cpuidle: Add Documentation
[linux-2.6] / block / elevator.c
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@kernel.dk> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37
38 #include <asm/uaccess.h>
39
40 static DEFINE_SPINLOCK(elv_list_lock);
41 static LIST_HEAD(elv_list);
42
43 /*
44  * Merge hash stuff.
45  */
46 static const int elv_hash_shift = 6;
47 #define ELV_HASH_BLOCK(sec)     ((sec) >> 3)
48 #define ELV_HASH_FN(sec)        \
49                 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
50 #define ELV_HASH_ENTRIES        (1 << elv_hash_shift)
51 #define rq_hash_key(rq)         ((rq)->sector + (rq)->nr_sectors)
52 #define ELV_ON_HASH(rq)         (!hlist_unhashed(&(rq)->hash))
53
54 /*
55  * Query io scheduler to see if the current process issuing bio may be
56  * merged with rq.
57  */
58 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
59 {
60         struct request_queue *q = rq->q;
61         elevator_t *e = q->elevator;
62
63         if (e->ops->elevator_allow_merge_fn)
64                 return e->ops->elevator_allow_merge_fn(q, rq, bio);
65
66         return 1;
67 }
68
69 /*
70  * can we safely merge with this request?
71  */
72 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
73 {
74         if (!rq_mergeable(rq))
75                 return 0;
76
77         /*
78          * different data direction or already started, don't merge
79          */
80         if (bio_data_dir(bio) != rq_data_dir(rq))
81                 return 0;
82
83         /*
84          * must be same device and not a special request
85          */
86         if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
87                 return 0;
88
89         if (!elv_iosched_allow_merge(rq, bio))
90                 return 0;
91
92         return 1;
93 }
94 EXPORT_SYMBOL(elv_rq_merge_ok);
95
96 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
97 {
98         int ret = ELEVATOR_NO_MERGE;
99
100         /*
101          * we can merge and sequence is ok, check if it's possible
102          */
103         if (elv_rq_merge_ok(__rq, bio)) {
104                 if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
105                         ret = ELEVATOR_BACK_MERGE;
106                 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
107                         ret = ELEVATOR_FRONT_MERGE;
108         }
109
110         return ret;
111 }
112
113 static struct elevator_type *elevator_find(const char *name)
114 {
115         struct elevator_type *e;
116
117         list_for_each_entry(e, &elv_list, list) {
118                 if (!strcmp(e->elevator_name, name))
119                         return e;
120         }
121
122         return NULL;
123 }
124
125 static void elevator_put(struct elevator_type *e)
126 {
127         module_put(e->elevator_owner);
128 }
129
130 static struct elevator_type *elevator_get(const char *name)
131 {
132         struct elevator_type *e;
133
134         spin_lock(&elv_list_lock);
135
136         e = elevator_find(name);
137         if (e && !try_module_get(e->elevator_owner))
138                 e = NULL;
139
140         spin_unlock(&elv_list_lock);
141
142         return e;
143 }
144
145 static void *elevator_init_queue(struct request_queue *q,
146                                  struct elevator_queue *eq)
147 {
148         return eq->ops->elevator_init_fn(q);
149 }
150
151 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
152                            void *data)
153 {
154         q->elevator = eq;
155         eq->elevator_data = data;
156 }
157
158 static char chosen_elevator[16];
159
160 static int __init elevator_setup(char *str)
161 {
162         /*
163          * Be backwards-compatible with previous kernels, so users
164          * won't get the wrong elevator.
