Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-2.6] / drivers / firewire / fw-ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
32
33 #include <asm/page.h>
34 #include <asm/system.h>
35
36 #include "fw-ohci.h"
37 #include "fw-transaction.h"
38
39 #define DESCRIPTOR_OUTPUT_MORE          0
40 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
41 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
42 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
43 #define DESCRIPTOR_STATUS               (1 << 11)
44 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
45 #define DESCRIPTOR_PING                 (1 << 7)
46 #define DESCRIPTOR_YY                   (1 << 6)
47 #define DESCRIPTOR_NO_IRQ               (0 << 4)
48 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
49 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
50 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
51 #define DESCRIPTOR_WAIT                 (3 << 0)
52
53 struct descriptor {
54         __le16 req_count;
55         __le16 control;
56         __le32 data_address;
57         __le32 branch_address;
58         __le16 res_count;
59         __le16 transfer_status;
60 } __attribute__((aligned(16)));
61
62 struct db_descriptor {
63         __le16 first_size;
64         __le16 control;
65         __le16 second_req_count;
66         __le16 first_req_count;
67         __le32 branch_address;
68         __le16 second_res_count;
69         __le16 first_res_count;
70         __le32 reserved0;
71         __le32 first_buffer;
72         __le32 second_buffer;
73         __le32 reserved1;
74 } __attribute__((aligned(16)));
75
76 #define CONTROL_SET(regs)       (regs)
77 #define CONTROL_CLEAR(regs)     ((regs) + 4)
78 #define COMMAND_PTR(regs)       ((regs) + 12)
79 #define CONTEXT_MATCH(regs)     ((regs) + 16)
80
81 struct ar_buffer {
82         struct descriptor descriptor;
83         struct ar_buffer *next;
84         __le32 data[0];
85 };
86
87 struct ar_context {
88         struct fw_ohci *ohci;
89         struct ar_buffer *current_buffer;
90         struct ar_buffer *last_buffer;
91         void *pointer;
92         u32 regs;
93         struct tasklet_struct tasklet;
94 };
95
96 struct context;
97
98 typedef int (*descriptor_callback_t)(struct context *ctx,
99                                      struct descriptor *d,
100                                      struct descriptor *last);
101 struct context {
102         struct fw_ohci *ohci;
103         u32 regs;
104
105         struct descriptor *buffer;
106         dma_addr_t buffer_bus;
107         size_t buffer_size;
108         struct descriptor *head_descriptor;
109         struct descriptor *tail_descriptor;
110         struct descriptor *tail_descriptor_last;
111         struct descriptor *prev_descriptor;
112
113         descriptor_callback_t callback;
114
115         struct tasklet_struct tasklet;
116 };
117
118 #define IT_HEADER_SY(v)          ((v) <<  0)
119 #define IT_HEADER_TCODE(v)       ((v) <<  4)
120 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
121 #define IT_HEADER_TAG(v)         ((v) << 14)
122 #define IT_HEADER_SPEED(v)       ((v) << 16)
123 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
124
125 struct iso_context {
126         struct fw_iso_context base;
127         struct context context;
128         void *header;
129         size_t header_length;
130 };
131
132 #define CONFIG_ROM_SIZE 1024
133
134 struct fw_ohci {
135         struct fw_card card;
136
137         u32 version;
138         __iomem char *registers;
139         dma_addr_t self_id_bus;
140         __le32 *self_id_cpu;
141         struct tasklet_struct bus_reset_tasklet;
142         int node_id;
143         int generation;
144         int request_generation;
145         u32 bus_seconds;
146
147         /*
148          * Spinlock for accessing fw_ohci data.  Never call out of
149          * this driver with this lock held.
150          */
151         spinlock_t lock;
152         u32 self_id_buffer[512];
153
154         /* Config rom buffers */
155         __be32 *config_rom;
156         dma_addr_t config_rom_bus;
157         __be32 *next_config_rom;
158         dma_addr_t next_config_rom_bus;
159         u32 next_header;
160
161         struct ar_context ar_request_ctx;
162         struct ar_context ar_response_ctx;
163         struct context at_request_ctx;
164         struct context at_response_ctx;
165
166         u32 it_context_mask;
167         struct iso_context *it_context_list;
168         u32 ir_context_mask;
169         struct iso_context *ir_context_list;
170 };
171
172 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
173 {
174         return container_of(card, struct fw_ohci, card);
175 }
176
177 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
178 #define IR_CONTEXT_BUFFER_FILL          0x80000000
179 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
180 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
181 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
182 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
183
184 #define CONTEXT_RUN     0x8000
185 #define CONTEXT_WAKE    0x1000
186 #define CONTEXT_DEAD    0x0800
187 #define CONTEXT_ACTIVE  0x0400
188
189 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
190 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
191 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
192
193 #define FW_OHCI_MAJOR                   240
194 #define OHCI1394_REGISTER_SIZE          0x800
195 #define OHCI_LOOP_COUNT                 500
196 #define OHCI1394_PCI_HCI_Control        0x40
197 #define SELF_ID_BUF_SIZE                0x800
198 #define OHCI_TCODE_PHY_PACKET           0x0e
199 #define OHCI_VERSION_1_1                0x010010
200 #define ISO_BUFFER_SIZE                 (64 * 1024)
201 #define AT_BUFFER_SIZE                  4096
202
203 static char ohci_driver_name[] = KBUILD_MODNAME;
204
205 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
206 {
207         writel(data, ohci->registers + offset);
208 }
209
210 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
211 {
212         return readl(ohci->registers + offset);
213 }
214
215 static inline void flush_writes(const struct fw_ohci *ohci)
216 {
217         /* Do a dummy read to flush writes. */
218         reg_read(ohci, OHCI1394_Version);
219 }
220
221 static int
222 ohci_update_phy_reg(struct fw_card *card, int addr,
223                     int clear_bits, int set_bits)
224 {
225         struct fw_ohci *ohci = fw_ohci(card);
226         u32 val, old;
227
228         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
229         flush_writes(ohci);
230         msleep(2);
231         val = reg_read(ohci, OHCI1394_PhyControl);
232         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
233                 fw_error("failed to set phy reg bits.\n");
234                 return -EBUSY;
235         }
236
237         old = OHCI1394_PhyControl_ReadData(val);
238         old = (old & ~clear_bits) | set_bits;
239         reg_write(ohci, OHCI1394_PhyControl,
240                   OHCI1394_PhyControl_Write(addr, old));
241
242         return 0;
243 }
244
245 static int ar_context_add_page(struct ar_context *ctx)
246 {
247         struct device *dev = ctx->ohci->card.device;
248         struct ar_buffer *ab;
249         dma_addr_t ab_bus;
250         size_t offset;
251
252         ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
253         if (ab == NULL)
254                 return -ENOMEM;
255
256         ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
257         if (dma_mapping_error(ab_bus)) {
258                 free_page((unsigned long) ab);
259                 return -ENOMEM;
260         }
261
262         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
263         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
264                                                     DESCRIPTOR_STATUS |
265                                                     DESCRIPTOR_BRANCH_ALWAYS);
266         offset = offsetof(struct ar_buffer, data);
267         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
268         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
269         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
270         ab->descriptor.branch_address = 0;
271
272         dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
273
274         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
275         ctx->last_buffer->next = ab;
276         ctx->last_buffer = ab;
277
278         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
279         flush_writes(ctx->ohci);
280
281         return 0;
282 }
283
284 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
285 {
286         struct fw_ohci *ohci = ctx->ohci;
287         struct fw_packet p;
288         u32 status, length, tcode;
289
290         p.header[0] = le32_to_cpu(buffer[0]);
291         p.header[1] = le32_to_cpu(buffer[1]);
292         p.header[2] = le32_to_cpu(buffer[2]);
293
294         tcode = (p.header[0] >> 4) & 0x0f;
295         switch (tcode) {
296         case TCODE_WRITE_QUADLET_REQUEST:
297         case TCODE_READ_QUADLET_RESPONSE:
298                 p.header[3] = (__force __u32) buffer[3];
299                 p.header_length = 16;
300                 p.payload_length = 0;
301                 break;
302
303         case TCODE_READ_BLOCK_REQUEST :
304                 p.header[3] = le32_to_cpu(buffer[3]);
305                 p.header_length = 16;
306                 p.payload_length = 0;
307                 break;
308
309         case TCODE_WRITE_BLOCK_REQUEST:
310         case TCODE_READ_BLOCK_RESPONSE:
311         case TCODE_LOCK_REQUEST:
312         case TCODE_LOCK_RESPONSE:
313                 p.header[3] = le32_to_cpu(buffer[3]);
314                 p.header_length = 16;
315                 p.payload_length = p.header[3] >> 16;
316                 break;
317
318         case TCODE_WRITE_RESPONSE:
319         case TCODE_READ_QUADLET_REQUEST:
320         case OHCI_TCODE_PHY_PACKET:
321                 p.header_length = 12;
322                 p.payload_length = 0;
323                 break;
324         }
325
326         p.payload = (void *) buffer + p.header_length;
327
328         /* FIXME: What to do about evt_* errors? */
329         length = (p.header_length + p.payload_length + 3) / 4;
330         status = le32_to_cpu(buffer[length]);
331
332         p.ack        = ((status >> 16) & 0x1f) - 16;
333         p.speed      = (status >> 21) & 0x7;
334         p.timestamp  = status & 0xffff;
335         p.generation = ohci->request_generation;
336
337         /*
338          * The OHCI bus reset handler synthesizes a phy packet with
339          * the new generation number when a bus reset happens (see
340          * section 8.4.2.3).  This helps us determine when a request
341          * was received and make sure we send the response in the same
342          * generation.  We only need this for requests; for responses
343          * we use the unique tlabel for finding the matching
344          * request.
