2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
46 * Include the apic definitions for x86 to have the APIC timer related defines
47 * available also for UP (on SMP it gets magically included via linux/smp.h).
48 * asm/acpi.h is not an option, as it would require more include magic. Also
49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
56 #include <asm/uaccess.h>
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
61 #define ACPI_PROCESSOR_COMPONENT 0x01000000
62 #define ACPI_PROCESSOR_CLASS "processor"
63 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER "power"
66 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save) (void) __read_mostly;
73 #define C2_OVERHEAD 1 /* 1us */
74 #define C3_OVERHEAD 1 /* 1us */
76 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
78 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
79 module_param(max_cstate, uint, 0000);
80 static unsigned int nocst __read_mostly;
81 module_param(nocst, uint, 0000);
83 #ifndef CONFIG_CPU_IDLE
85 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
86 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
87 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
88 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
89 * reduce history for more aggressive entry into C3
91 static unsigned int bm_history __read_mostly =
92 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
93 module_param(bm_history, uint, 0644);
95 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
100 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
101 * For now disable this. Probably a bug somewhere else.
103 * To skip this limit, boot/load with a large max_cstate limit.
105 static int set_max_cstate(const struct dmi_system_id *id)
107 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
110 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
111 " Override with \"processor.max_cstate=%d\"\n", id->ident,
112 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
114 max_cstate = (long)id->driver_data;
119 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
120 callers to only run once -AK */
121 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
122 { set_max_cstate, "IBM ThinkPad R40e", {
123 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
124 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
125 { set_max_cstate, "IBM ThinkPad R40e", {
126 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
127 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
128 { set_max_cstate, "IBM ThinkPad R40e", {
129 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
130 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
131 { set_max_cstate, "IBM ThinkPad R40e", {
132 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
133 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
134 { set_max_cstate, "IBM ThinkPad R40e", {
135 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
136 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
137 { set_max_cstate, "IBM ThinkPad R40e", {
138 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
139 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
140 { set_max_cstate, "IBM ThinkPad R40e", {
141 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
142 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
143 { set_max_cstate, "IBM ThinkPad R40e", {
144 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
145 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
146 { set_max_cstate, "IBM ThinkPad R40e", {
147 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
148 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
149 { set_max_cstate, "IBM ThinkPad R40e", {
150 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
151 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
152 { set_max_cstate, "IBM ThinkPad R40e", {
153 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
154 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
155 { set_max_cstate, "IBM ThinkPad R40e", {
156 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
157 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
158 { set_max_cstate, "IBM ThinkPad R40e", {
159 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
160 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
161 { set_max_cstate, "IBM ThinkPad R40e", {
162 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
163 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
164 { set_max_cstate, "IBM ThinkPad R40e", {
165 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
166 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
167 { set_max_cstate, "IBM ThinkPad R40e", {
168 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
169 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
170 { set_max_cstate, "Medion 41700", {
171 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
172 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
173 { set_max_cstate, "Clevo 5600D", {
174 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
175 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
180 static inline u32 ticks_elapsed(u32 t1, u32 t2)
184 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
185 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
187 return ((0xFFFFFFFF - t1) + t2);
190 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
193 return PM_TIMER_TICKS_TO_US(t2 - t1);
194 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
195 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
197 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
200 #ifndef CONFIG_CPU_IDLE
203 acpi_processor_power_activate(struct acpi_processor *pr,
204 struct acpi_processor_cx *new)
206 struct acpi_processor_cx *old;
211 old = pr->power.state;
214 old->promotion.count = 0;
215 new->demotion.count = 0;
217 /* Cleanup from old state. */
221 /* Disable bus master reload */
222 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
223 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
228 /* Prepare to use new state. */
231 /* Enable bus master reload */
232 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
233 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
237 pr->power.state = new;
242 static void acpi_safe_halt(void)
244 current_thread_info()->status &= ~TS_POLLING;
246 * TS_POLLING-cleared state must be visible before we
252 current_thread_info()->status |= TS_POLLING;
255 static atomic_t c3_cpu_count;
257 /* Common C-state entry for C2, C3, .. */
258 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
260 if (cstate->space_id == ACPI_CSTATE_FFH) {
261 /* Call into architectural FFH based C-state */
262 acpi_processor_ffh_cstate_enter(cstate);
265 /* IO port based C-state */
266 inb(cstate->address);
267 /* Dummy wait op - must do something useless after P_LVL2 read
268 because chipsets cannot guarantee that STPCLK# signal
269 gets asserted in time to freeze execution properly. */
270 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
273 #endif /* !CONFIG_CPU_IDLE */
275 #ifdef ARCH_APICTIMER_STOPS_ON_C3
278 * Some BIOS implementations switch to C3 in the published C2 state.
