Blackfin: fix early L1 relocation crash
[linux-2.6] / arch / blackfin / kernel / setup.c
1 /*
2  * arch/blackfin/kernel/setup.c
3  *
4  * Copyright 2004-2006 Analog Devices Inc.
5  *
6  * Enter bugs at http://blackfin.uclinux.org/
7  *
8  * Licensed under the GPL-2 or later.
9  */
10
11 #include <linux/delay.h>
12 #include <linux/console.h>
13 #include <linux/bootmem.h>
14 #include <linux/seq_file.h>
15 #include <linux/cpu.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/tty.h>
19 #include <linux/pfn.h>
20
21 #include <linux/ext2_fs.h>
22 #include <linux/cramfs_fs.h>
23 #include <linux/romfs_fs.h>
24
25 #include <asm/cplb.h>
26 #include <asm/cacheflush.h>
27 #include <asm/blackfin.h>
28 #include <asm/cplbinit.h>
29 #include <asm/div64.h>
30 #include <asm/cpu.h>
31 #include <asm/fixed_code.h>
32 #include <asm/early_printk.h>
33
34 u16 _bfin_swrst;
35 EXPORT_SYMBOL(_bfin_swrst);
36
37 unsigned long memory_start, memory_end, physical_mem_end;
38 unsigned long _rambase, _ramstart, _ramend;
39 unsigned long reserved_mem_dcache_on;
40 unsigned long reserved_mem_icache_on;
41 EXPORT_SYMBOL(memory_start);
42 EXPORT_SYMBOL(memory_end);
43 EXPORT_SYMBOL(physical_mem_end);
44 EXPORT_SYMBOL(_ramend);
45 EXPORT_SYMBOL(reserved_mem_dcache_on);
46
47 #ifdef CONFIG_MTD_UCLINUX
48 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
49 unsigned long _ebss;
50 EXPORT_SYMBOL(memory_mtd_end);
51 EXPORT_SYMBOL(memory_mtd_start);
52 EXPORT_SYMBOL(mtd_size);
53 #endif
54
55 char __initdata command_line[COMMAND_LINE_SIZE];
56 void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
57         *init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
58
59 /* boot memmap, for parsing "memmap=" */
60 #define BFIN_MEMMAP_MAX         128 /* number of entries in bfin_memmap */
61 #define BFIN_MEMMAP_RAM         1
62 #define BFIN_MEMMAP_RESERVED    2
63 static struct bfin_memmap {
64         int nr_map;
65         struct bfin_memmap_entry {
66                 unsigned long long addr; /* start of memory segment */
67                 unsigned long long size;
68                 unsigned long type;
69         } map[BFIN_MEMMAP_MAX];
70 } bfin_memmap __initdata;
71
72 /* for memmap sanitization */
73 struct change_member {
74         struct bfin_memmap_entry *pentry; /* pointer to original entry */
75         unsigned long long addr; /* address for this change point */
76 };
77 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
78 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
79 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
80 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
81
82 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
83
84 static int early_init_clkin_hz(char *buf);
85
86 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
87 void __init generate_cplb_tables(void)
88 {
89         unsigned int cpu;
90
91         generate_cplb_tables_all();
92         /* Generate per-CPU I&D CPLB tables */
93         for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
94                 generate_cplb_tables_cpu(cpu);
95 }
96 #endif
97
98 void __cpuinit bfin_setup_caches(unsigned int cpu)
99 {
100 #ifdef CONFIG_BFIN_ICACHE
101         bfin_icache_init(icplb_tbl[cpu]);
102 #endif
103
104 #ifdef CONFIG_BFIN_DCACHE
105         bfin_dcache_init(dcplb_tbl[cpu]);
106 #endif
107
108         /*
109          * In cache coherence emulation mode, we need to have the
110          * D-cache enabled before running any atomic operation which
111          * might invove cache invalidation (i.e. spinlock, rwlock).
112          * So printk's are deferred until then.
113          */
114 #ifdef CONFIG_BFIN_ICACHE
115         printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
116 #endif
117 #ifdef CONFIG_BFIN_DCACHE
118         printk(KERN_INFO "Data Cache Enabled for CPU%u"
119 # if defined CONFIG_BFIN_WB
120                 " (write-back)"
121 # elif defined CONFIG_BFIN_WT
122                 " (write-through)"
123 # endif
124                 "\n", cpu);
125 #endif
126 }
127
128 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
129 {
130         struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
131
132         cpudata->idle = current;
133         cpudata->loops_per_jiffy = loops_per_jiffy;
134         cpudata->imemctl = bfin_read_IMEM_CONTROL();
135         cpudata->dmemctl = bfin_read_DMEM_CONTROL();
136 }
137
138 void __init bfin_cache_init(void)
139 {
140 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
141         generate_cplb_tables();
142 #endif
143         bfin_setup_caches(0);
144 }
145
146 void __init bfin_relocate_l1_mem(void)
147 {
148         unsigned long l1_code_length;
149         unsigned long l1_data_a_length;
150         unsigned long l1_data_b_length;
151         unsigned long l2_length;
152
153         /*
154          * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
155          * we know that everything about l1 text/data is nice and aligned,
156          * so copy by 4 byte chunks, and don't worry about overlapping
157          * src/dest.
