1 #include <linux/errno.h>
2 #include <linux/signal.h>
3 #include <linux/sched.h>
4 #include <linux/ioport.h>
5 #include <linux/interrupt.h>
6 #include <linux/slab.h>
7 #include <linux/random.h>
8 #include <linux/smp_lock.h>
9 #include <linux/init.h>
10 #include <linux/kernel_stat.h>
11 #include <linux/sysdev.h>
12 #include <linux/bitops.h>
14 #include <asm/8253pit.h>
15 #include <asm/atomic.h>
16 #include <asm/system.h>
18 #include <asm/timer.h>
19 #include <asm/pgtable.h>
20 #include <asm/delay.h>
23 #include <asm/arch_hooks.h>
24 #include <asm/i8259.h>
29 * This is the 'legacy' 8259A Programmable Interrupt Controller,
30 * present in the majority of PC/AT boxes.
31 * plus some generic x86 specific things if generic specifics makes
33 * this file should become arch/i386/kernel/irq.c when the old irq.c
34 * moves to arch independent land
37 static int i8259A_auto_eoi;
38 DEFINE_SPINLOCK(i8259A_lock);
39 static void mask_and_ack_8259A(unsigned int);
41 static struct irq_chip i8259A_chip = {
43 .mask = disable_8259A_irq,
44 .unmask = enable_8259A_irq,
45 .mask_ack = mask_and_ack_8259A,
49 * 8259A PIC functions to handle ISA devices:
53 * This contains the irq mask for both 8259A irq controllers,
55 unsigned int cached_irq_mask = 0xffff;
58 * Not all IRQs can be routed through the IO-APIC, eg. on certain (older)
59 * boards the timer interrupt is not really connected to any IO-APIC pin,
60 * it's fed to the master 8259A's IR0 line only.
62 * Any '1' bit in this mask means the IRQ is routed through the IO-APIC.
63 * this 'mixed mode' IRQ handling costs nothing because it's only used
66 unsigned long io_apic_irqs;
68 void disable_8259A_irq(unsigned int irq)
70 unsigned int mask = 1 << irq;
73 spin_lock_irqsave(&i8259A_lock, flags);
74 cached_irq_mask |= mask;
76 outb(cached_slave_mask, PIC_SLAVE_IMR);
78 outb(cached_master_mask, PIC_MASTER_IMR);
79 spin_unlock_irqrestore(&i8259A_lock, flags);
82 void enable_8259A_irq(unsigned int irq)
84 unsigned int mask = ~(1 << irq);
87 spin_lock_irqsave(&i8259A_lock, flags);
88 cached_irq_mask &= mask;
90 outb(cached_slave_mask, PIC_SLAVE_IMR);
92 outb(cached_master_mask, PIC_MASTER_IMR);
93 spin_unlock_irqrestore(&i8259A_lock, flags);
96 int i8259A_irq_pending(unsigned int irq)
98 unsigned int mask = 1<<irq;
102 spin_lock_irqsave(&i8259A_lock, flags);
104 ret = inb(PIC_MASTER_CMD) & mask;
106 ret = inb(PIC_SLAVE_CMD) & (mask >> 8);
107 spin_unlock_irqrestore(&i8259A_lock, flags);
112 void make_8259A_irq(unsigned int irq)
114 disable_irq_nosync(irq);
115 io_apic_irqs &= ~(1<<irq);
116 set_irq_chip_and_handler(irq, &i8259A_chip, handle_level_irq);
121 * This function assumes to be called rarely. Switching between
122 * 8259A registers is slow.
123 * This has to be protected by the irq controller spinlock
124 * before being called.
126 static inline int i8259A_irq_real(unsigned int irq)
129 int irqmask = 1<<irq;
132 outb(0x0B,PIC_MASTER_CMD); /* ISR register */
133 value = inb(PIC_MASTER_CMD) & irqmask;
134 outb(0x0A,PIC_MASTER_CMD); /* back to the IRR register */
137 outb(0x0B,PIC_SLAVE_CMD); /* ISR register */
138 value = inb(PIC_SLAVE_CMD) & (irqmask >> 8);
139 outb(0x0A,PIC_SLAVE_CMD); /* back to the IRR register */
144 * Careful! The 8259A is a fragile beast, it pretty
145 * much _has_ to be done exactly like this (mask it
146 * first, _then_ send the EOI, and the order of EOI
147 * to the two 8259s is important!
