1 % $Id: mp.web,v 1.8 2005/08/24 10:54:02 taco Exp $
2 % MetaPost, by John Hobby. Public domain.
4 % Much of this program was copied with permission from MF.web Version 1.9
5 % It interprets a language very similar to D.E. Knuth's METAFONT, but with
6 % changes designed to make it more suitable for PostScript output.
8 % TeX is a trademark of the American Mathematical Society.
9 % METAFONT is a trademark of Addison-Wesley Publishing Company.
10 % PostScript is a trademark of Adobe Systems Incorporated.
12 % Here is TeX material that gets inserted after \input webmac
13 \def\hang{\hangindent 3em\noindent\ignorespaces}
14 \def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
17 \def\ph{\hbox{Pascal-H}}
18 \def\psqrt#1{\sqrt{\mathstrut#1}}
20 \def\pct!{{\char`\%}} % percent sign in ordinary text
21 \font\tenlogo=logo10 % font used for the METAFONT logo
23 \def\MF{{\tenlogo META}\-{\tenlogo FONT}}
24 \def\MP{{\tenlogo META}\-{\tenlogo POST}}
25 \def\[#1]{#1.} % from pascal web
26 \def\<#1>{$\langle#1\rangle$}
27 \def\section{\mathhexbox278}
28 \let\swap=\leftrightarrow
29 \def\round{\mathop{\rm round}\nolimits}
30 \mathchardef\vb="026A % synonym for `\|'
32 \def\(#1){} % this is used to make section names sort themselves better
33 \def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
35 \def\glob{15} % this should be the section number of "<Global...>"
36 \def\gglob{23, 28} % this should be the next two sections of "<Global...>"
41 This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
43 The main purpose of the following program is to explain the algorithms of \MP\
44 as clearly as possible. As a result, the program will not necessarily be very
45 efficient when a particular \PASCAL\ compiler has translated it into a
46 particular machine language. However, the program has been written so that it
47 can be tuned to run efficiently in a wide variety of operating environments
48 by making comparatively few changes. Such flexibility is possible because
49 the documentation that follows is written in the \.{WEB} language, which is
50 at a higher level than \PASCAL; the preprocessing step that converts \.{WEB}
51 to \PASCAL\ is able to introduce most of the necessary refinements.
52 Semi-automatic translation to other languages is also feasible, because the
53 program below does not make extensive use of features that are peculiar to
56 A large piece of software like \MP\ has inherent complexity that cannot
57 be reduced below a certain level of difficulty, although each individual
58 part is fairly simple by itself. The \.{WEB} language is intended to make
59 the algorithms as readable as possible, by reflecting the way the
60 individual program pieces fit together and by providing the
61 cross-references that connect different parts. Detailed comments about
62 what is going on, and about why things were done in certain ways, have
63 been liberally sprinkled throughout the program. These comments explain
64 features of the implementation, but they rarely attempt to explain the
65 \MP\ language itself, since the reader is supposed to be familiar with
66 {\sl The {\logos METAFONT\/}book} as well as the manual
68 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
69 {\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
70 AT\AM T Bell Laboratories.
72 @ The present implementation is a preliminary version, but the possibilities
73 for new features are limited by the desire to remain as nearly compatible
74 with \MF\ as possible.
76 On the other hand, the \.{WEB} description can be extended without changing
77 the core of the program, and it has been designed so that such
78 extensions are not extremely difficult to make.
79 The |banner| string defined here should be changed whenever \MP\
80 undergoes any modifications, so that it will be clear which version of
81 \MP\ might be the guilty party when a problem arises.
83 @^system dependencies@>
85 @d banner "This is MetaPost, Version 1.002" /* printed when \MP\ starts */
86 @d metapost_version "1.002"
87 @d mplib_version "0.20"
88 @d version_string " (Cweb version 0.20)"
90 @ Different \PASCAL s have slightly different conventions, and the present
92 program is expressed in a version of \PASCAL\ that D. E. Knuth used for \MF.
93 Constructions that apply to
94 this particular compiler, which we shall call \ph, should help the
95 reader see how to make an appropriate interface for other systems
96 if necessary. (\ph\ is Charles Hedrick's modification of a compiler
97 @^Hedrick, Charles Locke@>
98 for the DECsystem-10 that was originally developed at the University of
99 Hamburg; cf.\ {\sl SOFTWARE---Practice \AM\ Experience \bf6} (1976),
100 29--42. The \MP\ program below is intended to be adaptable, without
101 extensive changes, to most other versions of \PASCAL\ and commonly used
102 \PASCAL-to-C translators, so it does not fully
104 use the admirable features of \ph. Indeed, a conscious effort has been
105 made here to avoid using several idiosyncratic features of standard
106 \PASCAL\ itself, so that most of the code can be translated mechanically
107 into other high-level languages. For example, the `\&{with}' and `\\{new}'
108 features are not used, nor are pointer types, set types, or enumerated
109 scalar types; there are no `\&{var}' parameters, except in the case of files;
110 there are no tag fields on variant records; there are no |real| variables;
111 no procedures are declared local to other procedures.)
113 The portions of this program that involve system-dependent code, where
114 changes might be necessary because of differences between \PASCAL\ compilers
115 and/or differences between
116 operating systems, can be identified by looking at the sections whose
117 numbers are listed under `system dependencies' in the index. Furthermore,
118 the index entries for `dirty \PASCAL' list all places where the restrictions
119 of \PASCAL\ have not been followed perfectly, for one reason or another.
120 @^system dependencies@>
123 @ The program begins with a normal \PASCAL\ program heading, whose
124 components will be filled in later, using the conventions of \.{WEB}.
126 For example, the portion of the program called `\X\glob:Global
127 variables\X' below will be replaced by a sequence of variable declarations
128 that starts in $\section\glob$ of this documentation. In this way, we are able
129 to define each individual global variable when we are prepared to
130 understand what it means; we do not have to define all of the globals at
131 once. Cross references in $\section\glob$, where it says ``See also
132 sections \gglob, \dots,'' also make it possible to look at the set of
133 all global variables, if desired. Similar remarks apply to the other
134 portions of the program heading.
136 Actually the heading shown here is not quite normal: The |program| line
137 does not mention any |output| file, because \ph\ would ask the \MP\ user
138 to specify a file name if |output| were specified here.
139 @^system dependencies@>
145 typedef struct MP_instance * MP;
147 typedef struct MP_options {
150 @<Exported function headers@>
154 typedef struct psout_data_struct * psout_data;
156 typedef signed int integer;
158 @<Types in the outer block@>;
159 @<Constants in the outer block@>
160 # ifndef LIBAVL_ALLOCATOR
161 # define LIBAVL_ALLOCATOR
162 struct libavl_allocator {
163 void *(*libavl_malloc) (struct libavl_allocator *, size_t libavl_size);
164 void (*libavl_free) (struct libavl_allocator *, void *libavl_block);
167 typedef struct MP_instance {
170 @<Internal library declarations@>
178 #include <unistd.h> /* for access() */
179 #include <time.h> /* for struct tm \& co */
181 #include "mpmp.h" /* internal header */
182 #include "mppsout.h" /* internal header */
185 @<Basic printing procedures@>
186 @<Error handling procedures@>
188 @ Here are the functions that set up the \MP\ instance.
191 @<Declare |mp_reallocate| functions@>;
192 struct MP_options *mp_options (void);
193 MP mp_new (struct MP_options *opt);
196 struct MP_options *mp_options (void) {
197 struct MP_options *opt;
198 opt = malloc(sizeof(MP_options));
200 memset (opt,0,sizeof(MP_options));
204 MP mp_new (struct MP_options *opt) {
206 mp = xmalloc(1,sizeof(MP_instance));
207 @<Set |ini_version|@>;
208 @<Setup the non-local jump buffer in |mp_new|@>;
209 @<Allocate or initialize variables@>
210 if (opt->main_memory>mp->mem_max)
211 mp_reallocate_memory(mp,opt->main_memory);
212 mp_reallocate_paths(mp,1000);
213 mp_reallocate_fonts(mp,8);
216 void mp_free (MP mp) {
217 int k; /* loop variable */
218 @<Dealloc variables@>
223 void mp_do_initialize ( MP mp) {
224 @<Local variables for initialization@>
225 @<Set initial values of key variables@>
227 int mp_initialize (MP mp) { /* this procedure gets things started properly */
228 mp->history=mp_fatal_error_stop; /* in case we quit during initialization */
229 @<Install and test the non-local jump buffer@>;
230 t_open_out; /* open the terminal for output */
231 @<Check the ``constant'' values...@>;
234 snprintf(ss,256,"Ouch---my internal constants have been clobbered!\n"
235 "---case %i",(int)mp->bad);
236 do_fprintf(mp->err_out,(char *)ss);
240 mp_do_initialize(mp); /* erase preloaded mem */
241 if (mp->ini_version) {
242 @<Run inimpost commands@>;
244 @<Initialize the output routines@>;
245 @<Get the first line of input and prepare to start@>;
247 mp_init_map_file(mp, mp->troff_mode);
248 mp->history=mp_spotless; /* ready to go! */
249 if (mp->troff_mode) {
250 mp->internal[mp_gtroffmode]=unity;
251 mp->internal[mp_prologues]=unity;
253 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
254 mp->cur_sym=mp->start_sym; mp_back_input(mp);
260 @<Exported function headers@>=
261 extern struct MP_options *mp_options (void);
262 extern MP mp_new (struct MP_options *opt) ;
263 extern void mp_free (MP mp);
264 extern int mp_initialize (MP mp);
267 void mp_do_initialize (MP mp);
270 @ The overall \MP\ program begins with the heading just shown, after which
271 comes a bunch of procedure declarations and function declarations.
272 Finally we will get to the main program, which begins with the
273 comment `|start_here|'. If you want to skip down to the
274 main program now, you can look up `|start_here|' in the index.
275 But the author suggests that the best way to understand this program
276 is to follow pretty much the order of \MP's components as they appear in the
277 \.{WEB} description you are now reading, since the present ordering is
278 intended to combine the advantages of the ``bottom up'' and ``top down''
279 approaches to the problem of understanding a somewhat complicated system.
281 @ Some of the code below is intended to be used only when diagnosing the
282 strange behavior that sometimes occurs when \MP\ is being installed or
283 when system wizards are fooling around with \MP\ without quite knowing
284 what they are doing. Such code will not normally be compiled; it is
285 delimited by the preprocessor test `|#ifdef DEBUG .. #endif|'.
287 @ This program has two important variations: (1) There is a long and slow
288 version called \.{INIMP}, which does the extra calculations needed to
290 initialize \MP's internal tables; and (2)~there is a shorter and faster
291 production version, which cuts the initialization to a bare minimum.
293 Which is which is decided at runtime.
295 @ The following parameters can be changed at compile time to extend or
296 reduce \MP's capacity. They may have different values in \.{INIMP} and
297 in production versions of \MP.
299 @^system dependencies@>
302 #define file_name_size 255 /* file names shouldn't be longer than this */
303 #define bistack_size 1500 /* size of stack for bisection algorithms;
304 should probably be left at this value */
306 @ Like the preceding parameters, the following quantities can be changed
307 at compile time to extend or reduce \MP's capacity. But if they are changed,
308 it is necessary to rerun the initialization program \.{INIMP}
310 to generate new tables for the production \MP\ program.
311 One can't simply make helter-skelter changes to the following constants,
312 since certain rather complex initialization
313 numbers are computed from them.
316 int max_strings; /* maximum number of strings; must not exceed |max_halfword| */
317 int pool_size; /* maximum number of characters in strings, including all
318 error messages and help texts, and the names of all identifiers */
319 int error_line; /* width of context lines on terminal error messages */
320 int half_error_line; /* width of first lines of contexts in terminal
321 error messages; should be between 30 and |error_line-15| */
322 int max_print_line; /* width of longest text lines output; should be at least 60 */
323 int mem_max; /* greatest index in \MP's internal |mem| array;
324 must be strictly less than |max_halfword|;
325 must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top| */
326 int mem_top; /* largest index in the |mem| array dumped by \.{INIMP};
327 must not be greater than |mem_max| */
328 int hash_size; /* maximum number of symbolic tokens,
329 must be less than |max_halfword-3*param_size| */
330 int hash_prime; /* a prime number equal to about 85\pct! of |hash_size| */
331 int param_size; /* maximum number of simultaneous macro parameters */
332 int max_in_open; /* maximum number of input files and error insertions that
333 can be going on simultaneously */
335 @ @<Option variables@>=
346 @d set_value(a,b,c) do { a=c; if (b>c) a=b; } while (0)
351 set_value(mp->error_line,opt->error_line,79);
352 set_value(mp->half_error_line,opt->half_error_line,50);
353 set_value(mp->max_print_line,opt->max_print_line,79);
356 set_value(mp->hash_size,opt->hash_size,9500);
357 set_value(mp->hash_prime,opt->hash_prime,7919);
358 set_value(mp->param_size,opt->param_size,150);
359 set_value(mp->max_in_open,opt->max_in_open,10);
362 @ In case somebody has inadvertently made bad settings of the ``constants,''
363 \MP\ checks them using a global variable called |bad|.
365 This is the first of many sections of \MP\ where global variables are
369 integer bad; /* is some ``constant'' wrong? */
371 @ Later on we will say `\ignorespaces|if (mem_max>=max_halfword) bad=10;|',
372 or something similar. (We can't do that until |max_halfword| has been defined.)
374 @<Check the ``constant'' values for consistency@>=
376 if ( (mp->half_error_line<30)||(mp->half_error_line>mp->error_line-15) ) mp->bad=1;
377 if ( mp->max_print_line<60 ) mp->bad=2;
378 if ( mp->mem_top<=1100 ) mp->bad=4;
379 if (mp->hash_prime>mp->hash_size ) mp->bad=5;
381 @ Labels are given symbolic names by the following definitions, so that
382 occasional |goto| statements will be meaningful. We insert the label
383 `|exit|:' just before the `\ignorespaces|end|\unskip' of a procedure in
384 which we have used the `|return|' statement defined below; the label
385 `|restart|' is occasionally used at the very beginning of a procedure; and
386 the label `|reswitch|' is occasionally used just prior to a |case|
387 statement in which some cases change the conditions and we wish to branch
388 to the newly applicable case. Loops that are set up with the |loop|
389 construction defined below are commonly exited by going to `|done|' or to
390 `|found|' or to `|not_found|', and they are sometimes repeated by going to
391 `|continue|'. If two or more parts of a subroutine start differently but
392 end up the same, the shared code may be gathered together at
395 Incidentally, this program never declares a label that isn't actually used,
396 because some fussy \PASCAL\ compilers will complain about redundant labels.
398 @d label_exit 10 /* go here to leave a procedure */
399 @d restart 20 /* go here to start a procedure again */
400 @d reswitch 21 /* go here to start a case statement again */
401 @d continue 22 /* go here to resume a loop */
402 @d done 30 /* go here to exit a loop */
403 @d done1 31 /* like |done|, when there is more than one loop */
404 @d done2 32 /* for exiting the second loop in a long block */
405 @d done3 33 /* for exiting the third loop in a very long block */
406 @d done4 34 /* for exiting the fourth loop in an extremely long block */
407 @d done5 35 /* for exiting the fifth loop in an immense block */
408 @d done6 36 /* for exiting the sixth loop in a block */
409 @d found 40 /* go here when you've found it */
410 @d found1 41 /* like |found|, when there's more than one per routine */
411 @d found2 42 /* like |found|, when there's more than two per routine */
412 @d found3 43 /* like |found|, when there's more than three per routine */
413 @d not_found 45 /* go here when you've found nothing */
414 @d common_ending 50 /* go here when you want to merge with another branch */
416 @ Here are some macros for common programming idioms.
418 @d incr(A) (A)=(A)+1 /* increase a variable by unity */
419 @d decr(A) (A)=(A)-1 /* decrease a variable by unity */
420 @d negate(A) (A)=-(A) /* change the sign of a variable */
421 @d double(A) (A)=(A)+(A)
424 @d do_nothing /* empty statement */
425 @d Return goto exit /* terminate a procedure call */
426 @f return nil /* \.{WEB} will henceforth say |return| instead of \\{return} */
428 @* \[2] The character set.
429 In order to make \MP\ readily portable to a wide variety of
430 computers, all of its input text is converted to an internal eight-bit
431 code that includes standard ASCII, the ``American Standard Code for
432 Information Interchange.'' This conversion is done immediately when each
433 character is read in. Conversely, characters are converted from ASCII to
434 the user's external representation just before they are output to a
438 Such an internal code is relevant to users of \MP\ only with respect to
439 the \&{char} and \&{ASCII} operations, and the comparison of strings.
441 @ Characters of text that have been converted to \MP's internal form
442 are said to be of type |ASCII_code|, which is a subrange of the integers.
445 typedef unsigned char ASCII_code; /* eight-bit numbers */
447 @ The original \PASCAL\ compiler was designed in the late 60s, when six-bit
448 character sets were common, so it did not make provision for lowercase
449 letters. Nowadays, of course, we need to deal with both capital and small
450 letters in a convenient way, especially in a program for font design;
451 so the present specification of \MP\ has been written under the assumption
452 that the \PASCAL\ compiler and run-time system permit the use of text files
453 with more than 64 distinguishable characters. More precisely, we assume that
454 the character set contains at least the letters and symbols associated
455 with ASCII codes 040 through 0176; all of these characters are now
456 available on most computer terminals.
458 Since we are dealing with more characters than were present in the first
459 \PASCAL\ compilers, we have to decide what to call the associated data
460 type. Some \PASCAL s use the original name |char| for the
461 characters in text files, even though there now are more than 64 such
462 characters, while other \PASCAL s consider |char| to be a 64-element
463 subrange of a larger data type that has some other name.
465 In order to accommodate this difference, we shall use the name |text_char|
466 to stand for the data type of the characters that are converted to and
467 from |ASCII_code| when they are input and output. We shall also assume
468 that |text_char| consists of the elements |chr(first_text_char)| through
469 |chr(last_text_char)|, inclusive. The following definitions should be
470 adjusted if necessary.
471 @^system dependencies@>
473 @d first_text_char 0 /* ordinal number of the smallest element of |text_char| */
474 @d last_text_char 255 /* ordinal number of the largest element of |text_char| */
477 typedef unsigned char text_char; /* the data type of characters in text files */
479 @ @<Local variables for init...@>=
482 @ The \MP\ processor converts between ASCII code and
483 the user's external character set by means of arrays |xord| and |xchr|
484 that are analogous to \PASCAL's |ord| and |chr| functions.
486 @d xchr(A) mp->xchr[(A)]
487 @d xord(A) mp->xord[(A)]
490 ASCII_code xord[256]; /* specifies conversion of input characters */
491 text_char xchr[256]; /* specifies conversion of output characters */
493 @ The core system assumes all 8-bit is acceptable. If it is not,
494 a change file has to alter the below section.
495 @^system dependencies@>
497 Additionally, people with extended character sets can
498 assign codes arbitrarily, giving an |xchr| equivalent to whatever
499 characters the users of \MP\ are allowed to have in their input files.
500 Appropriate changes to \MP's |char_class| table should then be made.
501 (Unlike \TeX, each installation of \MP\ has a fixed assignment of category
502 codes, called the |char_class|.) Such changes make portability of programs
503 more difficult, so they should be introduced cautiously if at all.
504 @^character set dependencies@>
505 @^system dependencies@>
508 for (i=0;i<=0377;i++) { xchr(i)=i; }
510 @ The following system-independent code makes the |xord| array contain a
511 suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
512 where |i<j<0177|, the value of |xord[xchr[i]]| will turn out to be
513 |j| or more; hence, standard ASCII code numbers will be used instead of
514 codes below 040 in case there is a coincidence.
517 for (i=first_text_char;i<=last_text_char;i++) {
520 for (i=0200;i<=0377;i++) { xord(xchr(i))=i;}
521 for (i=0;i<=0176;i++) { xord(xchr(i))=i;}
523 @* \[3] Input and output.
524 The bane of portability is the fact that different operating systems treat
525 input and output quite differently, perhaps because computer scientists
526 have not given sufficient attention to this problem. People have felt somehow
527 that input and output are not part of ``real'' programming. Well, it is true
528 that some kinds of programming are more fun than others. With existing
529 input/output conventions being so diverse and so messy, the only sources of
530 joy in such parts of the code are the rare occasions when one can find a
531 way to make the program a little less bad than it might have been. We have
532 two choices, either to attack I/O now and get it over with, or to postpone
533 I/O until near the end. Neither prospect is very attractive, so let's
536 The basic operations we need to do are (1)~inputting and outputting of
537 text, to or from a file or the user's terminal; (2)~inputting and
538 outputting of eight-bit bytes, to or from a file; (3)~instructing the
539 operating system to initiate (``open'') or to terminate (``close'') input or
540 output from a specified file; (4)~testing whether the end of an input
541 file has been reached; (5)~display of bits on the user's screen.
542 The bit-display operation will be discussed in a later section; we shall
543 deal here only with more traditional kinds of I/O.
545 @ Finding files happens in a slightly roundabout fashion: the \MP\
546 instance object contains a field that holds a function pointer that finds a
547 file, and returns its name, or NULL. For this, it receives three
548 parameters: the non-qualified name |fname|, the intended |fopen|
549 operation type |fmode|, and the type of the file |ftype|.
551 The file types that are passed on in |ftype| can be used to
552 differentiate file searches if a library like kpathsea is used,
553 the fopen mode is passed along for the same reason.
556 typedef unsigned char eight_bits ; /* unsigned one-byte quantity */
558 @ @<Exported types@>=
560 mp_filetype_terminal = 0, /* the terminal */
561 mp_filetype_error, /* the terminal */
562 mp_filetype_program , /* \MP\ language input */
563 mp_filetype_log, /* the log file */
564 mp_filetype_postscript, /* the postscript output */
565 mp_filetype_memfile, /* memory dumps */
566 mp_filetype_metrics, /* TeX font metric files */
567 mp_filetype_fontmap, /* PostScript font mapping files */
568 mp_filetype_font, /* PostScript type1 font programs */
569 mp_filetype_encoding, /* PostScript font encoding files */
570 mp_filetype_text, /* first text file for readfrom and writeto primitives */
572 typedef char *(*mp_file_finder)(char *, char *, int);
573 typedef void *(*mp_file_opener)(char *, char *, int);
574 typedef char *(*mp_file_reader)(void *, size_t *);
575 typedef void (*mp_binfile_reader)(void *, void **, size_t *);
576 typedef void (*mp_file_closer)(void *);
577 typedef int (*mp_file_eoftest)(void *);
578 typedef void (*mp_file_flush)(void *);
579 typedef void (*mp_file_writer)(void *, char *);
580 typedef void (*mp_binfile_writer)(void *, void *, size_t);
584 mp_file_finder find_file;
585 mp_file_opener open_file;
586 mp_file_reader read_ascii_file;
587 mp_binfile_reader read_binary_file;
588 mp_file_closer close_file;
589 mp_file_eoftest eof_file;
590 mp_file_flush flush_file;
591 mp_file_writer write_ascii_file;
592 mp_binfile_writer write_binary_file;
594 @ @<Option variables@>=
595 mp_file_finder find_file;
596 mp_file_opener open_file;
597 mp_file_reader read_ascii_file;
598 mp_binfile_reader read_binary_file;
599 mp_file_closer close_file;
600 mp_file_eoftest eof_file;
601 mp_file_flush flush_file;
602 mp_file_writer write_ascii_file;
603 mp_binfile_writer write_binary_file;
605 @ The default function for finding files is |mp_find_file|. It is
606 pretty stupid: it will only find files in the current directory.
608 This function may disappear altogether, it is currently only
609 used for the default font map file.
612 char *mp_find_file (char *fname, char *fmode, int ftype) {
613 if (fmode[0] != 'r' || access (fname,R_OK) || ftype) {
614 return strdup(fname);
619 @ This has to be done very early on, so it is best to put it in with
620 the |mp_new| allocations
622 @d set_callback_option(A) do { mp->A = mp_##A;
623 if (opt->A!=NULL) mp->A = opt->A;
626 @<Allocate or initialize ...@>=
627 set_callback_option(find_file);
628 set_callback_option(open_file);
629 set_callback_option(read_ascii_file);
630 set_callback_option(read_binary_file);
631 set_callback_option(close_file);
632 set_callback_option(eof_file);
633 set_callback_option(flush_file);
634 set_callback_option(write_ascii_file);
635 set_callback_option(write_binary_file);
637 @ Because |mp_find_file| is used so early, it has to be in the helpers
641 char *mp_find_file (char *fname, char *fmode, int ftype) ;
642 void *mp_open_file (char *fname, char *fmode, int ftype) ;
643 char *mp_read_ascii_file (void *f, size_t *size) ;
644 void mp_read_binary_file (void *f, void **d, size_t *size) ;
645 void mp_close_file (void *f) ;
646 int mp_eof_file (void *f) ;
647 void mp_flush_file (void *f) ;
648 void mp_write_ascii_file (void *f, char *s) ;
649 void mp_write_binary_file (void *f, void *s, size_t t) ;
651 @ The function to open files can now be very short.
654 void *mp_open_file(char *fname, char *fmode, int ftype) {
656 if (ftype==mp_filetype_terminal) {
657 return (fmode[0] == 'r' ? stdin : stdout);
658 } else if (ftype==mp_filetype_error) {
660 } else if (fname != NULL && (fmode[0] != 'r' || access (fname,R_OK))) {
661 return (void *)fopen(fname, fmode);
667 @ This is a legacy interface: (almost) all file names pass through |name_of_file|.
670 char name_of_file[file_name_size+1]; /* the name of a system file */
671 int name_length;/* this many characters are actually
672 relevant in |name_of_file| (the rest are blank) */
673 boolean print_found_names; /* configuration parameter */
675 @ @<Option variables@>=
676 int print_found_names; /* configuration parameter */
678 @ If this parameter is true, the terminal and log will report the found
679 file names for input files instead of the requested ones.
680 It is off by default because it creates an extra filename lookup.
682 @<Allocate or initialize ...@>=
683 mp->print_found_names = (opt->print_found_names>0 ? true : false);
685 @ \MP's file-opening procedures return |false| if no file identified by
686 |name_of_file| could be opened.
688 The |OPEN_FILE| macro takes care of the |print_found_names| parameter.
689 It is not used for opening a mem file for read, because that file name
693 if (mp->print_found_names) {
694 char *s = (mp->find_file)(mp->name_of_file,A,ftype);
696 *f = (mp->open_file)(mp->name_of_file,A, ftype);
697 strncpy(mp->name_of_file,s,file_name_size);
703 *f = (mp->open_file)(mp->name_of_file,A, ftype);
706 return (*f ? true : false)
709 boolean mp_a_open_in (MP mp, void **f, int ftype) {
710 /* open a text file for input */
714 boolean mp_w_open_in (MP mp, void **f) {
715 /* open a word file for input */
716 *f = (mp->open_file)(mp->name_of_file,"rb",mp_filetype_memfile);
717 return (*f ? true : false);
720 boolean mp_a_open_out (MP mp, void **f, int ftype) {
721 /* open a text file for output */
725 boolean mp_b_open_out (MP mp, void **f, int ftype) {
726 /* open a binary file for output */
730 boolean mp_w_open_out (MP mp, void **f) {
731 /* open a word file for output */
732 int ftype = mp_filetype_memfile;
737 char *mp_read_ascii_file (void *f, size_t *size) {
739 size_t len = 0, lim = 128;
747 if (s==NULL) return NULL;
748 while (c!=EOF && c!='\n' && c!='\r') {
750 s =realloc(s, (lim+(lim>>2)));
751 if (s==NULL) return NULL;
759 if (c!=EOF && c!='\n')
769 void mp_write_ascii_file (void *f, char *s) {
778 void mp_read_binary_file (void *f, void **data, size_t *size) {
781 len = fread(*data,1,*size,f);
787 void mp_write_binary_file (void *f, void *s, size_t size) {
796 void mp_close_file (void *f) {
803 int mp_eof_file (void *f) {
812 void mp_flush_file (void *f) {
818 @ Binary input and output are done with \PASCAL's ordinary |get| and |put|
819 procedures, so we don't have to make any other special arrangements for
820 binary~I/O. Text output is also easy to do with standard \PASCAL\ routines.
821 The treatment of text input is more difficult, however, because
822 of the necessary translation to |ASCII_code| values.
823 \MP's conventions should be efficient, and they should
824 blend nicely with the user's operating environment.
826 @ Input from text files is read one line at a time, using a routine called
827 |input_ln|. This function is defined in terms of global variables called
828 |buffer|, |first|, and |last| that will be described in detail later; for
829 now, it suffices for us to know that |buffer| is an array of |ASCII_code|
830 values, and that |first| and |last| are indices into this array
831 representing the beginning and ending of a line of text.
834 size_t buf_size; /* maximum number of characters simultaneously present in
835 current lines of open files */
836 ASCII_code *buffer; /* lines of characters being read */
837 size_t first; /* the first unused position in |buffer| */
838 size_t last; /* end of the line just input to |buffer| */
839 size_t max_buf_stack; /* largest index used in |buffer| */
841 @ @<Allocate or initialize ...@>=
843 mp->buffer = xmalloc((mp->buf_size+1),sizeof(ASCII_code));
845 @ @<Dealloc variables@>=
849 void mp_reallocate_buffer(MP mp, size_t l) {
851 if (l>max_halfword) {
852 mp_confusion(mp,"buffer size"); /* can't happen (I hope) */
854 buffer = xmalloc((l+1),sizeof(ASCII_code));
855 memcpy(buffer,mp->buffer,(mp->buf_size+1));
857 mp->buffer = buffer ;
861 @ The |input_ln| function brings the next line of input from the specified
862 field into available positions of the buffer array and returns the value
863 |true|, unless the file has already been entirely read, in which case it
864 returns |false| and sets |last:=first|. In general, the |ASCII_code|
865 numbers that represent the next line of the file are input into
866 |buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
867 global variable |last| is set equal to |first| plus the length of the
868 line. Trailing blanks are removed from the line; thus, either |last=first|
869 (in which case the line was entirely blank) or |buffer[last-1]<>" "|.
872 The variable |max_buf_stack|, which is used to keep track of how large
873 the |buf_size| parameter must be to accommodate the present job, is
874 also kept up to date by |input_ln|.
877 boolean mp_input_ln (MP mp, void *f ) {
878 /* inputs the next line or returns |false| */
881 mp->last=mp->first; /* cf.\ Matthew 19\thinspace:\thinspace30 */
882 s = (mp->read_ascii_file)(f, &size);
886 mp->last = mp->first+size;
887 if ( mp->last>=mp->max_buf_stack ) {
888 mp->max_buf_stack=mp->last+1;
889 while ( mp->max_buf_stack>=mp->buf_size ) {
890 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
893 memcpy((mp->buffer+mp->first),s,size);
895 /* while ( mp->buffer[mp->last]==' ' ) mp->last--; */
900 @ The user's terminal acts essentially like other files of text, except
901 that it is used both for input and for output. When the terminal is
902 considered an input file, the file variable is called |term_in|, and when it
903 is considered an output file the file variable is |term_out|.
904 @^system dependencies@>
907 void * term_in; /* the terminal as an input file */
908 void * term_out; /* the terminal as an output file */
909 void * err_out; /* the terminal as an output file */
911 @ Here is how to open the terminal files. In the default configuration,
912 nothing happens except that the command line (if there is one) is copied
913 to the input buffer. The variable |command_line| will be filled by the
914 |main| procedure. The copying can not be done earlier in the program
915 logic because in the |INI| version, the |buffer| is also used for primitive
918 @^system dependencies@>
920 @d t_open_out do {/* open the terminal for text output */
921 mp->term_out = (mp->open_file)("terminal", "w", mp_filetype_terminal);
922 mp->err_out = (mp->open_file)("error", "w", mp_filetype_error);
924 @d t_open_in do { /* open the terminal for text input */
925 mp->term_in = (mp->open_file)("terminal", "r", mp_filetype_terminal);
926 if (mp->command_line!=NULL) {
927 mp->last = strlen(mp->command_line);
928 strncpy((char *)mp->buffer,mp->command_line,mp->last);
929 xfree(mp->command_line);
936 @ @<Option variables@>=
939 @ @<Allocate or initialize ...@>=
940 mp->command_line = opt->command_line;
942 @ Sometimes it is necessary to synchronize the input/output mixture that
943 happens on the user's terminal, and three system-dependent
944 procedures are used for this
945 purpose. The first of these, |update_terminal|, is called when we want
946 to make sure that everything we have output to the terminal so far has
947 actually left the computer's internal buffers and been sent.
948 The second, |clear_terminal|, is called when we wish to cancel any
949 input that the user may have typed ahead (since we are about to
950 issue an unexpected error message). The third, |wake_up_terminal|,
951 is supposed to revive the terminal if the user has disabled it by
952 some instruction to the operating system. The following macros show how
953 these operations can be specified in \ph:
954 @^system dependencies@>
956 @d update_terminal (mp->flush_file)(mp->term_out) /* empty the terminal output buffer */
957 @d clear_terminal do_nothing /* clear the terminal input buffer */
958 @d wake_up_terminal (mp->flush_file)(mp->term_out) /* cancel the user's cancellation of output */
960 @ We need a special routine to read the first line of \MP\ input from
961 the user's terminal. This line is different because it is read before we
962 have opened the transcript file; there is sort of a ``chicken and
963 egg'' problem here. If the user types `\.{input cmr10}' on the first
964 line, or if some macro invoked by that line does such an \.{input},
965 the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
966 commands are performed during the first line of terminal input, the transcript
967 file will acquire its default name `\.{mpout.log}'. (The transcript file
968 will not contain error messages generated by the first line before the
969 first \.{input} command.)
971 The first line is even more special if we are lucky enough to have an operating
972 system that treats \MP\ differently from a run-of-the-mill \PASCAL\ object
973 program. It's nice to let the user start running a \MP\ job by typing
974 a command line like `\.{MP cmr10}'; in such a case, \MP\ will operate
975 as if the first line of input were `\.{cmr10}', i.e., the first line will
976 consist of the remainder of the command line, after the part that invoked \MP.
978 @ Different systems have different ways to get started. But regardless of
979 what conventions are adopted, the routine that initializes the terminal
980 should satisfy the following specifications:
982 \yskip\textindent{1)}It should open file |term_in| for input from the
983 terminal. (The file |term_out| will already be open for output to the
986 \textindent{2)}If the user has given a command line, this line should be
987 considered the first line of terminal input. Otherwise the
988 user should be prompted with `\.{**}', and the first line of input
989 should be whatever is typed in response.
991 \textindent{3)}The first line of input, which might or might not be a
992 command line, should appear in locations |first| to |last-1| of the
995 \textindent{4)}The global variable |loc| should be set so that the
996 character to be read next by \MP\ is in |buffer[loc]|. This
997 character should not be blank, and we should have |loc<last|.
999 \yskip\noindent(It may be necessary to prompt the user several times
1000 before a non-blank line comes in. The prompt is `\.{**}' instead of the
1001 later `\.*' because the meaning is slightly different: `\.{input}' need
1002 not be typed immediately after~`\.{**}'.)
1004 @d loc mp->cur_input.loc_field /* location of first unread character in |buffer| */
1006 @ The following program does the required initialization
1007 without retrieving a possible command line.
1008 It should be clear how to modify this routine to deal with command lines,
1009 if the system permits them.
1010 @^system dependencies@>
1013 boolean mp_init_terminal (MP mp) { /* gets the terminal input started */
1016 loc = mp->first = 0;
1020 wake_up_terminal; do_fprintf(mp->term_out,"**"); update_terminal;
1022 if ( ! mp_input_ln(mp, mp->term_in ) ) { /* this shouldn't happen */
1023 do_fprintf(mp->term_out,"\n! End of file on the terminal... why?");
1024 @.End of file on the terminal@>
1028 while ( (loc<(int)mp->last)&&(mp->buffer[loc]==' ') )
1030 if ( loc<(int)mp->last ) {
1031 return true; /* return unless the line was all blank */
1033 do_fprintf(mp->term_out,"Please type the name of your input file.\n");
1038 boolean mp_init_terminal (MP mp) ;
1041 @* \[4] String handling.
1042 Symbolic token names and diagnostic messages are variable-length strings
1043 of eight-bit characters. Since \PASCAL\ does not have a well-developed string
1044 mechanism, \MP\ does all of its string processing by homegrown methods.
1046 \MP\ uses strings more extensively than \MF\ does, but the necessary
1047 operations can still be handled with a fairly simple data structure.
1048 The array |str_pool| contains all of the (eight-bit) ASCII codes in all
1049 of the strings, and the array |str_start| contains indices of the starting
1050 points of each string. Strings are referred to by integer numbers, so that
1051 string number |s| comprises the characters |str_pool[j]| for
1052 |str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
1053 is allocated sequentially and |str_pool[pool_ptr]| is the next unused
1054 location. The first string number not currently in use is |str_ptr|
1055 and |next_str[str_ptr]| begins a list of free string numbers. String
1056 pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
1057 string currently being constructed.
1059 String numbers 0 to 255 are reserved for strings that correspond to single
1060 ASCII characters. This is in accordance with the conventions of \.{WEB},
1062 which converts single-character strings into the ASCII code number of the
1063 single character involved, while it converts other strings into integers
1064 and builds a string pool file. Thus, when the string constant \.{"."} appears
1065 in the program below, \.{WEB} converts it into the integer 46, which is the
1066 ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
1067 into some integer greater than~255. String number 46 will presumably be the
1068 single character `\..'\thinspace; but some ASCII codes have no standard visible
1069 representation, and \MP\ may need to be able to print an arbitrary
1070 ASCII character, so the first 256 strings are used to specify exactly what
1071 should be printed for each of the 256 possibilities.
1074 typedef int pool_pointer; /* for variables that point into |str_pool| */
1075 typedef int str_number; /* for variables that point into |str_start| */
1078 ASCII_code *str_pool; /* the characters */
1079 pool_pointer *str_start; /* the starting pointers */
1080 str_number *next_str; /* for linking strings in order */
1081 pool_pointer pool_ptr; /* first unused position in |str_pool| */
1082 str_number str_ptr; /* number of the current string being created */
1083 pool_pointer init_pool_ptr; /* the starting value of |pool_ptr| */
1084 str_number init_str_use; /* the initial number of strings in use */
1085 pool_pointer max_pool_ptr; /* the maximum so far of |pool_ptr| */
1086 str_number max_str_ptr; /* the maximum so far of |str_ptr| */
1088 @ @<Allocate or initialize ...@>=
1089 mp->str_pool = xmalloc ((mp->pool_size +1),sizeof(ASCII_code));
1090 mp->str_start = xmalloc ((mp->max_strings+1),sizeof(pool_pointer));
1091 mp->next_str = xmalloc ((mp->max_strings+1),sizeof(str_number));
1093 @ @<Dealloc variables@>=
1094 xfree(mp->str_pool);
1095 xfree(mp->str_start);
1096 xfree(mp->next_str);
1098 @ Most printing is done from |char *|s, but sometimes not. Here are
1099 functions that convert an internal string into a |char *| for use
1100 by the printing routines, and vice versa.
1102 @d str(A) mp_str(mp,A)
1103 @d rts(A) mp_rts(mp,A)
1106 int mp_xstrcmp (const char *a, const char *b);
1107 char * mp_str (MP mp, str_number s);
1110 str_number mp_rts (MP mp, char *s);
1111 str_number mp_make_string (MP mp);
1113 @ The attempt to catch interrupted strings that is in |mp_rts|, is not
1114 very good: it does not handle nesting over more than one level.
1117 int mp_xstrcmp (const char *a, const char *b) {
1118 if (a==NULL && b==NULL)
1128 char * mp_str (MP mp, str_number ss) {
1131 if (ss==mp->str_ptr) {
1135 s = xmalloc(len+1,sizeof(char));
1136 strncpy(s,(char *)(mp->str_pool+(mp->str_start[ss])),len);
1141 str_number mp_rts (MP mp, char *s) {
1142 int r; /* the new string */
1143 int old; /* a possible string in progress */
1147 } else if (strlen(s)==1) {
1151 str_room((integer)strlen(s));
1152 if (mp->str_start[mp->str_ptr]<mp->pool_ptr)
1153 old = mp_make_string(mp);
1158 r = mp_make_string(mp);
1160 str_room(length(old));
1161 while (i<length(old)) {
1162 append_char((mp->str_start[old]+i));
1164 mp_flush_string(mp,old);
1170 @ Except for |strs_used_up|, the following string statistics are only
1171 maintained when code between |stat| $\ldots$ |tats| delimiters is not
1175 integer strs_used_up; /* strings in use or unused but not reclaimed */
1176 integer pool_in_use; /* total number of cells of |str_pool| actually in use */
1177 integer strs_in_use; /* total number of strings actually in use */
1178 integer max_pl_used; /* maximum |pool_in_use| so far */
1179 integer max_strs_used; /* maximum |strs_in_use| so far */
1181 @ Several of the elementary string operations are performed using \.{WEB}
1182 macros instead of \PASCAL\ procedures, because many of the
1183 operations are done quite frequently and we want to avoid the
1184 overhead of procedure calls. For example, here is
1185 a simple macro that computes the length of a string.
1188 @d str_stop(A) mp->str_start[mp->next_str[(A)]] /* one cell past the end of string
1190 @d length(A) (str_stop((A))-mp->str_start[(A)]) /* the number of characters in string \# */
1192 @ The length of the current string is called |cur_length|. If we decide that
1193 the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
1194 |cur_length| becomes zero.
1196 @d cur_length (mp->pool_ptr - mp->str_start[mp->str_ptr])
1197 @d flush_cur_string mp->pool_ptr=mp->str_start[mp->str_ptr]
1199 @ Strings are created by appending character codes to |str_pool|.
1200 The |append_char| macro, defined here, does not check to see if the
1201 value of |pool_ptr| has gotten too high; this test is supposed to be
1202 made before |append_char| is used.
1204 To test if there is room to append |l| more characters to |str_pool|,
1205 we shall write |str_room(l)|, which tries to make sure there is enough room
1206 by compacting the string pool if necessary. If this does not work,
1207 |do_compaction| aborts \MP\ and gives an apologetic error message.
1209 @d append_char(A) /* put |ASCII_code| \# at the end of |str_pool| */
1210 { mp->str_pool[mp->pool_ptr]=(A); incr(mp->pool_ptr);
1212 @d str_room(A) /* make sure that the pool hasn't overflowed */
1213 { if ( mp->pool_ptr+(A) > mp->max_pool_ptr ) {
1214 if ( mp->pool_ptr+(A) > mp->pool_size ) mp_do_compaction(mp, (A));
1215 else mp->max_pool_ptr=mp->pool_ptr+(A); }
1218 @ The following routine is similar to |str_room(1)| but it uses the
1219 argument |mp->pool_size| to prevent |do_compaction| from aborting when
1220 string space is exhausted.
1222 @<Declare the procedure called |unit_str_room|@>=
1223 void mp_unit_str_room (MP mp);
1226 void mp_unit_str_room (MP mp) {
1227 if ( mp->pool_ptr>=mp->pool_size ) mp_do_compaction(mp, mp->pool_size);
1228 if ( mp->pool_ptr>=mp->max_pool_ptr ) mp->max_pool_ptr=mp->pool_ptr+1;
1231 @ \MP's string expressions are implemented in a brute-force way: Every
1232 new string or substring that is needed is simply copied into the string pool.
1233 Space is eventually reclaimed by a procedure called |do_compaction| with
1234 the aid of a simple system system of reference counts.
1235 @^reference counts@>
1237 The number of references to string number |s| will be |str_ref[s]|. The
1238 special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
1239 positive number of references; such strings will never be recycled. If
1240 a string is ever referred to more than 126 times, simultaneously, we
1241 put it in this category. Hence a single byte suffices to store each |str_ref|.
1243 @d max_str_ref 127 /* ``infinite'' number of references */
1244 @d add_str_ref(A) { if ( mp->str_ref[(A)]<max_str_ref ) incr(mp->str_ref[(A)]);
1250 @ @<Allocate or initialize ...@>=
1251 mp->str_ref = xmalloc ((mp->max_strings+1),sizeof(int));
1253 @ @<Dealloc variables@>=
1256 @ Here's what we do when a string reference disappears:
1258 @d delete_str_ref(A) {
1259 if ( mp->str_ref[(A)]<max_str_ref ) {
1260 if ( mp->str_ref[(A)]>1 ) decr(mp->str_ref[(A)]);
1261 else mp_flush_string(mp, (A));
1265 @<Declare the procedure called |flush_string|@>=
1266 void mp_flush_string (MP mp,str_number s) ;
1269 @ We can't flush the first set of static strings at all, so there
1270 is no point in trying
1273 void mp_flush_string (MP mp,str_number s) {
1275 mp->pool_in_use=mp->pool_in_use-length(s);
1276 decr(mp->strs_in_use);
1277 if ( mp->next_str[s]!=mp->str_ptr ) {
1281 decr(mp->strs_used_up);
1283 mp->pool_ptr=mp->str_start[mp->str_ptr];
1287 @ C literals cannot be simply added, they need to be set so they can't
1290 @d intern(A) mp_intern(mp,(A))
1293 str_number mp_intern (MP mp, char *s) {
1296 mp->str_ref[r] = max_str_ref;
1301 str_number mp_intern (MP mp, char *s);
1304 @ Once a sequence of characters has been appended to |str_pool|, it
1305 officially becomes a string when the function |make_string| is called.
1306 This function returns the identification number of the new string as its
1309 When getting the next unused string number from the linked list, we pretend
1311 $$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |mp->max_strings|} $$
1312 are linked sequentially even though the |next_str| entries have not been
1313 initialized yet. We never allow |str_ptr| to reach |mp->max_strings|;
1314 |do_compaction| is responsible for making sure of this.
1317 @<Declare the procedure called |do_compaction|@>;
1318 @<Declare the procedure called |unit_str_room|@>;
1319 str_number mp_make_string (MP mp);
1322 str_number mp_make_string (MP mp) { /* current string enters the pool */
1323 str_number s; /* the new string */
1326 mp->str_ptr=mp->next_str[s];
1327 if ( mp->str_ptr>mp->max_str_ptr ) {
1328 if ( mp->str_ptr==mp->max_strings ) {
1330 mp_do_compaction(mp, 0);
1334 if ( mp->strs_used_up!=mp->max_str_ptr ) mp_confusion(mp, "s");
1335 @:this can't happen s}{\quad \.s@>
1337 mp->max_str_ptr=mp->str_ptr;
1338 mp->next_str[mp->str_ptr]=mp->max_str_ptr+1;
1342 mp->str_start[mp->str_ptr]=mp->pool_ptr;
1343 incr(mp->strs_used_up);
1344 incr(mp->strs_in_use);
1345 mp->pool_in_use=mp->pool_in_use+length(s);
1346 if ( mp->pool_in_use>mp->max_pl_used )
1347 mp->max_pl_used=mp->pool_in_use;
1348 if ( mp->strs_in_use>mp->max_strs_used )
1349 mp->max_strs_used=mp->strs_in_use;
1353 @ The most interesting string operation is string pool compaction. The idea
1354 is to recover unused space in the |str_pool| array by recopying the strings
1355 to close the gaps created when some strings become unused. All string
1356 numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
1357 numbers after |str_ptr|. If this fails to free enough pool space we issue an
1358 |overflow| error unless |needed=mp->pool_size|. Calling |do_compaction|
1359 with |needed=mp->pool_size| supresses all overflow tests.
1361 The compaction process starts with |last_fixed_str| because all lower numbered
1362 strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
1365 str_number last_fixed_str; /* last permanently allocated string */
1366 str_number fixed_str_use; /* number of permanently allocated strings */
1368 @ @<Declare the procedure called |do_compaction|@>=
1369 void mp_do_compaction (MP mp, pool_pointer needed) ;
1372 void mp_do_compaction (MP mp, pool_pointer needed) {
1373 str_number str_use; /* a count of strings in use */
1374 str_number r,s,t; /* strings being manipulated */
1375 pool_pointer p,q; /* destination and source for copying string characters */
1376 @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
1377 r=mp->last_fixed_str;
1380 while ( s!=mp->str_ptr ) {
1381 while ( mp->str_ref[s]==0 ) {
1382 @<Advance |s| and add the old |s| to the list of free string numbers;
1383 then |break| if |s=str_ptr|@>;
1385 r=s; s=mp->next_str[s];
1387 @<Move string |r| back so that |str_start[r]=p|; make |p| the location
1388 after the end of the string@>;
1390 @<Move the current string back so that it starts at |p|@>;
1391 if ( needed<mp->pool_size ) {
1392 @<Make sure that there is room for another string with |needed| characters@>;
1394 @<Account for the compaction and make sure the statistics agree with the
1396 mp->strs_used_up=str_use;
1399 @ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
1400 t=mp->next_str[mp->last_fixed_str];
1401 while (t!=mp->str_ptr && mp->str_ref[t]==max_str_ref) {
1402 incr(mp->fixed_str_use);
1403 mp->last_fixed_str=t;
1406 str_use=mp->fixed_str_use
1408 @ Because of the way |flush_string| has been written, it should never be
1409 necessary to |break| here. The extra line of code seems worthwhile to
1410 preserve the generality of |do_compaction|.
1412 @<Advance |s| and add the old |s| to the list of free string numbers;...@>=
1417 mp->next_str[t]=mp->next_str[mp->str_ptr];
1418 mp->next_str[mp->str_ptr]=t;
1419 if ( s==mp->str_ptr ) break;
1422 @ The string currently starts at |str_start[r]| and ends just before
1423 |str_start[s]|. We don't change |str_start[s]| because it might be needed
1424 to locate the next string.
1426 @<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
1429 while ( q<mp->str_start[s] ) {
1430 mp->str_pool[p]=mp->str_pool[q];
1434 @ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
1435 we do this, anything between them should be moved.
1437 @ @<Move the current string back so that it starts at |p|@>=
1438 q=mp->str_start[mp->str_ptr];
1439 mp->str_start[mp->str_ptr]=p;
1440 while ( q<mp->pool_ptr ) {
1441 mp->str_pool[p]=mp->str_pool[q];
1446 @ We must remember that |str_ptr| is not allowed to reach |mp->max_strings|.
1448 @<Make sure that there is room for another string with |needed| char...@>=
1449 if ( str_use>=mp->max_strings-1 )
1450 mp_reallocate_strings (mp,str_use);
1451 if ( mp->pool_ptr+needed>mp->max_pool_ptr ) {
1452 mp_reallocate_pool(mp, mp->pool_ptr+needed);
1453 mp->max_pool_ptr=mp->pool_ptr+needed;
1457 void mp_reallocate_strings (MP mp, str_number str_use) ;
1458 void mp_reallocate_pool(MP mp, pool_pointer needed) ;
1461 void mp_reallocate_strings (MP mp, str_number str_use) {
1462 while ( str_use>=mp->max_strings-1 ) {
1463 int l = mp->max_strings + (mp->max_strings>>2);
1464 XREALLOC (mp->str_ref, l, int);
1465 XREALLOC (mp->str_start, l, pool_pointer);
1466 XREALLOC (mp->next_str, l, str_number);
1467 mp->max_strings = l;
1470 void mp_reallocate_pool(MP mp, pool_pointer needed) {
1471 while ( needed>mp->pool_size ) {
1472 int l = mp->pool_size + (mp->pool_size>>2);
1473 XREALLOC (mp->str_pool, l, ASCII_code);
1478 @ @<Account for the compaction and make sure the statistics agree with...@>=
1479 if ( (mp->str_start[mp->str_ptr]!=mp->pool_in_use)||(str_use!=mp->strs_in_use) )
1480 mp_confusion(mp, "string");
1481 @:this can't happen string}{\quad string@>
1482 incr(mp->pact_count);
1483 mp->pact_chars=mp->pact_chars+mp->pool_ptr-str_stop(mp->last_fixed_str);
1484 mp->pact_strs=mp->pact_strs+str_use-mp->fixed_str_use;
1486 s=mp->str_ptr; t=str_use;
1487 while ( s<=mp->max_str_ptr ){
1488 if ( t>mp->max_str_ptr ) mp_confusion(mp, "\"");
1489 incr(t); s=mp->next_str[s];
1491 if ( t<=mp->max_str_ptr ) mp_confusion(mp, "\"");
1494 @ A few more global variables are needed to keep track of statistics when
1495 |stat| $\ldots$ |tats| blocks are not commented out.
1498 integer pact_count; /* number of string pool compactions so far */
1499 integer pact_chars; /* total number of characters moved during compactions */
1500 integer pact_strs; /* total number of strings moved during compactions */
1502 @ @<Initialize compaction statistics@>=
1507 @ The following subroutine compares string |s| with another string of the
1508 same length that appears in |buffer| starting at position |k|;
1509 the result is |true| if and only if the strings are equal.
1512 boolean mp_str_eq_buf (MP mp,str_number s, integer k) {
1513 /* test equality of strings */
1514 pool_pointer j; /* running index */
1516 while ( j<str_stop(s) ) {
1517 if ( mp->str_pool[j++]!=mp->buffer[k++] )
1523 @ Here is a similar routine, but it compares two strings in the string pool,
1524 and it does not assume that they have the same length. If the first string
1525 is lexicographically greater than, less than, or equal to the second,
1526 the result is respectively positive, negative, or zero.
1529 integer mp_str_vs_str (MP mp, str_number s, str_number t) {
1530 /* test equality of strings */
1531 pool_pointer j,k; /* running indices */
1532 integer ls,lt; /* lengths */
1533 integer l; /* length remaining to test */
1534 ls=length(s); lt=length(t);
1535 if ( ls<=lt ) l=ls; else l=lt;
1536 j=mp->str_start[s]; k=mp->str_start[t];
1538 if ( mp->str_pool[j]!=mp->str_pool[k] ) {
1539 return (mp->str_pool[j]-mp->str_pool[k]);
1546 @ The initial values of |str_pool|, |str_start|, |pool_ptr|,
1547 and |str_ptr| are computed by the \.{INIMP} program, based in part
1548 on the information that \.{WEB} has output while processing \MP.
1553 void mp_get_strings_started (MP mp) {
1554 /* initializes the string pool,
1555 but returns |false| if something goes wrong */
1556 int k; /* small indices or counters */
1557 str_number g; /* a new string */
1558 mp->pool_ptr=0; mp->str_ptr=0; mp->max_pool_ptr=0; mp->max_str_ptr=0;
1561 mp->pool_in_use=0; mp->strs_in_use=0;
1562 mp->max_pl_used=0; mp->max_strs_used=0;
1563 @<Initialize compaction statistics@>;
1565 @<Make the first 256 strings@>;
1566 g=mp_make_string(mp); /* string 256 == "" */
1567 mp->str_ref[g]=max_str_ref;
1568 mp->last_fixed_str=mp->str_ptr-1;
1569 mp->fixed_str_use=mp->str_ptr;
1574 void mp_get_strings_started (MP mp);
1576 @ The first 256 strings will consist of a single character only.
1578 @<Make the first 256...@>=
1579 for (k=0;k<=255;k++) {
1581 g=mp_make_string(mp);
1582 mp->str_ref[g]=max_str_ref;
1585 @ The first 128 strings will contain 95 standard ASCII characters, and the
1586 other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
1587 unless a system-dependent change is made here. Installations that have
1588 an extended character set, where for example |xchr[032]=@t\.{'^^Z'}@>|,
1589 would like string 032 to be printed as the single character 032 instead
1590 of the three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
1591 even people with an extended character set will want to represent string
1592 015 by \.{\^\^M}, since 015 is ASCII's ``carriage return'' code; the idea is
1593 to produce visible strings instead of tabs or line-feeds or carriage-returns
1594 or bell-rings or characters that are treated anomalously in text files.
1596 Unprintable characters of codes 128--255 are, similarly, rendered
1597 \.{\^\^80}--\.{\^\^ff}.
1599 The boolean expression defined here should be |true| unless \MP\ internal
1600 code number~|k| corresponds to a non-troublesome visible symbol in the
1601 local character set.
1602 If character |k| cannot be printed, and |k<0200|, then character |k+0100| or
1603 |k-0100| must be printable; moreover, ASCII codes |[060..071, 0141..0146]|
1605 @^character set dependencies@>
1606 @^system dependencies@>
1608 @<Character |k| cannot be printed@>=
1611 @* \[5] On-line and off-line printing.
1612 Messages that are sent to a user's terminal and to the transcript-log file
1613 are produced by several `|print|' procedures. These procedures will
1614 direct their output to a variety of places, based on the setting of
1615 the global variable |selector|, which has the following possible
1619 \hang |term_and_log|, the normal setting, prints on the terminal and on the
1622 \hang |log_only|, prints only on the transcript file.
1624 \hang |term_only|, prints only on the terminal.
1626 \hang |no_print|, doesn't print at all. This is used only in rare cases
1627 before the transcript file is open.
1629 \hang |pseudo|, puts output into a cyclic buffer that is used
1630 by the |show_context| routine; when we get to that routine we shall discuss
1631 the reasoning behind this curious mode.
1633 \hang |new_string|, appends the output to the current string in the
1636 \hang |>=write_file| prints on one of the files used for the \&{write}
1637 @:write_}{\&{write} primitive@>
1641 \noindent The symbolic names `|term_and_log|', etc., have been assigned
1642 numeric codes that satisfy the convenient relations |no_print+1=term_only|,
1643 |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
1644 relations are not used when |selector| could be |pseudo|, or |new_string|.
1645 We need not check for unprintable characters when |selector<pseudo|.
1647 Three additional global variables, |tally|, |term_offset| and |file_offset|
1648 record the number of characters that have been printed
1649 since they were most recently cleared to zero. We use |tally| to record
1650 the length of (possibly very long) stretches of printing; |term_offset|,
1651 and |file_offset|, on the other hand, keep track of how many
1652 characters have appeared so far on the current line that has been output
1653 to the terminal, the transcript file, or the \ps\ output file, respectively.
1655 @d new_string 0 /* printing is deflected to the string pool */
1656 @d pseudo 2 /* special |selector| setting for |show_context| */
1657 @d no_print 3 /* |selector| setting that makes data disappear */
1658 @d term_only 4 /* printing is destined for the terminal only */
1659 @d log_only 5 /* printing is destined for the transcript file only */
1660 @d term_and_log 6 /* normal |selector| setting */
1661 @d write_file 7 /* first write file selector */
1664 void * log_file; /* transcript of \MP\ session */
1665 void * ps_file; /* the generic font output goes here */
1666 unsigned int selector; /* where to print a message */
1667 unsigned char dig[23]; /* digits in a number being output */
1668 integer tally; /* the number of characters recently printed */
1669 unsigned int term_offset;
1670 /* the number of characters on the current terminal line */
1671 unsigned int file_offset;
1672 /* the number of characters on the current file line */
1673 ASCII_code *trick_buf; /* circular buffer for pseudoprinting */
1674 integer trick_count; /* threshold for pseudoprinting, explained later */
1675 integer first_count; /* another variable for pseudoprinting */
1677 @ @<Allocate or initialize ...@>=
1678 memset(mp->dig,0,23);
1679 mp->trick_buf = xmalloc((mp->error_line+1),sizeof(ASCII_code));
1681 @ @<Dealloc variables@>=
1682 xfree(mp->trick_buf);
1684 @ @<Initialize the output routines@>=
1685 mp->selector=term_only; mp->tally=0; mp->term_offset=0; mp->file_offset=0;
1687 @ Macro abbreviations for output to the terminal and to the log file are
1688 defined here for convenience. Some systems need special conventions
1689 for terminal output, and it is possible to adhere to those conventions
1690 by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
1691 @^system dependencies@>
1693 @d do_fprintf(f,b) (mp->write_ascii_file)(f,b)
1694 @d wterm(A) do_fprintf(mp->term_out,(A))
1695 @d wterm_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->term_out,(char *)ss); }
1696 @d wterm_cr do_fprintf(mp->term_out,"\n")
1697 @d wterm_ln(A) { wterm_cr; do_fprintf(mp->term_out,(A)); }
1698 @d wlog(A) do_fprintf(mp->log_file,(A))
1699 @d wlog_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->log_file,(char *)ss); }
1700 @d wlog_cr do_fprintf(mp->log_file, "\n")
1701 @d wlog_ln(A) {wlog_cr; do_fprintf(mp->log_file,(A)); }
1704 @ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
1705 use an array |wr_file| that will be declared later.
1707 @d mp_print_text(A) mp_print_str(mp,text((A)))
1710 void mp_print_ln (MP mp);
1711 void mp_print_visible_char (MP mp, ASCII_code s);
1712 void mp_print_char (MP mp, ASCII_code k);
1713 void mp_print (MP mp, char *s);
1714 void mp_print_str (MP mp, str_number s);
1715 void mp_print_nl (MP mp, char *s);
1716 void mp_print_two (MP mp,scaled x, scaled y) ;
1717 void mp_print_scaled (MP mp,scaled s);
1719 @ @<Basic print...@>=
1720 void mp_print_ln (MP mp) { /* prints an end-of-line */
1721 switch (mp->selector) {
1724 mp->term_offset=0; mp->file_offset=0;
1727 wlog_cr; mp->file_offset=0;
1730 wterm_cr; mp->term_offset=0;
1737 do_fprintf(mp->wr_file[(mp->selector-write_file)],"\n");
1739 } /* note that |tally| is not affected */
1741 @ The |print_visible_char| procedure sends one character to the desired
1742 destination, using the |xchr| array to map it into an external character
1743 compatible with |input_ln|. (It assumes that it is always called with
1744 a visible ASCII character.) All printing comes through |print_ln| or
1745 |print_char|, which ultimately calls |print_visible_char|, hence these
1746 routines are the ones that limit lines to at most |max_print_line| characters.
1747 But we must make an exception for the \ps\ output file since it is not safe
1748 to cut up lines arbitrarily in \ps.
1750 Procedure |unit_str_room| needs to be declared |forward| here because it calls
1751 |do_compaction| and |do_compaction| can call the error routines. Actually,
1752 |unit_str_room| avoids |overflow| errors but it can call |confusion|.
1754 @<Basic printing...@>=
1755 void mp_print_visible_char (MP mp, ASCII_code s) { /* prints a single character */
1756 switch (mp->selector) {
1758 wterm_chr(xchr(s)); wlog_chr(xchr(s));
1759 incr(mp->term_offset); incr(mp->file_offset);
1760 if ( mp->term_offset==(unsigned)mp->max_print_line ) {
1761 wterm_cr; mp->term_offset=0;
1763 if ( mp->file_offset==(unsigned)mp->max_print_line ) {
1764 wlog_cr; mp->file_offset=0;
1768 wlog_chr(xchr(s)); incr(mp->file_offset);
1769 if ( mp->file_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1772 wterm_chr(xchr(s)); incr(mp->term_offset);
1773 if ( mp->term_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1778 if ( mp->tally<mp->trick_count )
1779 mp->trick_buf[mp->tally % mp->error_line]=s;
1782 if ( mp->pool_ptr>=mp->max_pool_ptr ) {
1783 mp_unit_str_room(mp);
1784 if ( mp->pool_ptr>=mp->pool_size )
1785 goto DONE; /* drop characters if string space is full */
1790 { char ss[2]; ss[0] = xchr(s); ss[1]=0;
1791 do_fprintf(mp->wr_file[(mp->selector-write_file)],(char *)ss);
1798 @ The |print_char| procedure sends one character to the desired destination.
1799 File names and string expressions might contain |ASCII_code| values that
1800 can't be printed using |print_visible_char|. These characters will be
1801 printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
1802 (This procedure assumes that it is safe to bypass all checks for unprintable
1803 characters when |selector| is in the range |0..max_write_files-1|.
1804 The user might want to write unprintable characters.
1806 @d print_lc_hex(A) do { l=(A);
1807 mp_print_visible_char(mp, (l<10 ? l+'0' : l-10+'a'));
1810 @<Basic printing...@>=
1811 void mp_print_char (MP mp, ASCII_code k) { /* prints a single character */
1812 int l; /* small index or counter */
1813 if ( mp->selector<pseudo || mp->selector>=write_file) {
1814 mp_print_visible_char(mp, k);
1815 } else if ( @<Character |k| cannot be printed@> ) {
1818 mp_print_visible_char(mp, k+0100);
1819 } else if ( k<0200 ) {
1820 mp_print_visible_char(mp, k-0100);
1822 print_lc_hex(k / 16);
1823 print_lc_hex(k % 16);
1826 mp_print_visible_char(mp, k);
1830 @ An entire string is output by calling |print|. Note that if we are outputting
1831 the single standard ASCII character \.c, we could call |print("c")|, since
1832 |"c"=99| is the number of a single-character string, as explained above. But
1833 |print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
1834 routine when it knows that this is safe. (The present implementation
1835 assumes that it is always safe to print a visible ASCII character.)
1836 @^system dependencies@>
1839 void mp_do_print (MP mp, char *ss, unsigned int len) { /* prints string |s| */
1842 mp_print_char(mp, ss[j]); incr(j);
1848 void mp_print (MP mp, char *ss) {
1849 mp_do_print(mp, ss, strlen(ss));
1851 void mp_print_str (MP mp, str_number s) {
1852 pool_pointer j; /* current character code position */
1853 if ( (s<0)||(s>mp->max_str_ptr) ) {
1854 mp_do_print(mp,"???",3); /* this can't happen */
1858 mp_do_print(mp, (char *)(mp->str_pool+j), (str_stop(s)-j));
1862 @ Here is the very first thing that \MP\ prints: a headline that identifies
1863 the version number and base name. The |term_offset| variable is temporarily
1864 incorrect, but the discrepancy is not serious since we assume that the banner
1865 and mem identifier together will occupy at most |max_print_line|
1866 character positions.
