user() in case it
1234 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1235 * queueing ourselves into the futex hash. This code thus has to
1236 * rely on the futex_wake() code removing us from hash when it
1240 /* add_wait_queue is the barrier after __set_current_state. */
1241 __set_current_state(TASK_INTERRUPTIBLE);
1242 add_wait_queue(&q.waiters, &wait);
1244 * !plist_node_empty() is safe here without any lock.
1245 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1247 if (likely(!plist_node_empty(&q.list))) {
1251 hrtimer_init(&t.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1252 hrtimer_init_sleeper(&t, current);
1253 t.timer.expires = *abs_time;
1255 hrtimer_start(&t.timer, t.timer.expires, HRTIMER_MODE_ABS);
1258 * the timer could have already expired, in which
1259 * case current would be flagged for rescheduling.
1260 * Don't bother calling schedule.
1265 hrtimer_cancel(&t.timer);
1267 /* Flag if a timeout occured */
1268 rem = (t.task == NULL);
1271 __set_current_state(TASK_RUNNING);
1274 * NOTE: we don't remove ourselves from the waitqueue because
1275 * we are the only user of it.
1278 /* If we were woken (and unqueued), we succeeded, whatever. */
1279 if (!unqueue_me(&q))
1285 * We expect signal_pending(current), but another thread may
1286 * have handled it for us already.
1289 return -ERESTARTSYS;
1291 struct restart_block *restart;
1292 restart = ¤t_thread_info()->restart_block;
1293 restart->fn = futex_wait_restart;
1294 restart->arg0 = (unsigned long)uaddr;
1295 restart->arg1 = (unsigned long)val;
1296 restart->arg2 = (unsigned long)abs_time;
1299 restart->arg3 |= ARG3_SHARED;
1300 return -ERESTART_RESTARTBLOCK;
1303 out_unlock_release_sem:
1304 queue_unlock(&q, hb);
1307 futex_unlock_mm(fshared);
1312 static long futex_wait_restart(struct restart_block *restart)
1314 u32 __user *uaddr = (u32 __user *)restart->arg0;
1315 u32 val = (u32)restart->arg1;
1316 ktime_t *abs_time = (ktime_t *)restart->arg2;
1317 struct rw_semaphore *fshared = NULL;
1319 restart->fn = do_no_restart_syscall;
1320 if (restart->arg3 & ARG3_SHARED)
1321 fshared = ¤t->mm->mmap_sem;
1322 return (long)futex_wait(uaddr, fshared, val, abs_time);
1327 * Userspace tried a 0 -> TID atomic transition of the futex value
1328 * and failed. The kernel side here does the whole locking operation:
1329 * if there are waiters then it will block, it does PI, etc. (Due to
1330 * races the kernel might see a 0 value of the futex too.)
1332 static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
1333 int detect, ktime_t *time, int trylock)
1335 struct hrtimer_sleeper timeout, *to = NULL;
1336 struct task_struct *curr = current;
1337 struct futex_hash_bucket *hb;
1338 u32 uval, newval, curval;
1340 int ret, lock_taken, ownerdied = 0, attempt = 0;
1342 if (refill_pi_state_cache())
1347 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
1348 hrtimer_init_sleeper(to, current);
1349 to->timer.expires = *time;
1354 futex_lock_mm(fshared);
1356 ret = get_futex_key(uaddr, fshared, &q.key);
1357 if (unlikely(ret != 0))
1358 goto out_release_sem;
1361 hb = queue_lock(&q, -1, NULL);
1364 ret = lock_taken = 0;
1367 * To avoid races, we attempt to take the lock here again
1368 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1369 * the locks. It will most likely not succeed.
1371 newval = current->pid;
1373 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1375 if (unlikely(curval == -EFAULT))
1379 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1380 * situation and we return success to user space.
1382 if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
1384 goto out_unlock_release_sem;
1388 * Surprise - we got the lock. Just return to userspace:
1390 if (unlikely(!curval))
1391 goto out_unlock_release_sem;
1396 * Set the WAITERS flag, so the owner will know it has someone
1397 * to wake at next unlock
1399 newval = curval | FUTEX_WAITERS;
1402 * There are two cases, where a futex might have no owner (the
1403 * owner TID is 0): OWNER_DIED. We take over the futex in this
1404 * case. We also do an unconditional take over, when the owner
1405 * of the futex died.
1407 * This is safe as we are protected by the hash bucket lock !
1409 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1410 /* Keep the OWNER_DIED bit */
1411 newval = (curval & ~FUTEX_TID_MASK) | current->pid;
1416 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1418 if (unlikely(curval == -EFAULT))
1420 if (unlikely(curval != uval))
1424 * We took the lock due to owner died take over.
