1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
40 #include "extent_map.h"
43 #include "localalloc.h"
50 #include "buffer_head_io.h"
54 * Operations for a specific extent tree type.
56 * To implement an on-disk btree (extent tree) type in ocfs2, add
57 * an ocfs2_extent_tree_operations structure and the matching
58 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
59 * for the allocation portion of the extent tree.
61 struct ocfs2_extent_tree_operations {
63 * last_eb_blk is the block number of the right most leaf extent
64 * block. Most on-disk structures containing an extent tree store
65 * this value for fast access. The ->eo_set_last_eb_blk() and
66 * ->eo_get_last_eb_blk() operations access this value. They are
69 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
71 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
74 * The on-disk structure usually keeps track of how many total
75 * clusters are stored in this extent tree. This function updates
76 * that value. new_clusters is the delta, and must be
77 * added to the total. Required.
79 void (*eo_update_clusters)(struct inode *inode,
80 struct ocfs2_extent_tree *et,
84 * If ->eo_insert_check() exists, it is called before rec is
85 * inserted into the extent tree. It is optional.
87 int (*eo_insert_check)(struct inode *inode,
88 struct ocfs2_extent_tree *et,
89 struct ocfs2_extent_rec *rec);
90 int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);
93 * --------------------------------------------------------------
94 * The remaining are internal to ocfs2_extent_tree and don't have
99 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
102 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
105 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
106 * it exists. If it does not, et->et_max_leaf_clusters is set
107 * to 0 (unlimited). Optional.
109 void (*eo_fill_max_leaf_clusters)(struct inode *inode,
110 struct ocfs2_extent_tree *et);
115 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
118 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
119 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
121 static void ocfs2_dinode_update_clusters(struct inode *inode,
122 struct ocfs2_extent_tree *et,
124 static int ocfs2_dinode_insert_check(struct inode *inode,
125 struct ocfs2_extent_tree *et,
126 struct ocfs2_extent_rec *rec);
127 static int ocfs2_dinode_sanity_check(struct inode *inode,
128 struct ocfs2_extent_tree *et);
129 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
130 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
131 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk,
132 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk,
133 .eo_update_clusters = ocfs2_dinode_update_clusters,
134 .eo_insert_check = ocfs2_dinode_insert_check,
135 .eo_sanity_check = ocfs2_dinode_sanity_check,
136 .eo_fill_root_el = ocfs2_dinode_fill_root_el,
139 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
142 struct ocfs2_dinode *di = et->et_object;
144 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
145 di->i_last_eb_blk = cpu_to_le64(blkno);
148 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
150 struct ocfs2_dinode *di = et->et_object;
152 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
153 return le64_to_cpu(di->i_last_eb_blk);
156 static void ocfs2_dinode_update_clusters(struct inode *inode,
157 struct ocfs2_extent_tree *et,
160 struct ocfs2_dinode *di = et->et_object;
162 le32_add_cpu(&di->i_clusters, clusters);
163 spin_lock(&OCFS2_I(inode)->ip_lock);
164 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
165 spin_unlock(&OCFS2_I(inode)->ip_lock);
168 static int ocfs2_dinode_insert_check(struct inode *inode,
169 struct ocfs2_extent_tree *et,
170 struct ocfs2_extent_rec *rec)
172 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
174 BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
175 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
176 (OCFS2_I(inode)->ip_clusters != rec->e_cpos),
177 "Device %s, asking for sparse allocation: inode %llu, "
178 "cpos %u, clusters %u\n",
180 (unsigned long long)OCFS2_I(inode)->ip_blkno,
182 OCFS2_I(inode)->ip_clusters);
187 static int ocfs2_dinode_sanity_check(struct inode *inode,
188 struct ocfs2_extent_tree *et)
191 struct ocfs2_dinode *di;
193 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
196 if (!OCFS2_IS_VALID_DINODE(di)) {
198 ocfs2_error(inode->i_sb,
199 "Inode %llu has invalid path root",
200 (unsigned long long)OCFS2_I(inode)->ip_blkno);
206 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
208 struct ocfs2_dinode *di = et->et_object;
210 et->et_root_el = &di->id2.i_list;
214 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
216 struct ocfs2_xattr_value_root *xv = et->et_object;
218 et->et_root_el = &xv->xr_list;
221 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
224 struct ocfs2_xattr_value_root *xv =
225 (struct ocfs2_xattr_value_root *)et->et_object;
227 xv->xr_last_eb_blk = cpu_to_le64(blkno);
230 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
232 struct ocfs2_xattr_value_root *xv =
233 (struct ocfs2_xattr_value_root *) et->et_object;
235 return le64_to_cpu(xv->xr_last_eb_blk);
238 static void ocfs2_xattr_value_update_clusters(struct inode *inode,
239 struct ocfs2_extent_tree *et,
242 struct ocfs2_xattr_value_root *xv =
243 (struct ocfs2_xattr_value_root *)et->et_object;
245 le32_add_cpu(&xv->xr_clusters, clusters);
248 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
249 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk,
250 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk,
251 .eo_update_clusters = ocfs2_xattr_value_update_clusters,
252 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el,
255 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
257 struct ocfs2_xattr_block *xb = et->et_object;
259 et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
262 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
263 struct ocfs2_extent_tree *et)
265 et->et_max_leaf_clusters =
266 ocfs2_clusters_for_bytes(inode->i_sb,
267 OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
270 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
273 struct ocfs2_xattr_block *xb = et->et_object;
274 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
276 xt->xt_last_eb_blk = cpu_to_le64(blkno);
279 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
281 struct ocfs2_xattr_block *xb = et->et_object;
282 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
284 return le64_to_cpu(xt->xt_last_eb_blk);
287 static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
288 struct ocfs2_extent_tree *et,
291 struct ocfs2_xattr_block *xb = et->et_object;
293 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
296 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
297 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk,
298 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk,
299 .eo_update_clusters = ocfs2_xattr_tree_update_clusters,
300 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el,
301 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
304 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
306 struct buffer_head *bh,
308 struct ocfs2_extent_tree_operations *ops)
313 obj = (void *)bh->b_data;
316 et->et_ops->eo_fill_root_el(et);
317 if (!et->et_ops->eo_fill_max_leaf_clusters)
318 et->et_max_leaf_clusters = 0;
320 et->et_ops->eo_fill_max_leaf_clusters(inode, et);
323 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
325 struct buffer_head *bh)
327 __ocfs2_init_extent_tree(et, inode, bh, NULL, &ocfs2_dinode_et_ops);
330 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
332 struct buffer_head *bh)
334 __ocfs2_init_extent_tree(et, inode, bh, NULL,
335 &ocfs2_xattr_tree_et_ops);
338 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
340 struct buffer_head *bh,
341 struct ocfs2_xattr_value_root *xv)
343 __ocfs2_init_extent_tree(et, inode, bh, xv,
344 &ocfs2_xattr_value_et_ops);
347 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
350 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
353 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
355 return et->et_ops->eo_get_last_eb_blk(et);
358 static inline void ocfs2_et_update_clusters(struct inode *inode,
359 struct ocfs2_extent_tree *et,
362 et->et_ops->eo_update_clusters(inode, et, clusters);
365 static inline int ocfs2_et_insert_check(struct inode *inode,
366 struct ocfs2_extent_tree *et,
367 struct ocfs2_extent_rec *rec)
371 if (et->et_ops->eo_insert_check)
372 ret = et->et_ops->eo_insert_check(inode, et, rec);
376 static inline int ocfs2_et_sanity_check(struct inode *inode,
377 struct ocfs2_extent_tree *et)
381 if (et->et_ops->eo_sanity_check)
382 ret = et->et_ops->eo_sanity_check(inode, et);
386 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
387 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
388 struct ocfs2_extent_block *eb);
391 * Structures which describe a path through a btree, and functions to
394 * The idea here is to be as generic as possible with the tree
397 struct ocfs2_path_item {
398 struct buffer_head *bh;
399 struct ocfs2_extent_list *el;
402 #define OCFS2_MAX_PATH_DEPTH 5
406 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH];
409 #define path_root_bh(_path) ((_path)->p_node[0].bh)
410 #define path_root_el(_path) ((_path)->p_node[0].el)
411 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
412 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
413 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
416 * Reset the actual path elements so that we can re-use the structure
417 * to build another path. Generally, this involves freeing the buffer
420 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
422 int i, start = 0, depth = 0;
423 struct ocfs2_path_item *node;
428 for(i = start; i < path_num_items(path); i++) {
429 node = &path->p_node[i];
437 * Tree depth may change during truncate, or insert. If we're
438 * keeping the root extent list, then make sure that our path
439 * structure reflects the proper depth.
442 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
444 path->p_tree_depth = depth;
447 static void ocfs2_free_path(struct ocfs2_path *path)
450 ocfs2_reinit_path(path, 0);
456 * All the elements of src into dest. After this call, src could be freed
457 * without affecting dest.
459 * Both paths should have the same root. Any non-root elements of dest
462 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
466 BUG_ON(path_root_bh(dest) != path_root_bh(src));
467 BUG_ON(path_root_el(dest) != path_root_el(src));
469 ocfs2_reinit_path(dest, 1);
471 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
472 dest->p_node[i].bh = src->p_node[i].bh;
473 dest->p_node[i].el = src->p_node[i].el;
475 if (dest->p_node[i].bh)
476 get_bh(dest->p_node[i].bh);
481 * Make the *dest path the same as src and re-initialize src path to
484 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
488 BUG_ON(path_root_bh(dest) != path_root_bh(src));
490 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
491 brelse(dest->p_node[i].bh);
493 dest->p_node[i].bh = src->p_node[i].bh;
494 dest->p_node[i].el = src->p_node[i].el;
496 src->p_node[i].bh = NULL;
497 src->p_node[i].el = NULL;
502 * Insert an extent block at given index.
504 * This will not take an additional reference on eb_bh.
506 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
507 struct buffer_head *eb_bh)
509 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
512 * Right now, no root bh is an extent block, so this helps
513 * catch code errors with dinode trees. The assertion can be
514 * safely removed if we ever need to insert extent block
515 * structures at the root.
519 path->p_node[index].bh = eb_bh;
520 path->p_node[index].el = &eb->h_list;
523 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
524 struct ocfs2_extent_list *root_el)
526 struct ocfs2_path *path;
528 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
530 path = kzalloc(sizeof(*path), GFP_NOFS);
532 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
534 path_root_bh(path) = root_bh;
535 path_root_el(path) = root_el;
542 * Convenience function to journal all components in a path.
544 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
545 struct ocfs2_path *path)
552 for(i = 0; i < path_num_items(path); i++) {
553 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
554 OCFS2_JOURNAL_ACCESS_WRITE);
566 * Return the index of the extent record which contains cluster #v_cluster.
567 * -1 is returned if it was not found.
569 * Should work fine on interior and exterior nodes.
571 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
575 struct ocfs2_extent_rec *rec;
576 u32 rec_end, rec_start, clusters;
578 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
579 rec = &el->l_recs[i];
581 rec_start = le32_to_cpu(rec->e_cpos);
582 clusters = ocfs2_rec_clusters(el, rec);
584 rec_end = rec_start + clusters;
586 if (v_cluster >= rec_start && v_cluster < rec_end) {
595 enum ocfs2_contig_type {
604 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
605 * ocfs2_extent_contig only work properly against leaf nodes!
607 static int ocfs2_block_extent_contig(struct super_block *sb,
608 struct ocfs2_extent_rec *ext,
611 u64 blk_end = le64_to_cpu(ext->e_blkno);
613 blk_end += ocfs2_clusters_to_blocks(sb,
614 le16_to_cpu(ext->e_leaf_clusters));
616 return blkno == blk_end;
619 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
620 struct ocfs2_extent_rec *right)
624 left_range = le32_to_cpu(left->e_cpos) +
625 le16_to_cpu(left->e_leaf_clusters);
627 return (left_range == le32_to_cpu(right->e_cpos));
630 static enum ocfs2_contig_type
631 ocfs2_extent_contig(struct inode *inode,
632 struct ocfs2_extent_rec *ext,
633 struct ocfs2_extent_rec *insert_rec)
635 u64 blkno = le64_to_cpu(insert_rec->e_blkno);
638 * Refuse to coalesce extent records with different flag
639 * fields - we don't want to mix unwritten extents with user
642 if (ext->e_flags != insert_rec->e_flags)
645 if (ocfs2_extents_adjacent(ext, insert_rec) &&
646 ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
649 blkno = le64_to_cpu(ext->e_blkno);
650 if (ocfs2_extents_adjacent(insert_rec, ext) &&
651 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
658 * NOTE: We can have pretty much any combination of contiguousness and
661 * The usefulness of APPEND_TAIL is more in that it lets us know that
662 * we'll have to update the path to that leaf.
664 enum ocfs2_append_type {
669 enum ocfs2_split_type {
675 struct ocfs2_insert_type {
676 enum ocfs2_split_type ins_split;
677 enum ocfs2_append_type ins_appending;
678 enum ocfs2_contig_type ins_contig;
679 int ins_contig_index;
683 struct ocfs2_merge_ctxt {
684 enum ocfs2_contig_type c_contig_type;
685 int c_has_empty_extent;
686 int c_split_covers_rec;
690 * How many free extents have we got before we need more meta data?
692 int ocfs2_num_free_extents(struct ocfs2_super *osb,
694 struct ocfs2_extent_tree *et)
697 struct ocfs2_extent_list *el = NULL;
698 struct ocfs2_extent_block *eb;
699 struct buffer_head *eb_bh = NULL;
705 last_eb_blk = ocfs2_et_get_last_eb_blk(et);
708 retval = ocfs2_read_block(inode, last_eb_blk,
714 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
718 BUG_ON(el->l_tree_depth != 0);
720 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
728 /* expects array to already be allocated
730 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
733 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
737 struct ocfs2_alloc_context *meta_ac,
738 struct buffer_head *bhs[])
740 int count, status, i;
741 u16 suballoc_bit_start;
744 struct ocfs2_extent_block *eb;
749 while (count < wanted) {
750 status = ocfs2_claim_metadata(osb,
762 for(i = count; i < (num_got + count); i++) {
763 bhs[i] = sb_getblk(osb->sb, first_blkno);
764 if (bhs[i] == NULL) {
769 ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
771 status = ocfs2_journal_access(handle, inode, bhs[i],
772 OCFS2_JOURNAL_ACCESS_CREATE);
778 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
779 eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
780 /* Ok, setup the minimal stuff here. */
781 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
782 eb->h_blkno = cpu_to_le64(first_blkno);
783 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
784 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
785 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
787 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
789 suballoc_bit_start++;
792 /* We'll also be dirtied by the caller, so
793 * this isn't absolutely necessary. */
794 status = ocfs2_journal_dirty(handle, bhs[i]);
807 for(i = 0; i < wanted; i++) {
817 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
819 * Returns the sum of the rightmost extent rec logical offset and
822 * ocfs2_add_branch() uses this to determine what logical cluster
823 * value should be populated into the leftmost new branch records.
825 * ocfs2_shift_tree_depth() uses this to determine the # clusters
826 * value for the new topmost tree record.
828 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
832 i = le16_to_cpu(el->l_next_free_rec) - 1;
834 return le32_to_cpu(el->l_recs[i].e_cpos) +
835 ocfs2_rec_clusters(el, &el->l_recs[i]);
839 * Add an entire tree branch to our inode. eb_bh is the extent block
840 * to start at, if we don't want to start the branch at the dinode
843 * last_eb_bh is required as we have to update it's next_leaf pointer
844 * for the new last extent block.
846 * the new branch will be 'empty' in the sense that every block will
847 * contain a single record with cluster count == 0.
849 static int ocfs2_add_branch(struct ocfs2_super *osb,
852 struct ocfs2_extent_tree *et,
853 struct buffer_head *eb_bh,
854 struct buffer_head **last_eb_bh,
855 struct ocfs2_alloc_context *meta_ac)
857 int status, new_blocks, i;
858 u64 next_blkno, new_last_eb_blk;
859 struct buffer_head *bh;
860 struct buffer_head **new_eb_bhs = NULL;
861 struct ocfs2_extent_block *eb;
862 struct ocfs2_extent_list *eb_el;
863 struct ocfs2_extent_list *el;
868 BUG_ON(!last_eb_bh || !*last_eb_bh);
871 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
876 /* we never add a branch to a leaf. */
877 BUG_ON(!el->l_tree_depth);
879 new_blocks = le16_to_cpu(el->l_tree_depth);
881 /* allocate the number of new eb blocks we need */
882 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
890 status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
891 meta_ac, new_eb_bhs);
897 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
898 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
900 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
901 * linked with the rest of the tree.
902 * conversly, new_eb_bhs[0] is the new bottommost leaf.
904 * when we leave the loop, new_last_eb_blk will point to the
905 * newest leaf, and next_blkno will point to the topmost extent
907 next_blkno = new_last_eb_blk = 0;
908 for(i = 0; i < new_blocks; i++) {
910 eb = (struct ocfs2_extent_block *) bh->b_data;
911 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
912 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
918 status = ocfs2_journal_access(handle, inode, bh,
919 OCFS2_JOURNAL_ACCESS_CREATE);
925 eb->h_next_leaf_blk = 0;
926 eb_el->l_tree_depth = cpu_to_le16(i);
927 eb_el->l_next_free_rec = cpu_to_le16(1);
929 * This actually counts as an empty extent as
932 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
933 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
935 * eb_el isn't always an interior node, but even leaf
936 * nodes want a zero'd flags and reserved field so
937 * this gets the whole 32 bits regardless of use.