158          *
159          * We can't use the dma_memcpy functions, since they can call
160          * scheduler functions which might be in L1 :( and core writes
161          * into L1 instruction cause bad access errors, so we are stuck,
162          * we are required to use DMA, but can't use the common dma
163          * functions. We can't use memcpy either - since that might be
164          * going to be in the relocated L1
165          */
166
167         blackfin_dma_early_init();
168
169         /* if necessary, copy _stext_l1 to _etext_l1 to L1 instruction SRAM */
170         l1_code_length = _etext_l1 - _stext_l1;
171         if (l1_code_length)
172                 early_dma_memcpy(_stext_l1, _l1_lma_start, l1_code_length);
173
174         /* if necessary, copy _sdata_l1 to _sbss_l1 to L1 data bank A SRAM */
175         l1_data_a_length = _sbss_l1 - _sdata_l1;
176         if (l1_data_a_length)
177                 early_dma_memcpy(_sdata_l1, _l1_lma_start + l1_code_length, l1_data_a_length);
178
179         /* if necessary, copy _sdata_b_l1 to _sbss_b_l1 to L1 data bank B SRAM */
180         l1_data_b_length = _sbss_b_l1 - _sdata_b_l1;
181         if (l1_data_b_length)
182                 early_dma_memcpy(_sdata_b_l1, _l1_lma_start + l1_code_length +
183                         l1_data_a_length, l1_data_b_length);
184
185         early_dma_memcpy_done();
186
187         /* if necessary, copy _stext_l2 to _edata_l2 to L2 SRAM */
188         if (L2_LENGTH != 0) {
189                 l2_length = _sbss_l2 - _stext_l2;
190                 if (l2_length)
191                         memcpy(_stext_l2, _l2_lma_start, l2_length);
192         }
193 }
194
195 /* add_memory_region to memmap */
196 static void __init add_memory_region(unsigned long long start,
197                               unsigned long long size, int type)
198 {
199         int i;
200
201         i = bfin_memmap.nr_map;
202
203         if (i == BFIN_MEMMAP_MAX) {
204                 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
205                 return;
206         }
207
208         bfin_memmap.map[i].addr = start;
209         bfin_memmap.map[i].size = size;
210         bfin_memmap.map[i].type = type;
211         bfin_memmap.nr_map++;
212 }
213
214 /*
215  * Sanitize the boot memmap, removing overlaps.
216  */
217 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
218 {
219         struct change_member *change_tmp;
220         unsigned long current_type, last_type;
221         unsigned long long last_addr;
222         int chgidx, still_changing;
223         int overlap_entries;
224         int new_entry;
225         int old_nr, new_nr, chg_nr;
226         int i;
227
228         /*
229                 Visually we're performing the following (1,2,3,4 = memory types)
230
231                 Sample memory map (w/overlaps):
232                    ____22__________________
233                    ______________________4_
234                    ____1111________________
235                    _44_____________________
236                    11111111________________
237                    ____________________33__
238                    ___________44___________
239                    __________33333_________
240                    ______________22________
241                    ___________________2222_
242                    _________111111111______
243                    _____________________11_
244                    _________________4______
245
246                 Sanitized equivalent (no overlap):
247                    1_______________________
248                    _44_____________________
249                    ___1____________________
250                    ____22__________________
251                    ______11________________
252                    _________1______________
253                    __________3_____________
254                    ___________44___________
255                    _____________33_________
256                    _______________2________
257                    ________________1_______
258                    _________________4______
259                    ___________________2____
260                    ____________________33__
261                    ______________________4_
262         */
263         /* if there's only one memory region, don't bother */
264         if (*pnr_map < 2)
265                 return -1;
266
267         old_nr = *pnr_map;
268
269         /* bail out if we find any unreasonable addresses in memmap */
270         for (i = 0; i < old_nr; i++)
271                 if (map[i].addr + map[i].size < map[i].addr)
272                         return -1;
273
274         /* create pointers for initial change-point information (for sorting) */
275         for (i = 0; i < 2*old_nr; i++)
276                 change_point[i] = &change_point_list[i];
277
278         /* record all known change-points (starting and ending addresses),
279            omitting those that are for empty memory regions */
280         chgidx = 0;
281         for (i = 0; i < old_nr; i++) {
282                 if (map[i].size != 0) {
283                         change_point[chgidx]->addr = map[i].addr;
284                         change_point[chgidx++]->pentry = &map[i];
285                         change_point[chgidx]->addr = map[i].addr + map[i].size;
286                         change_point[chgidx++]->pentry = &map[i];
287                 }
288         }
289         chg_nr = chgidx;        /* true number of change-points */
290
291         /* sort change-point list by memory addresses (low -> high) */
292         still_changing = 1;
293         while (still_changing) {
294                 still_changing = 0;
295                 for (i = 1; i < chg_nr; i++) {
296                         /* if <current_addr> > <last_addr>, swap */
297                         /* or, if current=<start_addr> & last=<end_addr>, swap */
298                         if ((change_point[i]->addr < change_point[i-1]->addr) ||
299                                 ((change_point[i]->addr == change_point[i-1]->addr) &&
300                                  (change_point[i]->addr == change_point[i]->pentry->addr) &&
301                                  (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
302                            ) {
303                                 change_tmp = change_point[i];
304                                 change_point[i] = change_point[i-1];
305                                 change_point[i-1] = change_tmp;
306                                 still_changing = 1;
307                         }
308                 }
309         }
310
311         /* create a new memmap, removing overlaps */
312         overlap_entries = 0;    /* number of entries in the overlap table */
313         new_entry = 0;          /* index for creating new memmap entries */
314         last_type = 0;          /* start with undefined memory type */