1868 @<Initialize the output...@>=
1870 wterm (version_string);
1871 if (mp->mem_ident!=NULL)
1872 mp_print(mp,mp->mem_ident);
1876 @ The procedure |print_nl| is like |print|, but it makes sure that the
1877 string appears at the beginning of a new line.
1880 void mp_print_nl (MP mp, char *s) { /* prints string |s| at beginning of line */
1881 switch(mp->selector) {
1883 if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_ln(mp);
1886 if ( mp->file_offset>0 ) mp_print_ln(mp);
1889 if ( mp->term_offset>0 ) mp_print_ln(mp);
1895 } /* there are no other cases */
1899 @ An array of digits in the range |0..9| is printed by |print_the_digs|.
1902 void mp_print_the_digs (MP mp, eight_bits k) {
1903 /* prints |dig[k-1]|$\,\ldots\,$|dig[0]| */
1905 decr(k); mp_print_char(mp, '0'+mp->dig[k]);
1909 @ The following procedure, which prints out the decimal representation of a
1910 given integer |n|, has been written carefully so that it works properly
1911 if |n=0| or if |(-n)| would cause overflow. It does not apply |mod| or |div|
1912 to negative arguments, since such operations are not implemented consistently
1913 by all \PASCAL\ compilers.
1916 void mp_print_int (MP mp,integer n) { /* prints an integer in decimal form */
1917 integer m; /* used to negate |n| in possibly dangerous cases */
1918 int k = 0; /* index to current digit; we assume that $|n|<10^{23}$ */
1920 mp_print_char(mp, '-');
1921 if ( n>-100000000 ) {
1924 m=-1-n; n=m / 10; m=(m % 10)+1; k=1;
1928 mp->dig[0]=0; incr(n);
1933 mp->dig[k]=n % 10; n=n / 10; incr(k);
1935 mp_print_the_digs(mp, k);
1939 void mp_print_int (MP mp,integer n);
1941 @ \MP\ also makes use of a trivial procedure to print two digits. The
1942 following subroutine is usually called with a parameter in the range |0<=n<=99|.
1945 void mp_print_dd (MP mp,integer n) { /* prints two least significant digits */
1947 mp_print_char(mp, '0'+(n / 10));
1948 mp_print_char(mp, '0'+(n % 10));
1953 void mp_print_dd (MP mp,integer n);
1955 @ Here is a procedure that asks the user to type a line of input,
1956 assuming that the |selector| setting is either |term_only| or |term_and_log|.
1957 The input is placed into locations |first| through |last-1| of the
1958 |buffer| array, and echoed on the transcript file if appropriate.
1960 This procedure is never called when |interaction<mp_scroll_mode|.
1962 @d prompt_input(A) do {
1963 wake_up_terminal; mp_print(mp, (A)); mp_term_input(mp);
1964 } while (0) /* prints a string and gets a line of input */
1967 void mp_term_input (MP mp) { /* gets a line from the terminal */
1968 size_t k; /* index into |buffer| */
1969 update_terminal; /* Now the user sees the prompt for sure */
1970 if (!mp_input_ln(mp, mp->term_in ))
1971 mp_fatal_error(mp, "End of file on the terminal!");
1972 @.End of file on the terminal@>
1973 mp->term_offset=0; /* the user's line ended with \<\rm return> */
1974 decr(mp->selector); /* prepare to echo the input */
1975 if ( mp->last!=mp->first ) {
1976 for (k=mp->first;k<=mp->last-1;k++) {
1977 mp_print_char(mp, mp->buffer[k]);
1981 mp->buffer[mp->last]='%';
1982 incr(mp->selector); /* restore previous status */
1985 @* \[6] Reporting errors.
1986 When something anomalous is detected, \MP\ typically does something like this:
1987 $$\vbox{\halign{#\hfil\cr
1988 |print_err("Something anomalous has been detected");|\cr
1989 |help3("This is the first line of my offer to help.")|\cr
1990 |("This is the second line. I'm trying to")|\cr
1991 |("explain the best way for you to proceed.");|\cr
1993 A two-line help message would be given using |help2|, etc.; these informal
1994 helps should use simple vocabulary that complements the words used in the
1995 official error message that was printed. (Outside the U.S.A., the help
1996 messages should preferably be translated into the local vernacular. Each
1997 line of help is at most 60 characters long, in the present implementation,
1998 so that |max_print_line| will not be exceeded.)
2000 The |print_err| procedure supplies a `\.!' before the official message,
2001 and makes sure that the terminal is awake if a stop is going to occur.
2002 The |error| procedure supplies a `\..' after the official message, then it
2003 shows the location of the error; and if |interaction=error_stop_mode|,
2004 it also enters into a dialog with the user, during which time the help
2005 message may be printed.
2006 @^system dependencies@>
2008 @ The global variable |interaction| has four settings, representing increasing
2009 amounts of user interaction:
2012 enum mp_interaction_mode {
2013 mp_unspecified_mode=0, /* extra value for command-line switch */
2014 mp_batch_mode, /* omits all stops and omits terminal output */
2015 mp_nonstop_mode, /* omits all stops */
2016 mp_scroll_mode, /* omits error stops */
2017 mp_error_stop_mode, /* stops at every opportunity to interact */
2021 int interaction; /* current level of interaction */
2023 @ @<Option variables@>=
2024 int interaction; /* current level of interaction */
2026 @ Set it here so it can be overwritten by the commandline
2028 @<Allocate or initialize ...@>=
2029 mp->interaction=opt->interaction;
2030 if (mp->interaction==mp_unspecified_mode || mp->interaction>mp_error_stop_mode)
2031 mp->interaction=mp_error_stop_mode;
2032 if (mp->interaction<mp_unspecified_mode)
2033 mp->interaction=mp_batch_mode;
2037 @d print_err(A) mp_print_err(mp,(A))
2040 void mp_print_err(MP mp, char * A);
2043 void mp_print_err(MP mp, char * A) {
2044 if ( mp->interaction==mp_error_stop_mode )
2046 mp_print_nl(mp, "! ");
2052 @ \MP\ is careful not to call |error| when the print |selector| setting
2053 might be unusual. The only possible values of |selector| at the time of
2056 \yskip\hang|no_print| (when |interaction=mp_batch_mode|
2057 and |log_file| not yet open);
2059 \hang|term_only| (when |interaction>mp_batch_mode| and |log_file| not yet open);
2061 \hang|log_only| (when |interaction=mp_batch_mode| and |log_file| is open);
2063 \hang|term_and_log| (when |interaction>mp_batch_mode| and |log_file| is open).
2065 @<Initialize the print |selector| based on |interaction|@>=
2066 if ( mp->interaction==mp_batch_mode ) mp->selector=no_print; else mp->selector=term_only
2068 @ A global variable |deletions_allowed| is set |false| if the |get_next|
2069 routine is active when |error| is called; this ensures that |get_next|
2070 will never be called recursively.
2073 The global variable |history| records the worst level of error that
2074 has been detected. It has four possible values: |spotless|, |warning_issued|,
2075 |error_message_issued|, and |fatal_error_stop|.
2077 Another global variable, |error_count|, is increased by one when an
2078 |error| occurs without an interactive dialog, and it is reset to zero at
2079 the end of every statement. If |error_count| reaches 100, \MP\ decides
2080 that there is no point in continuing further.
2083 enum mp_history_states {
2084 mp_spotless=0, /* |history| value when nothing has been amiss yet */
2085 mp_warning_issued, /* |history| value when |begin_diagnostic| has been called */
2086 mp_error_message_issued, /* |history| value when |error| has been called */
2087 mp_fatal_error_stop, /* |history| value when termination was premature */
2091 boolean deletions_allowed; /* is it safe for |error| to call |get_next|? */
2092 int history; /* has the source input been clean so far? */
2093 int error_count; /* the number of scrolled errors since the last statement ended */
2095 @ The value of |history| is initially |fatal_error_stop|, but it will
2096 be changed to |spotless| if \MP\ survives the initialization process.
2098 @<Allocate or ...@>=
2099 mp->deletions_allowed=true; mp->error_count=0; /* |history| is initialized elsewhere */
2101 @ Since errors can be detected almost anywhere in \MP, we want to declare the
2102 error procedures near the beginning of the program. But the error procedures
2103 in turn use some other procedures, which need to be declared |forward|
2104 before we get to |error| itself.
2106 It is possible for |error| to be called recursively if some error arises
2107 when |get_next| is being used to delete a token, and/or if some fatal error
2108 occurs while \MP\ is trying to fix a non-fatal one. But such recursion
2110 is never more than two levels deep.
2113 void mp_get_next (MP mp);
2114 void mp_term_input (MP mp);
2115 void mp_show_context (MP mp);
2116 void mp_begin_file_reading (MP mp);
2117 void mp_open_log_file (MP mp);
2118 void mp_clear_for_error_prompt (MP mp);
2119 void mp_debug_help (MP mp);
2120 @<Declare the procedure called |flush_string|@>
2123 void mp_normalize_selector (MP mp);
2125 @ Individual lines of help are recorded in the array |help_line|, which
2126 contains entries in positions |0..(help_ptr-1)|. They should be printed
2127 in reverse order, i.e., with |help_line[0]| appearing last.
2129 @d hlp1(A) mp->help_line[0]=(A); }
2130 @d hlp2(A) mp->help_line[1]=(A); hlp1
2131 @d hlp3(A) mp->help_line[2]=(A); hlp2
2132 @d hlp4(A) mp->help_line[3]=(A); hlp3
2133 @d hlp5(A) mp->help_line[4]=(A); hlp4
2134 @d hlp6(A) mp->help_line[5]=(A); hlp5
2135 @d help0 mp->help_ptr=0 /* sometimes there might be no help */
2136 @d help1 { mp->help_ptr=1; hlp1 /* use this with one help line */
2137 @d help2 { mp->help_ptr=2; hlp2 /* use this with two help lines */
2138 @d help3 { mp->help_ptr=3; hlp3 /* use this with three help lines */
2139 @d help4 { mp->help_ptr=4; hlp4 /* use this with four help lines */
2140 @d help5 { mp->help_ptr=5; hlp5 /* use this with five help lines */
2141 @d help6 { mp->help_ptr=6; hlp6 /* use this with six help lines */
2144 char * help_line[6]; /* helps for the next |error| */
2145 unsigned int help_ptr; /* the number of help lines present */
2146 boolean use_err_help; /* should the |err_help| string be shown? */
2147 str_number err_help; /* a string set up by \&{errhelp} */
2148 str_number filename_template; /* a string set up by \&{filenametemplate} */
2150 @ @<Allocate or ...@>=
2151 mp->help_ptr=0; mp->use_err_help=false; mp->err_help=0; mp->filename_template=0;
2153 @ The |jump_out| procedure just cuts across all active procedure levels and
2154 goes to |end_of_MP|. This is the only nonlocal |goto| statement in the
2155 whole program. It is used when there is no recovery from a particular error.
2157 The program uses a |jump_buf| to handle this, this is initialized at three
2158 spots: the start of |mp_new|, the start of |mp_initialize|, and the start
2159 of |mp_run|. Those are the only library enty points.
2161 @^system dependencies@>
2166 @ @<Install and test the non-local jump buffer@>=
2167 if (setjmp(mp->jump_buf) != 0) return mp->history;
2169 @ @<Setup the non-local jump buffer in |mp_new|@>=
2170 if (setjmp(mp->jump_buf) != 0) return NULL;
2172 @ If |mp->internal| is zero, then a crash occured during initialization,
2173 and it is not safe to run |mp_close_files_and_terminate|.
2176 void mp_jump_out (MP mp) {
2177 if(mp->internal!=NULL)
2178 mp_close_files_and_terminate(mp);
2179 longjmp(mp->jump_buf,1);
2182 @ Here now is the general |error| routine.
2185 void mp_error (MP mp) { /* completes the job of error reporting */
2186 ASCII_code c; /* what the user types */
2187 integer s1,s2,s3; /* used to save global variables when deleting tokens */
2188 pool_pointer j; /* character position being printed */
2189 if ( mp->history<mp_error_message_issued ) mp->history=mp_error_message_issued;
2190 mp_print_char(mp, '.'); mp_show_context(mp);
2191 if ( mp->interaction==mp_error_stop_mode ) {
2192 @<Get user's advice and |return|@>;
2194 incr(mp->error_count);
2195 if ( mp->error_count==100 ) {
2196 mp_print_nl(mp,"(That makes 100 errors; please try again.)");
2197 @.That makes 100 errors...@>
2198 mp->history=mp_fatal_error_stop; mp_jump_out(mp);
2200 @<Put help message on the transcript file@>;
2202 void mp_warn (MP mp, char *msg) {
2203 int saved_selector = mp->selector;
2204 mp_normalize_selector(mp);
2205 mp_print_nl(mp,"Warning: ");
2207 mp->selector = saved_selector;
2210 @ @<Exported function ...@>=
2211 void mp_error (MP mp);
2212 void mp_warn (MP mp, char *msg);
2215 @ @<Get user's advice...@>=
2218 mp_clear_for_error_prompt(mp); prompt_input("? ");
2220 if ( mp->last==mp->first ) return;
2221 c=mp->buffer[mp->first];
2222 if ( c>='a' ) c=c+'A'-'a'; /* convert to uppercase */
2223 @<Interpret code |c| and |return| if done@>;
2226 @ It is desirable to provide an `\.E' option here that gives the user
2227 an easy way to return from \MP\ to the system editor, with the offending
2228 line ready to be edited. But such an extension requires some system
2229 wizardry, so the present implementation simply types out the name of the
2231 edited and the relevant line number.
2232 @^system dependencies@>
2235 typedef void (*mp_run_editor_command)(MP, char *, int);
2238 mp_run_editor_command run_editor;
2240 @ @<Option variables@>=
2241 mp_run_editor_command run_editor;
2243 @ @<Allocate or initialize ...@>=
2244 set_callback_option(run_editor);
2247 void mp_run_editor (MP mp, char *fname, int fline);
2249 @ @c void mp_run_editor (MP mp, char *fname, int fline) {
2250 mp_print_nl(mp, "You want to edit file ");
2251 @.You want to edit file x@>
2252 mp_print(mp, fname);
2253 mp_print(mp, " at line ");
2254 mp_print_int(mp, fline);
2255 mp->interaction=mp_scroll_mode;
2260 There is a secret `\.D' option available when the debugging routines haven't
2264 @<Interpret code |c| and |return| if done@>=
2266 case '0': case '1': case '2': case '3': case '4':
2267 case '5': case '6': case '7': case '8': case '9':
2268 if ( mp->deletions_allowed ) {
2269 @<Delete |c-"0"| tokens and |continue|@>;
2274 mp_debug_help(mp); continue;
2278 if ( mp->file_ptr>0 ){
2279 (mp->run_editor)(mp,
2280 str(mp->input_stack[mp->file_ptr].name_field),
2285 @<Print the help information and |continue|@>;
2288 @<Introduce new material from the terminal and |return|@>;
2290 case 'Q': case 'R': case 'S':
2291 @<Change the interaction level and |return|@>;
2294 mp->interaction=mp_scroll_mode; mp_jump_out(mp);
2299 @<Print the menu of available options@>
2301 @ @<Print the menu...@>=
2303 mp_print(mp, "Type <return> to proceed, S to scroll future error messages,");
2304 @.Type <return> to proceed...@>
2305 mp_print_nl(mp, "R to run without stopping, Q to run quietly,");
2306 mp_print_nl(mp, "I to insert something, ");
2307 if ( mp->file_ptr>0 )
2308 mp_print(mp, "E to edit your file,");
2309 if ( mp->deletions_allowed )
2310 mp_print_nl(mp, "1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
2311 mp_print_nl(mp, "H for help, X to quit.");
2314 @ Here the author of \MP\ apologizes for making use of the numerical
2315 relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
2316 |mp_batch_mode|, |mp_nonstop_mode|, |mp_scroll_mode|.
2317 @^Knuth, Donald Ervin@>
2319 @<Change the interaction...@>=
2321 mp->error_count=0; mp->interaction=mp_batch_mode+c-'Q';
2322 mp_print(mp, "OK, entering ");
2324 case 'Q': mp_print(mp, "batchmode"); decr(mp->selector); break;
2325 case 'R': mp_print(mp, "nonstopmode"); break;
2326 case 'S': mp_print(mp, "scrollmode"); break;
2327 } /* there are no other cases */
2328 mp_print(mp, "..."); mp_print_ln(mp); update_terminal; return;
2331 @ When the following code is executed, |buffer[(first+1)..(last-1)]| may
2332 contain the material inserted by the user; otherwise another prompt will
2333 be given. In order to understand this part of the program fully, you need
2334 to be familiar with \MP's input stacks.
2336 @<Introduce new material...@>=
2338 mp_begin_file_reading(mp); /* enter a new syntactic level for terminal input */
2339 if ( mp->last>mp->first+1 ) {
2340 loc=mp->first+1; mp->buffer[mp->first]=' ';
2342 prompt_input("insert>"); loc=mp->first;
2345 mp->first=mp->last+1; mp->cur_input.limit_field=mp->last; return;
2348 @ We allow deletion of up to 99 tokens at a time.
2350 @<Delete |c-"0"| tokens...@>=
2352 s1=mp->cur_cmd; s2=mp->cur_mod; s3=mp->cur_sym; mp->OK_to_interrupt=false;
2353 if ( (mp->last>mp->first+1) && (mp->buffer[mp->first+1]>='0')&&(mp->buffer[mp->first+1]<='9') )
2354 c=c*10+mp->buffer[mp->first+1]-'0'*11;
2358 mp_get_next(mp); /* one-level recursive call of |error| is possible */
2359 @<Decrease the string reference count, if the current token is a string@>;
2362 mp->cur_cmd=s1; mp->cur_mod=s2; mp->cur_sym=s3; mp->OK_to_interrupt=true;
2363 help2("I have just deleted some text, as you asked.")
2364 ("You can now delete more, or insert, or whatever.");
2365 mp_show_context(mp);
2369 @ @<Print the help info...@>=
2371 if ( mp->use_err_help ) {
2372 @<Print the string |err_help|, possibly on several lines@>;
2373 mp->use_err_help=false;
2375 if ( mp->help_ptr==0 ) {
2376 help2("Sorry, I don't know how to help in this situation.")
2377 ("Maybe you should try asking a human?");
2380 decr(mp->help_ptr); mp_print(mp, mp->help_line[mp->help_ptr]); mp_print_ln(mp);
2381 } while (mp->help_ptr!=0);
2383 help4("Sorry, I already gave what help I could...")
2384 ("Maybe you should try asking a human?")
2385 ("An error might have occurred before I noticed any problems.")
2386 ("``If all else fails, read the instructions.''");
2390 @ @<Print the string |err_help|, possibly on several lines@>=
2391 j=mp->str_start[mp->err_help];
2392 while ( j<str_stop(mp->err_help) ) {
2393 if ( mp->str_pool[j]!='%' ) mp_print_str(mp, mp->str_pool[j]);
2394 else if ( j+1==str_stop(mp->err_help) ) mp_print_ln(mp);
2395 else if ( mp->str_pool[j+1]!='%' ) mp_print_ln(mp);
2396 else { incr(j); mp_print_char(mp, '%'); };
2400 @ @<Put help message on the transcript file@>=
2401 if ( mp->interaction>mp_batch_mode ) decr(mp->selector); /* avoid terminal output */
2402 if ( mp->use_err_help ) {
2403 mp_print_nl(mp, "");
2404 @<Print the string |err_help|, possibly on several lines@>;
2406 while ( mp->help_ptr>0 ){
2407 decr(mp->help_ptr); mp_print_nl(mp, mp->help_line[mp->help_ptr]);
2411 if ( mp->interaction>mp_batch_mode ) incr(mp->selector); /* re-enable terminal output */
2414 @ In anomalous cases, the print selector might be in an unknown state;
2415 the following subroutine is called to fix things just enough to keep
2416 running a bit longer.
2419 void mp_normalize_selector (MP mp) {
2420 if ( mp->log_opened ) mp->selector=term_and_log;
2421 else mp->selector=term_only;
2422 if ( mp->job_name==NULL ) mp_open_log_file(mp);
2423 if ( mp->interaction==mp_batch_mode ) decr(mp->selector);
2426 @ The following procedure prints \MP's last words before dying.
2428 @d succumb { if ( mp->interaction==mp_error_stop_mode )
2429 mp->interaction=mp_scroll_mode; /* no more interaction */
2430 if ( mp->log_opened ) mp_error(mp);
2431 /* if ( mp->interaction>mp_batch_mode ) mp_debug_help(mp); */
2432 mp->history=mp_fatal_error_stop; mp_jump_out(mp); /* irrecoverable error */
2436 void mp_fatal_error (MP mp, char *s) { /* prints |s|, and that's it */
2437 mp_normalize_selector(mp);
2438 print_err("Emergency stop"); help1(s); succumb;
2442 @ @<Exported function ...@>=
2443 void mp_fatal_error (MP mp, char *s);
2446 @ Here is the most dreaded error message.
2449 void mp_overflow (MP mp, char *s, integer n) { /* stop due to finiteness */
2450 mp_normalize_selector(mp);
2451 print_err("MetaPost capacity exceeded, sorry [");
2452 @.MetaPost capacity exceeded ...@>
2453 mp_print(mp, s); mp_print_char(mp, '='); mp_print_int(mp, n); mp_print_char(mp, ']');
2454 help2("If you really absolutely need more capacity,")
2455 ("you can ask a wizard to enlarge me.");
2459 @ @<Internal library declarations@>=
2460 void mp_overflow (MP mp, char *s, integer n);
2462 @ The program might sometime run completely amok, at which point there is
2463 no choice but to stop. If no previous error has been detected, that's bad
2464 news; a message is printed that is really intended for the \MP\
2465 maintenance person instead of the user (unless the user has been
2466 particularly diabolical). The index entries for `this can't happen' may
2467 help to pinpoint the problem.
2470 @<Internal library ...@>=
2471 void mp_confusion (MP mp,char *s);
2473 @ @<Error hand...@>=
2474 void mp_confusion (MP mp,char *s) {
2475 /* consistency check violated; |s| tells where */
2476 mp_normalize_selector(mp);
2477 if ( mp->history<mp_error_message_issued ) {
2478 print_err("This can't happen ("); mp_print(mp, s); mp_print_char(mp, ')');
2479 @.This can't happen@>
2480 help1("I'm broken. Please show this to someone who can fix can fix");
2482 print_err("I can\'t go on meeting you like this");
2483 @.I can't go on...@>
2484 help2("One of your faux pas seems to have wounded me deeply...")
2485 ("in fact, I'm barely conscious. Please fix it and try again.");
2490 @ Users occasionally want to interrupt \MP\ while it's running.
2491 If the \PASCAL\ runtime system allows this, one can implement
2492 a routine that sets the global variable |interrupt| to some nonzero value
2493 when such an interrupt is signaled. Otherwise there is probably at least
2494 a way to make |interrupt| nonzero using the \PASCAL\ debugger.
2495 @^system dependencies@>
2498 @d check_interrupt { if ( mp->interrupt!=0 )
2499 mp_pause_for_instructions(mp); }
2502 integer interrupt; /* should \MP\ pause for instructions? */
2503 boolean OK_to_interrupt; /* should interrupts be observed? */
2505 @ @<Allocate or ...@>=
2506 mp->interrupt=0; mp->OK_to_interrupt=true;
2508 @ When an interrupt has been detected, the program goes into its
2509 highest interaction level and lets the user have the full flexibility of
2510 the |error| routine. \MP\ checks for interrupts only at times when it is
2514 void mp_pause_for_instructions (MP mp) {
2515 if ( mp->OK_to_interrupt ) {
2516 mp->interaction=mp_error_stop_mode;
2517 if ( (mp->selector==log_only)||(mp->selector==no_print) )
2519 print_err("Interruption");
2522 ("Try to insert some instructions for me (e.g.,`I show x'),")
2523 ("unless you just want to quit by typing `X'.");
2524 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
2529 @ Many of \MP's error messages state that a missing token has been
2530 inserted behind the scenes. We can save string space and program space
2531 by putting this common code into a subroutine.
2534 void mp_missing_err (MP mp, char *s) {
2535 print_err("Missing `"); mp_print(mp, s); mp_print(mp, "' has been inserted");
2536 @.Missing...inserted@>
2539 @* \[7] Arithmetic with scaled numbers.
2540 The principal computations performed by \MP\ are done entirely in terms of
2541 integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
2542 program can be carried out in exactly the same way on a wide variety of
2543 computers, including some small ones.
2546 But \PASCAL\ does not define the |div|
2547 operation in the case of negative dividends; for example, the result of
2548 |(-2*n-1) div 2| is |-(n+1)| on some computers and |-n| on others.
2549 There are two principal types of arithmetic: ``translation-preserving,''
2550 in which the identity |(a+q*b)div b=(a div b)+q| is valid; and
2551 ``negation-preserving,'' in which |(-a)div b=-(a div b)|. This leads to
2552 two \MP s, which can produce different results, although the differences
2553 should be negligible when the language is being used properly.
2554 The \TeX\ processor has been defined carefully so that both varieties
2555 of arithmetic will produce identical output, but it would be too
2556 inefficient to constrain \MP\ in a similar way.
2558 @d el_gordo 017777777777 /* $2^{31}-1$, the largest value that \MP\ likes */
2560 @ One of \MP's most common operations is the calculation of
2561 $\lfloor{a+b\over2}\rfloor$,
2562 the midpoint of two given integers |a| and~|b|. The only decent way to do
2563 this in \PASCAL\ is to write `|(a+b) div 2|'; but on most machines it is
2564 far more efficient to calculate `|(a+b)| right shifted one bit'.
2566 Therefore the midpoint operation will always be denoted by `|half(a+b)|'
2567 in this program. If \MP\ is being implemented with languages that permit
2568 binary shifting, the |half| macro should be changed to make this operation
2569 as efficient as possible. Since some languages have shift operators that can
2570 only be trusted to work on positive numbers, there is also a macro |halfp|
2571 that is used only when the quantity being halved is known to be positive
2574 @d half(A) ((A) / 2)
2575 @d halfp(A) ((A) / 2)
2577 @ A single computation might use several subroutine calls, and it is
2578 desirable to avoid producing multiple error messages in case of arithmetic
2579 overflow. So the routines below set the global variable |arith_error| to |true|
2580 instead of reporting errors directly to the user.
2583 boolean arith_error; /* has arithmetic overflow occurred recently? */
2585 @ @<Allocate or ...@>=
2586 mp->arith_error=false;
2588 @ At crucial points the program will say |check_arith|, to test if
2589 an arithmetic error has been detected.
2591 @d check_arith { if ( mp->arith_error ) mp_clear_arith(mp); }
2594 void mp_clear_arith (MP mp) {
2595 print_err("Arithmetic overflow");
2596 @.Arithmetic overflow@>
2597 help4("Uh, oh. A little while ago one of the quantities that I was")
2598 ("computing got too large, so I'm afraid your answers will be")
2599 ("somewhat askew. You'll probably have to adopt different")
2600 ("tactics next time. But I shall try to carry on anyway.");
2602 mp->arith_error=false;
2605 @ Addition is not always checked to make sure that it doesn't overflow,
2606 but in places where overflow isn't too unlikely the |slow_add| routine
2609 @c integer mp_slow_add (MP mp,integer x, integer y) {
2611 if ( y<=el_gordo-x ) {
2614 mp->arith_error=true;
2617 } else if ( -y<=el_gordo+x ) {
2620 mp->arith_error=true;
2625 @ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
2626 of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
2627 positions from the right end of a binary computer word.
2629 @d quarter_unit 040000 /* $2^{14}$, represents 0.250000 */
2630 @d half_unit 0100000 /* $2^{15}$, represents 0.50000 */
2631 @d three_quarter_unit 0140000 /* $3\cdot2^{14}$, represents 0.75000 */
2632 @d unity 0200000 /* $2^{16}$, represents 1.00000 */
2633 @d two 0400000 /* $2^{17}$, represents 2.00000 */
2634 @d three 0600000 /* $2^{17}+2^{16}$, represents 3.00000 */
2637 typedef integer scaled; /* this type is used for scaled integers */
2638 typedef unsigned char small_number; /* this type is self-explanatory */
2640 @ The following function is used to create a scaled integer from a given decimal
2641 fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
2642 given in |dig[i]|, and the calculation produces a correctly rounded result.
2645 scaled mp_round_decimals (MP mp,small_number k) {
2646 /* converts a decimal fraction */
2647 integer a = 0; /* the accumulator */
2649 a=(a+mp->dig[k]*two) / 10;
2654 @ Conversely, here is a procedure analogous to |print_int|. If the output
2655 of this procedure is subsequently read by \MP\ and converted by the
2656 |round_decimals| routine above, it turns out that the original value will
2657 be reproduced exactly. A decimal point is printed only if the value is
2658 not an integer. If there is more than one way to print the result with
2659 the optimum number of digits following the decimal point, the closest
2660 possible value is given.
2662 The invariant relation in the \&{repeat} loop is that a sequence of
2663 decimal digits yet to be printed will yield the original number if and only if
2664 they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
2665 We can stop if and only if $f=0$ satisfies this condition; the loop will
2666 terminate before $s$ can possibly become zero.
2668 @<Basic printing...@>=
2669 void mp_print_scaled (MP mp,scaled s) { /* prints scaled real, rounded to five digits */
2670 scaled delta; /* amount of allowable inaccuracy */
2672 mp_print_char(mp, '-');
2673 negate(s); /* print the sign, if negative */
2675 mp_print_int(mp, s / unity); /* print the integer part */
2679 mp_print_char(mp, '.');
2682 s=s+0100000-(delta / 2); /* round the final digit */
2683 mp_print_char(mp, '0'+(s / unity));
2690 @ We often want to print two scaled quantities in parentheses,
2691 separated by a comma.
2693 @<Basic printing...@>=
2694 void mp_print_two (MP mp,scaled x, scaled y) { /* prints `|(x,y)|' */
2695 mp_print_char(mp, '(');
2696 mp_print_scaled(mp, x);
2697 mp_print_char(mp, ',');
2698 mp_print_scaled(mp, y);
2699 mp_print_char(mp, ')');
2702 @ The |scaled| quantities in \MP\ programs are generally supposed to be
2703 less than $2^{12}$ in absolute value, so \MP\ does much of its internal
2704 arithmetic with 28~significant bits of precision. A |fraction| denotes
2705 a scaled integer whose binary point is assumed to be 28 bit positions
2708 @d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
2709 @d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
2710 @d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
2711 @d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
2712 @d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */
2715 typedef integer fraction; /* this type is used for scaled fractions */
2717 @ In fact, the two sorts of scaling discussed above aren't quite
2718 sufficient; \MP\ has yet another, used internally to keep track of angles
2719 in units of $2^{-20}$ degrees.
2721 @d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
2722 @d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
2723 @d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
2724 @d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */
2727 typedef integer angle; /* this type is used for scaled angles */
2729 @ The |make_fraction| routine produces the |fraction| equivalent of
2730 |p/q|, given integers |p| and~|q|; it computes the integer
2731 $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
2732 positive. If |p| and |q| are both of the same scaled type |t|,
2733 the ``type relation'' |make_fraction(t,t)=fraction| is valid;
2734 and it's also possible to use the subroutine ``backwards,'' using
2735 the relation |make_fraction(t,fraction)=t| between scaled types.
2737 If the result would have magnitude $2^{31}$ or more, |make_fraction|
2738 sets |arith_error:=true|. Most of \MP's internal computations have
2739 been designed to avoid this sort of error.
2741 If this subroutine were programmed in assembly language on a typical
2742 machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
2743 double-precision product can often be input to a fixed-point division
2744 instruction. But when we are restricted to \PASCAL\ arithmetic it
2745 is necessary either to resort to multiple-precision maneuvering
2746 or to use a simple but slow iteration. The multiple-precision technique
2747 would be about three times faster than the code adopted here, but it
2748 would be comparatively long and tricky, involving about sixteen
2749 additional multiplications and divisions.
2751 This operation is part of \MP's ``inner loop''; indeed, it will
2752 consume nearly 10\pct! of the running time (exclusive of input and output)
2753 if the code below is left unchanged. A machine-dependent recoding
2754 will therefore make \MP\ run faster. The present implementation
2755 is highly portable, but slow; it avoids multiplication and division
2756 except in the initial stage. System wizards should be careful to
2757 replace it with a routine that is guaranteed to produce identical
2758 results in all cases.
2759 @^system dependencies@>
2761 As noted below, a few more routines should also be replaced by machine-dependent
2762 code, for efficiency. But when a procedure is not part of the ``inner loop,''
2763 such changes aren't advisable; simplicity and robustness are
2764 preferable to trickery, unless the cost is too high.
2768 fraction mp_make_fraction (MP mp,integer p, integer q);
2769 integer mp_take_scaled (MP mp,integer q, scaled f) ;
2771 @ If FIXPT is not defined, we need these preprocessor values
2773 @d ELGORDO 0x7fffffff
2774 @d TWEXP31 2147483648.0
2775 @d TWEXP28 268435456.0
2777 @d TWEXP_16 (1.0/65536.0)
2778 @d TWEXP_28 (1.0/268435456.0)
2782 fraction mp_make_fraction (MP mp,integer p, integer q) {
2784 integer f; /* the fraction bits, with a leading 1 bit */
2785 integer n; /* the integer part of $\vert p/q\vert$ */
2786 integer be_careful; /* disables certain compiler optimizations */
2787 boolean negative = false; /* should the result be negated? */
2789 negate(p); negative=true;
2793 if ( q==0 ) mp_confusion(mp, '/');
2795 @:this can't happen /}{\quad \./@>
2796 negate(q); negative = ! negative;
2800 mp->arith_error=true;
2801 return ( negative ? -el_gordo : el_gordo);
2803 n=(n-1)*fraction_one;
2804 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
2805 return (negative ? (-(f+n)) : (f+n));
2811 if (q==0) mp_confusion(mp,'/');
2813 d = TWEXP28 * (double)p /(double)q;
2816 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2818 if (d==i && ( ((q>0 ? -q : q)&077777)
2819 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2822 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2824 if (d==i && ( ((q>0 ? q : -q)&077777)
2825 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2831 @ The |repeat| loop here preserves the following invariant relations
2832 between |f|, |p|, and~|q|:
2833 (i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
2834 $p_0$ is the original value of~$p$.
2836 Notice that the computation specifies
2837 |(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
2838 Let us hope that optimizing compilers do not miss this point; a
2839 special variable |be_careful| is used to emphasize the necessary
2840 order of computation. Optimizing compilers should keep |be_careful|
2841 in a register, not store it in memory.
2844 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
2848 be_careful=p-q; p=be_careful+p;
2854 } while (f<fraction_one);
2856 if ( be_careful+p>=0 ) incr(f);
2859 @ The dual of |make_fraction| is |take_fraction|, which multiplies a
2860 given integer~|q| by a fraction~|f|. When the operands are positive, it
2861 computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
2864 This routine is even more ``inner loopy'' than |make_fraction|;
2865 the present implementation consumes almost 20\pct! of \MP's computation
2866 time during typical jobs, so a machine-language substitute is advisable.
2867 @^inner loop@> @^system dependencies@>
2870 integer mp_take_fraction (MP mp,integer q, fraction f) ;
2874 integer mp_take_fraction (MP mp,integer q, fraction f) {
2875 integer p; /* the fraction so far */
2876 boolean negative; /* should the result be negated? */
2877 integer n; /* additional multiple of $q$ */
2878 integer be_careful; /* disables certain compiler optimizations */
2879 @<Reduce to the case that |f>=0| and |q>0|@>;
2880 if ( f<fraction_one ) {
2883 n=f / fraction_one; f=f % fraction_one;
2884 if ( q<=el_gordo / n ) {
2887 mp->arith_error=true; n=el_gordo;
2891 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
2892 be_careful=n-el_gordo;
2893 if ( be_careful+p>0 ){
2894 mp->arith_error=true; n=el_gordo-p;
2901 integer mp_take_fraction (MP mp,integer p, fraction q) {
2904 d = (double)p * (double)q * TWEXP_28;
2908 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2909 mp->arith_error = true;
2913 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2917 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2918 mp->arith_error = true;
2922 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2928 @ @<Reduce to the case that |f>=0| and |q>0|@>=
2932 negate( f); negative=true;
2935 negate(q); negative=! negative;
2938 @ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
2939 =\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
2940 $f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
2943 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
2944 p=fraction_half; /* that's $2^{27}$; the invariants hold now with $k=28$ */
2945 if ( q<fraction_four ) {
2947 if ( odd(f) ) p=halfp(p+q); else p=halfp(p);
2952 if ( odd(f) ) p=p+halfp(q-p); else p=halfp(p);
2958 @ When we want to multiply something by a |scaled| quantity, we use a scheme
2959 analogous to |take_fraction| but with a different scaling.
2960 Given positive operands, |take_scaled|
2961 computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
2963 Once again it is a good idea to use a machine-language replacement if
2964 possible; otherwise |take_scaled| will use more than 2\pct! of the running time
2965 when the Computer Modern fonts are being generated.
2970 integer mp_take_scaled (MP mp,integer q, scaled f) {
2971 integer p; /* the fraction so far */
2972 boolean negative; /* should the result be negated? */
2973 integer n; /* additional multiple of $q$ */
2974 integer be_careful; /* disables certain compiler optimizations */
2975 @<Reduce to the case that |f>=0| and |q>0|@>;
2979 n=f / unity; f=f % unity;
2980 if ( q<=el_gordo / n ) {
2983 mp->arith_error=true; n=el_gordo;
2987 @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
2988 be_careful=n-el_gordo;
2989 if ( be_careful+p>0 ) {
2990 mp->arith_error=true; n=el_gordo-p;
2992 return ( negative ?(-(n+p)) :(n+p));
2994 integer mp_take_scaled (MP mp,integer p, scaled q) {
2997 d = (double)p * (double)q * TWEXP_16;
3001 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
3002 mp->arith_error = true;
3006 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
3010 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
3011 mp->arith_error = true;
3015 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
3021 @ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
3022 p=half_unit; /* that's $2^{15}$; the invariants hold now with $k=16$ */
3024 if ( q<fraction_four ) {
3026 p = (odd(f) ? halfp(p+q) : halfp(p));
3031 p = (odd(f) ? p+halfp(q-p) : halfp(p));
3036 @ For completeness, there's also |make_scaled|, which computes a
3037 quotient as a |scaled| number instead of as a |fraction|.
3038 In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
3039 operands are positive. \ (This procedure is not used especially often,
3040 so it is not part of \MP's inner loop.)
3042 @<Internal library ...@>=
3043 scaled mp_make_scaled (MP mp,integer p, integer q) ;
3046 scaled mp_make_scaled (MP mp,integer p, integer q) {
3048 integer f; /* the fraction bits, with a leading 1 bit */
3049 integer n; /* the integer part of $\vert p/q\vert$ */
3050 boolean negative; /* should the result be negated? */
3051 integer be_careful; /* disables certain compiler optimizations */
3052 if ( p>=0 ) negative=false;
3053 else { negate(p); negative=true; };
3056 if ( q==0 ) mp_confusion(mp, "/");
3057 @:this can't happen /}{\quad \./@>
3059 negate(q); negative=! negative;
3063 mp->arith_error=true;
3064 return (negative ? (-el_gordo) : el_gordo);
3067 @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
3068 return ( negative ? (-(f+n)) :(f+n));
3074 if (q==0) mp_confusion(mp,"/");
3076 d = TWEXP16 * (double)p /(double)q;
3079 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
3081 if (d==i && ( ((q>0 ? -q : q)&077777)
3082 * (((i&037777)<<1)-1) & 04000)!=0) --i;
3085 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
3087 if (d==i && ( ((q>0 ? q : -q)&077777)
3088 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
3094 @ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
3097 be_careful=p-q; p=be_careful+p;
3098 if ( p>=0 ) f=f+f+1;
3099 else { f+=f; p=p+q; };
3102 if ( be_careful+p>=0 ) incr(f)
3104 @ Here is a typical example of how the routines above can be used.
3105 It computes the function
3106 $${1\over3\tau}f(\theta,\phi)=
3107 {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
3108 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3109 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
3110 where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
3111 fudge factor for placing the first control point of a curve that starts
3112 at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
3113 (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
3115 The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
3116 (It's a sum of eight terms whose absolute values can be bounded using
3117 relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
3118 is positive; and since the tension $\tau$ is constrained to be at least
3119 $3\over4$, the numerator is less than $16\over3$. The denominator is
3120 nonnegative and at most~6. Hence the fixed-point calculations below
3121 are guaranteed to stay within the bounds of a 32-bit computer word.
3123 The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
3124 arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
3125 $\sin\phi$, and $\cos\phi$, respectively.
3128 fraction mp_velocity (MP mp,fraction st, fraction ct, fraction sf,
3129 fraction cf, scaled t) {
3130 integer acc,num,denom; /* registers for intermediate calculations */
3131 acc=mp_take_fraction(mp, st-(sf / 16), sf-(st / 16));
3132 acc=mp_take_fraction(mp, acc,ct-cf);
3133 num=fraction_two+mp_take_fraction(mp, acc,379625062);
3134 /* $2^{28}\sqrt2\approx379625062.497$ */
3135 denom=fraction_three+mp_take_fraction(mp, ct,497706707)+mp_take_fraction(mp, cf,307599661);
3136 /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
3137 $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
3138 if ( t!=unity ) num=mp_make_scaled(mp, num,t);
3139 /* |make_scaled(fraction,scaled)=fraction| */
3140 if ( num / 4>=denom )
3141 return fraction_four;
3143 return mp_make_fraction(mp, num, denom);
3146 @ The following somewhat different subroutine tests rigorously if $ab$ is
3147 greater than, equal to, or less than~$cd$,
3148 given integers $(a,b,c,d)$. In most cases a quick decision is reached.
3149 The result is $+1$, 0, or~$-1$ in the three respective cases.
3151 @d mp_ab_vs_cd(M,A,B,C,D) mp_do_ab_vs_cd(A,B,C,D)
3154 integer mp_do_ab_vs_cd (integer a,integer b, integer c, integer d) {
3155 integer q,r; /* temporary registers */
3156 @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
3158 q = a / d; r = c / b;
3160 return ( q>r ? 1 : -1);
3161 q = a % d; r = c % b;
3164 if ( q==0 ) return -1;
3166 } /* now |a>d>0| and |c>b>0| */
3169 @ @<Reduce to the case that |a...@>=
3170 if ( a<0 ) { negate(a); negate(b); };
3171 if ( c<0 ) { negate(c); negate(d); };
3174 if ( (a==0||b==0)&&(c==0||d==0) ) return 0;
3178 return ( a==0 ? 0 : -1);
3179 q=a; a=c; c=q; q=-b; b=-d; d=q;
3180 } else if ( b<=0 ) {
3181 if ( b<0 ) if ( a>0 ) return -1;
3182 return (c==0 ? 0 : -1);
3185 @ We conclude this set of elementary routines with some simple rounding
3186 and truncation operations.
3188 @<Internal library declarations@>=
3189 #define mp_floor_scaled(M,i) ((i)&(-65536))
3190 #define mp_round_unscaled(M,i) (((i>>15)+1)>>1)
3191 #define mp_round_fraction(M,i) (((i>>11)+1)>>1)
3194 @* \[8] Algebraic and transcendental functions.
3195 \MP\ computes all of the necessary special functions from scratch, without
3196 relying on |real| arithmetic or system subroutines for sines, cosines, etc.
3198 @ To get the square root of a |scaled| number |x|, we want to calculate
3199 $s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
3200 integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
3201 determines $s$ by an iterative method that maintains the invariant
3202 relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
3203 -s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
3204 might, however, be zero at the start of the first iteration.
3207 scaled mp_square_rt (MP mp,scaled x) ;
3210 scaled mp_square_rt (MP mp,scaled x) {
3211 small_number k; /* iteration control counter */
3212 integer y,q; /* registers for intermediate calculations */
3214 @<Handle square root of zero or negative argument@>;
3217 while ( x<fraction_two ) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
3220 if ( x<fraction_four ) y=0;
3221 else { x=x-fraction_four; y=1; };
3223 @<Decrease |k| by 1, maintaining the invariant
3224 relations between |x|, |y|, and~|q|@>;
3230 @ @<Handle square root of zero...@>=
3233 print_err("Square root of ");
3234 @.Square root...replaced by 0@>
3235 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3236 help2("Since I don't take square roots of negative numbers,")
3237 ("I'm zeroing this one. Proceed, with fingers crossed.");
3243 @ @<Decrease |k| by 1, maintaining...@>=
3245 if ( x>=fraction_four ) { /* note that |fraction_four=@t$2^{30}$@>| */
3246 x=x-fraction_four; incr(y);
3248 x+=x; y=y+y-q; q+=q;
3249 if ( x>=fraction_four ) { x=x-fraction_four; incr(y); };
3250 if ( y>q ){ y=y-q; q=q+2; }
3251 else if ( y<=0 ) { q=q-2; y=y+q; };
3254 @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
3255 iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
3256 @^Moler, Cleve Barry@>
3257 @^Morrison, Donald Ross@>
3258 of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
3259 in such a way that their Pythagorean sum remains invariant, while the
3260 smaller argument decreases.
3262 @<Internal library ...@>=
3263 integer mp_pyth_add (MP mp,integer a, integer b);
3267 integer mp_pyth_add (MP mp,integer a, integer b) {
3268 fraction r; /* register used to transform |a| and |b| */
3269 boolean big; /* is the result dangerously near $2^{31}$? */
3271 if ( a<b ) { r=b; b=a; a=r; }; /* now |0<=b<=a| */
3273 if ( a<fraction_two ) {
3276 a=a / 4; b=b / 4; big=true;
3277 }; /* we reduced the precision to avoid arithmetic overflow */
3278 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
3280 if ( a<fraction_two ) {
3283 mp->arith_error=true; a=el_gordo;
3290 @ The key idea here is to reflect the vector $(a,b)$ about the
3291 line through $(a,b/2)$.
3293 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
3295 r=mp_make_fraction(mp, b,a);
3296 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3298 r=mp_make_fraction(mp, r,fraction_four+r);
3299 a=a+mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3303 @ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
3304 It converges slowly when $b$ is near $a$, but otherwise it works fine.
3307 integer mp_pyth_sub (MP mp,integer a, integer b) {
3308 fraction r; /* register used to transform |a| and |b| */
3309 boolean big; /* is the input dangerously near $2^{31}$? */
3312 @<Handle erroneous |pyth_sub| and set |a:=0|@>;
3314 if ( a<fraction_four ) {
3317 a=halfp(a); b=halfp(b); big=true;
3319 @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
3320 if ( big ) double(a);
3325 @ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
3327 r=mp_make_fraction(mp, b,a);
3328 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3330 r=mp_make_fraction(mp, r,fraction_four-r);
3331 a=a-mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3334 @ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
3337 print_err("Pythagorean subtraction "); mp_print_scaled(mp, a);
3338 mp_print(mp, "+-+"); mp_print_scaled(mp, b);
3339 mp_print(mp, " has been replaced by 0");
3341 help2("Since I don't take square roots of negative numbers,")
3342 ("I'm zeroing this one. Proceed, with fingers crossed.");
3348 @ The subroutines for logarithm and exponential involve two tables.
3349 The first is simple: |two_to_the[k]| equals $2^k$. The second involves
3350 a bit more calculation, which the author claims to have done correctly:
3351 |spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
3352 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
3355 @d two_to_the(A) (1<<(A))
3358 static const integer spec_log[29] = { 0, /* special logarithms */
3359 93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
3360 1052693, 525315, 262400, 131136, 65552, 32772, 16385,
3361 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1 };
3363 @ @<Local variables for initialization@>=
3364 integer k; /* all-purpose loop index */
3367 @ Here is the routine that calculates $2^8$ times the natural logarithm
3368 of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
3369 when |x| is a given positive integer.
3371 The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
3372 Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
3373 and the logarithm of $2^{30}x$ remains to be added to an accumulator
3374 register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
3375 during the calculation, and sixteen auxiliary bits to extend |y| are
3376 kept in~|z| during the initial argument reduction. (We add
3377 $100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
3378 not become negative; also, the actual amount subtracted from~|y| is~96,
3379 not~100, because we want to add~4 for rounding before the final division by~8.)
3382 scaled mp_m_log (MP mp,scaled x) {
3383 integer y,z; /* auxiliary registers */
3384 integer k; /* iteration counter */
3386 @<Handle non-positive logarithm@>;
3388 y=1302456956+4-100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
3389 z=27595+6553600; /* and $2^{16}\times .421063\approx 27595$ */
3390 while ( x<fraction_four ) {
3391 double(x); y-=93032639; z-=48782;
3392 } /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
3393 y=y+(z / unity); k=2;
3394 while ( x>fraction_four+4 ) {
3395 @<Increase |k| until |x| can be multiplied by a
3396 factor of $2^{-k}$, and adjust $y$ accordingly@>;
3402 @ @<Increase |k| until |x| can...@>=
3404 z=((x-1) / two_to_the(k))+1; /* $z=\lceil x/2^k\rceil$ */
3405 while ( x<fraction_four+z ) { z=halfp(z+1); incr(k); };
3406 y+=spec_log[k]; x-=z;
3409 @ @<Handle non-positive logarithm@>=
3411 print_err("Logarithm of ");
3412 @.Logarithm...replaced by 0@>
3413 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3414 help2("Since I don't take logs of non-positive numbers,")
3415 ("I'm zeroing this one. Proceed, with fingers crossed.");
3420 @ Conversely, the exponential routine calculates $\exp(x/2^8)$,
3421 when |x| is |scaled|. The result is an integer approximation to
3422 $2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
3425 scaled mp_m_exp (MP mp,scaled x) {
3426 small_number k; /* loop control index */
3427 integer y,z; /* auxiliary registers */
3428 if ( x>174436200 ) {
3429 /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
3430 mp->arith_error=true;
3432 } else if ( x<-197694359 ) {
3433 /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
3437 z=-8*x; y=04000000; /* $y=2^{20}$ */
3439 if ( x<=127919879 ) {
3441 /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
3443 z=8*(174436200-x); /* |z| is always nonnegative */
3447 @<Multiply |y| by $\exp(-z/2^{27})$@>;
3449 return ((y+8) / 16);
3455 @ The idea here is that subtracting |spec_log[k]| from |z| corresponds
3456 to multiplying |y| by $1-2^{-k}$.
3458 A subtle point (which had to be checked) was that if $x=127919879$, the
3459 value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
3460 $z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
3461 and by~16 when |k=27|.
3463 @<Multiply |y| by...@>=
3466 while ( z>=spec_log[k] ) {
3468 y=y-1-((y-two_to_the(k-1)) / two_to_the(k));
3473 @ The trigonometric subroutines use an auxiliary table such that
3474 |spec_atan[k]| contains an approximation to the |angle| whose tangent
3475 is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
3478 static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
3479 1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
3480 1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1 };
3482 @ Given integers |x| and |y|, not both zero, the |n_arg| function
3483 returns the |angle| whose tangent points in the direction $(x,y)$.
3484 This subroutine first determines the correct octant, then solves the
3485 problem for |0<=y<=x|, then converts the result appropriately to
3486 return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
3487 (The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
3488 |-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
3490 The octants are represented in a ``Gray code,'' since that turns out
3491 to be computationally simplest.
3497 @d second_octant (first_octant+switch_x_and_y)
3498 @d third_octant (first_octant+switch_x_and_y+negate_x)
3499 @d fourth_octant (first_octant+negate_x)
3500 @d fifth_octant (first_octant+negate_x+negate_y)
3501 @d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
3502 @d seventh_octant (first_octant+switch_x_and_y+negate_y)
3503 @d eighth_octant (first_octant+negate_y)
3506 angle mp_n_arg (MP mp,integer x, integer y) {
3507 angle z; /* auxiliary register */
3508 integer t; /* temporary storage */
3509 small_number k; /* loop counter */
3510 int octant; /* octant code */
3512 octant=first_octant;
3514 negate(x); octant=first_octant+negate_x;
3517 negate(y); octant=octant+negate_y;
3520 t=y; y=x; x=t; octant=octant+switch_x_and_y;
3523 @<Handle undefined arg@>;
3525 @<Set variable |z| to the arg of $(x,y)$@>;
3526 @<Return an appropriate answer based on |z| and |octant|@>;
3530 @ @<Handle undefined arg@>=
3532 print_err("angle(0,0) is taken as zero");
3533 @.angle(0,0)...zero@>
3534 help2("The `angle' between two identical points is undefined.")
3535 ("I'm zeroing this one. Proceed, with fingers crossed.");
3540 @ @<Return an appropriate answer...@>=
3542 case first_octant: return z;
3543 case second_octant: return (ninety_deg-z);
3544 case third_octant: return (ninety_deg+z);
3545 case fourth_octant: return (one_eighty_deg-z);
3546 case fifth_octant: return (z-one_eighty_deg);
3547 case sixth_octant: return (-z-ninety_deg);
3548 case seventh_octant: return (z-ninety_deg);
3549 case eighth_octant: return (-z);
3550 }; /* there are no other cases */
3553 @ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
3554 or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
3557 @<Set variable |z| to the arg...@>=
3558 while ( x>=fraction_two ) {
3559 x=halfp(x); y=halfp(y);
3563 while ( x<fraction_one ) {
3566 @<Increase |z| to the arg of $(x,y)$@>;
3569 @ During the calculations of this section, variables |x| and~|y|
3570 represent actual coordinates $(x,2^{-k}y)$. We will maintain the
3571 condition |x>=y|, so that the tangent will be at most $2^{-k}$.
3572 If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
3573 $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
3574 coordinates whose angle has decreased by~$\phi$; in the special case
3575 $a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
3576 to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
3577 @^Meggitt, John E.@>
3578 {\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
3580 The initial value of |x| will be multiplied by at most
3581 $(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
3582 there is no chance of integer overflow.
3584 @<Increase |z|...@>=
3589 z=z+spec_atan[k]; t=x; x=x+(y / two_to_the(k+k)); y=y-t;
3594 if ( y>x ) { z=z+spec_atan[k]; y=y-x; };
3597 @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
3598 and cosine of that angle. The results of this routine are
3599 stored in global integer variables |n_sin| and |n_cos|.
3602 fraction n_sin;fraction n_cos; /* results computed by |n_sin_cos| */
3604 @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
3605 the purpose of |n_sin_cos(z)| is to set
3606 |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
3607 for some rather large number~|r|. The maximum of |x| and |y|
3608 will be between $2^{28}$ and $2^{30}$, so that there will be hardly
3609 any loss of accuracy. Then |x| and~|y| are divided by~|r|.
3612 void mp_n_sin_cos (MP mp,angle z) { /* computes a multiple of the sine
3614 small_number k; /* loop control variable */
3615 int q; /* specifies the quadrant */
3616 fraction r; /* magnitude of |(x,y)| */
3617 integer x,y,t; /* temporary registers */
3618 while ( z<0 ) z=z+three_sixty_deg;
3619 z=z % three_sixty_deg; /* now |0<=z<three_sixty_deg| */
3620 q=z / forty_five_deg; z=z % forty_five_deg;
3621 x=fraction_one; y=x;
3622 if ( ! odd(q) ) z=forty_five_deg-z;
3623 @<Subtract angle |z| from |(x,y)|@>;
3624 @<Convert |(x,y)| to the octant determined by~|q|@>;
3625 r=mp_pyth_add(mp, x,y);
3626 mp->n_cos=mp_make_fraction(mp, x,r);
3627 mp->n_sin=mp_make_fraction(mp, y,r);
3630 @ In this case the octants are numbered sequentially.
3632 @<Convert |(x,...@>=
3635 case 1: t=x; x=y; y=t; break;
3636 case 2: t=x; x=-y; y=t; break;
3637 case 3: negate(x); break;
3638 case 4: negate(x); negate(y); break;
3639 case 5: t=x; x=-y; y=-t; break;
3640 case 6: t=x; x=y; y=-t; break;
3641 case 7: negate(y); break;
3642 } /* there are no other cases */
3644 @ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
3645 applied in reverse. The values of |spec_atan[k]| decrease slowly enough
3646 that this loop is guaranteed to terminate before the (nonexistent) value
3647 |spec_atan[27]| would be required.
3649 @<Subtract angle |z|...@>=
3652 if ( z>=spec_atan[k] ) {
3653 z=z-spec_atan[k]; t=x;
3654 x=t+y / two_to_the(k);
3655 y=y-t / two_to_the(k);
3659 if ( y<0 ) y=0 /* this precaution may never be needed */
3661 @ And now let's complete our collection of numeric utility routines
3662 by considering random number generation.
3663 \MP\ generates pseudo-random numbers with the additive scheme recommended
3664 in Section 3.6 of {\sl The Art of Computer Programming}; however, the
3665 results are random fractions between 0 and |fraction_one-1|, inclusive.
3667 There's an auxiliary array |randoms| that contains 55 pseudo-random
3668 fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
3669 we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
3670 The global variable |j_random| tells which element has most recently
3672 The global variable |sys_random_seed| was introduced in version 0.9,
3673 for the sole reason of stressing the fact that the initial value of the
3674 random seed is system-dependant. The pascal code below will initialize
3675 this variable to |(internal[mp_time] div unity)+internal[mp_day]|, but this
3676 is not good enough on modern fast machines that are capable of running
3677 multiple MetaPost processes within the same second.
3678 @^system dependencies@>
3681 fraction randoms[55]; /* the last 55 random values generated */
3682 int j_random; /* the number of unused |randoms| */
3683 scaled sys_random_seed; /* the default random seed */
3685 @ @<Exported types@>=
3686 typedef int (*mp_get_random_seed_command)(MP mp);
3689 mp_get_random_seed_command get_random_seed;
3691 @ @<Option variables@>=
3692 mp_get_random_seed_command get_random_seed;
3694 @ @<Allocate or initialize ...@>=
3695 set_callback_option(get_random_seed);
3697 @ @<Internal library declarations@>=
3698 int mp_get_random_seed (MP mp);
3701 int mp_get_random_seed (MP mp) {
3702 return (mp->internal[mp_time] / unity)+mp->internal[mp_day];
3705 @ To consume a random fraction, the program below will say `|next_random|'
3706 and then it will fetch |randoms[j_random]|.
3708 @d next_random { if ( mp->j_random==0 ) mp_new_randoms(mp);
3709 else decr(mp->j_random); }
3712 void mp_new_randoms (MP mp) {
3713 int k; /* index into |randoms| */
3714 fraction x; /* accumulator */
3715 for (k=0;k<=23;k++) {
3716 x=mp->randoms[k]-mp->randoms[k+31];
3717 if ( x<0 ) x=x+fraction_one;
3720 for (k=24;k<= 54;k++){
3721 x=mp->randoms[k]-mp->randoms[k-24];
3722 if ( x<0 ) x=x+fraction_one;
3729 void mp_init_randoms (MP mp,scaled seed);
3731 @ To initialize the |randoms| table, we call the following routine.
3734 void mp_init_randoms (MP mp,scaled seed) {
3735 fraction j,jj,k; /* more or less random integers */
3736 int i; /* index into |randoms| */
3738 while ( j>=fraction_one ) j=halfp(j);
3740 for (i=0;i<=54;i++ ){
3742 if ( k<0 ) k=k+fraction_one;
3743 mp->randoms[(i*21)% 55]=j;
3747 mp_new_randoms(mp); /* ``warm up'' the array */
3750 @ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
3751 or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
3753 Note that the call of |take_fraction| will produce the values 0 and~|x|
3754 with about half the probability that it will produce any other particular
3755 values between 0 and~|x|, because it rounds its answers.
3758 scaled mp_unif_rand (MP mp,scaled x) {
3759 scaled y; /* trial value */
3760 next_random; y=mp_take_fraction(mp, abs(x),mp->randoms[mp->j_random]);
3761 if ( y==abs(x) ) return 0;
3762 else if ( x>0 ) return y;
3766 @ Finally, a normal deviate with mean zero and unit standard deviation
3767 can readily be obtained with the ratio method (Algorithm 3.4.1R in
3768 {\sl The Art of Computer Programming\/}).
3771 scaled mp_norm_rand (MP mp) {
3772 integer x,u,l; /* what the book would call $2^{16}X$, $2^{28}U$, and $-2^{24}\ln U$ */
3776 x=mp_take_fraction(mp, 112429,mp->randoms[mp->j_random]-fraction_half);
3777 /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
3778 next_random; u=mp->randoms[mp->j_random];
3779 } while (abs(x)>=u);
3780 x=mp_make_fraction(mp, x,u);
3781 l=139548960-mp_m_log(mp, u); /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
3782 } while (mp_ab_vs_cd(mp, 1024,l,x,x)<0);
3786 @* \[9] Packed data.
3787 In order to make efficient use of storage space, \MP\ bases its major data
3788 structures on a |memory_word|, which contains either a (signed) integer,
3789 possibly scaled, or a small number of fields that are one half or one
3790 quarter of the size used for storing integers.
3792 If |x| is a variable of type |memory_word|, it contains up to four
3793 fields that can be referred to as follows:
3794 $$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
3795 |x|&.|int|&(an |integer|)\cr
3796 |x|&.|sc|\qquad&(a |scaled| integer)\cr
3797 |x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
3798 |x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
3800 |x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
3801 &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
3802 This is somewhat cumbersome to write, and not very readable either, but
3803 macros will be used to make the notation shorter and more transparent.
3804 The code below gives a formal definition of |memory_word| and
3805 its subsidiary types, using packed variant records. \MP\ makes no
3806 assumptions about the relative positions of the fields within a word.
3808 @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */
3809 @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */
3811 @ Here are the inequalities that the quarterword and halfword values
3812 must satisfy (or rather, the inequalities that they mustn't satisfy):
3814 @<Check the ``constant''...@>=
3815 if (mp->ini_version) {
3816 if ( mp->mem_max!=mp->mem_top ) mp->bad=8;
3818 if ( mp->mem_max<mp->mem_top ) mp->bad=8;
3820 if ( max_quarterword<255 ) mp->bad=9;
3821 if ( max_halfword<65535 ) mp->bad=10;
3822 if ( max_quarterword>max_halfword ) mp->bad=11;
3823 if ( mp->mem_max>=max_halfword ) mp->bad=12;
3824 if ( mp->max_strings>max_halfword ) mp->bad=13;
3826 @ The macros |qi| and |qo| are used for input to and output
3827 from quarterwords. These are legacy macros.
3828 @^system dependencies@>
3830 @d qo(A) (A) /* to read eight bits from a quarterword */
3831 @d qi(A) (A) /* to store eight bits in a quarterword */
3833 @ The reader should study the following definitions closely:
3834 @^system dependencies@>
3836 @d sc cint /* |scaled| data is equivalent to |integer| */
3839 typedef short quarterword; /* 1/4 of a word */
3840 typedef int halfword; /* 1/2 of a word */
3845 struct { /* Make B0,B1 overlap the most significant bytes of LH. */
3852 quarterword B2, B3, B0, B1;
3867 @ When debugging, we may want to print a |memory_word| without knowing
3868 what type it is; so we print it in all modes.
3869 @^dirty \PASCAL@>@^debugging@>
3872 void mp_print_word (MP mp,memory_word w) {
3873 /* prints |w| in all ways */
3874 mp_print_int(mp, w.cint); mp_print_char(mp, ' ');
3875 mp_print_scaled(mp, w.sc); mp_print_char(mp, ' ');
3876 mp_print_scaled(mp, w.sc / 010000); mp_print_ln(mp);
3877 mp_print_int(mp, w.hh.lh); mp_print_char(mp, '=');
3878 mp_print_int(mp, w.hh.b0); mp_print_char(mp, ':');
3879 mp_print_int(mp, w.hh.b1); mp_print_char(mp, ';');
3880 mp_print_int(mp, w.hh.rh); mp_print_char(mp, ' ');
3881 mp_print_int(mp, w.qqqq.b0); mp_print_char(mp, ':');
3882 mp_print_int(mp, w.qqqq.b1); mp_print_char(mp, ':');
3883 mp_print_int(mp, w.qqqq.b2); mp_print_char(mp, ':');
3884 mp_print_int(mp, w.qqqq.b3);
3888 @* \[10] Dynamic memory allocation.
3890 The \MP\ system does nearly all of its own memory allocation, so that it
3891 can readily be transported into environments that do not have automatic
3892 facilities for strings, garbage collection, etc., and so that it can be in
3893 control of what error messages the user receives. The dynamic storage
3894 requirements of \MP\ are handled by providing a large array |mem| in
3895 which consecutive blocks of words are used as nodes by the \MP\ routines.
3897 Pointer variables are indices into this array, or into another array
3898 called |eqtb| that will be explained later. A pointer variable might
3899 also be a special flag that lies outside the bounds of |mem|, so we
3900 allow pointers to assume any |halfword| value. The minimum memory
3901 index represents a null pointer.
3903 @d null 0 /* the null pointer */
3904 @d mp_void (null+1) /* a null pointer different from |null| */
3908 typedef halfword pointer; /* a flag or a location in |mem| or |eqtb| */
3910 @ The |mem| array is divided into two regions that are allocated separately,
3911 but the dividing line between these two regions is not fixed; they grow
3912 together until finding their ``natural'' size in a particular job.
