2 * Copyright (c) 2006 QLogic, Inc. All rights reserved.
3 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
34 #include <linux/delay.h>
35 #include <linux/pci.h>
36 #include <linux/vmalloc.h>
38 #include "ipath_kernel.h"
41 * InfiniPath I2C driver for a serial eeprom. This is not a generic
42 * I2C interface. For a start, the device we're using (Atmel AT24C11)
43 * doesn't work like a regular I2C device. It looks like one
44 * electrically, but not logically. Normal I2C devices have a single
45 * 7-bit or 10-bit I2C address that they respond to. Valid 7-bit
46 * addresses range from 0x03 to 0x77. Addresses 0x00 to 0x02 and 0x78
47 * to 0x7F are special reserved addresses (e.g. 0x00 is the "general
48 * call" address.) The Atmel device, on the other hand, responds to ALL
49 * 7-bit addresses. It's designed to be the only device on a given I2C
50 * bus. A 7-bit address corresponds to the memory address within the
51 * Atmel device itself.
53 * Also, the timing requirements mean more than simple software
54 * bitbanging, with readbacks from chip to ensure timing (simple udelay
57 * This all means that accessing the device is specialized enough
58 * that using the standard kernel I2C bitbanging interface would be
59 * impossible. For example, the core I2C eeprom driver expects to find
60 * a device at one or more of a limited set of addresses only. It doesn't
61 * allow writing to an eeprom. It also doesn't provide any means of
62 * accessing eeprom contents from within the kernel, only via sysfs.
78 static int eeprom_init;
81 * The gpioval manipulation really should be protected by spinlocks
82 * or be converted to use atomic operations.
86 * i2c_gpio_set - set a GPIO line
87 * @dd: the infinipath device
88 * @line: the line to set
89 * @new_line_state: the state to set
91 * Returns 0 if the line was set to the new state successfully, non-zero
94 static int i2c_gpio_set(struct ipath_devdata *dd,
96 enum i2c_state new_line_state)
98 u64 read_val, write_val, mask, *gpioval;
100 gpioval = &dd->ipath_gpio_out;
101 read_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extctrl);
102 if (line == i2c_line_scl)
103 mask = ipath_gpio_scl;
105 mask = ipath_gpio_sda;
107 if (new_line_state == i2c_line_high)
108 /* tri-state the output rather than force high */
109 write_val = read_val & ~mask;
111 /* config line to be an output */
112 write_val = read_val | mask;
113 ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, write_val);
115 /* set high and verify */
116 if (new_line_state == i2c_line_high)
121 if (line == i2c_line_scl) {
122 write_val <<= ipath_gpio_scl_num;
123 *gpioval = *gpioval & ~(1UL << ipath_gpio_scl_num);
124 *gpioval |= write_val;
126 write_val <<= ipath_gpio_sda_num;
127 *gpioval = *gpioval & ~(1UL << ipath_gpio_sda_num);
128 *gpioval |= write_val;
130 ipath_write_kreg(dd, dd->ipath_kregs->kr_gpio_out, *gpioval);
136 * i2c_gpio_get - get a GPIO line state
137 * @dd: the infinipath device
138 * @line: the line to get
139 * @curr_statep: where to put the line state
141 * Returns 0 if the line was set to the new state successfully, non-zero
142 * on error. curr_state is not set on error.
144 static int i2c_gpio_get(struct ipath_devdata *dd,
146 enum i2c_state *curr_statep)
148 u64 read_val, write_val, mask;
152 if (curr_statep == NULL) {
157 read_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extctrl);
158 /* config line to be an input */
159 if (line == i2c_line_scl)
160 mask = ipath_gpio_scl;
162 mask = ipath_gpio_sda;
163 write_val = read_val & ~mask;
164 ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, write_val);
165 read_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extstatus);
168 *curr_statep = i2c_line_high;
170 *curr_statep = i2c_line_low;
179 * i2c_wait_for_writes - wait for a write
180 * @dd: the infinipath device
182 * We use this instead of udelay directly, so we can make sure
183 * that previous register writes have been flushed all the way