315         last_addr = 0;          /* start with 0 as last starting address */
316         /* loop through change-points, determining affect on the new memmap */
317         for (chgidx = 0; chgidx < chg_nr; chgidx++) {
318                 /* keep track of all overlapping memmap entries */
319                 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
320                         /* add map entry to overlap list (> 1 entry implies an overlap) */
321                         overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
322                 } else {
323                         /* remove entry from list (order independent, so swap with last) */
324                         for (i = 0; i < overlap_entries; i++) {
325                                 if (overlap_list[i] == change_point[chgidx]->pentry)
326                                         overlap_list[i] = overlap_list[overlap_entries-1];
327                         }
328                         overlap_entries--;
329                 }
330                 /* if there are overlapping entries, decide which "type" to use */
331                 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
332                 current_type = 0;
333                 for (i = 0; i < overlap_entries; i++)
334                         if (overlap_list[i]->type > current_type)
335                                 current_type = overlap_list[i]->type;
336                 /* continue building up new memmap based on this information */
337                 if (current_type != last_type) {
338                         if (last_type != 0) {
339                                 new_map[new_entry].size =
340                                         change_point[chgidx]->addr - last_addr;
341                                 /* move forward only if the new size was non-zero */
342                                 if (new_map[new_entry].size != 0)
343                                         if (++new_entry >= BFIN_MEMMAP_MAX)
344                                                 break;  /* no more space left for new entries */
345                         }
346                         if (current_type != 0) {
347                                 new_map[new_entry].addr = change_point[chgidx]->addr;
348                                 new_map[new_entry].type = current_type;
349                                 last_addr = change_point[chgidx]->addr;
350                         }
351                         last_type = current_type;
352                 }
353         }
354         new_nr = new_entry;     /* retain count for new entries */
355
356         /* copy new mapping into original location */
357         memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
358         *pnr_map = new_nr;
359
360         return 0;
361 }
362
363 static void __init print_memory_map(char *who)
364 {
365         int i;
366
367         for (i = 0; i < bfin_memmap.nr_map; i++) {
368                 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
369                         bfin_memmap.map[i].addr,
370                         bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
371                 switch (bfin_memmap.map[i].type) {
372                 case BFIN_MEMMAP_RAM:
373                                 printk("(usable)\n");
374                                 break;
375                 case BFIN_MEMMAP_RESERVED:
376                                 printk("(reserved)\n");
377                                 break;
378                 default:        printk("type %lu\n", bfin_memmap.map[i].type);
379                                 break;
380                 }
381         }
382 }
383
384 static __init int parse_memmap(char *arg)
385 {
386         unsigned long long start_at, mem_size;
387
388         if (!arg)
389                 return -EINVAL;
390
391         mem_size = memparse(arg, &arg);
392         if (*arg == '@') {
393                 start_at = memparse(arg+1, &arg);
394                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
395         } else if (*arg == '$') {
396                 start_at = memparse(arg+1, &arg);
397                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
398         }
399
400         return 0;
401 }
402
403 /*
404  * Initial parsing of the command line.  Currently, we support:
405  *  - Controlling the linux memory size: mem=xxx[KMG]
406  *  - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
407  *       $ -> reserved memory is dcacheable
408  *       # -> reserved memory is icacheable
409  *  - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
410  *       @ from <start> to <start>+<mem>, type RAM
411  *       $ from <start> to <start>+<mem>, type RESERVED
412  */
413 static __init void parse_cmdline_early(char *cmdline_p)
414 {
415         char c = ' ', *to = cmdline_p;
416         unsigned int memsize;
417         for (;;) {
418                 if (c == ' ') {
419                         if (!memcmp(to, "mem=", 4)) {
420                                 to += 4;
421                                 memsize = memparse(to, &to);
422                                 if (memsize)
423                                         _ramend = memsize;
424
425                         } else if (!memcmp(to, "max_mem=", 8)) {
426                                 to += 8;
427                                 memsize = memparse(to, &to);
428                                 if (memsize) {
429                                         physical_mem_end = memsize;
430                                         if (*to != ' ') {
431                                                 if (*to == '$'
432                                                     || *(to + 1) == '$')
433                                                         reserved_mem_dcache_on = 1;
434                                                 if (*to == '#'
435                                                     || *(to + 1) == '#')
436                                                         reserved_mem_icache_on = 1;
437                                         }
438                                 }
439                         } else if (!memcmp(to, "clkin_hz=", 9)) {
440                                 to += 9;
441                                 early_init_clkin_hz(to);
442                         } else if (!memcmp(to, "earlyprintk=", 12)) {
443                                 to += 12;
444                                 setup_early_printk(to);
445                         } else if (!memcmp(to, "memmap=", 7)) {
446                                 to += 7;
447                                 parse_memmap(to);
448                         }
449                 }
450                 c = *(to++);
451                 if (!c)
452                         break;
453         }
454 }
455
456 /*
457  * Setup memory defaults from user config.