165          */
166         if (!strcmp(str, "as"))
167                 strcpy(chosen_elevator, "anticipatory");
168         else
169                 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
170         return 1;
171 }
172
173 __setup("elevator=", elevator_setup);
174
175 static struct kobj_type elv_ktype;
176
177 static elevator_t *elevator_alloc(struct request_queue *q,
178                                   struct elevator_type *e)
179 {
180         elevator_t *eq;
181         int i;
182
183         eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL | __GFP_ZERO, q->node);
184         if (unlikely(!eq))
185                 goto err;
186
187         eq->ops = &e->ops;
188         eq->elevator_type = e;
189         kobject_init(&eq->kobj, &elv_ktype);
190         mutex_init(&eq->sysfs_lock);
191
192         eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
193                                         GFP_KERNEL, q->node);
194         if (!eq->hash)
195                 goto err;
196
197         for (i = 0; i < ELV_HASH_ENTRIES; i++)
198                 INIT_HLIST_HEAD(&eq->hash[i]);
199
200         return eq;
201 err:
202         kfree(eq);
203         elevator_put(e);
204         return NULL;
205 }
206
207 static void elevator_release(struct kobject *kobj)
208 {
209         elevator_t *e = container_of(kobj, elevator_t, kobj);
210
211         elevator_put(e->elevator_type);
212         kfree(e->hash);
213         kfree(e);
214 }
215
216 int elevator_init(struct request_queue *q, char *name)
217 {
218         struct elevator_type *e = NULL;
219         struct elevator_queue *eq;
220         int ret = 0;
221         void *data;
222
223         INIT_LIST_HEAD(&q->queue_head);
224         q->last_merge = NULL;
225         q->end_sector = 0;
226         q->boundary_rq = NULL;
227
228         if (name) {
229                 e = elevator_get(name);
230                 if (!e)
231                         return -EINVAL;
232         }
233
234         if (!e && *chosen_elevator) {
235                 e = elevator_get(chosen_elevator);
236                 if (!e)
237                         printk(KERN_ERR "I/O scheduler %s not found\n",
238                                                         chosen_elevator);
239         }
240
241         if (!e) {
242                 e = elevator_get(CONFIG_DEFAULT_IOSCHED);
243                 if (!e) {
244                         printk(KERN_ERR
245                                 "Default I/O scheduler not found. " \
246                                 "Using noop.\n");
247                         e = elevator_get("noop");
248                 }
249         }
250
251         eq = elevator_alloc(q, e);
252         if (!eq)
253                 return -ENOMEM;
254
255         data = elevator_init_queue(q, eq);
256         if (!data) {
257                 kobject_put(&eq->kobj);
258                 return -ENOMEM;
259         }
260
261         elevator_attach(q, eq, data);
262         return ret;
263 }
264 EXPORT_SYMBOL(elevator_init);
265
266 void elevator_exit(elevator_t *e)
267 {
268         mutex_lock(&e->sysfs_lock);
269         if (e->ops->elevator_exit_fn)
270                 e->ops->elevator_exit_fn(e);
271         e->ops = NULL;
272         mutex_unlock(&e->sysfs_lock);
273
274         kobject_put(&e->kobj);
275 }
276 EXPORT_SYMBOL(elevator_exit);
277
278 static void elv_activate_rq(struct request_queue *q, struct request *rq)
279 {
280         elevator_t *e = q->elevator;
281
282         if (e->ops->elevator_activate_req_fn)
283                 e->ops->elevator_activate_req_fn(q, rq);
284 }
285
286 static void elv_deactivate_rq(struct request_queue *q, struct request *rq)
287 {
288         elevator_t *e = q->elevator;
289
290         if (e->ops->elevator_deactivate_req_fn)
291                 e->ops->elevator_deactivate_req_fn(q, rq);
292 }
293
294 static inline void __elv_rqhash_del(struct request *rq)
295 {
296         hlist_del_init(&rq->hash);
297 }
298
299 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
300 {
301         if (ELV_ON_HASH(rq))
302                 __elv_rqhash_del(rq);
303 }
304
305 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
306 {
307         elevator_t *e = q->elevator;
308
309         BUG_ON(ELV_ON_HASH(rq));
310         hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
311 }
312
313 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
314 {
315         __elv_rqhash_del(rq);
316         elv_rqhash_add(q, rq);
317 }
318
319 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
320 {
321         elevator_t *e = q->elevator;
322         struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
323         struct hlist_node *entry, *next;
324         struct request *rq;
325
326         hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
327                 BUG_ON(!ELV_ON_HASH(rq));
328
329                 if (unlikely(!rq_mergeable(rq))) {
330                         __elv_rqhash_del(rq);
331                         continue;
332                 }
333
334                 if (rq_hash_key(rq) == offset)
335                         return rq;
336         }
337
338         return NULL;
339 }
340
341 /*
342  * RB-tree support functions for inserting/lookup/removal of requests
343  * in a sorted RB tree.