1426 if (unlikely(lock_taken))
1427 goto out_unlock_release_sem;
1430 * We dont have the lock. Look up the PI state (or create it if
1431 * we are the first waiter):
1433 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1435 if (unlikely(ret)) {
1440 * Task is exiting and we just wait for the
1443 queue_unlock(&q, hb);
1444 futex_unlock_mm(fshared);
1450 * No owner found for this futex. Check if the
1451 * OWNER_DIED bit is set to figure out whether
1452 * this is a robust futex or not.
1454 if (get_futex_value_locked(&curval, uaddr))
1458 * We simply start over in case of a robust
1459 * futex. The code above will take the futex
1462 if (curval & FUTEX_OWNER_DIED) {
1467 goto out_unlock_release_sem;
1472 * Only actually queue now that the atomic ops are done:
1477 * Now the futex is queued and we have checked the data, we
1478 * don't want to hold mmap_sem while we sleep.
1480 futex_unlock_mm(fshared);
1482 WARN_ON(!q.pi_state);
1484 * Block on the PI mutex:
1487 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1489 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1490 /* Fixup the trylock return value: */
1491 ret = ret ? 0 : -EWOULDBLOCK;
1494 futex_lock_mm(fshared);
1495 spin_lock(q.lock_ptr);
1499 * Got the lock. We might not be the anticipated owner
1500 * if we did a lock-steal - fix up the PI-state in
1503 if (q.pi_state->owner != curr)
1504 ret = fixup_pi_state_owner(uaddr, &q, curr);
1507 * Catch the rare case, where the lock was released
1508 * when we were on the way back before we locked the
1511 if (q.pi_state->owner == curr &&
1512 rt_mutex_trylock(&q.pi_state->pi_mutex)) {
1516 * Paranoia check. If we did not take the lock
1517 * in the trylock above, then we should not be
1518 * the owner of the rtmutex, neither the real
1519 * nor the pending one:
1521 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1522 printk(KERN_ERR "futex_lock_pi: ret = %d "
1523 "pi-mutex: %p pi-state %p\n", ret,
1524 q.pi_state->pi_mutex.owner,
1529 /* Unqueue and drop the lock */
1531 futex_unlock_mm(fshared);
1533 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1535 out_unlock_release_sem:
1536 queue_unlock(&q, hb);
1539 futex_unlock_mm(fshared);
1544 * We have to r/w *(int __user *)uaddr, but we can't modify it
1545 * non-atomically. Therefore, if get_user below is not
1546 * enough, we need to handle the fault ourselves, while
1547 * still holding the mmap_sem.
1549 * ... and hb->lock. :-) --ANK
1551 queue_unlock(&q, hb);
1554 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1557 goto out_release_sem;
1558 goto retry_unlocked;
1561 futex_unlock_mm(fshared);
1563 ret = get_user(uval, uaddr);
1564 if (!ret && (uval != -EFAULT))
1571 * Userspace attempted a TID -> 0 atomic transition, and failed.
1572 * This is the in-kernel slowpath: we look up the PI state (if any),
1573 * and do the rt-mutex unlock.
1575 static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
1577 struct futex_hash_bucket *hb;
1578 struct futex_q *this, *next;
1580 struct plist_head *head;
1581 union futex_key key;
1582 int ret, attempt = 0;
1585 if (get_user(uval, uaddr))
1588 * We release only a lock we actually own:
1590 if ((uval & FUTEX_TID_MASK) != current->pid)
1593 * First take all the futex related locks:
1595 futex_lock_mm(fshared);
1597 ret = get_futex_key(uaddr, fshared, &key);
1598 if (unlikely(ret != 0))
1601 hb = hash_futex(&key);
1603 spin_lock(&hb->lock);
1606 * To avoid races, try to do the TID -> 0 atomic transition
1607 * again. If it succeeds then we can return without waking
1610 if (!(uval & FUTEX_OWNER_DIED))
1611 uval = cmpxchg_futex_value_locked(uaddr, current->pid, 0);
1614 if (unlikely(uval == -EFAULT))
1617 * Rare case: we managed to release the lock atomically,
1618 * no need to wake anyone else up:
1620 if (unlikely(uval == current->pid))
1624 * Ok, other tasks may need to be woken up - check waiters
1625 * and do the wakeup if necessary:
1629 plist_for_each_entry_safe(this, next, head, list) {
1630 if (!match_futex (&this->key, &key))
1632 ret = wake_futex_pi(uaddr, uval, this);
1634 * The atomic access to the futex value
1635 * generated a pagefault, so retry the
1636 * user-access and the wakeup:
1643 * No waiters - kernel unlocks the futex:
1645 if (!(uval & FUTEX_OWNER_DIED)) {
1646 ret = unlock_futex_pi(uaddr, uval);
1652 spin_unlock(&hb->lock);
1654 futex_unlock_mm(fshared);
1660 * We have to r/w *(int __user *)uaddr, but we can't modify it
1661 * non-atomically. Therefore, if get_user below is not
1662 * enough, we need to handle the fault ourselves, while
1663 * still holding the mmap_sem.