458  * The physical memory layout looks like:
459  *
460  *  [_rambase, _ramstart]:              kernel image
461  *  [memory_start, memory_end]:         dynamic memory managed by kernel
462  *  [memory_end, _ramend]:              reserved memory
463  *      [memory_mtd_start(memory_end),
464  *              memory_mtd_start + mtd_size]:   rootfs (if any)
465  *      [_ramend - DMA_UNCACHED_REGION,
466  *              _ramend]:                       uncached DMA region
467  *  [_ramend, physical_mem_end]:        memory not managed by kernel
468  */
469 static __init void memory_setup(void)
470 {
471 #ifdef CONFIG_MTD_UCLINUX
472         unsigned long mtd_phys = 0;
473 #endif
474
475         _rambase = (unsigned long)_stext;
476         _ramstart = (unsigned long)_end;
477
478         if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
479                 console_init();
480                 panic("DMA region exceeds memory limit: %lu.\n",
481                         _ramend - _ramstart);
482         }
483         memory_end = _ramend - DMA_UNCACHED_REGION;
484
485 #ifdef CONFIG_MPU
486         /* Round up to multiple of 4MB */
487         memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
488 #else
489         memory_start = PAGE_ALIGN(_ramstart);
490 #endif
491
492 #if defined(CONFIG_MTD_UCLINUX)
493         /* generic memory mapped MTD driver */
494         memory_mtd_end = memory_end;
495
496         mtd_phys = _ramstart;
497         mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
498
499 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
500         if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
501                 mtd_size =
502                     PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
503 # endif
504
505 # if defined(CONFIG_CRAMFS)
506         if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
507                 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
508 # endif
509
510 # if defined(CONFIG_ROMFS_FS)
511         if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
512             && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1)
513                 mtd_size =
514                     PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
515 #  if (defined(CONFIG_BFIN_ICACHE) && ANOMALY_05000263)
516         /* Due to a Hardware Anomaly we need to limit the size of usable
517          * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
518          * 05000263 - Hardware loop corrupted when taking an ICPLB exception
519          */
520 #   if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
521         if (memory_end >= 56 * 1024 * 1024)
522                 memory_end = 56 * 1024 * 1024;
523 #   else
524         if (memory_end >= 60 * 1024 * 1024)
525                 memory_end = 60 * 1024 * 1024;
526 #   endif                               /* CONFIG_DEBUG_HUNT_FOR_ZERO */
527 #  endif                                /* ANOMALY_05000263 */
528 # endif                         /* CONFIG_ROMFS_FS */
529
530         memory_end -= mtd_size;
531
532         if (mtd_size == 0) {
533                 console_init();
534                 panic("Don't boot kernel without rootfs attached.\n");
535         }
536
537         /* Relocate MTD image to the top of memory after the uncached memory area */
538         dma_memcpy((char *)memory_end, _end, mtd_size);
539
540         memory_mtd_start = memory_end;
541         _ebss = memory_mtd_start;       /* define _ebss for compatible */
542 #endif                          /* CONFIG_MTD_UCLINUX */
543
544 #if (defined(CONFIG_BFIN_ICACHE) && ANOMALY_05000263)
545         /* Due to a Hardware Anomaly we need to limit the size of usable
546          * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
547          * 05000263 - Hardware loop corrupted when taking an ICPLB exception
548          */
549 #if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
550         if (memory_end >= 56 * 1024 * 1024)
551                 memory_end = 56 * 1024 * 1024;
552 #else
553         if (memory_end >= 60 * 1024 * 1024)
554                 memory_end = 60 * 1024 * 1024;
555 #endif                          /* CONFIG_DEBUG_HUNT_FOR_ZERO */
556         printk(KERN_NOTICE "Warning: limiting memory to %liMB due to hardware anomaly 05000263\n", memory_end >> 20);
557 #endif                          /* ANOMALY_05000263 */
558
559 #ifdef CONFIG_MPU
560         page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
561         page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
562 #endif
563
564 #if !defined(CONFIG_MTD_UCLINUX)
565         /*In case there is no valid CPLB behind memory_end make sure we don't get to close*/
566         memory_end -= SIZE_4K;
567 #endif
568
569         init_mm.start_code = (unsigned long)_stext;
570         init_mm.end_code = (unsigned long)_etext;
571         init_mm.end_data = (unsigned long)_edata;
572         init_mm.brk = (unsigned long)0;
573
574         printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
575         printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
576
577         printk(KERN_INFO "Memory map:\n"
578                 KERN_INFO "  fixedcode = 0x%p-0x%p\n"
579                 KERN_INFO "  text      = 0x%p-0x%p\n"
580                 KERN_INFO "  rodata    = 0x%p-0x%p\n"
581                 KERN_INFO "  bss       = 0x%p-0x%p\n"
582                 KERN_INFO "  data      = 0x%p-0x%p\n"
583                 KERN_INFO "    stack   = 0x%p-0x%p\n"
584                 KERN_INFO "  init      = 0x%p-0x%p\n"
585                 KERN_INFO "  available = 0x%p-0x%p\n"
586 #ifdef CONFIG_MTD_UCLINUX
587                 KERN_INFO "  rootfs    = 0x%p-0x%p\n"
588 #endif
589 #if DMA_UNCACHED_REGION > 0
590                 KERN_INFO "  DMA Zone  = 0x%p-0x%p\n"
591 #endif
592                 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
593                 _stext, _etext,
594                 __start_rodata, __end_rodata,
595                 __bss_start, __bss_stop,
596                 _sdata, _edata,
597                 (void *)&init_thread_union,
598                 (void *)((int)(&init_thread_union) + 0x2000),
599                 __init_begin, __init_end,
600                 (void *)_ramstart, (void *)memory_end
601 #ifdef CONFIG_MTD_UCLINUX
602                 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
603 #endif
604 #if DMA_UNCACHED_REGION > 0
605                 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
606 #endif
607                 );
608 }
609
610 /*
611  * Find the lowest, highest page frame number we have available
612  */
613 void __init find_min_max_pfn(void)
614 {
615         int i;
616
617         max_pfn = 0;
618         min_low_pfn = memory_end;
619
620         for (i = 0; i < bfin_memmap.nr_map; i++) {
621                 unsigned long start, end;
622                 /* RAM? */
623                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
624                         continue;
625                 start = PFN_UP(bfin_memmap.map[i].addr);
626                 end = PFN_DOWN(bfin_memmap.map[i].addr +
627                                 bfin_memmap.map[i].size);
628                 if (start >= end)
629                         continue;
630                 if (end > max_pfn)
631                         max_pfn = end;
632                 if (start < min_low_pfn)
633                         min_low_pfn = start;
634         }
635 }
636
637 static __init void setup_bootmem_allocator(void)
638 {
639         int bootmap_size;
640         int i;
641         unsigned long start_pfn, end_pfn;
642         unsigned long curr_pfn, last_pfn, size;
643
644         /* mark memory between memory_start and memory_end usable */
645         add_memory_region(memory_start,
646                 memory_end - memory_start, BFIN_MEMMAP_RAM);
647         /* sanity check for overlap */
648         sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
649         print_memory_map("boot memmap");
650
651         /* intialize globals in linux/bootmem.h */
652         find_min_max_pfn();
653         /* pfn of the last usable page frame */
654         if (max_pfn > memory_end >> PAGE_SHIFT)
655                 max_pfn = memory_end >> PAGE_SHIFT;
656         /* pfn of last page frame directly mapped by kernel */
657         max_low_pfn = max_pfn;
658         /* pfn of the first usable page frame after kernel image*/
659         if (min_low_pfn < memory_start >> PAGE_SHIFT)
660                 min_low_pfn = memory_start >> PAGE_SHIFT;
661
662         start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
663         end_pfn = memory_end >> PAGE_SHIFT;
664
665         /*
666          * give all the memory to the bootmap allocator, tell it to put the
667          * boot mem_map at the start of memory.