184 * to the chip. Since we are delaying anyway, the cost doesn't
185 * hurt, and makes the bit twiddling more regular
187 static void i2c_wait_for_writes(struct ipath_devdata *dd)
189 (void)ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
192 static void scl_out(struct ipath_devdata *dd, u8 bit)
194 i2c_gpio_set(dd, i2c_line_scl, bit ? i2c_line_high : i2c_line_low);
196 i2c_wait_for_writes(dd);
199 static void sda_out(struct ipath_devdata *dd, u8 bit)
201 i2c_gpio_set(dd, i2c_line_sda, bit ? i2c_line_high : i2c_line_low);
203 i2c_wait_for_writes(dd);
206 static u8 sda_in(struct ipath_devdata *dd, int wait)
210 if (i2c_gpio_get(dd, i2c_line_sda, &bit))
211 ipath_dbg("get bit failed!\n");
214 i2c_wait_for_writes(dd);
216 return bit == i2c_line_high ? 1U : 0;
220 * i2c_ackrcv - see if ack following write is true
221 * @dd: the infinipath device
223 static int i2c_ackrcv(struct ipath_devdata *dd)
227 /* AT ENTRY SCL = LOW */
228 /* change direction, ignore data */
229 ack_received = sda_in(dd, 1);
230 scl_out(dd, i2c_line_high);
231 ack_received = sda_in(dd, 1) == 0;
232 scl_out(dd, i2c_line_low);
237 * wr_byte - write a byte, one bit at a time
238 * @dd: the infinipath device
239 * @data: the byte to write
241 * Returns 0 if we got the following ack, otherwise 1
243 static int wr_byte(struct ipath_devdata *dd, u8 data)
248 for (bit_cntr = 7; bit_cntr >= 0; bit_cntr--) {
249 bit = (data >> bit_cntr) & 1;
251 scl_out(dd, i2c_line_high);
252 scl_out(dd, i2c_line_low);
254 return (!i2c_ackrcv(dd)) ? 1 : 0;
257 static void send_ack(struct ipath_devdata *dd)
259 sda_out(dd, i2c_line_low);
260 scl_out(dd, i2c_line_high);
261 scl_out(dd, i2c_line_low);
262 sda_out(dd, i2c_line_high);
266 * i2c_startcmd - transmit the start condition, followed by address/cmd
267 * @dd: the infinipath device
268 * @offset_dir: direction byte
270 * (both clock/data high, clock high, data low while clock is high)
272 static int i2c_startcmd(struct ipath_devdata *dd, u8 offset_dir)
276 /* issue start sequence */
277 sda_out(dd, i2c_line_high);
278 scl_out(dd, i2c_line_high);
279 sda_out(dd, i2c_line_low);
280 scl_out(dd, i2c_line_low);
282 /* issue length and direction byte */
283 res = wr_byte(dd, offset_dir);
286 ipath_cdbg(VERBOSE, "No ack to complete start\n");
292 * stop_cmd - transmit the stop condition
293 * @dd: the infinipath device
295 * (both clock/data low, clock high, data high while clock is high)
297 static void stop_cmd(struct ipath_devdata *dd)
299 scl_out(dd, i2c_line_low);
300 sda_out(dd, i2c_line_low);
301 scl_out(dd, i2c_line_high);
302 sda_out(dd, i2c_line_high);
307 * eeprom_reset - reset I2C communication
308 * @dd: the infinipath device
311 static int eeprom_reset(struct ipath_devdata *dd)
313 int clock_cycles_left = 9;
314 u64 *gpioval = &dd->ipath_gpio_out;
318 *gpioval = ipath_read_kreg64(dd, dd->ipath_kregs->kr_gpio_out);
319 ipath_cdbg(VERBOSE, "Resetting i2c eeprom; initial gpioout reg "
320 "is %llx\n", (unsigned long long) *gpioval);
323 * This is to get the i2c into a known state, by first going low,
324 * then tristate sda (and then tristate scl as first thing
327 scl_out(dd, i2c_line_low);
328 sda_out(dd, i2c_line_high);
330 while (clock_cycles_left--) {
331 scl_out(dd, i2c_line_high);
334 sda_out(dd, i2c_line_low);
335 scl_out(dd, i2c_line_low);
340 scl_out(dd, i2c_line_low);
350 * ipath_eeprom_read - receives bytes from the eeprom via I2C
351 * @dd: the infinipath device
352 * @eeprom_offset: address to read from
353 * @buffer: where to store result
354 * @len: number of bytes to receive
357 int ipath_eeprom_read(struct ipath_devdata *dd, u8 eeprom_offset,
358 void *buffer, int len)
360 /* compiler complains unless initialized */
368 eeprom_offset = (eeprom_offset << 1) | READ_CMD;
370 if (i2c_startcmd(dd, eeprom_offset)) {
371 ipath_dbg("Failed startcmd\n");
378 * eeprom keeps clocking data out as long as we ack, automatically
379 * incrementing the address.