1665 * ... and hb->lock. --ANK
1667 spin_unlock(&hb->lock);
1670 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1675 goto retry_unlocked;
1678 futex_unlock_mm(fshared);
1680 ret = get_user(uval, uaddr);
1681 if (!ret && (uval != -EFAULT))
1687 static int futex_close(struct inode *inode, struct file *filp)
1689 struct futex_q *q = filp->private_data;
1697 /* This is one-shot: once it's gone off you need a new fd */
1698 static unsigned int futex_poll(struct file *filp,
1699 struct poll_table_struct *wait)
1701 struct futex_q *q = filp->private_data;
1704 poll_wait(filp, &q->waiters, wait);
1707 * plist_node_empty() is safe here without any lock.
1708 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1710 if (plist_node_empty(&q->list))
1711 ret = POLLIN | POLLRDNORM;
1716 static const struct file_operations futex_fops = {
1717 .release = futex_close,
1722 * Signal allows caller to avoid the race which would occur if they
1723 * set the sigio stuff up afterwards.
1725 static int futex_fd(u32 __user *uaddr, int signal)
1730 struct rw_semaphore *fshared;
1731 static unsigned long printk_interval;
1733 if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) {
1734 printk(KERN_WARNING "Process `%s' used FUTEX_FD, which "
1735 "will be removed from the kernel in June 2007\n",
1740 if (!valid_signal(signal))
1743 ret = get_unused_fd();
1746 filp = get_empty_filp();
1752 filp->f_op = &futex_fops;
1753 filp->f_path.mnt = mntget(futex_mnt);
1754 filp->f_path.dentry = dget(futex_mnt->mnt_root);
1755 filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping;
1758 err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1);
1762 filp->f_owner.signum = signal;
1765 q = kmalloc(sizeof(*q), GFP_KERNEL);
1772 fshared = ¤t->mm->mmap_sem;
1774 err = get_futex_key(uaddr, fshared, &q->key);
1776 if (unlikely(err != 0)) {
1783 * queue_me() must be called before releasing mmap_sem, because
1784 * key->shared.inode needs to be referenced while holding it.
1786 filp->private_data = q;
1788 queue_me(q, ret, filp);
1791 /* Now we map fd to filp, so userspace can access it */
1792 fd_install(ret, filp);
1803 * Support for robust futexes: the kernel cleans up held futexes at
1806 * Implementation: user-space maintains a per-thread list of locks it
1807 * is holding. Upon do_exit(), the kernel carefully walks this list,
1808 * and marks all locks that are owned by this thread with the
1809 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1810 * always manipulated with the lock held, so the list is private and
1811 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1812 * field, to allow the kernel to clean up if the thread dies after
1813 * acquiring the lock, but just before it could have added itself to
1814 * the list. There can only be one such pending lock.