345          */
346
347         if (p.ack + 16 == 0x09)
348                 ohci->request_generation = (buffer[2] >> 16) & 0xff;
349         else if (ctx == &ohci->ar_request_ctx)
350                 fw_core_handle_request(&ohci->card, &p);
351         else
352                 fw_core_handle_response(&ohci->card, &p);
353
354         return buffer + length + 1;
355 }
356
357 static void ar_context_tasklet(unsigned long data)
358 {
359         struct ar_context *ctx = (struct ar_context *)data;
360         struct fw_ohci *ohci = ctx->ohci;
361         struct ar_buffer *ab;
362         struct descriptor *d;
363         void *buffer, *end;
364
365         ab = ctx->current_buffer;
366         d = &ab->descriptor;
367
368         if (d->res_count == 0) {
369                 size_t size, rest, offset;
370
371                 /*
372                  * This descriptor is finished and we may have a
373                  * packet split across this and the next buffer. We
374                  * reuse the page for reassembling the split packet.
375                  */
376
377                 offset = offsetof(struct ar_buffer, data);
378                 dma_unmap_single(ohci->card.device,
379                         le32_to_cpu(ab->descriptor.data_address) - offset,
380                         PAGE_SIZE, DMA_BIDIRECTIONAL);
381
382                 buffer = ab;
383                 ab = ab->next;
384                 d = &ab->descriptor;
385                 size = buffer + PAGE_SIZE - ctx->pointer;
386                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
387                 memmove(buffer, ctx->pointer, size);
388                 memcpy(buffer + size, ab->data, rest);
389                 ctx->current_buffer = ab;
390                 ctx->pointer = (void *) ab->data + rest;
391                 end = buffer + size + rest;
392
393                 while (buffer < end)
394                         buffer = handle_ar_packet(ctx, buffer);
395
396                 free_page((unsigned long)buffer);
397                 ar_context_add_page(ctx);
398         } else {
399                 buffer = ctx->pointer;
400                 ctx->pointer = end =
401                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
402
403                 while (buffer < end)
404                         buffer = handle_ar_packet(ctx, buffer);
405         }
406 }
407
408 static int
409 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
410 {
411         struct ar_buffer ab;
412
413         ctx->regs        = regs;
414         ctx->ohci        = ohci;
415         ctx->last_buffer = &ab;
416         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
417
418         ar_context_add_page(ctx);
419         ar_context_add_page(ctx);
420         ctx->current_buffer = ab.next;
421         ctx->pointer = ctx->current_buffer->data;
422
423         return 0;
424 }
425
426 static void ar_context_run(struct ar_context *ctx)
427 {
428         struct ar_buffer *ab = ctx->current_buffer;
429         dma_addr_t ab_bus;
430         size_t offset;
431
432         offset = offsetof(struct ar_buffer, data);
433         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
434
435         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
436         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
437         flush_writes(ctx->ohci);
438 }
439
440 static void context_tasklet(unsigned long data)
441 {
442         struct context *ctx = (struct context *) data;
443         struct fw_ohci *ohci = ctx->ohci;
444         struct descriptor *d, *last;
445         u32 address;
446         int z;
447
448         dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
449                                 ctx->buffer_size, DMA_TO_DEVICE);
450
451         d    = ctx->tail_descriptor;
452         last = ctx->tail_descriptor_last;
453
454         while (last->branch_address != 0) {
455                 address = le32_to_cpu(last->branch_address);
456                 z = address & 0xf;
457                 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof(*d);
458                 last = (z == 2) ? d : d + z - 1;
459
460                 if (!ctx->callback(ctx, d, last))
461                         break;
462
463                 ctx->tail_descriptor      = d;
464                 ctx->tail_descriptor_last = last;
465         }
466 }
467
468 static int
469 context_init(struct context *ctx, struct fw_ohci *ohci,
470              size_t buffer_size, u32 regs,
471              descriptor_callback_t callback)
472 {
473         ctx->ohci = ohci;
474         ctx->regs = regs;
475         ctx->buffer_size = buffer_size;
476         ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
477         if (ctx->buffer == NULL)
478                 return -ENOMEM;
479
480         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
481         ctx->callback = callback;
482
483         ctx->buffer_bus =
484                 dma_map_single(ohci->card.device, ctx->buffer,
485                                buffer_size, DMA_TO_DEVICE);
486         if (dma_mapping_error(ctx->buffer_bus)) {
487                 kfree(ctx->buffer);
488                 return -ENOMEM;
489         }
490
491         ctx->head_descriptor      = ctx->buffer;
492         ctx->prev_descriptor      = ctx->buffer;
493         ctx->tail_descriptor      = ctx->buffer;
494         ctx->tail_descriptor_last = ctx->buffer;
495
496         /*
497          * We put a dummy descriptor in the buffer that has a NULL
498          * branch address and looks like it's been sent.  That way we
499          * have a descriptor to append DMA programs to.  Also, the
500          * ring buffer invariant is that it always has at least one
501          * element so that head == tail means buffer full.