279 * This seems to be a common problem on AMD boxen, but other vendors
280 * are affected too. We pick the most conservative approach: we assume
281 * that the local APIC stops in both C2 and C3.
283 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
284 struct acpi_processor_cx *cx)
286 struct acpi_processor_power *pwr = &pr->power;
287 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
290 * Check, if one of the previous states already marked the lapic
293 if (pwr->timer_broadcast_on_state < state)
296 if (cx->type >= type)
297 pr->power.timer_broadcast_on_state = state;
300 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
302 unsigned long reason;
304 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
305 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
307 clockevents_notify(reason, &pr->id);
310 /* Power(C) State timer broadcast control */
311 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
312 struct acpi_processor_cx *cx,
315 int state = cx - pr->power.states;
317 if (state >= pr->power.timer_broadcast_on_state) {
318 unsigned long reason;
320 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
321 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
322 clockevents_notify(reason, &pr->id);
328 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
329 struct acpi_processor_cx *cstate) { }
330 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
331 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
332 struct acpi_processor_cx *cx,
340 * Suspend / resume control
342 static int acpi_idle_suspend;
344 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
346 acpi_idle_suspend = 1;
350 int acpi_processor_resume(struct acpi_device * device)
352 acpi_idle_suspend = 0;
356 #ifndef CONFIG_CPU_IDLE
357 static void acpi_processor_idle(void)
359 struct acpi_processor *pr = NULL;
360 struct acpi_processor_cx *cx = NULL;
361 struct acpi_processor_cx *next_state = NULL;
366 * Interrupts must be disabled during bus mastering calculations and
367 * for C2/C3 transitions.
371 pr = processors[smp_processor_id()];
378 * Check whether we truly need to go idle, or should
381 if (unlikely(need_resched())) {
386 cx = pr->power.state;
387 if (!cx || acpi_idle_suspend) {
398 * Check for bus mastering activity (if required), record, and check
401 if (pr->flags.bm_check) {
403 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
408 pr->power.bm_activity <<= diff;
410 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
412 pr->power.bm_activity |= 0x1;
413 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
416 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
417 * the true state of bus mastering activity; forcing us to
418 * manually check the BMIDEA bit of each IDE channel.
420 else if (errata.piix4.bmisx) {
421 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
422 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
423 pr->power.bm_activity |= 0x1;
426 pr->power.bm_check_timestamp = jiffies;
429 * If bus mastering is or was active this jiffy, demote
430 * to avoid a faulty transition. Note that the processor
431 * won't enter a low-power state during this call (to this
432 * function) but should upon the next.
434 * TBD: A better policy might be to fallback to the demotion
435 * state (use it for this quantum only) istead of
436 * demoting -- and rely on duration as our sole demotion
437 * qualification. This may, however, introduce DMA
438 * issues (e.g. floppy DMA transfer overrun/underrun).
440 if ((pr->power.bm_activity & 0x1) &&
441 cx->demotion.threshold.bm) {
443 next_state = cx->demotion.state;
448 #ifdef CONFIG_HOTPLUG_CPU
450 * Check for P_LVL2_UP flag before entering C2 and above on
451 * an SMP system. We do it here instead of doing it at _CST/P_LVL
452 * detection phase, to work cleanly with logical CPU hotplug.
454 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
455 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
456 cx = &pr->power.states[ACPI_STATE_C1];
462 * Invoke the current Cx state to put the processor to sleep.
464 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
465 current_thread_info()->status &= ~TS_POLLING;
467 * TS_POLLING-cleared state must be visible before we
471 if (need_resched()) {
472 current_thread_info()->status |= TS_POLLING;
483 * Use the appropriate idle routine, the one that would
484 * be used without acpi C-states.
492 * TBD: Can't get time duration while in C1, as resumes
493 * go to an ISR rather than here. Need to instrument
494 * base interrupt handler.
