Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[linux-2.6] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "ref-cache.h"
29 #include "tree-log.h"
30
31 #define BTRFS_ROOT_TRANS_TAG 0
32
33 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 {
35         WARN_ON(transaction->use_count == 0);
36         transaction->use_count--;
37         if (transaction->use_count == 0) {
38                 list_del_init(&transaction->list);
39                 memset(transaction, 0, sizeof(*transaction));
40                 kmem_cache_free(btrfs_transaction_cachep, transaction);
41         }
42 }
43
44 /*
45  * either allocate a new transaction or hop into the existing one
46  */
47 static noinline int join_transaction(struct btrfs_root *root)
48 {
49         struct btrfs_transaction *cur_trans;
50         cur_trans = root->fs_info->running_transaction;
51         if (!cur_trans) {
52                 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
53                                              GFP_NOFS);
54                 BUG_ON(!cur_trans);
55                 root->fs_info->generation++;
56                 root->fs_info->last_alloc = 0;
57                 root->fs_info->last_data_alloc = 0;
58                 cur_trans->num_writers = 1;
59                 cur_trans->num_joined = 0;
60                 cur_trans->transid = root->fs_info->generation;
61                 init_waitqueue_head(&cur_trans->writer_wait);
62                 init_waitqueue_head(&cur_trans->commit_wait);
63                 cur_trans->in_commit = 0;
64                 cur_trans->blocked = 0;
65                 cur_trans->use_count = 1;
66                 cur_trans->commit_done = 0;
67                 cur_trans->start_time = get_seconds();
68                 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
69                 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
70                 extent_io_tree_init(&cur_trans->dirty_pages,
71                                      root->fs_info->btree_inode->i_mapping,
72                                      GFP_NOFS);
73                 spin_lock(&root->fs_info->new_trans_lock);
74                 root->fs_info->running_transaction = cur_trans;
75                 spin_unlock(&root->fs_info->new_trans_lock);
76         } else {
77                 cur_trans->num_writers++;
78                 cur_trans->num_joined++;
79         }
80
81         return 0;
82 }
83
84 /*
85  * this does all the record keeping required to make sure that a reference
86  * counted root is properly recorded in a given transaction.  This is required
87  * to make sure the old root from before we joined the transaction is deleted
88  * when the transaction commits
89  */
90 noinline int btrfs_record_root_in_trans(struct btrfs_root *root)
91 {
92         struct btrfs_dirty_root *dirty;
93         u64 running_trans_id = root->fs_info->running_transaction->transid;
94         if (root->ref_cows && root->last_trans < running_trans_id) {
95                 WARN_ON(root == root->fs_info->extent_root);
96                 if (root->root_item.refs != 0) {
97                         radix_tree_tag_set(&root->fs_info->fs_roots_radix,
98                                    (unsigned long)root->root_key.objectid,
99                                    BTRFS_ROOT_TRANS_TAG);
100
101                         dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
102                         BUG_ON(!dirty);
103                         dirty->root = kmalloc(sizeof(*dirty->root), GFP_NOFS);
104                         BUG_ON(!dirty->root);
105                         dirty->latest_root = root;
106                         INIT_LIST_HEAD(&dirty->list);
107
108                         root->commit_root = btrfs_root_node(root);
109
110                         memcpy(dirty->root, root, sizeof(*root));
111                         spin_lock_init(&dirty->root->node_lock);
112                         spin_lock_init(&dirty->root->list_lock);
113                         mutex_init(&dirty->root->objectid_mutex);
114                         mutex_init(&dirty->root->log_mutex);
115                         INIT_LIST_HEAD(&dirty->root->dead_list);
116                         dirty->root->node = root->commit_root;
117                         dirty->root->commit_root = NULL;
118
119                         spin_lock(&root->list_lock);
120                         list_add(&dirty->root->dead_list, &root->dead_list);
121                         spin_unlock(&root->list_lock);
122
123                         root->dirty_root = dirty;
124                 } else {
125                         WARN_ON(1);
126                 }
127                 root->last_trans = running_trans_id;
128         }
129         return 0;
130 }
131
132 /* wait for commit against the current transaction to become unblocked
133  * when this is done, it is safe to start a new transaction, but the current
134  * transaction might not be fully on disk.