502          */
503
504         memset(ctx->head_descriptor, 0, sizeof(*ctx->head_descriptor));
505         ctx->head_descriptor->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
506         ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
507         ctx->head_descriptor++;
508
509         return 0;
510 }
511
512 static void
513 context_release(struct context *ctx)
514 {
515         struct fw_card *card = &ctx->ohci->card;
516
517         dma_unmap_single(card->device, ctx->buffer_bus,
518                          ctx->buffer_size, DMA_TO_DEVICE);
519         kfree(ctx->buffer);
520 }
521
522 static struct descriptor *
523 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
524 {
525         struct descriptor *d, *tail, *end;
526
527         d = ctx->head_descriptor;
528         tail = ctx->tail_descriptor;
529         end = ctx->buffer + ctx->buffer_size / sizeof(*d);
530
531         if (d + z <= tail) {
532                 goto has_space;
533         } else if (d > tail && d + z <= end) {
534                 goto has_space;
535         } else if (d > tail && ctx->buffer + z <= tail) {
536                 d = ctx->buffer;
537                 goto has_space;
538         }
539
540         return NULL;
541
542  has_space:
543         memset(d, 0, z * sizeof(*d));
544         *d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
545
546         return d;
547 }
548
549 static void context_run(struct context *ctx, u32 extra)
550 {
551         struct fw_ohci *ohci = ctx->ohci;
552
553         reg_write(ohci, COMMAND_PTR(ctx->regs),
554                   le32_to_cpu(ctx->tail_descriptor_last->branch_address));
555         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
556         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
557         flush_writes(ohci);
558 }
559
560 static void context_append(struct context *ctx,
561                            struct descriptor *d, int z, int extra)
562 {
563         dma_addr_t d_bus;
564
565         d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
566
567         ctx->head_descriptor = d + z + extra;
568         ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
569         ctx->prev_descriptor = z == 2 ? d : d + z - 1;
570
571         dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
572                                    ctx->buffer_size, DMA_TO_DEVICE);
573
574         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
575         flush_writes(ctx->ohci);
576 }
577
578 static void context_stop(struct context *ctx)
579 {
580         u32 reg;
581         int i;
582
583         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
584         flush_writes(ctx->ohci);
585
586         for (i = 0; i < 10; i++) {
587                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
588                 if ((reg & CONTEXT_ACTIVE) == 0)
589                         break;
590
591                 fw_notify("context_stop: still active (0x%08x)\n", reg);
592                 mdelay(1);
593         }
594 }
595
596 struct driver_data {
597         struct fw_packet *packet;
598 };
599
600 /*
601  * This function apppends a packet to the DMA queue for transmission.
602  * Must always be called with the ochi->lock held to ensure proper
603  * generation handling and locking around packet queue manipulation.
604  */
605 static int
606 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
607 {
608         struct fw_ohci *ohci = ctx->ohci;
609         dma_addr_t d_bus, uninitialized_var(payload_bus);
610         struct driver_data *driver_data;
611         struct descriptor *d, *last;
612         __le32 *header;
613         int z, tcode;
614         u32 reg;
615
616         d = context_get_descriptors(ctx, 4, &d_bus);
617         if (d == NULL) {
618                 packet->ack = RCODE_SEND_ERROR;
619                 return -1;
620         }
621
622         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
623         d[0].res_count = cpu_to_le16(packet->timestamp);
624
625         /*
626          * The DMA format for asyncronous link packets is different
627          * from the IEEE1394 layout, so shift the fields around
628          * accordingly.  If header_length is 8, it's a PHY packet, to
629          * which we need to prepend an extra quadlet.
630          */
631
632         header = (__le32 *) &d[1];
633         if (packet->header_length > 8) {
634                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
635                                         (packet->speed << 16));
636                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
637                                         (packet->header[0] & 0xffff0000));
638                 header[2] = cpu_to_le32(packet->header[2]);
639
640                 tcode = (packet->header[0] >> 4) & 0x0f;
641                 if (TCODE_IS_BLOCK_PACKET(tcode))
642                         header[3] = cpu_to_le32(packet->header[3]);
643                 else
644                         header[3] = (__force __le32) packet->header[3];
645
646                 d[0].req_count = cpu_to_le16(packet->header_length);
647         } else {
648                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
649                                         (packet->speed << 16));
650                 header[1] = cpu_to_le32(packet->header[0]);
651                 header[2] = cpu_to_le32(packet->header[1]);
652                 d[0].req_count = cpu_to_le16(12);
653         }
654
655         driver_data = (struct driver_data *) &d[3];
656         driver_data->packet = packet;
657         packet->driver_data = driver_data;
658         
659         if (packet->payload_length > 0) {
660                 payload_bus =
661                         dma_map_single(ohci->card.device, packet->payload,
662                                        packet->payload_length, DMA_TO_DEVICE);
663                 if (dma_mapping_error(payload_bus)) {
664                         packet->ack = RCODE_SEND_ERROR;
665                         return -1;
666                 }
667
668                 d[2].req_count    = cpu_to_le16(packet->payload_length);
669                 d[2].data_address = cpu_to_le32(payload_bus);
670                 last = &d[2];
671                 z = 3;
672         } else {
673                 last = &d[0];
674                 z = 2;
675         }
676
677         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
678                                      DESCRIPTOR_IRQ_ALWAYS |
679                                      DESCRIPTOR_BRANCH_ALWAYS);
680
681         /* FIXME: Document how the locking works. */
682         if (ohci->generation != packet->generation) {
683                 if (packet->payload_length > 0)
684                         dma_unmap_single(ohci->card.device, payload_bus,
685                                          packet->payload_length, DMA_TO_DEVICE);
686                 packet->ack = RCODE_GENERATION;
687                 return -1;
688         }
689
690         context_append(ctx, d, z, 4 - z);
691
692         /* If the context isn't already running, start it up. */
693         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
694         if ((reg & CONTEXT_RUN) == 0)
695                 context_run(ctx, 0);
696
697         return 0;
698 }
699
700 static int handle_at_packet(struct context *context,
701                             struct descriptor *d,
702                             struct descriptor *last)
703 {
704         struct driver_data *driver_data;
705         struct fw_packet *packet;
706         struct fw_ohci *ohci = context->ohci;
707         dma_addr_t payload_bus;
708         int evt;
709
710         if (last->transfer_status == 0)
711                 /* This descriptor isn't done yet, stop iteration. */
712                 return 0;
713
714         driver_data = (struct driver_data *) &d[3];
715         packet = driver_data->packet;
716         if (packet == NULL)
717                 /* This packet was cancelled, just continue. */
718                 return 1;
719
720         payload_bus = le32_to_cpu(last->data_address);
721         if (payload_bus != 0)
722                 dma_unmap_single(ohci->card.device, payload_bus,
723                                  packet->payload_length, DMA_TO_DEVICE);
724
725         evt = le16_to_cpu(last->transfer_status) & 0x1f;
726         packet->timestamp = le16_to_cpu(last->res_count);
727
728         switch (evt) {
729         case OHCI1394_evt_timeout:
730                 /* Async response transmit timed out. */
731                 packet->ack = RCODE_CANCELLED;
732                 break;
733
734         case OHCI1394_evt_flushed:
735                 /*
736                  * The packet was flushed should give same error as
737                  * when we try to use a stale generation count.
738                  */
739                 packet->ack = RCODE_GENERATION;
740                 break;
741
742         case OHCI1394_evt_missing_ack:
743                 /*
744                  * Using a valid (current) generation count, but the
745                  * node is not on the bus or not sending acks.