344  */
345 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
346 {
347         struct rb_node **p = &root->rb_node;
348         struct rb_node *parent = NULL;
349         struct request *__rq;
350
351         while (*p) {
352                 parent = *p;
353                 __rq = rb_entry(parent, struct request, rb_node);
354
355                 if (rq->sector < __rq->sector)
356                         p = &(*p)->rb_left;
357                 else if (rq->sector > __rq->sector)
358                         p = &(*p)->rb_right;
359                 else
360                         return __rq;
361         }
362
363         rb_link_node(&rq->rb_node, parent, p);
364         rb_insert_color(&rq->rb_node, root);
365         return NULL;
366 }
367 EXPORT_SYMBOL(elv_rb_add);
368
369 void elv_rb_del(struct rb_root *root, struct request *rq)
370 {
371         BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
372         rb_erase(&rq->rb_node, root);
373         RB_CLEAR_NODE(&rq->rb_node);
374 }
375 EXPORT_SYMBOL(elv_rb_del);
376
377 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
378 {
379         struct rb_node *n = root->rb_node;
380         struct request *rq;
381
382         while (n) {
383                 rq = rb_entry(n, struct request, rb_node);
384
385                 if (sector < rq->sector)
386                         n = n->rb_left;
387                 else if (sector > rq->sector)
388                         n = n->rb_right;
389                 else
390                         return rq;
391         }
392
393         return NULL;
394 }
395 EXPORT_SYMBOL(elv_rb_find);
396
397 /*
398  * Insert rq into dispatch queue of q.  Queue lock must be held on
399  * entry.  rq is sort instead into the dispatch queue. To be used by
400  * specific elevators.
401  */
402 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
403 {
404         sector_t boundary;
405         struct list_head *entry;
406         int stop_flags;
407
408         if (q->last_merge == rq)
409                 q->last_merge = NULL;
410
411         elv_rqhash_del(q, rq);
412
413         q->nr_sorted--;
414
415         boundary = q->end_sector;
416         stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
417         list_for_each_prev(entry, &q->queue_head) {
418                 struct request *pos = list_entry_rq(entry);
419
420                 if (rq_data_dir(rq) != rq_data_dir(pos))
421                         break;
422                 if (pos->cmd_flags & stop_flags)
423                         break;
424                 if (rq->sector >= boundary) {
425                         if (pos->sector < boundary)
426                                 continue;
427                 } else {
428                         if (pos->sector >= boundary)
429                                 break;
430                 }
431                 if (rq->sector >= pos->sector)
432                         break;
433         }
434
435         list_add(&rq->queuelist, entry);
436 }
437 EXPORT_SYMBOL(elv_dispatch_sort);
438
439 /*
440  * Insert rq into dispatch queue of q.  Queue lock must be held on
441  * entry.  rq is added to the back of the dispatch queue. To be used by
442  * specific elevators.
443  */
444 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
445 {
446         if (q->last_merge == rq)
447                 q->last_merge = NULL;
448
449         elv_rqhash_del(q, rq);
450
451         q->nr_sorted--;
452
453         q->end_sector = rq_end_sector(rq);
454         q->boundary_rq = rq;
455         list_add_tail(&rq->queuelist, &q->queue_head);
456 }
457 EXPORT_SYMBOL(elv_dispatch_add_tail);
458
459 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
460 {
461         elevator_t *e = q->elevator;
462         struct request *__rq;
463         int ret;
464
465         /*
466          * First try one-hit cache.
467          */
468         if (q->last_merge) {
469                 ret = elv_try_merge(q->last_merge, bio);
470                 if (ret != ELEVATOR_NO_MERGE) {
471                         *req = q->last_merge;
472                         return ret;
473                 }
474         }
475
476         /*
477          * See if our hash lookup can find a potential backmerge.