135  */
136 static void wait_current_trans(struct btrfs_root *root)
137 {
138         struct btrfs_transaction *cur_trans;
139
140         cur_trans = root->fs_info->running_transaction;
141         if (cur_trans && cur_trans->blocked) {
142                 DEFINE_WAIT(wait);
143                 cur_trans->use_count++;
144                 while (1) {
145                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
146                                         TASK_UNINTERRUPTIBLE);
147                         if (cur_trans->blocked) {
148                                 mutex_unlock(&root->fs_info->trans_mutex);
149                                 schedule();
150                                 mutex_lock(&root->fs_info->trans_mutex);
151                                 finish_wait(&root->fs_info->transaction_wait,
152                                             &wait);
153                         } else {
154                                 finish_wait(&root->fs_info->transaction_wait,
155                                             &wait);
156                                 break;
157                         }
158                 }
159                 put_transaction(cur_trans);
160         }
161 }
162
163 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
164                                              int num_blocks, int wait)
165 {
166         struct btrfs_trans_handle *h =
167                 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
168         int ret;
169
170         mutex_lock(&root->fs_info->trans_mutex);
171         if (!root->fs_info->log_root_recovering &&
172             ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
173                 wait_current_trans(root);
174         ret = join_transaction(root);
175         BUG_ON(ret);
176
177         btrfs_record_root_in_trans(root);
178         h->transid = root->fs_info->running_transaction->transid;
179         h->transaction = root->fs_info->running_transaction;
180         h->blocks_reserved = num_blocks;
181         h->blocks_used = 0;
182         h->block_group = 0;
183         h->alloc_exclude_nr = 0;
184         h->alloc_exclude_start = 0;
185         root->fs_info->running_transaction->use_count++;
186         mutex_unlock(&root->fs_info->trans_mutex);
187         return h;
188 }
189
190 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
191                                                    int num_blocks)
192 {
193         return start_transaction(root, num_blocks, 1);
194 }
195 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
196                                                    int num_blocks)
197 {
198         return start_transaction(root, num_blocks, 0);
199 }
200
201 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
202                                                          int num_blocks)
203 {
204         return start_transaction(r, num_blocks, 2);
205 }
206
207 /* wait for a transaction commit to be fully complete */
208 static noinline int wait_for_commit(struct btrfs_root *root,
209                                     struct btrfs_transaction *commit)
210 {
211         DEFINE_WAIT(wait);
212         mutex_lock(&root->fs_info->trans_mutex);
213         while (!commit->commit_done) {
214                 prepare_to_wait(&commit->commit_wait, &wait,
215                                 TASK_UNINTERRUPTIBLE);
216                 if (commit->commit_done)
217                         break;
218                 mutex_unlock(&root->fs_info->trans_mutex);
219                 schedule();
220                 mutex_lock(&root->fs_info->trans_mutex);
221         }
222         mutex_unlock(&root->fs_info->trans_mutex);
223         finish_wait(&commit->commit_wait, &wait);
224         return 0;
225 }
226
227 /*
228  * rate limit against the drop_snapshot code.  This helps to slow down new
229  * operations if the drop_snapshot code isn't able to keep up.
230  */
231 static void throttle_on_drops(struct btrfs_root *root)
232 {
233         struct btrfs_fs_info *info = root->fs_info;
234         int harder_count = 0;
235
236 harder:
237         if (atomic_read(&info->throttles)) {
238                 DEFINE_WAIT(wait);
239                 int thr;
240                 thr = atomic_read(&info->throttle_gen);
241
242                 do {
243                         prepare_to_wait(&info->transaction_throttle,
244                                         &wait, TASK_UNINTERRUPTIBLE);
245                         if (!atomic_read(&info->throttles)) {
246                                 finish_wait(&info->transaction_throttle, &wait);
247                                 break;
248                         }
249                         schedule();
250                         finish_wait(&info->transaction_throttle, &wait);
251                 } while (thr == atomic_read(&info->throttle_gen));
252                 harder_count++;
253
254                 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
255                     harder_count < 2)
256                         goto harder;
257
258                 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
259                     harder_count < 10)
260                         goto harder;
261
262                 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
263                     harder_count < 20)
264                         goto harder;
265         }
266 }
267
268 void btrfs_throttle(struct btrfs_root *root)
269 {
270         mutex_lock(&root->fs_info->trans_mutex);
271         if (!root->fs_info->open_ioctl_trans)
272                 wait_current_trans(root);
273         mutex_unlock(&root->fs_info->trans_mutex);
274
275         throttle_on_drops(root);
276 }
277
278 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