3913 Locations less than or equal to |lo_mem_max| are used for storing
3914 variable-length records consisting of two or more words each. This region
3915 is maintained using an algorithm similar to the one described in exercise
3916 2.5--19 of {\sl The Art of Computer Programming}. However, no size field
3917 appears in the allocated nodes; the program is responsible for knowing the
3918 relevant size when a node is freed. Locations greater than or equal to
3919 |hi_mem_min| are used for storing one-word records; a conventional
3920 \.{AVAIL} stack is used for allocation in this region.
3922 Locations of |mem| between |0| and |mem_top| may be dumped as part
3923 of preloaded format files, by the \.{INIMP} preprocessor.
3925 Production versions of \MP\ may extend the memory at the top end in order to
3926 provide more space; these locations, between |mem_top| and |mem_max|,
3927 are always used for single-word nodes.
3929 The key pointers that govern |mem| allocation have a prescribed order:
3930 $$\hbox{|null=0<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
3933 memory_word *mem; /* the big dynamic storage area */
3934 pointer lo_mem_max; /* the largest location of variable-size memory in use */
3935 pointer hi_mem_min; /* the smallest location of one-word memory in use */
3939 @d xfree(A) do { mp_xfree(A); A=NULL; } while (0)
3940 @d xrealloc(P,A,B) mp_xrealloc(mp,P,A,B)
3941 @d xmalloc(A,B) mp_xmalloc(mp,A,B)
3942 @d xstrdup(A) mp_xstrdup(mp,A)
3943 @d XREALLOC(a,b,c) a = xrealloc(a,(b+1),sizeof(c));
3945 @<Declare helpers@>=
3946 void mp_xfree (void *x);
3947 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) ;
3948 void *mp_xmalloc (MP mp, size_t nmem, size_t size) ;
3949 char *mp_xstrdup(MP mp, const char *s);
3951 @ The |max_size_test| guards against overflow, on the assumption that
3952 |size_t| is at least 31bits wide.
3954 @d max_size_test 0x7FFFFFFF
3957 void mp_xfree (void *x) {
3958 if (x!=NULL) free(x);
3960 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) {
3962 if ((max_size_test/size)<nmem) {
3963 do_fprintf(mp->err_out,"Memory size overflow!\n");
3964 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3966 w = realloc (p,(nmem*size));
3968 do_fprintf(mp->err_out,"Out of memory!\n");
3969 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3973 void *mp_xmalloc (MP mp, size_t nmem, size_t size) {
3975 if ((max_size_test/size)<nmem) {
3976 do_fprintf(mp->err_out,"Memory size overflow!\n");
3977 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3979 w = malloc (nmem*size);
3981 do_fprintf(mp->err_out,"Out of memory!\n");
3982 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3986 char *mp_xstrdup(MP mp, const char *s) {
3992 do_fprintf(mp->err_out,"Out of memory!\n");
3993 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
4000 @<Allocate or initialize ...@>=
4001 mp->mem = xmalloc ((mp->mem_max+1),sizeof (memory_word));
4002 memset(mp->mem,0,(mp->mem_max+1)*sizeof (memory_word));
4004 @ @<Dealloc variables@>=
4007 @ Users who wish to study the memory requirements of particular applications can
4008 can use optional special features that keep track of current and
4009 maximum memory usage. When code between the delimiters |stat| $\ldots$
4010 |tats| is not ``commented out,'' \MP\ will run a bit slower but it will
4011 report these statistics when |mp_tracing_stats| is positive.
4014 integer var_used; integer dyn_used; /* how much memory is in use */
4016 @ Let's consider the one-word memory region first, since it's the
4017 simplest. The pointer variable |mem_end| holds the highest-numbered location
4018 of |mem| that has ever been used. The free locations of |mem| that
4019 occur between |hi_mem_min| and |mem_end|, inclusive, are of type
4020 |two_halves|, and we write |info(p)| and |link(p)| for the |lh|
4021 and |rh| fields of |mem[p]| when it is of this type. The single-word
4022 free locations form a linked list
4023 $$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
4024 terminated by |null|.
4026 @d link(A) mp->mem[(A)].hh.rh /* the |link| field of a memory word */
4027 @d info(A) mp->mem[(A)].hh.lh /* the |info| field of a memory word */
4030 pointer avail; /* head of the list of available one-word nodes */
4031 pointer mem_end; /* the last one-word node used in |mem| */
4033 @ If one-word memory is exhausted, it might mean that the user has forgotten
4034 a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
4035 later that try to help pinpoint the trouble.
4038 @<Declare the procedure called |show_token_list|@>;
4039 @<Declare the procedure called |runaway|@>
4041 @ The function |get_avail| returns a pointer to a new one-word node whose
4042 |link| field is null. However, \MP\ will halt if there is no more room left.
4046 pointer mp_get_avail (MP mp) { /* single-word node allocation */
4047 pointer p; /* the new node being got */
4048 p=mp->avail; /* get top location in the |avail| stack */
4050 mp->avail=link(mp->avail); /* and pop it off */
4051 } else if ( mp->mem_end<mp->mem_max ) { /* or go into virgin territory */
4052 incr(mp->mem_end); p=mp->mem_end;
4054 decr(mp->hi_mem_min); p=mp->hi_mem_min;
4055 if ( mp->hi_mem_min<=mp->lo_mem_max ) {
4056 mp_runaway(mp); /* if memory is exhausted, display possible runaway text */
4057 mp_overflow(mp, "main memory size",mp->mem_max);
4058 /* quit; all one-word nodes are busy */
4059 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4062 link(p)=null; /* provide an oft-desired initialization of the new node */
4063 incr(mp->dyn_used);/* maintain statistics */
4067 @ Conversely, a one-word node is recycled by calling |free_avail|.
4069 @d free_avail(A) /* single-word node liberation */
4070 { link((A))=mp->avail; mp->avail=(A); decr(mp->dyn_used); }
4072 @ There's also a |fast_get_avail| routine, which saves the procedure-call
4073 overhead at the expense of extra programming. This macro is used in
4074 the places that would otherwise account for the most calls of |get_avail|.
4077 @d fast_get_avail(A) {
4078 (A)=mp->avail; /* avoid |get_avail| if possible, to save time */
4079 if ( (A)==null ) { (A)=mp_get_avail(mp); }
4080 else { mp->avail=link((A)); link((A))=null; incr(mp->dyn_used); }
4083 @ The available-space list that keeps track of the variable-size portion
4084 of |mem| is a nonempty, doubly-linked circular list of empty nodes,
4085 pointed to by the roving pointer |rover|.
4087 Each empty node has size 2 or more; the first word contains the special
4088 value |max_halfword| in its |link| field and the size in its |info| field;
4089 the second word contains the two pointers for double linking.
4091 Each nonempty node also has size 2 or more. Its first word is of type
4092 |two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
4093 Otherwise there is complete flexibility with respect to the contents
4094 of its other fields and its other words.
4096 (We require |mem_max<max_halfword| because terrible things can happen
4097 when |max_halfword| appears in the |link| field of a nonempty node.)
4099 @d empty_flag max_halfword /* the |link| of an empty variable-size node */
4100 @d is_empty(A) (link((A))==empty_flag) /* tests for empty node */
4101 @d node_size info /* the size field in empty variable-size nodes */
4102 @d llink(A) info((A)+1) /* left link in doubly-linked list of empty nodes */
4103 @d rlink(A) link((A)+1) /* right link in doubly-linked list of empty nodes */
4106 pointer rover; /* points to some node in the list of empties */
4108 @ A call to |get_node| with argument |s| returns a pointer to a new node
4109 of size~|s|, which must be 2~or more. The |link| field of the first word
4110 of this new node is set to null. An overflow stop occurs if no suitable
4113 If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
4114 areas and returns the value |max_halfword|.
4116 @<Internal library declarations@>=
4117 pointer mp_get_node (MP mp,integer s) ;
4120 pointer mp_get_node (MP mp,integer s) { /* variable-size node allocation */
4121 pointer p; /* the node currently under inspection */
4122 pointer q; /* the node physically after node |p| */
4123 integer r; /* the newly allocated node, or a candidate for this honor */
4124 integer t,tt; /* temporary registers */
4127 p=mp->rover; /* start at some free node in the ring */
4129 @<Try to allocate within node |p| and its physical successors,
4130 and |goto found| if allocation was possible@>;
4131 if (rlink(p)==null || rlink(p)==p) {
4132 print_err("Free list garbled");
4133 help3("I found an entry in the list of free nodes that links")
4134 ("badly. I will try to ignore the broken link, but something")
4135 ("is seriously amiss. It is wise to warn the maintainers.")
4139 p=rlink(p); /* move to the next node in the ring */
4140 } while (p!=mp->rover); /* repeat until the whole list has been traversed */
4141 if ( s==010000000000 ) {
4142 return max_halfword;
4144 if ( mp->lo_mem_max+2<mp->hi_mem_min ) {
4145 if ( mp->lo_mem_max+2<=max_halfword ) {
4146 @<Grow more variable-size memory and |goto restart|@>;
4149 mp_overflow(mp, "main memory size",mp->mem_max);
4150 /* sorry, nothing satisfactory is left */
4151 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4153 link(r)=null; /* this node is now nonempty */
4154 mp->var_used+=s; /* maintain usage statistics */
4158 @ The lower part of |mem| grows by 1000 words at a time, unless
4159 we are very close to going under. When it grows, we simply link
4160 a new node into the available-space list. This method of controlled
4161 growth helps to keep the |mem| usage consecutive when \MP\ is
4162 implemented on ``virtual memory'' systems.
4165 @<Grow more variable-size memory and |goto restart|@>=
4167 if ( mp->hi_mem_min-mp->lo_mem_max>=1998 ) {
4168 t=mp->lo_mem_max+1000;
4170 t=mp->lo_mem_max+1+(mp->hi_mem_min-mp->lo_mem_max) / 2;
4171 /* |lo_mem_max+2<=t<hi_mem_min| */
4173 if ( t>max_halfword ) t=max_halfword;
4174 p=llink(mp->rover); q=mp->lo_mem_max; rlink(p)=q; llink(mp->rover)=q;
4175 rlink(q)=mp->rover; llink(q)=p; link(q)=empty_flag;
4176 node_size(q)=t-mp->lo_mem_max;
4177 mp->lo_mem_max=t; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4182 @ @<Try to allocate...@>=
4183 q=p+node_size(p); /* find the physical successor */
4184 while ( is_empty(q) ) { /* merge node |p| with node |q| */
4185 t=rlink(q); tt=llink(q);
4187 if ( q==mp->rover ) mp->rover=t;
4188 llink(t)=tt; rlink(tt)=t;
4193 @<Allocate from the top of node |p| and |goto found|@>;
4196 if ( rlink(p)!=p ) {
4197 @<Allocate entire node |p| and |goto found|@>;
4200 node_size(p)=q-p /* reset the size in case it grew */
4202 @ @<Allocate from the top...@>=
4204 node_size(p)=r-p; /* store the remaining size */
4205 mp->rover=p; /* start searching here next time */
4209 @ Here we delete node |p| from the ring, and let |rover| rove around.
4211 @<Allocate entire...@>=
4213 mp->rover=rlink(p); t=llink(p);
4214 llink(mp->rover)=t; rlink(t)=mp->rover;
4218 @ Conversely, when some variable-size node |p| of size |s| is no longer needed,
4219 the operation |free_node(p,s)| will make its words available, by inserting
4220 |p| as a new empty node just before where |rover| now points.
4222 @<Internal library declarations@>=
4223 void mp_free_node (MP mp, pointer p, halfword s) ;
4226 void mp_free_node (MP mp, pointer p, halfword s) { /* variable-size node
4228 pointer q; /* |llink(rover)| */
4229 node_size(p)=s; link(p)=empty_flag;
4231 q=llink(mp->rover); llink(p)=q; rlink(p)=mp->rover; /* set both links */
4232 llink(mp->rover)=p; rlink(q)=p; /* insert |p| into the ring */
4233 mp->var_used-=s; /* maintain statistics */
4236 @ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
4237 available space list. The list is probably very short at such times, so a
4238 simple insertion sort is used. The smallest available location will be
4239 pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
4242 void mp_sort_avail (MP mp) { /* sorts the available variable-size nodes
4244 pointer p,q,r; /* indices into |mem| */
4245 pointer old_rover; /* initial |rover| setting */
4246 p=mp_get_node(mp, 010000000000); /* merge adjacent free areas */
4247 p=rlink(mp->rover); rlink(mp->rover)=max_halfword; old_rover=mp->rover;
4248 while ( p!=old_rover ) {
4249 @<Sort |p| into the list starting at |rover|
4250 and advance |p| to |rlink(p)|@>;
4253 while ( rlink(p)!=max_halfword ) {
4254 llink(rlink(p))=p; p=rlink(p);
4256 rlink(p)=mp->rover; llink(mp->rover)=p;
4259 @ The following |while| loop is guaranteed to
4260 terminate, since the list that starts at
4261 |rover| ends with |max_halfword| during the sorting procedure.
4264 if ( p<mp->rover ) {
4265 q=p; p=rlink(q); rlink(q)=mp->rover; mp->rover=q;
4268 while ( rlink(q)<p ) q=rlink(q);
4269 r=rlink(p); rlink(p)=rlink(q); rlink(q)=p; p=r;
4272 @* \[11] Memory layout.
4273 Some areas of |mem| are dedicated to fixed usage, since static allocation is
4274 more efficient than dynamic allocation when we can get away with it. For
4275 example, locations |0| to |1| are always used to store a
4276 two-word dummy token whose second word is zero.
4277 The following macro definitions accomplish the static allocation by giving
4278 symbolic names to the fixed positions. Static variable-size nodes appear
4279 in locations |0| through |lo_mem_stat_max|, and static single-word nodes
4280 appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
4282 @d null_dash (2) /* the first two words are reserved for a null value */
4283 @d dep_head (null_dash+3) /* we will define |dash_node_size=3| */
4284 @d zero_val (dep_head+2) /* two words for a permanently zero value */
4285 @d temp_val (zero_val+2) /* two words for a temporary value node */
4286 @d end_attr temp_val /* we use |end_attr+2| only */
4287 @d inf_val (end_attr+2) /* and |inf_val+1| only */
4288 @d test_pen (inf_val+2)
4289 /* nine words for a pen used when testing the turning number */
4290 @d bad_vardef (test_pen+9) /* two words for \&{vardef} error recovery */
4291 @d lo_mem_stat_max (bad_vardef+1) /* largest statically
4292 allocated word in the variable-size |mem| */
4294 @d sentinel mp->mem_top /* end of sorted lists */
4295 @d temp_head (mp->mem_top-1) /* head of a temporary list of some kind */
4296 @d hold_head (mp->mem_top-2) /* head of a temporary list of another kind */
4297 @d spec_head (mp->mem_top-3) /* head of a list of unprocessed \&{special} items */
4298 @d hi_mem_stat_min (mp->mem_top-3) /* smallest statically allocated word in
4299 the one-word |mem| */
4301 @ The following code gets the dynamic part of |mem| off to a good start,
4302 when \MP\ is initializing itself the slow way.
4304 @<Initialize table entries (done by \.{INIMP} only)@>=
4305 @^data structure assumptions@>
4306 mp->rover=lo_mem_stat_max+1; /* initialize the dynamic memory */
4307 link(mp->rover)=empty_flag;
4308 node_size(mp->rover)=1000; /* which is a 1000-word available node */
4309 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
4310 mp->lo_mem_max=mp->rover+1000;
4311 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4312 for (k=hi_mem_stat_min;k<=(int)mp->mem_top;k++) {
4313 mp->mem[k]=mp->mem[mp->lo_mem_max]; /* clear list heads */
4315 mp->avail=null; mp->mem_end=mp->mem_top;
4316 mp->hi_mem_min=hi_mem_stat_min; /* initialize the one-word memory */
4317 mp->var_used=lo_mem_stat_max+1;
4318 mp->dyn_used=mp->mem_top+1-(hi_mem_stat_min); /* initialize statistics */
4319 @<Initialize a pen at |test_pen| so that it fits in nine words@>;
4321 @ The procedure |flush_list(p)| frees an entire linked list of one-word
4322 nodes that starts at a given position, until coming to |sentinel| or a
4323 pointer that is not in the one-word region. Another procedure,
4324 |flush_node_list|, frees an entire linked list of one-word and two-word
4325 nodes, until coming to a |null| pointer.
4329 void mp_flush_list (MP mp,pointer p) { /* makes list of single-word nodes available */
4330 pointer q,r; /* list traversers */
4331 if ( p>=mp->hi_mem_min ) if ( p!=sentinel ) {
4336 if ( r<mp->hi_mem_min ) break;
4337 } while (r!=sentinel);
4338 /* now |q| is the last node on the list */
4339 link(q)=mp->avail; mp->avail=p;
4343 void mp_flush_node_list (MP mp,pointer p) {
4344 pointer q; /* the node being recycled */
4347 if ( q<mp->hi_mem_min )
4348 mp_free_node(mp, q,2);
4354 @ If \MP\ is extended improperly, the |mem| array might get screwed up.
4355 For example, some pointers might be wrong, or some ``dead'' nodes might not
4356 have been freed when the last reference to them disappeared. Procedures
4357 |check_mem| and |search_mem| are available to help diagnose such
4358 problems. These procedures make use of two arrays called |free| and
4359 |was_free| that are present only if \MP's debugging routines have
4360 been included. (You may want to decrease the size of |mem| while you
4364 Because |boolean|s are typedef-d as ints, it is better to use
4365 unsigned chars here.
4368 unsigned char *free; /* free cells */
4369 unsigned char *was_free; /* previously free cells */
4370 pointer was_mem_end; pointer was_lo_max; pointer was_hi_min;
4371 /* previous |mem_end|, |lo_mem_max|,and |hi_mem_min| */
4372 boolean panicking; /* do we want to check memory constantly? */
4374 @ @<Allocate or initialize ...@>=
4375 mp->free = xmalloc ((mp->mem_max+1),sizeof (unsigned char));
4376 mp->was_free = xmalloc ((mp->mem_max+1), sizeof (unsigned char));
4378 @ @<Dealloc variables@>=
4380 xfree(mp->was_free);
4382 @ @<Allocate or ...@>=
4383 mp->was_mem_end=0; /* indicate that everything was previously free */
4384 mp->was_lo_max=0; mp->was_hi_min=mp->mem_max;
4385 mp->panicking=false;
4387 @ @<Declare |mp_reallocate| functions@>=
4388 void mp_reallocate_memory(MP mp, int l) ;
4391 void mp_reallocate_memory(MP mp, int l) {
4392 XREALLOC(mp->free, l, unsigned char);
4393 XREALLOC(mp->was_free, l, unsigned char);
4395 int newarea = l-mp->mem_max;
4396 XREALLOC(mp->mem, l, memory_word);
4397 memset (mp->mem+(mp->mem_max+1),0,sizeof(memory_word)*(newarea));
4399 XREALLOC(mp->mem, l, memory_word);
4400 memset(mp->mem,0,sizeof(memory_word)*(l+1));
4403 if (mp->ini_version)
4409 @ Procedure |check_mem| makes sure that the available space lists of
4410 |mem| are well formed, and it optionally prints out all locations
4411 that are reserved now but were free the last time this procedure was called.
4414 void mp_check_mem (MP mp,boolean print_locs ) {
4415 pointer p,q,r; /* current locations of interest in |mem| */
4416 boolean clobbered; /* is something amiss? */
4417 for (p=0;p<=mp->lo_mem_max;p++) {
4418 mp->free[p]=false; /* you can probably do this faster */
4420 for (p=mp->hi_mem_min;p<= mp->mem_end;p++) {
4421 mp->free[p]=false; /* ditto */
4423 @<Check single-word |avail| list@>;
4424 @<Check variable-size |avail| list@>;
4425 @<Check flags of unavailable nodes@>;
4426 @<Check the list of linear dependencies@>;
4428 @<Print newly busy locations@>;
4430 memcpy(mp->was_free,mp->free, sizeof(char)*(mp->mem_end+1));
4431 mp->was_mem_end=mp->mem_end;
4432 mp->was_lo_max=mp->lo_mem_max;
4433 mp->was_hi_min=mp->hi_mem_min;
4436 @ @<Check single-word...@>=
4437 p=mp->avail; q=null; clobbered=false;
4439 if ( (p>mp->mem_end)||(p<mp->hi_mem_min) ) clobbered=true;
4440 else if ( mp->free[p] ) clobbered=true;
4442 mp_print_nl(mp, "AVAIL list clobbered at ");
4443 @.AVAIL list clobbered...@>
4444 mp_print_int(mp, q); break;
4446 mp->free[p]=true; q=p; p=link(q);
4449 @ @<Check variable-size...@>=
4450 p=mp->rover; q=null; clobbered=false;
4452 if ( (p>=mp->lo_mem_max)||(p<0) ) clobbered=true;
4453 else if ( (rlink(p)>=mp->lo_mem_max)||(rlink(p)<0) ) clobbered=true;
4454 else if ( !(is_empty(p))||(node_size(p)<2)||
4455 (p+node_size(p)>mp->lo_mem_max)|| (llink(rlink(p))!=p) ) clobbered=true;
4457 mp_print_nl(mp, "Double-AVAIL list clobbered at ");
4458 @.Double-AVAIL list clobbered...@>
4459 mp_print_int(mp, q); break;
4461 for (q=p;q<=p+node_size(p)-1;q++) { /* mark all locations free */
4462 if ( mp->free[q] ) {
4463 mp_print_nl(mp, "Doubly free location at ");
4464 @.Doubly free location...@>
4465 mp_print_int(mp, q); break;
4470 } while (p!=mp->rover)
4473 @ @<Check flags...@>=
4475 while ( p<=mp->lo_mem_max ) { /* node |p| should not be empty */
4476 if ( is_empty(p) ) {
4477 mp_print_nl(mp, "Bad flag at "); mp_print_int(mp, p);
4480 while ( (p<=mp->lo_mem_max) && ! mp->free[p] ) incr(p);
4481 while ( (p<=mp->lo_mem_max) && mp->free[p] ) incr(p);
4484 @ @<Print newly busy...@>=
4486 @<Do intialization required before printing new busy locations@>;
4487 mp_print_nl(mp, "New busy locs:");
4489 for (p=0;p<= mp->lo_mem_max;p++ ) {
4490 if ( ! mp->free[p] && ((p>mp->was_lo_max) || mp->was_free[p]) ) {
4491 @<Indicate that |p| is a new busy location@>;
4494 for (p=mp->hi_mem_min;p<=mp->mem_end;p++ ) {
4495 if ( ! mp->free[p] &&
4496 ((p<mp->was_hi_min) || (p>mp->was_mem_end) || mp->was_free[p]) ) {
4497 @<Indicate that |p| is a new busy location@>;
4500 @<Finish printing new busy locations@>;
4503 @ There might be many new busy locations so we are careful to print contiguous
4504 blocks compactly. During this operation |q| is the last new busy location and
4505 |r| is the start of the block containing |q|.
4507 @<Indicate that |p| is a new busy location@>=
4511 mp_print(mp, ".."); mp_print_int(mp, q);
4513 mp_print_char(mp, ' '); mp_print_int(mp, p);
4519 @ @<Do intialization required before printing new busy locations@>=
4520 q=mp->mem_max; r=mp->mem_max
4522 @ @<Finish printing new busy locations@>=
4524 mp_print(mp, ".."); mp_print_int(mp, q);
4527 @ The |search_mem| procedure attempts to answer the question ``Who points
4528 to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
4529 that might not be of type |two_halves|. Strictly speaking, this is
4531 undefined in \PASCAL, and it can lead to ``false drops'' (words that seem to
4532 point to |p| purely by coincidence). But for debugging purposes, we want
4533 to rule out the places that do {\sl not\/} point to |p|, so a few false
4534 drops are tolerable.
4537 void mp_search_mem (MP mp, pointer p) { /* look for pointers to |p| */
4538 integer q; /* current position being searched */
4539 for (q=0;q<=mp->lo_mem_max;q++) {
4541 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4544 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4547 for (q=mp->hi_mem_min;q<=mp->mem_end;q++) {
4549 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4552 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4555 @<Search |eqtb| for equivalents equal to |p|@>;
4558 @* \[12] The command codes.
4559 Before we can go much further, we need to define symbolic names for the internal
4560 code numbers that represent the various commands obeyed by \MP. These codes
4561 are somewhat arbitrary, but not completely so. For example,
4562 some codes have been made adjacent so that |case| statements in the
4563 program need not consider cases that are widely spaced, or so that |case|
4564 statements can be replaced by |if| statements. A command can begin an
4565 expression if and only if its code lies between |min_primary_command| and
4566 |max_primary_command|, inclusive. The first token of a statement that doesn't
4567 begin with an expression has a command code between |min_command| and
4568 |max_statement_command|, inclusive. Anything less than |min_command| is
4569 eliminated during macro expansions, and anything no more than |max_pre_command|
4570 is eliminated when expanding \TeX\ material. Ranges such as
4571 |min_secondary_command..max_secondary_command| are used when parsing
4572 expressions, but the relative ordering within such a range is generally not
4575 The ordering of the highest-numbered commands
4576 (|comma<semicolon<end_group<stop|) is crucial for the parsing and
4577 error-recovery methods of this program as is the ordering |if_test<fi_or_else|
4578 for the smallest two commands. The ordering is also important in the ranges
4579 |numeric_token..plus_or_minus| and |left_brace..ampersand|.
4581 At any rate, here is the list, for future reference.
4583 @d start_tex 1 /* begin \TeX\ material (\&{btex}, \&{verbatimtex}) */
4584 @d etex_marker 2 /* end \TeX\ material (\&{etex}) */
4585 @d mpx_break 3 /* stop reading an \.{MPX} file (\&{mpxbreak}) */
4586 @d max_pre_command mpx_break
4587 @d if_test 4 /* conditional text (\&{if}) */
4588 @d fi_or_else 5 /* delimiters for conditionals (\&{elseif}, \&{else}, \&{fi} */
4589 @d input 6 /* input a source file (\&{input}, \&{endinput}) */
4590 @d iteration 7 /* iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor}) */
4591 @d repeat_loop 8 /* special command substituted for \&{endfor} */
4592 @d exit_test 9 /* premature exit from a loop (\&{exitif}) */
4593 @d relax 10 /* do nothing (\.{\char`\\}) */
4594 @d scan_tokens 11 /* put a string into the input buffer */
4595 @d expand_after 12 /* look ahead one token */
4596 @d defined_macro 13 /* a macro defined by the user */
4597 @d min_command (defined_macro+1)
4598 @d save_command 14 /* save a list of tokens (\&{save}) */
4599 @d interim_command 15 /* save an internal quantity (\&{interim}) */
4600 @d let_command 16 /* redefine a symbolic token (\&{let}) */
4601 @d new_internal 17 /* define a new internal quantity (\&{newinternal}) */
4602 @d macro_def 18 /* define a macro (\&{def}, \&{vardef}, etc.) */
4603 @d ship_out_command 19 /* output a character (\&{shipout}) */
4604 @d add_to_command 20 /* add to edges (\&{addto}) */
4605 @d bounds_command 21 /* add bounding path to edges (\&{setbounds}, \&{clip}) */
4606 @d tfm_command 22 /* command for font metric info (\&{ligtable}, etc.) */
4607 @d protection_command 23 /* set protection flag (\&{outer}, \&{inner}) */
4608 @d show_command 24 /* diagnostic output (\&{show}, \&{showvariable}, etc.) */
4609 @d mode_command 25 /* set interaction level (\&{batchmode}, etc.) */
4610 @d random_seed 26 /* initialize random number generator (\&{randomseed}) */
4611 @d message_command 27 /* communicate to user (\&{message}, \&{errmessage}) */
4612 @d every_job_command 28 /* designate a starting token (\&{everyjob}) */
4613 @d delimiters 29 /* define a pair of delimiters (\&{delimiters}) */
4614 @d special_command 30 /* output special info (\&{special})
4615 or font map info (\&{fontmapfile}, \&{fontmapline}) */
4616 @d write_command 31 /* write text to a file (\&{write}) */
4617 @d type_name 32 /* declare a type (\&{numeric}, \&{pair}, etc. */
4618 @d max_statement_command type_name
4619 @d min_primary_command type_name
4620 @d left_delimiter 33 /* the left delimiter of a matching pair */
4621 @d begin_group 34 /* beginning of a group (\&{begingroup}) */
4622 @d nullary 35 /* an operator without arguments (e.g., \&{normaldeviate}) */
4623 @d unary 36 /* an operator with one argument (e.g., \&{sqrt}) */
4624 @d str_op 37 /* convert a suffix to a string (\&{str}) */
4625 @d cycle 38 /* close a cyclic path (\&{cycle}) */
4626 @d primary_binary 39 /* binary operation taking `\&{of}' (e.g., \&{point}) */
4627 @d capsule_token 40 /* a value that has been put into a token list */
4628 @d string_token 41 /* a string constant (e.g., |"hello"|) */
4629 @d internal_quantity 42 /* internal numeric parameter (e.g., \&{pausing}) */
4630 @d min_suffix_token internal_quantity
4631 @d tag_token 43 /* a symbolic token without a primitive meaning */
4632 @d numeric_token 44 /* a numeric constant (e.g., \.{3.14159}) */
4633 @d max_suffix_token numeric_token
4634 @d plus_or_minus 45 /* either `\.+' or `\.-' */
4635 @d max_primary_command plus_or_minus /* should also be |numeric_token+1| */
4636 @d min_tertiary_command plus_or_minus
4637 @d tertiary_secondary_macro 46 /* a macro defined by \&{secondarydef} */
4638 @d tertiary_binary 47 /* an operator at the tertiary level (e.g., `\.{++}') */
4639 @d max_tertiary_command tertiary_binary
4640 @d left_brace 48 /* the operator `\.{\char`\{}' */
4641 @d min_expression_command left_brace
4642 @d path_join 49 /* the operator `\.{..}' */
4643 @d ampersand 50 /* the operator `\.\&' */
4644 @d expression_tertiary_macro 51 /* a macro defined by \&{tertiarydef} */
4645 @d expression_binary 52 /* an operator at the expression level (e.g., `\.<') */
4646 @d equals 53 /* the operator `\.=' */
4647 @d max_expression_command equals
4648 @d and_command 54 /* the operator `\&{and}' */
4649 @d min_secondary_command and_command
4650 @d secondary_primary_macro 55 /* a macro defined by \&{primarydef} */
4651 @d slash 56 /* the operator `\./' */
4652 @d secondary_binary 57 /* an operator at the binary level (e.g., \&{shifted}) */
4653 @d max_secondary_command secondary_binary
4654 @d param_type 58 /* type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.) */
4655 @d controls 59 /* specify control points explicitly (\&{controls}) */
4656 @d tension 60 /* specify tension between knots (\&{tension}) */
4657 @d at_least 61 /* bounded tension value (\&{atleast}) */
4658 @d curl_command 62 /* specify curl at an end knot (\&{curl}) */
4659 @d macro_special 63 /* special macro operators (\&{quote}, \.{\#\AT!}, etc.) */
4660 @d right_delimiter 64 /* the right delimiter of a matching pair */
4661 @d left_bracket 65 /* the operator `\.[' */
4662 @d right_bracket 66 /* the operator `\.]' */
4663 @d right_brace 67 /* the operator `\.{\char`\}}' */
4664 @d with_option 68 /* option for filling (\&{withpen}, \&{withweight}, etc.) */
4666 /* variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also}) */
4667 @d of_token 70 /* the operator `\&{of}' */
4668 @d to_token 71 /* the operator `\&{to}' */
4669 @d step_token 72 /* the operator `\&{step}' */
4670 @d until_token 73 /* the operator `\&{until}' */
4671 @d within_token 74 /* the operator `\&{within}' */
4672 @d lig_kern_token 75
4673 /* the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}, etc. */
4674 @d assignment 76 /* the operator `\.{:=}' */
4675 @d skip_to 77 /* the operation `\&{skipto}' */
4676 @d bchar_label 78 /* the operator `\.{\char'174\char'174:}' */
4677 @d double_colon 79 /* the operator `\.{::}' */
4678 @d colon 80 /* the operator `\.:' */
4680 @d comma 81 /* the operator `\.,', must be |colon+1| */
4681 @d end_of_statement (mp->cur_cmd>comma)
4682 @d semicolon 82 /* the operator `\.;', must be |comma+1| */
4683 @d end_group 83 /* end a group (\&{endgroup}), must be |semicolon+1| */
4684 @d stop 84 /* end a job (\&{end}, \&{dump}), must be |end_group+1| */
4685 @d max_command_code stop
4686 @d outer_tag (max_command_code+1) /* protection code added to command code */
4689 typedef int command_code;
4691 @ Variables and capsules in \MP\ have a variety of ``types,''
4692 distinguished by the code numbers defined here. These numbers are also
4693 not completely arbitrary. Things that get expanded must have types
4694 |>mp_independent|; a type remaining after expansion is numeric if and only if
4695 its code number is at least |numeric_type|; objects containing numeric
4696 parts must have types between |transform_type| and |pair_type|;
4697 all other types must be smaller than |transform_type|; and among the types
4698 that are not unknown or vacuous, the smallest two must be |boolean_type|
4699 and |string_type| in that order.
4701 @d undefined 0 /* no type has been declared */
4702 @d unknown_tag 1 /* this constant is added to certain type codes below */
4703 @d unknown_types mp_unknown_boolean: case mp_unknown_string:
4704 case mp_unknown_pen: case mp_unknown_picture: case mp_unknown_path
4707 enum mp_variable_type {
4708 mp_vacuous=1, /* no expression was present */
4709 mp_boolean_type, /* \&{boolean} with a known value */
4711 mp_string_type, /* \&{string} with a known value */
4713 mp_pen_type, /* \&{pen} with a known value */
4715 mp_path_type, /* \&{path} with a known value */
4717 mp_picture_type, /* \&{picture} with a known value */
4719 mp_transform_type, /* \&{transform} variable or capsule */
4720 mp_color_type, /* \&{color} variable or capsule */
4721 mp_cmykcolor_type, /* \&{cmykcolor} variable or capsule */
4722 mp_pair_type, /* \&{pair} variable or capsule */
4723 mp_numeric_type, /* variable that has been declared \&{numeric} but not used */
4724 mp_known, /* \&{numeric} with a known value */
4725 mp_dependent, /* a linear combination with |fraction| coefficients */
4726 mp_proto_dependent, /* a linear combination with |scaled| coefficients */
4727 mp_independent, /* \&{numeric} with unknown value */
4728 mp_token_list, /* variable name or suffix argument or text argument */
4729 mp_structured, /* variable with subscripts and attributes */
4730 mp_unsuffixed_macro, /* variable defined with \&{vardef} but no \.{\AT!\#} */
4731 mp_suffixed_macro /* variable defined with \&{vardef} and \.{\AT!\#} */
4735 void mp_print_type (MP mp,small_number t) ;
4737 @ @<Basic printing procedures@>=
4738 void mp_print_type (MP mp,small_number t) {
4740 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
4741 case mp_boolean_type:mp_print(mp, "boolean"); break;
4742 case mp_unknown_boolean:mp_print(mp, "unknown boolean"); break;
4743 case mp_string_type:mp_print(mp, "string"); break;
4744 case mp_unknown_string:mp_print(mp, "unknown string"); break;
4745 case mp_pen_type:mp_print(mp, "pen"); break;
4746 case mp_unknown_pen:mp_print(mp, "unknown pen"); break;
4747 case mp_path_type:mp_print(mp, "path"); break;
4748 case mp_unknown_path:mp_print(mp, "unknown path"); break;
4749 case mp_picture_type:mp_print(mp, "picture"); break;
4750 case mp_unknown_picture:mp_print(mp, "unknown picture"); break;
4751 case mp_transform_type:mp_print(mp, "transform"); break;
4752 case mp_color_type:mp_print(mp, "color"); break;
4753 case mp_cmykcolor_type:mp_print(mp, "cmykcolor"); break;
4754 case mp_pair_type:mp_print(mp, "pair"); break;
4755 case mp_known:mp_print(mp, "known numeric"); break;
4756 case mp_dependent:mp_print(mp, "dependent"); break;
4757 case mp_proto_dependent:mp_print(mp, "proto-dependent"); break;
4758 case mp_numeric_type:mp_print(mp, "numeric"); break;
4759 case mp_independent:mp_print(mp, "independent"); break;
4760 case mp_token_list:mp_print(mp, "token list"); break;
4761 case mp_structured:mp_print(mp, "mp_structured"); break;
4762 case mp_unsuffixed_macro:mp_print(mp, "unsuffixed macro"); break;
4763 case mp_suffixed_macro:mp_print(mp, "suffixed macro"); break;
4764 default: mp_print(mp, "undefined"); break;
4768 @ Values inside \MP\ are stored in two-word nodes that have a |name_type|
4769 as well as a |type|. The possibilities for |name_type| are defined
4770 here; they will be explained in more detail later.
4774 mp_root=0, /* |name_type| at the top level of a variable */
4775 mp_saved_root, /* same, when the variable has been saved */
4776 mp_structured_root, /* |name_type| where a |mp_structured| branch occurs */
4777 mp_subscr, /* |name_type| in a subscript node */
4778 mp_attr, /* |name_type| in an attribute node */
4779 mp_x_part_sector, /* |name_type| in the \&{xpart} of a node */
4780 mp_y_part_sector, /* |name_type| in the \&{ypart} of a node */
4781 mp_xx_part_sector, /* |name_type| in the \&{xxpart} of a node */
4782 mp_xy_part_sector, /* |name_type| in the \&{xypart} of a node */
4783 mp_yx_part_sector, /* |name_type| in the \&{yxpart} of a node */
4784 mp_yy_part_sector, /* |name_type| in the \&{yypart} of a node */
4785 mp_red_part_sector, /* |name_type| in the \&{redpart} of a node */
4786 mp_green_part_sector, /* |name_type| in the \&{greenpart} of a node */
4787 mp_blue_part_sector, /* |name_type| in the \&{bluepart} of a node */
4788 mp_cyan_part_sector, /* |name_type| in the \&{redpart} of a node */
4789 mp_magenta_part_sector, /* |name_type| in the \&{greenpart} of a node */
4790 mp_yellow_part_sector, /* |name_type| in the \&{bluepart} of a node */
4791 mp_black_part_sector, /* |name_type| in the \&{greenpart} of a node */
4792 mp_grey_part_sector, /* |name_type| in the \&{bluepart} of a node */
4793 mp_capsule, /* |name_type| in stashed-away subexpressions */
4794 mp_token /* |name_type| in a numeric token or string token */
4797 @ Primitive operations that produce values have a secondary identification
4798 code in addition to their command code; it's something like genera and species.
4799 For example, `\.*' has the command code |primary_binary|, and its
4800 secondary identification is |times|. The secondary codes start at 30 so that
4801 they don't overlap with the type codes; some type codes (e.g., |mp_string_type|)
4802 are used as operators as well as type identifications. The relative values
4803 are not critical, except for |true_code..false_code|, |or_op..and_op|,
4804 and |filled_op..bounded_op|. The restrictions are that
4805 |and_op-false_code=or_op-true_code|, that the ordering of
4806 |x_part...blue_part| must match that of |x_part_sector..mp_blue_part_sector|,
4807 and the ordering of |filled_op..bounded_op| must match that of the code
4808 values they test for.
4810 @d true_code 30 /* operation code for \.{true} */
4811 @d false_code 31 /* operation code for \.{false} */
4812 @d null_picture_code 32 /* operation code for \.{nullpicture} */
4813 @d null_pen_code 33 /* operation code for \.{nullpen} */
4814 @d job_name_op 34 /* operation code for \.{jobname} */
4815 @d read_string_op 35 /* operation code for \.{readstring} */
4816 @d pen_circle 36 /* operation code for \.{pencircle} */
4817 @d normal_deviate 37 /* operation code for \.{normaldeviate} */
4818 @d read_from_op 38 /* operation code for \.{readfrom} */
4819 @d close_from_op 39 /* operation code for \.{closefrom} */
4820 @d odd_op 40 /* operation code for \.{odd} */
4821 @d known_op 41 /* operation code for \.{known} */
4822 @d unknown_op 42 /* operation code for \.{unknown} */
4823 @d not_op 43 /* operation code for \.{not} */
4824 @d decimal 44 /* operation code for \.{decimal} */
4825 @d reverse 45 /* operation code for \.{reverse} */
4826 @d make_path_op 46 /* operation code for \.{makepath} */
4827 @d make_pen_op 47 /* operation code for \.{makepen} */
4828 @d oct_op 48 /* operation code for \.{oct} */
4829 @d hex_op 49 /* operation code for \.{hex} */
4830 @d ASCII_op 50 /* operation code for \.{ASCII} */
4831 @d char_op 51 /* operation code for \.{char} */
4832 @d length_op 52 /* operation code for \.{length} */
4833 @d turning_op 53 /* operation code for \.{turningnumber} */
4834 @d color_model_part 54 /* operation code for \.{colormodel} */
4835 @d x_part 55 /* operation code for \.{xpart} */
4836 @d y_part 56 /* operation code for \.{ypart} */
4837 @d xx_part 57 /* operation code for \.{xxpart} */
4838 @d xy_part 58 /* operation code for \.{xypart} */
4839 @d yx_part 59 /* operation code for \.{yxpart} */
4840 @d yy_part 60 /* operation code for \.{yypart} */
4841 @d red_part 61 /* operation code for \.{redpart} */
4842 @d green_part 62 /* operation code for \.{greenpart} */
4843 @d blue_part 63 /* operation code for \.{bluepart} */
4844 @d cyan_part 64 /* operation code for \.{cyanpart} */
4845 @d magenta_part 65 /* operation code for \.{magentapart} */
4846 @d yellow_part 66 /* operation code for \.{yellowpart} */
4847 @d black_part 67 /* operation code for \.{blackpart} */
4848 @d grey_part 68 /* operation code for \.{greypart} */
4849 @d font_part 69 /* operation code for \.{fontpart} */
4850 @d text_part 70 /* operation code for \.{textpart} */
4851 @d path_part 71 /* operation code for \.{pathpart} */
4852 @d pen_part 72 /* operation code for \.{penpart} */
4853 @d dash_part 73 /* operation code for \.{dashpart} */
4854 @d sqrt_op 74 /* operation code for \.{sqrt} */
4855 @d m_exp_op 75 /* operation code for \.{mexp} */
4856 @d m_log_op 76 /* operation code for \.{mlog} */
4857 @d sin_d_op 77 /* operation code for \.{sind} */
4858 @d cos_d_op 78 /* operation code for \.{cosd} */
4859 @d floor_op 79 /* operation code for \.{floor} */
4860 @d uniform_deviate 80 /* operation code for \.{uniformdeviate} */
4861 @d char_exists_op 81 /* operation code for \.{charexists} */
4862 @d font_size 82 /* operation code for \.{fontsize} */
4863 @d ll_corner_op 83 /* operation code for \.{llcorner} */
4864 @d lr_corner_op 84 /* operation code for \.{lrcorner} */
4865 @d ul_corner_op 85 /* operation code for \.{ulcorner} */
4866 @d ur_corner_op 86 /* operation code for \.{urcorner} */
4867 @d arc_length 87 /* operation code for \.{arclength} */
4868 @d angle_op 88 /* operation code for \.{angle} */
4869 @d cycle_op 89 /* operation code for \.{cycle} */
4870 @d filled_op 90 /* operation code for \.{filled} */
4871 @d stroked_op 91 /* operation code for \.{stroked} */
4872 @d textual_op 92 /* operation code for \.{textual} */
4873 @d clipped_op 93 /* operation code for \.{clipped} */
4874 @d bounded_op 94 /* operation code for \.{bounded} */
4875 @d plus 95 /* operation code for \.+ */
4876 @d minus 96 /* operation code for \.- */
4877 @d times 97 /* operation code for \.* */
4878 @d over 98 /* operation code for \./ */
4879 @d pythag_add 99 /* operation code for \.{++} */
4880 @d pythag_sub 100 /* operation code for \.{+-+} */
4881 @d or_op 101 /* operation code for \.{or} */
4882 @d and_op 102 /* operation code for \.{and} */
4883 @d less_than 103 /* operation code for \.< */
4884 @d less_or_equal 104 /* operation code for \.{<=} */
4885 @d greater_than 105 /* operation code for \.> */
4886 @d greater_or_equal 106 /* operation code for \.{>=} */
4887 @d equal_to 107 /* operation code for \.= */
4888 @d unequal_to 108 /* operation code for \.{<>} */
4889 @d concatenate 109 /* operation code for \.\& */
4890 @d rotated_by 110 /* operation code for \.{rotated} */
4891 @d slanted_by 111 /* operation code for \.{slanted} */
4892 @d scaled_by 112 /* operation code for \.{scaled} */
4893 @d shifted_by 113 /* operation code for \.{shifted} */
4894 @d transformed_by 114 /* operation code for \.{transformed} */
4895 @d x_scaled 115 /* operation code for \.{xscaled} */
4896 @d y_scaled 116 /* operation code for \.{yscaled} */
4897 @d z_scaled 117 /* operation code for \.{zscaled} */
4898 @d in_font 118 /* operation code for \.{infont} */
4899 @d intersect 119 /* operation code for \.{intersectiontimes} */
4900 @d double_dot 120 /* operation code for improper \.{..} */
4901 @d substring_of 121 /* operation code for \.{substring} */
4902 @d min_of substring_of
4903 @d subpath_of 122 /* operation code for \.{subpath} */
4904 @d direction_time_of 123 /* operation code for \.{directiontime} */
4905 @d point_of 124 /* operation code for \.{point} */
4906 @d precontrol_of 125 /* operation code for \.{precontrol} */
4907 @d postcontrol_of 126 /* operation code for \.{postcontrol} */
4908 @d pen_offset_of 127 /* operation code for \.{penoffset} */
4909 @d arc_time_of 128 /* operation code for \.{arctime} */
4910 @d mp_version 129 /* operation code for \.{mpversion} */
4911 @d envelope_of 130 /* operation code for \{.envelope} */
4913 @c void mp_print_op (MP mp,quarterword c) {
4914 if (c<=mp_numeric_type ) {
4915 mp_print_type(mp, c);
4918 case true_code:mp_print(mp, "true"); break;
4919 case false_code:mp_print(mp, "false"); break;
4920 case null_picture_code:mp_print(mp, "nullpicture"); break;
4921 case null_pen_code:mp_print(mp, "nullpen"); break;
4922 case job_name_op:mp_print(mp, "jobname"); break;
4923 case read_string_op:mp_print(mp, "readstring"); break;
4924 case pen_circle:mp_print(mp, "pencircle"); break;
4925 case normal_deviate:mp_print(mp, "normaldeviate"); break;
4926 case read_from_op:mp_print(mp, "readfrom"); break;
4927 case close_from_op:mp_print(mp, "closefrom"); break;
4928 case odd_op:mp_print(mp, "odd"); break;
4929 case known_op:mp_print(mp, "known"); break;
4930 case unknown_op:mp_print(mp, "unknown"); break;
4931 case not_op:mp_print(mp, "not"); break;
4932 case decimal:mp_print(mp, "decimal"); break;
4933 case reverse:mp_print(mp, "reverse"); break;
4934 case make_path_op:mp_print(mp, "makepath"); break;
4935 case make_pen_op:mp_print(mp, "makepen"); break;
4936 case oct_op:mp_print(mp, "oct"); break;
4937 case hex_op:mp_print(mp, "hex"); break;
4938 case ASCII_op:mp_print(mp, "ASCII"); break;
4939 case char_op:mp_print(mp, "char"); break;
4940 case length_op:mp_print(mp, "length"); break;
4941 case turning_op:mp_print(mp, "turningnumber"); break;
4942 case x_part:mp_print(mp, "xpart"); break;
4943 case y_part:mp_print(mp, "ypart"); break;
4944 case xx_part:mp_print(mp, "xxpart"); break;
4945 case xy_part:mp_print(mp, "xypart"); break;
4946 case yx_part:mp_print(mp, "yxpart"); break;
4947 case yy_part:mp_print(mp, "yypart"); break;
4948 case red_part:mp_print(mp, "redpart"); break;
4949 case green_part:mp_print(mp, "greenpart"); break;
4950 case blue_part:mp_print(mp, "bluepart"); break;
4951 case cyan_part:mp_print(mp, "cyanpart"); break;
4952 case magenta_part:mp_print(mp, "magentapart"); break;
4953 case yellow_part:mp_print(mp, "yellowpart"); break;
4954 case black_part:mp_print(mp, "blackpart"); break;
4955 case grey_part:mp_print(mp, "greypart"); break;
4956 case color_model_part:mp_print(mp, "colormodel"); break;
4957 case font_part:mp_print(mp, "fontpart"); break;
4958 case text_part:mp_print(mp, "textpart"); break;
4959 case path_part:mp_print(mp, "pathpart"); break;
4960 case pen_part:mp_print(mp, "penpart"); break;
4961 case dash_part:mp_print(mp, "dashpart"); break;
4962 case sqrt_op:mp_print(mp, "sqrt"); break;
4963 case m_exp_op:mp_print(mp, "mexp"); break;
4964 case m_log_op:mp_print(mp, "mlog"); break;
4965 case sin_d_op:mp_print(mp, "sind"); break;
4966 case cos_d_op:mp_print(mp, "cosd"); break;
4967 case floor_op:mp_print(mp, "floor"); break;
4968 case uniform_deviate:mp_print(mp, "uniformdeviate"); break;
4969 case char_exists_op:mp_print(mp, "charexists"); break;
4970 case font_size:mp_print(mp, "fontsize"); break;
4971 case ll_corner_op:mp_print(mp, "llcorner"); break;
4972 case lr_corner_op:mp_print(mp, "lrcorner"); break;
4973 case ul_corner_op:mp_print(mp, "ulcorner"); break;
4974 case ur_corner_op:mp_print(mp, "urcorner"); break;
4975 case arc_length:mp_print(mp, "arclength"); break;
4976 case angle_op:mp_print(mp, "angle"); break;
4977 case cycle_op:mp_print(mp, "cycle"); break;
4978 case filled_op:mp_print(mp, "filled"); break;
4979 case stroked_op:mp_print(mp, "stroked"); break;
4980 case textual_op:mp_print(mp, "textual"); break;
4981 case clipped_op:mp_print(mp, "clipped"); break;
4982 case bounded_op:mp_print(mp, "bounded"); break;
4983 case plus:mp_print_char(mp, '+'); break;
4984 case minus:mp_print_char(mp, '-'); break;
4985 case times:mp_print_char(mp, '*'); break;
4986 case over:mp_print_char(mp, '/'); break;
4987 case pythag_add:mp_print(mp, "++"); break;
4988 case pythag_sub:mp_print(mp, "+-+"); break;
4989 case or_op:mp_print(mp, "or"); break;
4990 case and_op:mp_print(mp, "and"); break;
4991 case less_than:mp_print_char(mp, '<'); break;
4992 case less_or_equal:mp_print(mp, "<="); break;
4993 case greater_than:mp_print_char(mp, '>'); break;
4994 case greater_or_equal:mp_print(mp, ">="); break;
4995 case equal_to:mp_print_char(mp, '='); break;
4996 case unequal_to:mp_print(mp, "<>"); break;
4997 case concatenate:mp_print(mp, "&"); break;
4998 case rotated_by:mp_print(mp, "rotated"); break;
4999 case slanted_by:mp_print(mp, "slanted"); break;
5000 case scaled_by:mp_print(mp, "scaled"); break;
5001 case shifted_by:mp_print(mp, "shifted"); break;
5002 case transformed_by:mp_print(mp, "transformed"); break;
5003 case x_scaled:mp_print(mp, "xscaled"); break;
5004 case y_scaled:mp_print(mp, "yscaled"); break;
5005 case z_scaled:mp_print(mp, "zscaled"); break;
5006 case in_font:mp_print(mp, "infont"); break;
5007 case intersect:mp_print(mp, "intersectiontimes"); break;
5008 case substring_of:mp_print(mp, "substring"); break;
5009 case subpath_of:mp_print(mp, "subpath"); break;
5010 case direction_time_of:mp_print(mp, "directiontime"); break;
5011 case point_of:mp_print(mp, "point"); break;
5012 case precontrol_of:mp_print(mp, "precontrol"); break;
5013 case postcontrol_of:mp_print(mp, "postcontrol"); break;
5014 case pen_offset_of:mp_print(mp, "penoffset"); break;
5015 case arc_time_of:mp_print(mp, "arctime"); break;
5016 case mp_version:mp_print(mp, "mpversion"); break;
5017 case envelope_of:mp_print(mp, "envelope"); break;
5018 default: mp_print(mp, ".."); break;
5023 @ \MP\ also has a bunch of internal parameters that a user might want to
5024 fuss with. Every such parameter has an identifying code number, defined here.
5027 enum mp_given_internal {
5028 mp_tracing_titles=1, /* show titles online when they appear */
5029 mp_tracing_equations, /* show each variable when it becomes known */
5030 mp_tracing_capsules, /* show capsules too */
5031 mp_tracing_choices, /* show the control points chosen for paths */
5032 mp_tracing_specs, /* show path subdivision prior to filling with polygonal a pen */
5033 mp_tracing_commands, /* show commands and operations before they are performed */
5034 mp_tracing_restores, /* show when a variable or internal is restored */
5035 mp_tracing_macros, /* show macros before they are expanded */
5036 mp_tracing_output, /* show digitized edges as they are output */
5037 mp_tracing_stats, /* show memory usage at end of job */
5038 mp_tracing_lost_chars, /* show characters that aren't \&{infont} */
5039 mp_tracing_online, /* show long diagnostics on terminal and in the log file */
5040 mp_year, /* the current year (e.g., 1984) */
5041 mp_month, /* the current month (e.g, 3 $\equiv$ March) */
5042 mp_day, /* the current day of the month */
5043 mp_time, /* the number of minutes past midnight when this job started */
5044 mp_char_code, /* the number of the next character to be output */
5045 mp_char_ext, /* the extension code of the next character to be output */
5046 mp_char_wd, /* the width of the next character to be output */
5047 mp_char_ht, /* the height of the next character to be output */
5048 mp_char_dp, /* the depth of the next character to be output */
5049 mp_char_ic, /* the italic correction of the next character to be output */
5050 mp_design_size, /* the unit of measure used for |mp_char_wd..mp_char_ic|, in points */
5051 mp_pausing, /* positive to display lines on the terminal before they are read */
5052 mp_showstopping, /* positive to stop after each \&{show} command */
5053 mp_fontmaking, /* positive if font metric output is to be produced */
5054 mp_linejoin, /* as in \ps: 0 for mitered, 1 for round, 2 for beveled */
5055 mp_linecap, /* as in \ps: 0 for butt, 1 for round, 2 for square */
5056 mp_miterlimit, /* controls miter length as in \ps */
5057 mp_warning_check, /* controls error message when variable value is large */
5058 mp_boundary_char, /* the right boundary character for ligatures */
5059 mp_prologues, /* positive to output conforming PostScript using built-in fonts */
5060 mp_true_corners, /* positive to make \&{llcorner} etc. ignore \&{setbounds} */
5061 mp_default_color_model, /* the default color model for unspecified items */
5062 mp_restore_clip_color,
5063 mp_procset, /* wether or not create PostScript command shortcuts */
5064 mp_gtroffmode, /* whether the user specified |-troff| on the command line */
5069 @d max_given_internal mp_gtroffmode
5072 scaled *internal; /* the values of internal quantities */
5073 char **int_name; /* their names */
5074 int int_ptr; /* the maximum internal quantity defined so far */
5075 int max_internal; /* current maximum number of internal quantities */
5078 @ @<Option variables@>=
5081 @ @<Allocate or initialize ...@>=
5082 mp->max_internal=2*max_given_internal;
5083 mp->internal = xmalloc ((mp->max_internal+1), sizeof(scaled));
5084 mp->int_name = xmalloc ((mp->max_internal+1), sizeof(char *));
5085 mp->troff_mode=(opt->troff_mode>0 ? true : false);
5087 @ @<Exported function ...@>=
5088 int mp_troff_mode(MP mp);
5091 int mp_troff_mode(MP mp) { return mp->troff_mode; }
5093 @ @<Set initial ...@>=
5094 for (k=0;k<= mp->max_internal; k++ ) {
5096 mp->int_name[k]=NULL;
5098 mp->int_ptr=max_given_internal;
5100 @ The symbolic names for internal quantities are put into \MP's hash table
5101 by using a routine called |primitive|, which will be defined later. Let us
5102 enter them now, so that we don't have to list all those names again
5105 @<Put each of \MP's primitives into the hash table@>=
5106 mp_primitive(mp, "tracingtitles",internal_quantity,mp_tracing_titles);
5107 @:tracingtitles_}{\&{tracingtitles} primitive@>
5108 mp_primitive(mp, "tracingequations",internal_quantity,mp_tracing_equations);
5109 @:mp_tracing_equations_}{\&{tracingequations} primitive@>
5110 mp_primitive(mp, "tracingcapsules",internal_quantity,mp_tracing_capsules);
5111 @:mp_tracing_capsules_}{\&{tracingcapsules} primitive@>
5112 mp_primitive(mp, "tracingchoices",internal_quantity,mp_tracing_choices);
5113 @:mp_tracing_choices_}{\&{tracingchoices} primitive@>
5114 mp_primitive(mp, "tracingspecs",internal_quantity,mp_tracing_specs);
5115 @:mp_tracing_specs_}{\&{tracingspecs} primitive@>
5116 mp_primitive(mp, "tracingcommands",internal_quantity,mp_tracing_commands);
5117 @:mp_tracing_commands_}{\&{tracingcommands} primitive@>
5118 mp_primitive(mp, "tracingrestores",internal_quantity,mp_tracing_restores);
5119 @:mp_tracing_restores_}{\&{tracingrestores} primitive@>
5120 mp_primitive(mp, "tracingmacros",internal_quantity,mp_tracing_macros);
5121 @:mp_tracing_macros_}{\&{tracingmacros} primitive@>
5122 mp_primitive(mp, "tracingoutput",internal_quantity,mp_tracing_output);
5123 @:mp_tracing_output_}{\&{tracingoutput} primitive@>
5124 mp_primitive(mp, "tracingstats",internal_quantity,mp_tracing_stats);
5125 @:mp_tracing_stats_}{\&{tracingstats} primitive@>
5126 mp_primitive(mp, "tracinglostchars",internal_quantity,mp_tracing_lost_chars);
5127 @:mp_tracing_lost_chars_}{\&{tracinglostchars} primitive@>
5128 mp_primitive(mp, "tracingonline",internal_quantity,mp_tracing_online);
5129 @:mp_tracing_online_}{\&{tracingonline} primitive@>
5130 mp_primitive(mp, "year",internal_quantity,mp_year);
5131 @:mp_year_}{\&{year} primitive@>
5132 mp_primitive(mp, "month",internal_quantity,mp_month);
5133 @:mp_month_}{\&{month} primitive@>
5134 mp_primitive(mp, "day",internal_quantity,mp_day);
5135 @:mp_day_}{\&{day} primitive@>
5136 mp_primitive(mp, "time",internal_quantity,mp_time);
5137 @:time_}{\&{time} primitive@>
5138 mp_primitive(mp, "charcode",internal_quantity,mp_char_code);
5139 @:mp_char_code_}{\&{charcode} primitive@>
5140 mp_primitive(mp, "charext",internal_quantity,mp_char_ext);
5141 @:mp_char_ext_}{\&{charext} primitive@>
5142 mp_primitive(mp, "charwd",internal_quantity,mp_char_wd);
5143 @:mp_char_wd_}{\&{charwd} primitive@>
5144 mp_primitive(mp, "charht",internal_quantity,mp_char_ht);
5145 @:mp_char_ht_}{\&{charht} primitive@>
5146 mp_primitive(mp, "chardp",internal_quantity,mp_char_dp);
5147 @:mp_char_dp_}{\&{chardp} primitive@>
5148 mp_primitive(mp, "charic",internal_quantity,mp_char_ic);
5149 @:mp_char_ic_}{\&{charic} primitive@>
5150 mp_primitive(mp, "designsize",internal_quantity,mp_design_size);
5151 @:mp_design_size_}{\&{designsize} primitive@>
5152 mp_primitive(mp, "pausing",internal_quantity,mp_pausing);
5153 @:mp_pausing_}{\&{pausing} primitive@>
5154 mp_primitive(mp, "showstopping",internal_quantity,mp_showstopping);
5155 @:mp_showstopping_}{\&{showstopping} primitive@>
5156 mp_primitive(mp, "fontmaking",internal_quantity,mp_fontmaking);
5157 @:mp_fontmaking_}{\&{fontmaking} primitive@>
5158 mp_primitive(mp, "linejoin",internal_quantity,mp_linejoin);
5159 @:mp_linejoin_}{\&{linejoin} primitive@>
5160 mp_primitive(mp, "linecap",internal_quantity,mp_linecap);
5161 @:mp_linecap_}{\&{linecap} primitive@>
5162 mp_primitive(mp, "miterlimit",internal_quantity,mp_miterlimit);
5163 @:mp_miterlimit_}{\&{miterlimit} primitive@>
5164 mp_primitive(mp, "warningcheck",internal_quantity,mp_warning_check);
5165 @:mp_warning_check_}{\&{warningcheck} primitive@>
5166 mp_primitive(mp, "boundarychar",internal_quantity,mp_boundary_char);
5167 @:mp_boundary_char_}{\&{boundarychar} primitive@>
5168 mp_primitive(mp, "prologues",internal_quantity,mp_prologues);
5169 @:mp_prologues_}{\&{prologues} primitive@>
5170 mp_primitive(mp, "truecorners",internal_quantity,mp_true_corners);
5171 @:mp_true_corners_}{\&{truecorners} primitive@>
5172 mp_primitive(mp, "mpprocset",internal_quantity,mp_procset);
5173 @:mp_procset_}{\&{mpprocset} primitive@>
5174 mp_primitive(mp, "troffmode",internal_quantity,mp_gtroffmode);
5175 @:troffmode_}{\&{troffmode} primitive@>
5176 mp_primitive(mp, "defaultcolormodel",internal_quantity,mp_default_color_model);
5177 @:mp_default_color_model_}{\&{defaultcolormodel} primitive@>
5178 mp_primitive(mp, "restoreclipcolor",internal_quantity,mp_restore_clip_color);
5179 @:mp_restore_clip_color_}{\&{restoreclipcolor} primitive@>
5181 @ Colors can be specified in four color models. In the special
5182 case of |no_model|, MetaPost does not output any color operator to
5183 the postscript output.
5185 Note: these values are passed directly on to |with_option|. This only
5186 works because the other possible values passed to |with_option| are
5187 8 and 10 respectively (from |with_pen| and |with_picture|).
5189 There is a first state, that is only used for |gs_colormodel|. It flags
5190 the fact that there has not been any kind of color specification by
5191 the user so far in the game.
5194 enum mp_color_model {
5199 mp_uninitialized_model=9,
5203 @ @<Initialize table entries (done by \.{INIMP} only)@>=
5204 mp->internal[mp_default_color_model]=(mp_rgb_model*unity);
5205 mp->internal[mp_restore_clip_color]=unity;
5207 @ Well, we do have to list the names one more time, for use in symbolic
5210 @<Initialize table...@>=
5211 mp->int_name[mp_tracing_titles]=xstrdup("tracingtitles");
5212 mp->int_name[mp_tracing_equations]=xstrdup("tracingequations");
5213 mp->int_name[mp_tracing_capsules]=xstrdup("tracingcapsules");
5214 mp->int_name[mp_tracing_choices]=xstrdup("tracingchoices");
5215 mp->int_name[mp_tracing_specs]=xstrdup("tracingspecs");
5216 mp->int_name[mp_tracing_commands]=xstrdup("tracingcommands");
5217 mp->int_name[mp_tracing_restores]=xstrdup("tracingrestores");
5218 mp->int_name[mp_tracing_macros]=xstrdup("tracingmacros");
5219 mp->int_name[mp_tracing_output]=xstrdup("tracingoutput");
5220 mp->int_name[mp_tracing_stats]=xstrdup("tracingstats");
5221 mp->int_name[mp_tracing_lost_chars]=xstrdup("tracinglostchars");
5222 mp->int_name[mp_tracing_online]=xstrdup("tracingonline");
5223 mp->int_name[mp_year]=xstrdup("year");
5224 mp->int_name[mp_month]=xstrdup("month");
5225 mp->int_name[mp_day]=xstrdup("day");
5226 mp->int_name[mp_time]=xstrdup("time");
5227 mp->int_name[mp_char_code]=xstrdup("charcode");
5228 mp->int_name[mp_char_ext]=xstrdup("charext");
5229 mp->int_name[mp_char_wd]=xstrdup("charwd");
5230 mp->int_name[mp_char_ht]=xstrdup("charht");
5231 mp->int_name[mp_char_dp]=xstrdup("chardp");
5232 mp->int_name[mp_char_ic]=xstrdup("charic");
5233 mp->int_name[mp_design_size]=xstrdup("designsize");
5234 mp->int_name[mp_pausing]=xstrdup("pausing");
5235 mp->int_name[mp_showstopping]=xstrdup("showstopping");
5236 mp->int_name[mp_fontmaking]=xstrdup("fontmaking");
5237 mp->int_name[mp_linejoin]=xstrdup("linejoin");
5238 mp->int_name[mp_linecap]=xstrdup("linecap");
5239 mp->int_name[mp_miterlimit]=xstrdup("miterlimit");
5240 mp->int_name[mp_warning_check]=xstrdup("warningcheck");
5241 mp->int_name[mp_boundary_char]=xstrdup("boundarychar");
5242 mp->int_name[mp_prologues]=xstrdup("prologues");
5243 mp->int_name[mp_true_corners]=xstrdup("truecorners");
5244 mp->int_name[mp_default_color_model]=xstrdup("defaultcolormodel");
5245 mp->int_name[mp_procset]=xstrdup("mpprocset");
5246 mp->int_name[mp_gtroffmode]=xstrdup("troffmode");
5247 mp->int_name[mp_restore_clip_color]=xstrdup("restoreclipcolor");
5249 @ The following procedure, which is called just before \MP\ initializes its
5250 input and output, establishes the initial values of the date and time.