746                  */
747                 packet->ack = RCODE_NO_ACK;
748                 break;
749
750         case ACK_COMPLETE + 0x10:
751         case ACK_PENDING + 0x10:
752         case ACK_BUSY_X + 0x10:
753         case ACK_BUSY_A + 0x10:
754         case ACK_BUSY_B + 0x10:
755         case ACK_DATA_ERROR + 0x10:
756         case ACK_TYPE_ERROR + 0x10:
757                 packet->ack = evt - 0x10;
758                 break;
759
760         default:
761                 packet->ack = RCODE_SEND_ERROR;
762                 break;
763         }
764
765         packet->callback(packet, &ohci->card, packet->ack);
766
767         return 1;
768 }
769
770 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
771 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
772 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
773 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
774 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
775
776 static void
777 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
778 {
779         struct fw_packet response;
780         int tcode, length, i;
781
782         tcode = HEADER_GET_TCODE(packet->header[0]);
783         if (TCODE_IS_BLOCK_PACKET(tcode))
784                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
785         else
786                 length = 4;
787
788         i = csr - CSR_CONFIG_ROM;
789         if (i + length > CONFIG_ROM_SIZE) {
790                 fw_fill_response(&response, packet->header,
791                                  RCODE_ADDRESS_ERROR, NULL, 0);
792         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
793                 fw_fill_response(&response, packet->header,
794                                  RCODE_TYPE_ERROR, NULL, 0);
795         } else {
796                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
797                                  (void *) ohci->config_rom + i, length);
798         }
799
800         fw_core_handle_response(&ohci->card, &response);
801 }
802
803 static void
804 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
805 {
806         struct fw_packet response;
807         int tcode, length, ext_tcode, sel;
808         __be32 *payload, lock_old;
809         u32 lock_arg, lock_data;
810
811         tcode = HEADER_GET_TCODE(packet->header[0]);
812         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
813         payload = packet->payload;
814         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
815
816         if (tcode == TCODE_LOCK_REQUEST &&
817             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
818                 lock_arg = be32_to_cpu(payload[0]);
819                 lock_data = be32_to_cpu(payload[1]);
820         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
821                 lock_arg = 0;
822                 lock_data = 0;
823         } else {
824                 fw_fill_response(&response, packet->header,
825                                  RCODE_TYPE_ERROR, NULL, 0);
826                 goto out;
827         }
828
829         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
830         reg_write(ohci, OHCI1394_CSRData, lock_data);
831         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
832         reg_write(ohci, OHCI1394_CSRControl, sel);
833
834         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
835                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
836         else
837                 fw_notify("swap not done yet\n");
838
839         fw_fill_response(&response, packet->header,
840                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
841  out:
842         fw_core_handle_response(&ohci->card, &response);
843 }
844
845 static void
846 handle_local_request(struct context *ctx, struct fw_packet *packet)
847 {
848         u64 offset;
849         u32 csr;
850
851         if (ctx == &ctx->ohci->at_request_ctx) {
852                 packet->ack = ACK_PENDING;
853                 packet->callback(packet, &ctx->ohci->card, packet->ack);
854         }
855
856         offset =
857                 ((unsigned long long)
858                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
859                 packet->header[2];
860         csr = offset - CSR_REGISTER_BASE;
861
862         /* Handle config rom reads. */
863         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
864                 handle_local_rom(ctx->ohci, packet, csr);
865         else switch (csr) {
866         case CSR_BUS_MANAGER_ID:
867         case CSR_BANDWIDTH_AVAILABLE:
868         case CSR_CHANNELS_AVAILABLE_HI:
869         case CSR_CHANNELS_AVAILABLE_LO:
870                 handle_local_lock(ctx->ohci, packet, csr);
871                 break;
872         default:
873                 if (ctx == &ctx->ohci->at_request_ctx)
874                         fw_core_handle_request(&ctx->ohci->card, packet);
875                 else
876                         fw_core_handle_response(&ctx->ohci->card, packet);
877                 break;
878         }
879
880         if (ctx == &ctx->ohci->at_response_ctx) {
881                 packet->ack = ACK_COMPLETE;
882                 packet->callback(packet, &ctx->ohci->card, packet->ack);
883         }
884 }
885
886 static void
887 at_context_transmit(struct context *ctx, struct fw_packet *packet)
888 {
889         unsigned long flags;
890         int retval;
891
892         spin_lock_irqsave(&ctx->ohci->lock, flags);
893
894         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
895             ctx->ohci->generation == packet->generation) {
896                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
897                 handle_local_request(ctx, packet);
898                 return;
899         }
900
901         retval = at_context_queue_packet(ctx, packet);
902         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
903
904         if (retval < 0)
905                 packet->callback(packet, &ctx->ohci->card, packet->ack);
906         
907 }
908
909 static void bus_reset_tasklet(unsigned long data)
910 {
911         struct fw_ohci *ohci = (struct fw_ohci *)data;
912         int self_id_count, i, j, reg;
913         int generation, new_generation;
914         unsigned long flags;
915         void *free_rom = NULL;
916         dma_addr_t free_rom_bus = 0;
917
918         reg = reg_read(ohci, OHCI1394_NodeID);
919         if (!(reg & OHCI1394_NodeID_idValid)) {
920                 fw_notify("node ID not valid, new bus reset in progress\n");
921                 return;
922         }
923         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
924                 fw_notify("malconfigured bus\n");
925                 return;
926         }
927         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
928                                OHCI1394_NodeID_nodeNumber);
929
930         /*
931          * The count in the SelfIDCount register is the number of
932          * bytes in the self ID receive buffer.  Since we also receive
933          * the inverted quadlets and a header quadlet, we shift one
934          * bit extra to get the actual number of self IDs.
935          */
936
937         self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
938         generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
939         rmb();
940
941         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
942                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
943                         fw_error("inconsistent self IDs\n");
944                 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
945         }
946         rmb();
947
948         /*
949          * Check the consistency of the self IDs we just read.  The
950          * problem we face is that a new bus reset can start while we
951          * read out the self IDs from the DMA buffer. If this happens,
952          * the DMA buffer will be overwritten with new self IDs and we
953          * will read out inconsistent data.  The OHCI specification
954          * (section 11.2) recommends a technique similar to
955          * linux/seqlock.h, where we remember the generation of the
956          * self IDs in the buffer before reading them out and compare
957          * it to the current generation after reading them out.  If
958          * the two generations match we know we have a consistent set
959          * of self IDs.
960          */
961
962         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
963         if (new_generation != generation) {
964                 fw_notify("recursive bus reset detected, "
965                           "discarding self ids\n");
966                 return;
967         }
968
969         /* FIXME: Document how the locking works. */
970         spin_lock_irqsave(&ohci->lock, flags);
971
972         ohci->generation = generation;
973         context_stop(&ohci->at_request_ctx);
974         context_stop(&ohci->at_response_ctx);
975         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
976
977         /*
978          * This next bit is unrelated to the AT context stuff but we
979          * have to do it under the spinlock also.  If a new config rom
980          * was set up before this reset, the old one is now no longer
981          * in use and we can free it. Update the config rom pointers
982          * to point to the current config rom and clear the
983          * next_config_rom pointer so a new udpate can take place.
984          */
985
986         if (ohci->next_config_rom != NULL) {
987                 if (ohci->next_config_rom != ohci->config_rom) {
988                         free_rom      = ohci->config_rom;
989                         free_rom_bus  = ohci->config_rom_bus;
990                 }
991                 ohci->config_rom      = ohci->next_config_rom;
992                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
993                 ohci->next_config_rom = NULL;
994
995                 /*
996                  * Restore config_rom image and manually update
997                  * config_rom registers.  Writing the header quadlet
998                  * will indicate that the config rom is ready, so we
999                  * do that last.
1000                  */
1001                 reg_write(ohci, OHCI1394_BusOptions,
1002                           be32_to_cpu(ohci->config_rom[2]));
1003                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1004                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1005         }
1006
1007         spin_unlock_irqrestore(&ohci->lock, flags);
1008
1009         if (free_rom)
1010                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1011                                   free_rom, free_rom_bus);
1012
1013         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1014                                  self_id_count, ohci->self_id_buffer);
1015 }
1016
1017 static irqreturn_t irq_handler(int irq, void *data)
1018 {
1019         struct fw_ohci *ohci = data;
1020         u32 event, iso_event, cycle_time;
1021         int i;
1022
1023         event = reg_read(ohci, OHCI1394_IntEventClear);
1024
1025         if (!event || !~event)
1026                 return IRQ_NONE;
1027
1028         reg_write(ohci, OHCI1394_IntEventClear, event);
1029
1030         if (event & OHCI1394_selfIDComplete)
1031                 tasklet_schedule(&ohci->bus_reset_tasklet);
1032
1033         if (event & OHCI1394_RQPkt)
1034                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1035
1036         if (event & OHCI1394_RSPkt)
1037                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1038
1039         if (event & OHCI1394_reqTxComplete)
1040                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1041
1042         if (event & OHCI1394_respTxComplete)
1043                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1044
1045         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1046         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1047
1048         while (iso_event) {
1049                 i = ffs(iso_event) - 1;
1050                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1051                 iso_event &= ~(1 << i);
1052         }
1053
1054         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1055         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1056
1057         while (iso_event) {
1058                 i = ffs(iso_event) - 1;
1059                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1060                 iso_event &= ~(1 << i);
1061         }
1062
1063         if (unlikely(event & OHCI1394_postedWriteErr))
1064                 fw_error("PCI posted write error\n");
1065
1066         if (event & OHCI1394_cycle64Seconds) {
1067                 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1068                 if ((cycle_time & 0x80000000) == 0)
1069                         ohci->bus_seconds++;
1070         }
1071
1072         return IRQ_HANDLED;
1073 }
1074
1075 static int software_reset(struct fw_ohci *ohci)
1076 {
1077         int i;
1078
1079         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1080
1081         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1082                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1083                      OHCI1394_HCControl_softReset) == 0)
1084                         return 0;
1085                 msleep(1);
1086         }
1087
1088         return -EBUSY;
1089 }
1090
1091 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1092 {
1093         struct fw_ohci *ohci = fw_ohci(card);
1094         struct pci_dev *dev = to_pci_dev(card->device);
1095
1096         if (software_reset(ohci)) {
1097                 fw_error("Failed to reset ohci card.\n");
1098                 return -EBUSY;
1099         }
1100
1101         /*
1102          * Now enable LPS, which we need in order to start accessing
1103          * most of the registers.  In fact, on some cards (ALI M5251),
1104          * accessing registers in the SClk domain without LPS enabled
1105          * will lock up the machine.  Wait 50msec to make sure we have
1106          * full link enabled.