279                           struct btrfs_root *root, int throttle)
280 {
281         struct btrfs_transaction *cur_trans;
282         struct btrfs_fs_info *info = root->fs_info;
283
284         mutex_lock(&info->trans_mutex);
285         cur_trans = info->running_transaction;
286         WARN_ON(cur_trans != trans->transaction);
287         WARN_ON(cur_trans->num_writers < 1);
288         cur_trans->num_writers--;
289
290         if (waitqueue_active(&cur_trans->writer_wait))
291                 wake_up(&cur_trans->writer_wait);
292         put_transaction(cur_trans);
293         mutex_unlock(&info->trans_mutex);
294         memset(trans, 0, sizeof(*trans));
295         kmem_cache_free(btrfs_trans_handle_cachep, trans);
296
297         if (throttle)
298                 throttle_on_drops(root);
299
300         return 0;
301 }
302
303 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
304                           struct btrfs_root *root)
305 {
306         return __btrfs_end_transaction(trans, root, 0);
307 }
308
309 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
310                                    struct btrfs_root *root)
311 {
312         return __btrfs_end_transaction(trans, root, 1);
313 }
314
315 /*
316  * when btree blocks are allocated, they have some corresponding bits set for
317  * them in one of two extent_io trees.  This is used to make sure all of
318  * those extents are on disk for transaction or log commit
319  */
320 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
321                                         struct extent_io_tree *dirty_pages)
322 {
323         int ret;
324         int err = 0;
325         int werr = 0;
326         struct page *page;
327         struct inode *btree_inode = root->fs_info->btree_inode;
328         u64 start = 0;
329         u64 end;
330         unsigned long index;
331
332         while (1) {
333                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
334                                             EXTENT_DIRTY);
335                 if (ret)
336                         break;
337                 while (start <= end) {
338                         cond_resched();
339
340                         index = start >> PAGE_CACHE_SHIFT;
341                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
342                         page = find_get_page(btree_inode->i_mapping, index);
343                         if (!page)
344                                 continue;
345
346                         btree_lock_page_hook(page);
347                         if (!page->mapping) {
348                                 unlock_page(page);
349                                 page_cache_release(page);
350                                 continue;
351                         }
352
353                         if (PageWriteback(page)) {
354                                 if (PageDirty(page))
355                                         wait_on_page_writeback(page);
356                                 else {
357                                         unlock_page(page);
358                                         page_cache_release(page);
359                                         continue;
360                                 }
361                         }
362                         err = write_one_page(page, 0);
363                         if (err)
364                                 werr = err;
365                         page_cache_release(page);
366                 }
367         }
368         while (1) {
369                 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
370                                             EXTENT_DIRTY);
371                 if (ret)
372                         break;
373
374                 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
375                 while (start <= end) {
376                         index = start >> PAGE_CACHE_SHIFT;
377                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
378                         page = find_get_page(btree_inode->i_mapping, index);
379                         if (!page)
380                                 continue;
381                         if (PageDirty(page)) {
382                                 btree_lock_page_hook(page);
383                                 wait_on_page_writeback(page);
384                                 err = write_one_page(page, 0);
385                                 if (err)
386                                         werr = err;
387                         }
388                         wait_on_page_writeback(page);
389                         page_cache_release(page);
390                         cond_resched();
391                 }
392         }
393         if (err)
394                 werr = err;
395         return werr;
396 }
397
398 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
399                                      struct btrfs_root *root)
400 {
401         if (!trans || !trans->transaction) {
402                 struct inode *btree_inode;
403                 btree_inode = root->fs_info->btree_inode;
404                 return filemap_write_and_wait(btree_inode->i_mapping);
405         }
406         return btrfs_write_and_wait_marked_extents(root,
407                                            &trans->transaction->dirty_pages);
408 }
409
410 /*
411  * this is used to update the root pointer in the tree of tree roots.
412  *
413  * But, in the case of the extent allocation tree, updating the root
414  * pointer may allocate blocks which may change the root of the extent
415  * allocation tree.
416  *
417  * So, this loops and repeats and makes sure the cowonly root didn't
418  * change while the root pointer was being updated in the metadata.