478          */
479         __rq = elv_rqhash_find(q, bio->bi_sector);
480         if (__rq && elv_rq_merge_ok(__rq, bio)) {
481                 *req = __rq;
482                 return ELEVATOR_BACK_MERGE;
483         }
484
485         if (e->ops->elevator_merge_fn)
486                 return e->ops->elevator_merge_fn(q, req, bio);
487
488         return ELEVATOR_NO_MERGE;
489 }
490
491 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
492 {
493         elevator_t *e = q->elevator;
494
495         if (e->ops->elevator_merged_fn)
496                 e->ops->elevator_merged_fn(q, rq, type);
497
498         if (type == ELEVATOR_BACK_MERGE)
499                 elv_rqhash_reposition(q, rq);
500
501         q->last_merge = rq;
502 }
503
504 void elv_merge_requests(struct request_queue *q, struct request *rq,
505                              struct request *next)
506 {
507         elevator_t *e = q->elevator;
508
509         if (e->ops->elevator_merge_req_fn)
510                 e->ops->elevator_merge_req_fn(q, rq, next);
511
512         elv_rqhash_reposition(q, rq);
513         elv_rqhash_del(q, next);
514
515         q->nr_sorted--;
516         q->last_merge = rq;
517 }
518
519 void elv_requeue_request(struct request_queue *q, struct request *rq)
520 {
521         /*
522          * it already went through dequeue, we need to decrement the
523          * in_flight count again
524          */
525         if (blk_account_rq(rq)) {
526                 q->in_flight--;
527                 if (blk_sorted_rq(rq))
528                         elv_deactivate_rq(q, rq);
529         }
530
531         rq->cmd_flags &= ~REQ_STARTED;
532
533         elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
534 }
535
536 static void elv_drain_elevator(struct request_queue *q)
537 {
538         static int printed;
539         while (q->elevator->ops->elevator_dispatch_fn(q, 1))
540                 ;
541         if (q->nr_sorted == 0)
542                 return;
543         if (printed++ < 10) {
544                 printk(KERN_ERR "%s: forced dispatching is broken "
545                        "(nr_sorted=%u), please report this\n",
546                        q->elevator->elevator_type->elevator_name, q->nr_sorted);
547         }
548 }
549
550 void elv_insert(struct request_queue *q, struct request *rq, int where)
551 {
552         struct list_head *pos;
553         unsigned ordseq;
554         int unplug_it = 1;
555
556         blk_add_trace_rq(q, rq, BLK_TA_INSERT);
557
558         rq->q = q;
559
560         switch (where) {
561         case ELEVATOR_INSERT_FRONT:
562                 rq->cmd_flags |= REQ_SOFTBARRIER;
563
564                 list_add(&rq->queuelist, &q->queue_head);
565                 break;
566
567         case ELEVATOR_INSERT_BACK:
568                 rq->cmd_flags |= REQ_SOFTBARRIER;
569                 elv_drain_elevator(q);
570                 list_add_tail(&rq->queuelist, &q->queue_head);
571                 /*
572                  * We kick the queue here for the following reasons.
573                  * - The elevator might have returned NULL previously
574                  *   to delay requests and returned them now.  As the
575                  *   queue wasn't empty before this request, ll_rw_blk
576                  *   won't run the queue on return, resulting in hang.
577                  * - Usually, back inserted requests won't be merged
578                  *   with anything.  There's no point in delaying queue
579                  *   processing.
580                  */
581                 blk_remove_plug(q);
582                 q->request_fn(q);
583                 break;
584
585         case ELEVATOR_INSERT_SORT:
586                 BUG_ON(!blk_fs_request(rq));
587                 rq->cmd_flags |= REQ_SORTED;
588                 q->nr_sorted++;
589                 if (rq_mergeable(rq)) {
590                         elv_rqhash_add(q, rq);
591                         if (!q->last_merge)
592                                 q->last_merge = rq;
593                 }
594
595                 /*
596                  * Some ioscheds (cfq) run q->request_fn directly, so
597                  * rq cannot be accessed after calling
598                  * elevator_add_req_fn.
599                  */
600                 q->elevator->ops->elevator_add_req_fn(q, rq);
601                 break;
602
603         case ELEVATOR_INSERT_REQUEUE:
604                 /*
605                  * If ordered flush isn't in progress, we do front
606                  * insertion; otherwise, requests should be requeued
607                  * in ordseq order.
608                  */
609                 rq->cmd_flags |= REQ_SOFTBARRIER;
610
611                 /*
612                  * Most requeues happen because of a busy condition,
613                  * don't force unplug of the queue for that case.