496 * Note: the TSC better not stop in C1, sched_clock() will
499 sleep_ticks = 0xFFFFFFFF;
503 /* Get start time (ticks) */
504 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
505 /* Tell the scheduler that we are going deep-idle: */
506 sched_clock_idle_sleep_event();
508 acpi_state_timer_broadcast(pr, cx, 1);
509 acpi_cstate_enter(cx);
510 /* Get end time (ticks) */
511 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
513 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
514 /* TSC halts in C2, so notify users */
515 mark_tsc_unstable("possible TSC halt in C2");
517 /* Compute time (ticks) that we were actually asleep */
518 sleep_ticks = ticks_elapsed(t1, t2);
520 /* Tell the scheduler how much we idled: */
521 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
523 /* Re-enable interrupts */
525 /* Do not account our idle-switching overhead: */
526 sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
528 current_thread_info()->status |= TS_POLLING;
529 acpi_state_timer_broadcast(pr, cx, 0);
535 * bm_check implies we need ARB_DIS
536 * !bm_check implies we need cache flush
537 * bm_control implies whether we can do ARB_DIS
539 * That leaves a case where bm_check is set and bm_control is
540 * not set. In that case we cannot do much, we enter C3
541 * without doing anything.
543 if (pr->flags.bm_check && pr->flags.bm_control) {
544 if (atomic_inc_return(&c3_cpu_count) ==
547 * All CPUs are trying to go to C3
548 * Disable bus master arbitration
550 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
552 } else if (!pr->flags.bm_check) {
553 /* SMP with no shared cache... Invalidate cache */
554 ACPI_FLUSH_CPU_CACHE();
557 /* Get start time (ticks) */
558 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
560 acpi_state_timer_broadcast(pr, cx, 1);
561 /* Tell the scheduler that we are going deep-idle: */
562 sched_clock_idle_sleep_event();
563 acpi_cstate_enter(cx);
564 /* Get end time (ticks) */
565 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
566 if (pr->flags.bm_check && pr->flags.bm_control) {
567 /* Enable bus master arbitration */
568 atomic_dec(&c3_cpu_count);
569 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
572 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
573 /* TSC halts in C3, so notify users */
574 mark_tsc_unstable("TSC halts in C3");
576 /* Compute time (ticks) that we were actually asleep */
577 sleep_ticks = ticks_elapsed(t1, t2);
578 /* Tell the scheduler how much we idled: */
579 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
581 /* Re-enable interrupts */
583 /* Do not account our idle-switching overhead: */
584 sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
586 current_thread_info()->status |= TS_POLLING;
587 acpi_state_timer_broadcast(pr, cx, 0);
595 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
596 cx->time += sleep_ticks;
598 next_state = pr->power.state;
600 #ifdef CONFIG_HOTPLUG_CPU
601 /* Don't do promotion/demotion */
602 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
603 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
612 * Track the number of longs (time asleep is greater than threshold)
613 * and promote when the count threshold is reached. Note that bus
614 * mastering activity may prevent promotions.
615 * Do not promote above max_cstate.
617 if (cx->promotion.state &&
618 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
619 if (sleep_ticks > cx->promotion.threshold.ticks &&
620 cx->promotion.state->latency <= system_latency_constraint()) {
621 cx->promotion.count++;
622 cx->demotion.count = 0;
623 if (cx->promotion.count >=
624 cx->promotion.threshold.count) {
625 if (pr->flags.bm_check) {
627 (pr->power.bm_activity & cx->
628 promotion.threshold.bm)) {
634 next_state = cx->promotion.state;
644 * Track the number of shorts (time asleep is less than time threshold)
645 * and demote when the usage threshold is reached.
647 if (cx->demotion.state) {
648 if (sleep_ticks < cx->demotion.threshold.ticks) {
649 cx->demotion.count++;
650 cx->promotion.count = 0;
651 if (cx->demotion.count >= cx->demotion.threshold.count) {
652 next_state = cx->demotion.state;
660 * Demote if current state exceeds max_cstate
661 * or if the latency of the current state is unacceptable
663 if ((pr->power.state - pr->power.states) > max_cstate ||
664 pr->power.state->latency > system_latency_constraint()) {
665 if (cx->demotion.state)
666 next_state = cx->demotion.state;
672 * If we're going to start using a new Cx state we must clean up
673 * from the previous and prepare to use the new.