939 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
940 if (!eb_el->l_tree_depth)
941 new_last_eb_blk = le64_to_cpu(eb->h_blkno);
943 status = ocfs2_journal_dirty(handle, bh);
949 next_blkno = le64_to_cpu(eb->h_blkno);
952 /* This is a bit hairy. We want to update up to three blocks
953 * here without leaving any of them in an inconsistent state
954 * in case of error. We don't have to worry about
955 * journal_dirty erroring as it won't unless we've aborted the
956 * handle (in which case we would never be here) so reserving
957 * the write with journal_access is all we need to do. */
958 status = ocfs2_journal_access(handle, inode, *last_eb_bh,
959 OCFS2_JOURNAL_ACCESS_WRITE);
964 status = ocfs2_journal_access(handle, inode, et->et_root_bh,
965 OCFS2_JOURNAL_ACCESS_WRITE);
971 status = ocfs2_journal_access(handle, inode, eb_bh,
972 OCFS2_JOURNAL_ACCESS_WRITE);
979 /* Link the new branch into the rest of the tree (el will
980 * either be on the root_bh, or the extent block passed in. */
981 i = le16_to_cpu(el->l_next_free_rec);
982 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
983 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
984 el->l_recs[i].e_int_clusters = 0;
985 le16_add_cpu(&el->l_next_free_rec, 1);
987 /* fe needs a new last extent block pointer, as does the
988 * next_leaf on the previously last-extent-block. */
989 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
991 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
992 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
994 status = ocfs2_journal_dirty(handle, *last_eb_bh);
997 status = ocfs2_journal_dirty(handle, et->et_root_bh);
1001 status = ocfs2_journal_dirty(handle, eb_bh);
1007 * Some callers want to track the rightmost leaf so pass it
1010 brelse(*last_eb_bh);
1011 get_bh(new_eb_bhs[0]);
1012 *last_eb_bh = new_eb_bhs[0];
1017 for (i = 0; i < new_blocks; i++)
1018 brelse(new_eb_bhs[i]);
1027 * adds another level to the allocation tree.
1028 * returns back the new extent block so you can add a branch to it
1031 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1033 struct inode *inode,
1034 struct ocfs2_extent_tree *et,
1035 struct ocfs2_alloc_context *meta_ac,
1036 struct buffer_head **ret_new_eb_bh)
1040 struct buffer_head *new_eb_bh = NULL;
1041 struct ocfs2_extent_block *eb;
1042 struct ocfs2_extent_list *root_el;
1043 struct ocfs2_extent_list *eb_el;
1047 status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
1054 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1055 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1056 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1061 eb_el = &eb->h_list;
1062 root_el = et->et_root_el;
1064 status = ocfs2_journal_access(handle, inode, new_eb_bh,
1065 OCFS2_JOURNAL_ACCESS_CREATE);
1071 /* copy the root extent list data into the new extent block */
1072 eb_el->l_tree_depth = root_el->l_tree_depth;
1073 eb_el->l_next_free_rec = root_el->l_next_free_rec;
1074 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1075 eb_el->l_recs[i] = root_el->l_recs[i];
1077 status = ocfs2_journal_dirty(handle, new_eb_bh);
1083 status = ocfs2_journal_access(handle, inode, et->et_root_bh,
1084 OCFS2_JOURNAL_ACCESS_WRITE);
1090 new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1092 /* update root_bh now */
1093 le16_add_cpu(&root_el->l_tree_depth, 1);
1094 root_el->l_recs[0].e_cpos = 0;
1095 root_el->l_recs[0].e_blkno = eb->h_blkno;
1096 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1097 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1098 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1099 root_el->l_next_free_rec = cpu_to_le16(1);
1101 /* If this is our 1st tree depth shift, then last_eb_blk
1102 * becomes the allocated extent block */
1103 if (root_el->l_tree_depth == cpu_to_le16(1))
1104 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1106 status = ocfs2_journal_dirty(handle, et->et_root_bh);
1112 *ret_new_eb_bh = new_eb_bh;
1123 * Should only be called when there is no space left in any of the
1124 * leaf nodes. What we want to do is find the lowest tree depth
1125 * non-leaf extent block with room for new records. There are three
1126 * valid results of this search:
1128 * 1) a lowest extent block is found, then we pass it back in
1129 * *lowest_eb_bh and return '0'
1131 * 2) the search fails to find anything, but the root_el has room. We
1132 * pass NULL back in *lowest_eb_bh, but still return '0'
1134 * 3) the search fails to find anything AND the root_el is full, in
1135 * which case we return > 0
1137 * return status < 0 indicates an error.
1139 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1140 struct inode *inode,
1141 struct ocfs2_extent_tree *et,
1142 struct buffer_head **target_bh)
1146 struct ocfs2_extent_block *eb;
1147 struct ocfs2_extent_list *el;
1148 struct buffer_head *bh = NULL;
1149 struct buffer_head *lowest_bh = NULL;
1155 el = et->et_root_el;
1157 while(le16_to_cpu(el->l_tree_depth) > 1) {
1158 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1159 ocfs2_error(inode->i_sb, "Dinode %llu has empty "
1160 "extent list (next_free_rec == 0)",
1161 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1165 i = le16_to_cpu(el->l_next_free_rec) - 1;
1166 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1168 ocfs2_error(inode->i_sb, "Dinode %llu has extent "
1169 "list where extent # %d has no physical "
1171 (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
1179 status = ocfs2_read_block(inode, blkno, &bh);
1185 eb = (struct ocfs2_extent_block *) bh->b_data;
1186 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1187 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1193 if (le16_to_cpu(el->l_next_free_rec) <
1194 le16_to_cpu(el->l_count)) {
1201 /* If we didn't find one and the fe doesn't have any room,
1202 * then return '1' */
1203 el = et->et_root_el;
1204 if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1207 *target_bh = lowest_bh;
1216 * Grow a b-tree so that it has more records.
1218 * We might shift the tree depth in which case existing paths should
1219 * be considered invalid.
1221 * Tree depth after the grow is returned via *final_depth.
1223 * *last_eb_bh will be updated by ocfs2_add_branch().
1225 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1226 struct ocfs2_extent_tree *et, int *final_depth,
1227 struct buffer_head **last_eb_bh,
1228 struct ocfs2_alloc_context *meta_ac)
1231 struct ocfs2_extent_list *el = et->et_root_el;
1232 int depth = le16_to_cpu(el->l_tree_depth);
1233 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1234 struct buffer_head *bh = NULL;
1236 BUG_ON(meta_ac == NULL);
1238 shift = ocfs2_find_branch_target(osb, inode, et, &bh);
1245 /* We traveled all the way to the bottom of the allocation tree
1246 * and didn't find room for any more extents - we need to add
1247 * another tree level */
1250 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1252 /* ocfs2_shift_tree_depth will return us a buffer with
1253 * the new extent block (so we can pass that to
1254 * ocfs2_add_branch). */
1255 ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1264 * Special case: we have room now if we shifted from
1265 * tree_depth 0, so no more work needs to be done.
1267 * We won't be calling add_branch, so pass
1268 * back *last_eb_bh as the new leaf. At depth
1269 * zero, it should always be null so there's
1270 * no reason to brelse.
1272 BUG_ON(*last_eb_bh);
1279 /* call ocfs2_add_branch to add the final part of the tree with
1281 mlog(0, "add branch. bh = %p\n", bh);
1282 ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1291 *final_depth = depth;
1297 * This function will discard the rightmost extent record.
1299 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1301 int next_free = le16_to_cpu(el->l_next_free_rec);
1302 int count = le16_to_cpu(el->l_count);
1303 unsigned int num_bytes;
1306 /* This will cause us to go off the end of our extent list. */
1307 BUG_ON(next_free >= count);
1309 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1311 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1314 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1315 struct ocfs2_extent_rec *insert_rec)
1317 int i, insert_index, next_free, has_empty, num_bytes;
1318 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1319 struct ocfs2_extent_rec *rec;
1321 next_free = le16_to_cpu(el->l_next_free_rec);
1322 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1326 /* The tree code before us didn't allow enough room in the leaf. */
1327 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1330 * The easiest way to approach this is to just remove the
1331 * empty extent and temporarily decrement next_free.
1335 * If next_free was 1 (only an empty extent), this
1336 * loop won't execute, which is fine. We still want
1337 * the decrement above to happen.
1339 for(i = 0; i < (next_free - 1); i++)
1340 el->l_recs[i] = el->l_recs[i+1];
1346 * Figure out what the new record index should be.
1348 for(i = 0; i < next_free; i++) {
1349 rec = &el->l_recs[i];
1351 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1356 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1357 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1359 BUG_ON(insert_index < 0);
1360 BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1361 BUG_ON(insert_index > next_free);
1364 * No need to memmove if we're just adding to the tail.
1366 if (insert_index != next_free) {
1367 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1369 num_bytes = next_free - insert_index;
1370 num_bytes *= sizeof(struct ocfs2_extent_rec);
1371 memmove(&el->l_recs[insert_index + 1],
1372 &el->l_recs[insert_index],
1377 * Either we had an empty extent, and need to re-increment or
1378 * there was no empty extent on a non full rightmost leaf node,
1379 * in which case we still need to increment.
1382 el->l_next_free_rec = cpu_to_le16(next_free);
1384 * Make sure none of the math above just messed up our tree.
1386 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1388 el->l_recs[insert_index] = *insert_rec;
1392 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1394 int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1396 BUG_ON(num_recs == 0);
1398 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1400 size = num_recs * sizeof(struct ocfs2_extent_rec);
1401 memmove(&el->l_recs[0], &el->l_recs[1], size);
1402 memset(&el->l_recs[num_recs], 0,
1403 sizeof(struct ocfs2_extent_rec));
1404 el->l_next_free_rec = cpu_to_le16(num_recs);
1409 * Create an empty extent record .
1411 * l_next_free_rec may be updated.
1413 * If an empty extent already exists do nothing.
1415 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1417 int next_free = le16_to_cpu(el->l_next_free_rec);
1419 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1424 if (ocfs2_is_empty_extent(&el->l_recs[0]))
1427 mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1428 "Asked to create an empty extent in a full list:\n"
1429 "count = %u, tree depth = %u",
1430 le16_to_cpu(el->l_count),
1431 le16_to_cpu(el->l_tree_depth));
1433 ocfs2_shift_records_right(el);
1436 le16_add_cpu(&el->l_next_free_rec, 1);
1437 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1441 * For a rotation which involves two leaf nodes, the "root node" is
1442 * the lowest level tree node which contains a path to both leafs. This
1443 * resulting set of information can be used to form a complete "subtree"
1445 * This function is passed two full paths from the dinode down to a
1446 * pair of adjacent leaves. It's task is to figure out which path
1447 * index contains the subtree root - this can be the root index itself
1448 * in a worst-case rotation.
1450 * The array index of the subtree root is passed back.
1452 static int ocfs2_find_subtree_root(struct inode *inode,
1453 struct ocfs2_path *left,
1454 struct ocfs2_path *right)
1459 * Check that the caller passed in two paths from the same tree.
1461 BUG_ON(path_root_bh(left) != path_root_bh(right));
1467 * The caller didn't pass two adjacent paths.
1469 mlog_bug_on_msg(i > left->p_tree_depth,
1470 "Inode %lu, left depth %u, right depth %u\n"
1471 "left leaf blk %llu, right leaf blk %llu\n",
1472 inode->i_ino, left->p_tree_depth,
1473 right->p_tree_depth,
1474 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1475 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1476 } while (left->p_node[i].bh->b_blocknr ==
1477 right->p_node[i].bh->b_blocknr);
1482 typedef void (path_insert_t)(void *, struct buffer_head *);
1485 * Traverse a btree path in search of cpos, starting at root_el.
1487 * This code can be called with a cpos larger than the tree, in which
1488 * case it will return the rightmost path.
1490 static int __ocfs2_find_path(struct inode *inode,
1491 struct ocfs2_extent_list *root_el, u32 cpos,
1492 path_insert_t *func, void *data)
1497 struct buffer_head *bh = NULL;
1498 struct ocfs2_extent_block *eb;
1499 struct ocfs2_extent_list *el;
1500 struct ocfs2_extent_rec *rec;
1501 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1504 while (el->l_tree_depth) {
1505 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1506 ocfs2_error(inode->i_sb,
1507 "Inode %llu has empty extent list at "
1509 (unsigned long long)oi->ip_blkno,
1510 le16_to_cpu(el->l_tree_depth));
1516 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1517 rec = &el->l_recs[i];
1520 * In the case that cpos is off the allocation
1521 * tree, this should just wind up returning the
1524 range = le32_to_cpu(rec->e_cpos) +
1525 ocfs2_rec_clusters(el, rec);
1526 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1530 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1532 ocfs2_error(inode->i_sb,
1533 "Inode %llu has bad blkno in extent list "
1534 "at depth %u (index %d)\n",
1535 (unsigned long long)oi->ip_blkno,
1536 le16_to_cpu(el->l_tree_depth), i);
1543 ret = ocfs2_read_block(inode, blkno, &bh);
1549 eb = (struct ocfs2_extent_block *) bh->b_data;
1551 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1552 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1557 if (le16_to_cpu(el->l_next_free_rec) >
1558 le16_to_cpu(el->l_count)) {
1559 ocfs2_error(inode->i_sb,
1560 "Inode %llu has bad count in extent list "
1561 "at block %llu (next free=%u, count=%u)\n",
1562 (unsigned long long)oi->ip_blkno,
1563 (unsigned long long)bh->b_blocknr,
1564 le16_to_cpu(el->l_next_free_rec),
1565 le16_to_cpu(el->l_count));
1576 * Catch any trailing bh that the loop didn't handle.
1584 * Given an initialized path (that is, it has a valid root extent
1585 * list), this function will traverse the btree in search of the path
1586 * which would contain cpos.
1588 * The path traveled is recorded in the path structure.
1590 * Note that this will not do any comparisons on leaf node extent
1591 * records, so it will work fine in the case that we just added a tree
1594 struct find_path_data {
1596 struct ocfs2_path *path;
1598 static void find_path_ins(void *data, struct buffer_head *bh)
1600 struct find_path_data *fp = data;
1603 ocfs2_path_insert_eb(fp->path, fp->index, bh);
1606 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1609 struct find_path_data data;
1613 return __ocfs2_find_path(inode, path_root_el(path), cpos,
1614 find_path_ins, &data);
1617 static void find_leaf_ins(void *data, struct buffer_head *bh)
1619 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1620 struct ocfs2_extent_list *el = &eb->h_list;
1621 struct buffer_head **ret = data;
1623 /* We want to retain only the leaf block. */
1624 if (le16_to_cpu(el->l_tree_depth) == 0) {
1630 * Find the leaf block in the tree which would contain cpos. No
1631 * checking of the actual leaf is done.
1633 * Some paths want to call this instead of allocating a path structure
1634 * and calling ocfs2_find_path().
1636 * This function doesn't handle non btree extent lists.
1638 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1639 u32 cpos, struct buffer_head **leaf_bh)
1642 struct buffer_head *bh = NULL;
1644 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1656 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1658 * Basically, we've moved stuff around at the bottom of the tree and
1659 * we need to fix up the extent records above the changes to reflect
1662 * left_rec: the record on the left.
1663 * left_child_el: is the child list pointed to by left_rec
1664 * right_rec: the record to the right of left_rec
1665 * right_child_el: is the child list pointed to by right_rec
1667 * By definition, this only works on interior nodes.
1669 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1670 struct ocfs2_extent_list *left_child_el,
1671 struct ocfs2_extent_rec *right_rec,
1672 struct ocfs2_extent_list *right_child_el)
1674 u32 left_clusters, right_end;
1677 * Interior nodes never have holes. Their cpos is the cpos of
1678 * the leftmost record in their child list. Their cluster
1679 * count covers the full theoretical range of their child list
1680 * - the range between their cpos and the cpos of the record
1681 * immediately to their right.
1683 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1684 if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1685 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1686 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1688 left_clusters -= le32_to_cpu(left_rec->e_cpos);
1689 left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1692 * Calculate the rightmost cluster count boundary before
1693 * moving cpos - we will need to adjust clusters after
1694 * updating e_cpos to keep the same highest cluster count.
1696 right_end = le32_to_cpu(right_rec->e_cpos);
1697 right_end += le32_to_cpu(right_rec->e_int_clusters);
1699 right_rec->e_cpos = left_rec->e_cpos;
1700 le32_add_cpu(&right_rec->e_cpos, left_clusters);
1702 right_end -= le32_to_cpu(right_rec->e_cpos);
1703 right_rec->e_int_clusters = cpu_to_le32(right_end);
1707 * Adjust the adjacent root node records involved in a
1708 * rotation. left_el_blkno is passed in as a key so that we can easily
1709 * find it's index in the root list.
1711 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1712 struct ocfs2_extent_list *left_el,
1713 struct ocfs2_extent_list *right_el,
1718 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1719 le16_to_cpu(left_el->l_tree_depth));
1721 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1722 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1727 * The path walking code should have never returned a root and
1728 * two paths which are not adjacent.
1730 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1732 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1733 &root_el->l_recs[i + 1], right_el);
1737 * We've changed a leaf block (in right_path) and need to reflect that
1738 * change back up the subtree.
1740 * This happens in multiple places:
1741 * - When we've moved an extent record from the left path leaf to the right
1742 * path leaf to make room for an empty extent in the left path leaf.
1743 * - When our insert into the right path leaf is at the leftmost edge
1744 * and requires an update of the path immediately to it's left. This
1745 * can occur at the end of some types of rotation and appending inserts.
1746 * - When we've adjusted the last extent record in the left path leaf and the
1747 * 1st extent record in the right path leaf during cross extent block merge.
1749 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1750 struct ocfs2_path *left_path,
1751 struct ocfs2_path *right_path,
1755 struct ocfs2_extent_list *el, *left_el, *right_el;
1756 struct ocfs2_extent_rec *left_rec, *right_rec;
1757 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1760 * Update the counts and position values within all the
1761 * interior nodes to reflect the leaf rotation we just did.
1763 * The root node is handled below the loop.
1765 * We begin the loop with right_el and left_el pointing to the
1766 * leaf lists and work our way up.
1768 * NOTE: within this loop, left_el and right_el always refer
1769 * to the *child* lists.
1771 left_el = path_leaf_el(left_path);
1772 right_el = path_leaf_el(right_path);
1773 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1774 mlog(0, "Adjust records at index %u\n", i);
1777 * One nice property of knowing that all of these
1778 * nodes are below the root is that we only deal with
1779 * the leftmost right node record and the rightmost
1782 el = left_path->p_node[i].el;
1783 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1784 left_rec = &el->l_recs[idx];
1786 el = right_path->p_node[i].el;
1787 right_rec = &el->l_recs[0];
1789 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1792 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1796 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1801 * Setup our list pointers now so that the current
1802 * parents become children in the next iteration.
1804 left_el = left_path->p_node[i].el;
1805 right_el = right_path->p_node[i].el;
1809 * At the root node, adjust the two adjacent records which
1810 * begin our path to the leaves.