419  */
420 static int update_cowonly_root(struct btrfs_trans_handle *trans,
421                                struct btrfs_root *root)
422 {
423         int ret;
424         u64 old_root_bytenr;
425         struct btrfs_root *tree_root = root->fs_info->tree_root;
426
427         btrfs_extent_post_op(trans, root);
428         btrfs_write_dirty_block_groups(trans, root);
429         btrfs_extent_post_op(trans, root);
430
431         while (1) {
432                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
433                 if (old_root_bytenr == root->node->start)
434                         break;
435                 btrfs_set_root_bytenr(&root->root_item,
436                                        root->node->start);
437                 btrfs_set_root_level(&root->root_item,
438                                      btrfs_header_level(root->node));
439                 btrfs_set_root_generation(&root->root_item, trans->transid);
440
441                 btrfs_extent_post_op(trans, root);
442
443                 ret = btrfs_update_root(trans, tree_root,
444                                         &root->root_key,
445                                         &root->root_item);
446                 BUG_ON(ret);
447                 btrfs_write_dirty_block_groups(trans, root);
448                 btrfs_extent_post_op(trans, root);
449         }
450         return 0;
451 }
452
453 /*
454  * update all the cowonly tree roots on disk
455  */
456 int btrfs_commit_tree_roots(struct btrfs_trans_handle *trans,
457                             struct btrfs_root *root)
458 {
459         struct btrfs_fs_info *fs_info = root->fs_info;
460         struct list_head *next;
461         struct extent_buffer *eb;
462
463         btrfs_extent_post_op(trans, fs_info->tree_root);
464
465         eb = btrfs_lock_root_node(fs_info->tree_root);
466         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb, 0);
467         btrfs_tree_unlock(eb);
468         free_extent_buffer(eb);
469
470         btrfs_extent_post_op(trans, fs_info->tree_root);
471
472         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
473                 next = fs_info->dirty_cowonly_roots.next;
474                 list_del_init(next);
475                 root = list_entry(next, struct btrfs_root, dirty_list);
476
477                 update_cowonly_root(trans, root);
478         }
479         return 0;
480 }
481
482 /*
483  * dead roots are old snapshots that need to be deleted.  This allocates
484  * a dirty root struct and adds it into the list of dead roots that need to
485  * be deleted
486  */
487 int btrfs_add_dead_root(struct btrfs_root *root, struct btrfs_root *latest)
488 {
489         struct btrfs_dirty_root *dirty;
490
491         dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
492         if (!dirty)
493                 return -ENOMEM;
494         dirty->root = root;
495         dirty->latest_root = latest;
496
497         mutex_lock(&root->fs_info->trans_mutex);
498         list_add(&dirty->list, &latest->fs_info->dead_roots);
499         mutex_unlock(&root->fs_info->trans_mutex);
500         return 0;
501 }
502
503 /*
504  * at transaction commit time we need to schedule the old roots for
505  * deletion via btrfs_drop_snapshot.  This runs through all the
506  * reference counted roots that were modified in the current
507  * transaction and puts them into the drop list
508  */
509 static noinline int add_dirty_roots(struct btrfs_trans_handle *trans,
510                                     struct radix_tree_root *radix,
511                                     struct list_head *list)
512 {
513         struct btrfs_dirty_root *dirty;
514         struct btrfs_root *gang[8];
515         struct btrfs_root *root;
516         int i;
517         int ret;
518         int err = 0;
519         u32 refs;
520
521         while (1) {
522                 ret = radix_tree_gang_lookup_tag(radix, (void **)gang, 0,
523                                                  ARRAY_SIZE(gang),
524                                                  BTRFS_ROOT_TRANS_TAG);
525                 if (ret == 0)
526                         break;
527                 for (i = 0; i < ret; i++) {
528                         root = gang[i];
529                         radix_tree_tag_clear(radix,
530                                      (unsigned long)root->root_key.objectid,
531                                      BTRFS_ROOT_TRANS_TAG);
532
533                         BUG_ON(!root->ref_tree);
534                         dirty = root->dirty_root;
535
536                         btrfs_free_log(trans, root);
537                         btrfs_free_reloc_root(trans, root);
538
539                         if (root->commit_root == root->node) {
540                                 WARN_ON(root->node->start !=
541                                         btrfs_root_bytenr(&root->root_item));
542
543                                 free_extent_buffer(root->commit_root);
544                                 root->commit_root = NULL;
545                                 root->dirty_root = NULL;
546
547                                 spin_lock(&root->list_lock);
548                                 list_del_init(&dirty->root->dead_list);
549                                 spin_unlock(&root->list_lock);
550
551                                 kfree(dirty->root);
552                                 kfree(dirty);
553
554                                 /* make sure to update the root on disk
555                                  * so we get any updates to the block used
556                                  * counts
557                                  */
558                                 err = btrfs_update_root(trans,
559                                                 root->fs_info->tree_root,
560                                                 &root->root_key,
561                                                 &root->root_item);
562                                 continue;
563                         }
564
565                         memset(&root->root_item.drop_progress, 0,
566                                sizeof(struct btrfs_disk_key));
567                         root->root_item.drop_level = 0;
568                         root->commit_root = NULL;
569                         root->dirty_root = NULL;
570                         root->root_key.offset = root->fs_info->generation;
571                         btrfs_set_root_bytenr(&root->root_item,
572                                               root->node->start);
573                         btrfs_set_root_level(&root->root_item,
574                                              btrfs_header_level(root->node));
575                         btrfs_set_root_generation(&root->root_item,
576                                                   root->root_key.offset);
577
578                         err = btrfs_insert_root(trans, root->fs_info->tree_root,
579                                                 &root->root_key,
580                                                 &root->root_item);
581                         if (err)
582                                 break;
583
584                         refs = btrfs_root_refs(&dirty->root->root_item);
585                         btrfs_set_root_refs(&dirty->root->root_item, refs - 1);
586                         err = btrfs_update_root(trans, root->fs_info->tree_root,
587                                                 &dirty->root->root_key,
588                                                 &dirty->root->root_item);
589
590                         BUG_ON(err);
591                         if (refs == 1) {
592                                 list_add(&dirty->list, list);
593                         } else {
594                                 WARN_ON(1);
595                                 free_extent_buffer(dirty->root->node);
596                                 kfree(dirty->root);
597                                 kfree(dirty);
598                         }
599                 }
600         }
601         return err;
602 }
603
604 /*
605  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
606  * otherwise every leaf in the btree is read and defragged.