5251 @^system dependencies@>
5253 Note that the values are |scaled| integers. Hence \MP\ can no longer
5254 be used after the year 32767.
5257 void mp_fix_date_and_time (MP mp) {
5258 time_t clock = time ((time_t *) 0);
5259 struct tm *tmptr = localtime (&clock);
5260 mp->internal[mp_time]=
5261 (tmptr->tm_hour*60+tmptr->tm_min)*unity; /* minutes since midnight */
5262 mp->internal[mp_day]=(tmptr->tm_mday)*unity; /* fourth day of the month */
5263 mp->internal[mp_month]=(tmptr->tm_mon+1)*unity; /* seventh month of the year */
5264 mp->internal[mp_year]=(tmptr->tm_year+1900)*unity; /* Anno Domini */
5268 void mp_fix_date_and_time (MP mp) ;
5270 @ \MP\ is occasionally supposed to print diagnostic information that
5271 goes only into the transcript file, unless |mp_tracing_online| is positive.
5272 Now that we have defined |mp_tracing_online| we can define
5273 two routines that adjust the destination of print commands:
5276 void mp_begin_diagnostic (MP mp) ;
5277 void mp_end_diagnostic (MP mp,boolean blank_line);
5278 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) ;
5280 @ @<Basic printing...@>=
5281 @<Declare a function called |true_line|@>;
5282 void mp_begin_diagnostic (MP mp) { /* prepare to do some tracing */
5283 mp->old_setting=mp->selector;
5284 if ((mp->internal[mp_tracing_online]<=0)&&(mp->selector==term_and_log)){
5286 if ( mp->history==mp_spotless ) mp->history=mp_warning_issued;
5290 void mp_end_diagnostic (MP mp,boolean blank_line) {
5291 /* restore proper conditions after tracing */
5292 mp_print_nl(mp, "");
5293 if ( blank_line ) mp_print_ln(mp);
5294 mp->selector=mp->old_setting;
5300 unsigned int old_setting;
5302 @ We will occasionally use |begin_diagnostic| in connection with line-number
5303 printing, as follows. (The parameter |s| is typically |"Path"| or
5304 |"Cycle spec"|, etc.)
5306 @<Basic printing...@>=
5307 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) {
5308 mp_begin_diagnostic(mp);
5309 if ( nuline ) mp_print_nl(mp, s); else mp_print(mp, s);
5310 mp_print(mp, " at line ");
5311 mp_print_int(mp, mp_true_line(mp));
5312 mp_print(mp, t); mp_print_char(mp, ':');
5315 @ The 256 |ASCII_code| characters are grouped into classes by means of
5316 the |char_class| table. Individual class numbers have no semantic
5317 or syntactic significance, except in a few instances defined here.
5318 There's also |max_class|, which can be used as a basis for additional
5319 class numbers in nonstandard extensions of \MP.
5321 @d digit_class 0 /* the class number of \.{0123456789} */
5322 @d period_class 1 /* the class number of `\..' */
5323 @d space_class 2 /* the class number of spaces and nonstandard characters */
5324 @d percent_class 3 /* the class number of `\.\%' */
5325 @d string_class 4 /* the class number of `\."' */
5326 @d right_paren_class 8 /* the class number of `\.)' */
5327 @d isolated_classes 5: case 6: case 7: case 8 /* characters that make length-one tokens only */
5328 @d letter_class 9 /* letters and the underline character */
5329 @d left_bracket_class 17 /* `\.[' */
5330 @d right_bracket_class 18 /* `\.]' */
5331 @d invalid_class 20 /* bad character in the input */
5332 @d max_class 20 /* the largest class number */
5335 int char_class[256]; /* the class numbers */
5337 @ If changes are made to accommodate non-ASCII character sets, they should
5338 follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
5339 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
5340 @^system dependencies@>
5342 @<Set initial ...@>=
5343 for (k='0';k<='9';k++)
5344 mp->char_class[k]=digit_class;
5345 mp->char_class['.']=period_class;
5346 mp->char_class[' ']=space_class;
5347 mp->char_class['%']=percent_class;
5348 mp->char_class['"']=string_class;
5349 mp->char_class[',']=5;
5350 mp->char_class[';']=6;
5351 mp->char_class['(']=7;
5352 mp->char_class[')']=right_paren_class;
5353 for (k='A';k<= 'Z';k++ )
5354 mp->char_class[k]=letter_class;
5355 for (k='a';k<='z';k++)
5356 mp->char_class[k]=letter_class;
5357 mp->char_class['_']=letter_class;
5358 mp->char_class['<']=10;
5359 mp->char_class['=']=10;
5360 mp->char_class['>']=10;
5361 mp->char_class[':']=10;
5362 mp->char_class['|']=10;
5363 mp->char_class['`']=11;
5364 mp->char_class['\'']=11;
5365 mp->char_class['+']=12;
5366 mp->char_class['-']=12;
5367 mp->char_class['/']=13;
5368 mp->char_class['*']=13;
5369 mp->char_class['\\']=13;
5370 mp->char_class['!']=14;
5371 mp->char_class['?']=14;
5372 mp->char_class['#']=15;
5373 mp->char_class['&']=15;
5374 mp->char_class['@@']=15;
5375 mp->char_class['$']=15;
5376 mp->char_class['^']=16;
5377 mp->char_class['~']=16;
5378 mp->char_class['[']=left_bracket_class;
5379 mp->char_class[']']=right_bracket_class;
5380 mp->char_class['{']=19;
5381 mp->char_class['}']=19;
5383 mp->char_class[k]=invalid_class;
5384 mp->char_class['\t']=space_class;
5385 mp->char_class['\f']=space_class;
5386 for (k=127;k<=255;k++)
5387 mp->char_class[k]=invalid_class;
5389 @* \[13] The hash table.
5390 Symbolic tokens are stored and retrieved by means of a fairly standard hash
5391 table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
5392 in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
5393 table, it is never removed.
5395 The actual sequence of characters forming a symbolic token is
5396 stored in the |str_pool| array together with all the other strings. An
5397 auxiliary array |hash| consists of items with two halfword fields per
5398 word. The first of these, called |next(p)|, points to the next identifier
5399 belonging to the same coalesced list as the identifier corresponding to~|p|;
5400 and the other, called |text(p)|, points to the |str_start| entry for
5401 |p|'s identifier. If position~|p| of the hash table is empty, we have
5402 |text(p)=0|; if position |p| is either empty or the end of a coalesced
5403 hash list, we have |next(p)=0|.
5405 An auxiliary pointer variable called |hash_used| is maintained in such a
5406 way that all locations |p>=hash_used| are nonempty. The global variable
5407 |st_count| tells how many symbolic tokens have been defined, if statistics
5410 The first 256 locations of |hash| are reserved for symbols of length one.
5412 There's a parallel array called |eqtb| that contains the current equivalent
5413 values of each symbolic token. The entries of this array consist of
5414 two halfwords called |eq_type| (a command code) and |equiv| (a secondary
5415 piece of information that qualifies the |eq_type|).
5417 @d next(A) mp->hash[(A)].lh /* link for coalesced lists */
5418 @d text(A) mp->hash[(A)].rh /* string number for symbolic token name */
5419 @d eq_type(A) mp->eqtb[(A)].lh /* the current ``meaning'' of a symbolic token */
5420 @d equiv(A) mp->eqtb[(A)].rh /* parametric part of a token's meaning */
5421 @d hash_base 257 /* hashing actually starts here */
5422 @d hash_is_full (mp->hash_used==hash_base) /* are all positions occupied? */
5425 pointer hash_used; /* allocation pointer for |hash| */
5426 integer st_count; /* total number of known identifiers */
5428 @ Certain entries in the hash table are ``frozen'' and not redefinable,
5429 since they are used in error recovery.
5431 @d hash_top (hash_base+mp->hash_size) /* the first location of the frozen area */
5432 @d frozen_inaccessible hash_top /* |hash| location to protect the frozen area */
5433 @d frozen_repeat_loop (hash_top+1) /* |hash| location of a loop-repeat token */
5434 @d frozen_right_delimiter (hash_top+2) /* |hash| location of a permanent `\.)' */
5435 @d frozen_left_bracket (hash_top+3) /* |hash| location of a permanent `\.[' */
5436 @d frozen_slash (hash_top+4) /* |hash| location of a permanent `\./' */
5437 @d frozen_colon (hash_top+5) /* |hash| location of a permanent `\.:' */
5438 @d frozen_semicolon (hash_top+6) /* |hash| location of a permanent `\.;' */
5439 @d frozen_end_for (hash_top+7) /* |hash| location of a permanent \&{endfor} */
5440 @d frozen_end_def (hash_top+8) /* |hash| location of a permanent \&{enddef} */
5441 @d frozen_fi (hash_top+9) /* |hash| location of a permanent \&{fi} */
5442 @d frozen_end_group (hash_top+10) /* |hash| location of a permanent `\.{endgroup}' */
5443 @d frozen_etex (hash_top+11) /* |hash| location of a permanent \&{etex} */
5444 @d frozen_mpx_break (hash_top+12) /* |hash| location of a permanent \&{mpxbreak} */
5445 @d frozen_bad_vardef (hash_top+13) /* |hash| location of `\.{a bad variable}' */
5446 @d frozen_undefined (hash_top+14) /* |hash| location that never gets defined */
5447 @d hash_end (hash_top+14) /* the actual size of the |hash| and |eqtb| arrays */
5450 two_halves *hash; /* the hash table */
5451 two_halves *eqtb; /* the equivalents */
5453 @ @<Allocate or initialize ...@>=
5454 mp->hash = xmalloc((hash_end+1),sizeof(two_halves));
5455 mp->eqtb = xmalloc((hash_end+1),sizeof(two_halves));
5457 @ @<Dealloc variables@>=
5462 next(1)=0; text(1)=0; eq_type(1)=tag_token; equiv(1)=null;
5463 for (k=2;k<=hash_end;k++) {
5464 mp->hash[k]=mp->hash[1]; mp->eqtb[k]=mp->eqtb[1];
5467 @ @<Initialize table entries...@>=
5468 mp->hash_used=frozen_inaccessible; /* nothing is used */
5470 text(frozen_bad_vardef)=intern("a bad variable");
5471 text(frozen_etex)=intern("etex");
5472 text(frozen_mpx_break)=intern("mpxbreak");
5473 text(frozen_fi)=intern("fi");
5474 text(frozen_end_group)=intern("endgroup");
5475 text(frozen_end_def)=intern("enddef");
5476 text(frozen_end_for)=intern("endfor");
5477 text(frozen_semicolon)=intern(";");
5478 text(frozen_colon)=intern(":");
5479 text(frozen_slash)=intern("/");
5480 text(frozen_left_bracket)=intern("[");
5481 text(frozen_right_delimiter)=intern(")");
5482 text(frozen_inaccessible)=intern(" INACCESSIBLE");
5483 eq_type(frozen_right_delimiter)=right_delimiter;
5485 @ @<Check the ``constant'' values...@>=
5486 if ( hash_end+mp->max_internal>max_halfword ) mp->bad=17;
5488 @ Here is the subroutine that searches the hash table for an identifier
5489 that matches a given string of length~|l| appearing in |buffer[j..
5490 (j+l-1)]|. If the identifier is not found, it is inserted; hence it
5491 will always be found, and the corresponding hash table address
5495 pointer mp_id_lookup (MP mp,integer j, integer l) { /* search the hash table */
5496 integer h; /* hash code */
5497 pointer p; /* index in |hash| array */
5498 pointer k; /* index in |buffer| array */
5500 @<Treat special case of length 1 and |break|@>;
5502 @<Compute the hash code |h|@>;
5503 p=h+hash_base; /* we start searching here; note that |0<=h<hash_prime| */
5505 if (text(p)>0 && length(text(p))==l && mp_str_eq_buf(mp, text(p),j))
5508 @<Insert a new symbolic token after |p|, then
5509 make |p| point to it and |break|@>;
5516 @ @<Treat special case of length 1...@>=
5517 p=mp->buffer[j]+1; text(p)=p-1; return p;
5520 @ @<Insert a new symbolic...@>=
5525 mp_overflow(mp, "hash size",mp->hash_size);
5526 @:MetaPost capacity exceeded hash size}{\quad hash size@>
5527 decr(mp->hash_used);
5528 } while (text(mp->hash_used)!=0); /* search for an empty location in |hash| */
5529 next(p)=mp->hash_used;
5533 for (k=j;k<=j+l-1;k++) {
5534 append_char(mp->buffer[k]);
5536 text(p)=mp_make_string(mp);
5537 mp->str_ref[text(p)]=max_str_ref;
5543 @ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
5544 should be a prime number. The theory of hashing tells us to expect fewer
5545 than two table probes, on the average, when the search is successful.
5546 [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
5547 @^Vitter, Jeffrey Scott@>
5549 @<Compute the hash code |h|@>=
5551 for (k=j+1;k<=j+l-1;k++){
5552 h=h+h+mp->buffer[k];
5553 while ( h>=mp->hash_prime ) h=h-mp->hash_prime;
5556 @ @<Search |eqtb| for equivalents equal to |p|@>=
5557 for (q=1;q<=hash_end;q++) {
5558 if ( equiv(q)==p ) {
5559 mp_print_nl(mp, "EQUIV(");
5560 mp_print_int(mp, q);
5561 mp_print_char(mp, ')');
5565 @ We need to put \MP's ``primitive'' symbolic tokens into the hash
5566 table, together with their command code (which will be the |eq_type|)
5567 and an operand (which will be the |equiv|). The |primitive| procedure
5568 does this, in a way that no \MP\ user can. The global value |cur_sym|
5569 contains the new |eqtb| pointer after |primitive| has acted.
5572 void mp_primitive (MP mp, char *ss, halfword c, halfword o) {
5573 pool_pointer k; /* index into |str_pool| */
5574 small_number j; /* index into |buffer| */
5575 small_number l; /* length of the string */
5578 k=mp->str_start[s]; l=str_stop(s)-k;
5579 /* we will move |s| into the (empty) |buffer| */
5580 for (j=0;j<=l-1;j++) {
5581 mp->buffer[j]=mp->str_pool[k+j];
5583 mp->cur_sym=mp_id_lookup(mp, 0,l);
5584 if ( s>=256 ) { /* we don't want to have the string twice */
5585 mp_flush_string(mp, text(mp->cur_sym)); text(mp->cur_sym)=s;
5587 eq_type(mp->cur_sym)=c;
5588 equiv(mp->cur_sym)=o;
5592 @ Many of \MP's primitives need no |equiv|, since they are identifiable
5593 by their |eq_type| alone. These primitives are loaded into the hash table
5596 @<Put each of \MP's primitives into the hash table@>=
5597 mp_primitive(mp, "..",path_join,0);
5598 @:.._}{\.{..} primitive@>
5599 mp_primitive(mp, "[",left_bracket,0); mp->eqtb[frozen_left_bracket]=mp->eqtb[mp->cur_sym];
5600 @:[ }{\.{[} primitive@>
5601 mp_primitive(mp, "]",right_bracket,0);
5602 @:] }{\.{]} primitive@>
5603 mp_primitive(mp, "}",right_brace,0);
5604 @:]]}{\.{\char`\}} primitive@>
5605 mp_primitive(mp, "{",left_brace,0);
5606 @:][}{\.{\char`\{} primitive@>
5607 mp_primitive(mp, ":",colon,0); mp->eqtb[frozen_colon]=mp->eqtb[mp->cur_sym];
5608 @:: }{\.{:} primitive@>
5609 mp_primitive(mp, "::",double_colon,0);
5610 @::: }{\.{::} primitive@>
5611 mp_primitive(mp, "||:",bchar_label,0);
5612 @:::: }{\.{\char'174\char'174:} primitive@>
5613 mp_primitive(mp, ":=",assignment,0);
5614 @::=_}{\.{:=} primitive@>
5615 mp_primitive(mp, ",",comma,0);
5616 @:, }{\., primitive@>
5617 mp_primitive(mp, ";",semicolon,0); mp->eqtb[frozen_semicolon]=mp->eqtb[mp->cur_sym];
5618 @:; }{\.; primitive@>
5619 mp_primitive(mp, "\\",relax,0);
5620 @:]]\\}{\.{\char`\\} primitive@>
5622 mp_primitive(mp, "addto",add_to_command,0);
5623 @:add_to_}{\&{addto} primitive@>
5624 mp_primitive(mp, "atleast",at_least,0);
5625 @:at_least_}{\&{atleast} primitive@>
5626 mp_primitive(mp, "begingroup",begin_group,0); mp->bg_loc=mp->cur_sym;
5627 @:begin_group_}{\&{begingroup} primitive@>
5628 mp_primitive(mp, "controls",controls,0);
5629 @:controls_}{\&{controls} primitive@>
5630 mp_primitive(mp, "curl",curl_command,0);
5631 @:curl_}{\&{curl} primitive@>
5632 mp_primitive(mp, "delimiters",delimiters,0);
5633 @:delimiters_}{\&{delimiters} primitive@>
5634 mp_primitive(mp, "endgroup",end_group,0);
5635 mp->eqtb[frozen_end_group]=mp->eqtb[mp->cur_sym]; mp->eg_loc=mp->cur_sym;
5636 @:endgroup_}{\&{endgroup} primitive@>
5637 mp_primitive(mp, "everyjob",every_job_command,0);
5638 @:every_job_}{\&{everyjob} primitive@>
5639 mp_primitive(mp, "exitif",exit_test,0);
5640 @:exit_if_}{\&{exitif} primitive@>
5641 mp_primitive(mp, "expandafter",expand_after,0);
5642 @:expand_after_}{\&{expandafter} primitive@>
5643 mp_primitive(mp, "interim",interim_command,0);
5644 @:interim_}{\&{interim} primitive@>
5645 mp_primitive(mp, "let",let_command,0);
5646 @:let_}{\&{let} primitive@>
5647 mp_primitive(mp, "newinternal",new_internal,0);
5648 @:new_internal_}{\&{newinternal} primitive@>
5649 mp_primitive(mp, "of",of_token,0);
5650 @:of_}{\&{of} primitive@>
5651 mp_primitive(mp, "randomseed",random_seed,0);
5652 @:random_seed_}{\&{randomseed} primitive@>
5653 mp_primitive(mp, "save",save_command,0);
5654 @:save_}{\&{save} primitive@>
5655 mp_primitive(mp, "scantokens",scan_tokens,0);
5656 @:scan_tokens_}{\&{scantokens} primitive@>
5657 mp_primitive(mp, "shipout",ship_out_command,0);
5658 @:ship_out_}{\&{shipout} primitive@>
5659 mp_primitive(mp, "skipto",skip_to,0);
5660 @:skip_to_}{\&{skipto} primitive@>
5661 mp_primitive(mp, "special",special_command,0);
5662 @:special}{\&{special} primitive@>
5663 mp_primitive(mp, "fontmapfile",special_command,1);
5664 @:fontmapfile}{\&{fontmapfile} primitive@>
5665 mp_primitive(mp, "fontmapline",special_command,2);
5666 @:fontmapline}{\&{fontmapline} primitive@>
5667 mp_primitive(mp, "step",step_token,0);
5668 @:step_}{\&{step} primitive@>
5669 mp_primitive(mp, "str",str_op,0);
5670 @:str_}{\&{str} primitive@>
5671 mp_primitive(mp, "tension",tension,0);
5672 @:tension_}{\&{tension} primitive@>
5673 mp_primitive(mp, "to",to_token,0);
5674 @:to_}{\&{to} primitive@>
5675 mp_primitive(mp, "until",until_token,0);
5676 @:until_}{\&{until} primitive@>
5677 mp_primitive(mp, "within",within_token,0);
5678 @:within_}{\&{within} primitive@>
5679 mp_primitive(mp, "write",write_command,0);
5680 @:write_}{\&{write} primitive@>
5682 @ Each primitive has a corresponding inverse, so that it is possible to
5683 display the cryptic numeric contents of |eqtb| in symbolic form.
5684 Every call of |primitive| in this program is therefore accompanied by some
5685 straightforward code that forms part of the |print_cmd_mod| routine
5688 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
5689 case add_to_command:mp_print(mp, "addto"); break;
5690 case assignment:mp_print(mp, ":="); break;
5691 case at_least:mp_print(mp, "atleast"); break;
5692 case bchar_label:mp_print(mp, "||:"); break;
5693 case begin_group:mp_print(mp, "begingroup"); break;
5694 case colon:mp_print(mp, ":"); break;
5695 case comma:mp_print(mp, ","); break;
5696 case controls:mp_print(mp, "controls"); break;
5697 case curl_command:mp_print(mp, "curl"); break;
5698 case delimiters:mp_print(mp, "delimiters"); break;
5699 case double_colon:mp_print(mp, "::"); break;
5700 case end_group:mp_print(mp, "endgroup"); break;
5701 case every_job_command:mp_print(mp, "everyjob"); break;
5702 case exit_test:mp_print(mp, "exitif"); break;
5703 case expand_after:mp_print(mp, "expandafter"); break;
5704 case interim_command:mp_print(mp, "interim"); break;
5705 case left_brace:mp_print(mp, "{"); break;
5706 case left_bracket:mp_print(mp, "["); break;
5707 case let_command:mp_print(mp, "let"); break;
5708 case new_internal:mp_print(mp, "newinternal"); break;
5709 case of_token:mp_print(mp, "of"); break;
5710 case path_join:mp_print(mp, ".."); break;
5711 case random_seed:mp_print(mp, "randomseed"); break;
5712 case relax:mp_print_char(mp, '\\'); break;
5713 case right_brace:mp_print(mp, "}"); break;
5714 case right_bracket:mp_print(mp, "]"); break;
5715 case save_command:mp_print(mp, "save"); break;
5716 case scan_tokens:mp_print(mp, "scantokens"); break;
5717 case semicolon:mp_print(mp, ";"); break;
5718 case ship_out_command:mp_print(mp, "shipout"); break;
5719 case skip_to:mp_print(mp, "skipto"); break;
5720 case special_command: if ( m==2 ) mp_print(mp, "fontmapline"); else
5721 if ( m==1 ) mp_print(mp, "fontmapfile"); else
5722 mp_print(mp, "special"); break;
5723 case step_token:mp_print(mp, "step"); break;
5724 case str_op:mp_print(mp, "str"); break;
5725 case tension:mp_print(mp, "tension"); break;
5726 case to_token:mp_print(mp, "to"); break;
5727 case until_token:mp_print(mp, "until"); break;
5728 case within_token:mp_print(mp, "within"); break;
5729 case write_command:mp_print(mp, "write"); break;
5731 @ We will deal with the other primitives later, at some point in the program
5732 where their |eq_type| and |equiv| values are more meaningful. For example,
5733 the primitives for macro definitions will be loaded when we consider the
5734 routines that define macros.
5735 It is easy to find where each particular
5736 primitive was treated by looking in the index at the end; for example, the
5737 section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
5739 @* \[14] Token lists.
5740 A \MP\ token is either symbolic or numeric or a string, or it denotes
5741 a macro parameter or capsule; so there are five corresponding ways to encode it
5743 internally: (1)~A symbolic token whose hash code is~|p|
5744 is represented by the number |p|, in the |info| field of a single-word
5745 node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
5746 represented in a two-word node of~|mem|; the |type| field is |known|,
5747 the |name_type| field is |token|, and the |value| field holds~|v|.
5748 The fact that this token appears in a two-word node rather than a
5749 one-word node is, of course, clear from the node address.
5750 (3)~A string token is also represented in a two-word node; the |type|
5751 field is |mp_string_type|, the |name_type| field is |token|, and the
5752 |value| field holds the corresponding |str_number|. (4)~Capsules have
5753 |name_type=capsule|, and their |type| and |value| fields represent
5754 arbitrary values (in ways to be explained later). (5)~Macro parameters
5755 are like symbolic tokens in that they appear in |info| fields of
5756 one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
5757 is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
5758 by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
5759 Actual values of these parameters are kept in a separate stack, as we will
5760 see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
5761 of course, chosen so that there will be no confusion between symbolic
5762 tokens and parameters of various types.
5765 the `\\{type}' field of a node has nothing to do with ``type'' in a
5766 printer's sense. It's curious that the same word is used in such different ways.
5768 @d type(A) mp->mem[(A)].hh.b0 /* identifies what kind of value this is */
5769 @d name_type(A) mp->mem[(A)].hh.b1 /* a clue to the name of this value */
5770 @d token_node_size 2 /* the number of words in a large token node */
5771 @d value_loc(A) ((A)+1) /* the word that contains the |value| field */
5772 @d value(A) mp->mem[value_loc((A))].cint /* the value stored in a large token node */
5773 @d expr_base (hash_end+1) /* code for the zeroth \&{expr} parameter */
5774 @d suffix_base (expr_base+mp->param_size) /* code for the zeroth \&{suffix} parameter */
5775 @d text_base (suffix_base+mp->param_size) /* code for the zeroth \&{text} parameter */
5777 @<Check the ``constant''...@>=
5778 if ( text_base+mp->param_size>max_halfword ) mp->bad=18;
5780 @ We have set aside a two word node beginning at |null| so that we can have
5781 |value(null)=0|. We will make use of this coincidence later.
5783 @<Initialize table entries...@>=
5784 link(null)=null; value(null)=0;
5786 @ A numeric token is created by the following trivial routine.
5789 pointer mp_new_num_tok (MP mp,scaled v) {
5790 pointer p; /* the new node */
5791 p=mp_get_node(mp, token_node_size); value(p)=v;
5792 type(p)=mp_known; name_type(p)=mp_token;
5796 @ A token list is a singly linked list of nodes in |mem|, where
5797 each node contains a token and a link. Here's a subroutine that gets rid
5798 of a token list when it is no longer needed.
5801 void mp_token_recycle (MP mp);
5804 @c void mp_flush_token_list (MP mp,pointer p) {
5805 pointer q; /* the node being recycled */
5808 if ( q>=mp->hi_mem_min ) {
5812 case mp_vacuous: case mp_boolean_type: case mp_known:
5814 case mp_string_type:
5815 delete_str_ref(value(q));
5817 case unknown_types: case mp_pen_type: case mp_path_type:
5818 case mp_picture_type: case mp_pair_type: case mp_color_type:
5819 case mp_cmykcolor_type: case mp_transform_type: case mp_dependent:
5820 case mp_proto_dependent: case mp_independent:
5821 mp->g_pointer=q; mp_token_recycle(mp);
5823 default: mp_confusion(mp, "token");
5824 @:this can't happen token}{\quad token@>
5826 mp_free_node(mp, q,token_node_size);
5831 @ The procedure |show_token_list|, which prints a symbolic form of
5832 the token list that starts at a given node |p|, illustrates these
5833 conventions. The token list being displayed should not begin with a reference
5834 count. However, the procedure is intended to be fairly robust, so that if the
5835 memory links are awry or if |p| is not really a pointer to a token list,
5836 almost nothing catastrophic can happen.
5838 An additional parameter |q| is also given; this parameter is either null
5839 or it points to a node in the token list where a certain magic computation
5840 takes place that will be explained later. (Basically, |q| is non-null when
5841 we are printing the two-line context information at the time of an error
5842 message; |q| marks the place corresponding to where the second line
5845 The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
5846 of printing exceeds a given limit~|l|; the length of printing upon entry is
5847 assumed to be a given amount called |null_tally|. (Note that
5848 |show_token_list| sometimes uses itself recursively to print
5849 variable names within a capsule.)
5852 Unusual entries are printed in the form of all-caps tokens
5853 preceded by a space, e.g., `\.{\char`\ BAD}'.
5856 void mp_print_capsule (MP mp);
5858 @ @<Declare the procedure called |show_token_list|@>=
5859 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5860 integer null_tally) ;
5863 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5864 integer null_tally) {
5865 small_number class,c; /* the |char_class| of previous and new tokens */
5866 integer r,v; /* temporary registers */
5867 class=percent_class;
5868 mp->tally=null_tally;
5869 while ( (p!=null) && (mp->tally<l) ) {
5871 @<Do magic computation@>;
5872 @<Display token |p| and set |c| to its class;
5873 but |return| if there are problems@>;
5877 mp_print(mp, " ETC.");
5882 @ @<Display token |p| and set |c| to its class...@>=
5883 c=letter_class; /* the default */
5884 if ( (p<0)||(p>mp->mem_end) ) {
5885 mp_print(mp, " CLOBBERED"); return;
5888 if ( p<mp->hi_mem_min ) {
5889 @<Display two-word token@>;
5892 if ( r>=expr_base ) {
5893 @<Display a parameter token@>;
5897 @<Display a collective subscript@>
5899 mp_print(mp, " IMPOSSIBLE");
5904 if ( (r<0)||(r>mp->max_str_ptr) ) {
5905 mp_print(mp, " NONEXISTENT");
5908 @<Print string |r| as a symbolic token
5909 and set |c| to its class@>;
5915 @ @<Display two-word token@>=
5916 if ( name_type(p)==mp_token ) {
5917 if ( type(p)==mp_known ) {
5918 @<Display a numeric token@>;
5919 } else if ( type(p)!=mp_string_type ) {
5920 mp_print(mp, " BAD");
5923 mp_print_char(mp, '"'); mp_print_str(mp, value(p)); mp_print_char(mp, '"');
5926 } else if ((name_type(p)!=mp_capsule)||(type(p)<mp_vacuous)||(type(p)>mp_independent) ) {
5927 mp_print(mp, " BAD");
5929 mp->g_pointer=p; mp_print_capsule(mp); c=right_paren_class;
5932 @ @<Display a numeric token@>=
5933 if ( class==digit_class )
5934 mp_print_char(mp, ' ');
5937 if ( class==left_bracket_class )
5938 mp_print_char(mp, ' ');
5939 mp_print_char(mp, '['); mp_print_scaled(mp, v); mp_print_char(mp, ']');
5940 c=right_bracket_class;
5942 mp_print_scaled(mp, v); c=digit_class;
5946 @ Strictly speaking, a genuine token will never have |info(p)=0|.
5947 But we will see later (in the |print_variable_name| routine) that
5948 it is convenient to let |info(p)=0| stand for `\.{[]}'.
5950 @<Display a collective subscript@>=
5952 if ( class==left_bracket_class )
5953 mp_print_char(mp, ' ');
5954 mp_print(mp, "[]"); c=right_bracket_class;
5957 @ @<Display a parameter token@>=
5959 if ( r<suffix_base ) {
5960 mp_print(mp, "(EXPR"); r=r-(expr_base);
5962 } else if ( r<text_base ) {
5963 mp_print(mp, "(SUFFIX"); r=r-(suffix_base);
5966 mp_print(mp, "(TEXT"); r=r-(text_base);
5969 mp_print_int(mp, r); mp_print_char(mp, ')'); c=right_paren_class;
5973 @ @<Print string |r| as a symbolic token...@>=
5975 c=mp->char_class[mp->str_pool[mp->str_start[r]]];
5978 case letter_class:mp_print_char(mp, '.'); break;
5979 case isolated_classes: break;
5980 default: mp_print_char(mp, ' '); break;
5983 mp_print_str(mp, r);
5986 @ The following procedures have been declared |forward| with no parameters,
5987 because the author dislikes \PASCAL's convention about |forward| procedures
5988 with parameters. It was necessary to do something, because |show_token_list|
5989 is recursive (although the recursion is limited to one level), and because
5990 |flush_token_list| is syntactically (but not semantically) recursive.
5993 @<Declare miscellaneous procedures that were declared |forward|@>=
5994 void mp_print_capsule (MP mp) {
5995 mp_print_char(mp, '('); mp_print_exp(mp, mp->g_pointer,0); mp_print_char(mp, ')');
5998 void mp_token_recycle (MP mp) {
5999 mp_recycle_value(mp, mp->g_pointer);
6003 pointer g_pointer; /* (global) parameter to the |forward| procedures */
6005 @ Macro definitions are kept in \MP's memory in the form of token lists
6006 that have a few extra one-word nodes at the beginning.
6008 The first node contains a reference count that is used to tell when the
6009 list is no longer needed. To emphasize the fact that a reference count is
6010 present, we shall refer to the |info| field of this special node as the
6012 @^reference counts@>
6014 The next node or nodes after the reference count serve to describe the
6015 formal parameters. They either contain a code word that specifies all
6016 of the parameters, or they contain zero or more parameter tokens followed
6017 by the code `|general_macro|'.
6020 /* reference count preceding a macro definition or picture header */
6021 @d add_mac_ref(A) incr(ref_count((A))) /* make a new reference to a macro list */
6022 @d general_macro 0 /* preface to a macro defined with a parameter list */
6023 @d primary_macro 1 /* preface to a macro with a \&{primary} parameter */
6024 @d secondary_macro 2 /* preface to a macro with a \&{secondary} parameter */
6025 @d tertiary_macro 3 /* preface to a macro with a \&{tertiary} parameter */
6026 @d expr_macro 4 /* preface to a macro with an undelimited \&{expr} parameter */
6027 @d of_macro 5 /* preface to a macro with
6028 undelimited `\&{expr} |x| \&{of}~|y|' parameters */
6029 @d suffix_macro 6 /* preface to a macro with an undelimited \&{suffix} parameter */
6030 @d text_macro 7 /* preface to a macro with an undelimited \&{text} parameter */
6033 void mp_delete_mac_ref (MP mp,pointer p) {
6034 /* |p| points to the reference count of a macro list that is
6035 losing one reference */
6036 if ( ref_count(p)==null ) mp_flush_token_list(mp, p);
6037 else decr(ref_count(p));
6040 @ The following subroutine displays a macro, given a pointer to its
6044 @<Declare the procedure called |print_cmd_mod|@>;
6045 void mp_show_macro (MP mp, pointer p, integer q, integer l) {
6046 pointer r; /* temporary storage */
6047 p=link(p); /* bypass the reference count */
6048 while ( info(p)>text_macro ){
6049 r=link(p); link(p)=null;
6050 mp_show_token_list(mp, p,null,l,0); link(p)=r; p=r;
6051 if ( l>0 ) l=l-mp->tally; else return;
6052 } /* control printing of `\.{ETC.}' */
6056 case general_macro:mp_print(mp, "->"); break;
6058 case primary_macro: case secondary_macro: case tertiary_macro:
6059 mp_print_char(mp, '<');
6060 mp_print_cmd_mod(mp, param_type,info(p));
6061 mp_print(mp, ">->");
6063 case expr_macro:mp_print(mp, "<expr>->"); break;
6064 case of_macro:mp_print(mp, "<expr>of<primary>->"); break;
6065 case suffix_macro:mp_print(mp, "<suffix>->"); break;
6066 case text_macro:mp_print(mp, "<text>->"); break;
6067 } /* there are no other cases */
6068 mp_show_token_list(mp, link(p),q,l-mp->tally,0);
6071 @* \[15] Data structures for variables.
6072 The variables of \MP\ programs can be simple, like `\.x', or they can
6073 combine the structural properties of arrays and records, like `\.{x20a.b}'.
6074 A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
6075 example, `\.{boolean} \.{x20a.b}'. It's time for us to study how such
6076 things are represented inside of the computer.
6078 Each variable value occupies two consecutive words, either in a two-word
6079 node called a value node, or as a two-word subfield of a larger node. One
6080 of those two words is called the |value| field; it is an integer,
6081 containing either a |scaled| numeric value or the representation of some
6082 other type of quantity. (It might also be subdivided into halfwords, in
6083 which case it is referred to by other names instead of |value|.) The other
6084 word is broken into subfields called |type|, |name_type|, and |link|. The
6085 |type| field is a quarterword that specifies the variable's type, and
6086 |name_type| is a quarterword from which \MP\ can reconstruct the
6087 variable's name (sometimes by using the |link| field as well). Thus, only
6088 1.25 words are actually devoted to the value itself; the other
6089 three-quarters of a word are overhead, but they aren't wasted because they
6090 allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
6092 In this section we shall be concerned only with the structural aspects of
6093 variables, not their values. Later parts of the program will change the
6094 |type| and |value| fields, but we shall treat those fields as black boxes
6095 whose contents should not be touched.
6097 However, if the |type| field is |mp_structured|, there is no |value| field,
6098 and the second word is broken into two pointer fields called |attr_head|
6099 and |subscr_head|. Those fields point to additional nodes that
6100 contain structural information, as we shall see.
6102 @d subscr_head_loc(A) (A)+1 /* where |value|, |subscr_head| and |attr_head| are */
6103 @d attr_head(A) info(subscr_head_loc((A))) /* pointer to attribute info */
6104 @d subscr_head(A) link(subscr_head_loc((A))) /* pointer to subscript info */
6105 @d value_node_size 2 /* the number of words in a value node */
6107 @ An attribute node is three words long. Two of these words contain |type|
6108 and |value| fields as described above, and the third word contains
6109 additional information: There is an |attr_loc| field, which contains the
6110 hash address of the token that names this attribute; and there's also a
6111 |parent| field, which points to the value node of |mp_structured| type at the
6112 next higher level (i.e., at the level to which this attribute is
6113 subsidiary). The |name_type| in an attribute node is `|attr|'. The
6114 |link| field points to the next attribute with the same parent; these are
6115 arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
6116 final attribute node links to the constant |end_attr|, whose |attr_loc|
6117 field is greater than any legal hash address. The |attr_head| in the
6118 parent points to a node whose |name_type| is |mp_structured_root|; this
6119 node represents the null attribute, i.e., the variable that is relevant
6120 when no attributes are attached to the parent. The |attr_head| node is either
6121 a value node, a subscript node, or an attribute node, depending on what
6122 the parent would be if it were not structured; but the subscript and
6123 attribute fields are ignored, so it effectively contains only the data of
6124 a value node. The |link| field in this special node points to an attribute
6125 node whose |attr_loc| field is zero; the latter node represents a collective
6126 subscript `\.{[]}' attached to the parent, and its |link| field points to
6127 the first non-special attribute node (or to |end_attr| if there are none).
6129 A subscript node likewise occupies three words, with |type| and |value| fields
6130 plus extra information; its |name_type| is |subscr|. In this case the
6131 third word is called the |subscript| field, which is a |scaled| integer.
6132 The |link| field points to the subscript node with the next larger
6133 subscript, if any; otherwise the |link| points to the attribute node
6134 for collective subscripts at this level. We have seen that the latter node
6135 contains an upward pointer, so that the parent can be deduced.
6137 The |name_type| in a parent-less value node is |root|, and the |link|
6138 is the hash address of the token that names this value.
6140 In other words, variables have a hierarchical structure that includes
6141 enough threads running around so that the program is able to move easily
6142 between siblings, parents, and children. An example should be helpful:
6143 (The reader is advised to draw a picture while reading the following
6144 description, since that will help to firm up the ideas.)
6145 Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
6146 and `\.{x20b}' have been mentioned in a user's program, where
6147 \.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
6148 and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
6149 |eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
6150 node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=mp_structured|,
6151 |attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
6152 node and |r| to a subscript node. (Are you still following this? Use
6153 a pencil to draw a diagram.) The lone variable `\.x' is represented by
6154 |type(q)| and |value(q)|; furthermore
6155 |name_type(q)=mp_structured_root| and |link(q)=q1|, where |q1| points
6156 to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
6157 |attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
6158 |type(q1)=mp_structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
6159 |qq| is a value node with |type(qq)=mp_numeric_type| (assuming that \.{x5} is
6160 numeric, because |qq| represents `\.{x[]}' with no further attributes),
6161 |name_type(qq)=mp_structured_root|, and
6162 |link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
6163 an attribute node representing `\.{x[][]}', which has never yet
6164 occurred; its |type| field is |undefined|, and its |value| field is
6165 undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
6166 |parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
6167 `\.{x[]b}', |type(qq2)=mp_unknown_boolean|; also |attr_loc(qq2)=h(b)|,
6168 |parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
6169 (Maybe colored lines will help untangle your picture.)
6170 Node |r| is a subscript node with |type| and |value|
6171 representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
6172 and |link(r)=r1| is another subscript node. To complete the picture,
6173 see if you can guess what |link(r1)| is; give up? It's~|q1|.
6174 Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
6175 |type(r1)=mp_structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
6176 and we finish things off with three more nodes
6177 |qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
6178 with a larger sheet of paper.) The value of variable \.{x20b}
6179 appears in node~|qqq2|, as you can well imagine.
6181 If the example in the previous paragraph doesn't make things crystal
6182 clear, a glance at some of the simpler subroutines below will reveal how
6183 things work out in practice.
6185 The only really unusual thing about these conventions is the use of
6186 collective subscript attributes. The idea is to avoid repeating a lot of
6187 type information when many elements of an array are identical macros
6188 (for which distinct values need not be stored) or when they don't have
6189 all of the possible attributes. Branches of the structure below collective
6190 subscript attributes do not carry actual values except for macro identifiers;
6191 branches of the structure below subscript nodes do not carry significant
6192 information in their collective subscript attributes.
6194 @d attr_loc_loc(A) ((A)+2) /* where the |attr_loc| and |parent| fields are */
6195 @d attr_loc(A) info(attr_loc_loc((A))) /* hash address of this attribute */
6196 @d parent(A) link(attr_loc_loc((A))) /* pointer to |mp_structured| variable */
6197 @d subscript_loc(A) ((A)+2) /* where the |subscript| field lives */
6198 @d subscript(A) mp->mem[subscript_loc((A))].sc /* subscript of this variable */
6199 @d attr_node_size 3 /* the number of words in an attribute node */
6200 @d subscr_node_size 3 /* the number of words in a subscript node */
6201 @d collective_subscript 0 /* code for the attribute `\.{[]}' */
6203 @<Initialize table...@>=
6204 attr_loc(end_attr)=hash_end+1; parent(end_attr)=null;
6206 @ Variables of type \&{pair} will have values that point to four-word
6207 nodes containing two numeric values. The first of these values has
6208 |name_type=mp_x_part_sector| and the second has |name_type=mp_y_part_sector|;
6209 the |link| in the first points back to the node whose |value| points
6210 to this four-word node.
6212 Variables of type \&{transform} are similar, but in this case their
6213 |value| points to a 12-word node containing six values, identified by
6214 |x_part_sector|, |y_part_sector|, |mp_xx_part_sector|, |mp_xy_part_sector|,
6215 |mp_yx_part_sector|, and |mp_yy_part_sector|.
6216 Finally, variables of type \&{color} have three values in six words
6217 identified by |mp_red_part_sector|, |mp_green_part_sector|, and |mp_blue_part_sector|.
6219 When an entire structured variable is saved, the |root| indication
6220 is temporarily replaced by |saved_root|.
6222 Some variables have no name; they just are used for temporary storage
6223 while expressions are being evaluated. We call them {\sl capsules}.
6225 @d x_part_loc(A) (A) /* where the \&{xpart} is found in a pair or transform node */
6226 @d y_part_loc(A) ((A)+2) /* where the \&{ypart} is found in a pair or transform node */
6227 @d xx_part_loc(A) ((A)+4) /* where the \&{xxpart} is found in a transform node */
6228 @d xy_part_loc(A) ((A)+6) /* where the \&{xypart} is found in a transform node */
6229 @d yx_part_loc(A) ((A)+8) /* where the \&{yxpart} is found in a transform node */
6230 @d yy_part_loc(A) ((A)+10) /* where the \&{yypart} is found in a transform node */
6231 @d red_part_loc(A) (A) /* where the \&{redpart} is found in a color node */
6232 @d green_part_loc(A) ((A)+2) /* where the \&{greenpart} is found in a color node */
6233 @d blue_part_loc(A) ((A)+4) /* where the \&{bluepart} is found in a color node */
6234 @d cyan_part_loc(A) (A) /* where the \&{cyanpart} is found in a color node */
6235 @d magenta_part_loc(A) ((A)+2) /* where the \&{magentapart} is found in a color node */
6236 @d yellow_part_loc(A) ((A)+4) /* where the \&{yellowpart} is found in a color node */
6237 @d black_part_loc(A) ((A)+6) /* where the \&{blackpart} is found in a color node */
6238 @d grey_part_loc(A) (A) /* where the \&{greypart} is found in a color node */
6240 @d pair_node_size 4 /* the number of words in a pair node */
6241 @d transform_node_size 12 /* the number of words in a transform node */
6242 @d color_node_size 6 /* the number of words in a color node */
6243 @d cmykcolor_node_size 8 /* the number of words in a color node */
6246 small_number big_node_size[mp_pair_type+1];
6247 small_number sector0[mp_pair_type+1];
6248 small_number sector_offset[mp_black_part_sector+1];
6250 @ The |sector0| array gives for each big node type, |name_type| values
6251 for its first subfield; the |sector_offset| array gives for each
6252 |name_type| value, the offset from the first subfield in words;
6253 and the |big_node_size| array gives the size in words for each type of
6257 mp->big_node_size[mp_transform_type]=transform_node_size;
6258 mp->big_node_size[mp_pair_type]=pair_node_size;
6259 mp->big_node_size[mp_color_type]=color_node_size;
6260 mp->big_node_size[mp_cmykcolor_type]=cmykcolor_node_size;
6261 mp->sector0[mp_transform_type]=mp_x_part_sector;
6262 mp->sector0[mp_pair_type]=mp_x_part_sector;
6263 mp->sector0[mp_color_type]=mp_red_part_sector;
6264 mp->sector0[mp_cmykcolor_type]=mp_cyan_part_sector;
6265 for (k=mp_x_part_sector;k<= mp_yy_part_sector;k++ ) {
6266 mp->sector_offset[k]=2*(k-mp_x_part_sector);
6268 for (k=mp_red_part_sector;k<= mp_blue_part_sector ; k++) {
6269 mp->sector_offset[k]=2*(k-mp_red_part_sector);
6271 for (k=mp_cyan_part_sector;k<= mp_black_part_sector;k++ ) {
6272 mp->sector_offset[k]=2*(k-mp_cyan_part_sector);
6275 @ If |type(p)=mp_pair_type| or |mp_transform_type| and if |value(p)=null|, the
6276 procedure call |init_big_node(p)| will allocate a pair or transform node
6277 for~|p|. The individual parts of such nodes are initially of type
6281 void mp_init_big_node (MP mp,pointer p) {
6282 pointer q; /* the new node */
6283 small_number s; /* its size */
6284 s=mp->big_node_size[type(p)]; q=mp_get_node(mp, s);
6287 @<Make variable |q+s| newly independent@>;
6288 name_type(q+s)=halfp(s)+mp->sector0[type(p)];
6291 link(q)=p; value(p)=q;
6294 @ The |id_transform| function creates a capsule for the
6295 identity transformation.
6298 pointer mp_id_transform (MP mp) {
6299 pointer p,q,r; /* list manipulation registers */
6300 p=mp_get_node(mp, value_node_size); type(p)=mp_transform_type;
6301 name_type(p)=mp_capsule; value(p)=null; mp_init_big_node(mp, p); q=value(p);
6302 r=q+transform_node_size;
6305 type(r)=mp_known; value(r)=0;
6307 value(xx_part_loc(q))=unity;
6308 value(yy_part_loc(q))=unity;
6312 @ Tokens are of type |tag_token| when they first appear, but they point
6313 to |null| until they are first used as the root of a variable.
6314 The following subroutine establishes the root node on such grand occasions.
6317 void mp_new_root (MP mp,pointer x) {
6318 pointer p; /* the new node */
6319 p=mp_get_node(mp, value_node_size); type(p)=undefined; name_type(p)=mp_root;
6320 link(p)=x; equiv(x)=p;
6323 @ These conventions for variable representation are illustrated by the
6324 |print_variable_name| routine, which displays the full name of a
6325 variable given only a pointer to its two-word value packet.
6328 void mp_print_variable_name (MP mp, pointer p);
6331 void mp_print_variable_name (MP mp, pointer p) {
6332 pointer q; /* a token list that will name the variable's suffix */
6333 pointer r; /* temporary for token list creation */
6334 while ( name_type(p)>=mp_x_part_sector ) {
6335 @<Preface the output with a part specifier; |return| in the
6336 case of a capsule@>;
6339 while ( name_type(p)>mp_saved_root ) {
6340 @<Ascend one level, pushing a token onto list |q|
6341 and replacing |p| by its parent@>;
6343 r=mp_get_avail(mp); info(r)=link(p); link(r)=q;
6344 if ( name_type(p)==mp_saved_root ) mp_print(mp, "(SAVED)");
6346 mp_show_token_list(mp, r,null,el_gordo,mp->tally);
6347 mp_flush_token_list(mp, r);
6350 @ @<Ascend one level, pushing a token onto list |q|...@>=
6352 if ( name_type(p)==mp_subscr ) {
6353 r=mp_new_num_tok(mp, subscript(p));
6356 } while (name_type(p)!=mp_attr);
6357 } else if ( name_type(p)==mp_structured_root ) {
6358 p=link(p); goto FOUND;
6360 if ( name_type(p)!=mp_attr ) mp_confusion(mp, "var");
6361 @:this can't happen var}{\quad var@>
6362 r=mp_get_avail(mp); info(r)=attr_loc(p);
6369 @ @<Preface the output with a part specifier...@>=
6370 { switch (name_type(p)) {
6371 case mp_x_part_sector: mp_print_char(mp, 'x'); break;
6372 case mp_y_part_sector: mp_print_char(mp, 'y'); break;
6373 case mp_xx_part_sector: mp_print(mp, "xx"); break;
6374 case mp_xy_part_sector: mp_print(mp, "xy"); break;
6375 case mp_yx_part_sector: mp_print(mp, "yx"); break;
6376 case mp_yy_part_sector: mp_print(mp, "yy"); break;
6377 case mp_red_part_sector: mp_print(mp, "red"); break;
6378 case mp_green_part_sector: mp_print(mp, "green"); break;
6379 case mp_blue_part_sector: mp_print(mp, "blue"); break;
6380 case mp_cyan_part_sector: mp_print(mp, "cyan"); break;
6381 case mp_magenta_part_sector: mp_print(mp, "magenta"); break;
6382 case mp_yellow_part_sector: mp_print(mp, "yellow"); break;
6383 case mp_black_part_sector: mp_print(mp, "black"); break;
6384 case mp_grey_part_sector: mp_print(mp, "grey"); break;
6386 mp_print(mp, "%CAPSULE"); mp_print_int(mp, p-null); return;
6389 } /* there are no other cases */
6390 mp_print(mp, "part ");
6391 p=link(p-mp->sector_offset[name_type(p)]);
6394 @ The |interesting| function returns |true| if a given variable is not
6395 in a capsule, or if the user wants to trace capsules.
6398 boolean mp_interesting (MP mp,pointer p) {
6399 small_number t; /* a |name_type| */
6400 if ( mp->internal[mp_tracing_capsules]>0 ) {
6404 if ( t>=mp_x_part_sector ) if ( t!=mp_capsule )
6405 t=name_type(link(p-mp->sector_offset[t]));
6406 return (t!=mp_capsule);
6410 @ Now here is a subroutine that converts an unstructured type into an
6411 equivalent structured type, by inserting a |mp_structured| node that is
6412 capable of growing. This operation is done only when |name_type(p)=root|,
6413 |subscr|, or |attr|.
6415 The procedure returns a pointer to the new node that has taken node~|p|'s
6416 place in the structure. Node~|p| itself does not move, nor are its
6417 |value| or |type| fields changed in any way.
6420 pointer mp_new_structure (MP mp,pointer p) {
6421 pointer q,r=0; /* list manipulation registers */
6422 switch (name_type(p)) {
6424 q=link(p); r=mp_get_node(mp, value_node_size); equiv(q)=r;
6427 @<Link a new subscript node |r| in place of node |p|@>;
6430 @<Link a new attribute node |r| in place of node |p|@>;
6433 mp_confusion(mp, "struct");
6434 @:this can't happen struct}{\quad struct@>
6437 link(r)=link(p); type(r)=mp_structured; name_type(r)=name_type(p);
6438 attr_head(r)=p; name_type(p)=mp_structured_root;
6439 q=mp_get_node(mp, attr_node_size); link(p)=q; subscr_head(r)=q;
6440 parent(q)=r; type(q)=undefined; name_type(q)=mp_attr; link(q)=end_attr;
6441 attr_loc(q)=collective_subscript;
6445 @ @<Link a new subscript node |r| in place of node |p|@>=
6450 } while (name_type(q)!=mp_attr);
6451 q=parent(q); r=subscr_head_loc(q); /* |link(r)=subscr_head(q)| */
6455 r=mp_get_node(mp, subscr_node_size);
6456 link(q)=r; subscript(r)=subscript(p);
6459 @ If the attribute is |collective_subscript|, there are two pointers to
6460 node~|p|, so we must change both of them.
6462 @<Link a new attribute node |r| in place of node |p|@>=
6464 q=parent(p); r=attr_head(q);
6468 r=mp_get_node(mp, attr_node_size); link(q)=r;
6469 mp->mem[attr_loc_loc(r)]=mp->mem[attr_loc_loc(p)]; /* copy |attr_loc| and |parent| */
6470 if ( attr_loc(p)==collective_subscript ) {
6471 q=subscr_head_loc(parent(p));
6472 while ( link(q)!=p ) q=link(q);
6477 @ The |find_variable| routine is given a pointer~|t| to a nonempty token
6478 list of suffixes; it returns a pointer to the corresponding two-word
6479 value. For example, if |t| points to token \.x followed by a numeric
6480 token containing the value~7, |find_variable| finds where the value of
6481 \.{x7} is stored in memory. This may seem a simple task, and it
6482 usually is, except when \.{x7} has never been referenced before.
6483 Indeed, \.x may never have even been subscripted before; complexities
6484 arise with respect to updating the collective subscript information.
6486 If a macro type is detected anywhere along path~|t|, or if the first
6487 item on |t| isn't a |tag_token|, the value |null| is returned.
6488 Otherwise |p| will be a non-null pointer to a node such that
6489 |undefined<type(p)<mp_structured|.
6491 @d abort_find { return null; }
6494 pointer mp_find_variable (MP mp,pointer t) {
6495 pointer p,q,r,s; /* nodes in the ``value'' line */
6496 pointer pp,qq,rr,ss; /* nodes in the ``collective'' line */
6497 integer n; /* subscript or attribute */
6498 memory_word save_word; /* temporary storage for a word of |mem| */
6500 p=info(t); t=link(t);
6501 if ( (eq_type(p) % outer_tag) != tag_token ) abort_find;
6502 if ( equiv(p)==null ) mp_new_root(mp, p);
6505 @<Make sure that both nodes |p| and |pp| are of |mp_structured| type@>;
6506 if ( t<mp->hi_mem_min ) {
6507 @<Descend one level for the subscript |value(t)|@>
6509 @<Descend one level for the attribute |info(t)|@>;
6513 if ( type(pp)>=mp_structured ) {
6514 if ( type(pp)==mp_structured ) pp=attr_head(pp); else abort_find;
6516 if ( type(p)==mp_structured ) p=attr_head(p);
6517 if ( type(p)==undefined ) {
6518 if ( type(pp)==undefined ) { type(pp)=mp_numeric_type; value(pp)=null; };
6519 type(p)=type(pp); value(p)=null;
6524 @ Although |pp| and |p| begin together, they diverge when a subscript occurs;
6525 |pp|~stays in the collective line while |p|~goes through actual subscript
6528 @<Make sure that both nodes |p| and |pp|...@>=
6529 if ( type(pp)!=mp_structured ) {
6530 if ( type(pp)>mp_structured ) abort_find;
6531 ss=mp_new_structure(mp, pp);
6534 }; /* now |type(pp)=mp_structured| */
6535 if ( type(p)!=mp_structured ) /* it cannot be |>mp_structured| */
6536 p=mp_new_structure(mp, p) /* now |type(p)=mp_structured| */
6538 @ We want this part of the program to be reasonably fast, in case there are
6540 lots of subscripts at the same level of the data structure. Therefore
6541 we store an ``infinite'' value in the word that appears at the end of the
6542 subscript list, even though that word isn't part of a subscript node.
6544 @<Descend one level for the subscript |value(t)|@>=
6547 pp=link(attr_head(pp)); /* now |attr_loc(pp)=collective_subscript| */
6548 q=link(attr_head(p)); save_word=mp->mem[subscript_loc(q)];
6549 subscript(q)=el_gordo; s=subscr_head_loc(p); /* |link(s)=subscr_head(p)| */
6552 } while (n>subscript(s));
6553 if ( n==subscript(s) ) {
6556 p=mp_get_node(mp, subscr_node_size); link(r)=p; link(p)=s;
6557 subscript(p)=n; name_type(p)=mp_subscr; type(p)=undefined;
6559 mp->mem[subscript_loc(q)]=save_word;
6562 @ @<Descend one level for the attribute |info(t)|@>=
6568 } while (n>attr_loc(ss));
6569 if ( n<attr_loc(ss) ) {
6570 qq=mp_get_node(mp, attr_node_size); link(rr)=qq; link(qq)=ss;
6571 attr_loc(qq)=n; name_type(qq)=mp_attr; type(qq)=undefined;
6572 parent(qq)=pp; ss=qq;
6577 pp=ss; s=attr_head(p);
6580 } while (n>attr_loc(s));
6581 if ( n==attr_loc(s) ) {
6584 q=mp_get_node(mp, attr_node_size); link(r)=q; link(q)=s;
6585 attr_loc(q)=n; name_type(q)=mp_attr; type(q)=undefined;
6591 @ Variables lose their former values when they appear in a type declaration,
6592 or when they are defined to be macros or \&{let} equal to something else.
6593 A subroutine will be defined later that recycles the storage associated
6594 with any particular |type| or |value|; our goal now is to study a higher
6595 level process called |flush_variable|, which selectively frees parts of a
6598 This routine has some complexity because of examples such as
6599 `\hbox{\tt numeric x[]a[]b}'
6600 which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
6601 `\hbox{\tt vardef x[]a[]=...}'
6602 discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
6603 suffix, except for the collective node \.{x[]a[]} itself. The obvious way
6604 to handle such examples is to use recursion; so that's what we~do.
6607 Parameter |p| points to the root information of the variable;
6608 parameter |t| points to a list of one-word nodes that represent
6609 suffixes, with |info=collective_subscript| for subscripts.
6612 @<Declare subroutines for printing expressions@>
6613 @<Declare basic dependency-list subroutines@>
6614 @<Declare the recycling subroutines@>
6615 void mp_flush_cur_exp (MP mp,scaled v) ;
6616 @<Declare the procedure called |flush_below_variable|@>
6619 void mp_flush_variable (MP mp,pointer p, pointer t, boolean discard_suffixes) {
6620 pointer q,r; /* list manipulation */
6621 halfword n; /* attribute to match */
6623 if ( type(p)!=mp_structured ) return;
6624 n=info(t); t=link(t);
6625 if ( n==collective_subscript ) {
6626 r=subscr_head_loc(p); q=link(r); /* |q=subscr_head(p)| */
6627 while ( name_type(q)==mp_subscr ){
6628 mp_flush_variable(mp, q,t,discard_suffixes);
6630 if ( type(q)==mp_structured ) r=q;
6631 else { link(r)=link(q); mp_free_node(mp, q,subscr_node_size); }
6641 } while (attr_loc(p)<n);
6642 if ( attr_loc(p)!=n ) return;
6644 if ( discard_suffixes ) {
6645 mp_flush_below_variable(mp, p);
6647 if ( type(p)==mp_structured ) p=attr_head(p);
6648 mp_recycle_value(mp, p);
6652 @ The next procedure is simpler; it wipes out everything but |p| itself,
6653 which becomes undefined.
6655 @<Declare the procedure called |flush_below_variable|@>=
6656 void mp_flush_below_variable (MP mp, pointer p);
6659 void mp_flush_below_variable (MP mp,pointer p) {
6660 pointer q,r; /* list manipulation registers */
6661 if ( type(p)!=mp_structured ) {
6662 mp_recycle_value(mp, p); /* this sets |type(p)=undefined| */
6665 while ( name_type(q)==mp_subscr ) {
6666 mp_flush_below_variable(mp, q); r=q; q=link(q);
6667 mp_free_node(mp, r,subscr_node_size);
6669 r=attr_head(p); q=link(r); mp_recycle_value(mp, r);
6670 if ( name_type(p)<=mp_saved_root ) mp_free_node(mp, r,value_node_size);
6671 else mp_free_node(mp, r,subscr_node_size);
6672 /* we assume that |subscr_node_size=attr_node_size| */
6674 mp_flush_below_variable(mp, q); r=q; q=link(q); mp_free_node(mp, r,attr_node_size);
6675 } while (q!=end_attr);
6680 @ Just before assigning a new value to a variable, we will recycle the
6681 old value and make the old value undefined. The |und_type| routine
6682 determines what type of undefined value should be given, based on
6683 the current type before recycling.
6686 small_number mp_und_type (MP mp,pointer p) {
6688 case undefined: case mp_vacuous:
6690 case mp_boolean_type: case mp_unknown_boolean:
6691 return mp_unknown_boolean;
6692 case mp_string_type: case mp_unknown_string:
6693 return mp_unknown_string;
6694 case mp_pen_type: case mp_unknown_pen:
6695 return mp_unknown_pen;
6696 case mp_path_type: case mp_unknown_path:
6697 return mp_unknown_path;
6698 case mp_picture_type: case mp_unknown_picture:
6699 return mp_unknown_picture;
6700 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
6701 case mp_pair_type: case mp_numeric_type:
6703 case mp_known: case mp_dependent: case mp_proto_dependent: case mp_independent:
6704 return mp_numeric_type;
6705 } /* there are no other cases */
6709 @ The |clear_symbol| routine is used when we want to redefine the equivalent
6710 of a symbolic token. It must remove any variable structure or macro
6711 definition that is currently attached to that symbol. If the |saving|
6712 parameter is true, a subsidiary structure is saved instead of destroyed.
6715 void mp_clear_symbol (MP mp,pointer p, boolean saving) {
6716 pointer q; /* |equiv(p)| */
6718 switch (eq_type(p) % outer_tag) {
6720 case secondary_primary_macro:
6721 case tertiary_secondary_macro:
6722 case expression_tertiary_macro:
6723 if ( ! saving ) mp_delete_mac_ref(mp, q);
6728 name_type(q)=mp_saved_root;
6730 mp_flush_below_variable(mp, q); mp_free_node(mp,q,value_node_size);
6737 mp->eqtb[p]=mp->eqtb[frozen_undefined];
6740 @* \[16] Saving and restoring equivalents.
6741 The nested structure given by \&{begingroup} and \&{endgroup}
6742 allows |eqtb| entries to be saved and restored, so that temporary changes
6743 can be made without difficulty. When the user requests a current value to
6744 be saved, \MP\ puts that value into its ``save stack.'' An appearance of
6745 \&{endgroup} ultimately causes the old values to be removed from the save
6746 stack and put back in their former places.
6748 The save stack is a linked list containing three kinds of entries,
6749 distinguished by their |info| fields. If |p| points to a saved item,
6753 |info(p)=0| stands for a group boundary; each \&{begingroup} contributes
6754 such an item to the save stack and each \&{endgroup} cuts back the stack
6755 until the most recent such entry has been removed.
6758 |info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
6759 contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
6760 commands or suitable \&{interim} commands.
6763 |info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
6764 integer to be restored to internal parameter number~|q|. Such entries
6765 are generated by \&{interim} commands.
6768 The global variable |save_ptr| points to the top item on the save stack.
6770 @d save_node_size 2 /* number of words per non-boundary save-stack node */
6771 @d saved_equiv(A) mp->mem[(A)+1].hh /* where an |eqtb| entry gets saved */
6772 @d save_boundary_item(A) { (A)=mp_get_avail(mp); info((A))=0;
6773 link((A))=mp->save_ptr; mp->save_ptr=(A);
6777 pointer save_ptr; /* the most recently saved item */
6779 @ @<Set init...@>=mp->save_ptr=null;
6781 @ The |save_variable| routine is given a hash address |q|; it salts this
6782 address in the save stack, together with its current equivalent,
6783 then makes token~|q| behave as though it were brand new.
6785 Nothing is stacked when |save_ptr=null|, however; there's no way to remove
6786 things from the stack when the program is not inside a group, so there's
6787 no point in wasting the space.
