1 /* sched.c - SPU scheduler.
3 * Copyright (C) IBM 2005
4 * Author: Mark Nutter <mnutter@us.ibm.com>
6 * 2006-03-31 NUMA domains added.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/module.h>
26 #include <linux/errno.h>
27 #include <linux/sched.h>
28 #include <linux/kernel.h>
30 #include <linux/completion.h>
31 #include <linux/vmalloc.h>
32 #include <linux/smp.h>
33 #include <linux/stddef.h>
34 #include <linux/unistd.h>
35 #include <linux/numa.h>
36 #include <linux/mutex.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
41 #include <asm/mmu_context.h>
43 #include <asm/spu_csa.h>
44 #include <asm/spu_priv1.h>
47 struct spu_prio_array {
48 DECLARE_BITMAP(bitmap, MAX_PRIO);
49 struct list_head runq[MAX_PRIO];
51 struct list_head active_list[MAX_NUMNODES];
52 struct mutex active_mutex[MAX_NUMNODES];
55 static struct spu_prio_array *spu_prio;
56 static struct task_struct *spusched_task;
57 static struct timer_list spusched_timer;
60 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
62 #define NORMAL_PRIO 120
65 * Frequency of the spu scheduler tick. By default we do one SPU scheduler
66 * tick for every 10 CPU scheduler ticks.
68 #define SPUSCHED_TICK (10)
71 * These are the 'tuning knobs' of the scheduler:
73 * Minimum timeslice is 5 msecs (or 10 jiffies, whichever is larger),
74 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
76 #define MIN_SPU_TIMESLICE max(5 * HZ / 100, 10)
77 #define DEF_SPU_TIMESLICE (100 * HZ / 100)
79 #define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
80 #define SCALE_PRIO(x, prio) \
81 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
84 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
85 * [800ms ... 100ms ... 5ms]
87 * The higher a thread's priority, the bigger timeslices
88 * it gets during one round of execution. But even the lowest
89 * priority thread gets MIN_TIMESLICE worth of execution time.
91 void spu_set_timeslice(struct spu_context *ctx)
93 if (ctx->prio < NORMAL_PRIO)
94 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
96 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
99 static inline int node_allowed(int node)
103 if (!nr_cpus_node(node))
105 mask = node_to_cpumask(node);
106 if (!cpus_intersects(mask, current->cpus_allowed))
112 * spu_add_to_active_list - add spu to active list
113 * @spu: spu to add to the active list
115 static void spu_add_to_active_list(struct spu *spu)
117 mutex_lock(&spu_prio->active_mutex[spu->node]);
118 list_add_tail(&spu->list, &spu_prio->active_list[spu->node]);
119 mutex_unlock(&spu_prio->active_mutex[spu->node]);
122 static void __spu_remove_from_active_list(struct spu *spu)
124 list_del_init(&spu->list);
128 * spu_remove_from_active_list - remove spu from active list
129 * @spu: spu to remove from the active list
131 static void spu_remove_from_active_list(struct spu *spu)
133 int node = spu->node;
135 mutex_lock(&spu_prio->active_mutex[node]);
136 __spu_remove_from_active_list(spu);
137 mutex_unlock(&spu_prio->active_mutex[node]);
140 static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier);
142 static void spu_switch_notify(struct spu *spu, struct spu_context *ctx)
144 blocking_notifier_call_chain(&spu_switch_notifier,
145 ctx ? ctx->object_id : 0, spu);
148 int spu_switch_event_register(struct notifier_block * n)
150 return blocking_notifier_chain_register(&spu_switch_notifier, n);
153 int spu_switch_event_unregister(struct notifier_block * n)
155 return blocking_notifier_chain_unregister(&spu_switch_notifier, n);
159 * spu_bind_context - bind spu context to physical spu
160 * @spu: physical spu to bind to
161 * @ctx: context to bind
163 static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
165 pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
166 spu->number, spu->node);
170 ctx->ops = &spu_hw_ops;
171 spu->pid = current->pid;
172 spu_associate_mm(spu, ctx->owner);
173 spu->ibox_callback = spufs_ibox_callback;
174 spu->wbox_callback = spufs_wbox_callback;
175 spu->stop_callback = spufs_stop_callback;
176 spu->mfc_callback = spufs_mfc_callback;
177 spu->dma_callback = spufs_dma_callback;
179 spu_unmap_mappings(ctx);
180 spu_restore(&ctx->csa, spu);
181 spu->timestamp = jiffies;