675 if (next_state != pr->power.state)
676 acpi_processor_power_activate(pr, next_state);
679 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
682 unsigned int state_is_set = 0;
683 struct acpi_processor_cx *lower = NULL;
684 struct acpi_processor_cx *higher = NULL;
685 struct acpi_processor_cx *cx;
692 * This function sets the default Cx state policy (OS idle handler).
693 * Our scheme is to promote quickly to C2 but more conservatively
694 * to C3. We're favoring C2 for its characteristics of low latency
695 * (quick response), good power savings, and ability to allow bus
696 * mastering activity. Note that the Cx state policy is completely
697 * customizable and can be altered dynamically.
701 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
702 cx = &pr->power.states[i];
707 pr->power.state = cx;
716 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
717 cx = &pr->power.states[i];
722 cx->demotion.state = lower;
723 cx->demotion.threshold.ticks = cx->latency_ticks;
724 cx->demotion.threshold.count = 1;
725 if (cx->type == ACPI_STATE_C3)
726 cx->demotion.threshold.bm = bm_history;
733 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
734 cx = &pr->power.states[i];
739 cx->promotion.state = higher;
740 cx->promotion.threshold.ticks = cx->latency_ticks;
741 if (cx->type >= ACPI_STATE_C2)
742 cx->promotion.threshold.count = 4;
744 cx->promotion.threshold.count = 10;
745 if (higher->type == ACPI_STATE_C3)
746 cx->promotion.threshold.bm = bm_history;
754 #endif /* !CONFIG_CPU_IDLE */
756 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
765 /* if info is obtained from pblk/fadt, type equals state */
766 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
767 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
769 #ifndef CONFIG_HOTPLUG_CPU
771 * Check for P_LVL2_UP flag before entering C2 and above on
774 if ((num_online_cpus() > 1) &&
775 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
779 /* determine C2 and C3 address from pblk */
780 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
781 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
783 /* determine latencies from FADT */
784 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
785 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
787 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
788 "lvl2[0x%08x] lvl3[0x%08x]\n",
789 pr->power.states[ACPI_STATE_C2].address,
790 pr->power.states[ACPI_STATE_C3].address));
795 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
797 if (!pr->power.states[ACPI_STATE_C1].valid) {
798 /* set the first C-State to C1 */
799 /* all processors need to support C1 */
800 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
801 pr->power.states[ACPI_STATE_C1].valid = 1;
803 /* the C0 state only exists as a filler in our array */
804 pr->power.states[ACPI_STATE_C0].valid = 1;
808 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
810 acpi_status status = 0;
814 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
815 union acpi_object *cst;
823 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
824 if (ACPI_FAILURE(status)) {
825 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
829 cst = buffer.pointer;
831 /* There must be at least 2 elements */
832 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
833 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
838 count = cst->package.elements[0].integer.value;
840 /* Validate number of power states. */
841 if (count < 1 || count != cst->package.count - 1) {
842 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
847 /* Tell driver that at least _CST is supported. */
848 pr->flags.has_cst = 1;
850 for (i = 1; i <= count; i++) {
851 union acpi_object *element;
852 union acpi_object *obj;
853 struct acpi_power_register *reg;
854 struct acpi_processor_cx cx;
856 memset(&cx, 0, sizeof(cx));
858 element = &(cst->package.elements[i]);
859 if (element->type != ACPI_TYPE_PACKAGE)
862 if (element->package.count != 4)
865 obj = &(element->package.elements[0]);
867 if (obj->type != ACPI_TYPE_BUFFER)
870 reg = (struct acpi_power_register *)obj->buffer.pointer;
872 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
873 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
876 /* There should be an easy way to extract an integer... */
877 obj = &(element->package.elements[1]);
878 if (obj->type != ACPI_TYPE_INTEGER)
881 cx.type = obj->integer.value;
883 * Some buggy BIOSes won't list C1 in _CST -
884 * Let acpi_processor_get_power_info_default() handle them later
886 if (i == 1 && cx.type != ACPI_STATE_C1)
889 cx.address = reg->address;
890 cx.index = current_count + 1;
892 cx.space_id = ACPI_CSTATE_SYSTEMIO;
893 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
894 if (acpi_processor_ffh_cstate_probe
895 (pr->id, &cx, reg) == 0) {
896 cx.space_id = ACPI_CSTATE_FFH;
897 } else if (cx.type != ACPI_STATE_C1) {
899 * C1 is a special case where FIXED_HARDWARE
900 * can be handled in non-MWAIT way as well.