1107          */
1108         reg_write(ohci, OHCI1394_HCControlSet,
1109                   OHCI1394_HCControl_LPS |
1110                   OHCI1394_HCControl_postedWriteEnable);
1111         flush_writes(ohci);
1112         msleep(50);
1113
1114         reg_write(ohci, OHCI1394_HCControlClear,
1115                   OHCI1394_HCControl_noByteSwapData);
1116
1117         reg_write(ohci, OHCI1394_LinkControlSet,
1118                   OHCI1394_LinkControl_rcvSelfID |
1119                   OHCI1394_LinkControl_cycleTimerEnable |
1120                   OHCI1394_LinkControl_cycleMaster);
1121
1122         reg_write(ohci, OHCI1394_ATRetries,
1123                   OHCI1394_MAX_AT_REQ_RETRIES |
1124                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1125                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1126
1127         ar_context_run(&ohci->ar_request_ctx);
1128         ar_context_run(&ohci->ar_response_ctx);
1129
1130         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1131         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1132         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1133         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1134         reg_write(ohci, OHCI1394_IntMaskSet,
1135                   OHCI1394_selfIDComplete |
1136                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1137                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1138                   OHCI1394_isochRx | OHCI1394_isochTx |
1139                   OHCI1394_postedWriteErr | OHCI1394_cycle64Seconds |
1140                   OHCI1394_masterIntEnable);
1141
1142         /* Activate link_on bit and contender bit in our self ID packets.*/
1143         if (ohci_update_phy_reg(card, 4, 0,
1144                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1145                 return -EIO;
1146
1147         /*
1148          * When the link is not yet enabled, the atomic config rom
1149          * update mechanism described below in ohci_set_config_rom()
1150          * is not active.  We have to update ConfigRomHeader and
1151          * BusOptions manually, and the write to ConfigROMmap takes
1152          * effect immediately.  We tie this to the enabling of the
1153          * link, so we have a valid config rom before enabling - the
1154          * OHCI requires that ConfigROMhdr and BusOptions have valid
1155          * values before enabling.
1156          *
1157          * However, when the ConfigROMmap is written, some controllers
1158          * always read back quadlets 0 and 2 from the config rom to
1159          * the ConfigRomHeader and BusOptions registers on bus reset.
1160          * They shouldn't do that in this initial case where the link
1161          * isn't enabled.  This means we have to use the same
1162          * workaround here, setting the bus header to 0 and then write
1163          * the right values in the bus reset tasklet.
1164          */
1165
1166         if (config_rom) {
1167                 ohci->next_config_rom =
1168                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1169                                            &ohci->next_config_rom_bus,
1170                                            GFP_KERNEL);
1171                 if (ohci->next_config_rom == NULL)
1172                         return -ENOMEM;
1173
1174                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1175                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1176         } else {
1177                 /*
1178                  * In the suspend case, config_rom is NULL, which
1179                  * means that we just reuse the old config rom.
1180                  */
1181                 ohci->next_config_rom = ohci->config_rom;
1182                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1183         }
1184
1185         ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1186         ohci->next_config_rom[0] = 0;
1187         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1188         reg_write(ohci, OHCI1394_BusOptions,
1189                   be32_to_cpu(ohci->next_config_rom[2]));
1190         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1191
1192         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1193
1194         if (request_irq(dev->irq, irq_handler,
1195                         IRQF_SHARED, ohci_driver_name, ohci)) {
1196                 fw_error("Failed to allocate shared interrupt %d.\n",
1197                          dev->irq);
1198                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1199                                   ohci->config_rom, ohci->config_rom_bus);
1200                 return -EIO;
1201         }
1202
1203         reg_write(ohci, OHCI1394_HCControlSet,
1204                   OHCI1394_HCControl_linkEnable |
1205                   OHCI1394_HCControl_BIBimageValid);
1206         flush_writes(ohci);
1207
1208         /*
1209          * We are ready to go, initiate bus reset to finish the
1210          * initialization.
1211          */
1212
1213         fw_core_initiate_bus_reset(&ohci->card, 1);
1214
1215         return 0;
1216 }
1217
1218 static int
1219 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1220 {
1221         struct fw_ohci *ohci;
1222         unsigned long flags;
1223         int retval = -EBUSY;
1224         __be32 *next_config_rom;
1225         dma_addr_t next_config_rom_bus;
1226
1227         ohci = fw_ohci(card);
1228
1229         /*
1230          * When the OHCI controller is enabled, the config rom update
1231          * mechanism is a bit tricky, but easy enough to use.  See
1232          * section 5.5.6 in the OHCI specification.
1233          *
1234          * The OHCI controller caches the new config rom address in a
1235          * shadow register (ConfigROMmapNext) and needs a bus reset
1236          * for the changes to take place.  When the bus reset is
1237          * detected, the controller loads the new values for the
1238          * ConfigRomHeader and BusOptions registers from the specified
1239          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1240          * shadow register. All automatically and atomically.
1241          *
1242          * Now, there's a twist to this story.  The automatic load of
1243          * ConfigRomHeader and BusOptions doesn't honor the
1244          * noByteSwapData bit, so with a be32 config rom, the
1245          * controller will load be32 values in to these registers
1246          * during the atomic update, even on litte endian
1247          * architectures.  The workaround we use is to put a 0 in the
1248          * header quadlet; 0 is endian agnostic and means that the
1249          * config rom isn't ready yet.  In the bus reset tasklet we
1250          * then set up the real values for the two registers.
1251          *
1252          * We use ohci->lock to avoid racing with the code that sets
1253          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1254          */
1255
1256         next_config_rom =
1257                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1258                                    &next_config_rom_bus, GFP_KERNEL);
1259         if (next_config_rom == NULL)
1260                 return -ENOMEM;
1261
1262         spin_lock_irqsave(&ohci->lock, flags);
1263
1264         if (ohci->next_config_rom == NULL) {
1265                 ohci->next_config_rom = next_config_rom;
1266                 ohci->next_config_rom_bus = next_config_rom_bus;
1267
1268                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1269                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1270                                   length * 4);
1271
1272                 ohci->next_header = config_rom[0];
1273                 ohci->next_config_rom[0] = 0;
1274
1275                 reg_write(ohci, OHCI1394_ConfigROMmap,
1276                           ohci->next_config_rom_bus);
1277                 retval = 0;
1278         }
1279
1280         spin_unlock_irqrestore(&ohci->lock, flags);
1281
1282         /*
1283          * Now initiate a bus reset to have the changes take
1284          * effect. We clean up the old config rom memory and DMA
1285          * mappings in the bus reset tasklet, since the OHCI
1286          * controller could need to access it before the bus reset
1287          * takes effect.