182 spu_cpu_affinity_set(spu, raw_smp_processor_id());
183 spu_switch_notify(spu, ctx);
184 ctx->state = SPU_STATE_RUNNABLE;
188 * spu_unbind_context - unbind spu context from physical spu
189 * @spu: physical spu to unbind from
190 * @ctx: context to unbind
192 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
194 pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
195 spu->pid, spu->number, spu->node);
197 spu_switch_notify(spu, NULL);
198 spu_unmap_mappings(ctx);
199 spu_save(&ctx->csa, spu);
200 spu->timestamp = jiffies;
201 ctx->state = SPU_STATE_SAVED;
202 spu->ibox_callback = NULL;
203 spu->wbox_callback = NULL;
204 spu->stop_callback = NULL;
205 spu->mfc_callback = NULL;
206 spu->dma_callback = NULL;
207 spu_associate_mm(spu, NULL);
209 ctx->ops = &spu_backing_ops;
216 * spu_add_to_rq - add a context to the runqueue
217 * @ctx: context to add
219 static void __spu_add_to_rq(struct spu_context *ctx)
221 int prio = ctx->prio;
223 list_add_tail(&ctx->rq, &spu_prio->runq[prio]);
224 set_bit(prio, spu_prio->bitmap);
227 static void __spu_del_from_rq(struct spu_context *ctx)
229 int prio = ctx->prio;
231 if (!list_empty(&ctx->rq))
232 list_del_init(&ctx->rq);
233 if (list_empty(&spu_prio->runq[prio]))
234 clear_bit(prio, spu_prio->bitmap);
237 static void spu_prio_wait(struct spu_context *ctx)
241 spin_lock(&spu_prio->runq_lock);
242 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
243 if (!signal_pending(current)) {
244 __spu_add_to_rq(ctx);
245 spin_unlock(&spu_prio->runq_lock);
246 mutex_unlock(&ctx->state_mutex);
248 mutex_lock(&ctx->state_mutex);
249 spin_lock(&spu_prio->runq_lock);
250 __spu_del_from_rq(ctx);
252 spin_unlock(&spu_prio->runq_lock);
253 __set_current_state(TASK_RUNNING);
254 remove_wait_queue(&ctx->stop_wq, &wait);
257 static struct spu *spu_get_idle(struct spu_context *ctx)
259 struct spu *spu = NULL;
260 int node = cpu_to_node(raw_smp_processor_id());
263 for (n = 0; n < MAX_NUMNODES; n++, node++) {
264 node = (node < MAX_NUMNODES) ? node : 0;
265 if (!node_allowed(node))
267 spu = spu_alloc_node(node);
275 * find_victim - find a lower priority context to preempt
276 * @ctx: canidate context for running
278 * Returns the freed physical spu to run the new context on.
280 static struct spu *find_victim(struct spu_context *ctx)
282 struct spu_context *victim = NULL;
287 * Look for a possible preemption candidate on the local node first.
288 * If there is no candidate look at the other nodes. This isn't
289 * exactly fair, but so far the whole spu schedule tries to keep
290 * a strong node affinity. We might want to fine-tune this in
294 node = cpu_to_node(raw_smp_processor_id());
295 for (n = 0; n < MAX_NUMNODES; n++, node++) {
296 node = (node < MAX_NUMNODES) ? node : 0;
297 if (!node_allowed(node))
300 mutex_lock(&spu_prio->active_mutex[node]);
301 list_for_each_entry(spu, &spu_prio->active_list[node], list) {
302 struct spu_context *tmp = spu->ctx;
304 if (tmp->prio > ctx->prio &&
305 (!victim || tmp->prio > victim->prio))
308 mutex_unlock(&spu_prio->active_mutex[node]);
312 * This nests ctx->state_mutex, but we always lock
313 * higher priority contexts before lower priority
314 * ones, so this is safe until we introduce
315 * priority inheritance schemes.
317 if (!mutex_trylock(&victim->state_mutex)) {
325 * This race can happen because we've dropped
326 * the active list mutex. No a problem, just
327 * restart the search.
329 mutex_unlock(&victim->state_mutex);
333 spu_remove_from_active_list(spu);
334 spu_unbind_context(spu, victim);
335 mutex_unlock(&victim->state_mutex);
337 * We need to break out of the wait loop in spu_run
338 * manually to ensure this context gets put on the
339 * runqueue again ASAP.
341 wake_up(&victim->stop_wq);
350 * spu_activate - find a free spu for a context and execute it
351 * @ctx: spu context to schedule
352 * @flags: flags (currently ignored)
354 * Tries to find a free spu to run @ctx. If no free spu is available
355 * add the context to the runqueue so it gets woken up once an spu
358 int spu_activate(struct spu_context *ctx, unsigned long flags)
367 spu = spu_get_idle(ctx);
369 * If this is a realtime thread we try to get it running by
370 * preempting a lower priority thread.