668          */
669         bootmap_size = init_bootmem_node(NODE_DATA(0),
670                         memory_start >> PAGE_SHIFT,     /* map goes here */
671                         start_pfn, end_pfn);
672
673         /* register the memmap regions with the bootmem allocator */
674         for (i = 0; i < bfin_memmap.nr_map; i++) {
675                 /*
676                  * Reserve usable memory
677                  */
678                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
679                         continue;
680                 /*
681                  * We are rounding up the start address of usable memory:
682                  */
683                 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
684                 if (curr_pfn >= end_pfn)
685                         continue;
686                 /*
687                  * ... and at the end of the usable range downwards:
688                  */
689                 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
690                                          bfin_memmap.map[i].size);
691
692                 if (last_pfn > end_pfn)
693                         last_pfn = end_pfn;
694
695                 /*
696                  * .. finally, did all the rounding and playing
697                  * around just make the area go away?
698                  */
699                 if (last_pfn <= curr_pfn)
700                         continue;
701
702                 size = last_pfn - curr_pfn;
703                 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
704         }
705
706         /* reserve memory before memory_start, including bootmap */
707         reserve_bootmem(PAGE_OFFSET,
708                 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
709                 BOOTMEM_DEFAULT);
710 }
711
712 #define EBSZ_TO_MEG(ebsz) \
713 ({ \
714         int meg = 0; \
715         switch (ebsz & 0xf) { \
716                 case 0x1: meg =  16; break; \
717                 case 0x3: meg =  32; break; \
718                 case 0x5: meg =  64; break; \
719                 case 0x7: meg = 128; break; \
720                 case 0x9: meg = 256; break; \
721                 case 0xb: meg = 512; break; \
722         } \
723         meg; \
724 })
725 static inline int __init get_mem_size(void)
726 {
727 #if defined(EBIU_SDBCTL)
728 # if defined(BF561_FAMILY)
729         int ret = 0;
730         u32 sdbctl = bfin_read_EBIU_SDBCTL();
731         ret += EBSZ_TO_MEG(sdbctl >>  0);
732         ret += EBSZ_TO_MEG(sdbctl >>  8);
733         ret += EBSZ_TO_MEG(sdbctl >> 16);
734         ret += EBSZ_TO_MEG(sdbctl >> 24);
735         return ret;
736 # else
737         return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
738 # endif
739 #elif defined(EBIU_DDRCTL1)
740         u32 ddrctl = bfin_read_EBIU_DDRCTL1();
741         int ret = 0;
742         switch (ddrctl & 0xc0000) {
743                 case DEVSZ_64:  ret = 64 / 8;
744                 case DEVSZ_128: ret = 128 / 8;
745                 case DEVSZ_256: ret = 256 / 8;
746                 case DEVSZ_512: ret = 512 / 8;
747         }
748         switch (ddrctl & 0x30000) {
749                 case DEVWD_4:  ret *= 2;
750                 case DEVWD_8:  ret *= 2;
751                 case DEVWD_16: break;
752         }
753         if ((ddrctl & 0xc000) == 0x4000)
754                 ret *= 2;
755         return ret;
756 #endif
757         BUG();
758 }
759
760 void __init setup_arch(char **cmdline_p)
761 {
762         unsigned long sclk, cclk;
763
764 #ifdef CONFIG_DUMMY_CONSOLE
765         conswitchp = &dummy_con;
766 #endif
767
768 #if defined(CONFIG_CMDLINE_BOOL)
769         strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
770         command_line[sizeof(command_line) - 1] = 0;
771 #endif
772
773         /* Keep a copy of command line */
774         *cmdline_p = &command_line[0];
775         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
776         boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
777
778         /* setup memory defaults from the user config */
779         physical_mem_end = 0;
780         _ramend = get_mem_size() * 1024 * 1024;
781
782         memset(&bfin_memmap, 0, sizeof(bfin_memmap));
783
784         parse_cmdline_early(&command_line[0]);
785
786         if (physical_mem_end == 0)
787                 physical_mem_end = _ramend;
788
789         memory_setup();
790
791         /* Initialize Async memory banks */
792         bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
793         bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
794         bfin_write_EBIU_AMGCTL(AMGCTLVAL);
795 #ifdef CONFIG_EBIU_MBSCTLVAL
796         bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
797         bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
798         bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
799 #endif
800
801         cclk = get_cclk();
802         sclk = get_sclk();
803
804 #if !defined(CONFIG_BFIN_KERNEL_CLOCK)
805         if (ANOMALY_05000273 && cclk == sclk)
806                 panic("ANOMALY 05000273, SCLK can not be same as CCLK");
807 #endif
808
809 #ifdef BF561_FAMILY
810         if (ANOMALY_05000266) {
811                 bfin_read_IMDMA_D0_IRQ_STATUS();
812                 bfin_read_IMDMA_D1_IRQ_STATUS();
813         }
814 #endif
815         printk(KERN_INFO "Hardware Trace ");
816         if (bfin_read_TBUFCTL() & 0x1)
817                 printk("Active ");
818         else
819                 printk("Off ");
820         if (bfin_read_TBUFCTL() & 0x2)
821                 printk("and Enabled\n");
822         else
823         printk("and Disabled\n");
824
825 #if defined(CONFIG_CHR_DEV_FLASH) || defined(CONFIG_BLK_DEV_FLASH)
826         /* we need to initialize the Flashrom device here since we might
827          * do things with flash early on in the boot
828          */
829         flash_probe();
830 #endif
831
832         printk(KERN_INFO "Boot Mode: %i\n", bfin_read_SYSCR() & 0xF);
833
834         /* Newer parts mirror SWRST bits in SYSCR */
835 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
836     defined(CONFIG_BF538) || defined(CONFIG_BF539)
837         _bfin_swrst = bfin_read_SWRST();
838 #else
839         _bfin_swrst = bfin_read_SYSCR();
840 #endif
841
842 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