1818 * sys_set_robust_list - set the robust-futex list head of a task
1819 * @head: pointer to the list-head
1820 * @len: length of the list-head, as userspace expects
1823 sys_set_robust_list(struct robust_list_head __user *head,
1827 * The kernel knows only one size for now:
1829 if (unlikely(len != sizeof(*head)))
1832 current->robust_list = head;
1838 * sys_get_robust_list - get the robust-futex list head of a task
1839 * @pid: pid of the process [zero for current task]
1840 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1841 * @len_ptr: pointer to a length field, the kernel fills in the header size
1844 sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
1845 size_t __user *len_ptr)
1847 struct robust_list_head __user *head;
1851 head = current->robust_list;
1853 struct task_struct *p;
1857 p = find_task_by_pid(pid);
1861 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1862 !capable(CAP_SYS_PTRACE))
1864 head = p->robust_list;
1868 if (put_user(sizeof(*head), len_ptr))
1870 return put_user(head, head_ptr);
1879 * Process a futex-list entry, check whether it's owned by the
1880 * dying task, and do notification if so:
1882 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1884 u32 uval, nval, mval;
1887 if (get_user(uval, uaddr))
1890 if ((uval & FUTEX_TID_MASK) == curr->pid) {
1892 * Ok, this dying thread is truly holding a futex
1893 * of interest. Set the OWNER_DIED bit atomically
1894 * via cmpxchg, and if the value had FUTEX_WAITERS
1895 * set, wake up a waiter (if any). (We have to do a
1896 * futex_wake() even if OWNER_DIED is already set -
1897 * to handle the rare but possible case of recursive
1898 * thread-death.) The rest of the cleanup is done in
1901 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1902 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1904 if (nval == -EFAULT)
1911 * Wake robust non-PI futexes here. The wakeup of
1912 * PI futexes happens in exit_pi_state():
1914 if (!pi && (uval & FUTEX_WAITERS))
1915 futex_wake(uaddr, &curr->mm->mmap_sem, 1);
1921 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1923 static inline int fetch_robust_entry(struct robust_list __user **entry,
1924 struct robust_list __user * __user *head,
1927 unsigned long uentry;
1929 if (get_user(uentry, (unsigned long __user *)head))
1932 *entry = (void __user *)(uentry & ~1UL);
1939 * Walk curr->robust_list (very carefully, it's a userspace list!)
1940 * and mark any locks found there dead, and notify any waiters.
1942 * We silently return on any sign of list-walking problem.
1944 void exit_robust_list(struct task_struct *curr)
1946 struct robust_list_head __user *head = curr->robust_list;
1947 struct robust_list __user *entry, *next_entry, *pending;
1948 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
1949 unsigned long futex_offset;
1953 * Fetch the list head (which was registered earlier, via
1954 * sys_set_robust_list()):
1956 if (fetch_robust_entry(&entry, &head->list.next, &pi))
1959 * Fetch the relative futex offset:
1961 if (get_user(futex_offset, &head->futex_offset))
1964 * Fetch any possibly pending lock-add first, and handle it
1967 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1970 next_entry = NULL; /* avoid warning with gcc */
1971 while (entry != &head->list) {
1973 * Fetch the next entry in the list before calling
1974 * handle_futex_death:
1976 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1978 * A pending lock might already be on the list, so
1979 * don't process it twice:
1981 if (entry != pending)
1982 if (handle_futex_death((void __user *)entry + futex_offset,
1990 * Avoid excessively long or circular lists:
1999 handle_futex_death((void __user *)pending + futex_offset,
2003 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2004 u32 __user *uaddr2, u32 val2, u32 val3)
2007 int cmd = op & FUTEX_CMD_MASK;
2008 struct rw_semaphore *fshared = NULL;
2010 if (!(op & FUTEX_PRIVATE_FLAG))
2011 fshared = ¤t->mm->mmap_sem;
2015 ret = futex_wait(uaddr, fshared, val, timeout);
2018 ret = futex_wake(uaddr, fshared, val);
2021 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
2022 ret = futex_fd(uaddr, val);
2025 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
2027 case FUTEX_CMP_REQUEUE:
2028 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
2031 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2034 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2036 case FUTEX_UNLOCK_PI:
2037 ret = futex_unlock_pi(uaddr, fshared);
2039 case FUTEX_TRYLOCK_PI:
2040 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2049 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
2050 struct timespec __user *utime, u32 __user *uaddr2,
2054 ktime_t t, *tp = NULL;
2056 int cmd = op & FUTEX_CMD_MASK;
2058 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI)) {
2059 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2061 if (!timespec_valid(&ts))
2064 t = timespec_to_ktime(ts);
2065 if (cmd == FUTEX_WAIT)
2066 t = ktime_add(ktime_get(), t);
2070 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
2071 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2073 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2074 cmd == FUTEX_WAKE_OP)
2075 val2 = (u32) (unsigned long) utime;
2077 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2080 static int futexfs_get_sb(struct file_system_type *fs_type,
2081 int flags, const char *dev_name, void *data,
2082 struct vfsmount *mnt)
2084 return get_sb_pseudo(fs_type, "futex", NULL, FUTEXFS_SUPER_MAGIC, mnt);
2087 static struct file_system_type futex_fs_type = {
2089 .get_sb = futexfs_get_sb,
2090 .kill_sb = kill_anon_super,
2093 static int __init init(void)
2095 int i = register_filesystem(&futex_fs_type);
2100 futex_mnt = kern_mount(&futex_fs_type);
2101 if (IS_ERR(futex_mnt)) {
2102 unregister_filesystem(&futex_fs_type);
2103 return PTR_ERR(futex_mnt);
2106 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2107 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2108 spin_lock_init(&futex_queues[i].lock);