1813 el = left_path->p_node[subtree_index].el;
1814 left_el = left_path->p_node[subtree_index + 1].el;
1815 right_el = right_path->p_node[subtree_index + 1].el;
1817 ocfs2_adjust_root_records(el, left_el, right_el,
1818 left_path->p_node[subtree_index + 1].bh->b_blocknr);
1820 root_bh = left_path->p_node[subtree_index].bh;
1822 ret = ocfs2_journal_dirty(handle, root_bh);
1827 static int ocfs2_rotate_subtree_right(struct inode *inode,
1829 struct ocfs2_path *left_path,
1830 struct ocfs2_path *right_path,
1834 struct buffer_head *right_leaf_bh;
1835 struct buffer_head *left_leaf_bh = NULL;
1836 struct buffer_head *root_bh;
1837 struct ocfs2_extent_list *right_el, *left_el;
1838 struct ocfs2_extent_rec move_rec;
1840 left_leaf_bh = path_leaf_bh(left_path);
1841 left_el = path_leaf_el(left_path);
1843 if (left_el->l_next_free_rec != left_el->l_count) {
1844 ocfs2_error(inode->i_sb,
1845 "Inode %llu has non-full interior leaf node %llu"
1847 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1848 (unsigned long long)left_leaf_bh->b_blocknr,
1849 le16_to_cpu(left_el->l_next_free_rec));
1854 * This extent block may already have an empty record, so we
1855 * return early if so.
1857 if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1860 root_bh = left_path->p_node[subtree_index].bh;
1861 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1863 ret = ocfs2_journal_access(handle, inode, root_bh,
1864 OCFS2_JOURNAL_ACCESS_WRITE);
1870 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1871 ret = ocfs2_journal_access(handle, inode,
1872 right_path->p_node[i].bh,
1873 OCFS2_JOURNAL_ACCESS_WRITE);
1879 ret = ocfs2_journal_access(handle, inode,
1880 left_path->p_node[i].bh,
1881 OCFS2_JOURNAL_ACCESS_WRITE);
1888 right_leaf_bh = path_leaf_bh(right_path);
1889 right_el = path_leaf_el(right_path);
1891 /* This is a code error, not a disk corruption. */
1892 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1893 "because rightmost leaf block %llu is empty\n",
1894 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1895 (unsigned long long)right_leaf_bh->b_blocknr);
1897 ocfs2_create_empty_extent(right_el);
1899 ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1905 /* Do the copy now. */
1906 i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1907 move_rec = left_el->l_recs[i];
1908 right_el->l_recs[0] = move_rec;
1911 * Clear out the record we just copied and shift everything
1912 * over, leaving an empty extent in the left leaf.
1914 * We temporarily subtract from next_free_rec so that the
1915 * shift will lose the tail record (which is now defunct).
1917 le16_add_cpu(&left_el->l_next_free_rec, -1);
1918 ocfs2_shift_records_right(left_el);
1919 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1920 le16_add_cpu(&left_el->l_next_free_rec, 1);
1922 ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1928 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1936 * Given a full path, determine what cpos value would return us a path
1937 * containing the leaf immediately to the left of the current one.
1939 * Will return zero if the path passed in is already the leftmost path.
1941 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1942 struct ocfs2_path *path, u32 *cpos)
1946 struct ocfs2_extent_list *el;
1948 BUG_ON(path->p_tree_depth == 0);
1952 blkno = path_leaf_bh(path)->b_blocknr;
1954 /* Start at the tree node just above the leaf and work our way up. */
1955 i = path->p_tree_depth - 1;
1957 el = path->p_node[i].el;
1960 * Find the extent record just before the one in our
1963 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1964 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1968 * We've determined that the
1969 * path specified is already
1970 * the leftmost one - return a
1976 * The leftmost record points to our
1977 * leaf - we need to travel up the
1983 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1984 *cpos = *cpos + ocfs2_rec_clusters(el,
1985 &el->l_recs[j - 1]);
1992 * If we got here, we never found a valid node where
1993 * the tree indicated one should be.
1996 "Invalid extent tree at extent block %llu\n",
1997 (unsigned long long)blkno);
2002 blkno = path->p_node[i].bh->b_blocknr;
2011 * Extend the transaction by enough credits to complete the rotation,
2012 * and still leave at least the original number of credits allocated
2013 * to this transaction.
2015 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2017 struct ocfs2_path *path)
2019 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2021 if (handle->h_buffer_credits < credits)
2022 return ocfs2_extend_trans(handle, credits);
2028 * Trap the case where we're inserting into the theoretical range past
2029 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2030 * whose cpos is less than ours into the right leaf.
2032 * It's only necessary to look at the rightmost record of the left
2033 * leaf because the logic that calls us should ensure that the
2034 * theoretical ranges in the path components above the leaves are
2037 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2040 struct ocfs2_extent_list *left_el;
2041 struct ocfs2_extent_rec *rec;
2044 left_el = path_leaf_el(left_path);
2045 next_free = le16_to_cpu(left_el->l_next_free_rec);
2046 rec = &left_el->l_recs[next_free - 1];
2048 if (insert_cpos > le32_to_cpu(rec->e_cpos))
2053 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2055 int next_free = le16_to_cpu(el->l_next_free_rec);
2057 struct ocfs2_extent_rec *rec;
2062 rec = &el->l_recs[0];
2063 if (ocfs2_is_empty_extent(rec)) {
2067 rec = &el->l_recs[1];
2070 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2071 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2077 * Rotate all the records in a btree right one record, starting at insert_cpos.
2079 * The path to the rightmost leaf should be passed in.
2081 * The array is assumed to be large enough to hold an entire path (tree depth).
2083 * Upon succesful return from this function:
2085 * - The 'right_path' array will contain a path to the leaf block
2086 * whose range contains e_cpos.
2087 * - That leaf block will have a single empty extent in list index 0.
2088 * - In the case that the rotation requires a post-insert update,
2089 * *ret_left_path will contain a valid path which can be passed to
2090 * ocfs2_insert_path().
2092 static int ocfs2_rotate_tree_right(struct inode *inode,
2094 enum ocfs2_split_type split,
2096 struct ocfs2_path *right_path,
2097 struct ocfs2_path **ret_left_path)
2099 int ret, start, orig_credits = handle->h_buffer_credits;
2101 struct ocfs2_path *left_path = NULL;
2103 *ret_left_path = NULL;
2105 left_path = ocfs2_new_path(path_root_bh(right_path),
2106 path_root_el(right_path));
2113 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2119 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2122 * What we want to do here is:
2124 * 1) Start with the rightmost path.
2126 * 2) Determine a path to the leaf block directly to the left
2129 * 3) Determine the 'subtree root' - the lowest level tree node
2130 * which contains a path to both leaves.
2132 * 4) Rotate the subtree.
2134 * 5) Find the next subtree by considering the left path to be
2135 * the new right path.
2137 * The check at the top of this while loop also accepts
2138 * insert_cpos == cpos because cpos is only a _theoretical_
2139 * value to get us the left path - insert_cpos might very well
2140 * be filling that hole.
2142 * Stop at a cpos of '0' because we either started at the
2143 * leftmost branch (i.e., a tree with one branch and a
2144 * rotation inside of it), or we've gone as far as we can in
2145 * rotating subtrees.
2147 while (cpos && insert_cpos <= cpos) {
2148 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2151 ret = ocfs2_find_path(inode, left_path, cpos);
2157 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2158 path_leaf_bh(right_path),
2159 "Inode %lu: error during insert of %u "
2160 "(left path cpos %u) results in two identical "
2161 "paths ending at %llu\n",
2162 inode->i_ino, insert_cpos, cpos,
2163 (unsigned long long)
2164 path_leaf_bh(left_path)->b_blocknr);
2166 if (split == SPLIT_NONE &&
2167 ocfs2_rotate_requires_path_adjustment(left_path,
2171 * We've rotated the tree as much as we
2172 * should. The rest is up to
2173 * ocfs2_insert_path() to complete, after the
2174 * record insertion. We indicate this
2175 * situation by returning the left path.
2177 * The reason we don't adjust the records here
2178 * before the record insert is that an error
2179 * later might break the rule where a parent
2180 * record e_cpos will reflect the actual
2181 * e_cpos of the 1st nonempty record of the
2184 *ret_left_path = left_path;
2188 start = ocfs2_find_subtree_root(inode, left_path, right_path);
2190 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2192 (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2193 right_path->p_tree_depth);
2195 ret = ocfs2_extend_rotate_transaction(handle, start,
2196 orig_credits, right_path);
2202 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2209 if (split != SPLIT_NONE &&
2210 ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2213 * A rotate moves the rightmost left leaf
2214 * record over to the leftmost right leaf
2215 * slot. If we're doing an extent split
2216 * instead of a real insert, then we have to
2217 * check that the extent to be split wasn't
2218 * just moved over. If it was, then we can
2219 * exit here, passing left_path back -
2220 * ocfs2_split_extent() is smart enough to
2221 * search both leaves.
2223 *ret_left_path = left_path;
2228 * There is no need to re-read the next right path
2229 * as we know that it'll be our current left
2230 * path. Optimize by copying values instead.
2232 ocfs2_mv_path(right_path, left_path);
2234 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2243 ocfs2_free_path(left_path);
2249 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2250 struct ocfs2_path *path)
2253 struct ocfs2_extent_rec *rec;
2254 struct ocfs2_extent_list *el;
2255 struct ocfs2_extent_block *eb;
2258 /* Path should always be rightmost. */
2259 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2260 BUG_ON(eb->h_next_leaf_blk != 0ULL);
2263 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2264 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2265 rec = &el->l_recs[idx];
2266 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2268 for (i = 0; i < path->p_tree_depth; i++) {
2269 el = path->p_node[i].el;
2270 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2271 rec = &el->l_recs[idx];
2273 rec->e_int_clusters = cpu_to_le32(range);
2274 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2276 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2280 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2281 struct ocfs2_cached_dealloc_ctxt *dealloc,
2282 struct ocfs2_path *path, int unlink_start)
2285 struct ocfs2_extent_block *eb;
2286 struct ocfs2_extent_list *el;
2287 struct buffer_head *bh;
2289 for(i = unlink_start; i < path_num_items(path); i++) {
2290 bh = path->p_node[i].bh;
2292 eb = (struct ocfs2_extent_block *)bh->b_data;
2294 * Not all nodes might have had their final count
2295 * decremented by the caller - handle this here.
2298 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2300 "Inode %llu, attempted to remove extent block "
2301 "%llu with %u records\n",
2302 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2303 (unsigned long long)le64_to_cpu(eb->h_blkno),
2304 le16_to_cpu(el->l_next_free_rec));
2306 ocfs2_journal_dirty(handle, bh);
2307 ocfs2_remove_from_cache(inode, bh);
2311 el->l_next_free_rec = 0;
2312 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2314 ocfs2_journal_dirty(handle, bh);
2316 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2320 ocfs2_remove_from_cache(inode, bh);
2324 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2325 struct ocfs2_path *left_path,
2326 struct ocfs2_path *right_path,
2328 struct ocfs2_cached_dealloc_ctxt *dealloc)
2331 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2332 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2333 struct ocfs2_extent_list *el;
2334 struct ocfs2_extent_block *eb;
2336 el = path_leaf_el(left_path);
2338 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2340 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2341 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2344 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2346 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2347 le16_add_cpu(&root_el->l_next_free_rec, -1);
2349 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2350 eb->h_next_leaf_blk = 0;
2352 ocfs2_journal_dirty(handle, root_bh);
2353 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2355 ocfs2_unlink_path(inode, handle, dealloc, right_path,
2359 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2360 struct ocfs2_path *left_path,
2361 struct ocfs2_path *right_path,
2363 struct ocfs2_cached_dealloc_ctxt *dealloc,
2365 struct ocfs2_extent_tree *et)
2367 int ret, i, del_right_subtree = 0, right_has_empty = 0;
2368 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2369 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2370 struct ocfs2_extent_block *eb;
2374 right_leaf_el = path_leaf_el(right_path);
2375 left_leaf_el = path_leaf_el(left_path);
2376 root_bh = left_path->p_node[subtree_index].bh;
2377 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2379 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2382 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2383 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2385 * It's legal for us to proceed if the right leaf is
2386 * the rightmost one and it has an empty extent. There
2387 * are two cases to handle - whether the leaf will be
2388 * empty after removal or not. If the leaf isn't empty
2389 * then just remove the empty extent up front. The
2390 * next block will handle empty leaves by flagging
2393 * Non rightmost leaves will throw -EAGAIN and the
2394 * caller can manually move the subtree and retry.
2397 if (eb->h_next_leaf_blk != 0ULL)
2400 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2401 ret = ocfs2_journal_access(handle, inode,
2402 path_leaf_bh(right_path),
2403 OCFS2_JOURNAL_ACCESS_WRITE);
2409 ocfs2_remove_empty_extent(right_leaf_el);
2411 right_has_empty = 1;
2414 if (eb->h_next_leaf_blk == 0ULL &&
2415 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2417 * We have to update i_last_eb_blk during the meta
2420 ret = ocfs2_journal_access(handle, inode, et_root_bh,
2421 OCFS2_JOURNAL_ACCESS_WRITE);
2427 del_right_subtree = 1;
2431 * Getting here with an empty extent in the right path implies
2432 * that it's the rightmost path and will be deleted.
2434 BUG_ON(right_has_empty && !del_right_subtree);
2436 ret = ocfs2_journal_access(handle, inode, root_bh,
2437 OCFS2_JOURNAL_ACCESS_WRITE);
2443 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2444 ret = ocfs2_journal_access(handle, inode,
2445 right_path->p_node[i].bh,
2446 OCFS2_JOURNAL_ACCESS_WRITE);
2452 ret = ocfs2_journal_access(handle, inode,
2453 left_path->p_node[i].bh,
2454 OCFS2_JOURNAL_ACCESS_WRITE);
2461 if (!right_has_empty) {
2463 * Only do this if we're moving a real
2464 * record. Otherwise, the action is delayed until
2465 * after removal of the right path in which case we
2466 * can do a simple shift to remove the empty extent.
2468 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2469 memset(&right_leaf_el->l_recs[0], 0,
2470 sizeof(struct ocfs2_extent_rec));
2472 if (eb->h_next_leaf_blk == 0ULL) {
2474 * Move recs over to get rid of empty extent, decrease
2475 * next_free. This is allowed to remove the last
2476 * extent in our leaf (setting l_next_free_rec to
2477 * zero) - the delete code below won't care.
2479 ocfs2_remove_empty_extent(right_leaf_el);
2482 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2485 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2489 if (del_right_subtree) {
2490 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2491 subtree_index, dealloc);
2492 ocfs2_update_edge_lengths(inode, handle, left_path);
2494 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2495 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2498 * Removal of the extent in the left leaf was skipped
2499 * above so we could delete the right path
2502 if (right_has_empty)
2503 ocfs2_remove_empty_extent(left_leaf_el);
2505 ret = ocfs2_journal_dirty(handle, et_root_bh);
2511 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2519 * Given a full path, determine what cpos value would return us a path
2520 * containing the leaf immediately to the right of the current one.
2522 * Will return zero if the path passed in is already the rightmost path.
2524 * This looks similar, but is subtly different to
2525 * ocfs2_find_cpos_for_left_leaf().
2527 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2528 struct ocfs2_path *path, u32 *cpos)
2532 struct ocfs2_extent_list *el;
2536 if (path->p_tree_depth == 0)
2539 blkno = path_leaf_bh(path)->b_blocknr;
2541 /* Start at the tree node just above the leaf and work our way up. */
2542 i = path->p_tree_depth - 1;
2546 el = path->p_node[i].el;
2549 * Find the extent record just after the one in our
2552 next_free = le16_to_cpu(el->l_next_free_rec);
2553 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2554 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2555 if (j == (next_free - 1)) {
2558 * We've determined that the
2559 * path specified is already
2560 * the rightmost one - return a
2566 * The rightmost record points to our
2567 * leaf - we need to travel up the
2573 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2579 * If we got here, we never found a valid node where
2580 * the tree indicated one should be.
2583 "Invalid extent tree at extent block %llu\n",
2584 (unsigned long long)blkno);
2589 blkno = path->p_node[i].bh->b_blocknr;
2597 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2599 struct buffer_head *bh,
2600 struct ocfs2_extent_list *el)
2604 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2607 ret = ocfs2_journal_access(handle, inode, bh,
2608 OCFS2_JOURNAL_ACCESS_WRITE);
2614 ocfs2_remove_empty_extent(el);
2616 ret = ocfs2_journal_dirty(handle, bh);
2624 static int __ocfs2_rotate_tree_left(struct inode *inode,
2625 handle_t *handle, int orig_credits,
2626 struct ocfs2_path *path,
2627 struct ocfs2_cached_dealloc_ctxt *dealloc,
2628 struct ocfs2_path **empty_extent_path,
2629 struct ocfs2_extent_tree *et)
2631 int ret, subtree_root, deleted;
2633 struct ocfs2_path *left_path = NULL;
2634 struct ocfs2_path *right_path = NULL;
2636 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2638 *empty_extent_path = NULL;
2640 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2647 left_path = ocfs2_new_path(path_root_bh(path),
2648 path_root_el(path));
2655 ocfs2_cp_path(left_path, path);
2657 right_path = ocfs2_new_path(path_root_bh(path),
2658 path_root_el(path));
2665 while (right_cpos) {
2666 ret = ocfs2_find_path(inode, right_path, right_cpos);
2672 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2675 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2677 (unsigned long long)
2678 right_path->p_node[subtree_root].bh->b_blocknr,
2679 right_path->p_tree_depth);
2681 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2682 orig_credits, left_path);
2689 * Caller might still want to make changes to the
2690 * tree root, so re-add it to the journal here.
2692 ret = ocfs2_journal_access(handle, inode,
2693 path_root_bh(left_path),
2694 OCFS2_JOURNAL_ACCESS_WRITE);
2700 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2701 right_path, subtree_root,
2702 dealloc, &deleted, et);
2703 if (ret == -EAGAIN) {
2705 * The rotation has to temporarily stop due to
2706 * the right subtree having an empty
2707 * extent. Pass it back to the caller for a
2710 *empty_extent_path = right_path;
2720 * The subtree rotate might have removed records on
2721 * the rightmost edge. If so, then rotation is
2727 ocfs2_mv_path(left_path, right_path);
2729 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2738 ocfs2_free_path(right_path);
2739 ocfs2_free_path(left_path);
2744 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2745 struct ocfs2_path *path,
2746 struct ocfs2_cached_dealloc_ctxt *dealloc,
2747 struct ocfs2_extent_tree *et)
2749 int ret, subtree_index;
2751 struct ocfs2_path *left_path = NULL;
2752 struct ocfs2_extent_block *eb;
2753 struct ocfs2_extent_list *el;
2756 ret = ocfs2_et_sanity_check(inode, et);
2760 * There's two ways we handle this depending on
2761 * whether path is the only existing one.