1288          */
1289         if (retval == 0)
1290                 fw_core_initiate_bus_reset(&ohci->card, 1);
1291         else
1292                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1293                                   next_config_rom, next_config_rom_bus);
1294
1295         return retval;
1296 }
1297
1298 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1299 {
1300         struct fw_ohci *ohci = fw_ohci(card);
1301
1302         at_context_transmit(&ohci->at_request_ctx, packet);
1303 }
1304
1305 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1306 {
1307         struct fw_ohci *ohci = fw_ohci(card);
1308
1309         at_context_transmit(&ohci->at_response_ctx, packet);
1310 }
1311
1312 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1313 {
1314         struct fw_ohci *ohci = fw_ohci(card);
1315         struct context *ctx = &ohci->at_request_ctx;
1316         struct driver_data *driver_data = packet->driver_data;
1317         int retval = -ENOENT;
1318
1319         tasklet_disable(&ctx->tasklet);
1320
1321         if (packet->ack != 0)
1322                 goto out;
1323
1324         driver_data->packet = NULL;
1325         packet->ack = RCODE_CANCELLED;
1326         packet->callback(packet, &ohci->card, packet->ack);
1327         retval = 0;
1328
1329  out:
1330         tasklet_enable(&ctx->tasklet);
1331
1332         return retval;
1333 }
1334
1335 static int
1336 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1337 {
1338         struct fw_ohci *ohci = fw_ohci(card);
1339         unsigned long flags;
1340         int n, retval = 0;
1341
1342         /*
1343          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1344          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1345          */
1346
1347         spin_lock_irqsave(&ohci->lock, flags);
1348
1349         if (ohci->generation != generation) {
1350                 retval = -ESTALE;
1351                 goto out;
1352         }
1353
1354         /*
1355          * Note, if the node ID contains a non-local bus ID, physical DMA is
1356          * enabled for _all_ nodes on remote buses.
1357          */
1358
1359         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1360         if (n < 32)
1361                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1362         else
1363                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1364
1365         flush_writes(ohci);
1366  out:
1367         spin_unlock_irqrestore(&ohci->lock, flags);
1368         return retval;
1369 }
1370
1371 static u64
1372 ohci_get_bus_time(struct fw_card *card)
1373 {
1374         struct fw_ohci *ohci = fw_ohci(card);
1375         u32 cycle_time;
1376         u64 bus_time;
1377
1378         cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1379         bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1380
1381         return bus_time;
1382 }
1383
1384 static int handle_ir_dualbuffer_packet(struct context *context,
1385                                        struct descriptor *d,
1386                                        struct descriptor *last)
1387 {
1388         struct iso_context *ctx =
1389                 container_of(context, struct iso_context, context);
1390         struct db_descriptor *db = (struct db_descriptor *) d;
1391         __le32 *ir_header;
1392         size_t header_length;
1393         void *p, *end;
1394         int i;
1395
1396         if (db->first_res_count > 0 && db->second_res_count > 0)
1397                 /* This descriptor isn't done yet, stop iteration. */
1398                 return 0;
1399
1400         header_length = le16_to_cpu(db->first_req_count) -
1401                 le16_to_cpu(db->first_res_count);
1402
1403         i = ctx->header_length;
1404         p = db + 1;
1405         end = p + header_length;
1406         while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1407                 /*
1408                  * The iso header is byteswapped to little endian by
1409                  * the controller, but the remaining header quadlets
1410                  * are big endian.  We want to present all the headers
1411                  * as big endian, so we have to swap the first
1412                  * quadlet.
1413                  */
1414                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1415                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1416                 i += ctx->base.header_size;
1417                 p += ctx->base.header_size + 4;
1418         }
1419
1420         ctx->header_length = i;
1421
1422         if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1423                 ir_header = (__le32 *) (db + 1);
1424                 ctx->base.callback(&ctx->base,
1425                                    le32_to_cpu(ir_header[0]) & 0xffff,
1426                                    ctx->header_length, ctx->header,
1427                                    ctx->base.callback_data);
1428                 ctx->header_length = 0;
1429         }
1430
1431         return 1;
1432 }
1433
1434 static int handle_it_packet(struct context *context,
1435                             struct descriptor *d,
1436                             struct descriptor *last)
1437 {
1438         struct iso_context *ctx =
1439                 container_of(context, struct iso_context, context);
1440
1441         if (last->transfer_status == 0)
1442                 /* This descriptor isn't done yet, stop iteration. */
1443                 return 0;
1444
1445         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1446                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1447                                    0, NULL, ctx->base.callback_data);
1448
1449         return 1;
1450 }
1451
1452 static struct fw_iso_context *
1453 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1454 {
1455         struct fw_ohci *ohci = fw_ohci(card);
1456         struct iso_context *ctx, *list;
1457         descriptor_callback_t callback;
1458         u32 *mask, regs;
1459         unsigned long flags;
1460         int index, retval = -ENOMEM;
1461
1462         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1463                 mask = &ohci->it_context_mask;
1464                 list = ohci->it_context_list;
1465                 callback = handle_it_packet;
1466         } else {
1467                 mask = &ohci->ir_context_mask;
1468                 list = ohci->ir_context_list;
1469                 callback = handle_ir_dualbuffer_packet;
1470         }
1471
1472         /* FIXME: We need a fallback for pre 1.1 OHCI. */
1473         if (callback == handle_ir_dualbuffer_packet &&
1474             ohci->version < OHCI_VERSION_1_1)
1475                 return ERR_PTR(-ENOSYS);
1476
1477         spin_lock_irqsave(&ohci->lock, flags);
1478         index = ffs(*mask) - 1;
1479         if (index >= 0)
1480                 *mask &= ~(1 << index);
1481         spin_unlock_irqrestore(&ohci->lock, flags);
1482
1483         if (index < 0)
1484                 return ERR_PTR(-EBUSY);
1485
1486         if (type == FW_ISO_CONTEXT_TRANSMIT)
1487                 regs = OHCI1394_IsoXmitContextBase(index);
1488         else
1489                 regs = OHCI1394_IsoRcvContextBase(index);
1490
1491         ctx = &list[index];
1492         memset(ctx, 0, sizeof(*ctx));
1493         ctx->header_length = 0;
1494         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1495         if (ctx->header == NULL)
1496                 goto out;
1497
1498         retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1499                               regs, callback);
1500         if (retval < 0)
1501                 goto out_with_header;
1502
1503         return &ctx->base;
1504
1505  out_with_header:
1506         free_page((unsigned long)ctx->header);
1507  out:
1508         spin_lock_irqsave(&ohci->lock, flags);
1509         *mask |= 1 << index;
1510         spin_unlock_irqrestore(&ohci->lock, flags);
1511
1512         return ERR_PTR(retval);
1513 }
1514
1515 static int ohci_start_iso(struct fw_iso_context *base,
1516                           s32 cycle, u32 sync, u32 tags)
1517 {
1518         struct iso_context *ctx = container_of(base, struct iso_context, base);
1519         struct fw_ohci *ohci = ctx->context.ohci;
1520         u32 control, match;
1521         int index;
1522
1523         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1524                 index = ctx - ohci->it_context_list;
1525                 match = 0;
1526                 if (cycle >= 0)
1527                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1528                                 (cycle & 0x7fff) << 16;
1529
1530                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1531                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1532                 context_run(&ctx->context, match);
1533         } else {
1534                 index = ctx - ohci->ir_context_list;
1535                 control = IR_CONTEXT_DUAL_BUFFER_MODE | IR_CONTEXT_ISOCH_HEADER;
1536                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1537                 if (cycle >= 0) {
1538                         match |= (cycle & 0x07fff) << 12;
1539                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1540                 }
1541
1542                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1543                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1544                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1545                 context_run(&ctx->context, control);
1546         }
1547
1548         return 0;
1549 }
1550
1551 static int ohci_stop_iso(struct fw_iso_context *base)
1552 {
1553         struct fw_ohci *ohci = fw_ohci(base->card);
1554         struct iso_context *ctx = container_of(base, struct iso_context, base);
1555         int index;
1556
1557         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1558                 index = ctx - ohci->it_context_list;
1559                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1560         } else {
1561                 index = ctx - ohci->ir_context_list;
1562                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1563         }
1564         flush_writes(ohci);
1565         context_stop(&ctx->context);
1566
1567         return 0;
1568 }
1569
1570 static void ohci_free_iso_context(struct fw_iso_context *base)
1571 {
1572         struct fw_ohci *ohci = fw_ohci(base->card);
1573         struct iso_context *ctx = container_of(base, struct iso_context, base);
1574         unsigned long flags;
1575         int index;
1576
1577         ohci_stop_iso(base);
1578         context_release(&ctx->context);
1579         free_page((unsigned long)ctx->header);
1580
1581         spin_lock_irqsave(&ohci->lock, flags);
1582
1583         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1584                 index = ctx - ohci->it_context_list;
1585                 ohci->it_context_mask |= 1 << index;
1586         } else {
1587                 index = ctx - ohci->ir_context_list;
1588                 ohci->ir_context_mask |= 1 << index;
1589         }
1590
1591         spin_unlock_irqrestore(&ohci->lock, flags);
1592 }
1593
1594 static int
1595 ohci_queue_iso_transmit(struct fw_iso_context *base,
1596                         struct fw_iso_packet *packet,
1597                         struct fw_iso_buffer *buffer,
1598                         unsigned long payload)
1599 {
1600         struct iso_context *ctx = container_of(base, struct iso_context, base);
1601         struct descriptor *d, *last, *pd;
1602         struct fw_iso_packet *p;
1603         __le32 *header;
1604         dma_addr_t d_bus, page_bus;
1605         u32 z, header_z, payload_z, irq;
1606         u32 payload_index, payload_end_index, next_page_index;
1607         int page, end_page, i, length, offset;
1608
1609         /*
1610          * FIXME: Cycle lost behavior should be configurable: lose
1611          * packet, retransmit or terminate..