614                  */
615                 unplug_it = 0;
616
617                 if (q->ordseq == 0) {
618                         list_add(&rq->queuelist, &q->queue_head);
619                         break;
620                 }
621
622                 ordseq = blk_ordered_req_seq(rq);
623
624                 list_for_each(pos, &q->queue_head) {
625                         struct request *pos_rq = list_entry_rq(pos);
626                         if (ordseq <= blk_ordered_req_seq(pos_rq))
627                                 break;
628                 }
629
630                 list_add_tail(&rq->queuelist, pos);
631                 break;
632
633         default:
634                 printk(KERN_ERR "%s: bad insertion point %d\n",
635                        __FUNCTION__, where);
636                 BUG();
637         }
638
639         if (unplug_it && blk_queue_plugged(q)) {
640                 int nrq = q->rq.count[READ] + q->rq.count[WRITE]
641                         - q->in_flight;
642
643                 if (nrq >= q->unplug_thresh)
644                         __generic_unplug_device(q);
645         }
646 }
647
648 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
649                        int plug)
650 {
651         if (q->ordcolor)
652                 rq->cmd_flags |= REQ_ORDERED_COLOR;
653
654         if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
655                 /*
656                  * toggle ordered color
657                  */
658                 if (blk_barrier_rq(rq))
659                         q->ordcolor ^= 1;
660
661                 /*
662                  * barriers implicitly indicate back insertion
663                  */
664                 if (where == ELEVATOR_INSERT_SORT)
665                         where = ELEVATOR_INSERT_BACK;
666
667                 /*
668                  * this request is scheduling boundary, update
669                  * end_sector
670                  */
671                 if (blk_fs_request(rq)) {
672                         q->end_sector = rq_end_sector(rq);
673                         q->boundary_rq = rq;
674                 }
675         } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
676                     where == ELEVATOR_INSERT_SORT)
677                 where = ELEVATOR_INSERT_BACK;
678
679         if (plug)
680                 blk_plug_device(q);
681
682         elv_insert(q, rq, where);
683 }
684 EXPORT_SYMBOL(__elv_add_request);
685
686 void elv_add_request(struct request_queue *q, struct request *rq, int where,
687                      int plug)
688 {
689         unsigned long flags;
690
691         spin_lock_irqsave(q->queue_lock, flags);
692         __elv_add_request(q, rq, where, plug);
693         spin_unlock_irqrestore(q->queue_lock, flags);
694 }
695 EXPORT_SYMBOL(elv_add_request);
696
697 static inline struct request *__elv_next_request(struct request_queue *q)
698 {
699         struct request *rq;
700
701         while (1) {
702                 while (!list_empty(&q->queue_head)) {
703                         rq = list_entry_rq(q->queue_head.next);
704                         if (blk_do_ordered(q, &rq))
705                                 return rq;
706                 }
707
708                 if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
709                         return NULL;
710         }
711 }
712
713 struct request *elv_next_request(struct request_queue *q)
714 {
715         struct request *rq;
716         int ret;
717
718         while ((rq = __elv_next_request(q)) != NULL) {
719                 /*
720                  * Kill the empty barrier place holder, the driver must
721                  * not ever see it.
722                  */
723                 if (blk_empty_barrier(rq)) {
724                         end_queued_request(rq, 1);
725                         continue;
726                 }
727                 if (!(rq->cmd_flags & REQ_STARTED)) {
728                         /*
729                          * This is the first time the device driver
730                          * sees this request (possibly after
731                          * requeueing).  Notify IO scheduler.
732                          */
733                         if (blk_sorted_rq(rq))
734                                 elv_activate_rq(q, rq);
735
736                         /*
737                          * just mark as started even if we don't start
738                          * it, a request that has been delayed should
739                          * not be passed by new incoming requests
740                          */
741                         rq->cmd_flags |= REQ_STARTED;
742                         blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
743                 }
744
745                 if (!q->boundary_rq || q->boundary_rq == rq) {
746                         q->end_sector = rq_end_sector(rq);
747                         q->boundary_rq = NULL;
748                 }
749
750                 if (rq->cmd_flags & REQ_DONTPREP)
751                         break;
752
753                 if (q->dma_drain_size && rq->data_len) {
754                         /*
755                          * make sure space for the drain appears we
756                          * know we can do this because max_hw_segments
757                          * has been adjusted to be one fewer than the
758                          * device can handle
759                          */
760                         rq->nr_phys_segments++;
761                         rq->nr_hw_segments++;
762                 }
763
764                 if (!q->prep_rq_fn)
765                         break;
766
767                 ret = q->prep_rq_fn(q, rq);
768                 if (ret == BLKPREP_OK) {
769                         break;
770                 } else if (ret == BLKPREP_DEFER) {
771                         /*
772                          * the request may have been (partially) prepped.