2763 ret = ocfs2_extend_rotate_transaction(handle, 0,
2764 handle->h_buffer_credits,
2771 ret = ocfs2_journal_access_path(inode, handle, path);
2777 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2785 * We have a path to the left of this one - it needs
2788 left_path = ocfs2_new_path(path_root_bh(path),
2789 path_root_el(path));
2796 ret = ocfs2_find_path(inode, left_path, cpos);
2802 ret = ocfs2_journal_access_path(inode, handle, left_path);
2808 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2810 ocfs2_unlink_subtree(inode, handle, left_path, path,
2811 subtree_index, dealloc);
2812 ocfs2_update_edge_lengths(inode, handle, left_path);
2814 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2815 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2818 * 'path' is also the leftmost path which
2819 * means it must be the only one. This gets
2820 * handled differently because we want to
2821 * revert the inode back to having extents
2824 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2826 el = et->et_root_el;
2827 el->l_tree_depth = 0;
2828 el->l_next_free_rec = 0;
2829 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2831 ocfs2_et_set_last_eb_blk(et, 0);
2834 ocfs2_journal_dirty(handle, path_root_bh(path));
2837 ocfs2_free_path(left_path);
2842 * Left rotation of btree records.
2844 * In many ways, this is (unsurprisingly) the opposite of right
2845 * rotation. We start at some non-rightmost path containing an empty
2846 * extent in the leaf block. The code works its way to the rightmost
2847 * path by rotating records to the left in every subtree.
2849 * This is used by any code which reduces the number of extent records
2850 * in a leaf. After removal, an empty record should be placed in the
2851 * leftmost list position.
2853 * This won't handle a length update of the rightmost path records if
2854 * the rightmost tree leaf record is removed so the caller is
2855 * responsible for detecting and correcting that.
2857 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2858 struct ocfs2_path *path,
2859 struct ocfs2_cached_dealloc_ctxt *dealloc,
2860 struct ocfs2_extent_tree *et)
2862 int ret, orig_credits = handle->h_buffer_credits;
2863 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2864 struct ocfs2_extent_block *eb;
2865 struct ocfs2_extent_list *el;
2867 el = path_leaf_el(path);
2868 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2871 if (path->p_tree_depth == 0) {
2872 rightmost_no_delete:
2874 * Inline extents. This is trivially handled, so do
2877 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2879 path_leaf_el(path));
2886 * Handle rightmost branch now. There's several cases:
2887 * 1) simple rotation leaving records in there. That's trivial.
2888 * 2) rotation requiring a branch delete - there's no more
2889 * records left. Two cases of this:
2890 * a) There are branches to the left.
2891 * b) This is also the leftmost (the only) branch.
2893 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
2894 * 2a) we need the left branch so that we can update it with the unlink
2895 * 2b) we need to bring the inode back to inline extents.
2898 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2900 if (eb->h_next_leaf_blk == 0) {
2902 * This gets a bit tricky if we're going to delete the
2903 * rightmost path. Get the other cases out of the way
2906 if (le16_to_cpu(el->l_next_free_rec) > 1)
2907 goto rightmost_no_delete;
2909 if (le16_to_cpu(el->l_next_free_rec) == 0) {
2911 ocfs2_error(inode->i_sb,
2912 "Inode %llu has empty extent block at %llu",
2913 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2914 (unsigned long long)le64_to_cpu(eb->h_blkno));
2919 * XXX: The caller can not trust "path" any more after
2920 * this as it will have been deleted. What do we do?
2922 * In theory the rotate-for-merge code will never get
2923 * here because it'll always ask for a rotate in a
2927 ret = ocfs2_remove_rightmost_path(inode, handle, path,
2935 * Now we can loop, remembering the path we get from -EAGAIN
2936 * and restarting from there.
2939 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
2940 dealloc, &restart_path, et);
2941 if (ret && ret != -EAGAIN) {
2946 while (ret == -EAGAIN) {
2947 tmp_path = restart_path;
2948 restart_path = NULL;
2950 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2953 if (ret && ret != -EAGAIN) {
2958 ocfs2_free_path(tmp_path);
2966 ocfs2_free_path(tmp_path);
2967 ocfs2_free_path(restart_path);
2971 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
2974 struct ocfs2_extent_rec *rec = &el->l_recs[index];
2977 if (rec->e_leaf_clusters == 0) {
2979 * We consumed all of the merged-from record. An empty
2980 * extent cannot exist anywhere but the 1st array
2981 * position, so move things over if the merged-from
2982 * record doesn't occupy that position.
2984 * This creates a new empty extent so the caller
2985 * should be smart enough to have removed any existing
2989 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
2990 size = index * sizeof(struct ocfs2_extent_rec);
2991 memmove(&el->l_recs[1], &el->l_recs[0], size);
2995 * Always memset - the caller doesn't check whether it
2996 * created an empty extent, so there could be junk in
2999 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3003 static int ocfs2_get_right_path(struct inode *inode,
3004 struct ocfs2_path *left_path,
3005 struct ocfs2_path **ret_right_path)
3009 struct ocfs2_path *right_path = NULL;
3010 struct ocfs2_extent_list *left_el;
3012 *ret_right_path = NULL;
3014 /* This function shouldn't be called for non-trees. */
3015 BUG_ON(left_path->p_tree_depth == 0);
3017 left_el = path_leaf_el(left_path);
3018 BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3020 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3027 /* This function shouldn't be called for the rightmost leaf. */
3028 BUG_ON(right_cpos == 0);
3030 right_path = ocfs2_new_path(path_root_bh(left_path),
3031 path_root_el(left_path));
3038 ret = ocfs2_find_path(inode, right_path, right_cpos);
3044 *ret_right_path = right_path;
3047 ocfs2_free_path(right_path);
3052 * Remove split_rec clusters from the record at index and merge them
3053 * onto the beginning of the record "next" to it.
3054 * For index < l_count - 1, the next means the extent rec at index + 1.
3055 * For index == l_count - 1, the "next" means the 1st extent rec of the
3056 * next extent block.
3058 static int ocfs2_merge_rec_right(struct inode *inode,
3059 struct ocfs2_path *left_path,
3061 struct ocfs2_extent_rec *split_rec,
3064 int ret, next_free, i;
3065 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3066 struct ocfs2_extent_rec *left_rec;
3067 struct ocfs2_extent_rec *right_rec;
3068 struct ocfs2_extent_list *right_el;
3069 struct ocfs2_path *right_path = NULL;
3070 int subtree_index = 0;
3071 struct ocfs2_extent_list *el = path_leaf_el(left_path);
3072 struct buffer_head *bh = path_leaf_bh(left_path);
3073 struct buffer_head *root_bh = NULL;
3075 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3076 left_rec = &el->l_recs[index];
3078 if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3079 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3080 /* we meet with a cross extent block merge. */
3081 ret = ocfs2_get_right_path(inode, left_path, &right_path);
3087 right_el = path_leaf_el(right_path);
3088 next_free = le16_to_cpu(right_el->l_next_free_rec);
3089 BUG_ON(next_free <= 0);
3090 right_rec = &right_el->l_recs[0];
3091 if (ocfs2_is_empty_extent(right_rec)) {
3092 BUG_ON(next_free <= 1);
3093 right_rec = &right_el->l_recs[1];
3096 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3097 le16_to_cpu(left_rec->e_leaf_clusters) !=
3098 le32_to_cpu(right_rec->e_cpos));
3100 subtree_index = ocfs2_find_subtree_root(inode,
3101 left_path, right_path);
3103 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3104 handle->h_buffer_credits,
3111 root_bh = left_path->p_node[subtree_index].bh;
3112 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3114 ret = ocfs2_journal_access(handle, inode, root_bh,
3115 OCFS2_JOURNAL_ACCESS_WRITE);
3121 for (i = subtree_index + 1;
3122 i < path_num_items(right_path); i++) {
3123 ret = ocfs2_journal_access(handle, inode,
3124 right_path->p_node[i].bh,
3125 OCFS2_JOURNAL_ACCESS_WRITE);
3131 ret = ocfs2_journal_access(handle, inode,
3132 left_path->p_node[i].bh,
3133 OCFS2_JOURNAL_ACCESS_WRITE);
3141 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3142 right_rec = &el->l_recs[index + 1];
3145 ret = ocfs2_journal_access(handle, inode, bh,
3146 OCFS2_JOURNAL_ACCESS_WRITE);
3152 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3154 le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3155 le64_add_cpu(&right_rec->e_blkno,
3156 -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3157 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3159 ocfs2_cleanup_merge(el, index);
3161 ret = ocfs2_journal_dirty(handle, bh);
3166 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3170 ocfs2_complete_edge_insert(inode, handle, left_path,
3171 right_path, subtree_index);
3175 ocfs2_free_path(right_path);
3179 static int ocfs2_get_left_path(struct inode *inode,
3180 struct ocfs2_path *right_path,
3181 struct ocfs2_path **ret_left_path)
3185 struct ocfs2_path *left_path = NULL;
3187 *ret_left_path = NULL;
3189 /* This function shouldn't be called for non-trees. */
3190 BUG_ON(right_path->p_tree_depth == 0);
3192 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3193 right_path, &left_cpos);
3199 /* This function shouldn't be called for the leftmost leaf. */
3200 BUG_ON(left_cpos == 0);
3202 left_path = ocfs2_new_path(path_root_bh(right_path),
3203 path_root_el(right_path));
3210 ret = ocfs2_find_path(inode, left_path, left_cpos);
3216 *ret_left_path = left_path;
3219 ocfs2_free_path(left_path);
3224 * Remove split_rec clusters from the record at index and merge them
3225 * onto the tail of the record "before" it.
3226 * For index > 0, the "before" means the extent rec at index - 1.
3228 * For index == 0, the "before" means the last record of the previous
3229 * extent block. And there is also a situation that we may need to
3230 * remove the rightmost leaf extent block in the right_path and change
3231 * the right path to indicate the new rightmost path.
3233 static int ocfs2_merge_rec_left(struct inode *inode,
3234 struct ocfs2_path *right_path,
3236 struct ocfs2_extent_rec *split_rec,
3237 struct ocfs2_cached_dealloc_ctxt *dealloc,
3238 struct ocfs2_extent_tree *et,
3241 int ret, i, subtree_index = 0, has_empty_extent = 0;
3242 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3243 struct ocfs2_extent_rec *left_rec;
3244 struct ocfs2_extent_rec *right_rec;
3245 struct ocfs2_extent_list *el = path_leaf_el(right_path);
3246 struct buffer_head *bh = path_leaf_bh(right_path);
3247 struct buffer_head *root_bh = NULL;
3248 struct ocfs2_path *left_path = NULL;
3249 struct ocfs2_extent_list *left_el;
3253 right_rec = &el->l_recs[index];
3255 /* we meet with a cross extent block merge. */
3256 ret = ocfs2_get_left_path(inode, right_path, &left_path);
3262 left_el = path_leaf_el(left_path);
3263 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3264 le16_to_cpu(left_el->l_count));
3266 left_rec = &left_el->l_recs[
3267 le16_to_cpu(left_el->l_next_free_rec) - 1];
3268 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3269 le16_to_cpu(left_rec->e_leaf_clusters) !=
3270 le32_to_cpu(split_rec->e_cpos));
3272 subtree_index = ocfs2_find_subtree_root(inode,
3273 left_path, right_path);
3275 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3276 handle->h_buffer_credits,
3283 root_bh = left_path->p_node[subtree_index].bh;
3284 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3286 ret = ocfs2_journal_access(handle, inode, root_bh,
3287 OCFS2_JOURNAL_ACCESS_WRITE);
3293 for (i = subtree_index + 1;
3294 i < path_num_items(right_path); i++) {
3295 ret = ocfs2_journal_access(handle, inode,
3296 right_path->p_node[i].bh,
3297 OCFS2_JOURNAL_ACCESS_WRITE);
3303 ret = ocfs2_journal_access(handle, inode,
3304 left_path->p_node[i].bh,
3305 OCFS2_JOURNAL_ACCESS_WRITE);
3312 left_rec = &el->l_recs[index - 1];
3313 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3314 has_empty_extent = 1;
3317 ret = ocfs2_journal_access(handle, inode, bh,
3318 OCFS2_JOURNAL_ACCESS_WRITE);
3324 if (has_empty_extent && index == 1) {
3326 * The easy case - we can just plop the record right in.
3328 *left_rec = *split_rec;
3330 has_empty_extent = 0;
3332 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3334 le32_add_cpu(&right_rec->e_cpos, split_clusters);
3335 le64_add_cpu(&right_rec->e_blkno,
3336 ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3337 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3339 ocfs2_cleanup_merge(el, index);
3341 ret = ocfs2_journal_dirty(handle, bh);
3346 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3351 * In the situation that the right_rec is empty and the extent
3352 * block is empty also, ocfs2_complete_edge_insert can't handle
3353 * it and we need to delete the right extent block.
3355 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3356 le16_to_cpu(el->l_next_free_rec) == 1) {
3358 ret = ocfs2_remove_rightmost_path(inode, handle,
3366 /* Now the rightmost extent block has been deleted.
3367 * So we use the new rightmost path.
3369 ocfs2_mv_path(right_path, left_path);
3372 ocfs2_complete_edge_insert(inode, handle, left_path,
3373 right_path, subtree_index);
3377 ocfs2_free_path(left_path);
3381 static int ocfs2_try_to_merge_extent(struct inode *inode,
3383 struct ocfs2_path *path,
3385 struct ocfs2_extent_rec *split_rec,
3386 struct ocfs2_cached_dealloc_ctxt *dealloc,
3387 struct ocfs2_merge_ctxt *ctxt,
3388 struct ocfs2_extent_tree *et)
3392 struct ocfs2_extent_list *el = path_leaf_el(path);
3393 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3395 BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3397 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3399 * The merge code will need to create an empty
3400 * extent to take the place of the newly
3401 * emptied slot. Remove any pre-existing empty
3402 * extents - having more than one in a leaf is
3405 ret = ocfs2_rotate_tree_left(inode, handle, path,
3412 rec = &el->l_recs[split_index];
3415 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3417 * Left-right contig implies this.
3419 BUG_ON(!ctxt->c_split_covers_rec);
3422 * Since the leftright insert always covers the entire
3423 * extent, this call will delete the insert record
3424 * entirely, resulting in an empty extent record added to
3427 * Since the adding of an empty extent shifts
3428 * everything back to the right, there's no need to
3429 * update split_index here.
3431 * When the split_index is zero, we need to merge it to the
3432 * prevoius extent block. It is more efficient and easier
3433 * if we do merge_right first and merge_left later.
3435 ret = ocfs2_merge_rec_right(inode, path,
3444 * We can only get this from logic error above.
3446 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3448 /* The merge left us with an empty extent, remove it. */
3449 ret = ocfs2_rotate_tree_left(inode, handle, path,
3456 rec = &el->l_recs[split_index];
3459 * Note that we don't pass split_rec here on purpose -
3460 * we've merged it into the rec already.
3462 ret = ocfs2_merge_rec_left(inode, path,
3472 ret = ocfs2_rotate_tree_left(inode, handle, path,
3475 * Error from this last rotate is not critical, so
3476 * print but don't bubble it up.
3483 * Merge a record to the left or right.
3485 * 'contig_type' is relative to the existing record,
3486 * so for example, if we're "right contig", it's to
3487 * the record on the left (hence the left merge).
3489 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3490 ret = ocfs2_merge_rec_left(inode,
3500 ret = ocfs2_merge_rec_right(inode,
3510 if (ctxt->c_split_covers_rec) {
3512 * The merge may have left an empty extent in
3513 * our leaf. Try to rotate it away.
3515 ret = ocfs2_rotate_tree_left(inode, handle, path,
3527 static void ocfs2_subtract_from_rec(struct super_block *sb,
3528 enum ocfs2_split_type split,
3529 struct ocfs2_extent_rec *rec,
3530 struct ocfs2_extent_rec *split_rec)
3534 len_blocks = ocfs2_clusters_to_blocks(sb,
3535 le16_to_cpu(split_rec->e_leaf_clusters));
3537 if (split == SPLIT_LEFT) {
3539 * Region is on the left edge of the existing
3542 le32_add_cpu(&rec->e_cpos,
3543 le16_to_cpu(split_rec->e_leaf_clusters));
3544 le64_add_cpu(&rec->e_blkno, len_blocks);
3545 le16_add_cpu(&rec->e_leaf_clusters,
3546 -le16_to_cpu(split_rec->e_leaf_clusters));
3549 * Region is on the right edge of the existing
3552 le16_add_cpu(&rec->e_leaf_clusters,
3553 -le16_to_cpu(split_rec->e_leaf_clusters));
3558 * Do the final bits of extent record insertion at the target leaf
3559 * list. If this leaf is part of an allocation tree, it is assumed
3560 * that the tree above has been prepared.
3562 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3563 struct ocfs2_extent_list *el,
3564 struct ocfs2_insert_type *insert,
3565 struct inode *inode)
3567 int i = insert->ins_contig_index;
3569 struct ocfs2_extent_rec *rec;
3571 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3573 if (insert->ins_split != SPLIT_NONE) {
3574 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3576 rec = &el->l_recs[i];
3577 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3583 * Contiguous insert - either left or right.
3585 if (insert->ins_contig != CONTIG_NONE) {
3586 rec = &el->l_recs[i];
3587 if (insert->ins_contig == CONTIG_LEFT) {
3588 rec->e_blkno = insert_rec->e_blkno;
3589 rec->e_cpos = insert_rec->e_cpos;
3591 le16_add_cpu(&rec->e_leaf_clusters,
3592 le16_to_cpu(insert_rec->e_leaf_clusters));
3597 * Handle insert into an empty leaf.
3599 if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3600 ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3601 ocfs2_is_empty_extent(&el->l_recs[0]))) {
3602 el->l_recs[0] = *insert_rec;
3603 el->l_next_free_rec = cpu_to_le16(1);
3610 if (insert->ins_appending == APPEND_TAIL) {
3611 i = le16_to_cpu(el->l_next_free_rec) - 1;
3612 rec = &el->l_recs[i];
3613 range = le32_to_cpu(rec->e_cpos)
3614 + le16_to_cpu(rec->e_leaf_clusters);
3615 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3617 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3618 le16_to_cpu(el->l_count),
3619 "inode %lu, depth %u, count %u, next free %u, "
3620 "rec.cpos %u, rec.clusters %u, "
3621 "insert.cpos %u, insert.clusters %u\n",
3623 le16_to_cpu(el->l_tree_depth),
3624 le16_to_cpu(el->l_count),
3625 le16_to_cpu(el->l_next_free_rec),
3626 le32_to_cpu(el->l_recs[i].e_cpos),
3627 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3628 le32_to_cpu(insert_rec->e_cpos),
3629 le16_to_cpu(insert_rec->e_leaf_clusters));
3631 el->l_recs[i] = *insert_rec;
3632 le16_add_cpu(&el->l_next_free_rec, 1);
3638 * Ok, we have to rotate.