1612          */
1613
1614         p = packet;
1615         payload_index = payload;
1616
1617         if (p->skip)
1618                 z = 1;
1619         else
1620                 z = 2;
1621         if (p->header_length > 0)
1622                 z++;
1623
1624         /* Determine the first page the payload isn't contained in. */
1625         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1626         if (p->payload_length > 0)
1627                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1628         else
1629                 payload_z = 0;
1630
1631         z += payload_z;
1632
1633         /* Get header size in number of descriptors. */
1634         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1635
1636         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1637         if (d == NULL)
1638                 return -ENOMEM;
1639
1640         if (!p->skip) {
1641                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1642                 d[0].req_count = cpu_to_le16(8);
1643
1644                 header = (__le32 *) &d[1];
1645                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
1646                                         IT_HEADER_TAG(p->tag) |
1647                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
1648                                         IT_HEADER_CHANNEL(ctx->base.channel) |
1649                                         IT_HEADER_SPEED(ctx->base.speed));
1650                 header[1] =
1651                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1652                                                           p->payload_length));
1653         }
1654
1655         if (p->header_length > 0) {
1656                 d[2].req_count    = cpu_to_le16(p->header_length);
1657                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1658                 memcpy(&d[z], p->header, p->header_length);
1659         }
1660
1661         pd = d + z - payload_z;
1662         payload_end_index = payload_index + p->payload_length;
1663         for (i = 0; i < payload_z; i++) {
1664                 page               = payload_index >> PAGE_SHIFT;
1665                 offset             = payload_index & ~PAGE_MASK;
1666                 next_page_index    = (page + 1) << PAGE_SHIFT;
1667                 length             =
1668                         min(next_page_index, payload_end_index) - payload_index;
1669                 pd[i].req_count    = cpu_to_le16(length);
1670
1671                 page_bus = page_private(buffer->pages[page]);
1672                 pd[i].data_address = cpu_to_le32(page_bus + offset);
1673
1674                 payload_index += length;
1675         }
1676
1677         if (p->interrupt)
1678                 irq = DESCRIPTOR_IRQ_ALWAYS;
1679         else
1680                 irq = DESCRIPTOR_NO_IRQ;
1681
1682         last = z == 2 ? d : d + z - 1;
1683         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1684                                      DESCRIPTOR_STATUS |
1685                                      DESCRIPTOR_BRANCH_ALWAYS |
1686                                      irq);
1687
1688         context_append(&ctx->context, d, z, header_z);
1689
1690         return 0;
1691 }
1692
1693 static int
1694 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1695                                   struct fw_iso_packet *packet,
1696                                   struct fw_iso_buffer *buffer,
1697                                   unsigned long payload)
1698 {
1699         struct iso_context *ctx = container_of(base, struct iso_context, base);
1700         struct db_descriptor *db = NULL;
1701         struct descriptor *d;
1702         struct fw_iso_packet *p;
1703         dma_addr_t d_bus, page_bus;
1704         u32 z, header_z, length, rest;
1705         int page, offset, packet_count, header_size;
1706
1707         /*
1708          * FIXME: Cycle lost behavior should be configurable: lose
1709          * packet, retransmit or terminate..
1710          */
1711
1712         if (packet->skip) {
1713                 d = context_get_descriptors(&ctx->context, 2, &d_bus);
1714                 if (d == NULL)
1715                         return -ENOMEM;
1716
1717                 db = (struct db_descriptor *) d;
1718                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1719                                           DESCRIPTOR_BRANCH_ALWAYS |
1720                                           DESCRIPTOR_WAIT);
1721                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1722                 context_append(&ctx->context, d, 2, 0);
1723         }
1724
1725         p = packet;
1726         z = 2;
1727
1728         /*
1729          * The OHCI controller puts the status word in the header
1730          * buffer too, so we need 4 extra bytes per packet.