149 static void mask_and_ack_8259A(unsigned int irq)
151 unsigned int irqmask = 1 << irq;
154 spin_lock_irqsave(&i8259A_lock, flags);
156 * Lightweight spurious IRQ detection. We do not want
157 * to overdo spurious IRQ handling - it's usually a sign
158 * of hardware problems, so we only do the checks we can
159 * do without slowing down good hardware unnecessarily.
161 * Note that IRQ7 and IRQ15 (the two spurious IRQs
162 * usually resulting from the 8259A-1|2 PICs) occur
163 * even if the IRQ is masked in the 8259A. Thus we
164 * can check spurious 8259A IRQs without doing the
165 * quite slow i8259A_irq_real() call for every IRQ.
166 * This does not cover 100% of spurious interrupts,
167 * but should be enough to warn the user that there
168 * is something bad going on ...
170 if (cached_irq_mask & irqmask)
171 goto spurious_8259A_irq;
172 cached_irq_mask |= irqmask;
176 inb(PIC_SLAVE_IMR); /* DUMMY - (do we need this?) */
177 outb(cached_slave_mask, PIC_SLAVE_IMR);
178 outb(0x60+(irq&7),PIC_SLAVE_CMD);/* 'Specific EOI' to slave */
179 outb(0x60+PIC_CASCADE_IR,PIC_MASTER_CMD); /* 'Specific EOI' to master-IRQ2 */
181 inb(PIC_MASTER_IMR); /* DUMMY - (do we need this?) */
182 outb(cached_master_mask, PIC_MASTER_IMR);
183 outb(0x60+irq,PIC_MASTER_CMD); /* 'Specific EOI to master */
185 spin_unlock_irqrestore(&i8259A_lock, flags);
190 * this is the slow path - should happen rarely.
192 if (i8259A_irq_real(irq))
194 * oops, the IRQ _is_ in service according to the
195 * 8259A - not spurious, go handle it.
197 goto handle_real_irq;
200 static int spurious_irq_mask;
202 * At this point we can be sure the IRQ is spurious,
203 * lets ACK and report it. [once per IRQ]
205 if (!(spurious_irq_mask & irqmask)) {
206 printk(KERN_DEBUG "spurious 8259A interrupt: IRQ%d.\n", irq);
207 spurious_irq_mask |= irqmask;
209 atomic_inc(&irq_err_count);
211 * Theoretically we do not have to handle this IRQ,
212 * but in Linux this does not cause problems and is
215 goto handle_real_irq;
219 static char irq_trigger[2];
221 * ELCR registers (0x4d0, 0x4d1) control edge/level of IRQ
223 static void restore_ELCR(char *trigger)
225 outb(trigger[0], 0x4d0);
226 outb(trigger[1], 0x4d1);
229 static void save_ELCR(char *trigger)
231 /* IRQ 0,1,2,8,13 are marked as reserved */
232 trigger[0] = inb(0x4d0) & 0xF8;
233 trigger[1] = inb(0x4d1) & 0xDE;
236 static int i8259A_resume(struct sys_device *dev)
238 init_8259A(i8259A_auto_eoi);
239 restore_ELCR(irq_trigger);
243 static int i8259A_suspend(struct sys_device *dev, pm_message_t state)
245 save_ELCR(irq_trigger);
249 static int i8259A_shutdown(struct sys_device *dev)
251 /* Put the i8259A into a quiescent state that
252 * the kernel initialization code can get it
255 outb(0xff, PIC_MASTER_IMR); /* mask all of 8259A-1 */
256 outb(0xff, PIC_SLAVE_IMR); /* mask all of 8259A-1 */
260 static struct sysdev_class i8259_sysdev_class = {
261 set_kset_name("i8259"),
262 .suspend = i8259A_suspend,
263 .resume = i8259A_resume,
264 .shutdown = i8259A_shutdown,
267 static struct sys_device device_i8259A = {
269 .cls = &i8259_sysdev_class,
272 static int __init i8259A_init_sysfs(void)
274 int error = sysdev_class_register(&i8259_sysdev_class);
276 error = sysdev_register(&device_i8259A);
280 device_initcall(i8259A_init_sysfs);
282 void init_8259A(int auto_eoi)
286 i8259A_auto_eoi = auto_eoi;
288 spin_lock_irqsave(&i8259A_lock, flags);
290 outb(0xff, PIC_MASTER_IMR); /* mask all of 8259A-1 */
291 outb(0xff, PIC_SLAVE_IMR); /* mask all of 8259A-2 */
294 * outb_p - this has to work on a wide range of PC hardware.