6789 @c void mp_save_variable (MP mp,pointer q) {
6790 pointer p; /* temporary register */
6791 if ( mp->save_ptr!=null ){
6792 p=mp_get_node(mp, save_node_size); info(p)=q; link(p)=mp->save_ptr;
6793 saved_equiv(p)=mp->eqtb[q]; mp->save_ptr=p;
6795 mp_clear_symbol(mp, q,(mp->save_ptr!=null));
6798 @ Similarly, |save_internal| is given the location |q| of an internal
6799 quantity like |mp_tracing_pens|. It creates a save stack entry of the
6802 @c void mp_save_internal (MP mp,halfword q) {
6803 pointer p; /* new item for the save stack */
6804 if ( mp->save_ptr!=null ){
6805 p=mp_get_node(mp, save_node_size); info(p)=hash_end+q;
6806 link(p)=mp->save_ptr; value(p)=mp->internal[q]; mp->save_ptr=p;
6810 @ At the end of a group, the |unsave| routine restores all of the saved
6811 equivalents in reverse order. This routine will be called only when there
6812 is at least one boundary item on the save stack.
6815 void mp_unsave (MP mp) {
6816 pointer q; /* index to saved item */
6817 pointer p; /* temporary register */
6818 while ( info(mp->save_ptr)!=0 ) {
6819 q=info(mp->save_ptr);
6821 if ( mp->internal[mp_tracing_restores]>0 ) {
6822 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6823 mp_print(mp, mp->int_name[q-(hash_end)]); mp_print_char(mp, '=');
6824 mp_print_scaled(mp, value(mp->save_ptr)); mp_print_char(mp, '}');
6825 mp_end_diagnostic(mp, false);
6827 mp->internal[q-(hash_end)]=value(mp->save_ptr);
6829 if ( mp->internal[mp_tracing_restores]>0 ) {
6830 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6831 mp_print_text(q); mp_print_char(mp, '}');
6832 mp_end_diagnostic(mp, false);
6834 mp_clear_symbol(mp, q,false);
6835 mp->eqtb[q]=saved_equiv(mp->save_ptr);
6836 if ( eq_type(q) % outer_tag==tag_token ) {
6838 if ( p!=null ) name_type(p)=mp_root;
6841 p=link(mp->save_ptr);
6842 mp_free_node(mp, mp->save_ptr,save_node_size); mp->save_ptr=p;
6844 p=link(mp->save_ptr); free_avail(mp->save_ptr); mp->save_ptr=p;
6847 @* \[17] Data structures for paths.
6848 When a \MP\ user specifies a path, \MP\ will create a list of knots
6849 and control points for the associated cubic spline curves. If the
6850 knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
6851 $z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
6852 $z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
6853 @:Bezier}{B\'ezier, Pierre Etienne@>
6854 $$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
6855 &=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
6858 There is a 8-word node for each knot $z_k$, containing one word of
6859 control information and six words for the |x| and |y| coordinates of
6860 $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
6861 |left_type| and |right_type| fields, which each occupy a quarter of
6862 the first word in the node; they specify properties of the curve as it
6863 enters and leaves the knot. There's also a halfword |link| field,
6864 which points to the following knot, and a final supplementary word (of
6865 which only a quarter is used).
6867 If the path is a closed contour, knots 0 and |n| are identical;
6868 i.e., the |link| in knot |n-1| points to knot~0. But if the path
6869 is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
6870 are equal to |endpoint|. In the latter case the |link| in knot~|n| points
6871 to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
6873 @d left_type(A) mp->mem[(A)].hh.b0 /* characterizes the path entering this knot */
6874 @d right_type(A) mp->mem[(A)].hh.b1 /* characterizes the path leaving this knot */
6875 @d x_coord(A) mp->mem[(A)+1].sc /* the |x| coordinate of this knot */
6876 @d y_coord(A) mp->mem[(A)+2].sc /* the |y| coordinate of this knot */
6877 @d left_x(A) mp->mem[(A)+3].sc /* the |x| coordinate of previous control point */
6878 @d left_y(A) mp->mem[(A)+4].sc /* the |y| coordinate of previous control point */
6879 @d right_x(A) mp->mem[(A)+5].sc /* the |x| coordinate of next control point */
6880 @d right_y(A) mp->mem[(A)+6].sc /* the |y| coordinate of next control point */
6881 @d x_loc(A) ((A)+1) /* where the |x| coordinate is stored in a knot */
6882 @d y_loc(A) ((A)+2) /* where the |y| coordinate is stored in a knot */
6883 @d knot_coord(A) mp->mem[(A)].sc /* |x| or |y| coordinate given |x_loc| or |y_loc| */
6884 @d left_coord(A) mp->mem[(A)+2].sc
6885 /* coordinate of previous control point given |x_loc| or |y_loc| */
6886 @d right_coord(A) mp->mem[(A)+4].sc
6887 /* coordinate of next control point given |x_loc| or |y_loc| */
6888 @d knot_node_size 8 /* number of words in a knot node */
6892 mp_endpoint=0, /* |left_type| at path beginning and |right_type| at path end */
6893 mp_explicit, /* |left_type| or |right_type| when control points are known */
6894 mp_given, /* |left_type| or |right_type| when a direction is given */
6895 mp_curl, /* |left_type| or |right_type| when a curl is desired */
6896 mp_open, /* |left_type| or |right_type| when \MP\ should choose the direction */
6900 @ Before the B\'ezier control points have been calculated, the memory
6901 space they will ultimately occupy is taken up by information that can be
6902 used to compute them. There are four cases:
6905 \textindent{$\bullet$} If |right_type=mp_open|, the curve should leave
6906 the knot in the same direction it entered; \MP\ will figure out a
6910 \textindent{$\bullet$} If |right_type=mp_curl|, the curve should leave the
6911 knot in a direction depending on the angle at which it enters the next
6912 knot and on the curl parameter stored in |right_curl|.
6915 \textindent{$\bullet$} If |right_type=mp_given|, the curve should leave the
6916 knot in a nonzero direction stored as an |angle| in |right_given|.
6919 \textindent{$\bullet$} If |right_type=mp_explicit|, the B\'ezier control
6920 point for leaving this knot has already been computed; it is in the
6921 |right_x| and |right_y| fields.
6924 The rules for |left_type| are similar, but they refer to the curve entering
6925 the knot, and to \\{left} fields instead of \\{right} fields.
6927 Non-|explicit| control points will be chosen based on ``tension'' parameters
6928 in the |left_tension| and |right_tension| fields. The
6929 `\&{atleast}' option is represented by negative tension values.
6930 @:at_least_}{\&{atleast} primitive@>
6932 For example, the \MP\ path specification
6933 $$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
6935 where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
6937 \def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
6938 $$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
6939 |left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
6941 |endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
6942 |open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
6943 |curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
6944 |given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
6945 |open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
6946 |explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
6947 Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
6948 Of course, this example is more complicated than anything a normal user
6951 These types must satisfy certain restrictions because of the form of \MP's
6953 (i)~|open| type never appears in the same node together with |endpoint|,
6955 (ii)~The |right_type| of a node is |explicit| if and only if the
6956 |left_type| of the following node is |explicit|.
6957 (iii)~|endpoint| types occur only at the ends, as mentioned above.
6959 @d left_curl left_x /* curl information when entering this knot */
6960 @d left_given left_x /* given direction when entering this knot */
6961 @d left_tension left_y /* tension information when entering this knot */
6962 @d right_curl right_x /* curl information when leaving this knot */
6963 @d right_given right_x /* given direction when leaving this knot */
6964 @d right_tension right_y /* tension information when leaving this knot */
6966 @ Knots can be user-supplied, or they can be created by program code,
6967 like the |split_cubic| function, or |copy_path|. The distinction is
6968 needed for the cleanup routine that runs after |split_cubic|, because
6969 it should only delete knots it has previously inserted, and never
6970 anything that was user-supplied. In order to be able to differentiate
6971 one knot from another, we will set |originator(p):=mp_metapost_user| when
6972 it appeared in the actual metapost program, and
6973 |originator(p):=mp_program_code| in all other cases.
6975 @d originator(A) mp->mem[(A)+7].hh.b0 /* the creator of this knot */
6979 mp_program_code=0, /* not created by a user */
6980 mp_metapost_user, /* created by a user */
6983 @ Here is a routine that prints a given knot list
6984 in symbolic form. It illustrates the conventions discussed above,
6985 and checks for anomalies that might arise while \MP\ is being debugged.
6987 @<Declare subroutines for printing expressions@>=
6988 void mp_pr_path (MP mp,pointer h);
6991 void mp_pr_path (MP mp,pointer h) {
6992 pointer p,q; /* for list traversal */
6996 if ( (p==null)||(q==null) ) {
6997 mp_print_nl(mp, "???"); return; /* this won't happen */
7000 @<Print information for adjacent knots |p| and |q|@>;
7003 if ( (p!=h)||(left_type(h)!=mp_endpoint) ) {
7004 @<Print two dots, followed by |given| or |curl| if present@>;
7007 if ( left_type(h)!=mp_endpoint )
7008 mp_print(mp, "cycle");
7011 @ @<Print information for adjacent knots...@>=
7012 mp_print_two(mp, x_coord(p),y_coord(p));
7013 switch (right_type(p)) {
7015 if ( left_type(p)==mp_open ) mp_print(mp, "{open?}"); /* can't happen */
7017 if ( (left_type(q)!=mp_endpoint)||(q!=h) ) q=null; /* force an error */
7021 @<Print control points between |p| and |q|, then |goto done1|@>;
7024 @<Print information for a curve that begins |open|@>;
7028 @<Print information for a curve that begins |curl| or |given|@>;
7031 mp_print(mp, "???"); /* can't happen */
7035 if ( left_type(q)<=mp_explicit ) {
7036 mp_print(mp, "..control?"); /* can't happen */
7038 } else if ( (right_tension(p)!=unity)||(left_tension(q)!=unity) ) {
7039 @<Print tension between |p| and |q|@>;
7042 @ Since |n_sin_cos| produces |fraction| results, which we will print as if they
7043 were |scaled|, the magnitude of a |given| direction vector will be~4096.
7045 @<Print two dots...@>=
7047 mp_print_nl(mp, " ..");
7048 if ( left_type(p)==mp_given ) {
7049 mp_n_sin_cos(mp, left_given(p)); mp_print_char(mp, '{');
7050 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
7051 mp_print_scaled(mp, mp->n_sin); mp_print_char(mp, '}');
7052 } else if ( left_type(p)==mp_curl ){
7053 mp_print(mp, "{curl ");
7054 mp_print_scaled(mp, left_curl(p)); mp_print_char(mp, '}');
7058 @ @<Print tension between |p| and |q|@>=
7060 mp_print(mp, "..tension ");
7061 if ( right_tension(p)<0 ) mp_print(mp, "atleast");
7062 mp_print_scaled(mp, abs(right_tension(p)));
7063 if ( right_tension(p)!=left_tension(q) ){
7064 mp_print(mp, " and ");
7065 if ( left_tension(q)<0 ) mp_print(mp, "atleast");
7066 mp_print_scaled(mp, abs(left_tension(q)));
7070 @ @<Print control points between |p| and |q|, then |goto done1|@>=
7072 mp_print(mp, "..controls ");
7073 mp_print_two(mp, right_x(p),right_y(p));
7074 mp_print(mp, " and ");
7075 if ( left_type(q)!=mp_explicit ) {
7076 mp_print(mp, "??"); /* can't happen */
7079 mp_print_two(mp, left_x(q),left_y(q));
7084 @ @<Print information for a curve that begins |open|@>=
7085 if ( (left_type(p)!=mp_explicit)&&(left_type(p)!=mp_open) ) {
7086 mp_print(mp, "{open?}"); /* can't happen */
7090 @ A curl of 1 is shown explicitly, so that the user sees clearly that
7091 \MP's default curl is present.
7093 The code here uses the fact that |left_curl==left_given| and
7094 |right_curl==right_given|.
7096 @<Print information for a curve that begins |curl|...@>=
7098 if ( left_type(p)==mp_open )
7099 mp_print(mp, "??"); /* can't happen */
7101 if ( right_type(p)==mp_curl ) {
7102 mp_print(mp, "{curl "); mp_print_scaled(mp, right_curl(p));
7104 mp_n_sin_cos(mp, right_given(p)); mp_print_char(mp, '{');
7105 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
7106 mp_print_scaled(mp, mp->n_sin);
7108 mp_print_char(mp, '}');
7111 @ It is convenient to have another version of |pr_path| that prints the path
7112 as a diagnostic message.
7114 @<Declare subroutines for printing expressions@>=
7115 void mp_print_path (MP mp,pointer h, char *s, boolean nuline) {
7116 mp_print_diagnostic(mp, "Path", s, nuline); mp_print_ln(mp);
7119 mp_end_diagnostic(mp, true);
7122 @ If we want to duplicate a knot node, we can say |copy_knot|:
7125 pointer mp_copy_knot (MP mp,pointer p) {
7126 pointer q; /* the copy */
7127 int k; /* runs through the words of a knot node */
7128 q=mp_get_node(mp, knot_node_size);
7129 for (k=0;k<knot_node_size;k++) {
7130 mp->mem[q+k]=mp->mem[p+k];
7132 originator(q)=originator(p);
7136 @ The |copy_path| routine makes a clone of a given path.
7139 pointer mp_copy_path (MP mp, pointer p) {
7140 pointer q,pp,qq; /* for list manipulation */
7141 q=mp_copy_knot(mp, p);
7144 link(qq)=mp_copy_knot(mp, pp);
7153 @ Just before |ship_out|, knot lists are exported for printing.
7155 The |gr_XXXX| macros are defined in |mppsout.h|.
7158 struct mp_knot *mp_export_knot (MP mp,pointer p) {
7159 struct mp_knot *q; /* the copy */
7162 q = mp_xmalloc(mp, 1, sizeof (struct mp_knot));
7163 memset(q,0,sizeof (struct mp_knot));
7164 gr_left_type(q) = left_type(p);
7165 gr_right_type(q) = right_type(p);
7166 gr_x_coord(q) = x_coord(p);
7167 gr_y_coord(q) = y_coord(p);
7168 gr_left_x(q) = left_x(p);
7169 gr_left_y(q) = left_y(p);
7170 gr_right_x(q) = right_x(p);
7171 gr_right_y(q) = right_y(p);
7172 gr_originator(q) = originator(p);
7176 @ The |export_knot_list| routine therefore also makes a clone
7180 struct mp_knot *mp_export_knot_list (MP mp, pointer p) {
7181 struct mp_knot *q, *qq; /* for list manipulation */
7182 pointer pp; /* for list manipulation */
7185 q=mp_export_knot(mp, p);
7188 gr_next_knot(qq)=mp_export_knot(mp, pp);
7189 qq=gr_next_knot(qq);
7197 @ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
7198 returns a pointer to the first node of the copy, if the path is a cycle,
7199 but to the final node of a non-cyclic copy. The global
7200 variable |path_tail| will point to the final node of the original path;
7201 this trick makes it easier to implement `\&{doublepath}'.
7203 All node types are assumed to be |endpoint| or |explicit| only.
7206 pointer mp_htap_ypoc (MP mp,pointer p) {
7207 pointer q,pp,qq,rr; /* for list manipulation */
7208 q=mp_get_node(mp, knot_node_size); /* this will correspond to |p| */
7211 right_type(qq)=left_type(pp); left_type(qq)=right_type(pp);
7212 x_coord(qq)=x_coord(pp); y_coord(qq)=y_coord(pp);
7213 right_x(qq)=left_x(pp); right_y(qq)=left_y(pp);
7214 left_x(qq)=right_x(pp); left_y(qq)=right_y(pp);
7215 originator(qq)=originator(pp);
7216 if ( link(pp)==p ) {
7217 link(q)=qq; mp->path_tail=pp; return q;
7219 rr=mp_get_node(mp, knot_node_size); link(rr)=qq; qq=rr; pp=link(pp);
7224 pointer path_tail; /* the node that links to the beginning of a path */
7226 @ When a cyclic list of knot nodes is no longer needed, it can be recycled by
7227 calling the following subroutine.
7229 @<Declare the recycling subroutines@>=
7230 void mp_toss_knot_list (MP mp,pointer p) ;
7233 void mp_toss_knot_list (MP mp,pointer p) {
7234 pointer q; /* the node being freed */
7235 pointer r; /* the next node */
7239 mp_free_node(mp, q,knot_node_size); q=r;
7243 @* \[18] Choosing control points.
7244 Now we must actually delve into one of \MP's more difficult routines,
7245 the |make_choices| procedure that chooses angles and control points for
7246 the splines of a curve when the user has not specified them explicitly.
7247 The parameter to |make_choices| points to a list of knots and
7248 path information, as described above.
7250 A path decomposes into independent segments at ``breakpoint'' knots,
7251 which are knots whose left and right angles are both prespecified in
7252 some way (i.e., their |left_type| and |right_type| aren't both open).
7255 @<Declare the procedure called |solve_choices|@>;
7256 void mp_make_choices (MP mp,pointer knots) {
7257 pointer h; /* the first breakpoint */
7258 pointer p,q; /* consecutive breakpoints being processed */
7259 @<Other local variables for |make_choices|@>;
7260 check_arith; /* make sure that |arith_error=false| */
7261 if ( mp->internal[mp_tracing_choices]>0 )
7262 mp_print_path(mp, knots,", before choices",true);
7263 @<If consecutive knots are equal, join them explicitly@>;
7264 @<Find the first breakpoint, |h|, on the path;
7265 insert an artificial breakpoint if the path is an unbroken cycle@>;
7268 @<Fill in the control points between |p| and the next breakpoint,
7269 then advance |p| to that breakpoint@>;
7271 if ( mp->internal[mp_tracing_choices]>0 )
7272 mp_print_path(mp, knots,", after choices",true);
7273 if ( mp->arith_error ) {
7274 @<Report an unexpected problem during the choice-making@>;
7278 @ @<Report an unexpected problem during the choice...@>=
7280 print_err("Some number got too big");
7281 @.Some number got too big@>
7282 help2("The path that I just computed is out of range.")
7283 ("So it will probably look funny. Proceed, for a laugh.");
7284 mp_put_get_error(mp); mp->arith_error=false;
7287 @ Two knots in a row with the same coordinates will always be joined
7288 by an explicit ``curve'' whose control points are identical with the
7291 @<If consecutive knots are equal, join them explicitly@>=
7295 if ( x_coord(p)==x_coord(q) && y_coord(p)==y_coord(q) && right_type(p)>mp_explicit ) {
7296 right_type(p)=mp_explicit;
7297 if ( left_type(p)==mp_open ) {
7298 left_type(p)=mp_curl; left_curl(p)=unity;
7300 left_type(q)=mp_explicit;
7301 if ( right_type(q)==mp_open ) {
7302 right_type(q)=mp_curl; right_curl(q)=unity;
7304 right_x(p)=x_coord(p); left_x(q)=x_coord(p);
7305 right_y(p)=y_coord(p); left_y(q)=y_coord(p);
7310 @ If there are no breakpoints, it is necessary to compute the direction
7311 angles around an entire cycle. In this case the |left_type| of the first
7312 node is temporarily changed to |end_cycle|.
7314 @<Find the first breakpoint, |h|, on the path...@>=
7317 if ( left_type(h)!=mp_open ) break;
7318 if ( right_type(h)!=mp_open ) break;
7321 left_type(h)=mp_end_cycle; break;
7325 @ If |right_type(p)<given| and |q=link(p)|, we must have
7326 |right_type(p)=left_type(q)=mp_explicit| or |endpoint|.
7328 @<Fill in the control points between |p| and the next breakpoint...@>=
7330 if ( right_type(p)>=mp_given ) {
7331 while ( (left_type(q)==mp_open)&&(right_type(q)==mp_open) ) q=link(q);
7332 @<Fill in the control information between
7333 consecutive breakpoints |p| and |q|@>;
7334 } else if ( right_type(p)==mp_endpoint ) {
7335 @<Give reasonable values for the unused control points between |p| and~|q|@>;
7339 @ This step makes it possible to transform an explicitly computed path without
7340 checking the |left_type| and |right_type| fields.
7342 @<Give reasonable values for the unused control points between |p| and~|q|@>=
7344 right_x(p)=x_coord(p); right_y(p)=y_coord(p);
7345 left_x(q)=x_coord(q); left_y(q)=y_coord(q);
7348 @ Before we can go further into the way choices are made, we need to
7349 consider the underlying theory. The basic ideas implemented in |make_choices|
7350 are due to John Hobby, who introduced the notion of ``mock curvature''
7351 @^Hobby, John Douglas@>
7352 at a knot. Angles are chosen so that they preserve mock curvature when
7353 a knot is passed, and this has been found to produce excellent results.
7355 It is convenient to introduce some notations that simplify the necessary
7356 formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
7357 between knots |k| and |k+1|; and let
7358 $${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
7359 so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
7360 through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
7361 The control points for the spline from $z_k$ to $z\k$ will be denoted by
7362 $$\eqalign{z_k^+&=z_k+
7363 \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
7365 \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
7366 where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
7367 beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
7368 corresponding ``offset angles.'' These angles satisfy the condition
7369 $$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
7370 whenever the curve leaves an intermediate knot~|k| in the direction that
7373 @ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
7374 the curve at its beginning and ending points. This means that
7375 $\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
7376 where $f(\theta,\phi)$ is \MP's standard velocity function defined in
7377 the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
7378 z\k^-,z\k^{\phantom+};t)$
7381 $${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
7382 \qquad{\rm and}\qquad
7383 {2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
7384 at |t=0| and |t=1|, respectively. The mock curvature is the linear
7386 approximation to this true curvature that arises in the limit for
7387 small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
7388 The standard velocity function satisfies
7389 $$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
7390 hence the mock curvatures are respectively
7391 $${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
7392 \qquad{\rm and}\qquad
7393 {2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
7395 @ The turning angles $\psi_k$ are given, and equation $(*)$ above
7396 determines $\phi_k$ when $\theta_k$ is known, so the task of
7397 angle selection is essentially to choose appropriate values for each
7398 $\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
7399 from $(**)$, we obtain a system of linear equations of the form
7400 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7402 $$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7403 \qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7404 \qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
7405 \qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
7406 The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
7407 will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
7408 $C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
7409 hence they have a unique solution. Moreover, in most cases the tensions
7410 are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
7411 solution numerically stable, and there is an exponential damping
7412 effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
7413 a factor of~$O(2^{-j})$.
7415 @ However, we still must consider the angles at the starting and ending
7416 knots of a non-cyclic path. These angles might be given explicitly, or
7417 they might be specified implicitly in terms of an amount of ``curl.''
7419 Let's assume that angles need to be determined for a non-cyclic path
7420 starting at $z_0$ and ending at~$z_n$. Then equations of the form
7421 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
7422 have been given for $0<k<n$, and it will be convenient to introduce
7423 equations of the same form for $k=0$ and $k=n$, where
7424 $$A_0=B_0=C_n=D_n=0.$$
7425 If $\theta_0$ is supposed to have a given value $E_0$, we simply
7426 define $C_0=0$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
7427 parameter, $\gamma_0$, has been specified at~$z_0$; this means
7428 that the mock curvature at $z_0$ should be $\gamma_0$ times the
7429 mock curvature at $z_1$; i.e.,
7430 $${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
7431 =\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
7432 This equation simplifies to
7433 $$(\alpha_0\chi_0+3-\beta_1)\theta_0+
7434 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
7435 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
7436 where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
7437 \chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
7438 It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
7439 hence the linear equations remain nonsingular.
7441 Similar considerations apply at the right end, when the final angle $\phi_n$
7442 may or may not need to be determined. It is convenient to let $\psi_n=0$,
7443 hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
7445 $$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
7446 (\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
7447 \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
7449 When |make_choices| chooses angles, it must compute the coefficients of
7450 these linear equations, then solve the equations. To compute the coefficients,
7451 it is necessary to compute arctangents of the given turning angles~$\psi_k$.
7452 When the equations are solved, the chosen directions $\theta_k$ are put
7453 back into the form of control points by essentially computing sines and
7456 @ OK, we are ready to make the hard choices of |make_choices|.
7457 Most of the work is relegated to an auxiliary procedure
7458 called |solve_choices|, which has been introduced to keep
7459 |make_choices| from being extremely long.
7461 @<Fill in the control information between...@>=
7462 @<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
7463 set $n$ to the length of the path@>;
7464 @<Remove |open| types at the breakpoints@>;
7465 mp_solve_choices(mp, p,q,n)
7467 @ It's convenient to precompute quantities that will be needed several
7468 times later. The values of |delta_x[k]| and |delta_y[k]| will be the
7469 coordinates of $z\k-z_k$, and the magnitude of this vector will be
7470 |delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
7471 and $z\k-z_k$ will be stored in |psi[k]|.
7474 int path_size; /* maximum number of knots between breakpoints of a path */
7477 scaled *delta; /* knot differences */
7478 angle *psi; /* turning angles */
7480 @ @<Allocate or initialize ...@>=
7486 @ @<Dealloc variables@>=
7492 @ @<Other local variables for |make_choices|@>=
7493 int k,n; /* current and final knot numbers */
7494 pointer s,t; /* registers for list traversal */
7495 scaled delx,dely; /* directions where |open| meets |explicit| */
7496 fraction sine,cosine; /* trig functions of various angles */
7498 @ @<Calculate the turning angles...@>=
7501 k=0; s=p; n=mp->path_size;
7504 mp->delta_x[k]=x_coord(t)-x_coord(s);
7505 mp->delta_y[k]=y_coord(t)-y_coord(s);
7506 mp->delta[k]=mp_pyth_add(mp, mp->delta_x[k],mp->delta_y[k]);
7508 sine=mp_make_fraction(mp, mp->delta_y[k-1],mp->delta[k-1]);
7509 cosine=mp_make_fraction(mp, mp->delta_x[k-1],mp->delta[k-1]);
7510 mp->psi[k]=mp_n_arg(mp, mp_take_fraction(mp, mp->delta_x[k],cosine)+
7511 mp_take_fraction(mp, mp->delta_y[k],sine),
7512 mp_take_fraction(mp, mp->delta_y[k],cosine)-
7513 mp_take_fraction(mp, mp->delta_x[k],sine));
7516 if ( k==mp->path_size ) {
7517 mp_reallocate_paths(mp, mp->path_size+(mp->path_size>>2));
7518 goto RESTART; /* retry, loop size has changed */
7521 } while (!((k>=n)&&(left_type(s)!=mp_end_cycle)));
7522 if ( k==n ) mp->psi[n]=0; else mp->psi[k]=mp->psi[1];
7525 @ When we get to this point of the code, |right_type(p)| is either
7526 |given| or |curl| or |open|. If it is |open|, we must have
7527 |left_type(p)=mp_end_cycle| or |left_type(p)=mp_explicit|. In the latter
7528 case, the |open| type is converted to |given|; however, if the
7529 velocity coming into this knot is zero, the |open| type is
7530 converted to a |curl|, since we don't know the incoming direction.
7532 Similarly, |left_type(q)| is either |given| or |curl| or |open| or
7533 |mp_end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
7535 @<Remove |open| types at the breakpoints@>=
7536 if ( left_type(q)==mp_open ) {
7537 delx=right_x(q)-x_coord(q); dely=right_y(q)-y_coord(q);
7538 if ( (delx==0)&&(dely==0) ) {
7539 left_type(q)=mp_curl; left_curl(q)=unity;
7541 left_type(q)=mp_given; left_given(q)=mp_n_arg(mp, delx,dely);
7544 if ( (right_type(p)==mp_open)&&(left_type(p)==mp_explicit) ) {
7545 delx=x_coord(p)-left_x(p); dely=y_coord(p)-left_y(p);
7546 if ( (delx==0)&&(dely==0) ) {
7547 right_type(p)=mp_curl; right_curl(p)=unity;
7549 right_type(p)=mp_given; right_given(p)=mp_n_arg(mp, delx,dely);
7553 @ Linear equations need to be solved whenever |n>1|; and also when |n=1|
7554 and exactly one of the breakpoints involves a curl. The simplest case occurs
7555 when |n=1| and there is a curl at both breakpoints; then we simply draw
7558 But before coding up the simple cases, we might as well face the general case,
7559 since we must deal with it sooner or later, and since the general case
7560 is likely to give some insight into the way simple cases can be handled best.
7562 When there is no cycle, the linear equations to be solved form a tridiagonal
7563 system, and we can apply the standard technique of Gaussian elimination
7564 to convert that system to a sequence of equations of the form
7565 $$\theta_0+u_0\theta_1=v_0,\quad
7566 \theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
7567 \theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
7569 It is possible to do this diagonalization while generating the equations.
7570 Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
7571 $\theta_1$, $\theta_0$; thus, the equations will be solved.
7573 The procedure is slightly more complex when there is a cycle, but the
7574 basic idea will be nearly the same. In the cyclic case the right-hand
7575 sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
7576 the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
7577 $\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
7578 ending routine will take account of the fact that $\theta_n=\theta_0$ and
7579 eliminate the $w$'s from the system, after which the solution can be
7582 When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
7583 variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
7584 and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
7585 of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
7588 angle *theta; /* values of $\theta_k$ */
7589 fraction *uu; /* values of $u_k$ */
7590 angle *vv; /* values of $v_k$ */
7591 fraction *ww; /* values of $w_k$ */
7593 @ @<Allocate or initialize ...@>=
7599 @ @<Dealloc variables@>=
7605 @ @<Declare |mp_reallocate| functions@>=
7606 void mp_reallocate_paths (MP mp, int l);
7609 void mp_reallocate_paths (MP mp, int l) {
7610 XREALLOC (mp->delta_x, l, scaled);
7611 XREALLOC (mp->delta_y, l, scaled);
7612 XREALLOC (mp->delta, l, scaled);
7613 XREALLOC (mp->psi, l, angle);
7614 XREALLOC (mp->theta, l, angle);
7615 XREALLOC (mp->uu, l, fraction);
7616 XREALLOC (mp->vv, l, angle);
7617 XREALLOC (mp->ww, l, fraction);
7621 @ Our immediate problem is to get the ball rolling by setting up the
7622 first equation or by realizing that no equations are needed, and to fit
7623 this initialization into a framework suitable for the overall computation.
7625 @<Declare the procedure called |solve_choices|@>=
7626 @<Declare subroutines needed by |solve_choices|@>;
7627 void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) {
7628 int k; /* current knot number */
7629 pointer r,s,t; /* registers for list traversal */
7630 @<Other local variables for |solve_choices|@>;
7635 @<Get the linear equations started; or |return|
7636 with the control points in place, if linear equations
7639 switch (left_type(s)) {
7640 case mp_end_cycle: case mp_open:
7641 @<Set up equation to match mock curvatures
7642 at $z_k$; then |goto found| with $\theta_n$
7643 adjusted to equal $\theta_0$, if a cycle has ended@>;
7646 @<Set up equation for a curl at $\theta_n$
7650 @<Calculate the given value of $\theta_n$
7653 } /* there are no other cases */
7658 @<Finish choosing angles and assigning control points@>;
7661 @ On the first time through the loop, we have |k=0| and |r| is not yet
7662 defined. The first linear equation, if any, will have $A_0=B_0=0$.
7664 @<Get the linear equations started...@>=
7665 switch (right_type(s)) {
7667 if ( left_type(t)==mp_given ) {
7668 @<Reduce to simple case of two givens and |return|@>
7670 @<Set up the equation for a given value of $\theta_0$@>;
7674 if ( left_type(t)==mp_curl ) {
7675 @<Reduce to simple case of straight line and |return|@>
7677 @<Set up the equation for a curl at $\theta_0$@>;
7681 mp->uu[0]=0; mp->vv[0]=0; mp->ww[0]=fraction_one;
7682 /* this begins a cycle */
7684 } /* there are no other cases */
7686 @ The general equation that specifies equality of mock curvature at $z_k$ is
7687 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7688 as derived above. We want to combine this with the already-derived equation
7689 $\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
7691 $\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
7693 $$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
7694 -A_kw_{k-1}\theta_0$$
7695 by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
7696 fixed-point arithmetic, avoiding the chance of overflow while retaining
7699 The calculations will be performed in several registers that
7700 provide temporary storage for intermediate quantities.
7702 @<Other local variables for |solve_choices|@>=
7703 fraction aa,bb,cc,ff,acc; /* temporary registers */
7704 scaled dd,ee; /* likewise, but |scaled| */
7705 scaled lt,rt; /* tension values */
7707 @ @<Set up equation to match mock curvatures...@>=
7708 { @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
7709 $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
7710 and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
7711 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
7712 mp->uu[k]=mp_take_fraction(mp, ff,bb);
7713 @<Calculate the values of $v_k$ and $w_k$@>;
7714 if ( left_type(s)==mp_end_cycle ) {
7715 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
7719 @ Since tension values are never less than 3/4, the values |aa| and
7720 |bb| computed here are never more than 4/5.
7722 @<Calculate the values $\\{aa}=...@>=
7723 if ( abs(right_tension(r))==unity) {
7724 aa=fraction_half; dd=2*mp->delta[k];
7726 aa=mp_make_fraction(mp, unity,3*abs(right_tension(r))-unity);
7727 dd=mp_take_fraction(mp, mp->delta[k],
7728 fraction_three-mp_make_fraction(mp, unity,abs(right_tension(r))));
7730 if ( abs(left_tension(t))==unity ){
7731 bb=fraction_half; ee=2*mp->delta[k-1];
7733 bb=mp_make_fraction(mp, unity,3*abs(left_tension(t))-unity);
7734 ee=mp_take_fraction(mp, mp->delta[k-1],
7735 fraction_three-mp_make_fraction(mp, unity,abs(left_tension(t))));
7737 cc=fraction_one-mp_take_fraction(mp, mp->uu[k-1],aa)
7739 @ The ratio to be calculated in this step can be written in the form
7740 $$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
7741 \\{cc}\cdot\\{dd},$$
7742 because of the quantities just calculated. The values of |dd| and |ee|
7743 will not be needed after this step has been performed.
7745 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
7746 dd=mp_take_fraction(mp, dd,cc); lt=abs(left_tension(s)); rt=abs(right_tension(s));
7747 if ( lt!=rt ) { /* $\beta_k^{-1}\ne\alpha_k^{-1}$ */
7749 ff=mp_make_fraction(mp, lt,rt);
7750 ff=mp_take_fraction(mp, ff,ff); /* $\alpha_k^2/\beta_k^2$ */
7751 dd=mp_take_fraction(mp, dd,ff);
7753 ff=mp_make_fraction(mp, rt,lt);
7754 ff=mp_take_fraction(mp, ff,ff); /* $\beta_k^2/\alpha_k^2$ */
7755 ee=mp_take_fraction(mp, ee,ff);
7758 ff=mp_make_fraction(mp, ee,ee+dd)
7760 @ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
7761 equation was specified by a curl. In that case we must use a special
7762 method of computation to prevent overflow.
7764 Fortunately, the calculations turn out to be even simpler in this ``hard''
7765 case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
7766 $-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
7768 @<Calculate the values of $v_k$ and $w_k$@>=
7769 acc=-mp_take_fraction(mp, mp->psi[k+1],mp->uu[k]);
7770 if ( right_type(r)==mp_curl ) {
7772 mp->vv[k]=acc-mp_take_fraction(mp, mp->psi[1],fraction_one-ff);
7774 ff=mp_make_fraction(mp, fraction_one-ff,cc); /* this is
7775 $B_k/(C_k+B_k-u_{k-1}A_k)<5$ */
7776 acc=acc-mp_take_fraction(mp, mp->psi[k],ff);
7777 ff=mp_take_fraction(mp, ff,aa); /* this is $A_k/(C_k+B_k-u_{k-1}A_k)$ */
7778 mp->vv[k]=acc-mp_take_fraction(mp, mp->vv[k-1],ff);
7779 if ( mp->ww[k-1]==0 ) mp->ww[k]=0;
7780 else mp->ww[k]=-mp_take_fraction(mp, mp->ww[k-1],ff);
7783 @ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
7784 v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
7785 $\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
7786 for |0<=k<n|, so that the cyclic case can be finished up just as if there
7789 The idea in the following code is to observe that
7790 $$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
7791 &=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
7792 -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
7793 so we can solve for $\theta_n=\theta_0$.
7795 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
7797 aa=0; bb=fraction_one; /* we have |k=n| */
7800 aa=mp->vv[k]-mp_take_fraction(mp, aa,mp->uu[k]);
7801 bb=mp->ww[k]-mp_take_fraction(mp, bb,mp->uu[k]);
7802 } while (k!=n); /* now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$ */
7803 aa=mp_make_fraction(mp, aa,fraction_one-bb);
7804 mp->theta[n]=aa; mp->vv[0]=aa;
7805 for (k=1;k<=n-1;k++) {
7806 mp->vv[k]=mp->vv[k]+mp_take_fraction(mp, aa,mp->ww[k]);
7811 @ @d reduce_angle(A) if ( abs((A))>one_eighty_deg ) {
7812 if ( (A)>0 ) (A)=(A)-three_sixty_deg; else (A)=(A)+three_sixty_deg; }
7814 @<Calculate the given value of $\theta_n$...@>=
7816 mp->theta[n]=left_given(s)-mp_n_arg(mp, mp->delta_x[n-1],mp->delta_y[n-1]);
7817 reduce_angle(mp->theta[n]);
7821 @ @<Set up the equation for a given value of $\theta_0$@>=
7823 mp->vv[0]=right_given(s)-mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7824 reduce_angle(mp->vv[0]);
7825 mp->uu[0]=0; mp->ww[0]=0;
7828 @ @<Set up the equation for a curl at $\theta_0$@>=
7829 { cc=right_curl(s); lt=abs(left_tension(t)); rt=abs(right_tension(s));
7830 if ( (rt==unity)&&(lt==unity) )
7831 mp->uu[0]=mp_make_fraction(mp, cc+cc+unity,cc+two);
7833 mp->uu[0]=mp_curl_ratio(mp, cc,rt,lt);
7834 mp->vv[0]=-mp_take_fraction(mp, mp->psi[1],mp->uu[0]); mp->ww[0]=0;
7837 @ @<Set up equation for a curl at $\theta_n$...@>=
7838 { cc=left_curl(s); lt=abs(left_tension(s)); rt=abs(right_tension(r));
7839 if ( (rt==unity)&&(lt==unity) )
7840 ff=mp_make_fraction(mp, cc+cc+unity,cc+two);
7842 ff=mp_curl_ratio(mp, cc,lt,rt);
7843 mp->theta[n]=-mp_make_fraction(mp, mp_take_fraction(mp, mp->vv[n-1],ff),
7844 fraction_one-mp_take_fraction(mp, ff,mp->uu[n-1]));
7848 @ The |curl_ratio| subroutine has three arguments, which our previous notation
7849 encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
7850 a somewhat tedious program to calculate
7851 $${(3-\alpha)\alpha^2\gamma+\beta^3\over
7852 \alpha^3\gamma+(3-\beta)\beta^2},$$
7853 with the result reduced to 4 if it exceeds 4. (This reduction of curl
7854 is necessary only if the curl and tension are both large.)
7855 The values of $\alpha$ and $\beta$ will be at most~4/3.
7857 @<Declare subroutines needed by |solve_choices|@>=
7858 fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7860 fraction alpha,beta,num,denom,ff; /* registers */
7861 alpha=mp_make_fraction(mp, unity,a_tension);
7862 beta=mp_make_fraction(mp, unity,b_tension);
7863 if ( alpha<=beta ) {
7864 ff=mp_make_fraction(mp, alpha,beta); ff=mp_take_fraction(mp, ff,ff);
7865 gamma=mp_take_fraction(mp, gamma,ff);
7866 beta=beta / 010000; /* convert |fraction| to |scaled| */
7867 denom=mp_take_fraction(mp, gamma,alpha)+three-beta;
7868 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7870 ff=mp_make_fraction(mp, beta,alpha); ff=mp_take_fraction(mp, ff,ff);
7871 beta=mp_take_fraction(mp, beta,ff) / 010000; /* convert |fraction| to |scaled| */
7872 denom=mp_take_fraction(mp, gamma,alpha)+(ff / 1365)-beta;
7873 /* $1365\approx 2^{12}/3$ */
7874 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7876 if ( num>=denom+denom+denom+denom ) return fraction_four;
7877 else return mp_make_fraction(mp, num,denom);
7880 @ We're in the home stretch now.
7882 @<Finish choosing angles and assigning control points@>=
7883 for (k=n-1;k>=0;k--) {
7884 mp->theta[k]=mp->vv[k]-mp_take_fraction(mp,mp->theta[k+1],mp->uu[k]);
7889 mp_n_sin_cos(mp, mp->theta[k]); mp->st=mp->n_sin; mp->ct=mp->n_cos;
7890 mp_n_sin_cos(mp, -mp->psi[k+1]-mp->theta[k+1]); mp->sf=mp->n_sin; mp->cf=mp->n_cos;
7891 mp_set_controls(mp, s,t,k);
7895 @ The |set_controls| routine actually puts the control points into
7896 a pair of consecutive nodes |p| and~|q|. Global variables are used to
7897 record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
7898 $\cos\phi$ needed in this calculation.
7904 fraction cf; /* sines and cosines */
7906 @ @<Declare subroutines needed by |solve_choices|@>=
7907 void mp_set_controls (MP mp,pointer p, pointer q, integer k) {
7908 fraction rr,ss; /* velocities, divided by thrice the tension */
7909 scaled lt,rt; /* tensions */
7910 fraction sine; /* $\sin(\theta+\phi)$ */
7911 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7912 rr=mp_velocity(mp, mp->st,mp->ct,mp->sf,mp->cf,rt);
7913 ss=mp_velocity(mp, mp->sf,mp->cf,mp->st,mp->ct,lt);
7914 if ( (right_tension(p)<0)||(left_tension(q)<0) ) {
7915 @<Decrease the velocities,
7916 if necessary, to stay inside the bounding triangle@>;
7918 right_x(p)=x_coord(p)+mp_take_fraction(mp,
7919 mp_take_fraction(mp, mp->delta_x[k],mp->ct)-
7920 mp_take_fraction(mp, mp->delta_y[k],mp->st),rr);
7921 right_y(p)=y_coord(p)+mp_take_fraction(mp,
7922 mp_take_fraction(mp, mp->delta_y[k],mp->ct)+
7923 mp_take_fraction(mp, mp->delta_x[k],mp->st),rr);
7924 left_x(q)=x_coord(q)-mp_take_fraction(mp,
7925 mp_take_fraction(mp, mp->delta_x[k],mp->cf)+
7926 mp_take_fraction(mp, mp->delta_y[k],mp->sf),ss);
7927 left_y(q)=y_coord(q)-mp_take_fraction(mp,
7928 mp_take_fraction(mp, mp->delta_y[k],mp->cf)-
7929 mp_take_fraction(mp, mp->delta_x[k],mp->sf),ss);
7930 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7933 @ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
7934 $\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
7935 $\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
7936 there is no ``bounding triangle.''
7937 @:at_least_}{\&{atleast} primitive@>
7939 @<Decrease the velocities, if necessary...@>=
7940 if (((mp->st>=0)&&(mp->sf>=0))||((mp->st<=0)&&(mp->sf<=0)) ) {
7941 sine=mp_take_fraction(mp, abs(mp->st),mp->cf)+
7942 mp_take_fraction(mp, abs(mp->sf),mp->ct);
7944 sine=mp_take_fraction(mp, sine,fraction_one+unity); /* safety factor */
7945 if ( right_tension(p)<0 )
7946 if ( mp_ab_vs_cd(mp, abs(mp->sf),fraction_one,rr,sine)<0 )
7947 rr=mp_make_fraction(mp, abs(mp->sf),sine);
7948 if ( left_tension(q)<0 )
7949 if ( mp_ab_vs_cd(mp, abs(mp->st),fraction_one,ss,sine)<0 )
7950 ss=mp_make_fraction(mp, abs(mp->st),sine);
7954 @ Only the simple cases remain to be handled.
7956 @<Reduce to simple case of two givens and |return|@>=
7958 aa=mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7959 mp_n_sin_cos(mp, right_given(p)-aa); mp->ct=mp->n_cos; mp->st=mp->n_sin;
7960 mp_n_sin_cos(mp, left_given(q)-aa); mp->cf=mp->n_cos; mp->sf=-mp->n_sin;
7961 mp_set_controls(mp, p,q,0); return;
7964 @ @<Reduce to simple case of straight line and |return|@>=
7966 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7967 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7969 if ( mp->delta_x[0]>=0 ) right_x(p)=x_coord(p)+((mp->delta_x[0]+1) / 3);
7970 else right_x(p)=x_coord(p)+((mp->delta_x[0]-1) / 3);
7971 if ( mp->delta_y[0]>=0 ) right_y(p)=y_coord(p)+((mp->delta_y[0]+1) / 3);
7972 else right_y(p)=y_coord(p)+((mp->delta_y[0]-1) / 3);
7974 ff=mp_make_fraction(mp, unity,3*rt); /* $\alpha/3$ */
7975 right_x(p)=x_coord(p)+mp_take_fraction(mp, mp->delta_x[0],ff);
7976 right_y(p)=y_coord(p)+mp_take_fraction(mp, mp->delta_y[0],ff);
7979 if ( mp->delta_x[0]>=0 ) left_x(q)=x_coord(q)-((mp->delta_x[0]+1) / 3);
7980 else left_x(q)=x_coord(q)-((mp->delta_x[0]-1) / 3);
7981 if ( mp->delta_y[0]>=0 ) left_y(q)=y_coord(q)-((mp->delta_y[0]+1) / 3);
7982 else left_y(q)=y_coord(q)-((mp->delta_y[0]-1) / 3);
7984 ff=mp_make_fraction(mp, unity,3*lt); /* $\beta/3$ */
7985 left_x(q)=x_coord(q)-mp_take_fraction(mp, mp->delta_x[0],ff);
7986 left_y(q)=y_coord(q)-mp_take_fraction(mp, mp->delta_y[0],ff);
7991 @* \[19] Measuring paths.
7992 \MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
7993 allow the user to measure the bounding box of anything that can go into a
7994 picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
7995 by just finding the bounding box of the knots and the control points. We
7996 need a more accurate version of the bounding box, but we can still use the
7997 easy estimate to save time by focusing on the interesting parts of the path.
7999 @ Computing an accurate bounding box involves a theme that will come up again
8000 and again. Given a Bernshte{\u\i}n polynomial
8001 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8002 $$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
8003 we can conveniently bisect its range as follows:
8006 \textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
8009 \textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
8010 |0<=k<n-j|, for |0<=j<n|.
8014 $$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
8015 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
8016 This formula gives us the coefficients of polynomials to use over the ranges
8017 $0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
8019 @ Now here's a subroutine that's handy for all sorts of path computations:
8020 Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
8021 returns the unique |fraction| value |t| between 0 and~1 at which
8022 $B(a,b,c;t)$ changes from positive to negative, or returns
8023 |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
8024 is already negative at |t=0|), |crossing_point| returns the value zero.
8026 @d no_crossing { return (fraction_one+1); }
8027 @d one_crossing { return fraction_one; }
8028 @d zero_crossing { return 0; }
8029 @d mp_crossing_point(M,A,B,C) mp_do_crossing_point(A,B,C)
8031 @c fraction mp_do_crossing_point (integer a, integer b, integer c) {
8032 integer d; /* recursive counter */
8033 integer x,xx,x0,x1,x2; /* temporary registers for bisection */
8034 if ( a<0 ) zero_crossing;
8037 if ( c>0 ) { no_crossing; }
8038 else if ( (a==0)&&(b==0) ) { no_crossing;}
8039 else { one_crossing; }
8041 if ( a==0 ) zero_crossing;
8042 } else if ( a==0 ) {
8043 if ( b<=0 ) zero_crossing;
8045 @<Use bisection to find the crossing point, if one exists@>;
8048 @ The general bisection method is quite simple when $n=2$, hence
8049 |crossing_point| does not take much time. At each stage in the
8050 recursion we have a subinterval defined by |l| and~|j| such that
8051 $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
8052 the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
8054 It is convenient for purposes of calculation to combine the values
8055 of |l| and~|j| in a single variable $d=2^l+j$, because the operation
8056 of bisection then corresponds simply to doubling $d$ and possibly
8057 adding~1. Furthermore it proves to be convenient to modify
8058 our previous conventions for bisection slightly, maintaining the
8059 variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
8060 With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
8061 equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
8063 The following code maintains the invariant relations
8064 $0\L|x0|<\max(|x1|,|x1|+|x2|)$,
8065 $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
8066 it has been constructed in such a way that no arithmetic overflow
8067 will occur if the inputs satisfy
8068 $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
8070 @<Use bisection to find the crossing point...@>=
8071 d=1; x0=a; x1=a-b; x2=b-c;
8082 if ( x<=x0 ) { if ( x+x2<=x0 ) no_crossing; }
8086 } while (d<fraction_one);
8087 return (d-fraction_one)
8089 @ Here is a routine that computes the $x$ or $y$ coordinate of the point on
8090 a cubic corresponding to the |fraction| value~|t|.
8092 It is convenient to define a \.{WEB} macro |t_of_the_way| such that
8093 |t_of_the_way(a,b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
8095 @d t_of_the_way(A,B) ((A)-mp_take_fraction(mp,((A)-(B)),t))
8097 @c scaled mp_eval_cubic (MP mp,pointer p, pointer q, fraction t) {
8098 scaled x1,x2,x3; /* intermediate values */
8099 x1=t_of_the_way(knot_coord(p),right_coord(p));
8100 x2=t_of_the_way(right_coord(p),left_coord(q));
8101 x3=t_of_the_way(left_coord(q),knot_coord(q));
8102 x1=t_of_the_way(x1,x2);
8103 x2=t_of_the_way(x2,x3);
8104 return t_of_the_way(x1,x2);
8107 @ The actual bounding box information is stored in global variables.
8108 Since it is convenient to address the $x$ and $y$ information
8109 separately, we define arrays indexed by |x_code..y_code| and use
8110 macros to give them more convenient names.
8114 mp_x_code=0, /* index for |minx| and |maxx| */
8115 mp_y_code /* index for |miny| and |maxy| */
8119 @d minx mp->bbmin[mp_x_code]
8120 @d maxx mp->bbmax[mp_x_code]
8121 @d miny mp->bbmin[mp_y_code]
8122 @d maxy mp->bbmax[mp_y_code]
8125 scaled bbmin[mp_y_code+1];
8126 scaled bbmax[mp_y_code+1];
8127 /* the result of procedures that compute bounding box information */
8129 @ Now we're ready for the key part of the bounding box computation.
8130 The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
8131 $$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
8132 \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
8134 for $0<t\le1$. In other words, the procedure adjusts the bounds to
8135 accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
8136 The |c| parameter is |x_code| or |y_code|.
8138 @c void mp_bound_cubic (MP mp,pointer p, pointer q, small_number c) {
8139 boolean wavy; /* whether we need to look for extremes */
8140 scaled del1,del2,del3,del,dmax; /* proportional to the control
8141 points of a quadratic derived from a cubic */
8142 fraction t,tt; /* where a quadratic crosses zero */
8143 scaled x; /* a value that |bbmin[c]| and |bbmax[c]| must accommodate */
8145 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8146 @<Check the control points against the bounding box and set |wavy:=true|
8147 if any of them lie outside@>;
8149 del1=right_coord(p)-knot_coord(p);
8150 del2=left_coord(q)-right_coord(p);
8151 del3=knot_coord(q)-left_coord(q);
8152 @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
8153 also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
8155 negate(del1); negate(del2); negate(del3);
8157 t=mp_crossing_point(mp, del1,del2,del3);
8158 if ( t<fraction_one ) {
8159 @<Test the extremes of the cubic against the bounding box@>;
8164 @ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
8165 if ( x<mp->bbmin[c] ) mp->bbmin[c]=x;
8166 if ( x>mp->bbmax[c] ) mp->bbmax[c]=x
8168 @ @<Check the control points against the bounding box and set...@>=
8170 if ( mp->bbmin[c]<=right_coord(p) )
8171 if ( right_coord(p)<=mp->bbmax[c] )
8172 if ( mp->bbmin[c]<=left_coord(q) )
8173 if ( left_coord(q)<=mp->bbmax[c] )
8176 @ If |del1=del2=del3=0|, it's impossible to obey the title of this
8177 section. We just set |del=0| in that case.
8179 @<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
8180 if ( del1!=0 ) del=del1;
8181 else if ( del2!=0 ) del=del2;
8185 if ( abs(del2)>dmax ) dmax=abs(del2);
8186 if ( abs(del3)>dmax ) dmax=abs(del3);
8187 while ( dmax<fraction_half ) {
8188 dmax+=dmax; del1+=del1; del2+=del2; del3+=del3;
8192 @ Since |crossing_point| has tried to choose |t| so that
8193 $B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
8194 slope, the value of |del2| computed below should not be positive.
8195 But rounding error could make it slightly positive in which case we
8196 must cut it to zero to avoid confusion.
8198 @<Test the extremes of the cubic against the bounding box@>=
8200 x=mp_eval_cubic(mp, p,q,t);
8201 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8202 del2=t_of_the_way(del2,del3);
8203 /* now |0,del2,del3| represent the derivative on the remaining interval */
8204 if ( del2>0 ) del2=0;
8205 tt=mp_crossing_point(mp, 0,-del2,-del3);
8206 if ( tt<fraction_one ) {
8207 @<Test the second extreme against the bounding box@>;
8211 @ @<Test the second extreme against the bounding box@>=
8213 x=mp_eval_cubic(mp, p,q,t_of_the_way(tt,fraction_one));
8214 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8217 @ Finding the bounding box of a path is basically a matter of applying
8218 |bound_cubic| twice for each pair of adjacent knots.
8220 @c void mp_path_bbox (MP mp,pointer h) {
8221 pointer p,q; /* a pair of adjacent knots */
8222 minx=x_coord(h); miny=y_coord(h);
8223 maxx=minx; maxy=miny;
8226 if ( right_type(p)==mp_endpoint ) return;
8228 mp_bound_cubic(mp, x_loc(p),x_loc(q),mp_x_code);
8229 mp_bound_cubic(mp, y_loc(p),y_loc(q),mp_y_code);
8234 @ Another important way to measure a path is to find its arc length. This
8235 is best done by using the general bisection algorithm to subdivide the path
8236 until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
8239 Since the arc length is the integral with respect to time of the magnitude of
8240 the velocity, it is natural to use Simpson's rule for the approximation.
8242 If $\dot B(t)$ is the spline velocity, Simpson's rule gives
8243 $$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
8244 for the arc length of a path of length~1. For a cubic spline
8245 $B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
8246 $3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
8248 $$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
8250 $$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
8251 is the result of the bisection algorithm.
8253 @ The remaining problem is how to decide when a subpath is ``well behaved.''
8254 This could be done via the theoretical error bound for Simpson's rule,
8256 but this is impractical because it requires an estimate of the fourth
8257 derivative of the quantity being integrated. It is much easier to just perform
8258 a bisection step and see how much the arc length estimate changes. Since the
8259 error for Simpson's rule is proportional to the fourth power of the sample
8260 spacing, the remaining error is typically about $1\over16$ of the amount of
8261 the change. We say ``typically'' because the error has a pseudo-random behavior
8262 that could cause the two estimates to agree when each contain large errors.
8264 To protect against disasters such as undetected cusps, the bisection process
8265 should always continue until all the $dz_i$ vectors belong to a single
8266 $90^\circ$ sector. This ensures that no point on the spline can have velocity
8267 less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
8268 If such a spline happens to produce an erroneous arc length estimate that
8269 is little changed by bisection, the amount of the error is likely to be fairly
8270 small. We will try to arrange things so that freak accidents of this type do
8271 not destroy the inverse relationship between the \&{arclength} and
8272 \&{arctime} operations.
8273 @:arclength_}{\&{arclength} primitive@>
8274 @:arctime_}{\&{arctime} primitive@>
8276 @ The \&{arclength} and \&{arctime} operations are both based on a recursive
8278 function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
8279 $dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
8280 returns the time when the arc length reaches |a_goal| if there is such a time.
8281 Thus the return value is either an arc length less than |a_goal| or, if the
8282 arc length would be at least |a_goal|, it returns a time value decreased by
8283 |two|. This allows the caller to use the sign of the result to distinguish
8284 between arc lengths and time values. On certain types of overflow, it is
8285 possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
8286 Otherwise, the result is always less than |a_goal|.
8288 Rather than halving the control point coordinates on each recursive call to
8289 |arc_test|, it is better to keep them proportional to velocity on the original
8290 curve and halve the results instead. This means that recursive calls can
8291 potentially use larger error tolerances in their arc length estimates. How
8292 much larger depends on to what extent the errors behave as though they are
8293 independent of each other. To save computing time, we use optimistic assumptions
8294 and increase the tolerance by a factor of about $\sqrt2$ for each recursive
8297 In addition to the tolerance parameter, |arc_test| should also have parameters
8298 for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
8299 ${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
8300 and they are needed in different instances of |arc_test|.
8302 @c @t\4@>@<Declare subroutines needed by |arc_test|@>;
8303 scaled mp_arc_test (MP mp, scaled dx0, scaled dy0, scaled dx1, scaled dy1,
8304 scaled dx2, scaled dy2, scaled v0, scaled v02,
8305 scaled v2, scaled a_goal, scaled tol) {
8306 boolean simple; /* are the control points confined to a $90^\circ$ sector? */
8307 scaled dx01, dy01, dx12, dy12, dx02, dy02; /* bisection results */
8309 /* twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$ */
8310 scaled arc; /* best arc length estimate before recursion */
8311 @<Other local variables in |arc_test|@>;
8312 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
8314 @<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
8315 set |arc_test| and |return|@>;
8316 @<Test if the control points are confined to one quadrant or rotating them
8317 $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
8318 if ( simple && (abs(arc-v02-halfp(v0+v2)) <= tol) ) {
8319 if ( arc < a_goal ) {
8322 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
8323 that time minus |two|@>;
8326 @<Use one or two recursive calls to compute the |arc_test| function@>;
8330 @ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
8331 calls, but $1.5$ is an adequate approximation. It is best to avoid using
8332 |make_fraction| in this inner loop.
8335 @<Use one or two recursive calls to compute the |arc_test| function@>=
8337 @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
8338 large as possible@>;
8339 tol = tol + halfp(tol);
8340 a = mp_arc_test(mp, dx0,dy0, dx01,dy01, dx02,dy02, v0, v002,
8341 halfp(v02), a_new, tol);
8343 return (-halfp(two-a));
8345 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
8346 b = mp_arc_test(mp, dx02,dy02, dx12,dy12, dx2,dy2,
8347 halfp(v02), v022, v2, a_new, tol);
8349 return (-halfp(-b) - half_unit);
8351 return (a + half(b-a));
8355 @ @<Other local variables in |arc_test|@>=
8356 scaled a,b; /* results of recursive calls */
8357 scaled a_new,a_aux; /* the sum of these gives the |a_goal| */
8359 @ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
8360 a_aux = el_gordo - a_goal;
8361 if ( a_goal > a_aux ) {
8362 a_aux = a_goal - a_aux;
8365 a_new = a_goal + a_goal;
8369 @ There is no need to maintain |a_aux| at this point so we use it as a temporary
8370 to force the additions and subtractions to be done in an order that avoids
8373 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
8376 a_new = a_new + a_aux;
8379 @ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
8380 |fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
8381 this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
8382 this bound. Note that recursive calls will maintain this invariant.
8384 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
8385 dx01 = half(dx0 + dx1);
8386 dx12 = half(dx1 + dx2);
8387 dx02 = half(dx01 + dx12);
8388 dy01 = half(dy0 + dy1);
8389 dy12 = half(dy1 + dy2);
8390 dy02 = half(dy01 + dy12)
8392 @ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
8393 |a_goal=el_gordo| is guaranteed to yield the arc length.
8395 @<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
8396 v002 = mp_pyth_add(mp, dx01+half(dx0+dx02), dy01+half(dy0+dy02));
8397 v022 = mp_pyth_add(mp, dx12+half(dx02+dx2), dy12+half(dy02+dy2));
8399 arc1 = v002 + half(halfp(v0+tmp) - v002);
8400 arc = v022 + half(halfp(v2+tmp) - v022);
8401 if ( (arc < el_gordo-arc1) ) {
8404 mp->arith_error = true;
8405 if ( a_goal==el_gordo ) return (el_gordo);
8409 @ @<Other local variables in |arc_test|@>=
8410 scaled tmp, tmp2; /* all purpose temporary registers */
8411 scaled arc1; /* arc length estimate for the first half */
8413 @ @<Test if the control points are confined to one quadrant or rotating...@>=
8414 simple = ((dx0>=0) && (dx1>=0) && (dx2>=0)) ||
8415 ((dx0<=0) && (dx1<=0) && (dx2<=0));
8417 simple = ((dy0>=0) && (dy1>=0) && (dy2>=0)) ||
8418 ((dy0<=0) && (dy1<=0) && (dy2<=0));
8420 simple = ((dx0>=dy0) && (dx1>=dy1) && (dx2>=dy2)) ||
8421 ((dx0<=dy0) && (dx1<=dy1) && (dx2<=dy2));
8423 simple = ((-dx0>=dy0) && (-dx1>=dy1) && (-dx2>=dy2)) ||
8424 ((-dx0<=dy0) && (-dx1<=dy1) && (-dx2<=dy2));
8427 @ Since Simpson's rule is based on approximating the integrand by a parabola,
8429 it is appropriate to use the same approximation to decide when the integral
8430 reaches the intermediate value |a_goal|. At this point
8432 {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
8433 {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
8434 {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
8435 {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
8436 {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
8440 $$ {\vb\dot B(t)\vb\over 3} \approx
8441 \cases{B\left(\hbox{|v0|},
8442 \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
8443 {1\over 2}\hbox{|v02|}; 2t \right)&
8444 if $t\le{1\over 2}$\cr
8445 B\left({1\over 2}\hbox{|v02|},
8446 \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
8447 \hbox{|v2|}; 2t-1 \right)&
8448 if $t\ge{1\over 2}$.\cr}
8451 We can integrate $\vb\dot B(t)\vb$ by using
8452 $$\int 3B(a,b,c;\tau)\,dt =
8453 {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
8456 This construction allows us to find the time when the arc length reaches
8457 |a_goal| by solving a cubic equation of the form
8458 $$ B(0,a,a+b,a+b+c;\tau) = x, $$
8459 where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
8460 and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
8461 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8462 $d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
8463 $\tau$ given $a$, $b$, $c$, and $x$.
8465 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
8467 tmp = (v02 + 2) / 4;
8468 if ( a_goal<=arc1 ) {
8471 (halfp(mp_solve_rising_cubic(mp, tmp2, arc1-tmp2-tmp, tmp, a_goal))- two);
8474 return ((half_unit - two) +
8475 halfp(mp_solve_rising_cubic(mp, tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1)));
8479 @ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
8480 $$ B(0, a, a+b, a+b+c; t) = x. $$
8481 This routine is based on |crossing_point| but is simplified by the
8482 assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
8483 If rounding error causes this condition to be violated slightly, we just ignore
8484 it and proceed with binary search. This finds a time when the function value
8485 reaches |x| and the slope is positive.
8487 @<Declare subroutines needed by |arc_test|@>=
8488 scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) {
8489 scaled ab, bc, ac; /* bisection results */
8490 integer t; /* $2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$ */
8491 integer xx; /* temporary for updating |x| */
8492 if ( (a<0) || (c<0) ) mp_confusion(mp, "rising?");
8493 @:this can't happen rising?}{\quad rising?@>
8496 } else if ( x >= a+b+c ) {
8500 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
8504 @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
8505 xx = x - a - ab - ac;
8506 if ( xx < -x ) { x+=x; b=ab; c=ac; }
8507 else { x = x + xx; a=ac; b=mp->bc; t = t+1; };
8508 } while (t < unity);
8513 @ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
8518 @ @d one_third_el_gordo 05252525252 /* upper bound on |a|, |b|, and |c| */
8520 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
8521 while ((a>one_third_el_gordo)||(b>one_third_el_gordo)||(c>one_third_el_gordo)) {
8528 @ It is convenient to have a simpler interface to |arc_test| that requires no
8529 unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
8530 length less than |fraction_four|.
8532 @d arc_tol 16 /* quit when change in arc length estimate reaches this */
8534 @c scaled mp_do_arc_test (MP mp,scaled dx0, scaled dy0, scaled dx1,
8535 scaled dy1, scaled dx2, scaled dy2, scaled a_goal) {
8536 scaled v0,v1,v2; /* length of each $({\it dx},{\it dy})$ pair */
8537 scaled v02; /* twice the norm of the quadratic at $t={1\over2}$ */
8538 v0 = mp_pyth_add(mp, dx0,dy0);
8539 v1 = mp_pyth_add(mp, dx1,dy1);
8540 v2 = mp_pyth_add(mp, dx2,dy2);
8541 if ( (v0>=fraction_four) || (v1>=fraction_four) || (v2>=fraction_four) ) {
8542 mp->arith_error = true;
8543 if ( a_goal==el_gordo ) return el_gordo;
8546 v02 = mp_pyth_add(mp, dx1+half(dx0+dx2), dy1+half(dy0+dy2));
8547 return (mp_arc_test(mp, dx0,dy0, dx1,dy1, dx2,dy2,
8548 v0, v02, v2, a_goal, arc_tol));
8552 @ Now it is easy to find the arc length of an entire path.
8554 @c scaled mp_get_arc_length (MP mp,pointer h) {
8555 pointer p,q; /* for traversing the path */
8556 scaled a,a_tot; /* current and total arc lengths */
8559 while ( right_type(p)!=mp_endpoint ){
8561 a = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8562 left_x(q)-right_x(p), left_y(q)-right_y(p),
8563 x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
8564 a_tot = mp_slow_add(mp, a, a_tot);
8565 if ( q==h ) break; else p=q;
8571 @ The inverse operation of finding the time on a path~|h| when the arc length
8572 reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
8573 is required to handle very large times or negative times on cyclic paths. For
8574 non-cyclic paths, |arc0| values that are negative or too large cause
8575 |get_arc_time| to return 0 or the length of path~|h|.