843         bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
844 #endif
845 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
846         bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
847 #endif
848
849 #ifdef CONFIG_SMP
850         if (_bfin_swrst & SWRST_DBL_FAULT_A) {
851 #else
852         if (_bfin_swrst & RESET_DOUBLE) {
853 #endif
854                 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
855 #ifdef CONFIG_DEBUG_DOUBLEFAULT
856                 /* We assume the crashing kernel, and the current symbol table match */
857                 printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
858                         (int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
859                 printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
860                 printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
861 #endif
862                 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
863                         init_retx);
864         } else if (_bfin_swrst & RESET_WDOG)
865                 printk(KERN_INFO "Recovering from Watchdog event\n");
866         else if (_bfin_swrst & RESET_SOFTWARE)
867                 printk(KERN_NOTICE "Reset caused by Software reset\n");
868
869         printk(KERN_INFO "Blackfin support (C) 2004-2009 Analog Devices, Inc.\n");
870         if (bfin_compiled_revid() == 0xffff)
871                 printk(KERN_INFO "Compiled for ADSP-%s Rev any\n", CPU);
872         else if (bfin_compiled_revid() == -1)
873                 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
874         else
875                 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
876
877         if (unlikely(CPUID != bfin_cpuid()))
878                 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
879                         CPU, bfin_cpuid(), bfin_revid());
880         else {
881                 if (bfin_revid() != bfin_compiled_revid()) {
882                         if (bfin_compiled_revid() == -1)
883                                 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
884                                        bfin_revid());
885                         else if (bfin_compiled_revid() != 0xffff) {
886                                 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
887                                        bfin_compiled_revid(), bfin_revid());
888                                 if (bfin_compiled_revid() > bfin_revid())
889                                         panic("Error: you are missing anomaly workarounds for this rev\n");
890                         }
891                 }
892                 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
893                         printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
894                                CPU, bfin_revid());
895         }
896
897         /* We can't run on BF548-0.1 due to ANOMALY 05000448 */
898         if (bfin_cpuid() == 0x27de && bfin_revid() == 1)
899                 panic("You can't run on this processor due to 05000448\n");
900
901         printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
902
903         printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
904                cclk / 1000000, sclk / 1000000);
905
906         if (ANOMALY_05000273 && (cclk >> 1) <= sclk)
907                 printk("\n\n\nANOMALY_05000273: CCLK must be >= 2*SCLK !!!\n\n\n");
908
909         setup_bootmem_allocator();
910
911         paging_init();
912
913         /* Copy atomic sequences to their fixed location, and sanity check that
914            these locations are the ones that we advertise to userspace.  */
915         memcpy((void *)FIXED_CODE_START, &fixed_code_start,
916                FIXED_CODE_END - FIXED_CODE_START);
917         BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
918                != SIGRETURN_STUB - FIXED_CODE_START);
919         BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
920                != ATOMIC_XCHG32 - FIXED_CODE_START);
921         BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
922                != ATOMIC_CAS32 - FIXED_CODE_START);
923         BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
924                != ATOMIC_ADD32 - FIXED_CODE_START);
925         BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
926                != ATOMIC_SUB32 - FIXED_CODE_START);
927         BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
928                != ATOMIC_IOR32 - FIXED_CODE_START);
929         BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
930                != ATOMIC_AND32 - FIXED_CODE_START);
931         BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
932                != ATOMIC_XOR32 - FIXED_CODE_START);
933         BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
934                 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
935
936 #ifdef CONFIG_SMP
937         platform_init_cpus();
938 #endif
939         init_exception_vectors();
940         bfin_cache_init();      /* Initialize caches for the boot CPU */
941 }
942
943 static int __init topology_init(void)
944 {
945         unsigned int cpu;
946         /* Record CPU-private information for the boot processor. */
947         bfin_setup_cpudata(0);
948
949         for_each_possible_cpu(cpu) {
950                 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
951         }
952
953         return 0;
954 }
955
956 subsys_initcall(topology_init);
957
958 /* Get the input clock frequency */
959 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
960 static u_long get_clkin_hz(void)
961 {
962         return cached_clkin_hz;
963 }
964 static int __init early_init_clkin_hz(char *buf)
965 {
966         cached_clkin_hz = simple_strtoul(buf, NULL, 0);
967 #ifdef BFIN_KERNEL_CLOCK
968         if (cached_clkin_hz != CONFIG_CLKIN_HZ)
969                 panic("cannot change clkin_hz when reprogramming clocks");
970 #endif
971         return 1;
972 }
973 early_param("clkin_hz=", early_init_clkin_hz);
974
975 /* Get the voltage input multiplier */
976 static u_long get_vco(void)
977 {
978         static u_long cached_vco;
979         u_long msel, pll_ctl;
980
981         /* The assumption here is that VCO never changes at runtime.