607  */
608 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
609 {
610         struct btrfs_fs_info *info = root->fs_info;
611         int ret;
612         struct btrfs_trans_handle *trans;
613         unsigned long nr;
614
615         smp_mb();
616         if (root->defrag_running)
617                 return 0;
618         trans = btrfs_start_transaction(root, 1);
619         while (1) {
620                 root->defrag_running = 1;
621                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
622                 nr = trans->blocks_used;
623                 btrfs_end_transaction(trans, root);
624                 btrfs_btree_balance_dirty(info->tree_root, nr);
625                 cond_resched();
626
627                 trans = btrfs_start_transaction(root, 1);
628                 if (root->fs_info->closing || ret != -EAGAIN)
629                         break;
630         }
631         root->defrag_running = 0;
632         smp_mb();
633         btrfs_end_transaction(trans, root);
634         return 0;
635 }
636
637 /*
638  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
639  * all of them
640  */
641 static noinline int drop_dirty_roots(struct btrfs_root *tree_root,
642                                      struct list_head *list)
643 {
644         struct btrfs_dirty_root *dirty;
645         struct btrfs_trans_handle *trans;
646         unsigned long nr;
647         u64 num_bytes;
648         u64 bytes_used;
649         u64 max_useless;
650         int ret = 0;
651         int err;
652
653         while (!list_empty(list)) {
654                 struct btrfs_root *root;
655
656                 dirty = list_entry(list->prev, struct btrfs_dirty_root, list);
657                 list_del_init(&dirty->list);
658
659                 num_bytes = btrfs_root_used(&dirty->root->root_item);
660                 root = dirty->latest_root;
661                 atomic_inc(&root->fs_info->throttles);
662
663                 while (1) {
664                         trans = btrfs_start_transaction(tree_root, 1);
665                         mutex_lock(&root->fs_info->drop_mutex);
666                         ret = btrfs_drop_snapshot(trans, dirty->root);
667                         if (ret != -EAGAIN)
668                                 break;
669                         mutex_unlock(&root->fs_info->drop_mutex);
670
671                         err = btrfs_update_root(trans,
672                                         tree_root,
673                                         &dirty->root->root_key,
674                                         &dirty->root->root_item);
675                         if (err)
676                                 ret = err;
677                         nr = trans->blocks_used;
678                         ret = btrfs_end_transaction(trans, tree_root);
679                         BUG_ON(ret);
680
681                         btrfs_btree_balance_dirty(tree_root, nr);
682                         cond_resched();
683                 }
684                 BUG_ON(ret);
685                 atomic_dec(&root->fs_info->throttles);
686                 wake_up(&root->fs_info->transaction_throttle);
687
688                 num_bytes -= btrfs_root_used(&dirty->root->root_item);
689                 bytes_used = btrfs_root_used(&root->root_item);
690                 if (num_bytes) {
691                         mutex_lock(&root->fs_info->trans_mutex);
692                         btrfs_record_root_in_trans(root);
693                         mutex_unlock(&root->fs_info->trans_mutex);
694                         btrfs_set_root_used(&root->root_item,
695                                             bytes_used - num_bytes);
696                 }
697
698                 ret = btrfs_del_root(trans, tree_root, &dirty->root->root_key);
699                 if (ret) {
700                         BUG();
701                         break;
702                 }
703                 mutex_unlock(&root->fs_info->drop_mutex);
704
705                 spin_lock(&root->list_lock);
706                 list_del_init(&dirty->root->dead_list);
707                 if (!list_empty(&root->dead_list)) {
708                         struct btrfs_root *oldest;
709                         oldest = list_entry(root->dead_list.prev,
710                                             struct btrfs_root, dead_list);
711                         max_useless = oldest->root_key.offset - 1;
712                 } else {
713                         max_useless = root->root_key.offset - 1;
714                 }
715                 spin_unlock(&root->list_lock);
716
717                 nr = trans->blocks_used;
718                 ret = btrfs_end_transaction(trans, tree_root);
719                 BUG_ON(ret);
720
721                 ret = btrfs_remove_leaf_refs(root, max_useless, 0);
722                 BUG_ON(ret);
723
724                 free_extent_buffer(dirty->root->node);
725                 kfree(dirty->root);
726                 kfree(dirty);
727
728                 btrfs_btree_balance_dirty(tree_root, nr);
729                 cond_resched();