773                          * we need to keep this request in the front to
774                          * avoid resource deadlock.  REQ_STARTED will
775                          * prevent other fs requests from passing this one.
776                          */
777                         if (q->dma_drain_size && rq->data_len &&
778                             !(rq->cmd_flags & REQ_DONTPREP)) {
779                                 /*
780                                  * remove the space for the drain we added
781                                  * so that we don't add it again
782                                  */
783                                 --rq->nr_phys_segments;
784                                 --rq->nr_hw_segments;
785                         }
786
787                         rq = NULL;
788                         break;
789                 } else if (ret == BLKPREP_KILL) {
790                         rq->cmd_flags |= REQ_QUIET;
791                         end_queued_request(rq, 0);
792                 } else {
793                         printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
794                                                                 ret);
795                         break;
796                 }
797         }
798
799         return rq;
800 }
801 EXPORT_SYMBOL(elv_next_request);
802
803 void elv_dequeue_request(struct request_queue *q, struct request *rq)
804 {
805         BUG_ON(list_empty(&rq->queuelist));
806         BUG_ON(ELV_ON_HASH(rq));
807
808         list_del_init(&rq->queuelist);
809
810         /*
811          * the time frame between a request being removed from the lists
812          * and to it is freed is accounted as io that is in progress at
813          * the driver side.
814          */
815         if (blk_account_rq(rq))
816                 q->in_flight++;
817 }
818 EXPORT_SYMBOL(elv_dequeue_request);
819
820 int elv_queue_empty(struct request_queue *q)
821 {
822         elevator_t *e = q->elevator;
823
824         if (!list_empty(&q->queue_head))
825                 return 0;
826
827         if (e->ops->elevator_queue_empty_fn)
828                 return e->ops->elevator_queue_empty_fn(q);
829
830         return 1;
831 }
832 EXPORT_SYMBOL(elv_queue_empty);
833
834 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
835 {
836         elevator_t *e = q->elevator;
837
838         if (e->ops->elevator_latter_req_fn)
839                 return e->ops->elevator_latter_req_fn(q, rq);
840         return NULL;
841 }
842
843 struct request *elv_former_request(struct request_queue *q, struct request *rq)
844 {
845         elevator_t *e = q->elevator;
846
847         if (e->ops->elevator_former_req_fn)
848                 return e->ops->elevator_former_req_fn(q, rq);
849         return NULL;
850 }
851
852 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
853 {
854         elevator_t *e = q->elevator;
855
856         if (e->ops->elevator_set_req_fn)
857                 return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
858
859         rq->elevator_private = NULL;
860         return 0;
861 }
862
863 void elv_put_request(struct request_queue *q, struct request *rq)
864 {
865         elevator_t *e = q->elevator;
866
867         if (e->ops->elevator_put_req_fn)
868                 e->ops->elevator_put_req_fn(rq);
869 }
870
871 int elv_may_queue(struct request_queue *q, int rw)
872 {
873         elevator_t *e = q->elevator;
874
875         if (e->ops->elevator_may_queue_fn)
876                 return e->ops->elevator_may_queue_fn(q, rw);
877
878         return ELV_MQUEUE_MAY;
879 }
880
881 void elv_completed_request(struct request_queue *q, struct request *rq)
882 {
883         elevator_t *e = q->elevator;
884
885         /*
886          * request is released from the driver, io must be done
887          */
888         if (blk_account_rq(rq)) {
889                 q->in_flight--;
890                 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
891                         e->ops->elevator_completed_req_fn(q, rq);
892         }
893
894         /*
895          * Check if the queue is waiting for fs requests to be
896          * drained for flush sequence.