901 * In that case, save this _CST entry info.
902 * That is, we retain space_id of SYSTEM_IO for
904 * Otherwise, ignore this info and continue.
910 obj = &(element->package.elements[2]);
911 if (obj->type != ACPI_TYPE_INTEGER)
914 cx.latency = obj->integer.value;
916 obj = &(element->package.elements[3]);
917 if (obj->type != ACPI_TYPE_INTEGER)
920 cx.power = obj->integer.value;
923 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
926 * We support total ACPI_PROCESSOR_MAX_POWER - 1
927 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
929 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
931 "Limiting number of power states to max (%d)\n",
932 ACPI_PROCESSOR_MAX_POWER);
934 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
939 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
942 /* Validate number of power states discovered */
943 if (current_count < 2)
947 kfree(buffer.pointer);
952 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
959 * C2 latency must be less than or equal to 100
962 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
963 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
964 "latency too large [%d]\n", cx->latency));
969 * Otherwise we've met all of our C2 requirements.
970 * Normalize the C2 latency to expidite policy
974 #ifndef CONFIG_CPU_IDLE
975 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
977 cx->latency_ticks = cx->latency;
983 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
984 struct acpi_processor_cx *cx)
986 static int bm_check_flag;
993 * C3 latency must be less than or equal to 1000
996 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
997 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
998 "latency too large [%d]\n", cx->latency));
1003 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1004 * DMA transfers are used by any ISA device to avoid livelock.
1005 * Note that we could disable Type-F DMA (as recommended by
1006 * the erratum), but this is known to disrupt certain ISA
1007 * devices thus we take the conservative approach.
1009 else if (errata.piix4.fdma) {
1010 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1011 "C3 not supported on PIIX4 with Type-F DMA\n"));
1015 /* All the logic here assumes flags.bm_check is same across all CPUs */
1016 if (!bm_check_flag) {
1017 /* Determine whether bm_check is needed based on CPU */
1018 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1019 bm_check_flag = pr->flags.bm_check;
1021 pr->flags.bm_check = bm_check_flag;
1024 if (pr->flags.bm_check) {
1025 if (!pr->flags.bm_control) {
1026 if (pr->flags.has_cst != 1) {
1027 /* bus mastering control is necessary */
1028 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1029 "C3 support requires BM control\n"));
1032 /* Here we enter C3 without bus mastering */
1033 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1034 "C3 support without BM control\n"));
1039 * WBINVD should be set in fadt, for C3 state to be
1040 * supported on when bm_check is not required.
1042 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1043 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1044 "Cache invalidation should work properly"
1045 " for C3 to be enabled on SMP systems\n"));
1048 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1052 * Otherwise we've met all of our C3 requirements.
1053 * Normalize the C3 latency to expidite policy. Enable
1054 * checking of bus mastering status (bm_check) so we can
1055 * use this in our C3 policy
1059 #ifndef CONFIG_CPU_IDLE
1060 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1062 cx->latency_ticks = cx->latency;
1068 static int acpi_processor_power_verify(struct acpi_processor *pr)
1071 unsigned int working = 0;
1073 pr->power.timer_broadcast_on_state = INT_MAX;
1075 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1076 struct acpi_processor_cx *cx = &pr->power.states[i];
1084 acpi_processor_power_verify_c2(cx);
1086 acpi_timer_check_state(i, pr, cx);
1090 acpi_processor_power_verify_c3(pr, cx);
1092 acpi_timer_check_state(i, pr, cx);
1100 acpi_propagate_timer_broadcast(pr);
1105 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1111 /* NOTE: the idle thread may not be running while calling
1114 /* Zero initialize all the C-states info. */
1115 memset(pr->power.states, 0, sizeof(pr->power.states));
1117 result = acpi_processor_get_power_info_cst(pr);
1118 if (result == -ENODEV)
1119 result = acpi_processor_get_power_info_fadt(pr);
1124 acpi_processor_get_power_info_default(pr);
1126 pr->power.count = acpi_processor_power_verify(pr);
1128 #ifndef CONFIG_CPU_IDLE
1130 * Set Default Policy
1131 * ------------------
1132 * Now that we know which states are supported, set the default
1133 * policy. Note that this policy can be changed dynamically
1134 * (e.g. encourage deeper sleeps to conserve battery life when