730         }
731         return ret;
732 }
733
734 /*
735  * new snapshots need to be created at a very specific time in the
736  * transaction commit.  This does the actual creation
737  */
738 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
739                                    struct btrfs_fs_info *fs_info,
740                                    struct btrfs_pending_snapshot *pending)
741 {
742         struct btrfs_key key;
743         struct btrfs_root_item *new_root_item;
744         struct btrfs_root *tree_root = fs_info->tree_root;
745         struct btrfs_root *root = pending->root;
746         struct extent_buffer *tmp;
747         struct extent_buffer *old;
748         int ret;
749         u64 objectid;
750
751         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
752         if (!new_root_item) {
753                 ret = -ENOMEM;
754                 goto fail;
755         }
756         ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
757         if (ret)
758                 goto fail;
759
760         btrfs_record_root_in_trans(root);
761         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
762         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
763
764         key.objectid = objectid;
765         key.offset = trans->transid;
766         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
767
768         old = btrfs_lock_root_node(root);
769         btrfs_cow_block(trans, root, old, NULL, 0, &old, 0);
770
771         btrfs_copy_root(trans, root, old, &tmp, objectid);
772         btrfs_tree_unlock(old);
773         free_extent_buffer(old);
774
775         btrfs_set_root_bytenr(new_root_item, tmp->start);
776         btrfs_set_root_level(new_root_item, btrfs_header_level(tmp));
777         btrfs_set_root_generation(new_root_item, trans->transid);
778         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
779                                 new_root_item);
780         btrfs_tree_unlock(tmp);
781         free_extent_buffer(tmp);
782         if (ret)
783                 goto fail;
784
785         key.offset = (u64)-1;
786         memcpy(&pending->root_key, &key, sizeof(key));
787 fail:
788         kfree(new_root_item);
789         return ret;
790 }
791
792 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
793                                    struct btrfs_pending_snapshot *pending)
794 {
795         int ret;
796         int namelen;
797         u64 index = 0;
798         struct btrfs_trans_handle *trans;
799         struct inode *parent_inode;
800         struct inode *inode;
801         struct btrfs_root *parent_root;
802
803         parent_inode = pending->dentry->d_parent->d_inode;
804         parent_root = BTRFS_I(parent_inode)->root;
805         trans = btrfs_join_transaction(parent_root, 1);
806
807         /*
808          * insert the directory item
809          */
810         namelen = strlen(pending->name);
811         ret = btrfs_set_inode_index(parent_inode, &index);
812         ret = btrfs_insert_dir_item(trans, parent_root,
813                             pending->name, namelen,
814                             parent_inode->i_ino,
815                             &pending->root_key, BTRFS_FT_DIR, index);
816
817         if (ret)
818                 goto fail;
819
820         btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
821         ret = btrfs_update_inode(trans, parent_root, parent_inode);
822         BUG_ON(ret);
823
824         /* add the backref first */
825         ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
826                                  pending->root_key.objectid,
827                                  BTRFS_ROOT_BACKREF_KEY,
828                                  parent_root->root_key.objectid,
829                                  parent_inode->i_ino, index, pending->name,
830                                  namelen);
831
832         BUG_ON(ret);
833
834         /* now add the forward ref */
835         ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
836                                  parent_root->root_key.objectid,
837                                  BTRFS_ROOT_REF_KEY,
838                                  pending->root_key.objectid,
839                                  parent_inode->i_ino, index, pending->name,
840                                  namelen);
841
842         inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
843         d_instantiate(pending->dentry, inode);
844 fail:
845         btrfs_end_transaction(trans, fs_info->fs_root);
846         return ret;
847 }
848
849 /*
850  * create all the snapshots we've scheduled for creation
851  */
852 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
853                                              struct btrfs_fs_info *fs_info)
854 {
855         struct btrfs_pending_snapshot *pending;
856         struct list_head *head = &trans->transaction->pending_snapshots;
857         int ret;
858
859         list_for_each_entry(pending, head, list) {
860                 ret = create_pending_snapshot(trans, fs_info, pending);