897          */
898         if (unlikely(q->ordseq)) {
899                 struct request *first_rq = list_entry_rq(q->queue_head.next);
900                 if (q->in_flight == 0 &&
901                     blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
902                     blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
903                         blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
904                         q->request_fn(q);
905                 }
906         }
907 }
908
909 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
910
911 static ssize_t
912 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
913 {
914         elevator_t *e = container_of(kobj, elevator_t, kobj);
915         struct elv_fs_entry *entry = to_elv(attr);
916         ssize_t error;
917
918         if (!entry->show)
919                 return -EIO;
920
921         mutex_lock(&e->sysfs_lock);
922         error = e->ops ? entry->show(e, page) : -ENOENT;
923         mutex_unlock(&e->sysfs_lock);
924         return error;
925 }
926
927 static ssize_t
928 elv_attr_store(struct kobject *kobj, struct attribute *attr,
929                const char *page, size_t length)
930 {
931         elevator_t *e = container_of(kobj, elevator_t, kobj);
932         struct elv_fs_entry *entry = to_elv(attr);
933         ssize_t error;
934
935         if (!entry->store)
936                 return -EIO;
937
938         mutex_lock(&e->sysfs_lock);
939         error = e->ops ? entry->store(e, page, length) : -ENOENT;
940         mutex_unlock(&e->sysfs_lock);
941         return error;
942 }
943
944 static struct sysfs_ops elv_sysfs_ops = {
945         .show   = elv_attr_show,
946         .store  = elv_attr_store,
947 };
948
949 static struct kobj_type elv_ktype = {
950         .sysfs_ops      = &elv_sysfs_ops,
951         .release        = elevator_release,
952 };
953
954 int elv_register_queue(struct request_queue *q)
955 {
956         elevator_t *e = q->elevator;
957         int error;
958
959         error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
960         if (!error) {
961                 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
962                 if (attr) {
963                         while (attr->attr.name) {
964                                 if (sysfs_create_file(&e->kobj, &attr->attr))
965                                         break;
966                                 attr++;
967                         }
968                 }
969                 kobject_uevent(&e->kobj, KOBJ_ADD);
970         }
971         return error;
972 }
973
974 static void __elv_unregister_queue(elevator_t *e)
975 {
976         kobject_uevent(&e->kobj, KOBJ_REMOVE);
977         kobject_del(&e->kobj);
978 }
979
980 void elv_unregister_queue(struct request_queue *q)
981 {
982         if (q)
983                 __elv_unregister_queue(q->elevator);
984 }
985
986 void elv_register(struct elevator_type *e)
987 {
988         char *def = "";
989
990         spin_lock(&elv_list_lock);
991         BUG_ON(elevator_find(e->elevator_name));
992         list_add_tail(&e->list, &elv_list);
993         spin_unlock(&elv_list_lock);
994
995         if (!strcmp(e->elevator_name, chosen_elevator) ||
996                         (!*chosen_elevator &&
997                          !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
998                                 def = " (default)";
999
1000         printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
1001                                                                 def);
1002 }
1003 EXPORT_SYMBOL_GPL(elv_register);
1004
1005 void elv_unregister(struct elevator_type *e)
1006 {
1007         struct task_struct *g, *p;
1008
1009         /*
1010          * Iterate every thread in the process to remove the io contexts.
1011          */
1012         if (e->ops.trim) {
1013                 read_lock(&tasklist_lock);
1014                 do_each_thread(g, p) {
1015                         task_lock(p);
1016                         if (p->io_context)
1017                                 e->ops.trim(p->io_context);
1018                         task_unlock(p);
1019                 } while_each_thread(g, p);
1020                 read_unlock(&tasklist_lock);
1021         }
1022
1023         spin_lock(&elv_list_lock);
1024         list_del_init(&e->list);
1025         spin_unlock(&elv_list_lock);
1026 }
1027 EXPORT_SYMBOL_GPL(elv_unregister);
1028
1029 /*
1030  * switch to new_e io scheduler. be careful not to introduce deadlocks -
1031  * we don't free the old io scheduler, before we have allocated what we
1032  * need for the new one. this way we have a chance of going back to the old
1033  * one, if the new one fails init for some reason.