3640 * At this point, it is safe to assume that inserting into an
3641 * empty leaf and appending to a leaf have both been handled
3644 * This leaf needs to have space, either by the empty 1st
3645 * extent record, or by virtue of an l_next_rec < l_count.
3647 ocfs2_rotate_leaf(el, insert_rec);
3650 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3652 struct ocfs2_path *path,
3653 struct ocfs2_extent_rec *insert_rec)
3655 int ret, i, next_free;
3656 struct buffer_head *bh;
3657 struct ocfs2_extent_list *el;
3658 struct ocfs2_extent_rec *rec;
3661 * Update everything except the leaf block.
3663 for (i = 0; i < path->p_tree_depth; i++) {
3664 bh = path->p_node[i].bh;
3665 el = path->p_node[i].el;
3667 next_free = le16_to_cpu(el->l_next_free_rec);
3668 if (next_free == 0) {
3669 ocfs2_error(inode->i_sb,
3670 "Dinode %llu has a bad extent list",
3671 (unsigned long long)OCFS2_I(inode)->ip_blkno);
3676 rec = &el->l_recs[next_free - 1];
3678 rec->e_int_clusters = insert_rec->e_cpos;
3679 le32_add_cpu(&rec->e_int_clusters,
3680 le16_to_cpu(insert_rec->e_leaf_clusters));
3681 le32_add_cpu(&rec->e_int_clusters,
3682 -le32_to_cpu(rec->e_cpos));
3684 ret = ocfs2_journal_dirty(handle, bh);
3691 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3692 struct ocfs2_extent_rec *insert_rec,
3693 struct ocfs2_path *right_path,
3694 struct ocfs2_path **ret_left_path)
3697 struct ocfs2_extent_list *el;
3698 struct ocfs2_path *left_path = NULL;
3700 *ret_left_path = NULL;
3703 * This shouldn't happen for non-trees. The extent rec cluster
3704 * count manipulation below only works for interior nodes.
3706 BUG_ON(right_path->p_tree_depth == 0);
3709 * If our appending insert is at the leftmost edge of a leaf,
3710 * then we might need to update the rightmost records of the
3713 el = path_leaf_el(right_path);
3714 next_free = le16_to_cpu(el->l_next_free_rec);
3715 if (next_free == 0 ||
3716 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3719 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3726 mlog(0, "Append may need a left path update. cpos: %u, "
3727 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3731 * No need to worry if the append is already in the
3735 left_path = ocfs2_new_path(path_root_bh(right_path),
3736 path_root_el(right_path));
3743 ret = ocfs2_find_path(inode, left_path, left_cpos);
3750 * ocfs2_insert_path() will pass the left_path to the
3756 ret = ocfs2_journal_access_path(inode, handle, right_path);
3762 ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3764 *ret_left_path = left_path;
3768 ocfs2_free_path(left_path);
3773 static void ocfs2_split_record(struct inode *inode,
3774 struct ocfs2_path *left_path,
3775 struct ocfs2_path *right_path,
3776 struct ocfs2_extent_rec *split_rec,
3777 enum ocfs2_split_type split)
3780 u32 cpos = le32_to_cpu(split_rec->e_cpos);
3781 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3782 struct ocfs2_extent_rec *rec, *tmprec;
3784 right_el = path_leaf_el(right_path);;
3786 left_el = path_leaf_el(left_path);
3789 insert_el = right_el;
3790 index = ocfs2_search_extent_list(el, cpos);
3792 if (index == 0 && left_path) {
3793 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3796 * This typically means that the record
3797 * started in the left path but moved to the
3798 * right as a result of rotation. We either
3799 * move the existing record to the left, or we
3800 * do the later insert there.
3802 * In this case, the left path should always
3803 * exist as the rotate code will have passed
3804 * it back for a post-insert update.
3807 if (split == SPLIT_LEFT) {
3809 * It's a left split. Since we know
3810 * that the rotate code gave us an
3811 * empty extent in the left path, we
3812 * can just do the insert there.
3814 insert_el = left_el;
3817 * Right split - we have to move the
3818 * existing record over to the left
3819 * leaf. The insert will be into the
3820 * newly created empty extent in the
3823 tmprec = &right_el->l_recs[index];
3824 ocfs2_rotate_leaf(left_el, tmprec);
3827 memset(tmprec, 0, sizeof(*tmprec));
3828 index = ocfs2_search_extent_list(left_el, cpos);
3829 BUG_ON(index == -1);
3834 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3836 * Left path is easy - we can just allow the insert to
3840 insert_el = left_el;
3841 index = ocfs2_search_extent_list(el, cpos);
3842 BUG_ON(index == -1);
3845 rec = &el->l_recs[index];
3846 ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3847 ocfs2_rotate_leaf(insert_el, split_rec);
3851 * This function only does inserts on an allocation b-tree. For tree
3852 * depth = 0, ocfs2_insert_at_leaf() is called directly.
3854 * right_path is the path we want to do the actual insert
3855 * in. left_path should only be passed in if we need to update that
3856 * portion of the tree after an edge insert.
3858 static int ocfs2_insert_path(struct inode *inode,
3860 struct ocfs2_path *left_path,
3861 struct ocfs2_path *right_path,
3862 struct ocfs2_extent_rec *insert_rec,
3863 struct ocfs2_insert_type *insert)
3865 int ret, subtree_index;
3866 struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3869 int credits = handle->h_buffer_credits;
3872 * There's a chance that left_path got passed back to
3873 * us without being accounted for in the
3874 * journal. Extend our transaction here to be sure we
3875 * can change those blocks.
3877 credits += left_path->p_tree_depth;
3879 ret = ocfs2_extend_trans(handle, credits);
3885 ret = ocfs2_journal_access_path(inode, handle, left_path);
3893 * Pass both paths to the journal. The majority of inserts
3894 * will be touching all components anyway.
3896 ret = ocfs2_journal_access_path(inode, handle, right_path);
3902 if (insert->ins_split != SPLIT_NONE) {
3904 * We could call ocfs2_insert_at_leaf() for some types
3905 * of splits, but it's easier to just let one separate
3906 * function sort it all out.
3908 ocfs2_split_record(inode, left_path, right_path,
3909 insert_rec, insert->ins_split);
3912 * Split might have modified either leaf and we don't
3913 * have a guarantee that the later edge insert will
3914 * dirty this for us.
3917 ret = ocfs2_journal_dirty(handle,
3918 path_leaf_bh(left_path));
3922 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3925 ret = ocfs2_journal_dirty(handle, leaf_bh);
3931 * The rotate code has indicated that we need to fix
3932 * up portions of the tree after the insert.
3934 * XXX: Should we extend the transaction here?
3936 subtree_index = ocfs2_find_subtree_root(inode, left_path,
3938 ocfs2_complete_edge_insert(inode, handle, left_path,
3939 right_path, subtree_index);
3947 static int ocfs2_do_insert_extent(struct inode *inode,
3949 struct ocfs2_extent_tree *et,
3950 struct ocfs2_extent_rec *insert_rec,
3951 struct ocfs2_insert_type *type)
3953 int ret, rotate = 0;
3955 struct ocfs2_path *right_path = NULL;
3956 struct ocfs2_path *left_path = NULL;
3957 struct ocfs2_extent_list *el;
3959 el = et->et_root_el;
3961 ret = ocfs2_journal_access(handle, inode, et->et_root_bh,
3962 OCFS2_JOURNAL_ACCESS_WRITE);
3968 if (le16_to_cpu(el->l_tree_depth) == 0) {
3969 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
3970 goto out_update_clusters;
3973 right_path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
3981 * Determine the path to start with. Rotations need the
3982 * rightmost path, everything else can go directly to the
3985 cpos = le32_to_cpu(insert_rec->e_cpos);
3986 if (type->ins_appending == APPEND_NONE &&
3987 type->ins_contig == CONTIG_NONE) {
3992 ret = ocfs2_find_path(inode, right_path, cpos);
3999 * Rotations and appends need special treatment - they modify
4000 * parts of the tree's above them.
4002 * Both might pass back a path immediate to the left of the
4003 * one being inserted to. This will be cause
4004 * ocfs2_insert_path() to modify the rightmost records of
4005 * left_path to account for an edge insert.
4007 * XXX: When modifying this code, keep in mind that an insert
4008 * can wind up skipping both of these two special cases...
4011 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
4012 le32_to_cpu(insert_rec->e_cpos),
4013 right_path, &left_path);
4020 * ocfs2_rotate_tree_right() might have extended the
4021 * transaction without re-journaling our tree root.
4023 ret = ocfs2_journal_access(handle, inode, et->et_root_bh,
4024 OCFS2_JOURNAL_ACCESS_WRITE);
4029 } else if (type->ins_appending == APPEND_TAIL
4030 && type->ins_contig != CONTIG_LEFT) {
4031 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4032 right_path, &left_path);
4039 ret = ocfs2_insert_path(inode, handle, left_path, right_path,
4046 out_update_clusters:
4047 if (type->ins_split == SPLIT_NONE)
4048 ocfs2_et_update_clusters(inode, et,
4049 le16_to_cpu(insert_rec->e_leaf_clusters));
4051 ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4056 ocfs2_free_path(left_path);
4057 ocfs2_free_path(right_path);
4062 static enum ocfs2_contig_type
4063 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4064 struct ocfs2_extent_list *el, int index,
4065 struct ocfs2_extent_rec *split_rec)
4068 enum ocfs2_contig_type ret = CONTIG_NONE;
4069 u32 left_cpos, right_cpos;
4070 struct ocfs2_extent_rec *rec = NULL;
4071 struct ocfs2_extent_list *new_el;
4072 struct ocfs2_path *left_path = NULL, *right_path = NULL;
4073 struct buffer_head *bh;
4074 struct ocfs2_extent_block *eb;
4077 rec = &el->l_recs[index - 1];
4078 } else if (path->p_tree_depth > 0) {
4079 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4084 if (left_cpos != 0) {
4085 left_path = ocfs2_new_path(path_root_bh(path),
4086 path_root_el(path));
4090 status = ocfs2_find_path(inode, left_path, left_cpos);
4094 new_el = path_leaf_el(left_path);
4096 if (le16_to_cpu(new_el->l_next_free_rec) !=
4097 le16_to_cpu(new_el->l_count)) {
4098 bh = path_leaf_bh(left_path);
4099 eb = (struct ocfs2_extent_block *)bh->b_data;
4100 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
4104 rec = &new_el->l_recs[
4105 le16_to_cpu(new_el->l_next_free_rec) - 1];
4110 * We're careful to check for an empty extent record here -
4111 * the merge code will know what to do if it sees one.
4114 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4115 if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4118 ret = ocfs2_extent_contig(inode, rec, split_rec);
4123 if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4124 rec = &el->l_recs[index + 1];
4125 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4126 path->p_tree_depth > 0) {
4127 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4132 if (right_cpos == 0)
4135 right_path = ocfs2_new_path(path_root_bh(path),
4136 path_root_el(path));
4140 status = ocfs2_find_path(inode, right_path, right_cpos);
4144 new_el = path_leaf_el(right_path);
4145 rec = &new_el->l_recs[0];
4146 if (ocfs2_is_empty_extent(rec)) {
4147 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4148 bh = path_leaf_bh(right_path);
4149 eb = (struct ocfs2_extent_block *)bh->b_data;
4150 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
4154 rec = &new_el->l_recs[1];
4159 enum ocfs2_contig_type contig_type;
4161 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4163 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4164 ret = CONTIG_LEFTRIGHT;
4165 else if (ret == CONTIG_NONE)
4171 ocfs2_free_path(left_path);
4173 ocfs2_free_path(right_path);
4178 static void ocfs2_figure_contig_type(struct inode *inode,
4179 struct ocfs2_insert_type *insert,
4180 struct ocfs2_extent_list *el,
4181 struct ocfs2_extent_rec *insert_rec,
4182 struct ocfs2_extent_tree *et)
4185 enum ocfs2_contig_type contig_type = CONTIG_NONE;
4187 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4189 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4190 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4192 if (contig_type != CONTIG_NONE) {
4193 insert->ins_contig_index = i;
4197 insert->ins_contig = contig_type;
4199 if (insert->ins_contig != CONTIG_NONE) {
4200 struct ocfs2_extent_rec *rec =
4201 &el->l_recs[insert->ins_contig_index];
4202 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4203 le16_to_cpu(insert_rec->e_leaf_clusters);
4206 * Caller might want us to limit the size of extents, don't
4207 * calculate contiguousness if we might exceed that limit.
4209 if (et->et_max_leaf_clusters &&
4210 (len > et->et_max_leaf_clusters))
4211 insert->ins_contig = CONTIG_NONE;
4216 * This should only be called against the righmost leaf extent list.
4218 * ocfs2_figure_appending_type() will figure out whether we'll have to
4219 * insert at the tail of the rightmost leaf.
4221 * This should also work against the root extent list for tree's with 0
4222 * depth. If we consider the root extent list to be the rightmost leaf node
4223 * then the logic here makes sense.
4225 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4226 struct ocfs2_extent_list *el,
4227 struct ocfs2_extent_rec *insert_rec)
4230 u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4231 struct ocfs2_extent_rec *rec;
4233 insert->ins_appending = APPEND_NONE;
4235 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4237 if (!el->l_next_free_rec)
4238 goto set_tail_append;
4240 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4241 /* Were all records empty? */
4242 if (le16_to_cpu(el->l_next_free_rec) == 1)
4243 goto set_tail_append;
4246 i = le16_to_cpu(el->l_next_free_rec) - 1;
4247 rec = &el->l_recs[i];
4250 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4251 goto set_tail_append;
4256 insert->ins_appending = APPEND_TAIL;
4260 * Helper function called at the begining of an insert.
4262 * This computes a few things that are commonly used in the process of
4263 * inserting into the btree:
4264 * - Whether the new extent is contiguous with an existing one.
4265 * - The current tree depth.
4266 * - Whether the insert is an appending one.
4267 * - The total # of free records in the tree.
4269 * All of the information is stored on the ocfs2_insert_type
4272 static int ocfs2_figure_insert_type(struct inode *inode,
4273 struct ocfs2_extent_tree *et,
4274 struct buffer_head **last_eb_bh,
4275 struct ocfs2_extent_rec *insert_rec,
4277 struct ocfs2_insert_type *insert)
4280 struct ocfs2_extent_block *eb;
4281 struct ocfs2_extent_list *el;
4282 struct ocfs2_path *path = NULL;
4283 struct buffer_head *bh = NULL;
4285 insert->ins_split = SPLIT_NONE;
4287 el = et->et_root_el;
4288 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4290 if (el->l_tree_depth) {
4292 * If we have tree depth, we read in the
4293 * rightmost extent block ahead of time as
4294 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4295 * may want it later.
4297 ret = ocfs2_read_block(inode, ocfs2_et_get_last_eb_blk(et), &bh);
4302 eb = (struct ocfs2_extent_block *) bh->b_data;
4307 * Unless we have a contiguous insert, we'll need to know if
4308 * there is room left in our allocation tree for another
4311 * XXX: This test is simplistic, we can search for empty
4312 * extent records too.
4314 *free_records = le16_to_cpu(el->l_count) -
4315 le16_to_cpu(el->l_next_free_rec);
4317 if (!insert->ins_tree_depth) {
4318 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4319 ocfs2_figure_appending_type(insert, el, insert_rec);
4323 path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
4331 * In the case that we're inserting past what the tree
4332 * currently accounts for, ocfs2_find_path() will return for
4333 * us the rightmost tree path. This is accounted for below in
4334 * the appending code.
4336 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4342 el = path_leaf_el(path);
4345 * Now that we have the path, there's two things we want to determine:
4346 * 1) Contiguousness (also set contig_index if this is so)
4348 * 2) Are we doing an append? We can trivially break this up
4349 * into two types of appends: simple record append, or a
4350 * rotate inside the tail leaf.
4352 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4355 * The insert code isn't quite ready to deal with all cases of
4356 * left contiguousness. Specifically, if it's an insert into
4357 * the 1st record in a leaf, it will require the adjustment of
4358 * cluster count on the last record of the path directly to it's
4359 * left. For now, just catch that case and fool the layers
4360 * above us. This works just fine for tree_depth == 0, which
4361 * is why we allow that above.
4363 if (insert->ins_contig == CONTIG_LEFT &&
4364 insert->ins_contig_index == 0)
4365 insert->ins_contig = CONTIG_NONE;
4368 * Ok, so we can simply compare against last_eb to figure out
4369 * whether the path doesn't exist. This will only happen in
4370 * the case that we're doing a tail append, so maybe we can
4371 * take advantage of that information somehow.
4373 if (ocfs2_et_get_last_eb_blk(et) ==
4374 path_leaf_bh(path)->b_blocknr) {
4376 * Ok, ocfs2_find_path() returned us the rightmost
4377 * tree path. This might be an appending insert. There are
4379 * 1) We're doing a true append at the tail:
4380 * -This might even be off the end of the leaf
4381 * 2) We're "appending" by rotating in the tail
4383 ocfs2_figure_appending_type(insert, el, insert_rec);
4387 ocfs2_free_path(path);
4397 * Insert an extent into an inode btree.
4399 * The caller needs to update fe->i_clusters
4401 int ocfs2_insert_extent(struct ocfs2_super *osb,
4403 struct inode *inode,
4404 struct ocfs2_extent_tree *et,
4409 struct ocfs2_alloc_context *meta_ac)
4412 int uninitialized_var(free_records);
4413 struct buffer_head *last_eb_bh = NULL;
4414 struct ocfs2_insert_type insert = {0, };
4415 struct ocfs2_extent_rec rec;
4417 mlog(0, "add %u clusters at position %u to inode %llu\n",
4418 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4420 memset(&rec, 0, sizeof(rec));
4421 rec.e_cpos = cpu_to_le32(cpos);
4422 rec.e_blkno = cpu_to_le64(start_blk);
4423 rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4424 rec.e_flags = flags;
4425 status = ocfs2_et_insert_check(inode, et, &rec);
4431 status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4432 &free_records, &insert);
4438 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4439 "Insert.contig_index: %d, Insert.free_records: %d, "
4440 "Insert.tree_depth: %d\n",
4441 insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4442 free_records, insert.ins_tree_depth);
4444 if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4445 status = ocfs2_grow_tree(inode, handle, et,
4446 &insert.ins_tree_depth, &last_eb_bh,
4454 /* Finally, we can add clusters. This might rotate the tree for us. */
4455 status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4458 else if (et->et_ops == &ocfs2_dinode_et_ops)
4459 ocfs2_extent_map_insert_rec(inode, &rec);
4469 * Allcate and add clusters into the extent b-tree.