1137 result = acpi_processor_set_power_policy(pr);
1143 * if one state of type C2 or C3 is available, mark this
1144 * CPU as being "idle manageable"
1146 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1147 if (pr->power.states[i].valid) {
1148 pr->power.count = i;
1149 if (pr->power.states[i].type >= ACPI_STATE_C2)
1150 pr->flags.power = 1;
1157 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1159 struct acpi_processor *pr = seq->private;
1166 seq_printf(seq, "active state: C%zd\n"
1168 "bus master activity: %08x\n"
1169 "maximum allowed latency: %d usec\n",
1170 pr->power.state ? pr->power.state - pr->power.states : 0,
1171 max_cstate, (unsigned)pr->power.bm_activity,
1172 system_latency_constraint());
1174 seq_puts(seq, "states:\n");
1176 for (i = 1; i <= pr->power.count; i++) {
1177 seq_printf(seq, " %cC%d: ",
1178 (&pr->power.states[i] ==
1179 pr->power.state ? '*' : ' '), i);
1181 if (!pr->power.states[i].valid) {
1182 seq_puts(seq, "<not supported>\n");
1186 switch (pr->power.states[i].type) {
1188 seq_printf(seq, "type[C1] ");
1191 seq_printf(seq, "type[C2] ");
1194 seq_printf(seq, "type[C3] ");
1197 seq_printf(seq, "type[--] ");
1201 if (pr->power.states[i].promotion.state)
1202 seq_printf(seq, "promotion[C%zd] ",
1203 (pr->power.states[i].promotion.state -
1206 seq_puts(seq, "promotion[--] ");
1208 if (pr->power.states[i].demotion.state)
1209 seq_printf(seq, "demotion[C%zd] ",
1210 (pr->power.states[i].demotion.state -
1213 seq_puts(seq, "demotion[--] ");
1215 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1216 pr->power.states[i].latency,
1217 pr->power.states[i].usage,
1218 (unsigned long long)pr->power.states[i].time);
1225 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1227 return single_open(file, acpi_processor_power_seq_show,
1231 static const struct file_operations acpi_processor_power_fops = {
1232 .open = acpi_processor_power_open_fs,
1234 .llseek = seq_lseek,
1235 .release = single_release,
1238 #ifndef CONFIG_CPU_IDLE
1240 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1252 if (!pr->flags.power_setup_done)
1255 /* Fall back to the default idle loop */
1256 pm_idle = pm_idle_save;
1257 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1259 pr->flags.power = 0;
1260 result = acpi_processor_get_power_info(pr);
1261 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1262 pm_idle = acpi_processor_idle;
1268 static void smp_callback(void *v)
1270 /* we already woke the CPU up, nothing more to do */
1274 * This function gets called when a part of the kernel has a new latency
1275 * requirement. This means we need to get all processors out of their C-state,
1276 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1277 * wakes them all right up.
1279 static int acpi_processor_latency_notify(struct notifier_block *b,
1280 unsigned long l, void *v)
1282 smp_call_function(smp_callback, NULL, 0, 1);
1286 static struct notifier_block acpi_processor_latency_notifier = {
1287 .notifier_call = acpi_processor_latency_notify,
1292 #else /* CONFIG_CPU_IDLE */
1295 * acpi_idle_bm_check - checks if bus master activity was detected
1297 static int acpi_idle_bm_check(void)
1301 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1303 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1305 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1306 * the true state of bus mastering activity; forcing us to
1307 * manually check the BMIDEA bit of each IDE channel.
1309 else if (errata.piix4.bmisx) {
1310 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1311 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1318 * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1319 * @pr: the processor
1320 * @target: the new target state
1322 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1323 struct acpi_processor_cx *target)
1325 if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1326 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1327 pr->flags.bm_rld_set = 0;
1330 if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1331 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1332 pr->flags.bm_rld_set = 1;
1337 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1340 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1342 if (cx->space_id == ACPI_CSTATE_FFH) {
1343 /* Call into architectural FFH based C-state */
1344 acpi_processor_ffh_cstate_enter(cx);
1347 /* IO port based C-state */
1349 /* Dummy wait op - must do something useless after P_LVL2 read
1350 because chipsets cannot guarantee that STPCLK# signal
1351 gets asserted in time to freeze execution properly. */
1352 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1357 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1358 * @dev: the target CPU
1359 * @state: the state data
1361 * This is equivalent to the HALT instruction.