296 outb_p(0x11, PIC_MASTER_CMD); /* ICW1: select 8259A-1 init */
297 outb_p(0x20 + 0, PIC_MASTER_IMR); /* ICW2: 8259A-1 IR0-7 mapped to 0x20-0x27 */
298 outb_p(1U << PIC_CASCADE_IR, PIC_MASTER_IMR); /* 8259A-1 (the master) has a slave on IR2 */
299 if (auto_eoi) /* master does Auto EOI */
300 outb_p(MASTER_ICW4_DEFAULT | PIC_ICW4_AEOI, PIC_MASTER_IMR);
301 else /* master expects normal EOI */
302 outb_p(MASTER_ICW4_DEFAULT, PIC_MASTER_IMR);
304 outb_p(0x11, PIC_SLAVE_CMD); /* ICW1: select 8259A-2 init */
305 outb_p(0x20 + 8, PIC_SLAVE_IMR); /* ICW2: 8259A-2 IR0-7 mapped to 0x28-0x2f */
306 outb_p(PIC_CASCADE_IR, PIC_SLAVE_IMR); /* 8259A-2 is a slave on master's IR2 */
307 outb_p(SLAVE_ICW4_DEFAULT, PIC_SLAVE_IMR); /* (slave's support for AEOI in flat mode is to be investigated) */
310 * In AEOI mode we just have to mask the interrupt
313 i8259A_chip.mask_ack = disable_8259A_irq;
315 i8259A_chip.mask_ack = mask_and_ack_8259A;
317 udelay(100); /* wait for 8259A to initialize */
319 outb(cached_master_mask, PIC_MASTER_IMR); /* restore master IRQ mask */
320 outb(cached_slave_mask, PIC_SLAVE_IMR); /* restore slave IRQ mask */
322 spin_unlock_irqrestore(&i8259A_lock, flags);
326 * Note that on a 486, we don't want to do a SIGFPE on an irq13
327 * as the irq is unreliable, and exception 16 works correctly
328 * (ie as explained in the intel literature). On a 386, you
329 * can't use exception 16 due to bad IBM design, so we have to
330 * rely on the less exact irq13.
332 * Careful.. Not only is IRQ13 unreliable, but it is also
333 * leads to races. IBM designers who came up with it should
338 static irqreturn_t math_error_irq(int cpl, void *dev_id)
340 extern void math_error(void __user *);
342 if (ignore_fpu_irq || !boot_cpu_data.hard_math)
344 math_error((void __user *)get_irq_regs()->eip);
349 * New motherboards sometimes make IRQ 13 be a PCI interrupt,
350 * so allow interrupt sharing.
352 static struct irqaction fpu_irq = { math_error_irq, 0, CPU_MASK_NONE, "fpu", NULL, NULL };
354 void __init init_ISA_irqs (void)
358 #ifdef CONFIG_X86_LOCAL_APIC
363 for (i = 0; i < NR_IRQS; i++) {
364 irq_desc[i].status = IRQ_DISABLED;
365 irq_desc[i].action = NULL;
366 irq_desc[i].depth = 1;
370 * 16 old-style INTA-cycle interrupts:
372 set_irq_chip_and_handler(i, &i8259A_chip,
376 * 'high' PCI IRQs filled in on demand
378 irq_desc[i].chip = &no_irq_chip;
383 void __init init_IRQ(void)
387 /* all the set up before the call gates are initialised */
388 pre_intr_init_hook();
391 * Cover the whole vector space, no vector can escape
392 * us. (some of these will be overridden and become
393 * 'special' SMP interrupts)
395 for (i = 0; i < (NR_VECTORS - FIRST_EXTERNAL_VECTOR); i++) {
396 int vector = FIRST_EXTERNAL_VECTOR + i;
399 if (vector != SYSCALL_VECTOR)
400 set_intr_gate(vector, interrupt[i]);
403 /* setup after call gates are initialised (usually add in
404 * the architecture specific gates)
409 * Set the clock to HZ Hz, we already have a valid
415 * External FPU? Set up irq13 if so, for
416 * original braindamaged IBM FERR coupling.
418 if (boot_cpu_data.hard_math && !cpu_has_fpu)
419 setup_irq(FPU_IRQ, &fpu_irq);
421 irq_ctx_init(smp_processor_id());