861                 BUG_ON(ret);
862         }
863         return 0;
864 }
865
866 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
867                                              struct btrfs_fs_info *fs_info)
868 {
869         struct btrfs_pending_snapshot *pending;
870         struct list_head *head = &trans->transaction->pending_snapshots;
871         int ret;
872
873         while (!list_empty(head)) {
874                 pending = list_entry(head->next,
875                                      struct btrfs_pending_snapshot, list);
876                 ret = finish_pending_snapshot(fs_info, pending);
877                 BUG_ON(ret);
878                 list_del(&pending->list);
879                 kfree(pending->name);
880                 kfree(pending);
881         }
882         return 0;
883 }
884
885 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
886                              struct btrfs_root *root)
887 {
888         unsigned long joined = 0;
889         unsigned long timeout = 1;
890         struct btrfs_transaction *cur_trans;
891         struct btrfs_transaction *prev_trans = NULL;
892         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
893         struct list_head dirty_fs_roots;
894         struct extent_io_tree *pinned_copy;
895         DEFINE_WAIT(wait);
896         int ret;
897
898         INIT_LIST_HEAD(&dirty_fs_roots);
899         mutex_lock(&root->fs_info->trans_mutex);
900         if (trans->transaction->in_commit) {
901                 cur_trans = trans->transaction;
902                 trans->transaction->use_count++;
903                 mutex_unlock(&root->fs_info->trans_mutex);
904                 btrfs_end_transaction(trans, root);
905
906                 ret = wait_for_commit(root, cur_trans);
907                 BUG_ON(ret);
908
909                 mutex_lock(&root->fs_info->trans_mutex);
910                 put_transaction(cur_trans);
911                 mutex_unlock(&root->fs_info->trans_mutex);
912
913                 return 0;
914         }
915
916         pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS);
917         if (!pinned_copy)
918                 return -ENOMEM;
919
920         extent_io_tree_init(pinned_copy,
921                              root->fs_info->btree_inode->i_mapping, GFP_NOFS);
922
923         trans->transaction->in_commit = 1;
924         trans->transaction->blocked = 1;
925         cur_trans = trans->transaction;
926         if (cur_trans->list.prev != &root->fs_info->trans_list) {
927                 prev_trans = list_entry(cur_trans->list.prev,
928                                         struct btrfs_transaction, list);
929                 if (!prev_trans->commit_done) {
930                         prev_trans->use_count++;
931                         mutex_unlock(&root->fs_info->trans_mutex);
932
933                         wait_for_commit(root, prev_trans);
934
935                         mutex_lock(&root->fs_info->trans_mutex);
936                         put_transaction(prev_trans);
937                 }
938         }
939
940         do {
941                 int snap_pending = 0;
942                 joined = cur_trans->num_joined;
943                 if (!list_empty(&trans->transaction->pending_snapshots))
944                         snap_pending = 1;
945
946                 WARN_ON(cur_trans != trans->transaction);
947                 prepare_to_wait(&cur_trans->writer_wait, &wait,
948                                 TASK_UNINTERRUPTIBLE);
949
950                 if (cur_trans->num_writers > 1)
951                         timeout = MAX_SCHEDULE_TIMEOUT;
952                 else
953                         timeout = 1;
954
955                 mutex_unlock(&root->fs_info->trans_mutex);
956
957                 if (snap_pending) {
958                         ret = btrfs_wait_ordered_extents(root, 1);
959                         BUG_ON(ret);
960                 }
961
962                 schedule_timeout(timeout);
963
964                 mutex_lock(&root->fs_info->trans_mutex);
965                 finish_wait(&cur_trans->writer_wait, &wait);
966         } while (cur_trans->num_writers > 1 ||
967                  (cur_trans->num_joined != joined));
968
969         ret = create_pending_snapshots(trans, root->fs_info);
970         BUG_ON(ret);
971
972         WARN_ON(cur_trans != trans->transaction);
973
974         /* btrfs_commit_tree_roots is responsible for getting the
975          * various roots consistent with each other.  Every pointer
976          * in the tree of tree roots has to point to the most up to date
977          * root for every subvolume and other tree.  So, we have to keep
978          * the tree logging code from jumping in and changing any
979          * of the trees.
980          *
981          * At this point in the commit, there can't be any tree-log
982          * writers, but a little lower down we drop the trans mutex
983          * and let new people in.  By holding the tree_log_mutex
984          * from now until after the super is written, we avoid races
985          * with the tree-log code.