372 if (!spu && rt_prio(ctx->prio))
373 spu = find_victim(ctx);
375 spu_bind_context(spu, ctx);
376 spu_add_to_active_list(spu);
381 } while (!signal_pending(current));
387 * grab_runnable_context - try to find a runnable context
389 * Remove the highest priority context on the runqueue and return it
390 * to the caller. Returns %NULL if no runnable context was found.
392 static struct spu_context *grab_runnable_context(int prio)
394 struct spu_context *ctx = NULL;
397 spin_lock(&spu_prio->runq_lock);
398 best = sched_find_first_bit(spu_prio->bitmap);
400 struct list_head *rq = &spu_prio->runq[best];
402 BUG_ON(list_empty(rq));
404 ctx = list_entry(rq->next, struct spu_context, rq);
405 __spu_del_from_rq(ctx);
407 spin_unlock(&spu_prio->runq_lock);
412 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
414 struct spu *spu = ctx->spu;
415 struct spu_context *new = NULL;
418 new = grab_runnable_context(max_prio);
420 spu_remove_from_active_list(spu);
421 spu_unbind_context(spu, ctx);
424 wake_up(&new->stop_wq);
433 * spu_deactivate - unbind a context from it's physical spu
434 * @ctx: spu context to unbind
436 * Unbind @ctx from the physical spu it is running on and schedule
437 * the highest priority context to run on the freed physical spu.
439 void spu_deactivate(struct spu_context *ctx)
441 __spu_deactivate(ctx, 1, MAX_PRIO);
445 * spu_yield - yield a physical spu if others are waiting
446 * @ctx: spu context to yield
448 * Check if there is a higher priority context waiting and if yes
449 * unbind @ctx from the physical spu and schedule the highest
450 * priority context to run on the freed physical spu instead.
452 void spu_yield(struct spu_context *ctx)
454 if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
455 mutex_lock(&ctx->state_mutex);
456 __spu_deactivate(ctx, 0, MAX_PRIO);
457 mutex_unlock(&ctx->state_mutex);
461 static void spusched_tick(struct spu_context *ctx)
463 if (ctx->policy == SCHED_FIFO || --ctx->time_slice)
467 * Unfortunately active_mutex ranks outside of state_mutex, so
468 * we have to trylock here. If we fail give the context another
469 * tick and try again.
471 if (mutex_trylock(&ctx->state_mutex)) {
472 struct spu_context *new = grab_runnable_context(ctx->prio + 1);
474 struct spu *spu = ctx->spu;
476 __spu_remove_from_active_list(spu);
477 spu_unbind_context(spu, ctx);
479 wake_up(&new->stop_wq);
481 * We need to break out of the wait loop in
482 * spu_run manually to ensure this context
483 * gets put on the runqueue again ASAP.
485 wake_up(&ctx->stop_wq);
487 spu_set_timeslice(ctx);
488 mutex_unlock(&ctx->state_mutex);
494 static void spusched_wake(unsigned long data)
496 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
497 wake_up_process(spusched_task);
500 static int spusched_thread(void *unused)
502 struct spu *spu, *next;
505 setup_timer(&spusched_timer, spusched_wake, 0);
506 __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
508 while (!kthread_should_stop()) {
509 set_current_state(TASK_INTERRUPTIBLE);
511 for (node = 0; node < MAX_NUMNODES; node++) {
512 mutex_lock(&spu_prio->active_mutex[node]);
513 list_for_each_entry_safe(spu, next,
514 &spu_prio->active_list[node],
516 spusched_tick(spu->ctx);
517 mutex_unlock(&spu_prio->active_mutex[node]);
521 del_timer_sync(&spusched_timer);
525 int __init spu_sched_init(void)
529 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
533 for (i = 0; i < MAX_PRIO; i++) {
534 INIT_LIST_HEAD(&spu_prio->runq[i]);
535 __clear_bit(i, spu_prio->bitmap);
537 __set_bit(MAX_PRIO, spu_prio->bitmap);
538 for (i = 0; i < MAX_NUMNODES; i++) {
539 mutex_init(&spu_prio->active_mutex[i]);
540 INIT_LIST_HEAD(&spu_prio->active_list[i]);
542 spin_lock_init(&spu_prio->runq_lock);
544 spusched_task = kthread_run(spusched_thread, NULL, "spusched");
545 if (IS_ERR(spusched_task)) {
547 return PTR_ERR(spusched_task);
553 void __exit spu_sched_exit(void)
555 struct spu *spu, *tmp;
558 kthread_stop(spusched_task);
560 for (node = 0; node < MAX_NUMNODES; node++) {
561 mutex_lock(&spu_prio->active_mutex[node]);
562 list_for_each_entry_safe(spu, tmp, &spu_prio->active_list[node],
564 list_del_init(&spu->list);
567 mutex_unlock(&spu_prio->active_mutex[node]);