4470 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4471 * The extent b-tree's root is specified by et, and
4472 * it is not limited to the file storage. Any extent tree can use this
4473 * function if it implements the proper ocfs2_extent_tree.
4475 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4476 struct inode *inode,
4477 u32 *logical_offset,
4478 u32 clusters_to_add,
4480 struct ocfs2_extent_tree *et,
4482 struct ocfs2_alloc_context *data_ac,
4483 struct ocfs2_alloc_context *meta_ac,
4484 enum ocfs2_alloc_restarted *reason_ret)
4488 enum ocfs2_alloc_restarted reason = RESTART_NONE;
4489 u32 bit_off, num_bits;
4493 BUG_ON(!clusters_to_add);
4496 flags = OCFS2_EXT_UNWRITTEN;
4498 free_extents = ocfs2_num_free_extents(osb, inode, et);
4499 if (free_extents < 0) {
4500 status = free_extents;
4505 /* there are two cases which could cause us to EAGAIN in the
4506 * we-need-more-metadata case:
4507 * 1) we haven't reserved *any*
4508 * 2) we are so fragmented, we've needed to add metadata too
4510 if (!free_extents && !meta_ac) {
4511 mlog(0, "we haven't reserved any metadata!\n");
4513 reason = RESTART_META;
4515 } else if ((!free_extents)
4516 && (ocfs2_alloc_context_bits_left(meta_ac)
4517 < ocfs2_extend_meta_needed(et->et_root_el))) {
4518 mlog(0, "filesystem is really fragmented...\n");
4520 reason = RESTART_META;
4524 status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4525 clusters_to_add, &bit_off, &num_bits);
4527 if (status != -ENOSPC)
4532 BUG_ON(num_bits > clusters_to_add);
4534 /* reserve our write early -- insert_extent may update the inode */
4535 status = ocfs2_journal_access(handle, inode, et->et_root_bh,
4536 OCFS2_JOURNAL_ACCESS_WRITE);
4542 block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4543 mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4544 num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4545 status = ocfs2_insert_extent(osb, handle, inode, et,
4546 *logical_offset, block,
4547 num_bits, flags, meta_ac);
4553 status = ocfs2_journal_dirty(handle, et->et_root_bh);
4559 clusters_to_add -= num_bits;
4560 *logical_offset += num_bits;
4562 if (clusters_to_add) {
4563 mlog(0, "need to alloc once more, wanted = %u\n",
4566 reason = RESTART_TRANS;
4572 *reason_ret = reason;
4576 static void ocfs2_make_right_split_rec(struct super_block *sb,
4577 struct ocfs2_extent_rec *split_rec,
4579 struct ocfs2_extent_rec *rec)
4581 u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4582 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4584 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4586 split_rec->e_cpos = cpu_to_le32(cpos);
4587 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4589 split_rec->e_blkno = rec->e_blkno;
4590 le64_add_cpu(&split_rec->e_blkno,
4591 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4593 split_rec->e_flags = rec->e_flags;
4596 static int ocfs2_split_and_insert(struct inode *inode,
4598 struct ocfs2_path *path,
4599 struct ocfs2_extent_tree *et,
4600 struct buffer_head **last_eb_bh,
4602 struct ocfs2_extent_rec *orig_split_rec,
4603 struct ocfs2_alloc_context *meta_ac)
4606 unsigned int insert_range, rec_range, do_leftright = 0;
4607 struct ocfs2_extent_rec tmprec;
4608 struct ocfs2_extent_list *rightmost_el;
4609 struct ocfs2_extent_rec rec;
4610 struct ocfs2_extent_rec split_rec = *orig_split_rec;
4611 struct ocfs2_insert_type insert;
4612 struct ocfs2_extent_block *eb;
4616 * Store a copy of the record on the stack - it might move
4617 * around as the tree is manipulated below.
4619 rec = path_leaf_el(path)->l_recs[split_index];
4621 rightmost_el = et->et_root_el;
4623 depth = le16_to_cpu(rightmost_el->l_tree_depth);
4625 BUG_ON(!(*last_eb_bh));
4626 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4627 rightmost_el = &eb->h_list;
4630 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4631 le16_to_cpu(rightmost_el->l_count)) {
4632 ret = ocfs2_grow_tree(inode, handle, et,
4633 &depth, last_eb_bh, meta_ac);
4640 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4641 insert.ins_appending = APPEND_NONE;
4642 insert.ins_contig = CONTIG_NONE;
4643 insert.ins_tree_depth = depth;
4645 insert_range = le32_to_cpu(split_rec.e_cpos) +
4646 le16_to_cpu(split_rec.e_leaf_clusters);
4647 rec_range = le32_to_cpu(rec.e_cpos) +
4648 le16_to_cpu(rec.e_leaf_clusters);
4650 if (split_rec.e_cpos == rec.e_cpos) {
4651 insert.ins_split = SPLIT_LEFT;
4652 } else if (insert_range == rec_range) {
4653 insert.ins_split = SPLIT_RIGHT;
4656 * Left/right split. We fake this as a right split
4657 * first and then make a second pass as a left split.
4659 insert.ins_split = SPLIT_RIGHT;
4661 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4666 BUG_ON(do_leftright);
4670 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4676 if (do_leftright == 1) {
4678 struct ocfs2_extent_list *el;
4681 split_rec = *orig_split_rec;
4683 ocfs2_reinit_path(path, 1);
4685 cpos = le32_to_cpu(split_rec.e_cpos);
4686 ret = ocfs2_find_path(inode, path, cpos);
4692 el = path_leaf_el(path);
4693 split_index = ocfs2_search_extent_list(el, cpos);
4702 * Mark part or all of the extent record at split_index in the leaf
4703 * pointed to by path as written. This removes the unwritten
4706 * Care is taken to handle contiguousness so as to not grow the tree.
4708 * meta_ac is not strictly necessary - we only truly need it if growth
4709 * of the tree is required. All other cases will degrade into a less
4710 * optimal tree layout.
4712 * last_eb_bh should be the rightmost leaf block for any extent
4713 * btree. Since a split may grow the tree or a merge might shrink it,
4714 * the caller cannot trust the contents of that buffer after this call.
4716 * This code is optimized for readability - several passes might be
4717 * made over certain portions of the tree. All of those blocks will
4718 * have been brought into cache (and pinned via the journal), so the
4719 * extra overhead is not expressed in terms of disk reads.
4721 static int __ocfs2_mark_extent_written(struct inode *inode,
4722 struct ocfs2_extent_tree *et,
4724 struct ocfs2_path *path,
4726 struct ocfs2_extent_rec *split_rec,
4727 struct ocfs2_alloc_context *meta_ac,
4728 struct ocfs2_cached_dealloc_ctxt *dealloc)
4731 struct ocfs2_extent_list *el = path_leaf_el(path);
4732 struct buffer_head *last_eb_bh = NULL;
4733 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4734 struct ocfs2_merge_ctxt ctxt;
4735 struct ocfs2_extent_list *rightmost_el;
4737 if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
4743 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
4744 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
4745 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
4751 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
4756 * The core merge / split code wants to know how much room is
4757 * left in this inodes allocation tree, so we pass the
4758 * rightmost extent list.
4760 if (path->p_tree_depth) {
4761 struct ocfs2_extent_block *eb;
4763 ret = ocfs2_read_block(inode, ocfs2_et_get_last_eb_blk(et),
4770 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4771 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
4772 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
4777 rightmost_el = &eb->h_list;
4779 rightmost_el = path_root_el(path);
4781 if (rec->e_cpos == split_rec->e_cpos &&
4782 rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4783 ctxt.c_split_covers_rec = 1;
4785 ctxt.c_split_covers_rec = 0;
4787 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4789 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4790 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
4791 ctxt.c_split_covers_rec);
4793 if (ctxt.c_contig_type == CONTIG_NONE) {
4794 if (ctxt.c_split_covers_rec)
4795 el->l_recs[split_index] = *split_rec;
4797 ret = ocfs2_split_and_insert(inode, handle, path, et,
4798 &last_eb_bh, split_index,
4799 split_rec, meta_ac);
4803 ret = ocfs2_try_to_merge_extent(inode, handle, path,
4804 split_index, split_rec,
4805 dealloc, &ctxt, et);
4816 * Mark the already-existing extent at cpos as written for len clusters.
4818 * If the existing extent is larger than the request, initiate a
4819 * split. An attempt will be made at merging with adjacent extents.
4821 * The caller is responsible for passing down meta_ac if we'll need it.
4823 int ocfs2_mark_extent_written(struct inode *inode,
4824 struct ocfs2_extent_tree *et,
4825 handle_t *handle, u32 cpos, u32 len, u32 phys,
4826 struct ocfs2_alloc_context *meta_ac,
4827 struct ocfs2_cached_dealloc_ctxt *dealloc)
4830 u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4831 struct ocfs2_extent_rec split_rec;
4832 struct ocfs2_path *left_path = NULL;
4833 struct ocfs2_extent_list *el;
4835 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4836 inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4838 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4839 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4840 "that are being written to, but the feature bit "
4841 "is not set in the super block.",
4842 (unsigned long long)OCFS2_I(inode)->ip_blkno);
4848 * XXX: This should be fixed up so that we just re-insert the
4849 * next extent records.
4851 * XXX: This is a hack on the extent tree, maybe it should be
4854 if (et->et_ops == &ocfs2_dinode_et_ops)
4855 ocfs2_extent_map_trunc(inode, 0);
4857 left_path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
4864 ret = ocfs2_find_path(inode, left_path, cpos);
4869 el = path_leaf_el(left_path);
4871 index = ocfs2_search_extent_list(el, cpos);
4872 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4873 ocfs2_error(inode->i_sb,
4874 "Inode %llu has an extent at cpos %u which can no "
4875 "longer be found.\n",
4876 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4881 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4882 split_rec.e_cpos = cpu_to_le32(cpos);
4883 split_rec.e_leaf_clusters = cpu_to_le16(len);
4884 split_rec.e_blkno = cpu_to_le64(start_blkno);
4885 split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4886 split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4888 ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
4889 index, &split_rec, meta_ac,
4895 ocfs2_free_path(left_path);
4899 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
4900 handle_t *handle, struct ocfs2_path *path,
4901 int index, u32 new_range,
4902 struct ocfs2_alloc_context *meta_ac)
4904 int ret, depth, credits = handle->h_buffer_credits;
4905 struct buffer_head *last_eb_bh = NULL;
4906 struct ocfs2_extent_block *eb;
4907 struct ocfs2_extent_list *rightmost_el, *el;
4908 struct ocfs2_extent_rec split_rec;
4909 struct ocfs2_extent_rec *rec;
4910 struct ocfs2_insert_type insert;
4913 * Setup the record to split before we grow the tree.
4915 el = path_leaf_el(path);
4916 rec = &el->l_recs[index];
4917 ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
4919 depth = path->p_tree_depth;
4921 ret = ocfs2_read_block(inode, ocfs2_et_get_last_eb_blk(et),
4928 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4929 rightmost_el = &eb->h_list;
4931 rightmost_el = path_leaf_el(path);
4933 credits += path->p_tree_depth +
4934 ocfs2_extend_meta_needed(et->et_root_el);
4935 ret = ocfs2_extend_trans(handle, credits);
4941 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4942 le16_to_cpu(rightmost_el->l_count)) {
4943 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
4951 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4952 insert.ins_appending = APPEND_NONE;
4953 insert.ins_contig = CONTIG_NONE;
4954 insert.ins_split = SPLIT_RIGHT;
4955 insert.ins_tree_depth = depth;
4957 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4966 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
4967 struct ocfs2_path *path, int index,
4968 struct ocfs2_cached_dealloc_ctxt *dealloc,
4970 struct ocfs2_extent_tree *et)
4973 u32 left_cpos, rec_range, trunc_range;
4974 int wants_rotate = 0, is_rightmost_tree_rec = 0;
4975 struct super_block *sb = inode->i_sb;
4976 struct ocfs2_path *left_path = NULL;
4977 struct ocfs2_extent_list *el = path_leaf_el(path);
4978 struct ocfs2_extent_rec *rec;
4979 struct ocfs2_extent_block *eb;
4981 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
4982 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
4991 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
4992 path->p_tree_depth) {
4994 * Check whether this is the rightmost tree record. If
4995 * we remove all of this record or part of its right
4996 * edge then an update of the record lengths above it
4999 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5000 if (eb->h_next_leaf_blk == 0)
5001 is_rightmost_tree_rec = 1;
5004 rec = &el->l_recs[index];
5005 if (index == 0 && path->p_tree_depth &&
5006 le32_to_cpu(rec->e_cpos) == cpos) {
5008 * Changing the leftmost offset (via partial or whole
5009 * record truncate) of an interior (or rightmost) path
5010 * means we have to update the subtree that is formed
5011 * by this leaf and the one to it's left.
5013 * There are two cases we can skip:
5014 * 1) Path is the leftmost one in our inode tree.
5015 * 2) The leaf is rightmost and will be empty after
5016 * we remove the extent record - the rotate code
5017 * knows how to update the newly formed edge.
5020 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5027 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5028 left_path = ocfs2_new_path(path_root_bh(path),
5029 path_root_el(path));
5036 ret = ocfs2_find_path(inode, left_path, left_cpos);
5044 ret = ocfs2_extend_rotate_transaction(handle, 0,
5045 handle->h_buffer_credits,
5052 ret = ocfs2_journal_access_path(inode, handle, path);
5058 ret = ocfs2_journal_access_path(inode, handle, left_path);
5064 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5065 trunc_range = cpos + len;
5067 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5070 memset(rec, 0, sizeof(*rec));
5071 ocfs2_cleanup_merge(el, index);
5074 next_free = le16_to_cpu(el->l_next_free_rec);
5075 if (is_rightmost_tree_rec && next_free > 1) {
5077 * We skip the edge update if this path will
5078 * be deleted by the rotate code.
5080 rec = &el->l_recs[next_free - 1];
5081 ocfs2_adjust_rightmost_records(inode, handle, path,
5084 } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5085 /* Remove leftmost portion of the record. */
5086 le32_add_cpu(&rec->e_cpos, len);
5087 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5088 le16_add_cpu(&rec->e_leaf_clusters, -len);
5089 } else if (rec_range == trunc_range) {
5090 /* Remove rightmost portion of the record */
5091 le16_add_cpu(&rec->e_leaf_clusters, -len);
5092 if (is_rightmost_tree_rec)
5093 ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5095 /* Caller should have trapped this. */
5096 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5097 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5098 le32_to_cpu(rec->e_cpos),
5099 le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5106 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5107 ocfs2_complete_edge_insert(inode, handle, left_path, path,
5111 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5113 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5120 ocfs2_free_path(left_path);
5124 int ocfs2_remove_extent(struct inode *inode,
5125 struct ocfs2_extent_tree *et,
5126 u32 cpos, u32 len, handle_t *handle,
5127 struct ocfs2_alloc_context *meta_ac,
5128 struct ocfs2_cached_dealloc_ctxt *dealloc)
5131 u32 rec_range, trunc_range;
5132 struct ocfs2_extent_rec *rec;
5133 struct ocfs2_extent_list *el;
5134 struct ocfs2_path *path = NULL;
5136 ocfs2_extent_map_trunc(inode, 0);
5138 path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
5145 ret = ocfs2_find_path(inode, path, cpos);
5151 el = path_leaf_el(path);
5152 index = ocfs2_search_extent_list(el, cpos);
5153 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5154 ocfs2_error(inode->i_sb,
5155 "Inode %llu has an extent at cpos %u which can no "
5156 "longer be found.\n",
5157 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5163 * We have 3 cases of extent removal:
5164 * 1) Range covers the entire extent rec
5165 * 2) Range begins or ends on one edge of the extent rec
5166 * 3) Range is in the middle of the extent rec (no shared edges)
5168 * For case 1 we remove the extent rec and left rotate to
5171 * For case 2 we just shrink the existing extent rec, with a
5172 * tree update if the shrinking edge is also the edge of an
5175 * For case 3 we do a right split to turn the extent rec into
5176 * something case 2 can handle.
5178 rec = &el->l_recs[index];
5179 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5180 trunc_range = cpos + len;
5182 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5184 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5185 "(cpos %u, len %u)\n",
5186 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5187 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5189 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5190 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5197 ret = ocfs2_split_tree(inode, et, handle, path, index,
5198 trunc_range, meta_ac);
5205 * The split could have manipulated the tree enough to
5206 * move the record location, so we have to look for it again.
5208 ocfs2_reinit_path(path, 1);
5210 ret = ocfs2_find_path(inode, path, cpos);
5216 el = path_leaf_el(path);
5217 index = ocfs2_search_extent_list(el, cpos);
5218 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5219 ocfs2_error(inode->i_sb,
5220 "Inode %llu: split at cpos %u lost record.",
5221 (unsigned long long)OCFS2_I(inode)->ip_blkno,
5228 * Double check our values here. If anything is fishy,
5229 * it's easier to catch it at the top level.