8577 If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
8578 time value greater than the length of the path. Since it could be much greater,
8579 we must be prepared to compute the arc length of path~|h| and divide this into
8580 |arc0| to find how many multiples of the length of path~|h| to add.
8582 @c scaled mp_get_arc_time (MP mp,pointer h, scaled arc0) {
8583 pointer p,q; /* for traversing the path */
8584 scaled t_tot; /* accumulator for the result */
8585 scaled t; /* the result of |do_arc_test| */
8586 scaled arc; /* portion of |arc0| not used up so far */
8587 integer n; /* number of extra times to go around the cycle */
8589 @<Deal with a negative |arc0| value and |return|@>;
8591 if ( arc0==el_gordo ) decr(arc0);
8595 while ( (right_type(p)!=mp_endpoint) && (arc>0) ) {
8597 t = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8598 left_x(q)-right_x(p), left_y(q)-right_y(p),
8599 x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
8600 @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
8602 @<Update |t_tot| and |arc| to avoid going around the cyclic
8603 path too many times but set |arith_error:=true| and |goto done| on
8612 @ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
8613 if ( t<0 ) { t_tot = t_tot + t + two; arc = 0; }
8614 else { t_tot = t_tot + unity; arc = arc - t; }
8616 @ @<Deal with a negative |arc0| value and |return|@>=
8618 if ( left_type(h)==mp_endpoint ) {
8621 p = mp_htap_ypoc(mp, h);
8622 t_tot = -mp_get_arc_time(mp, p, -arc0);
8623 mp_toss_knot_list(mp, p);
8629 @ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
8631 n = arc / (arc0 - arc);
8632 arc = arc - n*(arc0 - arc);
8633 if ( t_tot > el_gordo / (n+1) ) {
8634 mp->arith_error = true;
8638 t_tot = (n + 1)*t_tot;
8641 @* \[20] Data structures for pens.
8642 A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
8643 in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
8644 @:stroke}{\&{stroke} command@>
8645 converted into an area fill as described in the next part of this program.
8646 The mathematics behind this process is based on simple aspects of the theory
8647 of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
8648 [``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
8649 Foundations of Computer Science {\bf 24} (1983), 100--111].
8651 Polygonal pens are created from paths via \MP's \&{makepen} primitive.
8652 @:makepen_}{\&{makepen} primitive@>
8653 This path representation is almost sufficient for our purposes except that
8654 a pen path should always be a convex polygon with the vertices in
8655 counter-clockwise order.
8656 Since we will need to scan pen polygons both forward and backward, a pen
8657 should be represented as a doubly linked ring of knot nodes. There is
8658 room for the extra back pointer because we do not need the
8659 |left_type| or |right_type| fields. In fact, we don't need the |left_x|,
8660 |left_y|, |right_x|, or |right_y| fields either but we leave these alone
8661 so that certain procedures can operate on both pens and paths. In particular,
8662 pens can be copied using |copy_path| and recycled using |toss_knot_list|.
8665 /* this replaces the |left_type| and |right_type| fields in a pen knot */
8667 @ The |make_pen| procedure turns a path into a pen by initializing
8668 the |knil| pointers and making sure the knots form a convex polygon.
8669 Thus each cubic in the given path becomes a straight line and the control
8670 points are ignored. If the path is not cyclic, the ends are connected by a
8673 @d copy_pen(A) mp_make_pen(mp, mp_copy_path(mp, (A)),false)
8675 @c @<Declare a function called |convex_hull|@>;
8676 pointer mp_make_pen (MP mp,pointer h, boolean need_hull) {
8677 pointer p,q; /* two consecutive knots */
8684 h=mp_convex_hull(mp, h);
8685 @<Make sure |h| isn't confused with an elliptical pen@>;
8690 @ The only information required about an elliptical pen is the overall
8691 transformation that has been applied to the original \&{pencircle}.
8692 @:pencircle_}{\&{pencircle} primitive@>
8693 Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
8694 and $(0,1)$ are transformed, an elliptical pen can be stored in a single
8695 knot node and transformed as if it were a path.
8697 @d pen_is_elliptical(A) ((A)==link((A)))
8699 @c pointer mp_get_pen_circle (MP mp,scaled diam) {
8700 pointer h; /* the knot node to return */
8701 h=mp_get_node(mp, knot_node_size);
8702 link(h)=h; knil(h)=h;
8703 originator(h)=mp_program_code;
8704 x_coord(h)=0; y_coord(h)=0;
8705 left_x(h)=diam; left_y(h)=0;
8706 right_x(h)=0; right_y(h)=diam;
8710 @ If the polygon being returned by |make_pen| has only one vertex, it will
8711 be interpreted as an elliptical pen. This is no problem since a degenerate
8712 polygon can equally well be thought of as a degenerate ellipse. We need only
8713 initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
8715 @<Make sure |h| isn't confused with an elliptical pen@>=
8716 if ( pen_is_elliptical( h) ){
8717 left_x(h)=x_coord(h); left_y(h)=y_coord(h);
8718 right_x(h)=x_coord(h); right_y(h)=y_coord(h);
8721 @ We have to cheat a little here but most operations on pens only use
8722 the first three words in each knot node.
8723 @^data structure assumptions@>
8725 @<Initialize a pen at |test_pen| so that it fits in nine words@>=
8726 x_coord(test_pen)=-half_unit;
8727 y_coord(test_pen)=0;
8728 x_coord(test_pen+3)=half_unit;
8729 y_coord(test_pen+3)=0;
8730 x_coord(test_pen+6)=0;
8731 y_coord(test_pen+6)=unity;
8732 link(test_pen)=test_pen+3;
8733 link(test_pen+3)=test_pen+6;
8734 link(test_pen+6)=test_pen;
8735 knil(test_pen)=test_pen+6;
8736 knil(test_pen+3)=test_pen;
8737 knil(test_pen+6)=test_pen+3
8739 @ Printing a polygonal pen is very much like printing a path
8741 @<Declare subroutines for printing expressions@>=
8742 void mp_pr_pen (MP mp,pointer h) {
8743 pointer p,q; /* for list traversal */
8744 if ( pen_is_elliptical(h) ) {
8745 @<Print the elliptical pen |h|@>;
8749 mp_print_two(mp, x_coord(p),y_coord(p));
8750 mp_print_nl(mp, " .. ");
8751 @<Advance |p| making sure the links are OK and |return| if there is
8754 mp_print(mp, "cycle");
8758 @ @<Advance |p| making sure the links are OK and |return| if there is...@>=
8760 if ( (q==null) || (knil(q)!=p) ) {
8761 mp_print_nl(mp, "???"); return; /* this won't happen */
8766 @ @<Print the elliptical pen |h|@>=
8768 mp_print(mp, "pencircle transformed (");
8769 mp_print_scaled(mp, x_coord(h));
8770 mp_print_char(mp, ',');
8771 mp_print_scaled(mp, y_coord(h));
8772 mp_print_char(mp, ',');
8773 mp_print_scaled(mp, left_x(h)-x_coord(h));
8774 mp_print_char(mp, ',');
8775 mp_print_scaled(mp, right_x(h)-x_coord(h));
8776 mp_print_char(mp, ',');
8777 mp_print_scaled(mp, left_y(h)-y_coord(h));
8778 mp_print_char(mp, ',');
8779 mp_print_scaled(mp, right_y(h)-y_coord(h));
8780 mp_print_char(mp, ')');
8783 @ Here us another version of |pr_pen| that prints the pen as a diagnostic
8786 @<Declare subroutines for printing expressions@>=
8787 void mp_print_pen (MP mp,pointer h, char *s, boolean nuline) {
8788 mp_print_diagnostic(mp, "Pen",s,nuline); mp_print_ln(mp);
8791 mp_end_diagnostic(mp, true);
8794 @ Making a polygonal pen into a path involves restoring the |left_type| and
8795 |right_type| fields and setting the control points so as to make a polygonal
8799 void mp_make_path (MP mp,pointer h) {
8800 pointer p; /* for traversing the knot list */
8801 small_number k; /* a loop counter */
8802 @<Other local variables in |make_path|@>;
8803 if ( pen_is_elliptical(h) ) {
8804 @<Make the elliptical pen |h| into a path@>;
8808 left_type(p)=mp_explicit;
8809 right_type(p)=mp_explicit;
8810 @<copy the coordinates of knot |p| into its control points@>;
8816 @ @<copy the coordinates of knot |p| into its control points@>=
8817 left_x(p)=x_coord(p);
8818 left_y(p)=y_coord(p);
8819 right_x(p)=x_coord(p);
8820 right_y(p)=y_coord(p)
8822 @ We need an eight knot path to get a good approximation to an ellipse.
8824 @<Make the elliptical pen |h| into a path@>=
8826 @<Extract the transformation parameters from the elliptical pen~|h|@>;
8828 for (k=0;k<=7;k++ ) {
8829 @<Initialize |p| as the |k|th knot of a circle of unit diameter,
8830 transforming it appropriately@>;
8831 if ( k==7 ) link(p)=h; else link(p)=mp_get_node(mp, knot_node_size);
8836 @ @<Extract the transformation parameters from the elliptical pen~|h|@>=
8837 center_x=x_coord(h);
8838 center_y=y_coord(h);
8839 width_x=left_x(h)-center_x;
8840 width_y=left_y(h)-center_y;
8841 height_x=right_x(h)-center_x;
8842 height_y=right_y(h)-center_y
8844 @ @<Other local variables in |make_path|@>=
8845 scaled center_x,center_y; /* translation parameters for an elliptical pen */
8846 scaled width_x,width_y; /* the effect of a unit change in $x$ */
8847 scaled height_x,height_y; /* the effect of a unit change in $y$ */
8848 scaled dx,dy; /* the vector from knot |p| to its right control point */
8850 /* |k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$) */
8852 @ The only tricky thing here are the tables |half_cos| and |d_cos| used to
8853 find the point $k/8$ of the way around the circle and the direction vector
8856 @<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
8858 x_coord(p)=center_x+mp_take_fraction(mp, mp->half_cos[k],width_x)
8859 +mp_take_fraction(mp, mp->half_cos[kk],height_x);
8860 y_coord(p)=center_y+mp_take_fraction(mp, mp->half_cos[k],width_y)
8861 +mp_take_fraction(mp, mp->half_cos[kk],height_y);
8862 dx=-mp_take_fraction(mp, mp->d_cos[kk],width_x)
8863 +mp_take_fraction(mp, mp->d_cos[k],height_x);
8864 dy=-mp_take_fraction(mp, mp->d_cos[kk],width_y)
8865 +mp_take_fraction(mp, mp->d_cos[k],height_y);
8866 right_x(p)=x_coord(p)+dx;
8867 right_y(p)=y_coord(p)+dy;
8868 left_x(p)=x_coord(p)-dx;
8869 left_y(p)=y_coord(p)-dy;
8870 left_type(p)=mp_explicit;
8871 right_type(p)=mp_explicit;
8872 originator(p)=mp_program_code
8875 fraction half_cos[8]; /* ${1\over2}\cos(45k)$ */
8876 fraction d_cos[8]; /* a magic constant times $\cos(45k)$ */
8878 @ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
8879 $({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
8880 function for $\theta=\phi=22.5^\circ$. This comes out to be
8881 $$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
8882 \approx 0.132608244919772.
8886 mp->half_cos[0]=fraction_half;
8887 mp->half_cos[1]=94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
8889 mp->d_cos[0]=35596755; /* $2^{28}d\approx35596754.69$ */
8890 mp->d_cos[1]=25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
8892 for (k=3;k<= 4;k++ ) {
8893 mp->half_cos[k]=-mp->half_cos[4-k];
8894 mp->d_cos[k]=-mp->d_cos[4-k];
8896 for (k=5;k<= 7;k++ ) {
8897 mp->half_cos[k]=mp->half_cos[8-k];
8898 mp->d_cos[k]=mp->d_cos[8-k];
8901 @ The |convex_hull| function forces a pen polygon to be convex when it is
8902 returned by |make_pen| and after any subsequent transformation where rounding
8903 error might allow the convexity to be lost.
8904 The convex hull algorithm used here is described by F.~P. Preparata and
8905 M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
8907 @<Declare a function called |convex_hull|@>=
8908 @<Declare a procedure called |move_knot|@>;
8909 pointer mp_convex_hull (MP mp,pointer h) { /* Make a polygonal pen convex */
8910 pointer l,r; /* the leftmost and rightmost knots */
8911 pointer p,q; /* knots being scanned */
8912 pointer s; /* the starting point for an upcoming scan */
8913 scaled dx,dy; /* a temporary pointer */
8914 if ( pen_is_elliptical(h) ) {
8917 @<Set |l| to the leftmost knot in polygon~|h|@>;
8918 @<Set |r| to the rightmost knot in polygon~|h|@>;
8921 @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
8922 move them past~|r|@>;
8923 @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
8924 move them past~|l|@>;
8925 @<Sort the path from |l| to |r| by increasing $x$@>;
8926 @<Sort the path from |r| to |l| by decreasing $x$@>;
8929 @<Do a Gramm scan and remove vertices where there is no left turn@>;
8935 @ All comparisons are done primarily on $x$ and secondarily on $y$.
8937 @<Set |l| to the leftmost knot in polygon~|h|@>=
8941 if ( x_coord(p)<=x_coord(l) )
8942 if ( (x_coord(p)<x_coord(l)) || (y_coord(p)<y_coord(l)) )
8947 @ @<Set |r| to the rightmost knot in polygon~|h|@>=
8951 if ( x_coord(p)>=x_coord(r) )
8952 if ( (x_coord(p)>x_coord(r)) || (y_coord(p)>y_coord(r)) )
8957 @ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
8958 dx=x_coord(r)-x_coord(l);
8959 dy=y_coord(r)-y_coord(l);
8963 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 )
8964 mp_move_knot(mp, p, r);
8968 @ The |move_knot| procedure removes |p| from a doubly linked list and inserts
8971 @ @<Declare a procedure called |move_knot|@>=
8972 void mp_move_knot (MP mp,pointer p, pointer q) {
8973 link(knil(p))=link(p);
8974 knil(link(p))=knil(p);
8981 @ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
8985 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 )
8986 mp_move_knot(mp, p,l);
8990 @ The list is likely to be in order already so we just do linear insertions.
8991 Secondary comparisons on $y$ ensure that the sort is consistent with the
8992 choice of |l| and |r|.
8994 @<Sort the path from |l| to |r| by increasing $x$@>=
8998 while ( x_coord(q)>x_coord(p) ) q=knil(q);
8999 while ( x_coord(q)==x_coord(p) ) {
9000 if ( y_coord(q)>y_coord(p) ) q=knil(q); else break;
9002 if ( q==knil(p) ) p=link(p);
9003 else { p=link(p); mp_move_knot(mp, knil(p),q); };
9006 @ @<Sort the path from |r| to |l| by decreasing $x$@>=
9010 while ( x_coord(q)<x_coord(p) ) q=knil(q);
9011 while ( x_coord(q)==x_coord(p) ) {
9012 if ( y_coord(q)<y_coord(p) ) q=knil(q); else break;
9014 if ( q==knil(p) ) p=link(p);
9015 else { p=link(p); mp_move_knot(mp, knil(p),q); };
9018 @ The condition involving |ab_vs_cd| tests if there is not a left turn
9019 at knot |q|. There usually will be a left turn so we streamline the case
9020 where the |then| clause is not executed.
9022 @<Do a Gramm scan and remove vertices where there...@>=
9026 dx=x_coord(q)-x_coord(p);
9027 dy=y_coord(q)-y_coord(p);
9031 if ( mp_ab_vs_cd(mp, dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 ) {
9032 @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
9037 @ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
9040 mp_free_node(mp, p,knot_node_size);
9041 link(s)=q; knil(q)=s;
9043 else { p=knil(s); q=s; };
9046 @ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
9047 offset associated with the given direction |(x,y)|. If two different offsets
9048 apply, it chooses one of them.
9051 void mp_find_offset (MP mp,scaled x, scaled y, pointer h) {
9052 pointer p,q; /* consecutive knots */
9054 /* the transformation matrix for an elliptical pen */
9055 fraction xx,yy; /* untransformed offset for an elliptical pen */
9056 fraction d; /* a temporary register */
9057 if ( pen_is_elliptical(h) ) {
9058 @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
9063 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0));
9066 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0));
9067 mp->cur_x=x_coord(p);
9068 mp->cur_y=y_coord(p);
9074 scaled cur_y; /* all-purpose return value registers */
9076 @ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
9077 if ( (x==0) && (y==0) ) {
9078 mp->cur_x=x_coord(h); mp->cur_y=y_coord(h);
9080 @<Find the non-constant part of the transformation for |h|@>;
9081 while ( (abs(x)<fraction_half) && (abs(y)<fraction_half) ){
9084 @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
9085 untransformed version of |(x,y)|@>;
9086 mp->cur_x=x_coord(h)+mp_take_fraction(mp, xx,wx)+mp_take_fraction(mp, yy,hx);
9087 mp->cur_y=y_coord(h)+mp_take_fraction(mp, xx,wy)+mp_take_fraction(mp, yy,hy);
9090 @ @<Find the non-constant part of the transformation for |h|@>=
9091 wx=left_x(h)-x_coord(h);
9092 wy=left_y(h)-y_coord(h);
9093 hx=right_x(h)-x_coord(h);
9094 hy=right_y(h)-y_coord(h)
9096 @ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
9097 yy=-(mp_take_fraction(mp, x,hy)+mp_take_fraction(mp, y,-hx));
9098 xx=mp_take_fraction(mp, x,-wy)+mp_take_fraction(mp, y,wx);
9099 d=mp_pyth_add(mp, xx,yy);
9101 xx=half(mp_make_fraction(mp, xx,d));
9102 yy=half(mp_make_fraction(mp, yy,d));
9105 @ Finding the bounding box of a pen is easy except if the pen is elliptical.
9106 But we can handle that case by just calling |find_offset| twice. The answer
9107 is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
9110 void mp_pen_bbox (MP mp,pointer h) {
9111 pointer p; /* for scanning the knot list */
9112 if ( pen_is_elliptical(h) ) {
9113 @<Find the bounding box of an elliptical pen@>;
9115 minx=x_coord(h); maxx=minx;
9116 miny=y_coord(h); maxy=miny;
9119 if ( x_coord(p)<minx ) minx=x_coord(p);
9120 if ( y_coord(p)<miny ) miny=y_coord(p);
9121 if ( x_coord(p)>maxx ) maxx=x_coord(p);
9122 if ( y_coord(p)>maxy ) maxy=y_coord(p);
9128 @ @<Find the bounding box of an elliptical pen@>=
9130 mp_find_offset(mp, 0,fraction_one,h);
9132 minx=2*x_coord(h)-mp->cur_x;
9133 mp_find_offset(mp, -fraction_one,0,h);
9135 miny=2*y_coord(h)-mp->cur_y;
9138 @* \[21] Edge structures.
9139 Now we come to \MP's internal scheme for representing pictures.
9140 The representation is very different from \MF's edge structures
9141 because \MP\ pictures contain \ps\ graphics objects instead of pixel
9142 images. However, the basic idea is somewhat similar in that shapes
9143 are represented via their boundaries.
9145 The main purpose of edge structures is to keep track of graphical objects
9146 until it is time to translate them into \ps. Since \MP\ does not need to
9147 know anything about an edge structure other than how to translate it into
9148 \ps\ and how to find its bounding box, edge structures can be just linked
9149 lists of graphical objects. \MP\ has no easy way to determine whether
9150 two such objects overlap, but it suffices to draw the first one first and
9151 let the second one overwrite it if necessary.
9154 enum mp_graphical_object_code {
9155 @<Graphical object codes@>
9158 @ Let's consider the types of graphical objects one at a time.
9159 First of all, a filled contour is represented by a eight-word node. The first
9160 word contains |type| and |link| fields, and the next six words contain a
9161 pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
9162 parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
9163 give the relevant information.
9165 @d path_p(A) link((A)+1)
9166 /* a pointer to the path that needs filling */
9167 @d pen_p(A) info((A)+1)
9168 /* a pointer to the pen to fill or stroke with */
9169 @d color_model(A) type((A)+2) /* the color model */
9170 @d obj_red_loc(A) ((A)+3) /* the first of three locations for the color */
9171 @d obj_cyan_loc obj_red_loc /* the first of four locations for the color */
9172 @d obj_grey_loc obj_red_loc /* the location for the color */
9173 @d red_val(A) mp->mem[(A)+3].sc
9174 /* the red component of the color in the range $0\ldots1$ */
9177 @d green_val(A) mp->mem[(A)+4].sc
9178 /* the green component of the color in the range $0\ldots1$ */
9179 @d magenta_val green_val
9180 @d blue_val(A) mp->mem[(A)+5].sc
9181 /* the blue component of the color in the range $0\ldots1$ */
9182 @d yellow_val blue_val
9183 @d black_val(A) mp->mem[(A)+6].sc
9184 /* the blue component of the color in the range $0\ldots1$ */
9185 @d ljoin_val(A) name_type((A)) /* the value of \&{linejoin} */
9186 @:mp_linejoin_}{\&{linejoin} primitive@>
9187 @d miterlim_val(A) mp->mem[(A)+7].sc /* the value of \&{miterlimit} */
9188 @:mp_miterlimit_}{\&{miterlimit} primitive@>
9189 @d obj_color_part(A) mp->mem[(A)+3-red_part].sc
9190 /* interpret an object pointer that has been offset by |red_part..blue_part| */
9191 @d pre_script(A) mp->mem[(A)+8].hh.lh
9192 @d post_script(A) mp->mem[(A)+8].hh.rh
9195 @ @<Graphical object codes@>=
9199 pointer mp_new_fill_node (MP mp,pointer p) {
9200 /* make a fill node for cyclic path |p| and color black */
9201 pointer t; /* the new node */
9202 t=mp_get_node(mp, fill_node_size);
9203 type(t)=mp_fill_code;
9205 pen_p(t)=null; /* |null| means don't use a pen */
9210 color_model(t)=mp_uninitialized_model;
9212 post_script(t)=null;
9213 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9217 @ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
9218 if ( mp->internal[mp_linejoin]>unity ) ljoin_val(t)=2;
9219 else if ( mp->internal[mp_linejoin]>0 ) ljoin_val(t)=1;
9220 else ljoin_val(t)=0;
9221 if ( mp->internal[mp_miterlimit]<unity )
9222 miterlim_val(t)=unity;
9224 miterlim_val(t)=mp->internal[mp_miterlimit]
9226 @ A stroked path is represented by an eight-word node that is like a filled
9227 contour node except that it contains the current \&{linecap} value, a scale
9228 factor for the dash pattern, and a pointer that is non-null if the stroke
9229 is to be dashed. The purpose of the scale factor is to allow a picture to
9230 be transformed without touching the picture that |dash_p| points to.
9232 @d dash_p(A) link((A)+9)
9233 /* a pointer to the edge structure that gives the dash pattern */
9234 @d lcap_val(A) type((A)+9)
9235 /* the value of \&{linecap} */
9236 @:mp_linecap_}{\&{linecap} primitive@>
9237 @d dash_scale(A) mp->mem[(A)+10].sc /* dash lengths are scaled by this factor */
9238 @d stroked_node_size 11
9240 @ @<Graphical object codes@>=
9244 pointer mp_new_stroked_node (MP mp,pointer p) {
9245 /* make a stroked node for path |p| with |pen_p(p)| temporarily |null| */
9246 pointer t; /* the new node */
9247 t=mp_get_node(mp, stroked_node_size);
9248 type(t)=mp_stroked_code;
9249 path_p(t)=p; pen_p(t)=null;
9251 dash_scale(t)=unity;
9256 color_model(t)=mp_uninitialized_model;
9258 post_script(t)=null;
9259 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9260 if ( mp->internal[mp_linecap]>unity ) lcap_val(t)=2;
9261 else if ( mp->internal[mp_linecap]>0 ) lcap_val(t)=1;
9266 @ When a dashed line is computed in a transformed coordinate system, the dash
9267 lengths get scaled like the pen shape and we need to compensate for this. Since
9268 there is no unique scale factor for an arbitrary transformation, we use the
9269 the square root of the determinant. The properties of the determinant make it
9270 easier to maintain the |dash_scale|. The computation is fairly straight-forward
9271 except for the initialization of the scale factor |s|. The factor of 64 is
9272 needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
9273 to counteract the effect of |take_fraction|.
9275 @<Declare subroutines needed by |print_edges|@>=
9276 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) {
9277 scaled maxabs; /* $max(|a|,|b|,|c|,|d|)$ */
9278 integer s; /* amount by which the result of |square_rt| needs to be scaled */
9279 @<Initialize |maxabs|@>;
9281 while ( (maxabs<fraction_one) && (s>1) ){
9282 a+=a; b+=b; c+=c; d+=d;
9283 maxabs+=maxabs; s=halfp(s);
9285 return s*mp_square_rt(mp, abs(mp_take_fraction(mp, a,d)-mp_take_fraction(mp, b,c)));
9288 scaled mp_get_pen_scale (MP mp,pointer p) {
9289 return mp_sqrt_det(mp,
9290 left_x(p)-x_coord(p), right_x(p)-x_coord(p),
9291 left_y(p)-y_coord(p), right_y(p)-y_coord(p));
9294 @ @<Internal library ...@>=
9295 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) ;
9298 @ @<Initialize |maxabs|@>=
9300 if ( abs(b)>maxabs ) maxabs=abs(b);
9301 if ( abs(c)>maxabs ) maxabs=abs(c);
9302 if ( abs(d)>maxabs ) maxabs=abs(d)
9304 @ When a picture contains text, this is represented by a fourteen-word node
9305 where the color information and |type| and |link| fields are augmented by
9306 additional fields that describe the text and how it is transformed.
9307 The |path_p| and |pen_p| pointers are replaced by a number that identifies
9308 the font and a string number that gives the text to be displayed.
9309 The |width|, |height|, and |depth| fields
9310 give the dimensions of the text at its design size, and the remaining six
9311 words give a transformation to be applied to the text. The |new_text_node|
9312 function initializes everything to default values so that the text comes out
9313 black with its reference point at the origin.
9315 @d text_p(A) link((A)+1) /* a string pointer for the text to display */
9316 @d font_n(A) info((A)+1) /* the font number */
9317 @d width_val(A) mp->mem[(A)+7].sc /* unscaled width of the text */
9318 @d height_val(A) mp->mem[(A)+9].sc /* unscaled height of the text */
9319 @d depth_val(A) mp->mem[(A)+10].sc /* unscaled depth of the text */
9320 @d text_tx_loc(A) ((A)+11)
9321 /* the first of six locations for transformation parameters */
9322 @d tx_val(A) mp->mem[(A)+11].sc /* $x$ shift amount */
9323 @d ty_val(A) mp->mem[(A)+12].sc /* $y$ shift amount */
9324 @d txx_val(A) mp->mem[(A)+13].sc /* |txx| transformation parameter */
9325 @d txy_val(A) mp->mem[(A)+14].sc /* |txy| transformation parameter */
9326 @d tyx_val(A) mp->mem[(A)+15].sc /* |tyx| transformation parameter */
9327 @d tyy_val(A) mp->mem[(A)+16].sc /* |tyy| transformation parameter */
9328 @d text_trans_part(A) mp->mem[(A)+11-x_part].sc
9329 /* interpret a text node pointer that has been offset by |x_part..yy_part| */
9330 @d text_node_size 17
9332 @ @<Graphical object codes@>=
9335 @ @c @<Declare text measuring subroutines@>;
9336 pointer mp_new_text_node (MP mp,char *f,str_number s) {
9337 /* make a text node for font |f| and text string |s| */
9338 pointer t; /* the new node */
9339 t=mp_get_node(mp, text_node_size);
9340 type(t)=mp_text_code;
9342 font_n(t)=mp_find_font(mp, f); /* this identifies the font */
9347 color_model(t)=mp_uninitialized_model;
9349 post_script(t)=null;
9350 tx_val(t)=0; ty_val(t)=0;
9351 txx_val(t)=unity; txy_val(t)=0;
9352 tyx_val(t)=0; tyy_val(t)=unity;
9353 mp_set_text_box(mp, t); /* this finds the bounding box */
9357 @ The last two types of graphical objects that can occur in an edge structure
9358 are clipping paths and \&{setbounds} paths. These are slightly more difficult
9359 @:set_bounds_}{\&{setbounds} primitive@>
9360 to implement because we must keep track of exactly what is being clipped or
9361 bounded when pictures get merged together. For this reason, each clipping or
9362 \&{setbounds} operation is represented by a pair of nodes: first comes a
9363 two-word node whose |path_p| gives the relevant path, then there is the list
9364 of objects to clip or bound followed by a two-word node whose second word is
9367 Using at least two words for each graphical object node allows them all to be
9368 allocated and deallocated similarly with a global array |gr_object_size| to
9369 give the size in words for each object type.
9371 @d start_clip_size 2
9372 @d start_bounds_size 2
9373 @d stop_clip_size 2 /* the second word is not used here */
9374 @d stop_bounds_size 2 /* the second word is not used here */
9376 @d stop_type(A) ((A)+2)
9377 /* matching |type| for |start_clip_code| or |start_bounds_code| */
9378 @d has_color(A) (type((A))<mp_start_clip_code)
9379 /* does a graphical object have color fields? */
9380 @d has_pen(A) (type((A))<mp_text_code)
9381 /* does a graphical object have a |pen_p| field? */
9382 @d is_start_or_stop(A) (type((A))>=mp_start_clip_code)
9383 @d is_stop(A) (type((A))>=mp_stop_clip_code)
9385 @ @<Graphical object codes@>=
9386 mp_start_clip_code=4, /* |type| of a node that starts clipping */
9387 mp_start_bounds_code=5, /* |type| of a node that gives a \&{setbounds} path */
9388 mp_stop_clip_code=6, /* |type| of a node that stops clipping */
9389 mp_stop_bounds_code=7, /* |type| of a node that stops \&{setbounds} */
9392 pointer mp_new_bounds_node (MP mp,pointer p, small_number c) {
9393 /* make a node of type |c| where |p| is the clipping or \&{setbounds} path */
9394 pointer t; /* the new node */
9395 t=mp_get_node(mp, mp->gr_object_size[c]);
9401 @ We need an array to keep track of the sizes of graphical objects.
9404 small_number gr_object_size[mp_stop_bounds_code+1];
9407 mp->gr_object_size[mp_fill_code]=fill_node_size;
9408 mp->gr_object_size[mp_stroked_code]=stroked_node_size;
9409 mp->gr_object_size[mp_text_code]=text_node_size;
9410 mp->gr_object_size[mp_start_clip_code]=start_clip_size;
9411 mp->gr_object_size[mp_stop_clip_code]=stop_clip_size;
9412 mp->gr_object_size[mp_start_bounds_code]=start_bounds_size;
9413 mp->gr_object_size[mp_stop_bounds_code]=stop_bounds_size;
9415 @ All the essential information in an edge structure is encoded as a linked list
9416 of graphical objects as we have just seen, but it is helpful to add some
9417 redundant information. A single edge structure might be used as a dash pattern
9418 many times, and it would be nice to avoid scanning the same structure
9419 repeatedly. Thus, an edge structure known to be a suitable dash pattern
9420 has a header that gives a list of dashes in a sorted order designed for rapid
9421 translation into \ps.
9423 Each dash is represented by a three-word node containing the initial and final
9424 $x$~coordinates as well as the usual |link| field. The |link| fields points to
9425 the dash node with the next higher $x$-coordinates and the final link points
9426 to a special location called |null_dash|. (There should be no overlap between
9427 dashes). Since the $y$~coordinate of the dash pattern is needed to determine
9428 the period of repetition, this needs to be stored in the edge header along
9429 with a pointer to the list of dash nodes.
9431 @d start_x(A) mp->mem[(A)+1].sc /* the starting $x$~coordinate in a dash node */
9432 @d stop_x(A) mp->mem[(A)+2].sc /* the ending $x$~coordinate in a dash node */
9435 /* in an edge header this points to the first dash node */
9436 @d dash_y(A) mp->mem[(A)+1].sc /* $y$ value for the dash list in an edge header */
9438 @ It is also convenient for an edge header to contain the bounding
9439 box information needed by the \&{llcorner} and \&{urcorner} operators
9440 so that this does not have to be recomputed unnecessarily. This is done by
9441 adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
9442 how far the bounding box computation has gotten. Thus if the user asks for
9443 the bounding box and then adds some more text to the picture before asking
9444 for more bounding box information, the second computation need only look at
9445 the additional text.
9447 When the bounding box has not been computed, the |bblast| pointer points
9448 to a dummy link at the head of the graphical object list while the |minx_val|
9449 and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
9450 fields contain |-el_gordo|.
9452 Since the bounding box of pictures containing objects of type
9453 |mp_start_bounds_code| depends on the value of \&{truecorners}, the bounding box
9454 @:mp_true_corners_}{\&{truecorners} primitive@>
9455 data might not be valid for all values of this parameter. Hence, the |bbtype|
9456 field is needed to keep track of this.
9458 @d minx_val(A) mp->mem[(A)+2].sc
9459 @d miny_val(A) mp->mem[(A)+3].sc
9460 @d maxx_val(A) mp->mem[(A)+4].sc
9461 @d maxy_val(A) mp->mem[(A)+5].sc
9462 @d bblast(A) link((A)+6) /* last item considered in bounding box computation */
9463 @d bbtype(A) info((A)+6) /* tells how bounding box data depends on \&{truecorners} */
9464 @d dummy_loc(A) ((A)+7) /* where the object list begins in an edge header */
9466 /* |bbtype| value when bounding box data is valid for all \&{truecorners} values */
9468 /* |bbtype| value when bounding box data is for \&{truecorners}${}\le 0$ */
9470 /* |bbtype| value when bounding box data is for \&{truecorners}${}>0$ */
9473 void mp_init_bbox (MP mp,pointer h) {
9474 /* Initialize the bounding box information in edge structure |h| */
9475 bblast(h)=dummy_loc(h);
9476 bbtype(h)=no_bounds;
9477 minx_val(h)=el_gordo;
9478 miny_val(h)=el_gordo;
9479 maxx_val(h)=-el_gordo;
9480 maxy_val(h)=-el_gordo;
9483 @ The only other entries in an edge header are a reference count in the first
9484 word and a pointer to the tail of the object list in the last word.
9486 @d obj_tail(A) info((A)+7) /* points to the last entry in the object list */
9487 @d edge_header_size 8
9490 void mp_init_edges (MP mp,pointer h) {
9491 /* initialize an edge header to null values */
9492 dash_list(h)=null_dash;
9493 obj_tail(h)=dummy_loc(h);
9494 link(dummy_loc(h))=null;
9496 mp_init_bbox(mp, h);
9499 @ Here is how edge structures are deleted. The process can be recursive because
9500 of the need to dereference edge structures that are used as dash patterns.
9503 @d add_edge_ref(A) incr(ref_count(A))
9504 @d delete_edge_ref(A) {
9505 if ( ref_count((A))==null )
9506 mp_toss_edges(mp, A);
9511 @<Declare the recycling subroutines@>=
9512 void mp_flush_dash_list (MP mp,pointer h);
9513 pointer mp_toss_gr_object (MP mp,pointer p) ;
9514 void mp_toss_edges (MP mp,pointer h) ;
9516 @ @c void mp_toss_edges (MP mp,pointer h) {
9517 pointer p,q; /* pointers that scan the list being recycled */
9518 pointer r; /* an edge structure that object |p| refers to */
9519 mp_flush_dash_list(mp, h);
9520 q=link(dummy_loc(h));
9521 while ( (q!=null) ) {
9523 r=mp_toss_gr_object(mp, p);
9524 if ( r!=null ) delete_edge_ref(r);
9526 mp_free_node(mp, h,edge_header_size);
9528 void mp_flush_dash_list (MP mp,pointer h) {
9529 pointer p,q; /* pointers that scan the list being recycled */
9531 while ( q!=null_dash ) {
9533 mp_free_node(mp, p,dash_node_size);
9535 dash_list(h)=null_dash;
9537 pointer mp_toss_gr_object (MP mp,pointer p) {
9538 /* returns an edge structure that needs to be dereferenced */
9539 pointer e; /* the edge structure to return */
9541 @<Prepare to recycle graphical object |p|@>;
9542 mp_free_node(mp, p,mp->gr_object_size[type(p)]);
9546 @ @<Prepare to recycle graphical object |p|@>=
9549 mp_toss_knot_list(mp, path_p(p));
9550 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9551 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9552 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9554 case mp_stroked_code:
9555 mp_toss_knot_list(mp, path_p(p));
9556 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9557 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9558 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9562 delete_str_ref(text_p(p));
9563 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9564 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9566 case mp_start_clip_code:
9567 case mp_start_bounds_code:
9568 mp_toss_knot_list(mp, path_p(p));
9570 case mp_stop_clip_code:
9571 case mp_stop_bounds_code:
9573 } /* there are no other cases */
9575 @ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
9576 to be done before making a significant change to an edge structure. Much of
9577 the work is done in a separate routine |copy_objects| that copies a list of
9578 graphical objects into a new edge header.
9580 @c @<Declare a function called |copy_objects|@>;
9581 pointer mp_private_edges (MP mp,pointer h) {
9582 /* make a private copy of the edge structure headed by |h| */
9583 pointer hh; /* the edge header for the new copy */
9584 pointer p,pp; /* pointers for copying the dash list */
9585 if ( ref_count(h)==null ) {
9589 hh=mp_copy_objects(mp, link(dummy_loc(h)),null);
9590 @<Copy the dash list from |h| to |hh|@>;
9591 @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
9592 point into the new object list@>;
9597 @ Here we use the fact that |dash_list(hh)=link(hh)|.
9598 @^data structure assumptions@>
9600 @<Copy the dash list from |h| to |hh|@>=
9601 pp=hh; p=dash_list(h);
9602 while ( (p!=null_dash) ) {
9603 link(pp)=mp_get_node(mp, dash_node_size);
9605 start_x(pp)=start_x(p);
9606 stop_x(pp)=stop_x(p);
9610 dash_y(hh)=dash_y(h)
9613 @ |h| is an edge structure
9615 @d gr_start_x(A) (A)->start_x_field
9616 @d gr_stop_x(A) (A)->stop_x_field
9617 @d gr_dash_link(A) (A)->next_field
9619 @d gr_dash_list(A) (A)->list_field
9620 @d gr_dash_y(A) (A)->y_field
9623 struct mp_dash_list *mp_export_dashes (MP mp, pointer h) {
9624 struct mp_dash_list *dl;
9625 struct mp_dash_item *dh, *di;
9627 if (h==null || dash_list(h)==null_dash)
9630 dl = mp_xmalloc(mp,1,sizeof(struct mp_dash_list));
9631 gr_dash_list(dl) = NULL;
9632 gr_dash_y(dl) = dash_y(h);
9634 while (p != null_dash) {
9635 di=mp_xmalloc(mp,1,sizeof(struct mp_dash_item));
9636 gr_dash_link(di) = NULL;
9637 gr_start_x(di) = start_x(p);
9638 gr_stop_x(di) = stop_x(p);
9640 gr_dash_list(dl) = di;
9642 gr_dash_link(dh) = di;
9651 @ @<Copy the bounding box information from |h| to |hh|...@>=
9652 minx_val(hh)=minx_val(h);
9653 miny_val(hh)=miny_val(h);
9654 maxx_val(hh)=maxx_val(h);
9655 maxy_val(hh)=maxy_val(h);
9656 bbtype(hh)=bbtype(h);
9657 p=dummy_loc(h); pp=dummy_loc(hh);
9658 while ((p!=bblast(h)) ) {
9659 if ( p==null ) mp_confusion(mp, "bblast");
9660 @:this can't happen bblast}{\quad bblast@>
9661 p=link(p); pp=link(pp);
9665 @ Here is the promised routine for copying graphical objects into a new edge
9666 structure. It starts copying at object~|p| and stops just before object~|q|.
9667 If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
9668 structure requires further initialization by |init_bbox|.
9670 @<Declare a function called |copy_objects|@>=
9671 pointer mp_copy_objects (MP mp, pointer p, pointer q) {
9672 pointer hh; /* the new edge header */
9673 pointer pp; /* the last newly copied object */
9674 small_number k; /* temporary register */
9675 hh=mp_get_node(mp, edge_header_size);
9676 dash_list(hh)=null_dash;
9680 @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
9687 @ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
9688 { k=mp->gr_object_size[type(p)];
9689 link(pp)=mp_get_node(mp, k);
9691 while ( (k>0) ) { decr(k); mp->mem[pp+k]=mp->mem[p+k]; };
9692 @<Fix anything in graphical object |pp| that should differ from the
9693 corresponding field in |p|@>;
9697 @ @<Fix anything in graphical object |pp| that should differ from the...@>=
9699 case mp_start_clip_code:
9700 case mp_start_bounds_code:
9701 path_p(pp)=mp_copy_path(mp, path_p(p));
9704 path_p(pp)=mp_copy_path(mp, path_p(p));
9705 if ( pen_p(p)!=null ) pen_p(pp)=copy_pen(pen_p(p));
9707 case mp_stroked_code:
9708 path_p(pp)=mp_copy_path(mp, path_p(p));
9709 pen_p(pp)=copy_pen(pen_p(p));
9710 if ( dash_p(p)!=null ) add_edge_ref(dash_p(pp));
9713 add_str_ref(text_p(pp));
9715 case mp_stop_clip_code:
9716 case mp_stop_bounds_code:
9718 } /* there are no other cases */
9720 @ Here is one way to find an acceptable value for the second argument to
9721 |copy_objects|. Given a non-null graphical object list, |skip_1component|
9722 skips past one picture component, where a ``picture component'' is a single
9723 graphical object, or a start bounds or start clip object and everything up
9724 through the matching stop bounds or stop clip object. The macro version avoids
9725 procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
9726 unless |p| points to a stop bounds or stop clip node, in which case it executes
9729 @d skip_component(A)
9730 if ( ! is_start_or_stop((A)) ) (A)=link((A));
9731 else if ( ! is_stop((A)) ) (A)=mp_skip_1component(mp, (A));
9735 pointer mp_skip_1component (MP mp,pointer p) {
9736 integer lev; /* current nesting level */
9739 if ( is_start_or_stop(p) ) {
9740 if ( is_stop(p) ) decr(lev); else incr(lev);
9747 @ Here is a diagnostic routine for printing an edge structure in symbolic form.
9749 @<Declare subroutines for printing expressions@>=
9750 @<Declare subroutines needed by |print_edges|@>;
9751 void mp_print_edges (MP mp,pointer h, char *s, boolean nuline) {
9752 pointer p; /* a graphical object to be printed */
9753 pointer hh,pp; /* temporary pointers */
9754 scaled scf; /* a scale factor for the dash pattern */
9755 boolean ok_to_dash; /* |false| for polygonal pen strokes */
9756 mp_print_diagnostic(mp, "Edge structure",s,nuline);
9758 while ( link(p)!=null ) {
9762 @<Cases for printing graphical object node |p|@>;
9764 mp_print(mp, "[unknown object type!]");
9768 mp_print_nl(mp, "End edges");
9769 if ( p!=obj_tail(h) ) mp_print(mp, "?");
9771 mp_end_diagnostic(mp, true);
9774 @ @<Cases for printing graphical object node |p|@>=
9776 mp_print(mp, "Filled contour ");
9777 mp_print_obj_color(mp, p);
9778 mp_print_char(mp, ':'); mp_print_ln(mp);
9779 mp_pr_path(mp, path_p(p)); mp_print_ln(mp);
9780 if ( (pen_p(p)!=null) ) {
9781 @<Print join type for graphical object |p|@>;
9782 mp_print(mp, " with pen"); mp_print_ln(mp);
9783 mp_pr_pen(mp, pen_p(p));
9787 @ @<Print join type for graphical object |p|@>=
9788 switch (ljoin_val(p)) {
9790 mp_print(mp, "mitered joins limited ");
9791 mp_print_scaled(mp, miterlim_val(p));
9794 mp_print(mp, "round joins");
9797 mp_print(mp, "beveled joins");
9800 mp_print(mp, "?? joins");
9805 @ For stroked nodes, we need to print |lcap_val(p)| as well.
9807 @<Print join and cap types for stroked node |p|@>=
9808 switch (lcap_val(p)) {
9809 case 0:mp_print(mp, "butt"); break;
9810 case 1:mp_print(mp, "round"); break;
9811 case 2:mp_print(mp, "square"); break;
9812 default: mp_print(mp, "??"); break;
9815 mp_print(mp, " ends, ");
9816 @<Print join type for graphical object |p|@>
9818 @ Here is a routine that prints the color of a graphical object if it isn't
9819 black (the default color).
9821 @<Declare subroutines needed by |print_edges|@>=
9822 @<Declare a procedure called |print_compact_node|@>;
9823 void mp_print_obj_color (MP mp,pointer p) {
9824 if ( color_model(p)==mp_grey_model ) {
9825 if ( grey_val(p)>0 ) {
9826 mp_print(mp, "greyed ");
9827 mp_print_compact_node(mp, obj_grey_loc(p),1);
9829 } else if ( color_model(p)==mp_cmyk_model ) {
9830 if ( (cyan_val(p)>0) || (magenta_val(p)>0) ||
9831 (yellow_val(p)>0) || (black_val(p)>0) ) {
9832 mp_print(mp, "processcolored ");
9833 mp_print_compact_node(mp, obj_cyan_loc(p),4);
9835 } else if ( color_model(p)==mp_rgb_model ) {
9836 if ( (red_val(p)>0) || (green_val(p)>0) || (blue_val(p)>0) ) {
9837 mp_print(mp, "colored ");
9838 mp_print_compact_node(mp, obj_red_loc(p),3);
9843 @ We also need a procedure for printing consecutive scaled values as if they
9844 were a known big node.
9846 @<Declare a procedure called |print_compact_node|@>=
9847 void mp_print_compact_node (MP mp,pointer p, small_number k) {
9848 pointer q; /* last location to print */
9850 mp_print_char(mp, '(');
9852 mp_print_scaled(mp, mp->mem[p].sc);
9853 if ( p<q ) mp_print_char(mp, ',');
9856 mp_print_char(mp, ')');
9859 @ @<Cases for printing graphical object node |p|@>=
9860 case mp_stroked_code:
9861 mp_print(mp, "Filled pen stroke ");
9862 mp_print_obj_color(mp, p);
9863 mp_print_char(mp, ':'); mp_print_ln(mp);
9864 mp_pr_path(mp, path_p(p));
9865 if ( dash_p(p)!=null ) {
9866 mp_print_nl(mp, "dashed (");
9867 @<Finish printing the dash pattern that |p| refers to@>;
9870 @<Print join and cap types for stroked node |p|@>;
9871 mp_print(mp, " with pen"); mp_print_ln(mp);
9872 if ( pen_p(p)==null ) mp_print(mp, "???"); /* shouldn't happen */
9874 else mp_pr_pen(mp, pen_p(p));
9877 @ Normally, the |dash_list| field in an edge header is set to |null_dash|
9878 when it is not known to define a suitable dash pattern. This is disallowed
9879 here because the |dash_p| field should never point to such an edge header.
9880 Note that memory is allocated for |start_x(null_dash)| and we are free to
9881 give it any convenient value.
9883 @<Finish printing the dash pattern that |p| refers to@>=
9884 ok_to_dash=pen_is_elliptical(pen_p(p));
9885 if ( ! ok_to_dash ) scf=unity; else scf=dash_scale(p);
9888 if ( (pp==null_dash) || (dash_y(hh)<0) ) {
9889 mp_print(mp, " ??");
9890 } else { start_x(null_dash)=start_x(pp)+dash_y(hh);
9891 while ( pp!=null_dash ) {
9892 mp_print(mp, "on ");
9893 mp_print_scaled(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf));
9894 mp_print(mp, " off ");
9895 mp_print_scaled(mp, mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
9897 if ( pp!=null_dash ) mp_print_char(mp, ' ');
9899 mp_print(mp, ") shifted ");
9900 mp_print_scaled(mp, -mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
9901 if ( ! ok_to_dash || (dash_y(hh)==0) ) mp_print(mp, " (this will be ignored)");
9904 @ @<Declare subroutines needed by |print_edges|@>=
9905 scaled mp_dash_offset (MP mp,pointer h) {
9906 scaled x; /* the answer */
9907 if (dash_list(h)==null_dash || dash_y(h)<0) mp_confusion(mp, "dash0");
9908 @:this can't happen dash0}{\quad dash0@>
9909 if ( dash_y(h)==0 ) {
9912 x=-(start_x(dash_list(h)) % dash_y(h));
9913 if ( x<0 ) x=x+dash_y(h);
9918 @ @<Cases for printing graphical object node |p|@>=
9920 mp_print_char(mp, '"'); mp_print_str(mp,text_p(p));
9921 mp_print(mp, "\" infont \""); mp_print(mp, mp->font_name[font_n(p)]);
9922 mp_print_char(mp, '"'); mp_print_ln(mp);
9923 mp_print_obj_color(mp, p);
9924 mp_print(mp, "transformed ");
9925 mp_print_compact_node(mp, text_tx_loc(p),6);
9928 @ @<Cases for printing graphical object node |p|@>=
9929 case mp_start_clip_code:
9930 mp_print(mp, "clipping path:");
9932 mp_pr_path(mp, path_p(p));
9934 case mp_stop_clip_code:
9935 mp_print(mp, "stop clipping");
9938 @ @<Cases for printing graphical object node |p|@>=
9939 case mp_start_bounds_code:
9940 mp_print(mp, "setbounds path:");
9942 mp_pr_path(mp, path_p(p));
9944 case mp_stop_bounds_code:
9945 mp_print(mp, "end of setbounds");
9948 @ To initialize the |dash_list| field in an edge header~|h|, we need a
9949 subroutine that scans an edge structure and tries to interpret it as a dash
9950 pattern. This can only be done when there are no filled regions or clipping
9951 paths and all the pen strokes have the same color. The first step is to let
9952 $y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
9953 project all the pen stroke paths onto the line $y=y_0$ and require that there
9954 be no retracing. If the resulting paths cover a range of $x$~coordinates of
9955 length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
9956 finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
9958 @c @<Declare a procedure called |x_retrace_error|@>;
9959 pointer mp_make_dashes (MP mp,pointer h) { /* returns |h| or |null| */
9960 pointer p; /* this scans the stroked nodes in the object list */
9961 pointer p0; /* if not |null| this points to the first stroked node */
9962 pointer pp,qq,rr; /* pointers into |path_p(p)| */
9963 pointer d,dd; /* pointers used to create the dash list */
9964 @<Other local variables in |make_dashes|@>;
9965 scaled y0=0; /* the initial $y$ coordinate */
9966 if ( dash_list(h)!=null_dash )
9969 p=link(dummy_loc(h));
9971 if ( type(p)!=mp_stroked_code ) {
9972 @<Compain that the edge structure contains a node of the wrong type
9973 and |goto not_found|@>;
9976 if ( p0==null ){ p0=p; y0=y_coord(pp); };
9977 @<Make |d| point to a new dash node created from stroke |p| and path |pp|
9978 or |goto not_found| if there is an error@>;
9979 @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
9982 if ( dash_list(h)==null_dash )
9983 goto NOT_FOUND; /* No error message */
9984 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
9985 @<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
9988 @<Flush the dash list, recycle |h| and return |null|@>;
9991 @ @<Compain that the edge structure contains a node of the wrong type...@>=
9993 print_err("Picture is too complicated to use as a dash pattern");
9994 help3("When you say `dashed p', picture p should not contain any")
9995 ("text, filled regions, or clipping paths. This time it did")
9996 ("so I'll just make it a solid line instead.");
9997 mp_put_get_error(mp);
10001 @ A similar error occurs when monotonicity fails.
10003 @<Declare a procedure called |x_retrace_error|@>=
10004 void mp_x_retrace_error (MP mp) {
10005 print_err("Picture is too complicated to use as a dash pattern");
10006 help3("When you say `dashed p', every path in p should be monotone")
10007 ("in x and there must be no overlapping. This failed")
10008 ("so I'll just make it a solid line instead.");
10009 mp_put_get_error(mp);
10012 @ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
10013 handle the case where the pen stroke |p| is itself dashed.
10015 @<Make |d| point to a new dash node created from stroke |p| and path...@>=
10016 @<Make sure |p| and |p0| are the same color and |goto not_found| if there is
10019 if ( link(pp)!=pp ) {
10021 qq=rr; rr=link(rr);
10022 @<Check for retracing between knots |qq| and |rr| and |goto not_found|
10023 if there is a problem@>;
10024 } while (right_type(rr)!=mp_endpoint);
10026 d=mp_get_node(mp, dash_node_size);
10027 if ( dash_p(p)==0 ) info(d)=0; else info(d)=p;
10028 if ( x_coord(pp)<x_coord(rr) ) {
10029 start_x(d)=x_coord(pp);
10030 stop_x(d)=x_coord(rr);
10032 start_x(d)=x_coord(rr);
10033 stop_x(d)=x_coord(pp);
10036 @ We also need to check for the case where the segment from |qq| to |rr| is
10037 monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
10039 @<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
10044 if ( (x0>x1) || (x1>x2) || (x2>x3) ) {
10045 if ( (x0<x1) || (x1<x2) || (x2<x3) ) {
10046 if ( mp_ab_vs_cd(mp, x2-x1,x2-x1,x1-x0,x3-x2)>0 ) {
10047 mp_x_retrace_error(mp); goto NOT_FOUND;
10051 if ( (x_coord(pp)>x0) || (x0>x3) ) {
10052 if ( (x_coord(pp)<x0) || (x0<x3) ) {
10053 mp_x_retrace_error(mp); goto NOT_FOUND;
10057 @ @<Other local variables in |make_dashes|@>=
10058 scaled x0,x1,x2,x3; /* $x$ coordinates of the segment from |qq| to |rr| */
10060 @ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
10061 if ( (red_val(p)!=red_val(p0)) || (black_val(p)!=black_val(p0)) ||
10062 (green_val(p)!=green_val(p0)) || (blue_val(p)!=blue_val(p0)) ) {
10063 print_err("Picture is too complicated to use as a dash pattern");
10064 help3("When you say `dashed p', everything in picture p should")
10065 ("be the same color. I can\'t handle your color changes")
10066 ("so I'll just make it a solid line instead.");
10067 mp_put_get_error(mp);
10071 @ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
10072 start_x(null_dash)=stop_x(d);
10073 dd=h; /* this makes |link(dd)=dash_list(h)| */
10074 while ( start_x(link(dd))<stop_x(d) )
10077 if ( (stop_x(dd)>start_x(d)) )
10078 { mp_x_retrace_error(mp); goto NOT_FOUND; };
10083 @ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
10085 while ( (link(d)!=null_dash) )
10088 dash_y(h)=stop_x(d)-start_x(dd);
10089 if ( abs(y0)>dash_y(h) ) {
10091 } else if ( d!=dd ) {
10092 dash_list(h)=link(dd);
10093 stop_x(d)=stop_x(dd)+dash_y(h);
10094 mp_free_node(mp, dd,dash_node_size);
10097 @ We get here when the argument is a null picture or when there is an error.
10098 Recovering from an error involves making |dash_list(h)| empty to indicate
10099 that |h| is not known to be a valid dash pattern. We also dereference |h|
10100 since it is not being used for the return value.
10102 @<Flush the dash list, recycle |h| and return |null|@>=
10103 mp_flush_dash_list(mp, h);
10104 delete_edge_ref(h);
10107 @ Having carefully saved the dashed stroked nodes in the
10108 corresponding dash nodes, we must be prepared to break up these dashes into
10111 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
10112 d=h; /* now |link(d)=dash_list(h)| */
10113 while ( link(d)!=null_dash ) {
10119 hsf=dash_scale(ds);
10120 if ( (hh==null) ) mp_confusion(mp, "dash1");
10121 @:this can't happen dash0}{\quad dash1@>
10122 if ( dash_y(hh)==0 ) {
10125 if ( dash_list(hh)==null ) mp_confusion(mp, "dash1");
10126 @:this can't happen dash0}{\quad dash1@>
10127 @<Replace |link(d)| by a dashed version as determined by edge header
10128 |hh| and scale factor |ds|@>;
10133 @ @<Other local variables in |make_dashes|@>=
10134 pointer dln; /* |link(d)| */
10135 pointer hh; /* an edge header that tells how to break up |dln| */
10136 scaled hsf; /* the dash pattern from |hh| gets scaled by this */
10137 pointer ds; /* the stroked node from which |hh| and |hsf| are derived */
10138 scaled xoff; /* added to $x$ values in |dash_list(hh)| to match |dln| */
10140 @ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
10143 xoff=start_x(dln)-mp_take_scaled(mp, hsf,start_x(dd))-
10144 mp_take_scaled(mp, hsf,mp_dash_offset(mp, hh));
10145 start_x(null_dash)=mp_take_scaled(mp, hsf,start_x(dd))
10146 +mp_take_scaled(mp, hsf,dash_y(hh));
10147 stop_x(null_dash)=start_x(null_dash);
10148 @<Advance |dd| until finding the first dash that overlaps |dln| when
10149 offset by |xoff|@>;
10150 while ( start_x(dln)<=stop_x(dln) ) {
10151 @<If |dd| has `fallen off the end', back up to the beginning and fix |xoff|@>;
10152 @<Insert a dash between |d| and |dln| for the overlap with the offset version
10155 start_x(dln)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10158 mp_free_node(mp, dln,dash_node_size)
10160 @ The name of this module is a bit of a lie because we actually just find the
10161 first |dd| where |take_scaled (hsf, stop_x(dd))| is large enough to make an
10162 overlap possible. It could be that the unoffset version of dash |dln| falls
10163 in the gap between |dd| and its predecessor.
10165 @<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
10166 while ( xoff+mp_take_scaled(mp, hsf,stop_x(dd))<start_x(dln) ) {
10170 @ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
10171 if ( dd==null_dash ) {
10173 xoff=xoff+mp_take_scaled(mp, hsf,dash_y(hh));
10176 @ At this point we already know that
10177 |start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
10179 @<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
10180 if ( (xoff+mp_take_scaled(mp, hsf,start_x(dd)))<=stop_x(dln) ) {
10181 link(d)=mp_get_node(mp, dash_node_size);
10184 if ( start_x(dln)>(xoff+mp_take_scaled(mp, hsf,start_x(dd))))
10185 start_x(d)=start_x(dln);
10187 start_x(d)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10188 if ( stop_x(dln)<(xoff+mp_take_scaled(mp, hsf,stop_x(dd))))
10189 stop_x(d)=stop_x(dln);
10191 stop_x(d)=xoff+mp_take_scaled(mp, hsf,stop_x(dd));
10194 @ The next major task is to update the bounding box information in an edge
10195 header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
10196 header's bounding box to accommodate the box computed by |path_bbox| or
10197 |pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
10200 @c void mp_adjust_bbox (MP mp,pointer h) {
10201 if ( minx<minx_val(h) ) minx_val(h)=minx;
10202 if ( miny<miny_val(h) ) miny_val(h)=miny;
10203 if ( maxx>maxx_val(h) ) maxx_val(h)=maxx;
10204 if ( maxy>maxy_val(h) ) maxy_val(h)=maxy;
10207 @ Here is a special routine for updating the bounding box information in
10208 edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
10209 that is to be stroked with the pen~|pp|.
10211 @c void mp_box_ends (MP mp, pointer p, pointer pp, pointer h) {
10212 pointer q; /* a knot node adjacent to knot |p| */
10213 fraction dx,dy; /* a unit vector in the direction out of the path at~|p| */
10214 scaled d; /* a factor for adjusting the length of |(dx,dy)| */
10215 scaled z; /* a coordinate being tested against the bounding box */
10216 scaled xx,yy; /* the extreme pen vertex in the |(dx,dy)| direction */
10217 integer i; /* a loop counter */
10218 if ( right_type(p)!=mp_endpoint ) {
10221 @<Make |(dx,dy)| the final direction for the path segment from
10222 |q| to~|p|; set~|d|@>;
10223 d=mp_pyth_add(mp, dx,dy);
10225 @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>;
10226 for (i=1;i<= 2;i++) {
10227 @<Use |(dx,dy)| to generate a vertex of the square end cap and
10228 update the bounding box to accommodate it@>;
10232 if ( right_type(p)==mp_endpoint ) {
10235 @<Advance |p| to the end of the path and make |q| the previous knot@>;
10241 @ @<Make |(dx,dy)| the final direction for the path segment from...@>=
10242 if ( q==link(p) ) {
10243 dx=x_coord(p)-right_x(p);
10244 dy=y_coord(p)-right_y(p);
10245 if ( (dx==0)&&(dy==0) ) {
10246 dx=x_coord(p)-left_x(q);
10247 dy=y_coord(p)-left_y(q);
10250 dx=x_coord(p)-left_x(p);
10251 dy=y_coord(p)-left_y(p);
10252 if ( (dx==0)&&(dy==0) ) {
10253 dx=x_coord(p)-right_x(q);
10254 dy=y_coord(p)-right_y(q);
10257 dx=x_coord(p)-x_coord(q);
10258 dy=y_coord(p)-y_coord(q)
10260 @ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
10261 dx=mp_make_fraction(mp, dx,d);
10262 dy=mp_make_fraction(mp, dy,d);
10263 mp_find_offset(mp, -dy,dx,pp);
10264 xx=mp->cur_x; yy=mp->cur_y
10266 @ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
10267 mp_find_offset(mp, dx,dy,pp);
10268 d=mp_take_fraction(mp, xx-mp->cur_x,dx)+mp_take_fraction(mp, yy-mp->cur_y,dy);
10269 if ( ((d<0)&&(i==1)) || ((d>0)&&(i==2)))
10270 mp_confusion(mp, "box_ends");
10271 @:this can't happen box ends}{\quad\\{box\_ends}@>
10272 z=x_coord(p)+mp->cur_x+mp_take_fraction(mp, d,dx);
10273 if ( z<minx_val(h) ) minx_val(h)=z;
10274 if ( z>maxx_val(h) ) maxx_val(h)=z;
10275 z=y_coord(p)+mp->cur_y+mp_take_fraction(mp, d,dy);
10276 if ( z<miny_val(h) ) miny_val(h)=z;
10277 if ( z>maxy_val(h) ) maxy_val(h)=z
10279 @ @<Advance |p| to the end of the path and make |q| the previous knot@>=
10283 } while (right_type(p)!=mp_endpoint)
10285 @ The major difficulty in finding the bounding box of an edge structure is the
10286 effect of clipping paths. We treat them conservatively by only clipping to the
10287 clipping path's bounding box, but this still
10288 requires recursive calls to |set_bbox| in order to find the bounding box of
10290 the objects to be clipped. Such calls are distinguished by the fact that the
10291 boolean parameter |top_level| is false.
10293 @c void mp_set_bbox (MP mp,pointer h, boolean top_level) {
10294 pointer p; /* a graphical object being considered */
10295 scaled sminx,sminy,smaxx,smaxy;
10296 /* for saving the bounding box during recursive calls */
10297 scaled x0,x1,y0,y1; /* temporary registers */
10298 integer lev; /* nesting level for |mp_start_bounds_code| nodes */
10299 @<Wipe out any existing bounding box information if |bbtype(h)| is
10300 incompatible with |internal[mp_true_corners]|@>;
10301 while ( link(bblast(h))!=null ) {
10305 case mp_stop_clip_code:
10306 if ( top_level ) mp_confusion(mp, "bbox"); else return;
10307 @:this can't happen bbox}{\quad bbox@>
10309 @<Other cases for updating the bounding box based on the type of object |p|@>;
10310 } /* all cases are enumerated above */
10312 if ( ! top_level ) mp_confusion(mp, "bbox");
10315 @ @<Internal library declarations@>=
10316 void mp_set_bbox (MP mp,pointer h, boolean top_level);
10318 @ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
10319 switch (bbtype(h)) {
10323 if ( mp->internal[mp_true_corners]>0 ) mp_init_bbox(mp, h);
10326 if ( mp->internal[mp_true_corners]<=0 ) mp_init_bbox(mp, h);
10328 } /* there are no other cases */
10330 @ @<Other cases for updating the bounding box...@>=
10332 mp_path_bbox(mp, path_p(p));
10333 if ( pen_p(p)!=null ) {
10336 mp_pen_bbox(mp, pen_p(p));
10342 mp_adjust_bbox(mp, h);
10345 @ @<Other cases for updating the bounding box...@>=
10346 case mp_start_bounds_code:
10347 if ( mp->internal[mp_true_corners]>0 ) {
10348 bbtype(h)=bounds_unset;
10350 bbtype(h)=bounds_set;
10351 mp_path_bbox(mp, path_p(p));
10352 mp_adjust_bbox(mp, h);
10353 @<Scan to the matching |mp_stop_bounds_code| node and update |p| and
10357 case mp_stop_bounds_code:
10358 if ( mp->internal[mp_true_corners]<=0 ) mp_confusion(mp, "bbox2");
10359 @:this can't happen bbox2}{\quad bbox2@>
10362 @ @<Scan to the matching |mp_stop_bounds_code| node and update |p| and...@>=
10365 if ( link(p)==null ) mp_confusion(mp, "bbox2");
10366 @:this can't happen bbox2}{\quad bbox2@>
10368 if ( type(p)==mp_start_bounds_code ) incr(lev);
10369 else if ( type(p)==mp_stop_bounds_code ) decr(lev);
10373 @ It saves a lot of grief here to be slightly conservative and not account for
10374 omitted parts of dashed lines. We also don't worry about the material omitted
10375 when using butt end caps. The basic computation is for round end caps and
10376 |box_ends| augments it for square end caps.