1363 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1364 struct cpuidle_state *state)
1366 struct acpi_processor *pr;
1367 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1368 pr = processors[smp_processor_id()];
1373 if (pr->flags.bm_check)
1374 acpi_idle_update_bm_rld(pr, cx);
1376 current_thread_info()->status &= ~TS_POLLING;
1378 * TS_POLLING-cleared state must be visible before we test
1382 if (!need_resched())
1384 current_thread_info()->status |= TS_POLLING;
1392 * acpi_idle_enter_simple - enters an ACPI state without BM handling
1393 * @dev: the target CPU
1394 * @state: the state data
1396 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1397 struct cpuidle_state *state)
1399 struct acpi_processor *pr;
1400 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1402 pr = processors[smp_processor_id()];
1407 if (acpi_idle_suspend)
1408 return(acpi_idle_enter_c1(dev, state));
1410 if (pr->flags.bm_check)
1411 acpi_idle_update_bm_rld(pr, cx);
1413 local_irq_disable();
1414 current_thread_info()->status &= ~TS_POLLING;
1416 * TS_POLLING-cleared state must be visible before we test
1421 if (unlikely(need_resched())) {
1422 current_thread_info()->status |= TS_POLLING;
1427 if (cx->type == ACPI_STATE_C3)
1428 ACPI_FLUSH_CPU_CACHE();
1430 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1431 acpi_state_timer_broadcast(pr, cx, 1);
1432 acpi_idle_do_entry(cx);
1433 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1435 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1436 /* TSC could halt in idle, so notify users */
1437 mark_tsc_unstable("TSC halts in idle");;
1441 current_thread_info()->status |= TS_POLLING;
1445 acpi_state_timer_broadcast(pr, cx, 0);
1446 cx->time += ticks_elapsed(t1, t2);
1447 return ticks_elapsed_in_us(t1, t2);
1450 static int c3_cpu_count;
1451 static DEFINE_SPINLOCK(c3_lock);
1454 * acpi_idle_enter_bm - enters C3 with proper BM handling
1455 * @dev: the target CPU
1456 * @state: the state data
1458 * If BM is detected, the deepest non-C3 idle state is entered instead.
1460 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1461 struct cpuidle_state *state)
1463 struct acpi_processor *pr;
1464 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1466 pr = processors[smp_processor_id()];
1471 if (acpi_idle_suspend)
1472 return(acpi_idle_enter_c1(dev, state));
1474 local_irq_disable();
1475 current_thread_info()->status &= ~TS_POLLING;
1477 * TS_POLLING-cleared state must be visible before we test
1482 if (unlikely(need_resched())) {
1483 current_thread_info()->status |= TS_POLLING;
1489 * Must be done before busmaster disable as we might need to
1492 acpi_state_timer_broadcast(pr, cx, 1);
1494 if (acpi_idle_bm_check()) {
1495 cx = pr->power.bm_state;
1497 acpi_idle_update_bm_rld(pr, cx);
1499 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1500 acpi_idle_do_entry(cx);
1501 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1503 acpi_idle_update_bm_rld(pr, cx);
1505 spin_lock(&c3_lock);
1507 /* Disable bus master arbitration when all CPUs are in C3 */
1508 if (c3_cpu_count == num_online_cpus())
1509 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1510 spin_unlock(&c3_lock);
1512 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1513 acpi_idle_do_entry(cx);
1514 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1516 spin_lock(&c3_lock);
1517 /* Re-enable bus master arbitration */
1518 if (c3_cpu_count == num_online_cpus())
1519 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1521 spin_unlock(&c3_lock);
1524 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1525 /* TSC could halt in idle, so notify users */
1526 mark_tsc_unstable("TSC halts in idle");
1530 current_thread_info()->status |= TS_POLLING;
1534 acpi_state_timer_broadcast(pr, cx, 0);
1535 cx->time += ticks_elapsed(t1, t2);
1536 return ticks_elapsed_in_us(t1, t2);
1539 struct cpuidle_driver acpi_idle_driver = {
1540 .name = "acpi_idle",
1541 .owner = THIS_MODULE,
1545 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1546 * @pr: the ACPI processor
1548 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1551 struct acpi_processor_cx *cx;
1552 struct cpuidle_state *state;
1553 struct cpuidle_device *dev = &pr->power.dev;
1555 if (!pr->flags.power_setup_done)
1558 if (pr->flags.power == 0) {
1562 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1563 cx = &pr->power.states[i];
1564 state = &dev->states[count];
1569 #ifdef CONFIG_HOTPLUG_CPU
1570 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1571 !pr->flags.has_cst &&
1572 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1575 cpuidle_set_statedata(state, cx);
1577 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1578 state->exit_latency = cx->latency;
1579 state->target_residency = cx->latency * 6;
1580 state->power_usage = cx->power;
1585 state->flags |= CPUIDLE_FLAG_SHALLOW;
1586 state->enter = acpi_idle_enter_c1;
1590 state->flags |= CPUIDLE_FLAG_BALANCED;
1591 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1592 state->enter = acpi_idle_enter_simple;
1596 state->flags |= CPUIDLE_FLAG_DEEP;
1597 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1598 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1599 state->enter = pr->flags.bm_check ?