982          * If, someday, we support that, then we'll have to change this.
983          */
984         if (cached_vco)
985                 return cached_vco;
986
987         pll_ctl = bfin_read_PLL_CTL();
988         msel = (pll_ctl >> 9) & 0x3F;
989         if (0 == msel)
990                 msel = 64;
991
992         cached_vco = get_clkin_hz();
993         cached_vco >>= (1 & pll_ctl);   /* DF bit */
994         cached_vco *= msel;
995         return cached_vco;
996 }
997
998 /* Get the Core clock */
999 u_long get_cclk(void)
1000 {
1001         static u_long cached_cclk_pll_div, cached_cclk;
1002         u_long csel, ssel;
1003
1004         if (bfin_read_PLL_STAT() & 0x1)
1005                 return get_clkin_hz();
1006
1007         ssel = bfin_read_PLL_DIV();
1008         if (ssel == cached_cclk_pll_div)
1009                 return cached_cclk;
1010         else
1011                 cached_cclk_pll_div = ssel;
1012
1013         csel = ((ssel >> 4) & 0x03);
1014         ssel &= 0xf;
1015         if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
1016                 cached_cclk = get_vco() / ssel;
1017         else
1018                 cached_cclk = get_vco() >> csel;
1019         return cached_cclk;
1020 }
1021 EXPORT_SYMBOL(get_cclk);
1022
1023 /* Get the System clock */
1024 u_long get_sclk(void)
1025 {
1026         static u_long cached_sclk;
1027         u_long ssel;
1028
1029         /* The assumption here is that SCLK never changes at runtime.
1030          * If, someday, we support that, then we'll have to change this.
1031          */
1032         if (cached_sclk)
1033                 return cached_sclk;
1034
1035         if (bfin_read_PLL_STAT() & 0x1)
1036                 return get_clkin_hz();
1037
1038         ssel = bfin_read_PLL_DIV() & 0xf;
1039         if (0 == ssel) {
1040                 printk(KERN_WARNING "Invalid System Clock\n");
1041                 ssel = 1;
1042         }
1043
1044         cached_sclk = get_vco() / ssel;
1045         return cached_sclk;
1046 }
1047 EXPORT_SYMBOL(get_sclk);
1048
1049 unsigned long sclk_to_usecs(unsigned long sclk)
1050 {
1051         u64 tmp = USEC_PER_SEC * (u64)sclk;
1052         do_div(tmp, get_sclk());
1053         return tmp;
1054 }
1055 EXPORT_SYMBOL(sclk_to_usecs);
1056
1057 unsigned long usecs_to_sclk(unsigned long usecs)
1058 {
1059         u64 tmp = get_sclk() * (u64)usecs;
1060         do_div(tmp, USEC_PER_SEC);
1061         return tmp;
1062 }
1063 EXPORT_SYMBOL(usecs_to_sclk);
1064
1065 /*
1066  *      Get CPU information for use by the procfs.