5231 rec = &el->l_recs[index];
5232 rec_range = le32_to_cpu(rec->e_cpos) +
5233 ocfs2_rec_clusters(el, rec);
5234 if (rec_range != trunc_range) {
5235 ocfs2_error(inode->i_sb,
5236 "Inode %llu: error after split at cpos %u"
5237 "trunc len %u, existing record is (%u,%u)",
5238 (unsigned long long)OCFS2_I(inode)->ip_blkno,
5239 cpos, len, le32_to_cpu(rec->e_cpos),
5240 ocfs2_rec_clusters(el, rec));
5245 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5254 ocfs2_free_path(path);
5258 int ocfs2_remove_btree_range(struct inode *inode,
5259 struct ocfs2_extent_tree *et,
5260 u32 cpos, u32 phys_cpos, u32 len,
5261 struct ocfs2_cached_dealloc_ctxt *dealloc)
5264 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5265 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5266 struct inode *tl_inode = osb->osb_tl_inode;
5268 struct ocfs2_alloc_context *meta_ac = NULL;
5270 ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5276 mutex_lock(&tl_inode->i_mutex);
5278 if (ocfs2_truncate_log_needs_flush(osb)) {
5279 ret = __ocfs2_flush_truncate_log(osb);
5286 handle = ocfs2_start_trans(osb, OCFS2_REMOVE_EXTENT_CREDITS);
5287 if (IS_ERR(handle)) {
5288 ret = PTR_ERR(handle);
5293 ret = ocfs2_journal_access(handle, inode, et->et_root_bh,
5294 OCFS2_JOURNAL_ACCESS_WRITE);
5300 ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5307 ocfs2_et_update_clusters(inode, et, -len);
5309 ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5315 ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5320 ocfs2_commit_trans(osb, handle);
5322 mutex_unlock(&tl_inode->i_mutex);
5325 ocfs2_free_alloc_context(meta_ac);
5330 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5332 struct buffer_head *tl_bh = osb->osb_tl_bh;
5333 struct ocfs2_dinode *di;
5334 struct ocfs2_truncate_log *tl;
5336 di = (struct ocfs2_dinode *) tl_bh->b_data;
5337 tl = &di->id2.i_dealloc;
5339 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5340 "slot %d, invalid truncate log parameters: used = "
5341 "%u, count = %u\n", osb->slot_num,
5342 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5343 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5346 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5347 unsigned int new_start)
5349 unsigned int tail_index;
5350 unsigned int current_tail;
5352 /* No records, nothing to coalesce */
5353 if (!le16_to_cpu(tl->tl_used))
5356 tail_index = le16_to_cpu(tl->tl_used) - 1;
5357 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5358 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5360 return current_tail == new_start;
5363 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5366 unsigned int num_clusters)
5369 unsigned int start_cluster, tl_count;
5370 struct inode *tl_inode = osb->osb_tl_inode;
5371 struct buffer_head *tl_bh = osb->osb_tl_bh;
5372 struct ocfs2_dinode *di;
5373 struct ocfs2_truncate_log *tl;
5375 mlog_entry("start_blk = %llu, num_clusters = %u\n",
5376 (unsigned long long)start_blk, num_clusters);
5378 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5380 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5382 di = (struct ocfs2_dinode *) tl_bh->b_data;
5383 tl = &di->id2.i_dealloc;
5384 if (!OCFS2_IS_VALID_DINODE(di)) {
5385 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
5390 tl_count = le16_to_cpu(tl->tl_count);
5391 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5393 "Truncate record count on #%llu invalid "
5394 "wanted %u, actual %u\n",
5395 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5396 ocfs2_truncate_recs_per_inode(osb->sb),
5397 le16_to_cpu(tl->tl_count));
5399 /* Caller should have known to flush before calling us. */
5400 index = le16_to_cpu(tl->tl_used);
5401 if (index >= tl_count) {
5407 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
5408 OCFS2_JOURNAL_ACCESS_WRITE);
5414 mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5415 "%llu (index = %d)\n", num_clusters, start_cluster,
5416 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5418 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5420 * Move index back to the record we are coalescing with.
5421 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5425 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5426 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5427 index, le32_to_cpu(tl->tl_recs[index].t_start),
5430 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5431 tl->tl_used = cpu_to_le16(index + 1);
5433 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5435 status = ocfs2_journal_dirty(handle, tl_bh);
5446 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5448 struct inode *data_alloc_inode,
5449 struct buffer_head *data_alloc_bh)
5453 unsigned int num_clusters;
5455 struct ocfs2_truncate_rec rec;
5456 struct ocfs2_dinode *di;
5457 struct ocfs2_truncate_log *tl;
5458 struct inode *tl_inode = osb->osb_tl_inode;
5459 struct buffer_head *tl_bh = osb->osb_tl_bh;
5463 di = (struct ocfs2_dinode *) tl_bh->b_data;
5464 tl = &di->id2.i_dealloc;
5465 i = le16_to_cpu(tl->tl_used) - 1;
5467 /* Caller has given us at least enough credits to
5468 * update the truncate log dinode */
5469 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
5470 OCFS2_JOURNAL_ACCESS_WRITE);
5476 tl->tl_used = cpu_to_le16(i);
5478 status = ocfs2_journal_dirty(handle, tl_bh);
5484 /* TODO: Perhaps we can calculate the bulk of the
5485 * credits up front rather than extending like
5487 status = ocfs2_extend_trans(handle,
5488 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5494 rec = tl->tl_recs[i];
5495 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5496 le32_to_cpu(rec.t_start));
5497 num_clusters = le32_to_cpu(rec.t_clusters);
5499 /* if start_blk is not set, we ignore the record as
5502 mlog(0, "free record %d, start = %u, clusters = %u\n",
5503 i, le32_to_cpu(rec.t_start), num_clusters);
5505 status = ocfs2_free_clusters(handle, data_alloc_inode,
5506 data_alloc_bh, start_blk,
5521 /* Expects you to already be holding tl_inode->i_mutex */
5522 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5525 unsigned int num_to_flush;
5527 struct inode *tl_inode = osb->osb_tl_inode;
5528 struct inode *data_alloc_inode = NULL;
5529 struct buffer_head *tl_bh = osb->osb_tl_bh;
5530 struct buffer_head *data_alloc_bh = NULL;
5531 struct ocfs2_dinode *di;
5532 struct ocfs2_truncate_log *tl;
5536 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5538 di = (struct ocfs2_dinode *) tl_bh->b_data;
5539 tl = &di->id2.i_dealloc;
5540 if (!OCFS2_IS_VALID_DINODE(di)) {
5541 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
5546 num_to_flush = le16_to_cpu(tl->tl_used);
5547 mlog(0, "Flush %u records from truncate log #%llu\n",
5548 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5549 if (!num_to_flush) {
5554 data_alloc_inode = ocfs2_get_system_file_inode(osb,
5555 GLOBAL_BITMAP_SYSTEM_INODE,
5556 OCFS2_INVALID_SLOT);
5557 if (!data_alloc_inode) {
5559 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5563 mutex_lock(&data_alloc_inode->i_mutex);
5565 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5571 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5572 if (IS_ERR(handle)) {
5573 status = PTR_ERR(handle);
5578 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5583 ocfs2_commit_trans(osb, handle);
5586 brelse(data_alloc_bh);
5587 ocfs2_inode_unlock(data_alloc_inode, 1);
5590 mutex_unlock(&data_alloc_inode->i_mutex);
5591 iput(data_alloc_inode);
5598 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5601 struct inode *tl_inode = osb->osb_tl_inode;
5603 mutex_lock(&tl_inode->i_mutex);
5604 status = __ocfs2_flush_truncate_log(osb);
5605 mutex_unlock(&tl_inode->i_mutex);
5610 static void ocfs2_truncate_log_worker(struct work_struct *work)
5613 struct ocfs2_super *osb =
5614 container_of(work, struct ocfs2_super,
5615 osb_truncate_log_wq.work);
5619 status = ocfs2_flush_truncate_log(osb);
5623 ocfs2_init_inode_steal_slot(osb);
5628 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5629 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5632 if (osb->osb_tl_inode) {
5633 /* We want to push off log flushes while truncates are
5636 cancel_delayed_work(&osb->osb_truncate_log_wq);
5638 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5639 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5643 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5645 struct inode **tl_inode,
5646 struct buffer_head **tl_bh)
5649 struct inode *inode = NULL;
5650 struct buffer_head *bh = NULL;
5652 inode = ocfs2_get_system_file_inode(osb,
5653 TRUNCATE_LOG_SYSTEM_INODE,
5657 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5661 status = ocfs2_read_block(inode, OCFS2_I(inode)->ip_blkno, &bh);
5675 /* called during the 1st stage of node recovery. we stamp a clean
5676 * truncate log and pass back a copy for processing later. if the
5677 * truncate log does not require processing, a *tl_copy is set to
5679 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5681 struct ocfs2_dinode **tl_copy)
5684 struct inode *tl_inode = NULL;
5685 struct buffer_head *tl_bh = NULL;
5686 struct ocfs2_dinode *di;
5687 struct ocfs2_truncate_log *tl;
5691 mlog(0, "recover truncate log from slot %d\n", slot_num);
5693 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5699 di = (struct ocfs2_dinode *) tl_bh->b_data;
5700 tl = &di->id2.i_dealloc;
5701 if (!OCFS2_IS_VALID_DINODE(di)) {
5702 OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
5707 if (le16_to_cpu(tl->tl_used)) {
5708 mlog(0, "We'll have %u logs to recover\n",
5709 le16_to_cpu(tl->tl_used));
5711 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5718 /* Assuming the write-out below goes well, this copy
5719 * will be passed back to recovery for processing. */
5720 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5722 /* All we need to do to clear the truncate log is set
5726 status = ocfs2_write_block(osb, tl_bh, tl_inode);
5738 if (status < 0 && (*tl_copy)) {
5747 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
5748 struct ocfs2_dinode *tl_copy)
5752 unsigned int clusters, num_recs, start_cluster;
5755 struct inode *tl_inode = osb->osb_tl_inode;
5756 struct ocfs2_truncate_log *tl;
5760 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
5761 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
5765 tl = &tl_copy->id2.i_dealloc;
5766 num_recs = le16_to_cpu(tl->tl_used);
5767 mlog(0, "cleanup %u records from %llu\n", num_recs,
5768 (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
5770 mutex_lock(&tl_inode->i_mutex);
5771 for(i = 0; i < num_recs; i++) {
5772 if (ocfs2_truncate_log_needs_flush(osb)) {
5773 status = __ocfs2_flush_truncate_log(osb);
5780 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5781 if (IS_ERR(handle)) {
5782 status = PTR_ERR(handle);
5787 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
5788 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
5789 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
5791 status = ocfs2_truncate_log_append(osb, handle,
5792 start_blk, clusters);
5793 ocfs2_commit_trans(osb, handle);
5801 mutex_unlock(&tl_inode->i_mutex);
5807 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
5810 struct inode *tl_inode = osb->osb_tl_inode;
5815 cancel_delayed_work(&osb->osb_truncate_log_wq);
5816 flush_workqueue(ocfs2_wq);
5818 status = ocfs2_flush_truncate_log(osb);
5822 brelse(osb->osb_tl_bh);
5823 iput(osb->osb_tl_inode);
5829 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
5832 struct inode *tl_inode = NULL;
5833 struct buffer_head *tl_bh = NULL;
5837 status = ocfs2_get_truncate_log_info(osb,
5844 /* ocfs2_truncate_log_shutdown keys on the existence of
5845 * osb->osb_tl_inode so we don't set any of the osb variables
5846 * until we're sure all is well. */
5847 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5848 ocfs2_truncate_log_worker);
5849 osb->osb_tl_bh = tl_bh;
5850 osb->osb_tl_inode = tl_inode;
5857 * Delayed de-allocation of suballocator blocks.
5859 * Some sets of block de-allocations might involve multiple suballocator inodes.
5861 * The locking for this can get extremely complicated, especially when
5862 * the suballocator inodes to delete from aren't known until deep
5863 * within an unrelated codepath.
5865 * ocfs2_extent_block structures are a good example of this - an inode
5866 * btree could have been grown by any number of nodes each allocating
5867 * out of their own suballoc inode.
5869 * These structures allow the delay of block de-allocation until a
5870 * later time, when locking of multiple cluster inodes won't cause
5875 * Describe a single bit freed from a suballocator. For the block
5876 * suballocators, it represents one block. For the global cluster
5877 * allocator, it represents some clusters and free_bit indicates
5880 struct ocfs2_cached_block_free {
5881 struct ocfs2_cached_block_free *free_next;
5883 unsigned int free_bit;
5886 struct ocfs2_per_slot_free_list {
5887 struct ocfs2_per_slot_free_list *f_next_suballocator;
5890 struct ocfs2_cached_block_free *f_first;
5893 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
5896 struct ocfs2_cached_block_free *head)
5901 struct inode *inode;
5902 struct buffer_head *di_bh = NULL;
5903 struct ocfs2_cached_block_free *tmp;
5905 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
5912 mutex_lock(&inode->i_mutex);
5914 ret = ocfs2_inode_lock(inode, &di_bh, 1);
5920 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
5921 if (IS_ERR(handle)) {
5922 ret = PTR_ERR(handle);
5928 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
5930 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5931 head->free_bit, (unsigned long long)head->free_blk);
5933 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
5934 head->free_bit, bg_blkno, 1);
5940 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
5947 head = head->free_next;
5952 ocfs2_commit_trans(osb, handle);
5955 ocfs2_inode_unlock(inode, 1);
5958 mutex_unlock(&inode->i_mutex);
5962 /* Premature exit may have left some dangling items. */
5964 head = head->free_next;
5971 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
5972 u64 blkno, unsigned int bit)
5975 struct ocfs2_cached_block_free *item;
5977 item = kmalloc(sizeof(*item), GFP_NOFS);
5984 mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
5985 bit, (unsigned long long)blkno);
5987 item->free_blk = blkno;
5988 item->free_bit = bit;
5989 item->free_next = ctxt->c_global_allocator;
5991 ctxt->c_global_allocator = item;
5995 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
5996 struct ocfs2_cached_block_free *head)
5998 struct ocfs2_cached_block_free *tmp;
5999 struct inode *tl_inode = osb->osb_tl_inode;
6003 mutex_lock(&tl_inode->i_mutex);
6006 if (ocfs2_truncate_log_needs_flush(osb)) {
6007 ret = __ocfs2_flush_truncate_log(osb);
6014 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6015 if (IS_ERR(handle)) {
6016 ret = PTR_ERR(handle);
6021 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6024 ocfs2_commit_trans(osb, handle);
6026 head = head->free_next;
6035 mutex_unlock(&tl_inode->i_mutex);
6038 /* Premature exit may have left some dangling items. */
6040 head = head->free_next;
6047 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6048 struct ocfs2_cached_dealloc_ctxt *ctxt)
6051 struct ocfs2_per_slot_free_list *fl;
6056 while (ctxt->c_first_suballocator) {
6057 fl = ctxt->c_first_suballocator;
6060 mlog(0, "Free items: (type %u, slot %d)\n",
6061 fl->f_inode_type, fl->f_slot);
6062 ret2 = ocfs2_free_cached_blocks(osb,
6072 ctxt->c_first_suballocator = fl->f_next_suballocator;
6076 if (ctxt->c_global_allocator) {
6077 ret2 = ocfs2_free_cached_clusters(osb,
6078 ctxt->c_global_allocator);
6084 ctxt->c_global_allocator = NULL;
6090 static struct ocfs2_per_slot_free_list *
6091 ocfs2_find_per_slot_free_list(int type,
6093 struct ocfs2_cached_dealloc_ctxt *ctxt)
6095 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6098 if (fl->f_inode_type == type && fl->f_slot == slot)
6101 fl = fl->f_next_suballocator;
6104 fl = kmalloc(sizeof(*fl), GFP_NOFS);
6106 fl->f_inode_type = type;
6109 fl->f_next_suballocator = ctxt->c_first_suballocator;
6111 ctxt->c_first_suballocator = fl;
6116 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6117 int type, int slot, u64 blkno,
6121 struct ocfs2_per_slot_free_list *fl;
6122 struct ocfs2_cached_block_free *item;
6124 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6131 item = kmalloc(sizeof(*item), GFP_NOFS);
6138 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6139 type, slot, bit, (unsigned long long)blkno);
6141 item->free_blk = blkno;
6142 item->free_bit = bit;
6143 item->free_next = fl->f_first;
6152 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6153 struct ocfs2_extent_block *eb)
6155 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6156 le16_to_cpu(eb->h_suballoc_slot),
6157 le64_to_cpu(eb->h_blkno),
6158 le16_to_cpu(eb->h_suballoc_bit));
6161 /* This function will figure out whether the currently last extent
6162 * block will be deleted, and if it will, what the new last extent
6163 * block will be so we can update his h_next_leaf_blk field, as well
6164 * as the dinodes i_last_eb_blk */
6165 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6166 unsigned int clusters_to_del,
6167 struct ocfs2_path *path,
6168 struct buffer_head **new_last_eb)
6170 int next_free, ret = 0;
6172 struct ocfs2_extent_rec *rec;
6173 struct ocfs2_extent_block *eb;
6174 struct ocfs2_extent_list *el;
6175 struct buffer_head *bh = NULL;
6177 *new_last_eb = NULL;
6179 /* we have no tree, so of course, no last_eb. */
6180 if (!path->p_tree_depth)
6183 /* trunc to zero special case - this makes tree_depth = 0
6184 * regardless of what it is. */
6185 if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6188 el = path_leaf_el(path);
6189 BUG_ON(!el->l_next_free_rec);
6192 * Make sure that this extent list will actually be empty
6193 * after we clear away the data. We can shortcut out if
6194 * there's more than one non-empty extent in the
6195 * list. Otherwise, a check of the remaining extent is
6198 next_free = le16_to_cpu(el->l_next_free_rec);
6200 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6204 /* We may have a valid extent in index 1, check it. */
6206 rec = &el->l_recs[1];
6209 * Fall through - no more nonempty extents, so we want
6210 * to delete this leaf.
6216 rec = &el->l_recs[0];
6221 * Check it we'll only be trimming off the end of this
6224 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6228 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6234 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
6240 eb = (struct ocfs2_extent_block *) bh->b_data;
6242 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
6243 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
6249 get_bh(*new_last_eb);
6250 mlog(0, "returning block %llu, (cpos: %u)\n",
6251 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6259 * Trim some clusters off the rightmost edge of a tree. Only called
6262 * The caller needs to:
6263 * - start journaling of each path component.