10378 @<Other cases for updating the bounding box...@>=
10379 case mp_stroked_code:
10380 mp_path_bbox(mp, path_p(p));
10383 mp_pen_bbox(mp, pen_p(p));
10388 mp_adjust_bbox(mp, h);
10389 if ( (left_type(path_p(p))==mp_endpoint)&&(lcap_val(p)==2) )
10390 mp_box_ends(mp, path_p(p), pen_p(p), h);
10393 @ The height width and depth information stored in a text node determines a
10394 rectangle that needs to be transformed according to the transformation
10395 parameters stored in the text node.
10397 @<Other cases for updating the bounding box...@>=
10399 x1=mp_take_scaled(mp, txx_val(p),width_val(p));
10400 y0=mp_take_scaled(mp, txy_val(p),-depth_val(p));
10401 y1=mp_take_scaled(mp, txy_val(p),height_val(p));
10404 if ( y0<y1 ) { minx=minx+y0; maxx=maxx+y1; }
10405 else { minx=minx+y1; maxx=maxx+y0; }
10406 if ( x1<0 ) minx=minx+x1; else maxx=maxx+x1;
10407 x1=mp_take_scaled(mp, tyx_val(p),width_val(p));
10408 y0=mp_take_scaled(mp, tyy_val(p),-depth_val(p));
10409 y1=mp_take_scaled(mp, tyy_val(p),height_val(p));
10412 if ( y0<y1 ) { miny=miny+y0; maxy=maxy+y1; }
10413 else { miny=miny+y1; maxy=maxy+y0; }
10414 if ( x1<0 ) miny=miny+x1; else maxy=maxy+x1;
10415 mp_adjust_bbox(mp, h);
10418 @ This case involves a recursive call that advances |bblast(h)| to the node of
10419 type |mp_stop_clip_code| that matches |p|.
10421 @<Other cases for updating the bounding box...@>=
10422 case mp_start_clip_code:
10423 mp_path_bbox(mp, path_p(p));
10426 sminx=minx_val(h); sminy=miny_val(h);
10427 smaxx=maxx_val(h); smaxy=maxy_val(h);
10428 @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
10429 starting at |link(p)|@>;
10430 @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
10432 minx=sminx; miny=sminy;
10433 maxx=smaxx; maxy=smaxy;
10434 mp_adjust_bbox(mp, h);
10437 @ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
10438 minx_val(h)=el_gordo;
10439 miny_val(h)=el_gordo;
10440 maxx_val(h)=-el_gordo;
10441 maxy_val(h)=-el_gordo;
10442 mp_set_bbox(mp, h,false)
10444 @ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
10445 if ( minx_val(h)<x0 ) minx_val(h)=x0;
10446 if ( miny_val(h)<y0 ) miny_val(h)=y0;
10447 if ( maxx_val(h)>x1 ) maxx_val(h)=x1;
10448 if ( maxy_val(h)>y1 ) maxy_val(h)=y1
10450 @* \[22] Finding an envelope.
10451 When \MP\ has a path and a polygonal pen, it needs to express the desired
10452 shape in terms of things \ps\ can understand. The present task is to compute
10453 a new path that describes the region to be filled. It is convenient to
10454 define this as a two step process where the first step is determining what
10455 offset to use for each segment of the path.
10457 @ Given a pointer |c| to a cyclic path,
10458 and a pointer~|h| to the first knot of a pen polygon,
10459 the |offset_prep| routine changes the path into cubics that are
10460 associated with particular pen offsets. Thus if the cubic between |p|
10461 and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
10462 has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
10463 to because |l-k| could be negative.)
10465 After overwriting the type information with offset differences, we no longer
10466 have a true path so we refer to the knot list returned by |offset_prep| as an
10469 Since an envelope spec only determines relative changes in pen offsets,
10470 |offset_prep| sets a global variable |spec_offset| to the relative change from
10471 |h| to the first offset.
10473 @d zero_off 16384 /* added to offset changes to make them positive */
10476 integer spec_offset; /* number of pen edges between |h| and the initial offset */
10478 @ @c @<Declare subroutines needed by |offset_prep|@>;
10479 pointer mp_offset_prep (MP mp,pointer c, pointer h) {
10480 halfword n; /* the number of vertices in the pen polygon */
10481 pointer p,q,q0,r,w, ww; /* for list manipulation */
10482 integer k_needed; /* amount to be added to |info(p)| when it is computed */
10483 pointer w0; /* a pointer to pen offset to use just before |p| */
10484 scaled dxin,dyin; /* the direction into knot |p| */
10485 integer turn_amt; /* change in pen offsets for the current cubic */
10486 @<Other local variables for |offset_prep|@>;
10488 @<Initialize the pen size~|n|@>;
10489 @<Initialize the incoming direction and pen offset at |c|@>;
10493 @<Split the cubic between |p| and |q|, if necessary, into cubics
10494 associated with single offsets, after which |q| should
10495 point to the end of the final such cubic@>;
10497 @<Advance |p| to node |q|, removing any ``dead'' cubics that
10498 might have been introduced by the splitting process@>;
10500 @<Fix the offset change in |info(c)| and set |c| to the return value of
10505 @ We shall want to keep track of where certain knots on the cyclic path
10506 wind up in the envelope spec. It doesn't suffice just to keep pointers to
10507 knot nodes because some nodes are deleted while removing dead cubics. Thus
10508 |offset_prep| updates the following pointers
10512 pointer spec_p2; /* pointers to distinguished knots */
10515 mp->spec_p1=null; mp->spec_p2=null;
10517 @ @<Initialize the pen size~|n|@>=
10524 @ Since the true incoming direction isn't known yet, we just pick a direction
10525 consistent with the pen offset~|h|. If this is wrong, it can be corrected
10528 @<Initialize the incoming direction and pen offset at |c|@>=
10529 dxin=x_coord(link(h))-x_coord(knil(h));
10530 dyin=y_coord(link(h))-y_coord(knil(h));
10531 if ( (dxin==0)&&(dyin==0) ) {
10532 dxin=y_coord(knil(h))-y_coord(h);
10533 dyin=x_coord(h)-x_coord(knil(h));
10537 @ We must be careful not to remove the only cubic in a cycle.
10539 But we must also be careful for another reason. If the user-supplied
10540 path starts with a set of degenerate cubics, the target node |q| can
10541 be collapsed to the initial node |p| which might be the same as the
10542 initial node |c| of the curve. This would cause the |offset_prep| routine
10543 to bail out too early, causing distress later on. (See for example
10544 the testcase reported by Bogus\l{}aw Jackowski in tracker id 267, case 52c
10547 @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
10551 if ( x_coord(p)==right_x(p) && y_coord(p)==right_y(p) &&
10552 x_coord(p)==left_x(r) && y_coord(p)==left_y(r) &&
10553 x_coord(p)==x_coord(r) && y_coord(p)==y_coord(r) &&
10555 @<Remove the cubic following |p| and update the data structures
10556 to merge |r| into |p|@>;
10560 /* Check if we removed too much */
10564 @ @<Remove the cubic following |p| and update the data structures...@>=
10565 { k_needed=info(p)-zero_off;
10569 info(p)=k_needed+info(r);
10572 if ( r==c ) { info(p)=info(c); c=p; };
10573 if ( r==mp->spec_p1 ) mp->spec_p1=p;
10574 if ( r==mp->spec_p2 ) mp->spec_p2=p;
10575 r=p; mp_remove_cubic(mp, p);
10578 @ Not setting the |info| field of the newly created knot allows the splitting
10579 routine to work for paths.
10581 @<Declare subroutines needed by |offset_prep|@>=
10582 void mp_split_cubic (MP mp,pointer p, fraction t) { /* splits the cubic after |p| */
10583 scaled v; /* an intermediate value */
10584 pointer q,r; /* for list manipulation */
10585 q=link(p); r=mp_get_node(mp, knot_node_size); link(p)=r; link(r)=q;
10586 originator(r)=mp_program_code;
10587 left_type(r)=mp_explicit; right_type(r)=mp_explicit;
10588 v=t_of_the_way(right_x(p),left_x(q));
10589 right_x(p)=t_of_the_way(x_coord(p),right_x(p));
10590 left_x(q)=t_of_the_way(left_x(q),x_coord(q));
10591 left_x(r)=t_of_the_way(right_x(p),v);
10592 right_x(r)=t_of_the_way(v,left_x(q));
10593 x_coord(r)=t_of_the_way(left_x(r),right_x(r));
10594 v=t_of_the_way(right_y(p),left_y(q));
10595 right_y(p)=t_of_the_way(y_coord(p),right_y(p));
10596 left_y(q)=t_of_the_way(left_y(q),y_coord(q));
10597 left_y(r)=t_of_the_way(right_y(p),v);
10598 right_y(r)=t_of_the_way(v,left_y(q));
10599 y_coord(r)=t_of_the_way(left_y(r),right_y(r));
10602 @ This does not set |info(p)| or |right_type(p)|.
10604 @<Declare subroutines needed by |offset_prep|@>=
10605 void mp_remove_cubic (MP mp,pointer p) { /* removes the dead cubic following~|p| */
10606 pointer q; /* the node that disappears */
10607 q=link(p); link(p)=link(q);
10608 right_x(p)=right_x(q); right_y(p)=right_y(q);
10609 mp_free_node(mp, q,knot_node_size);
10612 @ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
10613 strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
10614 mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
10615 $k$th pen offset, the $k$th pen edge direction is defined by the formula
10616 $$d_k=(u\k-u_k,\,v\k-v_k).$$
10617 When listed by increasing $k$, these directions occur in counter-clockwise
10618 order so that $d_k\preceq d\k$ for all~$k$.
10619 The goal of |offset_prep| is to find an offset index~|k| to associate with
10620 each cubic, such that the direction $d(t)$ of the cubic satisfies
10621 $$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
10622 We may have to split a cubic into many pieces before each
10623 piece corresponds to a unique offset.
10625 @<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
10626 info(p)=zero_off+k_needed;
10628 @<Prepare for derivative computations;
10629 |goto not_found| if the current cubic is dead@>;
10630 @<Find the initial direction |(dx,dy)|@>;
10631 @<Update |info(p)| and find the offset $w_k$ such that
10632 $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
10633 the direction change at |p|@>;
10634 @<Find the final direction |(dxin,dyin)|@>;
10635 @<Decide on the net change in pen offsets and set |turn_amt|@>;
10636 @<Complete the offset splitting process@>;
10637 w0=mp_pen_walk(mp, w0,turn_amt)
10639 @ @<Declare subroutines needed by |offset_prep|@>=
10640 pointer mp_pen_walk (MP mp,pointer w, integer k) {
10641 /* walk |k| steps around a pen from |w| */
10642 while ( k>0 ) { w=link(w); decr(k); };
10643 while ( k<0 ) { w=knil(w); incr(k); };
10647 @ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
10648 calculated from the quadratic polynomials
10649 ${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
10650 ${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
10651 Since we may be calculating directions from several cubics
10652 split from the current one, it is desirable to do these calculations
10653 without losing too much precision. ``Scaled up'' values of the
10654 derivatives, which will be less tainted by accumulated errors than
10655 derivatives found from the cubics themselves, are maintained in
10656 local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
10657 $X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
10658 represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
10660 @<Other local variables for |offset_prep|@>=
10661 integer x0,x1,x2,y0,y1,y2; /* representatives of derivatives */
10662 integer t0,t1,t2; /* coefficients of polynomial for slope testing */
10663 integer du,dv,dx,dy; /* for directions of the pen and the curve */
10664 integer dx0,dy0; /* initial direction for the first cubic in the curve */
10665 integer max_coef; /* used while scaling */
10666 integer x0a,x1a,x2a,y0a,y1a,y2a; /* intermediate values */
10667 fraction t; /* where the derivative passes through zero */
10668 fraction s; /* a temporary value */
10670 @ @<Prepare for derivative computations...@>=
10671 x0=right_x(p)-x_coord(p);
10672 x2=x_coord(q)-left_x(q);
10673 x1=left_x(q)-right_x(p);
10674 y0=right_y(p)-y_coord(p); y2=y_coord(q)-left_y(q);
10675 y1=left_y(q)-right_y(p);
10677 if ( abs(x1)>max_coef ) max_coef=abs(x1);
10678 if ( abs(x2)>max_coef ) max_coef=abs(x2);
10679 if ( abs(y0)>max_coef ) max_coef=abs(y0);
10680 if ( abs(y1)>max_coef ) max_coef=abs(y1);
10681 if ( abs(y2)>max_coef ) max_coef=abs(y2);
10682 if ( max_coef==0 ) goto NOT_FOUND;
10683 while ( max_coef<fraction_half ) {
10685 double(x0); double(x1); double(x2);
10686 double(y0); double(y1); double(y2);
10689 @ Let us first solve a special case of the problem: Suppose we
10690 know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
10691 and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
10692 $d(0)\succ d_{k-1}$.
10693 Then, in a sense, we're halfway done, since one of the two relations
10694 in $(*)$ is satisfied, and the other couldn't be satisfied for
10695 any other value of~|k|.
10697 Actually, the conditions can be relaxed somewhat since a relation such as
10698 $d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
10699 matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
10700 the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
10701 and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
10702 Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
10703 counterclockwise direction.
10705 The |fin_offset_prep| subroutine solves the stated subproblem.
10706 It has a parameter called |rise| that is |1| in
10707 case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
10708 the derivative of the cubic following |p|.
10709 The |w| parameter should point to offset~$w_k$ and |info(p)| should already
10710 be set properly. The |turn_amt| parameter gives the absolute value of the
10711 overall net change in pen offsets.
10713 @<Declare subroutines needed by |offset_prep|@>=
10714 void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10715 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10716 integer rise, integer turn_amt) {
10717 pointer ww; /* for list manipulation */
10718 scaled du,dv; /* for slope calculation */
10719 integer t0,t1,t2; /* test coefficients */
10720 fraction t; /* place where the derivative passes a critical slope */
10721 fraction s; /* slope or reciprocal slope */
10722 integer v; /* intermediate value for updating |x0..y2| */
10723 pointer q; /* original |link(p)| */
10726 if ( rise>0 ) ww=link(w); /* a pointer to $w\k$ */
10727 else ww=knil(w); /* a pointer to $w_{k-1}$ */
10728 @<Compute test coefficients |(t0,t1,t2)|
10729 for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
10730 t=mp_crossing_point(mp, t0,t1,t2);
10731 if ( t>=fraction_one ) {
10732 if ( turn_amt>0 ) t=fraction_one; else return;
10734 @<Split the cubic at $t$,
10735 and split off another cubic if the derivative crosses back@>;
10740 @ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
10741 $-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
10742 function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
10745 @<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
10746 du=x_coord(ww)-x_coord(w); dv=y_coord(ww)-y_coord(w);
10747 if ( abs(du)>=abs(dv) ) {
10748 s=mp_make_fraction(mp, dv,du);
10749 t0=mp_take_fraction(mp, x0,s)-y0;
10750 t1=mp_take_fraction(mp, x1,s)-y1;
10751 t2=mp_take_fraction(mp, x2,s)-y2;
10752 if ( du<0 ) { negate(t0); negate(t1); negate(t2); }
10754 s=mp_make_fraction(mp, du,dv);
10755 t0=x0-mp_take_fraction(mp, y0,s);
10756 t1=x1-mp_take_fraction(mp, y1,s);
10757 t2=x2-mp_take_fraction(mp, y2,s);
10758 if ( dv<0 ) { negate(t0); negate(t1); negate(t2); }
10760 if ( t0<0 ) t0=0 /* should be positive without rounding error */
10762 @ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
10763 $(*)$, and it might cross again, yielding another solution of $(*)$.
10765 @<Split the cubic at $t$, and split off another...@>=
10767 mp_split_cubic(mp, p,t); p=link(p); info(p)=zero_off+rise;
10769 v=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10770 x0=t_of_the_way(v,x1);
10771 v=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10772 y0=t_of_the_way(v,y1);
10773 if ( turn_amt<0 ) {
10774 t1=t_of_the_way(t1,t2);
10775 if ( t1>0 ) t1=0; /* without rounding error, |t1| would be |<=0| */
10776 t=mp_crossing_point(mp, 0,-t1,-t2);
10777 if ( t>fraction_one ) t=fraction_one;
10779 if ( (t==fraction_one)&&(link(p)!=q) ) {
10780 info(link(p))=info(link(p))-rise;
10782 mp_split_cubic(mp, p,t); info(link(p))=zero_off-rise;
10783 v=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10784 x2=t_of_the_way(x1,v);
10785 v=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10786 y2=t_of_the_way(y1,v);
10791 @ Now we must consider the general problem of |offset_prep|, when
10792 nothing is known about a given cubic. We start by finding its
10793 direction in the vicinity of |t=0|.
10795 If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
10796 has not yet introduced any more numerical errors. Thus we can compute
10797 the true initial direction for the given cubic, even if it is almost
10800 @<Find the initial direction |(dx,dy)|@>=
10802 if ( dx==0 && dy==0 ) {
10804 if ( dx==0 && dy==0 ) {
10808 if ( p==c ) { dx0=dx; dy0=dy; }
10810 @ @<Find the final direction |(dxin,dyin)|@>=
10812 if ( dxin==0 && dyin==0 ) {
10814 if ( dxin==0 && dyin==0 ) {
10819 @ The next step is to bracket the initial direction between consecutive
10820 edges of the pen polygon. We must be careful to turn clockwise only if
10821 this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
10822 counter-clockwise in order to make \&{doublepath} envelopes come out
10823 @:double_path_}{\&{doublepath} primitive@>
10824 right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
10826 @<Update |info(p)| and find the offset $w_k$ such that...@>=
10827 turn_amt=mp_get_turn_amt(mp,w0,dx,dy,(mp_ab_vs_cd(mp, dy,dxin,dx,dyin)>=0));
10828 w=mp_pen_walk(mp, w0, turn_amt);
10830 info(p)=info(p)+turn_amt
10832 @ Decide how many pen offsets to go away from |w| in order to find the offset
10833 for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
10834 |w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
10835 in the sense determined by |ccw| is less than or equal to $180^\circ$.
10837 If the pen polygon has only two edges, they could both be parallel
10838 to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
10839 such edge in order to avoid an infinite loop.
10841 @<Declare subroutines needed by |offset_prep|@>=
10842 integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10843 scaled dy, boolean ccw) {
10844 pointer ww; /* a neighbor of knot~|w| */
10845 integer s; /* turn amount so far */
10846 integer t; /* |ab_vs_cd| result */
10851 t=mp_ab_vs_cd(mp, dy,(x_coord(ww)-x_coord(w)),
10852 dx,(y_coord(ww)-y_coord(w)));
10859 while ( mp_ab_vs_cd(mp, dy,(x_coord(w)-x_coord(ww)),
10860 dx,(y_coord(w)-y_coord(ww))) < 0) {
10868 @ When we're all done, the final offset is |w0| and the final curve direction
10869 is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
10870 can correct |info(c)| which was erroneously based on an incoming offset
10873 @d fix_by(A) info(c)=info(c)+(A)
10875 @<Fix the offset change in |info(c)| and set |c| to the return value of...@>=
10876 mp->spec_offset=info(c)-zero_off;
10877 if ( link(c)==c ) {
10878 info(c)=zero_off+n;
10881 while ( w0!=h ) { fix_by(1); w0=link(w0); };
10882 while ( info(c)<=zero_off-n ) fix_by(n);
10883 while ( info(c)>zero_off ) fix_by(-n);
10884 if ( (info(c)!=zero_off)&&(mp_ab_vs_cd(mp, dy0,dxin,dx0,dyin)>=0) ) fix_by(n);
10888 @ Finally we want to reduce the general problem to situations that
10889 |fin_offset_prep| can handle. We split the cubic into at most three parts
10890 with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
10892 @<Complete the offset splitting process@>=
10894 @<Compute test coeff...@>;
10895 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
10896 |t:=fraction_one+1|@>;
10897 if ( t>fraction_one ) {
10898 mp_fin_offset_prep(mp, p,w,x0,x1,x2,y0,y1,y2,1,turn_amt);
10900 mp_split_cubic(mp, p,t); r=link(p);
10901 x1a=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10902 x2a=t_of_the_way(x1a,x1);
10903 y1a=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10904 y2a=t_of_the_way(y1a,y1);
10905 mp_fin_offset_prep(mp, p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0=x2a; y0=y2a;
10906 info(r)=zero_off-1;
10907 if ( turn_amt>=0 ) {
10908 t1=t_of_the_way(t1,t2);
10910 t=mp_crossing_point(mp, 0,-t1,-t2);
10911 if ( t>fraction_one ) t=fraction_one;
10912 @<Split off another rising cubic for |fin_offset_prep|@>;
10913 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,0);
10915 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,(-1-turn_amt));
10919 @ @<Split off another rising cubic for |fin_offset_prep|@>=
10920 mp_split_cubic(mp, r,t); info(link(r))=zero_off+1;
10921 x1a=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10922 x0a=t_of_the_way(x1,x1a);
10923 y1a=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10924 y0a=t_of_the_way(y1,y1a);
10925 mp_fin_offset_prep(mp, link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
10928 @ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
10929 When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
10930 need to decide whether the directions are parallel or antiparallel. We
10931 can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
10932 should be avoided when the value of |turn_amt| already determines the
10933 answer. If |t2<0|, there is one crossing and it is antiparallel only if
10934 |turn_amt>=0|. If |turn_amt<0|, there should always be at least one
10935 crossing and the first crossing cannot be antiparallel.
10937 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
10938 t=mp_crossing_point(mp, t0,t1,t2);
10939 if ( turn_amt>=0 ) {
10943 u0=t_of_the_way(x0,x1);
10944 u1=t_of_the_way(x1,x2);
10945 ss=mp_take_fraction(mp, -du,t_of_the_way(u0,u1));
10946 v0=t_of_the_way(y0,y1);
10947 v1=t_of_the_way(y1,y2);
10948 ss=ss+mp_take_fraction(mp, -dv,t_of_the_way(v0,v1));
10949 if ( ss<0 ) t=fraction_one+1;
10951 } else if ( t>fraction_one ) {
10955 @ @<Other local variables for |offset_prep|@>=
10956 integer u0,u1,v0,v1; /* intermediate values for $d(t)$ calculation */
10957 integer ss = 0; /* the part of the dot product computed so far */
10958 int d_sign; /* sign of overall change in direction for this cubic */
10960 @ If the cubic almost has a cusp, it is a numerically ill-conditioned
10961 problem to decide which way it loops around but that's OK as long we're
10962 consistent. To make \&{doublepath} envelopes work properly, reversing
10963 the path should always change the sign of |turn_amt|.
10965 @<Decide on the net change in pen offsets and set |turn_amt|@>=
10966 d_sign=mp_ab_vs_cd(mp, dx,dyin, dxin,dy);
10968 @<Check rotation direction based on node position@>
10972 if ( dy>0 ) d_sign=1; else d_sign=-1;
10974 if ( dx>0 ) d_sign=1; else d_sign=-1;
10977 @<Make |ss| negative if and only if the total change in direction is
10978 more than $180^\circ$@>;
10979 turn_amt=mp_get_turn_amt(mp, w, dxin, dyin, (d_sign>0));
10980 if ( ss<0 ) turn_amt=turn_amt-d_sign*n
10982 @ We check rotation direction by looking at the vector connecting the current
10983 node with the next. If its angle with incoming and outgoing tangents has the
10984 same sign, we pick this as |d_sign|, since it means we have a flex, not a cusp.
10985 Otherwise we proceed to the cusp code.
10987 @<Check rotation direction based on node position@>=
10988 u0=x_coord(q)-x_coord(p);
10989 u1=y_coord(q)-y_coord(p);
10990 d_sign = half(mp_ab_vs_cd(mp, dx, u1, u0, dy)+
10991 mp_ab_vs_cd(mp, u0, dyin, dxin, u1));
10993 @ In order to be invariant under path reversal, the result of this computation
10994 should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
10995 then swapped with |(x2,y2)|. We make use of the identities
10996 |take_fraction(-a,-b)=take_fraction(a,b)| and
10997 |t_of_the_way(-a,-b)=-(t_of_the_way(a,b))|.
10999 @<Make |ss| negative if and only if the total change in direction is...@>=
11000 t0=half(mp_take_fraction(mp, x0,y2))-half(mp_take_fraction(mp, x2,y0));
11001 t1=half(mp_take_fraction(mp, x1,(y0+y2)))-half(mp_take_fraction(mp, y1,(x0+x2)));
11002 if ( t0==0 ) t0=d_sign; /* path reversal always negates |d_sign| */
11004 t=mp_crossing_point(mp, t0,t1,-t0);
11005 u0=t_of_the_way(x0,x1);
11006 u1=t_of_the_way(x1,x2);
11007 v0=t_of_the_way(y0,y1);
11008 v1=t_of_the_way(y1,y2);
11010 t=mp_crossing_point(mp, -t0,t1,t0);
11011 u0=t_of_the_way(x2,x1);
11012 u1=t_of_the_way(x1,x0);
11013 v0=t_of_the_way(y2,y1);
11014 v1=t_of_the_way(y1,y0);
11016 ss=mp_take_fraction(mp, (x0+x2),t_of_the_way(u0,u1))+
11017 mp_take_fraction(mp, (y0+y2),t_of_the_way(v0,v1))
11019 @ Here's a routine that prints an envelope spec in symbolic form. It assumes
11020 that the |cur_pen| has not been walked around to the first offset.
11023 void mp_print_spec (MP mp,pointer cur_spec, pointer cur_pen, char *s) {
11024 pointer p,q; /* list traversal */
11025 pointer w; /* the current pen offset */
11026 mp_print_diagnostic(mp, "Envelope spec",s,true);
11027 p=cur_spec; w=mp_pen_walk(mp, cur_pen,mp->spec_offset);
11029 mp_print_two(mp, x_coord(cur_spec),y_coord(cur_spec));
11030 mp_print(mp, " % beginning with offset ");
11031 mp_print_two(mp, x_coord(w),y_coord(w));
11035 @<Print the cubic between |p| and |q|@>;
11037 if ((p==cur_spec) || (info(p)!=zero_off))
11040 if ( info(p)!=zero_off ) {
11041 @<Update |w| as indicated by |info(p)| and print an explanation@>;
11043 } while (p!=cur_spec);
11044 mp_print_nl(mp, " & cycle");
11045 mp_end_diagnostic(mp, true);
11048 @ @<Update |w| as indicated by |info(p)| and print an explanation@>=
11050 w=mp_pen_walk(mp, w, (info(p)-zero_off));
11051 mp_print(mp, " % ");
11052 if ( info(p)>zero_off ) mp_print(mp, "counter");
11053 mp_print(mp, "clockwise to offset ");
11054 mp_print_two(mp, x_coord(w),y_coord(w));
11057 @ @<Print the cubic between |p| and |q|@>=
11059 mp_print_nl(mp, " ..controls ");
11060 mp_print_two(mp, right_x(p),right_y(p));
11061 mp_print(mp, " and ");
11062 mp_print_two(mp, left_x(q),left_y(q));
11063 mp_print_nl(mp, " ..");
11064 mp_print_two(mp, x_coord(q),y_coord(q));
11067 @ Once we have an envelope spec, the remaining task to construct the actual
11068 envelope by offsetting each cubic as determined by the |info| fields in
11069 the knots. First we use |offset_prep| to convert the |c| into an envelope
11070 spec. Then we add the offsets so that |c| becomes a cyclic path that represents
11073 The |ljoin| and |miterlim| parameters control the treatment of points where the
11074 pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
11075 The endpoints are easily located because |c| is given in undoubled form
11076 and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
11077 track of the endpoints and treat them like very sharp corners.
11078 Butt end caps are treated like beveled joins; round end caps are treated like
11079 round joins; and square end caps are achieved by setting |join_type:=3|.
11081 None of these parameters apply to inside joins where the convolution tracing
11082 has retrograde lines. In such cases we use a simple connect-the-endpoints
11083 approach that is achieved by setting |join_type:=2|.
11085 @c @<Declare a function called |insert_knot|@>;
11086 pointer mp_make_envelope (MP mp,pointer c, pointer h, small_number ljoin,
11087 small_number lcap, scaled miterlim) {
11088 pointer p,q,r,q0; /* for manipulating the path */
11089 int join_type=0; /* codes |0..3| for mitered, round, beveled, or square */
11090 pointer w,w0; /* the pen knot for the current offset */
11091 scaled qx,qy; /* unshifted coordinates of |q| */
11092 halfword k,k0; /* controls pen edge insertion */
11093 @<Other local variables for |make_envelope|@>;
11094 dxin=0; dyin=0; dxout=0; dyout=0;
11095 mp->spec_p1=null; mp->spec_p2=null;
11096 @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>;
11097 @<Use |offset_prep| to compute the envelope spec then walk |h| around to
11098 the initial offset@>;
11103 qx=x_coord(q); qy=y_coord(q);
11106 if ( k!=zero_off ) {
11107 @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
11109 @<Add offset |w| to the cubic from |p| to |q|@>;
11110 while ( k!=zero_off ) {
11111 @<Step |w| and move |k| one step closer to |zero_off|@>;
11112 if ( (join_type==1)||(k==zero_off) )
11113 q=mp_insert_knot(mp, q,qx+x_coord(w),qy+y_coord(w));
11115 if ( q!=link(p) ) {
11116 @<Set |p=link(p)| and add knots between |p| and |q| as
11117 required by |join_type|@>;
11124 @ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
11125 c=mp_offset_prep(mp, c,h);
11126 if ( mp->internal[mp_tracing_specs]>0 )
11127 mp_print_spec(mp, c,h,"");
11128 h=mp_pen_walk(mp, h,mp->spec_offset)
11130 @ Mitered and squared-off joins depend on path directions that are difficult to
11131 compute for degenerate cubics. The envelope spec computed by |offset_prep| can
11132 have degenerate cubics only if the entire cycle collapses to a single
11133 degenerate cubic. Setting |join_type:=2| in this case makes the computed
11134 envelope degenerate as well.
11136 @<Set |join_type| to indicate how to handle offset changes at~|q|@>=
11137 if ( k<zero_off ) {
11140 if ( (q!=mp->spec_p1)&&(q!=mp->spec_p2) ) join_type=ljoin;
11141 else if ( lcap==2 ) join_type=3;
11142 else join_type=2-lcap;
11143 if ( (join_type==0)||(join_type==3) ) {
11144 @<Set the incoming and outgoing directions at |q|; in case of
11145 degeneracy set |join_type:=2|@>;
11146 if ( join_type==0 ) {
11147 @<If |miterlim| is less than the secant of half the angle at |q|
11148 then set |join_type:=2|@>;
11153 @ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
11155 tmp=mp_take_fraction(mp, miterlim,fraction_half+
11156 half(mp_take_fraction(mp, dxin,dxout)+mp_take_fraction(mp, dyin,dyout)));
11158 if ( mp_take_scaled(mp, miterlim,tmp)<unity ) join_type=2;
11161 @ @<Other local variables for |make_envelope|@>=
11162 fraction dxin,dyin,dxout,dyout; /* directions at |q| when square or mitered */
11163 scaled tmp; /* a temporary value */
11165 @ The coordinates of |p| have already been shifted unless |p| is the first
11166 knot in which case they get shifted at the very end.
11168 @<Add offset |w| to the cubic from |p| to |q|@>=
11169 right_x(p)=right_x(p)+x_coord(w);
11170 right_y(p)=right_y(p)+y_coord(w);
11171 left_x(q)=left_x(q)+x_coord(w);
11172 left_y(q)=left_y(q)+y_coord(w);
11173 x_coord(q)=x_coord(q)+x_coord(w);
11174 y_coord(q)=y_coord(q)+y_coord(w);
11175 left_type(q)=mp_explicit;
11176 right_type(q)=mp_explicit
11178 @ @<Step |w| and move |k| one step closer to |zero_off|@>=
11179 if ( k>zero_off ){ w=link(w); decr(k); }
11180 else { w=knil(w); incr(k); }
11182 @ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
11183 the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
11184 case the cubic containing these control points is ``yet to be examined.''
11186 @<Declare a function called |insert_knot|@>=
11187 pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y) {
11188 /* returns the inserted knot */
11189 pointer r; /* the new knot */
11190 r=mp_get_node(mp, knot_node_size);
11191 link(r)=link(q); link(q)=r;
11192 right_x(r)=right_x(q);
11193 right_y(r)=right_y(q);
11196 right_x(q)=x_coord(q);
11197 right_y(q)=y_coord(q);
11198 left_x(r)=x_coord(r);
11199 left_y(r)=y_coord(r);
11200 left_type(r)=mp_explicit;
11201 right_type(r)=mp_explicit;
11202 originator(r)=mp_program_code;
11206 @ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
11208 @<Set |p=link(p)| and add knots between |p| and |q| as...@>=
11211 if ( (join_type==0)||(join_type==3) ) {
11212 if ( join_type==0 ) {
11213 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
11215 @<Make |r| the last of two knots inserted between |p| and |q| to form a
11219 right_x(r)=x_coord(r);
11220 right_y(r)=y_coord(r);
11225 @ For very small angles, adding a knot is unnecessary and would cause numerical
11226 problems, so we just set |r:=null| in that case.
11228 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
11230 det=mp_take_fraction(mp, dyout,dxin)-mp_take_fraction(mp, dxout,dyin);
11231 if ( abs(det)<26844 ) {
11232 r=null; /* sine $<10^{-4}$ */
11234 tmp=mp_take_fraction(mp, x_coord(q)-x_coord(p),dyout)-
11235 mp_take_fraction(mp, y_coord(q)-y_coord(p),dxout);
11236 tmp=mp_make_fraction(mp, tmp,det);
11237 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11238 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11242 @ @<Other local variables for |make_envelope|@>=
11243 fraction det; /* a determinant used for mitered join calculations */
11245 @ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
11247 ht_x=y_coord(w)-y_coord(w0);
11248 ht_y=x_coord(w0)-x_coord(w);
11249 while ( (abs(ht_x)<fraction_half)&&(abs(ht_y)<fraction_half) ) {
11250 ht_x+=ht_x; ht_y+=ht_y;
11252 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
11253 product with |(ht_x,ht_y)|@>;
11254 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxin,ht_x)+
11255 mp_take_fraction(mp, dyin,ht_y));
11256 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11257 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11258 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxout,ht_x)+
11259 mp_take_fraction(mp, dyout,ht_y));
11260 r=mp_insert_knot(mp, r,x_coord(q)+mp_take_fraction(mp, tmp,dxout),
11261 y_coord(q)+mp_take_fraction(mp, tmp,dyout));
11264 @ @<Other local variables for |make_envelope|@>=
11265 fraction ht_x,ht_y; /* perpendicular to the segment from |p| to |q| */
11266 scaled max_ht; /* maximum height of the pen polygon above the |w0|-|w| line */
11267 halfword kk; /* keeps track of the pen vertices being scanned */
11268 pointer ww; /* the pen vertex being tested */
11270 @ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
11271 from zero to |max_ht|.
11273 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
11278 @<Step |ww| and move |kk| one step closer to |k0|@>;
11279 if ( kk==k0 ) break;
11280 tmp=mp_take_fraction(mp, (x_coord(ww)-x_coord(w0)),ht_x)+
11281 mp_take_fraction(mp, (y_coord(ww)-y_coord(w0)),ht_y);
11282 if ( tmp>max_ht ) max_ht=tmp;
11286 @ @<Step |ww| and move |kk| one step closer to |k0|@>=
11287 if ( kk>k0 ) { ww=link(ww); decr(kk); }
11288 else { ww=knil(ww); incr(kk); }
11290 @ @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>=
11291 if ( left_type(c)==mp_endpoint ) {
11292 mp->spec_p1=mp_htap_ypoc(mp, c);
11293 mp->spec_p2=mp->path_tail;
11294 originator(mp->spec_p1)=mp_program_code;
11295 link(mp->spec_p2)=link(mp->spec_p1);
11296 link(mp->spec_p1)=c;
11297 mp_remove_cubic(mp, mp->spec_p1);
11299 if ( c!=link(c) ) {
11300 originator(mp->spec_p2)=mp_program_code;
11301 mp_remove_cubic(mp, mp->spec_p2);
11303 @<Make |c| look like a cycle of length one@>;
11307 @ @<Make |c| look like a cycle of length one@>=
11309 left_type(c)=mp_explicit; right_type(c)=mp_explicit;
11310 left_x(c)=x_coord(c); left_y(c)=y_coord(c);
11311 right_x(c)=x_coord(c); right_y(c)=y_coord(c);
11314 @ In degenerate situations we might have to look at the knot preceding~|q|.
11315 That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
11317 @<Set the incoming and outgoing directions at |q|; in case of...@>=
11318 dxin=x_coord(q)-left_x(q);
11319 dyin=y_coord(q)-left_y(q);
11320 if ( (dxin==0)&&(dyin==0) ) {
11321 dxin=x_coord(q)-right_x(p);
11322 dyin=y_coord(q)-right_y(p);
11323 if ( (dxin==0)&&(dyin==0) ) {
11324 dxin=x_coord(q)-x_coord(p);
11325 dyin=y_coord(q)-y_coord(p);
11326 if ( p!=c ) { /* the coordinates of |p| have been offset by |w| */
11327 dxin=dxin+x_coord(w);
11328 dyin=dyin+y_coord(w);
11332 tmp=mp_pyth_add(mp, dxin,dyin);
11336 dxin=mp_make_fraction(mp, dxin,tmp);
11337 dyin=mp_make_fraction(mp, dyin,tmp);
11338 @<Set the outgoing direction at |q|@>;
11341 @ If |q=c| then the coordinates of |r| and the control points between |q|
11342 and~|r| have already been offset by |h|.
11344 @<Set the outgoing direction at |q|@>=
11345 dxout=right_x(q)-x_coord(q);
11346 dyout=right_y(q)-y_coord(q);
11347 if ( (dxout==0)&&(dyout==0) ) {
11349 dxout=left_x(r)-x_coord(q);
11350 dyout=left_y(r)-y_coord(q);
11351 if ( (dxout==0)&&(dyout==0) ) {
11352 dxout=x_coord(r)-x_coord(q);
11353 dyout=y_coord(r)-y_coord(q);
11357 dxout=dxout-x_coord(h);
11358 dyout=dyout-y_coord(h);
11360 tmp=mp_pyth_add(mp, dxout,dyout);
11361 if ( tmp==0 ) mp_confusion(mp, "degenerate spec");
11362 @:this can't happen degerate spec}{\quad degenerate spec@>
11363 dxout=mp_make_fraction(mp, dxout,tmp);
11364 dyout=mp_make_fraction(mp, dyout,tmp)
11366 @* \[23] Direction and intersection times.
11367 A path of length $n$ is defined parametrically by functions $x(t)$ and
11368 $y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
11369 reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
11370 we shall consider operations that determine special times associated with
11371 given paths: the first time that a path travels in a given direction, and
11372 a pair of times at which two paths cross each other.
11374 @ Let's start with the easier task. The function |find_direction_time| is
11375 given a direction |(x,y)| and a path starting at~|h|. If the path never
11376 travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
11377 it will be nonnegative.
11379 Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
11380 direction is undefined, the direction time will be~0. If $\bigl(x'(t),
11381 y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
11382 assumed to match any given direction at time~|t|.
11384 The routine solves this problem in nondegenerate cases by rotating the path
11385 and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
11386 to find when a given path first travels ``due east.''
11389 scaled mp_find_direction_time (MP mp,scaled x, scaled y, pointer h) {
11390 scaled max; /* $\max\bigl(\vert x\vert,\vert y\vert\bigr)$ */
11391 pointer p,q; /* for list traversal */
11392 scaled n; /* the direction time at knot |p| */
11393 scaled tt; /* the direction time within a cubic */
11394 @<Other local variables for |find_direction_time|@>;
11395 @<Normalize the given direction for better accuracy;
11396 but |return| with zero result if it's zero@>;
11399 if ( right_type(p)==mp_endpoint ) break;
11401 @<Rotate the cubic between |p| and |q|; then
11402 |goto found| if the rotated cubic travels due east at some time |tt|;
11403 but |break| if an entire cyclic path has been traversed@>;
11411 @ @<Normalize the given direction for better accuracy...@>=
11412 if ( abs(x)<abs(y) ) {
11413 x=mp_make_fraction(mp, x,abs(y));
11414 if ( y>0 ) y=fraction_one; else y=-fraction_one;
11415 } else if ( x==0 ) {
11418 y=mp_make_fraction(mp, y,abs(x));
11419 if ( x>0 ) x=fraction_one; else x=-fraction_one;
11422 @ Since we're interested in the tangent directions, we work with the
11423 derivative $${\textstyle1\over3}B'(x_0,x_1,x_2,x_3;t)=
11424 B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
11425 $B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
11426 in order to achieve better accuracy.
11428 The given path may turn abruptly at a knot, and it might pass the critical
11429 tangent direction at such a time. Therefore we remember the direction |phi|
11430 in which the previous rotated cubic was traveling. (The value of |phi| will be
11431 undefined on the first cubic, i.e., when |n=0|.)
11433 @<Rotate the cubic between |p| and |q|; then...@>=
11435 @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
11436 points of the rotated derivatives@>;
11437 if ( y1==0 ) if ( x1>=0 ) goto FOUND;
11439 @<Exit to |found| if an eastward direction occurs at knot |p|@>;
11442 if ( (x3!=0)||(y3!=0) ) phi=mp_n_arg(mp, x3,y3);
11443 @<Exit to |found| if the curve whose derivatives are specified by
11444 |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
11446 @ @<Other local variables for |find_direction_time|@>=
11447 scaled x1,x2,x3,y1,y2,y3; /* multiples of rotated derivatives */
11448 angle theta,phi; /* angles of exit and entry at a knot */
11449 fraction t; /* temp storage */
11451 @ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
11452 x1=right_x(p)-x_coord(p); x2=left_x(q)-right_x(p);
11453 x3=x_coord(q)-left_x(q);
11454 y1=right_y(p)-y_coord(p); y2=left_y(q)-right_y(p);
11455 y3=y_coord(q)-left_y(q);
11457 if ( abs(x2)>max ) max=abs(x2);
11458 if ( abs(x3)>max ) max=abs(x3);
11459 if ( abs(y1)>max ) max=abs(y1);
11460 if ( abs(y2)>max ) max=abs(y2);
11461 if ( abs(y3)>max ) max=abs(y3);
11462 if ( max==0 ) goto FOUND;
11463 while ( max<fraction_half ){
11464 max+=max; x1+=x1; x2+=x2; x3+=x3;
11465 y1+=y1; y2+=y2; y3+=y3;
11467 t=x1; x1=mp_take_fraction(mp, x1,x)+mp_take_fraction(mp, y1,y);
11468 y1=mp_take_fraction(mp, y1,x)-mp_take_fraction(mp, t,y);
11469 t=x2; x2=mp_take_fraction(mp, x2,x)+mp_take_fraction(mp, y2,y);
11470 y2=mp_take_fraction(mp, y2,x)-mp_take_fraction(mp, t,y);
11471 t=x3; x3=mp_take_fraction(mp, x3,x)+mp_take_fraction(mp, y3,y);
11472 y3=mp_take_fraction(mp, y3,x)-mp_take_fraction(mp, t,y)
11474 @ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
11475 theta=mp_n_arg(mp, x1,y1);
11476 if ( theta>=0 ) if ( phi<=0 ) if ( phi>=theta-one_eighty_deg ) goto FOUND;
11477 if ( theta<=0 ) if ( phi>=0 ) if ( phi<=theta+one_eighty_deg ) goto FOUND
11479 @ In this step we want to use the |crossing_point| routine to find the
11480 roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
11481 Several complications arise: If the quadratic equation has a double root,
11482 the curve never crosses zero, and |crossing_point| will find nothing;
11483 this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
11484 equation has simple roots, or only one root, we may have to negate it
11485 so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
11486 And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
11489 @ @<Exit to |found| if the curve whose derivatives are specified by...@>=
11490 if ( x1<0 ) if ( x2<0 ) if ( x3<0 ) goto DONE;
11491 if ( mp_ab_vs_cd(mp, y1,y3,y2,y2)==0 ) {
11492 @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11493 either |goto found| or |goto done|@>;
11496 if ( y1<0 ) { y1=-y1; y2=-y2; y3=-y3; }
11497 else if ( y2>0 ){ y2=-y2; y3=-y3; };
11499 @<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
11500 $B(x_1,x_2,x_3;t)\ge0$@>;
11503 @ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
11504 two roots, because we know that it isn't identically zero.
11506 It must be admitted that the |crossing_point| routine is not perfectly accurate;
11507 rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
11508 miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
11509 subject to rounding errors. Yet this code optimistically tries to
11510 do the right thing.
11512 @d we_found_it { tt=(t+04000) / 010000; goto FOUND; }
11514 @<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
11515 t=mp_crossing_point(mp, y1,y2,y3);
11516 if ( t>fraction_one ) goto DONE;
11517 y2=t_of_the_way(y2,y3);
11518 x1=t_of_the_way(x1,x2);
11519 x2=t_of_the_way(x2,x3);
11520 x1=t_of_the_way(x1,x2);
11521 if ( x1>=0 ) we_found_it;
11523 tt=t; t=mp_crossing_point(mp, 0,-y2,-y3);
11524 if ( t>fraction_one ) goto DONE;
11525 x1=t_of_the_way(x1,x2);
11526 x2=t_of_the_way(x2,x3);
11527 if ( t_of_the_way(x1,x2)>=0 ) {
11528 t=t_of_the_way(tt,fraction_one); we_found_it;
11531 @ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11532 either |goto found| or |goto done|@>=
11534 if ( mp_ab_vs_cd(mp, y1,y2,0,0)<0 ) {
11535 t=mp_make_fraction(mp, y1,y1-y2);
11536 x1=t_of_the_way(x1,x2);
11537 x2=t_of_the_way(x2,x3);
11538 if ( t_of_the_way(x1,x2)>=0 ) we_found_it;
11539 } else if ( y3==0 ) {
11541 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>;
11542 } else if ( x3>=0 ) {
11543 tt=unity; goto FOUND;
11549 @ At this point we know that the derivative of |y(t)| is identically zero,
11550 and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
11553 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
11555 t=mp_crossing_point(mp, -x1,-x2,-x3);
11556 if ( t<=fraction_one ) we_found_it;
11557 if ( mp_ab_vs_cd(mp, x1,x3,x2,x2)<=0 ) {
11558 t=mp_make_fraction(mp, x1,x1-x2); we_found_it;
11562 @ The intersection of two cubics can be found by an interesting variant
11563 of the general bisection scheme described in the introduction to
11565 Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
11566 we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
11567 if an intersection exists. First we find the smallest rectangle that
11568 encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
11569 the smallest rectangle that encloses
11570 $\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
11571 But if the rectangles do overlap, we bisect the intervals, getting
11572 new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
11573 tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
11574 between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
11575 finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
11576 levels of bisection we will have determined the intersection times $t_1$
11577 and~$t_2$ to $l$~bits of accuracy.
11579 \def\submin{_{\rm min}} \def\submax{_{\rm max}}
11580 As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
11581 and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
11582 themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
11583 to determine when the enclosing rectangles overlap. Here's why:
11584 The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
11585 and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
11586 if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
11587 \min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
11588 overlap if and only if $u\submin\L x\submax$ and
11589 $x\submin\L u\submax$. Letting
11590 $$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
11591 U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
11592 we have $u\submin=2^lu_0+U\submin$, etc.; the condition for overlap
11594 $$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
11595 Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
11596 the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
11597 coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
11598 because of the overlap condition; i.e., we know that $X\submin$,
11599 $X\submax$, and their relatives are bounded, hence $X\submax-
11600 U\submin$ and $X\submin-U\submax$ are bounded.
11602 @ Incidentally, if the given cubics intersect more than once, the process
11603 just sketched will not necessarily find the lexicographically smallest pair
11604 $(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
11605 order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
11606 $t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
11607 $a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
11608 $a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
11609 Shuffled order agrees with lexicographic order if all pairs of solutions
11610 $(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
11611 $t_2<t_2'$; but in general, lexicographic order can be quite different,
11612 and the bisection algorithm would be substantially less efficient if it were
11613 constrained by lexicographic order.
11615 For example, suppose that an overlap has been found for $l=3$ and
11616 $(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
11617 either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
11618 Then there is probably an intersection in one of the subintervals
11619 $(.1011,.011x)$; but lexicographic order would require us to explore
11620 $(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
11621 want to store all of the subdivision data for the second path, so the
11622 subdivisions would have to be regenerated many times. Such inefficiencies
11623 would be associated with every `1' in the binary representation of~$t_1$.
11625 @ The subdivision process introduces rounding errors, hence we need to
11626 make a more liberal test for overlap. It is not hard to show that the
11627 computed values of $U_i$ differ from the truth by at most~$l$, on
11628 level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
11629 If $\beta$ is an upper bound on the absolute error in the computed
11630 components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
11631 the test `$X\submin-U\submax\L|delx|$' by the more liberal test
11632 `$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
11634 More accuracy is obtained if we try the algorithm first with |tol=0|;
11635 the more liberal tolerance is used only if an exact approach fails.
11636 It is convenient to do this double-take by letting `3' in the preceding
11637 paragraph be a parameter, which is first 0, then 3.
11640 unsigned int tol_step; /* either 0 or 3, usually */
11642 @ We shall use an explicit stack to implement the recursive bisection
11643 method described above. The |bisect_stack| array will contain numerous 5-word
11644 packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
11645 comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
11647 The following macros define the allocation of stack positions to
11648 the quantities needed for bisection-intersection.
11650 @d stack_1(A) mp->bisect_stack[(A)] /* $U_1$, $V_1$, $X_1$, or $Y_1$ */
11651 @d stack_2(A) mp->bisect_stack[(A)+1] /* $U_2$, $V_2$, $X_2$, or $Y_2$ */
11652 @d stack_3(A) mp->bisect_stack[(A)+2] /* $U_3$, $V_3$, $X_3$, or $Y_3$ */
11653 @d stack_min(A) mp->bisect_stack[(A)+3]
11654 /* $U\submin$, $V\submin$, $X\submin$, or $Y\submin$ */
11655 @d stack_max(A) mp->bisect_stack[(A)+4]
11656 /* $U\submax$, $V\submax$, $X\submax$, or $Y\submax$ */
11657 @d int_packets 20 /* number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$ */
11659 @d u_packet(A) ((A)-5)
11660 @d v_packet(A) ((A)-10)
11661 @d x_packet(A) ((A)-15)
11662 @d y_packet(A) ((A)-20)
11663 @d l_packets (mp->bisect_ptr-int_packets)
11664 @d r_packets mp->bisect_ptr
11665 @d ul_packet u_packet(l_packets) /* base of $U'_k$ variables */
11666 @d vl_packet v_packet(l_packets) /* base of $V'_k$ variables */
11667 @d xl_packet x_packet(l_packets) /* base of $X'_k$ variables */
11668 @d yl_packet y_packet(l_packets) /* base of $Y'_k$ variables */
11669 @d ur_packet u_packet(r_packets) /* base of $U''_k$ variables */
11670 @d vr_packet v_packet(r_packets) /* base of $V''_k$ variables */
11671 @d xr_packet x_packet(r_packets) /* base of $X''_k$ variables */
11672 @d yr_packet y_packet(r_packets) /* base of $Y''_k$ variables */
11674 @d u1l stack_1(ul_packet) /* $U'_1$ */
11675 @d u2l stack_2(ul_packet) /* $U'_2$ */
11676 @d u3l stack_3(ul_packet) /* $U'_3$ */
11677 @d v1l stack_1(vl_packet) /* $V'_1$ */
11678 @d v2l stack_2(vl_packet) /* $V'_2$ */
11679 @d v3l stack_3(vl_packet) /* $V'_3$ */
11680 @d x1l stack_1(xl_packet) /* $X'_1$ */
11681 @d x2l stack_2(xl_packet) /* $X'_2$ */
11682 @d x3l stack_3(xl_packet) /* $X'_3$ */
11683 @d y1l stack_1(yl_packet) /* $Y'_1$ */
11684 @d y2l stack_2(yl_packet) /* $Y'_2$ */
11685 @d y3l stack_3(yl_packet) /* $Y'_3$ */
11686 @d u1r stack_1(ur_packet) /* $U''_1$ */
11687 @d u2r stack_2(ur_packet) /* $U''_2$ */
11688 @d u3r stack_3(ur_packet) /* $U''_3$ */
11689 @d v1r stack_1(vr_packet) /* $V''_1$ */
11690 @d v2r stack_2(vr_packet) /* $V''_2$ */
11691 @d v3r stack_3(vr_packet) /* $V''_3$ */
11692 @d x1r stack_1(xr_packet) /* $X''_1$ */
11693 @d x2r stack_2(xr_packet) /* $X''_2$ */
11694 @d x3r stack_3(xr_packet) /* $X''_3$ */
11695 @d y1r stack_1(yr_packet) /* $Y''_1$ */
11696 @d y2r stack_2(yr_packet) /* $Y''_2$ */
11697 @d y3r stack_3(yr_packet) /* $Y''_3$ */
11699 @d stack_dx mp->bisect_stack[mp->bisect_ptr] /* stacked value of |delx| */
11700 @d stack_dy mp->bisect_stack[mp->bisect_ptr+1] /* stacked value of |dely| */
11701 @d stack_tol mp->bisect_stack[mp->bisect_ptr+2] /* stacked value of |tol| */
11702 @d stack_uv mp->bisect_stack[mp->bisect_ptr+3] /* stacked value of |uv| */
11703 @d stack_xy mp->bisect_stack[mp->bisect_ptr+4] /* stacked value of |xy| */
11704 @d int_increment (int_packets+int_packets+5) /* number of stack words per level */
11707 integer *bisect_stack;
11708 unsigned int bisect_ptr;
11710 @ @<Allocate or initialize ...@>=
11711 mp->bisect_stack = xmalloc((bistack_size+1),sizeof(integer));
11713 @ @<Dealloc variables@>=
11714 xfree(mp->bisect_stack);
11716 @ @<Check the ``constant''...@>=
11717 if ( int_packets+17*int_increment>bistack_size ) mp->bad=19;
11719 @ Computation of the min and max is a tedious but fairly fast sequence of
11720 instructions; exactly four comparisons are made in each branch.
11723 if ( stack_1((A))<0 ) {
11724 if ( stack_3((A))>=0 ) {
11725 if ( stack_2((A))<0 ) stack_min((A))=stack_1((A))+stack_2((A));
11726 else stack_min((A))=stack_1((A));
11727 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11728 if ( stack_max((A))<0 ) stack_max((A))=0;
11730 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11731 if ( stack_min((A))>stack_1((A)) ) stack_min((A))=stack_1((A));
11732 stack_max((A))=stack_1((A))+stack_2((A));
11733 if ( stack_max((A))<0 ) stack_max((A))=0;
11735 } else if ( stack_3((A))<=0 ) {
11736 if ( stack_2((A))>0 ) stack_max((A))=stack_1((A))+stack_2((A));
11737 else stack_max((A))=stack_1((A));
11738 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11739 if ( stack_min((A))>0 ) stack_min((A))=0;
11741 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11742 if ( stack_max((A))<stack_1((A)) ) stack_max((A))=stack_1((A));
11743 stack_min((A))=stack_1((A))+stack_2((A));
11744 if ( stack_min((A))>0 ) stack_min((A))=0;
11747 @ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
11748 the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
11749 routine uses global variables |cur_t| and |cur_tt| for this purpose;
11750 after successful completion, |cur_t| and |cur_tt| will contain |unity|
11751 plus the |scaled| values of $t_1$ and~$t_2$.
11753 The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
11754 finds no intersection. The routine gives up and gives an approximate answer
11755 if it has backtracked
11756 more than 5000 times (otherwise there are cases where several minutes
11757 of fruitless computation would be possible).
11759 @d max_patience 5000
11762 integer cur_t;integer cur_tt; /* controls and results of |cubic_intersection| */
11763 integer time_to_go; /* this many backtracks before giving up */
11764 integer max_t; /* maximum of $2^{l+1}$ so far achieved */
11766 @ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
11767 $B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
11768 and |(pp,link(pp))|, respectively.
11770 @c void mp_cubic_intersection (MP mp,pointer p, pointer pp) {
11771 pointer q,qq; /* |link(p)|, |link(pp)| */
11772 mp->time_to_go=max_patience; mp->max_t=2;
11773 @<Initialize for intersections at level zero@>;
11776 if ( mp->delx-mp->tol<=stack_max(x_packet(mp->xy))-stack_min(u_packet(mp->uv)))
11777 if ( mp->delx+mp->tol>=stack_min(x_packet(mp->xy))-stack_max(u_packet(mp->uv)))
11778 if ( mp->dely-mp->tol<=stack_max(y_packet(mp->xy))-stack_min(v_packet(mp->uv)))
11779 if ( mp->dely+mp->tol>=stack_min(y_packet(mp->xy))-stack_max(v_packet(mp->uv)))
11781 if ( mp->cur_t>=mp->max_t ){
11782 if ( mp->max_t==two ) { /* we've done 17 bisections */
11783 mp->cur_t=halfp(mp->cur_t+1); mp->cur_tt=halfp(mp->cur_tt+1); return;
11785 mp->max_t+=mp->max_t; mp->appr_t=mp->cur_t; mp->appr_tt=mp->cur_tt;
11787 @<Subdivide for a new level of intersection@>;
11790 if ( mp->time_to_go>0 ) {
11791 decr(mp->time_to_go);
11793 while ( mp->appr_t<unity ) {
11794 mp->appr_t+=mp->appr_t; mp->appr_tt+=mp->appr_tt;
11796 mp->cur_t=mp->appr_t; mp->cur_tt=mp->appr_tt; return;
11798 @<Advance to the next pair |(cur_t,cur_tt)|@>;
11802 @ The following variables are global, although they are used only by
11803 |cubic_intersection|, because it is necessary on some machines to
11804 split |cubic_intersection| up into two procedures.
11807 integer delx;integer dely; /* the components of $\Delta=2^l(w_0-z_0)$ */
11808 integer tol; /* bound on the uncertainly in the overlap test */
11810 unsigned int xy; /* pointers to the current packets of interest */
11811 integer three_l; /* |tol_step| times the bisection level */
11812 integer appr_t;integer appr_tt; /* best approximations known to the answers */
11814 @ We shall assume that the coordinates are sufficiently non-extreme that
11815 integer overflow will not occur.
11817 @<Initialize for intersections at level zero@>=
11818 q=link(p); qq=link(pp); mp->bisect_ptr=int_packets;
11819 u1r=right_x(p)-x_coord(p); u2r=left_x(q)-right_x(p);
11820 u3r=x_coord(q)-left_x(q); set_min_max(ur_packet);
11821 v1r=right_y(p)-y_coord(p); v2r=left_y(q)-right_y(p);
11822 v3r=y_coord(q)-left_y(q); set_min_max(vr_packet);
11823 x1r=right_x(pp)-x_coord(pp); x2r=left_x(qq)-right_x(pp);
11824 x3r=x_coord(qq)-left_x(qq); set_min_max(xr_packet);
11825 y1r=right_y(pp)-y_coord(pp); y2r=left_y(qq)-right_y(pp);
11826 y3r=y_coord(qq)-left_y(qq); set_min_max(yr_packet);
11827 mp->delx=x_coord(p)-x_coord(pp); mp->dely=y_coord(p)-y_coord(pp);
11828 mp->tol=0; mp->uv=r_packets; mp->xy=r_packets;
11829 mp->three_l=0; mp->cur_t=1; mp->cur_tt=1
11831 @ @<Subdivide for a new level of intersection@>=
11832 stack_dx=mp->delx; stack_dy=mp->dely; stack_tol=mp->tol;
11833 stack_uv=mp->uv; stack_xy=mp->xy;
11834 mp->bisect_ptr=mp->bisect_ptr+int_increment;
11835 mp->cur_t+=mp->cur_t; mp->cur_tt+=mp->cur_tt;
11836 u1l=stack_1(u_packet(mp->uv)); u3r=stack_3(u_packet(mp->uv));
11837 u2l=half(u1l+stack_2(u_packet(mp->uv)));
11838 u2r=half(u3r+stack_2(u_packet(mp->uv)));
11839 u3l=half(u2l+u2r); u1r=u3l;
11840 set_min_max(ul_packet); set_min_max(ur_packet);
11841 v1l=stack_1(v_packet(mp->uv)); v3r=stack_3(v_packet(mp->uv));
11842 v2l=half(v1l+stack_2(v_packet(mp->uv)));
11843 v2r=half(v3r+stack_2(v_packet(mp->uv)));
11844 v3l=half(v2l+v2r); v1r=v3l;
11845 set_min_max(vl_packet); set_min_max(vr_packet);
11846 x1l=stack_1(x_packet(mp->xy)); x3r=stack_3(x_packet(mp->xy));
11847 x2l=half(x1l+stack_2(x_packet(mp->xy)));
11848 x2r=half(x3r+stack_2(x_packet(mp->xy)));
11849 x3l=half(x2l+x2r); x1r=x3l;
11850 set_min_max(xl_packet); set_min_max(xr_packet);
11851 y1l=stack_1(y_packet(mp->xy)); y3r=stack_3(y_packet(mp->xy));
11852 y2l=half(y1l+stack_2(y_packet(mp->xy)));
11853 y2r=half(y3r+stack_2(y_packet(mp->xy)));
11854 y3l=half(y2l+y2r); y1r=y3l;
11855 set_min_max(yl_packet); set_min_max(yr_packet);
11856 mp->uv=l_packets; mp->xy=l_packets;
11857 mp->delx+=mp->delx; mp->dely+=mp->dely;
11858 mp->tol=mp->tol-mp->three_l+mp->tol_step;
11859 mp->tol+=mp->tol; mp->three_l=mp->three_l+mp->tol_step
11861 @ @<Advance to the next pair |(cur_t,cur_tt)|@>=
11863 if ( odd(mp->cur_tt) ) {
11864 if ( odd(mp->cur_t) ) {
11865 @<Descend to the previous level and |goto not_found|@>;
11868 mp->delx=mp->delx+stack_1(u_packet(mp->uv))+stack_2(u_packet(mp->uv))
11869 +stack_3(u_packet(mp->uv));
11870 mp->dely=mp->dely+stack_1(v_packet(mp->uv))+stack_2(v_packet(mp->uv))
11871 +stack_3(v_packet(mp->uv));
11872 mp->uv=mp->uv+int_packets; /* switch from |l_packet| to |r_packet| */
11873 decr(mp->cur_tt); mp->xy=mp->xy-int_packets;
11874 /* switch from |r_packet| to |l_packet| */
11875 mp->delx=mp->delx+stack_1(x_packet(mp->xy))+stack_2(x_packet(mp->xy))
11876 +stack_3(x_packet(mp->xy));
11877 mp->dely=mp->dely+stack_1(y_packet(mp->xy))+stack_2(y_packet(mp->xy))
11878 +stack_3(y_packet(mp->xy));
11881 incr(mp->cur_tt); mp->tol=mp->tol+mp->three_l;
11882 mp->delx=mp->delx-stack_1(x_packet(mp->xy))-stack_2(x_packet(mp->xy))
11883 -stack_3(x_packet(mp->xy));
11884 mp->dely=mp->dely-stack_1(y_packet(mp->xy))-stack_2(y_packet(mp->xy))
11885 -stack_3(y_packet(mp->xy));
11886 mp->xy=mp->xy+int_packets; /* switch from |l_packet| to |r_packet| */
11889 @ @<Descend to the previous level...@>=
11891 mp->cur_t=halfp(mp->cur_t); mp->cur_tt=halfp(mp->cur_tt);
11892 if ( mp->cur_t==0 ) return;
11893 mp->bisect_ptr=mp->bisect_ptr-int_increment;
11894 mp->three_l=mp->three_l-mp->tol_step;
11895 mp->delx=stack_dx; mp->dely=stack_dy; mp->tol=stack_tol;
11896 mp->uv=stack_uv; mp->xy=stack_xy;
11900 @ The |path_intersection| procedure is much simpler.
11901 It invokes |cubic_intersection| in lexicographic order until finding a
11902 pair of cubics that intersect. The final intersection times are placed in
11903 |cur_t| and~|cur_tt|.
11905 @c void mp_path_intersection (MP mp,pointer h, pointer hh) {
11906 pointer p,pp; /* link registers that traverse the given paths */
11907 integer n,nn; /* integer parts of intersection times, minus |unity| */
11908 @<Change one-point paths into dead cycles@>;
11913 if ( right_type(p)!=mp_endpoint ) {
11916 if ( right_type(pp)!=mp_endpoint ) {
11917 mp_cubic_intersection(mp, p,pp);
11918 if ( mp->cur_t>0 ) {
11919 mp->cur_t=mp->cur_t+n; mp->cur_tt=mp->cur_tt+nn;
11923 nn=nn+unity; pp=link(pp);
11926 n=n+unity; p=link(p);
11928 mp->tol_step=mp->tol_step+3;
11929 } while (mp->tol_step<=3);
11930 mp->cur_t=-unity; mp->cur_tt=-unity;
11933 @ @<Change one-point paths...@>=
11934 if ( right_type(h)==mp_endpoint ) {
11935 right_x(h)=x_coord(h); left_x(h)=x_coord(h);
11936 right_y(h)=y_coord(h); left_y(h)=y_coord(h); right_type(h)=mp_explicit;
11938 if ( right_type(hh)==mp_endpoint ) {
11939 right_x(hh)=x_coord(hh); left_x(hh)=x_coord(hh);
11940 right_y(hh)=y_coord(hh); left_y(hh)=y_coord(hh); right_type(hh)=mp_explicit;
11943 @* \[24] Dynamic linear equations.