384 for (bit_cntr = 8; bit_cntr; bit_cntr--) {
386 scl_out(dd, i2c_line_high);
388 single_byte |= bit << (bit_cntr - 1);
389 scl_out(dd, i2c_line_low);
392 /* send ack if not the last byte */
396 *((u8 *) buffer) = single_byte;
409 * ipath_eeprom_write - writes data to the eeprom via I2C
410 * @dd: the infinipath device
411 * @eeprom_offset: where to place data
412 * @buffer: data to write
413 * @len: number of bytes to write
415 int ipath_eeprom_write(struct ipath_devdata *dd, u8 eeprom_offset,
416 const void *buffer, int len)
420 const u8 *bp = buffer;
421 int max_wait_time, i;
428 if (i2c_startcmd(dd, (eeprom_offset << 1) | WRITE_CMD)) {
429 ipath_dbg("Failed to start cmd offset %u\n",
434 sub_len = min(len, 4);
435 eeprom_offset += sub_len;
438 for (i = 0; i < sub_len; i++) {
439 if (wr_byte(dd, *bp++)) {
440 ipath_dbg("no ack after byte %u/%u (%u "
441 "total remain)\n", i, sub_len,
450 * wait for write complete by waiting for a successful
451 * read (the chip replies with a zero after the write
452 * cmd completes, and before it writes to the eeprom.
453 * The startcmd for the read will fail the ack until
454 * the writes have completed. We do this inline to avoid
455 * the debug prints that are in the real read routine
456 * if the startcmd fails.
459 while (i2c_startcmd(dd, READ_CMD)) {
461 if (!--max_wait_time) {
462 ipath_dbg("Did not get successful read to "
467 /* now read the zero byte */
468 for (i = single_byte = 0; i < 8; i++) {
470 scl_out(dd, i2c_line_high);
472 scl_out(dd, i2c_line_low);
490 static u8 flash_csum(struct ipath_flash *ifp, int adjust)
495 for (len = 0; len < ifp->if_length; len++)
497 csum -= ifp->if_csum;
506 * ipath_get_guid - get the GUID from the i2c device
507 * @dd: the infinipath device
509 * We have the capability to use the ipath_nguid field, and get
510 * the guid from the first chip's flash, to use for all of them.
512 void ipath_get_eeprom_info(struct ipath_devdata *dd)
515 struct ipath_flash *ifp;
519 int t = dd->ipath_unit;
520 struct ipath_devdata *dd0 = ipath_lookup(0);
522 if (t && dd0->ipath_nguid > 1 && t <= dd0->ipath_nguid) {
524 dd->ipath_guid = dd0->ipath_guid;
525 bguid = (u8 *) & dd->ipath_guid;
529 if (oguid > bguid[7]) {
530 if (bguid[6] == 0xff) {
531 if (bguid[5] == 0xff) {
534 "Can't set %s GUID from "
535 "base, wraps to OUI!\n",
536 ipath_get_unit_name(t));
546 ipath_dbg("nguid %u, so adding %u to device 0 guid, "
549 (unsigned long long) be64_to_cpu(dd->ipath_guid));
553 len = offsetof(struct ipath_flash, if_future);
556 ipath_dev_err(dd, "Couldn't allocate memory to read %u "
557 "bytes from eeprom for GUID\n", len);
561 if (ipath_eeprom_read(dd, 0, buf, len)) {
562 ipath_dev_err(dd, "Failed reading GUID from eeprom\n");
565 ifp = (struct ipath_flash *)buf;
567 csum = flash_csum(ifp, 0);
568 if (csum != ifp->if_csum) {
569 dev_info(&dd->pcidev->dev, "Bad I2C flash checksum: "
570 "0x%x, not 0x%x\n", csum, ifp->if_csum);
573 if (*(__be64 *) ifp->if_guid == 0ULL ||
574 *(__be64 *) ifp->if_guid == __constant_cpu_to_be64(-1LL)) {
575 ipath_dev_err(dd, "Invalid GUID %llx from flash; "
577 *(unsigned long long *) ifp->if_guid);
578 /* don't allow GUID if all 0 or all 1's */
582 /* complain, but allow it */
583 if (*(u64 *) ifp->if_guid == 0x100007511000000ULL)
584 dev_info(&dd->pcidev->dev, "Warning, GUID %llx is "
585 "default, probably not correct!\n",
586 *(unsigned long long *) ifp->if_guid);
588 bguid = ifp->if_guid;
589 if (!bguid[0] && !bguid[1] && !bguid[2]) {
590 /* original incorrect GUID format in flash; fix in
591 * core copy, by shifting up 2 octets; don't need to
592 * change top octet, since both it and shifted are
596 bguid[3] = bguid[4] = 0;
597 guid = *(__be64 *) ifp->if_guid;
598 ipath_cdbg(VERBOSE, "Old GUID format in flash, top 3 zero, "
599 "shifting 2 octets\n");
601 guid = *(__be64 *) ifp->if_guid;
602 dd->ipath_guid = guid;
603 dd->ipath_nguid = ifp->if_numguid;
604 memcpy(dd->ipath_serial, ifp->if_serial,
605 sizeof(ifp->if_serial));
606 ipath_cdbg(VERBOSE, "Initted GUID to %llx from eeprom\n",
607 (unsigned long long) be64_to_cpu(dd->ipath_guid));