1731          */
1732         packet_count = p->header_length / ctx->base.header_size;
1733         header_size = packet_count * (ctx->base.header_size + 4);
1734
1735         /* Get header size in number of descriptors. */
1736         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1737         page     = payload >> PAGE_SHIFT;
1738         offset   = payload & ~PAGE_MASK;
1739         rest     = p->payload_length;
1740
1741         /* FIXME: OHCI 1.0 doesn't support dual buffer receive */
1742         /* FIXME: make packet-per-buffer/dual-buffer a context option */
1743         while (rest > 0) {
1744                 d = context_get_descriptors(&ctx->context,
1745                                             z + header_z, &d_bus);
1746                 if (d == NULL)
1747                         return -ENOMEM;
1748
1749                 db = (struct db_descriptor *) d;
1750                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1751                                           DESCRIPTOR_BRANCH_ALWAYS);
1752                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1753                 db->first_req_count = cpu_to_le16(header_size);
1754                 db->first_res_count = db->first_req_count;
1755                 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
1756
1757                 if (offset + rest < PAGE_SIZE)
1758                         length = rest;
1759                 else
1760                         length = PAGE_SIZE - offset;
1761
1762                 db->second_req_count = cpu_to_le16(length);
1763                 db->second_res_count = db->second_req_count;
1764                 page_bus = page_private(buffer->pages[page]);
1765                 db->second_buffer = cpu_to_le32(page_bus + offset);
1766
1767                 if (p->interrupt && length == rest)
1768                         db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1769
1770                 context_append(&ctx->context, d, z, header_z);
1771                 offset = (offset + length) & ~PAGE_MASK;
1772                 rest -= length;
1773                 page++;
1774         }
1775
1776         return 0;
1777 }
1778
1779 static int
1780 ohci_queue_iso(struct fw_iso_context *base,
1781                struct fw_iso_packet *packet,
1782                struct fw_iso_buffer *buffer,
1783                unsigned long payload)
1784 {
1785         struct iso_context *ctx = container_of(base, struct iso_context, base);
1786
1787         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
1788                 return ohci_queue_iso_transmit(base, packet, buffer, payload);
1789         else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1790                 return ohci_queue_iso_receive_dualbuffer(base, packet,
1791                                                          buffer, payload);
1792         else
1793                 /* FIXME: Implement fallback for OHCI 1.0 controllers. */
1794                 return -ENOSYS;
1795 }
1796
1797 static const struct fw_card_driver ohci_driver = {
1798         .name                   = ohci_driver_name,
1799         .enable                 = ohci_enable,
1800         .update_phy_reg         = ohci_update_phy_reg,
1801         .set_config_rom         = ohci_set_config_rom,
1802         .send_request           = ohci_send_request,
1803         .send_response          = ohci_send_response,
1804         .cancel_packet          = ohci_cancel_packet,
1805         .enable_phys_dma        = ohci_enable_phys_dma,
1806         .get_bus_time           = ohci_get_bus_time,
1807
1808         .allocate_iso_context   = ohci_allocate_iso_context,
1809         .free_iso_context       = ohci_free_iso_context,
1810         .queue_iso              = ohci_queue_iso,
1811         .start_iso              = ohci_start_iso,
1812         .stop_iso               = ohci_stop_iso,
1813 };
1814
1815 static int __devinit
1816 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1817 {
1818         struct fw_ohci *ohci;
1819         u32 bus_options, max_receive, link_speed;
1820         u64 guid;
1821         int err;
1822         size_t size;
1823
1824         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
1825         if (ohci == NULL) {
1826                 fw_error("Could not malloc fw_ohci data.\n");
1827                 return -ENOMEM;
1828         }
1829
1830         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1831
1832         err = pci_enable_device(dev);
1833         if (err) {
1834                 fw_error("Failed to enable OHCI hardware.\n");
1835                 goto fail_put_card;
1836         }
1837
1838         pci_set_master(dev);
1839         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1840         pci_set_drvdata(dev, ohci);
1841
1842         spin_lock_init(&ohci->lock);
1843
1844         tasklet_init(&ohci->bus_reset_tasklet,
1845                      bus_reset_tasklet, (unsigned long)ohci);
1846
1847         err = pci_request_region(dev, 0, ohci_driver_name);
1848         if (err) {
1849                 fw_error("MMIO resource unavailable\n");
1850                 goto fail_disable;
1851         }
1852
1853         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1854         if (ohci->registers == NULL) {
1855                 fw_error("Failed to remap registers\n");
1856                 err = -ENXIO;
1857                 goto fail_iomem;
1858         }
1859
1860         ar_context_init(&ohci->ar_request_ctx, ohci,
1861                         OHCI1394_AsReqRcvContextControlSet);
1862
1863         ar_context_init(&ohci->ar_response_ctx, ohci,
1864                         OHCI1394_AsRspRcvContextControlSet);
1865
1866         context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
1867                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
1868
1869         context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
1870                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
1871
1872         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1873         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1874         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1875         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1876         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1877
1878         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1879         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1880         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1881         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1882         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1883
1884         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1885                 fw_error("Out of memory for it/ir contexts.\n");
1886                 err = -ENOMEM;
1887                 goto fail_registers;
1888         }
1889
1890         /* self-id dma buffer allocation */
1891         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1892                                                SELF_ID_BUF_SIZE,
1893                                                &ohci->self_id_bus,
1894                                                GFP_KERNEL);
1895         if (ohci->self_id_cpu == NULL) {
1896                 fw_error("Out of memory for self ID buffer.\n");
1897                 err = -ENOMEM;
1898                 goto fail_registers;
1899         }
1900
1901         bus_options = reg_read(ohci, OHCI1394_BusOptions);
1902         max_receive = (bus_options >> 12) & 0xf;
1903         link_speed = bus_options & 0x7;
1904         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1905                 reg_read(ohci, OHCI1394_GUIDLo);
1906
1907         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1908         if (err < 0)
1909                 goto fail_self_id;
1910
1911         ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1912         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
1913                   dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
1914         if (ohci->version < OHCI_VERSION_1_1) {
1915                 fw_notify("    Isochronous I/O is not yet implemented for "
1916                           "OHCI 1.0 chips.\n");
1917                 fw_notify("    Cameras, audio devices etc. won't work on "
1918                           "this controller with this driver version.\n");
1919         }
1920         return 0;
1921
1922  fail_self_id:
1923         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1924                           ohci->self_id_cpu, ohci->self_id_bus);
1925  fail_registers:
1926         kfree(ohci->it_context_list);
1927         kfree(ohci->ir_context_list);
1928         pci_iounmap(dev, ohci->registers);
1929  fail_iomem:
1930         pci_release_region(dev, 0);
1931  fail_disable:
1932         pci_disable_device(dev);
1933  fail_put_card:
1934         fw_card_put(&ohci->card);
1935
1936         return err;
1937 }
1938
1939 static void pci_remove(struct pci_dev *dev)
1940 {
1941         struct fw_ohci *ohci;
1942
1943         ohci = pci_get_drvdata(dev);
1944         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1945         flush_writes(ohci);
1946         fw_core_remove_card(&ohci->card);
1947
1948         /*
1949          * FIXME: Fail all pending packets here, now that the upper
1950          * layers can't queue any more.
1951          */
1952
1953         software_reset(ohci);
1954         free_irq(dev->irq, ohci);
1955         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1956                           ohci->self_id_cpu, ohci->self_id_bus);
1957         kfree(ohci->it_context_list);
1958         kfree(ohci->ir_context_list);
1959         pci_iounmap(dev, ohci->registers);
1960         pci_release_region(dev, 0);
1961         pci_disable_device(dev);
1962         fw_card_put(&ohci->card);
1963
1964         fw_notify("Removed fw-ohci device.\n");
1965 }
1966
1967 #ifdef CONFIG_PM
1968 static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
1969 {
1970         struct fw_ohci *ohci = pci_get_drvdata(pdev);
1971         int err;
1972
1973         software_reset(ohci);
1974         free_irq(pdev->irq, ohci);
1975         err = pci_save_state(pdev);
1976         if (err) {
1977                 fw_error("pci_save_state failed\n");
1978                 return err;
1979         }
1980         err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
1981         if (err)
1982                 fw_error("pci_set_power_state failed with %d\n", err);
1983
1984         return 0;
1985 }
1986
1987 static int pci_resume(struct pci_dev *pdev)
1988 {
1989         struct fw_ohci *ohci = pci_get_drvdata(pdev);
1990         int err;
1991
1992         pci_set_power_state(pdev, PCI_D0);
1993         pci_restore_state(pdev);
1994         err = pci_enable_device(pdev);
1995         if (err) {
1996                 fw_error("pci_enable_device failed\n");
1997                 return err;
1998         }
1999
2000         return ohci_enable(&ohci->card, NULL, 0);
2001 }
2002 #endif
2003
2004 static struct pci_device_id pci_table[] = {
2005         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2006         { }
2007 };
2008
2009 MODULE_DEVICE_TABLE(pci, pci_table);
2010
2011 static struct pci_driver fw_ohci_pci_driver = {
2012         .name           = ohci_driver_name,
2013         .id_table       = pci_table,
2014         .probe          = pci_probe,
2015         .remove         = pci_remove,
2016 #ifdef CONFIG_PM
2017         .resume         = pci_resume,
2018         .suspend        = pci_suspend,
2019 #endif
2020 };
2021
2022 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2023 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2024 MODULE_LICENSE("GPL");
2025
2026 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2027 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2028 MODULE_ALIAS("ohci1394");
2029 #endif
2030
2031 static int __init fw_ohci_init(void)
2032 {
2033         return pci_register_driver(&fw_ohci_pci_driver);
2034 }
2035
2036 static void __exit fw_ohci_cleanup(void)
2037 {
2038         pci_unregister_driver(&fw_ohci_pci_driver);
2039 }
2040
2041 module_init(fw_ohci_init);
2042 module_exit(fw_ohci_cleanup);