1067  */
1068 static int show_cpuinfo(struct seq_file *m, void *v)
1069 {
1070         char *cpu, *mmu, *fpu, *vendor, *cache;
1071         uint32_t revid;
1072         int cpu_num = *(unsigned int *)v;
1073         u_long sclk, cclk;
1074         u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1075         struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1076
1077         cpu = CPU;
1078         mmu = "none";
1079         fpu = "none";
1080         revid = bfin_revid();
1081
1082         sclk = get_sclk();
1083         cclk = get_cclk();
1084
1085         switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1086         case 0xca:
1087                 vendor = "Analog Devices";
1088                 break;
1089         default:
1090                 vendor = "unknown";
1091                 break;
1092         }
1093
1094         seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1095
1096         if (CPUID == bfin_cpuid())
1097                 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1098         else
1099                 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1100                         CPUID, bfin_cpuid());
1101
1102         seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1103                 "stepping\t: %d\n",
1104                 cpu, cclk/1000000, sclk/1000000,
1105 #ifdef CONFIG_MPU
1106                 "mpu on",
1107 #else
1108                 "mpu off",
1109 #endif
1110                 revid);
1111
1112         seq_printf(m, "cpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1113                 cclk/1000000, cclk%1000000,
1114                 sclk/1000000, sclk%1000000);
1115         seq_printf(m, "bogomips\t: %lu.%02lu\n"
1116                 "Calibration\t: %lu loops\n",
1117                 (cpudata->loops_per_jiffy * HZ) / 500000,
1118                 ((cpudata->loops_per_jiffy * HZ) / 5000) % 100,
1119                 (cpudata->loops_per_jiffy * HZ));
1120
1121         /* Check Cache configutation */
1122         switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1123         case ACACHE_BSRAM:
1124                 cache = "dbank-A/B\t: cache/sram";
1125                 dcache_size = 16;
1126                 dsup_banks = 1;
1127                 break;
1128         case ACACHE_BCACHE:
1129                 cache = "dbank-A/B\t: cache/cache";
1130                 dcache_size = 32;
1131                 dsup_banks = 2;
1132                 break;
1133         case ASRAM_BSRAM:
1134                 cache = "dbank-A/B\t: sram/sram";
1135                 dcache_size = 0;
1136                 dsup_banks = 0;
1137                 break;
1138         default:
1139                 cache = "unknown";
1140                 dcache_size = 0;
1141                 dsup_banks = 0;
1142                 break;
1143         }
1144
1145         /* Is it turned on? */
1146         if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1147                 dcache_size = 0;
1148
1149         if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1150                 icache_size = 0;
1151
1152         seq_printf(m, "cache size\t: %d KB(L1 icache) "
1153                 "%d KB(L1 dcache%s) %d KB(L2 cache)\n",
1154                 icache_size, dcache_size,
1155 #if defined CONFIG_BFIN_WB
1156                 "-wb"
1157 #elif defined CONFIG_BFIN_WT
1158                 "-wt"
1159 #endif
1160                 "", 0);
1161
1162         seq_printf(m, "%s\n", cache);
1163
1164         if (icache_size)
1165                 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1166                            BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1167         else
1168                 seq_printf(m, "icache setup\t: off\n");
1169
1170         seq_printf(m,
1171                    "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1172                    dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1173                    BFIN_DLINES);
1174 #ifdef __ARCH_SYNC_CORE_DCACHE
1175         seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", cpudata->dcache_invld_count);
1176 #endif
1177 #ifdef CONFIG_BFIN_ICACHE_LOCK
1178         switch ((cpudata->imemctl >> 3) & WAYALL_L) {
1179         case WAY0_L:
1180                 seq_printf(m, "Way0 Locked-Down\n");
1181                 break;
1182         case WAY1_L:
1183                 seq_printf(m, "Way1 Locked-Down\n");
1184                 break;
1185         case WAY01_L:
1186                 seq_printf(m, "Way0,Way1 Locked-Down\n");
1187                 break;
1188         case WAY2_L:
1189                 seq_printf(m, "Way2 Locked-Down\n");
1190                 break;
1191         case WAY02_L:
1192                 seq_printf(m, "Way0,Way2 Locked-Down\n");
1193                 break;
1194         case WAY12_L:
1195                 seq_printf(m, "Way1,Way2 Locked-Down\n");
1196                 break;
1197         case WAY012_L:
1198                 seq_printf(m, "Way0,Way1 & Way2 Locked-Down\n");
1199                 break;
1200         case WAY3_L:
1201                 seq_printf(m, "Way3 Locked-Down\n");
1202                 break;
1203         case WAY03_L:
1204                 seq_printf(m, "Way0,Way3 Locked-Down\n");
1205                 break;
1206         case WAY13_L:
1207                 seq_printf(m, "Way1,Way3 Locked-Down\n");
1208                 break;
1209         case WAY013_L:
1210                 seq_printf(m, "Way 0,Way1,Way3 Locked-Down\n");
1211                 break;
1212         case WAY32_L:
1213                 seq_printf(m, "Way3,Way2 Locked-Down\n");
1214                 break;
1215         case WAY320_L:
1216                 seq_printf(m, "Way3,Way2,Way0 Locked-Down\n");
1217                 break;
1218         case WAY321_L:
1219                 seq_printf(m, "Way3,Way2,Way1 Locked-Down\n");
1220                 break;
1221         case WAYALL_L:
1222                 seq_printf(m, "All Ways are locked\n");
1223                 break;
1224         default:
1225                 seq_printf(m, "No Ways are locked\n");
1226         }
1227 #endif
1228
1229         if (cpu_num != num_possible_cpus() - 1)
1230                 return 0;
1231
1232         if (L2_LENGTH)
1233                 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1234         seq_printf(m, "board name\t: %s\n", bfin_board_name);
1235         seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1236                  physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
1237         seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1238                 ((int)memory_end - (int)_stext) >> 10,
1239                 _stext,
1240                 (void *)memory_end);
1241         seq_printf(m, "\n");
1242
1243         return 0;
1244 }
1245
1246 static void *c_start(struct seq_file *m, loff_t *pos)
1247 {
1248         if (*pos == 0)
1249                 *pos = first_cpu(cpu_online_map);
1250         if (*pos >= num_online_cpus())
1251                 return NULL;
1252
1253         return pos;
1254 }
1255
1256 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1257 {
1258         *pos = next_cpu(*pos, cpu_online_map);
1259
1260         return c_start(m, pos);
1261 }
1262
1263 static void c_stop(struct seq_file *m, void *v)
1264 {
1265 }
1266
1267 const struct seq_operations cpuinfo_op = {
1268         .start = c_start,
1269         .next = c_next,
1270         .stop = c_stop,
1271         .show = show_cpuinfo,
1272 };
1273
1274 void __init cmdline_init(const char *r0)
1275 {
1276         if (r0)
1277                 strncpy(command_line, r0, COMMAND_LINE_SIZE);
1278 }