1034  */
1035 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1036 {
1037         elevator_t *old_elevator, *e;
1038         void *data;
1039
1040         /*
1041          * Allocate new elevator
1042          */
1043         e = elevator_alloc(q, new_e);
1044         if (!e)
1045                 return 0;
1046
1047         data = elevator_init_queue(q, e);
1048         if (!data) {
1049                 kobject_put(&e->kobj);
1050                 return 0;
1051         }
1052
1053         /*
1054          * Turn on BYPASS and drain all requests w/ elevator private data
1055          */
1056         spin_lock_irq(q->queue_lock);
1057
1058         set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1059
1060         elv_drain_elevator(q);
1061
1062         while (q->rq.elvpriv) {
1063                 blk_remove_plug(q);
1064                 q->request_fn(q);
1065                 spin_unlock_irq(q->queue_lock);
1066                 msleep(10);
1067                 spin_lock_irq(q->queue_lock);
1068                 elv_drain_elevator(q);
1069         }
1070
1071         /*
1072          * Remember old elevator.
1073          */
1074         old_elevator = q->elevator;
1075
1076         /*
1077          * attach and start new elevator
1078          */
1079         elevator_attach(q, e, data);
1080
1081         spin_unlock_irq(q->queue_lock);
1082
1083         __elv_unregister_queue(old_elevator);
1084
1085         if (elv_register_queue(q))
1086                 goto fail_register;
1087
1088         /*
1089          * finally exit old elevator and turn off BYPASS.
1090          */
1091         elevator_exit(old_elevator);
1092         clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1093         return 1;
1094
1095 fail_register:
1096         /*
1097          * switch failed, exit the new io scheduler and reattach the old
1098          * one again (along with re-adding the sysfs dir)
1099          */
1100         elevator_exit(e);
1101         q->elevator = old_elevator;
1102         elv_register_queue(q);
1103         clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1104         return 0;
1105 }
1106
1107 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1108                           size_t count)
1109 {
1110         char elevator_name[ELV_NAME_MAX];
1111         size_t len;
1112         struct elevator_type *e;
1113
1114         elevator_name[sizeof(elevator_name) - 1] = '\0';
1115         strncpy(elevator_name, name, sizeof(elevator_name) - 1);
1116         len = strlen(elevator_name);
1117
1118         if (len && elevator_name[len - 1] == '\n')
1119                 elevator_name[len - 1] = '\0';
1120
1121         e = elevator_get(elevator_name);
1122         if (!e) {
1123                 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1124                 return -EINVAL;
1125         }
1126
1127         if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1128                 elevator_put(e);
1129                 return count;
1130         }
1131
1132         if (!elevator_switch(q, e))
1133                 printk(KERN_ERR "elevator: switch to %s failed\n",
1134                                                         elevator_name);
1135         return count;
1136 }
1137
1138 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1139 {
1140         elevator_t *e = q->elevator;
1141         struct elevator_type *elv = e->elevator_type;
1142         struct elevator_type *__e;
1143         int len = 0;
1144
1145         spin_lock(&elv_list_lock);
1146         list_for_each_entry(__e, &elv_list, list) {
1147                 if (!strcmp(elv->elevator_name, __e->elevator_name))
1148                         len += sprintf(name+len, "[%s] ", elv->elevator_name);
1149                 else
1150                         len += sprintf(name+len, "%s ", __e->elevator_name);
1151         }
1152         spin_unlock(&elv_list_lock);
1153
1154         len += sprintf(len+name, "\n");
1155         return len;
1156 }
1157
1158 struct request *elv_rb_former_request(struct request_queue *q,
1159                                       struct request *rq)
1160 {
1161         struct rb_node *rbprev = rb_prev(&rq->rb_node);
1162
1163         if (rbprev)
1164                 return rb_entry_rq(rbprev);
1165
1166         return NULL;
1167 }
1168 EXPORT_SYMBOL(elv_rb_former_request);
1169
1170 struct request *elv_rb_latter_request(struct request_queue *q,
1171                                       struct request *rq)
1172 {
1173         struct rb_node *rbnext = rb_next(&rq->rb_node);
1174
1175         if (rbnext)
1176                 return rb_entry_rq(rbnext);
1177
1178         return NULL;
1179 }
1180 EXPORT_SYMBOL(elv_rb_latter_request);