1600 acpi_idle_enter_bm :
1601 acpi_idle_enter_simple;
1608 dev->state_count = count;
1613 /* find the deepest state that can handle active BM */
1614 if (pr->flags.bm_check) {
1615 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++)
1616 if (pr->power.states[i].type == ACPI_STATE_C3)
1618 pr->power.bm_state = &pr->power.states[i-1];
1624 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1635 if (!pr->flags.power_setup_done)
1638 cpuidle_pause_and_lock();
1639 cpuidle_disable_device(&pr->power.dev);
1640 acpi_processor_get_power_info(pr);
1641 acpi_processor_setup_cpuidle(pr);
1642 ret = cpuidle_enable_device(&pr->power.dev);
1643 cpuidle_resume_and_unlock();
1648 #endif /* CONFIG_CPU_IDLE */
1650 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1651 struct acpi_device *device)
1653 acpi_status status = 0;
1654 static int first_run;
1655 struct proc_dir_entry *entry = NULL;
1660 dmi_check_system(processor_power_dmi_table);
1661 if (max_cstate < ACPI_C_STATES_MAX)
1663 "ACPI: processor limited to max C-state %d\n",
1666 #if !defined (CONFIG_CPU_IDLE) && defined (CONFIG_SMP)
1667 register_latency_notifier(&acpi_processor_latency_notifier);
1674 if (acpi_gbl_FADT.cst_control && !nocst) {
1676 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1677 if (ACPI_FAILURE(status)) {
1678 ACPI_EXCEPTION((AE_INFO, status,
1679 "Notifying BIOS of _CST ability failed"));
1683 acpi_processor_get_power_info(pr);
1684 pr->flags.power_setup_done = 1;
1687 * Install the idle handler if processor power management is supported.
1688 * Note that we use previously set idle handler will be used on
1689 * platforms that only support C1.
1691 if ((pr->flags.power) && (!boot_option_idle_override)) {
1692 #ifdef CONFIG_CPU_IDLE
1693 acpi_processor_setup_cpuidle(pr);
1694 pr->power.dev.cpu = pr->id;
1695 if (cpuidle_register_device(&pr->power.dev))
1699 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1700 for (i = 1; i <= pr->power.count; i++)
1701 if (pr->power.states[i].valid)
1702 printk(" C%d[C%d]", i,
1703 pr->power.states[i].type);
1706 #ifndef CONFIG_CPU_IDLE
1708 pm_idle_save = pm_idle;
1709 pm_idle = acpi_processor_idle;
1715 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1716 S_IRUGO, acpi_device_dir(device));
1720 entry->proc_fops = &acpi_processor_power_fops;
1721 entry->data = acpi_driver_data(device);
1722 entry->owner = THIS_MODULE;
1728 int acpi_processor_power_exit(struct acpi_processor *pr,
1729 struct acpi_device *device)
1731 #ifdef CONFIG_CPU_IDLE
1732 if ((pr->flags.power) && (!boot_option_idle_override))
1733 cpuidle_unregister_device(&pr->power.dev);
1735 pr->flags.power_setup_done = 0;
1737 if (acpi_device_dir(device))
1738 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1739 acpi_device_dir(device));
1741 #ifndef CONFIG_CPU_IDLE
1743 /* Unregister the idle handler when processor #0 is removed. */
1745 pm_idle = pm_idle_save;
1748 * We are about to unload the current idle thread pm callback
1749 * (pm_idle), Wait for all processors to update cached/local
1750 * copies of pm_idle before proceeding.
1754 unregister_latency_notifier(&acpi_processor_latency_notifier);