2 * linux/arch/arm/vfp/vfpmodule.c
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
18 #include <asm/thread_notify.h>
25 * Our undef handlers (in entry.S)
27 void vfp_testing_entry(void);
28 void vfp_support_entry(void);
29 void vfp_null_entry(void);
31 void (*vfp_vector)(void) = vfp_null_entry;
32 union vfp_state *last_VFP_context[NR_CPUS];
36 * Used in startup: set to non-zero if VFP checks fail
37 * After startup, holds VFP architecture
39 unsigned int VFP_arch;
41 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
43 struct thread_info *thread = v;
45 __u32 cpu = thread->cpu;
47 if (likely(cmd == THREAD_NOTIFY_SWITCH)) {
48 u32 fpexc = fmrx(FPEXC);
52 * On SMP, if VFP is enabled, save the old state in
53 * case the thread migrates to a different CPU. The
54 * restoring is done lazily.
56 if ((fpexc & FPEXC_EN) && last_VFP_context[cpu]) {
57 vfp_save_state(last_VFP_context[cpu], fpexc);
58 last_VFP_context[cpu]->hard.cpu = cpu;
61 * Thread migration, just force the reloading of the
62 * state on the new CPU in case the VFP registers
65 if (thread->vfpstate.hard.cpu != cpu)
66 last_VFP_context[cpu] = NULL;
70 * Always disable VFP so we can lazily save/restore the
73 fmxr(FPEXC, fpexc & ~FPEXC_EN);
77 vfp = &thread->vfpstate;
78 if (cmd == THREAD_NOTIFY_FLUSH) {
80 * Per-thread VFP initialisation.
82 memset(vfp, 0, sizeof(union vfp_state));
84 vfp->hard.fpexc = FPEXC_EN;
85 vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
88 * Disable VFP to ensure we initialise it first.
90 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
93 /* flush and release case: Per-thread VFP cleanup. */
94 if (last_VFP_context[cpu] == vfp)
95 last_VFP_context[cpu] = NULL;
100 static struct notifier_block vfp_notifier_block = {
101 .notifier_call = vfp_notifier,
105 * Raise a SIGFPE for the current process.
106 * sicode describes the signal being raised.
108 void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
112 memset(&info, 0, sizeof(info));
114 info.si_signo = SIGFPE;
115 info.si_code = sicode;
116 info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
119 * This is the same as NWFPE, because it's not clear what
122 current->thread.error_code = 0;
123 current->thread.trap_no = 6;
125 send_sig_info(SIGFPE, &info, current);
128 static void vfp_panic(char *reason)
132 printk(KERN_ERR "VFP: Error: %s\n", reason);
133 printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
134 fmrx(FPEXC), fmrx(FPSCR), fmrx(FPINST));
135 for (i = 0; i < 32; i += 2)
136 printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
137 i, vfp_get_float(i), i+1, vfp_get_float(i+1));
141 * Process bitmask of exception conditions.
143 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
147 pr_debug("VFP: raising exceptions %08x\n", exceptions);
149 if (exceptions == VFP_EXCEPTION_ERROR) {
150 vfp_panic("unhandled bounce");
151 vfp_raise_sigfpe(0, regs);
156 * If any of the status flags are set, update the FPSCR.
157 * Comparison instructions always return at least one of
160 if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
161 fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
167 #define RAISE(stat,en,sig) \
168 if (exceptions & stat && fpscr & en) \
172 * These are arranged in priority order, least to highest.
174 RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
175 RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
176 RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
177 RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
178 RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
181 vfp_raise_sigfpe(si_code, regs);
185 * Emulate a VFP instruction.
187 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
189 u32 exceptions = VFP_EXCEPTION_ERROR;
191 pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
193 if (INST_CPRTDO(inst)) {
194 if (!INST_CPRT(inst)) {
198 if (vfp_single(inst)) {
199 exceptions = vfp_single_cpdo(inst, fpscr);
201 exceptions = vfp_double_cpdo(inst, fpscr);
205 * A CPRT instruction can not appear in FPINST2, nor
206 * can it cause an exception. Therefore, we do not
207 * have to emulate it.
212 * A CPDT instruction can not appear in FPINST2, nor can
213 * it cause an exception. Therefore, we do not have to
217 return exceptions & ~VFP_NAN_FLAG;
221 * Package up a bounce condition.
223 void VFP9_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
225 u32 fpscr, orig_fpscr, exceptions, inst;
227 pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
230 * Enable access to the VFP so we can handle the bounce.
232 fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_INV|FPEXC_UFC|FPEXC_IOC));
234 orig_fpscr = fpscr = fmrx(FPSCR);
237 * If we are running with inexact exceptions enabled, we need to
238 * emulate the trigger instruction. Note that as we're emulating
239 * the trigger instruction, we need to increment PC.
241 if (fpscr & FPSCR_IXE) {
249 * Modify fpscr to indicate the number of iterations remaining
251 if (fpexc & FPEXC_EX) {
254 len = fpexc + (1 << FPEXC_LENGTH_BIT);
256 fpscr &= ~FPSCR_LENGTH_MASK;
257 fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
261 * Handle the first FP instruction. We used to take note of the
262 * FPEXC bounce reason, but this appears to be unreliable.
263 * Emulate the bounced instruction instead.
266 exceptions = vfp_emulate_instruction(inst, fpscr, regs);
268 vfp_raise_exceptions(exceptions, inst, orig_fpscr, regs);
271 * If there isn't a second FP instruction, exit now.
273 if (!(fpexc & FPEXC_FPV2))
277 * The barrier() here prevents fpinst2 being read
278 * before the condition above.
281 trigger = fmrx(FPINST2);
282 orig_fpscr = fpscr = fmrx(FPSCR);
285 exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
287 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
290 static void vfp_enable(void *unused)
292 u32 access = get_copro_access();
295 * Enable full access to VFP (cp10 and cp11)
297 set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
300 #include <linux/smp.h>
303 * VFP support code initialisation.
305 static int __init vfp_init(void)
308 unsigned int cpu_arch = cpu_architecture();
311 if (cpu_arch >= CPU_ARCH_ARMv6) {
312 access = get_copro_access();
315 * Enable full access to VFP (cp10 and cp11)
317 set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
321 * First check that there is a VFP that we can use.
322 * The handler is already setup to just log calls, so
323 * we just need to read the VFPSID register.
325 vfp_vector = vfp_testing_entry;
327 vfpsid = fmrx(FPSID);
329 vfp_vector = vfp_null_entry;
331 printk(KERN_INFO "VFP support v0.3: ");
333 printk("not present\n");
336 * Restore the copro access register.
338 if (cpu_arch >= CPU_ARCH_ARMv6)
339 set_copro_access(access);
340 } else if (vfpsid & FPSID_NODOUBLE) {
341 printk("no double precision support\n");
343 smp_call_function(vfp_enable, NULL, 1, 1);
345 VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */
346 printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
347 (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
348 (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
349 (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
350 (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
351 (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
353 vfp_vector = vfp_support_entry;
355 thread_register_notifier(&vfp_notifier_block);
358 * We detected VFP, and the support code is
359 * in place; report VFP support to userspace.
361 elf_hwcap |= HWCAP_VFP;
366 late_initcall(vfp_init);