6264 * - compute and fully set up any new last ext block
6266 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6267 handle_t *handle, struct ocfs2_truncate_context *tc,
6268 u32 clusters_to_del, u64 *delete_start)
6270 int ret, i, index = path->p_tree_depth;
6273 struct buffer_head *bh;
6274 struct ocfs2_extent_list *el;
6275 struct ocfs2_extent_rec *rec;
6279 while (index >= 0) {
6280 bh = path->p_node[index].bh;
6281 el = path->p_node[index].el;
6283 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6284 index, (unsigned long long)bh->b_blocknr);
6286 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6289 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6290 ocfs2_error(inode->i_sb,
6291 "Inode %lu has invalid ext. block %llu",
6293 (unsigned long long)bh->b_blocknr);
6299 i = le16_to_cpu(el->l_next_free_rec) - 1;
6300 rec = &el->l_recs[i];
6302 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6303 "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6304 ocfs2_rec_clusters(el, rec),
6305 (unsigned long long)le64_to_cpu(rec->e_blkno),
6306 le16_to_cpu(el->l_next_free_rec));
6308 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6310 if (le16_to_cpu(el->l_tree_depth) == 0) {
6312 * If the leaf block contains a single empty
6313 * extent and no records, we can just remove
6316 if (i == 0 && ocfs2_is_empty_extent(rec)) {
6318 sizeof(struct ocfs2_extent_rec));
6319 el->l_next_free_rec = cpu_to_le16(0);
6325 * Remove any empty extents by shifting things
6326 * left. That should make life much easier on
6327 * the code below. This condition is rare
6328 * enough that we shouldn't see a performance
6331 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6332 le16_add_cpu(&el->l_next_free_rec, -1);
6335 i < le16_to_cpu(el->l_next_free_rec); i++)
6336 el->l_recs[i] = el->l_recs[i + 1];
6338 memset(&el->l_recs[i], 0,
6339 sizeof(struct ocfs2_extent_rec));
6342 * We've modified our extent list. The
6343 * simplest way to handle this change
6344 * is to being the search from the
6347 goto find_tail_record;
6350 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6353 * We'll use "new_edge" on our way back up the
6354 * tree to know what our rightmost cpos is.
6356 new_edge = le16_to_cpu(rec->e_leaf_clusters);
6357 new_edge += le32_to_cpu(rec->e_cpos);
6360 * The caller will use this to delete data blocks.
6362 *delete_start = le64_to_cpu(rec->e_blkno)
6363 + ocfs2_clusters_to_blocks(inode->i_sb,
6364 le16_to_cpu(rec->e_leaf_clusters));
6367 * If it's now empty, remove this record.
6369 if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6371 sizeof(struct ocfs2_extent_rec));
6372 le16_add_cpu(&el->l_next_free_rec, -1);
6375 if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6377 sizeof(struct ocfs2_extent_rec));
6378 le16_add_cpu(&el->l_next_free_rec, -1);
6383 /* Can this actually happen? */
6384 if (le16_to_cpu(el->l_next_free_rec) == 0)
6388 * We never actually deleted any clusters
6389 * because our leaf was empty. There's no
6390 * reason to adjust the rightmost edge then.
6395 rec->e_int_clusters = cpu_to_le32(new_edge);
6396 le32_add_cpu(&rec->e_int_clusters,
6397 -le32_to_cpu(rec->e_cpos));
6400 * A deleted child record should have been
6403 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6407 ret = ocfs2_journal_dirty(handle, bh);
6413 mlog(0, "extent list container %llu, after: record %d: "
6414 "(%u, %u, %llu), next = %u.\n",
6415 (unsigned long long)bh->b_blocknr, i,
6416 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6417 (unsigned long long)le64_to_cpu(rec->e_blkno),
6418 le16_to_cpu(el->l_next_free_rec));
6421 * We must be careful to only attempt delete of an
6422 * extent block (and not the root inode block).
6424 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6425 struct ocfs2_extent_block *eb =
6426 (struct ocfs2_extent_block *)bh->b_data;
6429 * Save this for use when processing the
6432 deleted_eb = le64_to_cpu(eb->h_blkno);
6434 mlog(0, "deleting this extent block.\n");
6436 ocfs2_remove_from_cache(inode, bh);
6438 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6439 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6440 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6442 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6443 /* An error here is not fatal. */
6458 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6459 unsigned int clusters_to_del,
6460 struct inode *inode,
6461 struct buffer_head *fe_bh,
6463 struct ocfs2_truncate_context *tc,
6464 struct ocfs2_path *path)
6467 struct ocfs2_dinode *fe;
6468 struct ocfs2_extent_block *last_eb = NULL;
6469 struct ocfs2_extent_list *el;
6470 struct buffer_head *last_eb_bh = NULL;
6473 fe = (struct ocfs2_dinode *) fe_bh->b_data;
6475 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6483 * Each component will be touched, so we might as well journal
6484 * here to avoid having to handle errors later.
6486 status = ocfs2_journal_access_path(inode, handle, path);
6493 status = ocfs2_journal_access(handle, inode, last_eb_bh,
6494 OCFS2_JOURNAL_ACCESS_WRITE);
6500 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6503 el = &(fe->id2.i_list);
6506 * Lower levels depend on this never happening, but it's best
6507 * to check it up here before changing the tree.
6509 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6510 ocfs2_error(inode->i_sb,
6511 "Inode %lu has an empty extent record, depth %u\n",
6512 inode->i_ino, le16_to_cpu(el->l_tree_depth));
6517 spin_lock(&OCFS2_I(inode)->ip_lock);
6518 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6520 spin_unlock(&OCFS2_I(inode)->ip_lock);
6521 le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6522 inode->i_blocks = ocfs2_inode_sector_count(inode);
6524 status = ocfs2_trim_tree(inode, path, handle, tc,
6525 clusters_to_del, &delete_blk);
6531 if (le32_to_cpu(fe->i_clusters) == 0) {
6532 /* trunc to zero is a special case. */
6533 el->l_tree_depth = 0;
6534 fe->i_last_eb_blk = 0;
6536 fe->i_last_eb_blk = last_eb->h_blkno;
6538 status = ocfs2_journal_dirty(handle, fe_bh);
6545 /* If there will be a new last extent block, then by
6546 * definition, there cannot be any leaves to the right of
6548 last_eb->h_next_leaf_blk = 0;
6549 status = ocfs2_journal_dirty(handle, last_eb_bh);
6557 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6571 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6573 set_buffer_uptodate(bh);
6574 mark_buffer_dirty(bh);
6578 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6579 unsigned int from, unsigned int to,
6580 struct page *page, int zero, u64 *phys)
6582 int ret, partial = 0;
6584 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6589 zero_user_segment(page, from, to);
6592 * Need to set the buffers we zero'd into uptodate
6593 * here if they aren't - ocfs2_map_page_blocks()
6594 * might've skipped some
6596 ret = walk_page_buffers(handle, page_buffers(page),
6601 else if (ocfs2_should_order_data(inode)) {
6602 ret = ocfs2_jbd2_file_inode(handle, inode);
6603 #ifdef CONFIG_OCFS2_COMPAT_JBD
6604 ret = walk_page_buffers(handle, page_buffers(page),
6606 ocfs2_journal_dirty_data);
6613 SetPageUptodate(page);
6615 flush_dcache_page(page);
6618 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6619 loff_t end, struct page **pages,
6620 int numpages, u64 phys, handle_t *handle)
6624 unsigned int from, to = PAGE_CACHE_SIZE;
6625 struct super_block *sb = inode->i_sb;
6627 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6632 to = PAGE_CACHE_SIZE;
6633 for(i = 0; i < numpages; i++) {
6636 from = start & (PAGE_CACHE_SIZE - 1);
6637 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6638 to = end & (PAGE_CACHE_SIZE - 1);
6640 BUG_ON(from > PAGE_CACHE_SIZE);
6641 BUG_ON(to > PAGE_CACHE_SIZE);
6643 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6646 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6650 ocfs2_unlock_and_free_pages(pages, numpages);
6653 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6654 struct page **pages, int *num)
6656 int numpages, ret = 0;
6657 struct super_block *sb = inode->i_sb;
6658 struct address_space *mapping = inode->i_mapping;
6659 unsigned long index;
6660 loff_t last_page_bytes;
6662 BUG_ON(start > end);
6664 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6665 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6668 last_page_bytes = PAGE_ALIGN(end);
6669 index = start >> PAGE_CACHE_SHIFT;
6671 pages[numpages] = grab_cache_page(mapping, index);
6672 if (!pages[numpages]) {
6680 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6685 ocfs2_unlock_and_free_pages(pages, numpages);
6695 * Zero the area past i_size but still within an allocated
6696 * cluster. This avoids exposing nonzero data on subsequent file
6699 * We need to call this before i_size is updated on the inode because
6700 * otherwise block_write_full_page() will skip writeout of pages past
6701 * i_size. The new_i_size parameter is passed for this reason.
6703 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6704 u64 range_start, u64 range_end)
6706 int ret = 0, numpages;
6707 struct page **pages = NULL;
6709 unsigned int ext_flags;
6710 struct super_block *sb = inode->i_sb;
6713 * File systems which don't support sparse files zero on every
6716 if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6719 pages = kcalloc(ocfs2_pages_per_cluster(sb),
6720 sizeof(struct page *), GFP_NOFS);
6721 if (pages == NULL) {
6727 if (range_start == range_end)
6730 ret = ocfs2_extent_map_get_blocks(inode,
6731 range_start >> sb->s_blocksize_bits,
6732 &phys, NULL, &ext_flags);
6739 * Tail is a hole, or is marked unwritten. In either case, we
6740 * can count on read and write to return/push zero's.
6742 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6745 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6752 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6753 numpages, phys, handle);
6756 * Initiate writeout of the pages we zero'd here. We don't
6757 * wait on them - the truncate_inode_pages() call later will
6760 ret = do_sync_mapping_range(inode->i_mapping, range_start,
6761 range_end - 1, SYNC_FILE_RANGE_WRITE);
6772 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6773 struct ocfs2_dinode *di)
6775 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6776 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6778 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6779 memset(&di->id2, 0, blocksize -
6780 offsetof(struct ocfs2_dinode, id2) -
6783 memset(&di->id2, 0, blocksize -
6784 offsetof(struct ocfs2_dinode, id2));
6787 void ocfs2_dinode_new_extent_list(struct inode *inode,
6788 struct ocfs2_dinode *di)
6790 ocfs2_zero_dinode_id2_with_xattr(inode, di);
6791 di->id2.i_list.l_tree_depth = 0;
6792 di->id2.i_list.l_next_free_rec = 0;
6793 di->id2.i_list.l_count = cpu_to_le16(
6794 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6797 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6799 struct ocfs2_inode_info *oi = OCFS2_I(inode);
6800 struct ocfs2_inline_data *idata = &di->id2.i_data;
6802 spin_lock(&oi->ip_lock);
6803 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6804 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6805 spin_unlock(&oi->ip_lock);
6808 * We clear the entire i_data structure here so that all
6809 * fields can be properly initialized.
6811 ocfs2_zero_dinode_id2_with_xattr(inode, di);
6813 idata->id_count = cpu_to_le16(
6814 ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6817 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6818 struct buffer_head *di_bh)
6820 int ret, i, has_data, num_pages = 0;
6822 u64 uninitialized_var(block);
6823 struct ocfs2_inode_info *oi = OCFS2_I(inode);
6824 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6825 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6826 struct ocfs2_alloc_context *data_ac = NULL;
6827 struct page **pages = NULL;
6828 loff_t end = osb->s_clustersize;
6829 struct ocfs2_extent_tree et;
6831 has_data = i_size_read(inode) ? 1 : 0;
6834 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6835 sizeof(struct page *), GFP_NOFS);
6836 if (pages == NULL) {
6842 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6849 handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS);
6850 if (IS_ERR(handle)) {
6851 ret = PTR_ERR(handle);
6856 ret = ocfs2_journal_access(handle, inode, di_bh,
6857 OCFS2_JOURNAL_ACCESS_WRITE);
6865 unsigned int page_end;
6868 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
6876 * Save two copies, one for insert, and one that can
6877 * be changed by ocfs2_map_and_dirty_page() below.
6879 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6882 * Non sparse file systems zero on extend, so no need
6885 if (!ocfs2_sparse_alloc(osb) &&
6886 PAGE_CACHE_SIZE < osb->s_clustersize)
6887 end = PAGE_CACHE_SIZE;
6889 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6896 * This should populate the 1st page for us and mark
6899 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6905 page_end = PAGE_CACHE_SIZE;
6906 if (PAGE_CACHE_SIZE > osb->s_clustersize)
6907 page_end = osb->s_clustersize;
6909 for (i = 0; i < num_pages; i++)
6910 ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6911 pages[i], i > 0, &phys);
6914 spin_lock(&oi->ip_lock);
6915 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6916 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6917 spin_unlock(&oi->ip_lock);
6919 ocfs2_dinode_new_extent_list(inode, di);
6921 ocfs2_journal_dirty(handle, di_bh);
6925 * An error at this point should be extremely rare. If
6926 * this proves to be false, we could always re-build
6927 * the in-inode data from our pages.
6929 ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
6930 ret = ocfs2_insert_extent(osb, handle, inode, &et,
6931 0, block, 1, 0, NULL);
6937 inode->i_blocks = ocfs2_inode_sector_count(inode);
6941 ocfs2_commit_trans(osb, handle);
6945 ocfs2_free_alloc_context(data_ac);
6949 ocfs2_unlock_and_free_pages(pages, num_pages);
6957 * It is expected, that by the time you call this function,
6958 * inode->i_size and fe->i_size have been adjusted.
6960 * WARNING: This will kfree the truncate context
6962 int ocfs2_commit_truncate(struct ocfs2_super *osb,
6963 struct inode *inode,
6964 struct buffer_head *fe_bh,
6965 struct ocfs2_truncate_context *tc)
6967 int status, i, credits, tl_sem = 0;
6968 u32 clusters_to_del, new_highest_cpos, range;
6969 struct ocfs2_extent_list *el;
6970 handle_t *handle = NULL;
6971 struct inode *tl_inode = osb->osb_tl_inode;
6972 struct ocfs2_path *path = NULL;
6973 struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
6977 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
6978 i_size_read(inode));
6980 path = ocfs2_new_path(fe_bh, &di->id2.i_list);
6987 ocfs2_extent_map_trunc(inode, new_highest_cpos);
6991 * Check that we still have allocation to delete.
6993 if (OCFS2_I(inode)->ip_clusters == 0) {
6999 * Truncate always works against the rightmost tree branch.
7001 status = ocfs2_find_path(inode, path, UINT_MAX);
7007 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7008 OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7011 * By now, el will point to the extent list on the bottom most
7012 * portion of this tree. Only the tail record is considered in
7015 * We handle the following cases, in order:
7016 * - empty extent: delete the remaining branch
7017 * - remove the entire record
7018 * - remove a partial record
7019 * - no record needs to be removed (truncate has completed)
7021 el = path_leaf_el(path);
7022 if (le16_to_cpu(el->l_next_free_rec) == 0) {
7023 ocfs2_error(inode->i_sb,
7024 "Inode %llu has empty extent block at %llu\n",
7025 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7026 (unsigned long long)path_leaf_bh(path)->b_blocknr);
7031 i = le16_to_cpu(el->l_next_free_rec) - 1;
7032 range = le32_to_cpu(el->l_recs[i].e_cpos) +
7033 ocfs2_rec_clusters(el, &el->l_recs[i]);
7034 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7035 clusters_to_del = 0;
7036 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7037 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7038 } else if (range > new_highest_cpos) {
7039 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7040 le32_to_cpu(el->l_recs[i].e_cpos)) -
7047 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7048 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7050 mutex_lock(&tl_inode->i_mutex);
7052 /* ocfs2_truncate_log_needs_flush guarantees us at least one
7053 * record is free for use. If there isn't any, we flush to get
7054 * an empty truncate log. */
7055 if (ocfs2_truncate_log_needs_flush(osb)) {
7056 status = __ocfs2_flush_truncate_log(osb);
7063 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7064 (struct ocfs2_dinode *)fe_bh->b_data,
7066 handle = ocfs2_start_trans(osb, credits);
7067 if (IS_ERR(handle)) {
7068 status = PTR_ERR(handle);
7074 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7081 mutex_unlock(&tl_inode->i_mutex);
7084 ocfs2_commit_trans(osb, handle);
7087 ocfs2_reinit_path(path, 1);
7090 * The check above will catch the case where we've truncated
7091 * away all allocation.
7097 ocfs2_schedule_truncate_log_flush(osb, 1);
7100 mutex_unlock(&tl_inode->i_mutex);
7103 ocfs2_commit_trans(osb, handle);
7105 ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7107 ocfs2_free_path(path);
7109 /* This will drop the ext_alloc cluster lock for us */
7110 ocfs2_free_truncate_context(tc);
7117 * Expects the inode to already be locked.
7119 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7120 struct inode *inode,
7121 struct buffer_head *fe_bh,
7122 struct ocfs2_truncate_context **tc)
7125 unsigned int new_i_clusters;
7126 struct ocfs2_dinode *fe;
7127 struct ocfs2_extent_block *eb;
7128 struct buffer_head *last_eb_bh = NULL;
7134 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7135 i_size_read(inode));
7136 fe = (struct ocfs2_dinode *) fe_bh->b_data;
7138 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7139 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7140 (unsigned long long)le64_to_cpu(fe->i_size));
7142 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7148 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7150 if (fe->id2.i_list.l_tree_depth) {
7151 status = ocfs2_read_block(inode, le64_to_cpu(fe->i_last_eb_blk),
7157 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7158 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
7159 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
7167 (*tc)->tc_last_eb_bh = last_eb_bh;
7173 ocfs2_free_truncate_context(*tc);
7181 * 'start' is inclusive, 'end' is not.
7183 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7184 unsigned int start, unsigned int end, int trunc)
7187 unsigned int numbytes;
7189 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7190 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7191 struct ocfs2_inline_data *idata = &di->id2.i_data;
7193 if (end > i_size_read(inode))
7194 end = i_size_read(inode);
7196 BUG_ON(start >= end);
7198 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7199 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7200 !ocfs2_supports_inline_data(osb)) {
7201 ocfs2_error(inode->i_sb,
7202 "Inline data flags for inode %llu don't agree! "
7203 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7204 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7205 le16_to_cpu(di->i_dyn_features),
7206 OCFS2_I(inode)->ip_dyn_features,
7207 osb->s_feature_incompat);
7212 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7213 if (IS_ERR(handle)) {
7214 ret = PTR_ERR(handle);
7219 ret = ocfs2_journal_access(handle, inode, di_bh,
7220 OCFS2_JOURNAL_ACCESS_WRITE);
7226 numbytes = end - start;
7227 memset(idata->id_data + start, 0, numbytes);
7230 * No need to worry about the data page here - it's been
7231 * truncated already and inline data doesn't need it for
7232 * pushing zero's to disk, so we'll let readpage pick it up
7236 i_size_write(inode, start);
7237 di->i_size = cpu_to_le64(start);
7240 inode->i_blocks = ocfs2_inode_sector_count(inode);
7241 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7243 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7244 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7246 ocfs2_journal_dirty(handle, di_bh);
7249 ocfs2_commit_trans(osb, handle);
7255 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7258 * The caller is responsible for completing deallocation
7259 * before freeing the context.
7261 if (tc->tc_dealloc.c_first_suballocator != NULL)
7263 "Truncate completion has non-empty dealloc context\n");
7265 brelse(tc->tc_last_eb_bh);