986          */
987         mutex_lock(&root->fs_info->tree_log_mutex);
988         /*
989          * keep tree reloc code from adding new reloc trees
990          */
991         mutex_lock(&root->fs_info->tree_reloc_mutex);
992
993
994         ret = add_dirty_roots(trans, &root->fs_info->fs_roots_radix,
995                               &dirty_fs_roots);
996         BUG_ON(ret);
997
998         /* add_dirty_roots gets rid of all the tree log roots, it is now
999          * safe to free the root of tree log roots
1000          */
1001         btrfs_free_log_root_tree(trans, root->fs_info);
1002
1003         ret = btrfs_commit_tree_roots(trans, root);
1004         BUG_ON(ret);
1005
1006         cur_trans = root->fs_info->running_transaction;
1007         spin_lock(&root->fs_info->new_trans_lock);
1008         root->fs_info->running_transaction = NULL;
1009         spin_unlock(&root->fs_info->new_trans_lock);
1010         btrfs_set_super_generation(&root->fs_info->super_copy,
1011                                    cur_trans->transid);
1012         btrfs_set_super_root(&root->fs_info->super_copy,
1013                              root->fs_info->tree_root->node->start);
1014         btrfs_set_super_root_level(&root->fs_info->super_copy,
1015                            btrfs_header_level(root->fs_info->tree_root->node));
1016
1017         btrfs_set_super_chunk_root(&root->fs_info->super_copy,
1018                                    chunk_root->node->start);
1019         btrfs_set_super_chunk_root_level(&root->fs_info->super_copy,
1020                                          btrfs_header_level(chunk_root->node));
1021         btrfs_set_super_chunk_root_generation(&root->fs_info->super_copy,
1022                                 btrfs_header_generation(chunk_root->node));
1023
1024         if (!root->fs_info->log_root_recovering) {
1025                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1026                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1027         }
1028
1029         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1030                sizeof(root->fs_info->super_copy));
1031
1032         btrfs_copy_pinned(root, pinned_copy);
1033
1034         trans->transaction->blocked = 0;
1035         wake_up(&root->fs_info->transaction_throttle);
1036         wake_up(&root->fs_info->transaction_wait);
1037
1038         mutex_unlock(&root->fs_info->trans_mutex);
1039         ret = btrfs_write_and_wait_transaction(trans, root);
1040         BUG_ON(ret);
1041         write_ctree_super(trans, root, 0);
1042
1043         /*
1044          * the super is written, we can safely allow the tree-loggers
1045          * to go about their business
1046          */
1047         mutex_unlock(&root->fs_info->tree_log_mutex);
1048
1049         btrfs_finish_extent_commit(trans, root, pinned_copy);
1050         kfree(pinned_copy);
1051
1052         btrfs_drop_dead_reloc_roots(root);
1053         mutex_unlock(&root->fs_info->tree_reloc_mutex);
1054
1055         /* do the directory inserts of any pending snapshot creations */
1056         finish_pending_snapshots(trans, root->fs_info);
1057
1058         mutex_lock(&root->fs_info->trans_mutex);
1059
1060         cur_trans->commit_done = 1;
1061         root->fs_info->last_trans_committed = cur_trans->transid;
1062         wake_up(&cur_trans->commit_wait);
1063
1064         put_transaction(cur_trans);
1065         put_transaction(cur_trans);
1066
1067         list_splice_init(&dirty_fs_roots, &root->fs_info->dead_roots);
1068         if (root->fs_info->closing)
1069                 list_splice_init(&root->fs_info->dead_roots, &dirty_fs_roots);
1070
1071         mutex_unlock(&root->fs_info->trans_mutex);
1072
1073         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1074
1075         if (root->fs_info->closing)
1076                 drop_dirty_roots(root->fs_info->tree_root, &dirty_fs_roots);
1077         return ret;
1078 }
1079
1080 /*
1081  * interface function to delete all the snapshots we have scheduled for deletion
1082  */
1083 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1084 {
1085         struct list_head dirty_roots;
1086         INIT_LIST_HEAD(&dirty_roots);
1087 again:
1088         mutex_lock(&root->fs_info->trans_mutex);
1089         list_splice_init(&root->fs_info->dead_roots, &dirty_roots);
1090         mutex_unlock(&root->fs_info->trans_mutex);
1091
1092         if (!list_empty(&dirty_roots)) {
1093                 drop_dirty_roots(root, &dirty_roots);
1094                 goto again;
1095         }
1096         return 0;
1097 }