11944 \MP\ users define variables implicitly by stating equations that should be
11945 satisfied; the computer is supposed to be smart enough to solve those equations.
11946 And indeed, the computer tries valiantly to do so, by distinguishing five
11947 different types of numeric values:
11950 |type(p)=mp_known| is the nice case, when |value(p)| is the |scaled| value
11951 of the variable whose address is~|p|.
11954 |type(p)=mp_dependent| means that |value(p)| is not present, but |dep_list(p)|
11955 points to a {\sl dependency list\/} that expresses the value of variable~|p|
11956 as a |scaled| number plus a sum of independent variables with |fraction|
11960 |type(p)=mp_independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
11961 number'' reflecting the time this variable was first used in an equation;
11962 also |0<=m<64|, and each dependent variable
11963 that refers to this one is actually referring to the future value of
11964 this variable times~$2^m$. (Usually |m=0|, but higher degrees of
11965 scaling are sometimes needed to keep the coefficients in dependency lists
11966 from getting too large. The value of~|m| will always be even.)
11969 |type(p)=mp_numeric_type| means that variable |p| hasn't appeared in an
11970 equation before, but it has been explicitly declared to be numeric.
11973 |type(p)=undefined| means that variable |p| hasn't appeared before.
11975 \smallskip\noindent
11976 We have actually discussed these five types in the reverse order of their
11977 history during a computation: Once |known|, a variable never again
11978 becomes |dependent|; once |dependent|, it almost never again becomes
11979 |mp_independent|; once |mp_independent|, it never again becomes |mp_numeric_type|;
11980 and once |mp_numeric_type|, it never again becomes |undefined| (except
11981 of course when the user specifically decides to scrap the old value
11982 and start again). A backward step may, however, take place: Sometimes
11983 a |dependent| variable becomes |mp_independent| again, when one of the
11984 independent variables it depends on is reverting to |undefined|.
11987 The next patch detects overflow of independent-variable serial
11988 numbers. Diagnosed and patched by Thorsten Dahlheimer.
11990 @d s_scale 64 /* the serial numbers are multiplied by this factor */
11991 @d max_indep_vars 0177777777 /* $2^{25}-1$ */
11992 @d max_serial_no 017777777700 /* |max_indep_vars*s_scale| */
11993 @d new_indep(A) /* create a new independent variable */
11994 { if ( mp->serial_no==max_serial_no )
11995 mp_fatal_error(mp, "variable instance identifiers exhausted");
11996 type((A))=mp_independent; mp->serial_no=mp->serial_no+s_scale;
11997 value((A))=mp->serial_no;
12001 integer serial_no; /* the most recent serial number, times |s_scale| */
12003 @ @<Make variable |q+s| newly independent@>=new_indep(q+s)
12005 @ But how are dependency lists represented? It's simple: The linear combination
12006 $\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
12007 |q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
12008 @t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
12009 of $\alpha_1$; and |link(p)| points to the dependency list
12010 $\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
12011 then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
12012 The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
12013 they appear in decreasing order of their |value| fields (i.e., of
12014 their serial numbers). \ (It is convenient to use decreasing order,
12015 since |value(null)=0|. If the independent variables were not sorted by
12016 serial number but by some other criterion, such as their location in |mem|,
12017 the equation-solving mechanism would be too system-dependent, because
12018 the ordering can affect the computed results.)
12020 The |link| field in the node that contains the constant term $\beta$ is
12021 called the {\sl final link\/} of the dependency list. \MP\ maintains
12022 a doubly-linked master list of all dependency lists, in terms of a permanently
12024 in |mem| called |dep_head|. If there are no dependencies, we have
12025 |link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
12026 otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
12027 and |prev_dep(p)=dep_head|. We have |type(p)=mp_dependent|, and |dep_list(p)|
12028 points to its dependency list. If the final link of that dependency list
12029 occurs in location~|q|, then |link(q)| points to the next dependent
12030 variable (say~|r|); and we have |prev_dep(r)=q|, etc.
12032 @d dep_list(A) link(value_loc((A)))
12033 /* half of the |value| field in a |dependent| variable */
12034 @d prev_dep(A) info(value_loc((A)))
12035 /* the other half; makes a doubly linked list */
12036 @d dep_node_size 2 /* the number of words per dependency node */
12038 @<Initialize table entries...@>= mp->serial_no=0;
12039 link(dep_head)=dep_head; prev_dep(dep_head)=dep_head;
12040 info(dep_head)=null; dep_list(dep_head)=null;
12042 @ Actually the description above contains a little white lie. There's
12043 another kind of variable called |mp_proto_dependent|, which is
12044 just like a |dependent| one except that the $\alpha$ coefficients
12045 in its dependency list are |scaled| instead of being fractions.
12046 Proto-dependency lists are mixed with dependency lists in the
12047 nodes reachable from |dep_head|.
12049 @ Here is a procedure that prints a dependency list in symbolic form.
12050 The second parameter should be either |dependent| or |mp_proto_dependent|,
12051 to indicate the scaling of the coefficients.
12053 @<Declare subroutines for printing expressions@>=
12054 void mp_print_dependency (MP mp,pointer p, small_number t) {
12055 integer v; /* a coefficient */
12056 pointer pp,q; /* for list manipulation */
12059 v=abs(value(p)); q=info(p);
12060 if ( q==null ) { /* the constant term */
12061 if ( (v!=0)||(p==pp) ) {
12062 if ( value(p)>0 ) if ( p!=pp ) mp_print_char(mp, '+');
12063 mp_print_scaled(mp, value(p));
12067 @<Print the coefficient, unless it's $\pm1.0$@>;
12068 if ( type(q)!=mp_independent ) mp_confusion(mp, "dep");
12069 @:this can't happen dep}{\quad dep@>
12070 mp_print_variable_name(mp, q); v=value(q) % s_scale;
12071 while ( v>0 ) { mp_print(mp, "*4"); v=v-2; }
12076 @ @<Print the coefficient, unless it's $\pm1.0$@>=
12077 if ( value(p)<0 ) mp_print_char(mp, '-');
12078 else if ( p!=pp ) mp_print_char(mp, '+');
12079 if ( t==mp_dependent ) v=mp_round_fraction(mp, v);
12080 if ( v!=unity ) mp_print_scaled(mp, v)
12082 @ The maximum absolute value of a coefficient in a given dependency list
12083 is returned by the following simple function.
12085 @c fraction mp_max_coef (MP mp,pointer p) {
12086 fraction x; /* the maximum so far */
12088 while ( info(p)!=null ) {
12089 if ( abs(value(p))>x ) x=abs(value(p));
12095 @ One of the main operations needed on dependency lists is to add a multiple
12096 of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
12097 to dependency lists and |f| is a fraction.
12099 If the coefficient of any independent variable becomes |coef_bound| or
12100 more, in absolute value, this procedure changes the type of that variable
12101 to `|independent_needing_fix|', and sets the global variable |fix_needed|
12102 to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
12103 $\mu^2+\mu<8$; this means that the numbers we deal with won't
12104 get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
12105 2.3723$, the safer value 7/3 is taken as the threshold.)
12107 The changes mentioned in the preceding paragraph are actually done only if
12108 the global variable |watch_coefs| is |true|. But it usually is; in fact,
12109 it is |false| only when \MP\ is making a dependency list that will soon
12110 be equated to zero.
12112 Several procedures that act on dependency lists, including |p_plus_fq|,
12113 set the global variable |dep_final| to the final (constant term) node of
12114 the dependency list that they produce.
12116 @d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
12117 @d independent_needing_fix 0
12120 boolean fix_needed; /* does at least one |independent| variable need scaling? */
12121 boolean watch_coefs; /* should we scale coefficients that exceed |coef_bound|? */
12122 pointer dep_final; /* location of the constant term and final link */
12125 mp->fix_needed=false; mp->watch_coefs=true;
12127 @ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
12128 set to |mp_proto_dependent| if |p| is a proto-dependency list. In this
12129 case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
12130 should be |mp_proto_dependent| if |q| is a proto-dependency list.
12132 List |q| is unchanged by the operation; but list |p| is totally destroyed.
12134 The final link of the dependency list or proto-dependency list returned
12135 by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
12136 constant term of the result will be located in the same |mem| location
12137 as the original constant term of~|p|.
12139 Coefficients of the result are assumed to be zero if they are less than
12140 a certain threshold. This compensates for inevitable rounding errors,
12141 and tends to make more variables `|known|'. The threshold is approximately
12142 $10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
12143 proto-dependencies.
12145 @d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
12146 @d half_fraction_threshold 1342 /* half of |fraction_threshold| */
12147 @d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
12148 @d half_scaled_threshold 4 /* half of |scaled_threshold| */
12150 @<Declare basic dependency-list subroutines@>=
12151 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12152 pointer q, small_number t, small_number tt) ;
12155 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12156 pointer q, small_number t, small_number tt) {
12157 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12158 pointer r,s; /* for list manipulation */
12159 integer mp_threshold; /* defines a neighborhood of zero */
12160 integer v; /* temporary register */
12161 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12162 else mp_threshold=scaled_threshold;
12163 r=temp_head; pp=info(p); qq=info(q);
12169 @<Contribute a term from |p|, plus |f| times the
12170 corresponding term from |q|@>
12172 } else if ( value(pp)<value(qq) ) {
12173 @<Contribute a term from |q|, multiplied by~|f|@>
12175 link(r)=p; r=p; p=link(p); pp=info(p);
12178 if ( t==mp_dependent )
12179 value(p)=mp_slow_add(mp, value(p),mp_take_fraction(mp, value(q),f));
12181 value(p)=mp_slow_add(mp, value(p),mp_take_scaled(mp, value(q),f));
12182 link(r)=p; mp->dep_final=p;
12183 return link(temp_head);
12186 @ @<Contribute a term from |p|, plus |f|...@>=
12188 if ( tt==mp_dependent ) v=value(p)+mp_take_fraction(mp, f,value(q));
12189 else v=value(p)+mp_take_scaled(mp, f,value(q));
12190 value(p)=v; s=p; p=link(p);
12191 if ( abs(v)<mp_threshold ) {
12192 mp_free_node(mp, s,dep_node_size);
12194 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12195 type(qq)=independent_needing_fix; mp->fix_needed=true;
12199 pp=info(p); q=link(q); qq=info(q);
12202 @ @<Contribute a term from |q|, multiplied by~|f|@>=
12204 if ( tt==mp_dependent ) v=mp_take_fraction(mp, f,value(q));
12205 else v=mp_take_scaled(mp, f,value(q));
12206 if ( abs(v)>halfp(mp_threshold) ) {
12207 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=v;
12208 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12209 type(qq)=independent_needing_fix; mp->fix_needed=true;
12213 q=link(q); qq=info(q);
12216 @ It is convenient to have another subroutine for the special case
12217 of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
12218 both of the same type~|t| (either |dependent| or |mp_proto_dependent|).
12220 @c pointer mp_p_plus_q (MP mp,pointer p, pointer q, small_number t) {
12221 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12222 pointer r,s; /* for list manipulation */
12223 integer mp_threshold; /* defines a neighborhood of zero */
12224 integer v; /* temporary register */
12225 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12226 else mp_threshold=scaled_threshold;
12227 r=temp_head; pp=info(p); qq=info(q);
12233 @<Contribute a term from |p|, plus the
12234 corresponding term from |q|@>
12236 } else if ( value(pp)<value(qq) ) {
12237 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=value(q);
12238 q=link(q); qq=info(q); link(r)=s; r=s;
12240 link(r)=p; r=p; p=link(p); pp=info(p);
12243 value(p)=mp_slow_add(mp, value(p),value(q));
12244 link(r)=p; mp->dep_final=p;
12245 return link(temp_head);
12248 @ @<Contribute a term from |p|, plus the...@>=
12250 v=value(p)+value(q);
12251 value(p)=v; s=p; p=link(p); pp=info(p);
12252 if ( abs(v)<mp_threshold ) {
12253 mp_free_node(mp, s,dep_node_size);
12255 if ( (abs(v)>=coef_bound ) && mp->watch_coefs ) {
12256 type(qq)=independent_needing_fix; mp->fix_needed=true;
12260 q=link(q); qq=info(q);
12263 @ A somewhat simpler routine will multiply a dependency list
12264 by a given constant~|v|. The constant is either a |fraction| less than
12265 |fraction_one|, or it is |scaled|. In the latter case we might be forced to
12266 convert a dependency list to a proto-dependency list.
12267 Parameters |t0| and |t1| are the list types before and after;
12268 they should agree unless |t0=mp_dependent| and |t1=mp_proto_dependent|
12269 and |v_is_scaled=true|.
12271 @c pointer mp_p_times_v (MP mp,pointer p, integer v, small_number t0,
12272 small_number t1, boolean v_is_scaled) {
12273 pointer r,s; /* for list manipulation */
12274 integer w; /* tentative coefficient */
12275 integer mp_threshold;
12276 boolean scaling_down;
12277 if ( t0!=t1 ) scaling_down=true; else scaling_down=! v_is_scaled;
12278 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12279 else mp_threshold=half_scaled_threshold;
12281 while ( info(p)!=null ) {
12282 if ( scaling_down ) w=mp_take_fraction(mp, v,value(p));
12283 else w=mp_take_scaled(mp, v,value(p));
12284 if ( abs(w)<=mp_threshold ) {
12285 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12287 if ( abs(w)>=coef_bound ) {
12288 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12290 link(r)=p; r=p; value(p)=w; p=link(p);
12294 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
12295 else value(p)=mp_take_fraction(mp, value(p),v);
12296 return link(temp_head);
12299 @ Similarly, we sometimes need to divide a dependency list
12300 by a given |scaled| constant.
12302 @<Declare basic dependency-list subroutines@>=
12303 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12304 t0, small_number t1) ;
12307 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12308 t0, small_number t1) {
12309 pointer r,s; /* for list manipulation */
12310 integer w; /* tentative coefficient */
12311 integer mp_threshold;
12312 boolean scaling_down;
12313 if ( t0!=t1 ) scaling_down=true; else scaling_down=false;
12314 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12315 else mp_threshold=half_scaled_threshold;
12317 while ( info( p)!=null ) {
12318 if ( scaling_down ) {
12319 if ( abs(v)<02000000 ) w=mp_make_scaled(mp, value(p),v*010000);
12320 else w=mp_make_scaled(mp, mp_round_fraction(mp, value(p)),v);
12322 w=mp_make_scaled(mp, value(p),v);
12324 if ( abs(w)<=mp_threshold ) {
12325 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12327 if ( abs(w)>=coef_bound ) {
12328 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12330 link(r)=p; r=p; value(p)=w; p=link(p);
12333 link(r)=p; value(p)=mp_make_scaled(mp, value(p),v);
12334 return link(temp_head);
12337 @ Here's another utility routine for dependency lists. When an independent
12338 variable becomes dependent, we want to remove it from all existing
12339 dependencies. The |p_with_x_becoming_q| function computes the
12340 dependency list of~|p| after variable~|x| has been replaced by~|q|.
12342 This procedure has basically the same calling conventions as |p_plus_fq|:
12343 List~|q| is unchanged; list~|p| is destroyed; the constant node and the
12344 final link are inherited from~|p|; and the fourth parameter tells whether
12345 or not |p| is |mp_proto_dependent|. However, the global variable |dep_final|
12346 is not altered if |x| does not occur in list~|p|.
12348 @c pointer mp_p_with_x_becoming_q (MP mp,pointer p,
12349 pointer x, pointer q, small_number t) {
12350 pointer r,s; /* for list manipulation */
12351 integer v; /* coefficient of |x| */
12352 integer sx; /* serial number of |x| */
12353 s=p; r=temp_head; sx=value(x);
12354 while ( value(info(s))>sx ) { r=s; s=link(s); };
12355 if ( info(s)!=x ) {
12358 link(temp_head)=p; link(r)=link(s); v=value(s);
12359 mp_free_node(mp, s,dep_node_size);
12360 return mp_p_plus_fq(mp, link(temp_head),v,q,t,mp_dependent);
12364 @ Here's a simple procedure that reports an error when a variable
12365 has just received a known value that's out of the required range.
12367 @<Declare basic dependency-list subroutines@>=
12368 void mp_val_too_big (MP mp,scaled x) ;
12370 @ @c void mp_val_too_big (MP mp,scaled x) {
12371 if ( mp->internal[mp_warning_check]>0 ) {
12372 print_err("Value is too large ("); mp_print_scaled(mp, x); mp_print_char(mp, ')');
12373 @.Value is too large@>
12374 help4("The equation I just processed has given some variable")
12375 ("a value of 4096 or more. Continue and I'll try to cope")
12376 ("with that big value; but it might be dangerous.")
12377 ("(Set warningcheck:=0 to suppress this message.)");
12382 @ When a dependent variable becomes known, the following routine
12383 removes its dependency list. Here |p| points to the variable, and
12384 |q| points to the dependency list (which is one node long).
12386 @<Declare basic dependency-list subroutines@>=
12387 void mp_make_known (MP mp,pointer p, pointer q) ;
12389 @ @c void mp_make_known (MP mp,pointer p, pointer q) {
12390 int t; /* the previous type */
12391 prev_dep(link(q))=prev_dep(p);
12392 link(prev_dep(p))=link(q); t=type(p);
12393 type(p)=mp_known; value(p)=value(q); mp_free_node(mp, q,dep_node_size);
12394 if ( abs(value(p))>=fraction_one ) mp_val_too_big(mp, value(p));
12395 if (( mp->internal[mp_tracing_equations]>0) && mp_interesting(mp, p) ) {
12396 mp_begin_diagnostic(mp); mp_print_nl(mp, "#### ");
12397 @:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
12398 mp_print_variable_name(mp, p);
12399 mp_print_char(mp, '='); mp_print_scaled(mp, value(p));
12400 mp_end_diagnostic(mp, false);
12402 if (( mp->cur_exp==p ) && mp->cur_type==t ) {
12403 mp->cur_type=mp_known; mp->cur_exp=value(p);
12404 mp_free_node(mp, p,value_node_size);
12408 @ The |fix_dependencies| routine is called into action when |fix_needed|
12409 has been triggered. The program keeps a list~|s| of independent variables
12410 whose coefficients must be divided by~4.
12412 In unusual cases, this fixup process might reduce one or more coefficients
12413 to zero, so that a variable will become known more or less by default.
12415 @<Declare basic dependency-list subroutines@>=
12416 void mp_fix_dependencies (MP mp);
12418 @ @c void mp_fix_dependencies (MP mp) {
12419 pointer p,q,r,s,t; /* list manipulation registers */
12420 pointer x; /* an independent variable */
12421 r=link(dep_head); s=null;
12422 while ( r!=dep_head ){
12424 @<Run through the dependency list for variable |t|, fixing
12425 all nodes, and ending with final link~|q|@>;
12427 if ( q==dep_list(t) ) mp_make_known(mp, t,q);
12429 while ( s!=null ) {
12430 p=link(s); x=info(s); free_avail(s); s=p;
12431 type(x)=mp_independent; value(x)=value(x)+2;
12433 mp->fix_needed=false;
12436 @ @d independent_being_fixed 1 /* this variable already appears in |s| */
12438 @<Run through the dependency list for variable |t|...@>=
12439 r=value_loc(t); /* |link(r)=dep_list(t)| */
12441 q=link(r); x=info(q);
12442 if ( x==null ) break;
12443 if ( type(x)<=independent_being_fixed ) {
12444 if ( type(x)<independent_being_fixed ) {
12445 p=mp_get_avail(mp); link(p)=s; s=p;
12446 info(s)=x; type(x)=independent_being_fixed;
12448 value(q)=value(q) / 4;
12449 if ( value(q)==0 ) {
12450 link(r)=link(q); mp_free_node(mp, q,dep_node_size); q=r;
12457 @ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
12458 linking it into the list of all known dependencies. We assume that
12459 |dep_final| points to the final node of list~|p|.
12461 @c void mp_new_dep (MP mp,pointer q, pointer p) {
12462 pointer r; /* what used to be the first dependency */
12463 dep_list(q)=p; prev_dep(q)=dep_head;
12464 r=link(dep_head); link(mp->dep_final)=r; prev_dep(r)=mp->dep_final;
12468 @ Here is one of the ways a dependency list gets started.
12469 The |const_dependency| routine produces a list that has nothing but
12472 @c pointer mp_const_dependency (MP mp, scaled v) {
12473 mp->dep_final=mp_get_node(mp, dep_node_size);
12474 value(mp->dep_final)=v; info(mp->dep_final)=null;
12475 return mp->dep_final;
12478 @ And here's a more interesting way to start a dependency list from scratch:
12479 The parameter to |single_dependency| is the location of an
12480 independent variable~|x|, and the result is the simple dependency list
12483 In the unlikely event that the given independent variable has been doubled so
12484 often that we can't refer to it with a nonzero coefficient,
12485 |single_dependency| returns the simple list `0'. This case can be
12486 recognized by testing that the returned list pointer is equal to
12489 @c pointer mp_single_dependency (MP mp,pointer p) {
12490 pointer q; /* the new dependency list */
12491 integer m; /* the number of doublings */
12492 m=value(p) % s_scale;
12494 return mp_const_dependency(mp, 0);
12496 q=mp_get_node(mp, dep_node_size);
12497 value(q)=two_to_the(28-m); info(q)=p;
12498 link(q)=mp_const_dependency(mp, 0);
12503 @ We sometimes need to make an exact copy of a dependency list.
12505 @c pointer mp_copy_dep_list (MP mp,pointer p) {
12506 pointer q; /* the new dependency list */
12507 q=mp_get_node(mp, dep_node_size); mp->dep_final=q;
12509 info(mp->dep_final)=info(p); value(mp->dep_final)=value(p);
12510 if ( info(mp->dep_final)==null ) break;
12511 link(mp->dep_final)=mp_get_node(mp, dep_node_size);
12512 mp->dep_final=link(mp->dep_final); p=link(p);
12517 @ But how do variables normally become known? Ah, now we get to the heart of the
12518 equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
12519 or |mp_proto_dependent| list,~|p|, in which at least one independent variable
12520 appears. It equates this list to zero, by choosing an independent variable
12521 with the largest coefficient and making it dependent on the others. The
12522 newly dependent variable is eliminated from all current dependencies,
12523 thereby possibly making other dependent variables known.
12525 The given list |p| is, of course, totally destroyed by all this processing.
12527 @c void mp_linear_eq (MP mp, pointer p, small_number t) {
12528 pointer q,r,s; /* for link manipulation */
12529 pointer x; /* the variable that loses its independence */
12530 integer n; /* the number of times |x| had been halved */
12531 integer v; /* the coefficient of |x| in list |p| */
12532 pointer prev_r; /* lags one step behind |r| */
12533 pointer final_node; /* the constant term of the new dependency list */
12534 integer w; /* a tentative coefficient */
12535 @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
12536 x=info(q); n=value(x) % s_scale;
12537 @<Divide list |p| by |-v|, removing node |q|@>;
12538 if ( mp->internal[mp_tracing_equations]>0 ) {
12539 @<Display the new dependency@>;
12541 @<Simplify all existing dependencies by substituting for |x|@>;
12542 @<Change variable |x| from |independent| to |dependent| or |known|@>;
12543 if ( mp->fix_needed ) mp_fix_dependencies(mp);
12546 @ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
12547 q=p; r=link(p); v=value(q);
12548 while ( info(r)!=null ) {
12549 if ( abs(value(r))>abs(v) ) { q=r; v=value(r); };
12553 @ Here we want to change the coefficients from |scaled| to |fraction|,
12554 except in the constant term. In the common case of a trivial equation
12555 like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=mp_dependent|.
12557 @<Divide list |p| by |-v|, removing node |q|@>=
12558 s=temp_head; link(s)=p; r=p;
12561 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12563 w=mp_make_fraction(mp, value(r),v);
12564 if ( abs(w)<=half_fraction_threshold ) {
12565 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12571 } while (info(r)!=null);
12572 if ( t==mp_proto_dependent ) {
12573 value(r)=-mp_make_scaled(mp, value(r),v);
12574 } else if ( v!=-fraction_one ) {
12575 value(r)=-mp_make_fraction(mp, value(r),v);
12577 final_node=r; p=link(temp_head)
12579 @ @<Display the new dependency@>=
12580 if ( mp_interesting(mp, x) ) {
12581 mp_begin_diagnostic(mp); mp_print_nl(mp, "## ");
12582 mp_print_variable_name(mp, x);
12583 @:]]]\#\#_}{\.{\#\#}@>
12585 while ( w>0 ) { mp_print(mp, "*4"); w=w-2; };
12586 mp_print_char(mp, '='); mp_print_dependency(mp, p,mp_dependent);
12587 mp_end_diagnostic(mp, false);
12590 @ @<Simplify all existing dependencies by substituting for |x|@>=
12591 prev_r=dep_head; r=link(dep_head);
12592 while ( r!=dep_head ) {
12593 s=dep_list(r); q=mp_p_with_x_becoming_q(mp, s,x,p,type(r));
12594 if ( info(q)==null ) {
12595 mp_make_known(mp, r,q);
12598 do { q=link(q); } while (info(q)!=null);
12604 @ @<Change variable |x| from |independent| to |dependent| or |known|@>=
12605 if ( n>0 ) @<Divide list |p| by $2^n$@>;
12606 if ( info(p)==null ) {
12609 if ( abs(value(x))>=fraction_one ) mp_val_too_big(mp, value(x));
12610 mp_free_node(mp, p,dep_node_size);
12611 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) {
12612 mp->cur_exp=value(x); mp->cur_type=mp_known;
12613 mp_free_node(mp, x,value_node_size);
12616 type(x)=mp_dependent; mp->dep_final=final_node; mp_new_dep(mp, x,p);
12617 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) mp->cur_type=mp_dependent;
12620 @ @<Divide list |p| by $2^n$@>=
12622 s=temp_head; link(temp_head)=p; r=p;
12625 else w=value(r) / two_to_the(n);
12626 if ( (abs(w)<=half_fraction_threshold)&&(info(r)!=null) ) {
12628 mp_free_node(mp, r,dep_node_size);
12633 } while (info(s)!=null);
12637 @ The |check_mem| procedure, which is used only when \MP\ is being
12638 debugged, makes sure that the current dependency lists are well formed.
12640 @<Check the list of linear dependencies@>=
12641 q=dep_head; p=link(q);
12642 while ( p!=dep_head ) {
12643 if ( prev_dep(p)!=q ) {
12644 mp_print_nl(mp, "Bad PREVDEP at "); mp_print_int(mp, p);
12649 r=info(p); q=p; p=link(q);
12650 if ( r==null ) break;
12651 if ( value(info(p))>=value(r) ) {
12652 mp_print_nl(mp, "Out of order at "); mp_print_int(mp, p);
12653 @.Out of order...@>
12658 @* \[25] Dynamic nonlinear equations.
12659 Variables of numeric type are maintained by the general scheme of
12660 independent, dependent, and known values that we have just studied;
12661 and the components of pair and transform variables are handled in the
12662 same way. But \MP\ also has five other types of values: \&{boolean},
12663 \&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
12665 Equations are allowed between nonlinear quantities, but only in a
12666 simple form. Two variables that haven't yet been assigned values are
12667 either equal to each other, or they're not.
12669 Before a boolean variable has received a value, its type is |mp_unknown_boolean|;
12670 similarly, there are variables whose type is |mp_unknown_string|, |mp_unknown_pen|,
12671 |mp_unknown_path|, and |mp_unknown_picture|. In such cases the value is either
12672 |null| (which means that no other variables are equivalent to this one), or
12673 it points to another variable of the same undefined type. The pointers in the
12674 latter case form a cycle of nodes, which we shall call a ``ring.''
12675 Rings of undefined variables may include capsules, which arise as
12676 intermediate results within expressions or as \&{expr} parameters to macros.
12678 When one member of a ring receives a value, the same value is given to
12679 all the other members. In the case of paths and pictures, this implies
12680 making separate copies of a potentially large data structure; users should
12681 restrain their enthusiasm for such generality, unless they have lots and
12682 lots of memory space.
12684 @ The following procedure is called when a capsule node is being
12685 added to a ring (e.g., when an unknown variable is mentioned in an expression).
12687 @c pointer mp_new_ring_entry (MP mp,pointer p) {
12688 pointer q; /* the new capsule node */
12689 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
12691 if ( value(p)==null ) value(q)=p; else value(q)=value(p);
12696 @ Conversely, we might delete a capsule or a variable before it becomes known.
12697 The following procedure simply detaches a quantity from its ring,
12698 without recycling the storage.
12700 @<Declare the recycling subroutines@>=
12701 void mp_ring_delete (MP mp,pointer p) {
12704 if ( q!=null ) if ( q!=p ){
12705 while ( value(q)!=p ) q=value(q);
12710 @ Eventually there might be an equation that assigns values to all of the
12711 variables in a ring. The |nonlinear_eq| subroutine does the necessary
12712 propagation of values.
12714 If the parameter |flush_p| is |true|, node |p| itself needn't receive a
12715 value, it will soon be recycled.
12717 @c void mp_nonlinear_eq (MP mp,integer v, pointer p, boolean flush_p) {
12718 small_number t; /* the type of ring |p| */
12719 pointer q,r; /* link manipulation registers */
12720 t=type(p)-unknown_tag; q=value(p);
12721 if ( flush_p ) type(p)=mp_vacuous; else p=q;
12723 r=value(q); type(q)=t;
12725 case mp_boolean_type: value(q)=v; break;
12726 case mp_string_type: value(q)=v; add_str_ref(v); break;
12727 case mp_pen_type: value(q)=copy_pen(v); break;
12728 case mp_path_type: value(q)=mp_copy_path(mp, v); break;
12729 case mp_picture_type: value(q)=v; add_edge_ref(v); break;
12730 } /* there ain't no more cases */
12735 @ If two members of rings are equated, and if they have the same type,
12736 the |ring_merge| procedure is called on to make them equivalent.
12738 @c void mp_ring_merge (MP mp,pointer p, pointer q) {
12739 pointer r; /* traverses one list */
12743 @<Exclaim about a redundant equation@>;
12748 r=value(p); value(p)=value(q); value(q)=r;
12751 @ @<Exclaim about a redundant equation@>=
12753 print_err("Redundant equation");
12754 @.Redundant equation@>
12755 help2("I already knew that this equation was true.")
12756 ("But perhaps no harm has been done; let's continue.");
12757 mp_put_get_error(mp);
12760 @* \[26] Introduction to the syntactic routines.
12761 Let's pause a moment now and try to look at the Big Picture.
12762 The \MP\ program consists of three main parts: syntactic routines,
12763 semantic routines, and output routines. The chief purpose of the
12764 syntactic routines is to deliver the user's input to the semantic routines,
12765 while parsing expressions and locating operators and operands. The
12766 semantic routines act as an interpreter responding to these operators,
12767 which may be regarded as commands. And the output routines are
12768 periodically called on to produce compact font descriptions that can be
12769 used for typesetting or for making interim proof drawings. We have
12770 discussed the basic data structures and many of the details of semantic
12771 operations, so we are good and ready to plunge into the part of \MP\ that
12772 actually controls the activities.
12774 Our current goal is to come to grips with the |get_next| procedure,
12775 which is the keystone of \MP's input mechanism. Each call of |get_next|
12776 sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
12777 representing the next input token.
12778 $$\vbox{\halign{#\hfil\cr
12779 \hbox{|cur_cmd| denotes a command code from the long list of codes
12781 \hbox{|cur_mod| denotes a modifier of the command code;}\cr
12782 \hbox{|cur_sym| is the hash address of the symbolic token that was
12784 \hbox{\qquad or zero in the case of a numeric or string
12785 or capsule token.}\cr}}$$
12786 Underlying this external behavior of |get_next| is all the machinery
12787 necessary to convert from character files to tokens. At a given time we
12788 may be only partially finished with the reading of several files (for
12789 which \&{input} was specified), and partially finished with the expansion
12790 of some user-defined macros and/or some macro parameters, and partially
12791 finished reading some text that the user has inserted online,
12792 and so on. When reading a character file, the characters must be
12793 converted to tokens; comments and blank spaces must
12794 be removed, numeric and string tokens must be evaluated.
12796 To handle these situations, which might all be present simultaneously,
12797 \MP\ uses various stacks that hold information about the incomplete
12798 activities, and there is a finite state control for each level of the
12799 input mechanism. These stacks record the current state of an implicitly
12800 recursive process, but the |get_next| procedure is not recursive.
12803 eight_bits cur_cmd; /* current command set by |get_next| */
12804 integer cur_mod; /* operand of current command */
12805 halfword cur_sym; /* hash address of current symbol */
12807 @ The |print_cmd_mod| routine prints a symbolic interpretation of a
12808 command code and its modifier.
12809 It consists of a rather tedious sequence of print
12810 commands, and most of it is essentially an inverse to the |primitive|
12811 routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
12812 all of this procedure appears elsewhere in the program, together with the
12813 corresponding |primitive| calls.
12815 @<Declare the procedure called |print_cmd_mod|@>=
12816 void mp_print_cmd_mod (MP mp,integer c, integer m) {
12818 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>
12819 default: mp_print(mp, "[unknown command code!]"); break;
12823 @ Here is a procedure that displays a given command in braces, in the
12824 user's transcript file.
12826 @d show_cur_cmd_mod mp_show_cmd_mod(mp, mp->cur_cmd,mp->cur_mod)
12829 void mp_show_cmd_mod (MP mp,integer c, integer m) {
12830 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
12831 mp_print_cmd_mod(mp, c,m); mp_print_char(mp, '}');
12832 mp_end_diagnostic(mp, false);
12835 @* \[27] Input stacks and states.
12836 The state of \MP's input mechanism appears in the input stack, whose
12837 entries are records with five fields, called |index|, |start|, |loc|,
12838 |limit|, and |name|. The top element of this stack is maintained in a
12839 global variable for which no subscripting needs to be done; the other
12840 elements of the stack appear in an array. Hence the stack is declared thus:
12844 quarterword index_field;
12845 halfword start_field, loc_field, limit_field, name_field;
12849 in_state_record *input_stack;
12850 integer input_ptr; /* first unused location of |input_stack| */
12851 integer max_in_stack; /* largest value of |input_ptr| when pushing */
12852 in_state_record cur_input; /* the ``top'' input state */
12853 int stack_size; /* maximum number of simultaneous input sources */
12855 @ @<Allocate or initialize ...@>=
12856 mp->stack_size = 300;
12857 mp->input_stack = xmalloc((mp->stack_size+1),sizeof(in_state_record));
12859 @ @<Dealloc variables@>=
12860 xfree(mp->input_stack);
12862 @ We've already defined the special variable |loc==cur_input.loc_field|
12863 in our discussion of basic input-output routines. The other components of
12864 |cur_input| are defined in the same way:
12866 @d index mp->cur_input.index_field /* reference for buffer information */
12867 @d start mp->cur_input.start_field /* starting position in |buffer| */
12868 @d limit mp->cur_input.limit_field /* end of current line in |buffer| */
12869 @d name mp->cur_input.name_field /* name of the current file */
12871 @ Let's look more closely now at the five control variables
12872 (|index|,~|start|,~|loc|,~|limit|,~|name|),
12873 assuming that \MP\ is reading a line of characters that have been input
12874 from some file or from the user's terminal. There is an array called
12875 |buffer| that acts as a stack of all lines of characters that are
12876 currently being read from files, including all lines on subsidiary
12877 levels of the input stack that are not yet completed. \MP\ will return to
12878 the other lines when it is finished with the present input file.
12880 (Incidentally, on a machine with byte-oriented addressing, it would be
12881 appropriate to combine |buffer| with the |str_pool| array,
12882 letting the buffer entries grow downward from the top of the string pool
12883 and checking that these two tables don't bump into each other.)
12885 The line we are currently working on begins in position |start| of the
12886 buffer; the next character we are about to read is |buffer[loc]|; and
12887 |limit| is the location of the last character present. We always have
12888 |loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
12889 that the end of a line is easily sensed.
12891 The |name| variable is a string number that designates the name of
12892 the current file, if we are reading an ordinary text file. Special codes
12893 |is_term..max_spec_src| indicate other sources of input text.
12895 @d is_term 0 /* |name| value when reading from the terminal for normal input */
12896 @d is_read 1 /* |name| value when executing a \&{readstring} or \&{readfrom} */
12897 @d is_scantok 2 /* |name| value when reading text generated by \&{scantokens} */
12898 @d max_spec_src is_scantok
12900 @ Additional information about the current line is available via the
12901 |index| variable, which counts how many lines of characters are present
12902 in the buffer below the current level. We have |index=0| when reading
12903 from the terminal and prompting the user for each line; then if the user types,
12904 e.g., `\.{input figs}', we will have |index=1| while reading
12905 the file \.{figs.mp}. However, it does not follow that |index| is the
12906 same as the input stack pointer, since many of the levels on the input
12907 stack may come from token lists and some |index| values may correspond
12908 to \.{MPX} files that are not currently on the stack.
12910 The global variable |in_open| is equal to the highest |index| value counting
12911 \.{MPX} files but excluding token-list input levels. Thus, the number of
12912 partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
12913 when we are not reading a token list.
12915 If we are not currently reading from the terminal,
12916 we are reading from the file variable |input_file[index]|. We use
12917 the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
12918 and |cur_file| as an abbreviation for |input_file[index]|.
12920 When \MP\ is not reading from the terminal, the global variable |line| contains
12921 the line number in the current file, for use in error messages. More precisely,
12922 |line| is a macro for |line_stack[index]| and the |line_stack| array gives
12923 the line number for each file in the |input_file| array.
12925 When an \.{MPX} file is opened the file name is stored in the |mpx_name|
12926 array so that the name doesn't get lost when the file is temporarily removed
12927 from the input stack.
12928 Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
12929 and it contains translated \TeX\ pictures for |input_file[k-1]|.
12930 Since this is not an \.{MPX} file, we have
12931 $$ \hbox{|mpx_name[k-1]<=absent|}. $$
12932 This |name| field is set to |finished| when |input_file[k]| is completely
12935 If more information about the input state is needed, it can be
12936 included in small arrays like those shown here. For example,
12937 the current page or segment number in the input file might be put
12938 into a variable |page|, that is really a macro for the current entry
12939 in `\ignorespaces|page_stack:array[0..max_in_open] of integer|\unskip'
12940 by analogy with |line_stack|.
12941 @^system dependencies@>
12943 @d terminal_input (name==is_term) /* are we reading from the terminal? */
12944 @d cur_file mp->input_file[index] /* the current |void *| variable */
12945 @d line mp->line_stack[index] /* current line number in the current source file */
12946 @d in_name mp->iname_stack[index] /* a string used to construct \.{MPX} file names */
12947 @d in_area mp->iarea_stack[index] /* another string for naming \.{MPX} files */
12948 @d absent 1 /* |name_field| value for unused |mpx_in_stack| entries */
12949 @d mpx_reading (mp->mpx_name[index]>absent)
12950 /* when reading a file, is it an \.{MPX} file? */
12952 /* |name_field| value when the corresponding \.{MPX} file is finished */
12955 integer in_open; /* the number of lines in the buffer, less one */
12956 unsigned int open_parens; /* the number of open text files */
12957 void * *input_file ;
12958 integer *line_stack ; /* the line number for each file */
12959 char * *iname_stack; /* used for naming \.{MPX} files */
12960 char * *iarea_stack; /* used for naming \.{MPX} files */
12961 halfword*mpx_name ;
12963 @ @<Allocate or ...@>=
12964 mp->input_file = xmalloc((mp->max_in_open+1),sizeof(void *));
12965 mp->line_stack = xmalloc((mp->max_in_open+1),sizeof(integer));
12966 mp->iname_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12967 mp->iarea_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12968 mp->mpx_name = xmalloc((mp->max_in_open+1),sizeof(halfword));
12971 for (k=0;k<=mp->max_in_open;k++) {
12972 mp->iname_stack[k] =NULL;
12973 mp->iarea_stack[k] =NULL;
12977 @ @<Dealloc variables@>=
12980 for (l=0;l<=mp->max_in_open;l++) {
12981 xfree(mp->iname_stack[l]);
12982 xfree(mp->iarea_stack[l]);
12985 xfree(mp->input_file);
12986 xfree(mp->line_stack);
12987 xfree(mp->iname_stack);
12988 xfree(mp->iarea_stack);
12989 xfree(mp->mpx_name);
12992 @ However, all this discussion about input state really applies only to the
12993 case that we are inputting from a file. There is another important case,
12994 namely when we are currently getting input from a token list. In this case
12995 |index>max_in_open|, and the conventions about the other state variables
12998 \yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
12999 the node that will be read next. If |loc=null|, the token list has been
13002 \yskip\hang|start| points to the first node of the token list; this node
13003 may or may not contain a reference count, depending on the type of token
13006 \yskip\hang|token_type|, which takes the place of |index| in the
13007 discussion above, is a code number that explains what kind of token list
13010 \yskip\hang|name| points to the |eqtb| address of the control sequence
13011 being expanded, if the current token list is a macro not defined by
13012 \&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
13013 can be deduced by looking at their first two parameters.
13015 \yskip\hang|param_start|, which takes the place of |limit|, tells where
13016 the parameters of the current macro or loop text begin in the |param_stack|.
13018 \yskip\noindent The |token_type| can take several values, depending on
13019 where the current token list came from:
13022 \indent|forever_text|, if the token list being scanned is the body of
13023 a \&{forever} loop;
13025 \indent|loop_text|, if the token list being scanned is the body of
13026 a \&{for} or \&{forsuffixes} loop;
13028 \indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
13030 \indent|backed_up|, if the token list being scanned has been inserted as
13031 `to be read again'.
13033 \indent|inserted|, if the token list being scanned has been inserted as
13034 part of error recovery;
13036 \indent|macro|, if the expansion of a user-defined symbolic token is being
13040 The token list begins with a reference count if and only if |token_type=
13042 @^reference counts@>
13044 @d token_type index /* type of current token list */
13045 @d token_state (index>(int)mp->max_in_open) /* are we scanning a token list? */
13046 @d file_state (index<=(int)mp->max_in_open) /* are we scanning a file line? */
13047 @d param_start limit /* base of macro parameters in |param_stack| */
13048 @d forever_text (mp->max_in_open+1) /* |token_type| code for loop texts */
13049 @d loop_text (mp->max_in_open+2) /* |token_type| code for loop texts */
13050 @d parameter (mp->max_in_open+3) /* |token_type| code for parameter texts */
13051 @d backed_up (mp->max_in_open+4) /* |token_type| code for texts to be reread */
13052 @d inserted (mp->max_in_open+5) /* |token_type| code for inserted texts */
13053 @d macro (mp->max_in_open+6) /* |token_type| code for macro replacement texts */
13055 @ The |param_stack| is an auxiliary array used to hold pointers to the token
13056 lists for parameters at the current level and subsidiary levels of input.
13057 This stack grows at a different rate from the others.
13060 pointer *param_stack; /* token list pointers for parameters */
13061 integer param_ptr; /* first unused entry in |param_stack| */
13062 integer max_param_stack; /* largest value of |param_ptr| */
13064 @ @<Allocate or initialize ...@>=
13065 mp->param_stack = xmalloc((mp->param_size+1),sizeof(pointer));
13067 @ @<Dealloc variables@>=
13068 xfree(mp->param_stack);
13070 @ Notice that the |line| isn't valid when |token_state| is true because it
13071 depends on |index|. If we really need to know the line number for the
13072 topmost file in the index stack we use the following function. If a page
13073 number or other information is needed, this routine should be modified to
13074 compute it as well.
13075 @^system dependencies@>
13077 @<Declare a function called |true_line|@>=
13078 integer mp_true_line (MP mp) {
13079 int k; /* an index into the input stack */
13080 if ( file_state && (name>max_spec_src) ) {
13085 ((mp->input_stack[(k-1)].index_field>mp->max_in_open)||
13086 (mp->input_stack[(k-1)].name_field<=max_spec_src))) {
13089 return mp->line_stack[(k-1)];
13094 @ Thus, the ``current input state'' can be very complicated indeed; there
13095 can be many levels and each level can arise in a variety of ways. The
13096 |show_context| procedure, which is used by \MP's error-reporting routine to
13097 print out the current input state on all levels down to the most recent
13098 line of characters from an input file, illustrates most of these conventions.
13099 The global variable |file_ptr| contains the lowest level that was
13100 displayed by this procedure.
13103 integer file_ptr; /* shallowest level shown by |show_context| */
13105 @ The status at each level is indicated by printing two lines, where the first
13106 line indicates what was read so far and the second line shows what remains
13107 to be read. The context is cropped, if necessary, so that the first line
13108 contains at most |half_error_line| characters, and the second contains
13109 at most |error_line|. Non-current input levels whose |token_type| is
13110 `|backed_up|' are shown only if they have not been fully read.
13112 @c void mp_show_context (MP mp) { /* prints where the scanner is */
13113 int old_setting; /* saved |selector| setting */
13114 @<Local variables for formatting calculations@>
13115 mp->file_ptr=mp->input_ptr; mp->input_stack[mp->file_ptr]=mp->cur_input;
13116 /* store current state */
13118 mp->cur_input=mp->input_stack[mp->file_ptr]; /* enter into the context */
13119 @<Display the current context@>;
13121 if ( (name>max_spec_src) || (mp->file_ptr==0) ) break;
13122 decr(mp->file_ptr);
13124 mp->cur_input=mp->input_stack[mp->input_ptr]; /* restore original state */
13127 @ @<Display the current context@>=
13128 if ( (mp->file_ptr==mp->input_ptr) || file_state ||
13129 (token_type!=backed_up) || (loc!=null) ) {
13130 /* we omit backed-up token lists that have already been read */
13131 mp->tally=0; /* get ready to count characters */
13132 old_setting=mp->selector;
13133 if ( file_state ) {
13134 @<Print location of current line@>;
13135 @<Pseudoprint the line@>;
13137 @<Print type of token list@>;
13138 @<Pseudoprint the token list@>;
13140 mp->selector=old_setting; /* stop pseudoprinting */
13141 @<Print two lines using the tricky pseudoprinted information@>;
13144 @ This routine should be changed, if necessary, to give the best possible
13145 indication of where the current line resides in the input file.
13146 For example, on some systems it is best to print both a page and line number.
13147 @^system dependencies@>
13149 @<Print location of current line@>=
13150 if ( name>max_spec_src ) {
13151 mp_print_nl(mp, "l."); mp_print_int(mp, mp_true_line(mp));
13152 } else if ( terminal_input ) {
13153 if ( mp->file_ptr==0 ) mp_print_nl(mp, "<*>");
13154 else mp_print_nl(mp, "<insert>");
13155 } else if ( name==is_scantok ) {
13156 mp_print_nl(mp, "<scantokens>");
13158 mp_print_nl(mp, "<read>");
13160 mp_print_char(mp, ' ')
13162 @ Can't use case statement here because the |token_type| is not
13163 a constant expression.
13165 @<Print type of token list@>=
13167 if(token_type==forever_text) {
13168 mp_print_nl(mp, "<forever> ");
13169 } else if (token_type==loop_text) {
13170 @<Print the current loop value@>;
13171 } else if (token_type==parameter) {
13172 mp_print_nl(mp, "<argument> ");
13173 } else if (token_type==backed_up) {
13174 if ( loc==null ) mp_print_nl(mp, "<recently read> ");
13175 else mp_print_nl(mp, "<to be read again> ");
13176 } else if (token_type==inserted) {
13177 mp_print_nl(mp, "<inserted text> ");
13178 } else if (token_type==macro) {
13180 if ( name!=null ) mp_print_text(name);
13181 else @<Print the name of a \&{vardef}'d macro@>;
13182 mp_print(mp, "->");
13184 mp_print_nl(mp, "?");/* this should never happen */
13189 @ The parameter that corresponds to a loop text is either a token list
13190 (in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
13191 We'll discuss capsules later; for now, all we need to know is that
13192 the |link| field in a capsule parameter is |void| and that
13193 |print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
13195 @<Print the current loop value@>=
13196 { mp_print_nl(mp, "<for("); p=mp->param_stack[param_start];
13198 if ( link(p)==mp_void ) mp_print_exp(mp, p,0); /* we're in a \&{for} loop */
13199 else mp_show_token_list(mp, p,null,20,mp->tally);
13201 mp_print(mp, ")> ");
13204 @ The first two parameters of a macro defined by \&{vardef} will be token
13205 lists representing the macro's prefix and ``at point.'' By putting these
13206 together, we get the macro's full name.
13208 @<Print the name of a \&{vardef}'d macro@>=
13209 { p=mp->param_stack[param_start];
13211 mp_show_token_list(mp, mp->param_stack[param_start+1],null,20,mp->tally);
13214 while ( link(q)!=null ) q=link(q);
13215 link(q)=mp->param_stack[param_start+1];
13216 mp_show_token_list(mp, p,null,20,mp->tally);
13221 @ Now it is necessary to explain a little trick. We don't want to store a long
13222 string that corresponds to a token list, because that string might take up
13223 lots of memory; and we are printing during a time when an error message is
13224 being given, so we dare not do anything that might overflow one of \MP's
13225 tables. So `pseudoprinting' is the answer: We enter a mode of printing
13226 that stores characters into a buffer of length |error_line|, where character
13227 $k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
13228 |k<trick_count|, otherwise character |k| is dropped. Initially we set
13229 |tally:=0| and |trick_count:=1000000|; then when we reach the
13230 point where transition from line 1 to line 2 should occur, we
13231 set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
13232 tally+1+error_line-half_error_line)|. At the end of the
13233 pseudoprinting, the values of |first_count|, |tally|, and
13234 |trick_count| give us all the information we need to print the two lines,
13235 and all of the necessary text is in |trick_buf|.
13237 Namely, let |l| be the length of the descriptive information that appears
13238 on the first line. The length of the context information gathered for that
13239 line is |k=first_count|, and the length of the context information
13240 gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
13241 where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
13242 descriptive information on line~1, and set |n:=l+k|; here |n| is the
13243 length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
13244 and print `\.{...}' followed by
13245 $$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
13246 where subscripts of |trick_buf| are circular modulo |error_line|. The
13247 second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
13248 unless |n+m>error_line|; in the latter case, further cropping is done.
13249 This is easier to program than to explain.
13251 @<Local variables for formatting...@>=
13252 int i; /* index into |buffer| */
13253 integer l; /* length of descriptive information on line 1 */
13254 integer m; /* context information gathered for line 2 */
13255 int n; /* length of line 1 */
13256 integer p; /* starting or ending place in |trick_buf| */
13257 integer q; /* temporary index */
13259 @ The following code tells the print routines to gather
13260 the desired information.
13262 @d begin_pseudoprint {
13263 l=mp->tally; mp->tally=0; mp->selector=pseudo;
13264 mp->trick_count=1000000;
13266 @d set_trick_count {
13267 mp->first_count=mp->tally;
13268 mp->trick_count=mp->tally+1+mp->error_line-mp->half_error_line;
13269 if ( mp->trick_count<mp->error_line ) mp->trick_count=mp->error_line;
13272 @ And the following code uses the information after it has been gathered.
13274 @<Print two lines using the tricky pseudoprinted information@>=
13275 if ( mp->trick_count==1000000 ) set_trick_count;
13276 /* |set_trick_count| must be performed */
13277 if ( mp->tally<mp->trick_count ) m=mp->tally-mp->first_count;
13278 else m=mp->trick_count-mp->first_count; /* context on line 2 */
13279 if ( l+mp->first_count<=mp->half_error_line ) {
13280 p=0; n=l+mp->first_count;
13282 mp_print(mp, "..."); p=l+mp->first_count-mp->half_error_line+3;
13283 n=mp->half_error_line;
13285 for (q=p;q<=mp->first_count-1;q++) {
13286 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13289 for (q=1;q<=n;q++) {
13290 mp_print_char(mp, ' '); /* print |n| spaces to begin line~2 */
13292 if ( m+n<=mp->error_line ) p=mp->first_count+m;
13293 else p=mp->first_count+(mp->error_line-n-3);
13294 for (q=mp->first_count;q<=p-1;q++) {
13295 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13297 if ( m+n>mp->error_line ) mp_print(mp, "...")
13299 @ But the trick is distracting us from our current goal, which is to
13300 understand the input state. So let's concentrate on the data structures that
13301 are being pseudoprinted as we finish up the |show_context| procedure.
13303 @<Pseudoprint the line@>=
13306 for (i=start;i<=limit-1;i++) {
13307 if ( i==loc ) set_trick_count;
13308 mp_print_str(mp, mp->buffer[i]);
13312 @ @<Pseudoprint the token list@>=
13314 if ( token_type!=macro ) mp_show_token_list(mp, start,loc,100000,0);
13315 else mp_show_macro(mp, start,loc,100000)
13317 @ Here is the missing piece of |show_token_list| that is activated when the
13318 token beginning line~2 is about to be shown:
13320 @<Do magic computation@>=set_trick_count
13322 @* \[28] Maintaining the input stacks.
13323 The following subroutines change the input status in commonly needed ways.
13325 First comes |push_input|, which stores the current state and creates a
13326 new level (having, initially, the same properties as the old).
13328 @d push_input { /* enter a new input level, save the old */
13329 if ( mp->input_ptr>mp->max_in_stack ) {
13330 mp->max_in_stack=mp->input_ptr;
13331 if ( mp->input_ptr==mp->stack_size ) {
13332 int l = (mp->stack_size+(mp->stack_size>>2));
13333 XREALLOC(mp->input_stack, l, in_state_record);
13334 mp->stack_size = l;
13337 mp->input_stack[mp->input_ptr]=mp->cur_input; /* stack the record */
13338 incr(mp->input_ptr);
13341 @ And of course what goes up must come down.
13343 @d pop_input { /* leave an input level, re-enter the old */
13344 decr(mp->input_ptr); mp->cur_input=mp->input_stack[mp->input_ptr];
13347 @ Here is a procedure that starts a new level of token-list input, given
13348 a token list |p| and its type |t|. If |t=macro|, the calling routine should
13349 set |name|, reset~|loc|, and increase the macro's reference count.
13351 @d back_list(A) mp_begin_token_list(mp, (A),backed_up) /* backs up a simple token list */
13353 @c void mp_begin_token_list (MP mp,pointer p, quarterword t) {
13354 push_input; start=p; token_type=t;
13355 param_start=mp->param_ptr; loc=p;
13358 @ When a token list has been fully scanned, the following computations
13359 should be done as we leave that level of input.
13362 @c void mp_end_token_list (MP mp) { /* leave a token-list input level */
13363 pointer p; /* temporary register */
13364 if ( token_type>=backed_up ) { /* token list to be deleted */
13365 if ( token_type<=inserted ) {
13366 mp_flush_token_list(mp, start); goto DONE;
13368 mp_delete_mac_ref(mp, start); /* update reference count */
13371 while ( mp->param_ptr>param_start ) { /* parameters must be flushed */
13372 decr(mp->param_ptr);
13373 p=mp->param_stack[mp->param_ptr];
13375 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
13376 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
13378 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
13383 pop_input; check_interrupt;
13386 @ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
13387 token by the |cur_tok| routine.
13390 @c @<Declare the procedure called |make_exp_copy|@>;
13391 pointer mp_cur_tok (MP mp) {
13392 pointer p; /* a new token node */
13393 small_number save_type; /* |cur_type| to be restored */
13394 integer save_exp; /* |cur_exp| to be restored */
13395 if ( mp->cur_sym==0 ) {
13396 if ( mp->cur_cmd==capsule_token ) {
13397 save_type=mp->cur_type; save_exp=mp->cur_exp;
13398 mp_make_exp_copy(mp, mp->cur_mod); p=mp_stash_cur_exp(mp); link(p)=null;
13399 mp->cur_type=save_type; mp->cur_exp=save_exp;
13401 p=mp_get_node(mp, token_node_size);
13402 value(p)=mp->cur_mod; name_type(p)=mp_token;
13403 if ( mp->cur_cmd==numeric_token ) type(p)=mp_known;
13404 else type(p)=mp_string_type;
13407 fast_get_avail(p); info(p)=mp->cur_sym;
13412 @ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
13413 seen. The |back_input| procedure takes care of this by putting the token
13414 just scanned back into the input stream, ready to be read again.
13415 If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
13418 void mp_back_input (MP mp);
13420 @ @c void mp_back_input (MP mp) {/* undoes one token of input */
13421 pointer p; /* a token list of length one */
13423 while ( token_state &&(loc==null) )
13424 mp_end_token_list(mp); /* conserve stack space */
13428 @ The |back_error| routine is used when we want to restore or replace an
13429 offending token just before issuing an error message. We disable interrupts
13430 during the call of |back_input| so that the help message won't be lost.
13433 void mp_error (MP mp);
13434 void mp_back_error (MP mp);
13436 @ @c void mp_back_error (MP mp) { /* back up one token and call |error| */
13437 mp->OK_to_interrupt=false;
13439 mp->OK_to_interrupt=true; mp_error(mp);
13441 void mp_ins_error (MP mp) { /* back up one inserted token and call |error| */
13442 mp->OK_to_interrupt=false;
13443 mp_back_input(mp); token_type=inserted;
13444 mp->OK_to_interrupt=true; mp_error(mp);
13447 @ The |begin_file_reading| procedure starts a new level of input for lines
13448 of characters to be read from a file, or as an insertion from the
13449 terminal. It does not take care of opening the file, nor does it set |loc|
13450 or |limit| or |line|.
13451 @^system dependencies@>
13453 @c void mp_begin_file_reading (MP mp) {
13454 if ( mp->in_open==mp->max_in_open )
13455 mp_overflow(mp, "text input levels",mp->max_in_open);
13456 @:MetaPost capacity exceeded text input levels}{\quad text input levels@>
13457 if ( mp->first==mp->buf_size )
13458 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13459 incr(mp->in_open); push_input; index=mp->in_open;
13460 mp->mpx_name[index]=absent;
13462 name=is_term; /* |terminal_input| is now |true| */
13465 @ Conversely, the variables must be downdated when such a level of input
13466 is finished. Any associated \.{MPX} file must also be closed and popped
13467 off the file stack.
13469 @c void mp_end_file_reading (MP mp) {
13470 if ( mp->in_open>index ) {
13471 if ( (mp->mpx_name[mp->in_open]==absent)||(name<=max_spec_src) ) {
13472 mp_confusion(mp, "endinput");
13473 @:this can't happen endinput}{\quad endinput@>
13475 (mp->close_file)(mp->input_file[mp->in_open]); /* close an \.{MPX} file */
13476 delete_str_ref(mp->mpx_name[mp->in_open]);
13481 if ( index!=mp->in_open ) mp_confusion(mp, "endinput");
13482 if ( name>max_spec_src ) {
13483 (mp->close_file)(cur_file);
13484 delete_str_ref(name);
13488 pop_input; decr(mp->in_open);
13491 @ Here is a function that tries to resume input from an \.{MPX} file already
13492 associated with the current input file. It returns |false| if this doesn't
13495 @c boolean mp_begin_mpx_reading (MP mp) {
13496 if ( mp->in_open!=index+1 ) {
13499 if ( mp->mpx_name[mp->in_open]<=absent ) mp_confusion(mp, "mpx");
13500 @:this can't happen mpx}{\quad mpx@>
13501 if ( mp->first==mp->buf_size )
13502 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13503 push_input; index=mp->in_open;
13505 name=mp->mpx_name[mp->in_open]; add_str_ref(name);
13506 @<Put an empty line in the input buffer@>;
13511 @ This procedure temporarily stops reading an \.{MPX} file.
13513 @c void mp_end_mpx_reading (MP mp) {
13514 if ( mp->in_open!=index ) mp_confusion(mp, "mpx");
13515 @:this can't happen mpx}{\quad mpx@>
13517 @<Complain that we are not at the end of a line in the \.{MPX} file@>;
13523 @ Here we enforce a restriction that simplifies the input stacks considerably.
13524 This should not inconvenience the user because \.{MPX} files are generated
13525 by an auxiliary program called \.{DVItoMP}.
13527 @ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
13529 print_err("`mpxbreak' must be at the end of a line");
13530 help4("This file contains picture expressions for btex...etex")
13531 ("blocks. Such files are normally generated automatically")
13532 ("but this one seems to be messed up. I'm going to ignore")
13533 ("the rest of this line.");
13537 @ In order to keep the stack from overflowing during a long sequence of
13538 inserted `\.{show}' commands, the following routine removes completed
13539 error-inserted lines from memory.
13541 @c void mp_clear_for_error_prompt (MP mp) {
13542 while ( file_state && terminal_input &&
13543 (mp->input_ptr>0)&&(loc==limit) ) mp_end_file_reading(mp);
13544 mp_print_ln(mp); clear_terminal;
13547 @ To get \MP's whole input mechanism going, we perform the following
13550 @<Initialize the input routines@>=
13551 { mp->input_ptr=0; mp->max_in_stack=0;
13552 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
13553 mp->param_ptr=0; mp->max_param_stack=0;
13555 start=1; index=0; line=0; name=is_term;
13556 mp->mpx_name[0]=absent;
13557 mp->force_eof=false;
13558 if ( ! mp_init_terminal(mp) ) mp_jump_out(mp);
13559 limit=mp->last; mp->first=mp->last+1;
13560 /* |init_terminal| has set |loc| and |last| */
13563 @* \[29] Getting the next token.
13564 The heart of \MP's input mechanism is the |get_next| procedure, which
13565 we shall develop in the next few sections of the program. Perhaps we
13566 shouldn't actually call it the ``heart,'' however; it really acts as \MP's
13567 eyes and mouth, reading the source files and gobbling them up. And it also
13568 helps \MP\ to regurgitate stored token lists that are to be processed again.
13570 The main duty of |get_next| is to input one token and to set |cur_cmd|
13571 and |cur_mod| to that token's command code and modifier. Furthermore, if
13572 the input token is a symbolic token, that token's |hash| address
13573 is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
13575 Underlying this simple description is a certain amount of complexity
13576 because of all the cases that need to be handled.
13577 However, the inner loop of |get_next| is reasonably short and fast.
13579 @ Before getting into |get_next|, we need to consider a mechanism by which
13580 \MP\ helps keep errors from propagating too far. Whenever the program goes
13581 into a mode where it keeps calling |get_next| repeatedly until a certain
13582 condition is met, it sets |scanner_status| to some value other than |normal|.
13583 Then if an input file ends, or if an `\&{outer}' symbol appears,
13584 an appropriate error recovery will be possible.
13586 The global variable |warning_info| helps in this error recovery by providing
13587 additional information. For example, |warning_info| might indicate the
13588 name of a macro whose replacement text is being scanned.
13590 @d normal 0 /* |scanner_status| at ``quiet times'' */
13591 @d skipping 1 /* |scanner_status| when false conditional text is being skipped */
13592 @d flushing 2 /* |scanner_status| when junk after a statement is being ignored */
13593 @d absorbing 3 /* |scanner_status| when a \&{text} parameter is being scanned */
13594 @d var_defining 4 /* |scanner_status| when a \&{vardef} is being scanned */
13595 @d op_defining 5 /* |scanner_status| when a macro \&{def} is being scanned */
13596 @d loop_defining 6 /* |scanner_status| when a \&{for} loop is being scanned */
13597 @d tex_flushing 7 /* |scanner_status| when skipping \TeX\ material */
13600 integer scanner_status; /* are we scanning at high speed? */
13601 integer warning_info; /* if so, what else do we need to know,
13602 in case an error occurs? */
13604 @ @<Initialize the input routines@>=
13605 mp->scanner_status=normal;
13607 @ The following subroutine
13608 is called when an `\&{outer}' symbolic token has been scanned or
13609 when the end of a file has been reached. These two cases are distinguished
13610 by |cur_sym|, which is zero at the end of a file.
13612 @c boolean mp_check_outer_validity (MP mp) {
13613 pointer p; /* points to inserted token list */
13614 if ( mp->scanner_status==normal ) {
13616 } else if ( mp->scanner_status==tex_flushing ) {
13617 @<Check if the file has ended while flushing \TeX\ material and set the
13618 result value for |check_outer_validity|@>;
13620 mp->deletions_allowed=false;
13621 @<Back up an outer symbolic token so that it can be reread@>;
13622 if ( mp->scanner_status>skipping ) {
13623 @<Tell the user what has run away and try to recover@>;
13625 print_err("Incomplete if; all text was ignored after line ");
13626 @.Incomplete if...@>
13627 mp_print_int(mp, mp->warning_info);
13628 help3("A forbidden `outer' token occurred in skipped text.")
13629 ("This kind of error happens when you say `if...' and forget")
13630 ("the matching `fi'. I've inserted a `fi'; this might work.");
13631 if ( mp->cur_sym==0 )
13632 mp->help_line[2]="The file ended while I was skipping conditional text.";
13633 mp->cur_sym=frozen_fi; mp_ins_error(mp);
13635 mp->deletions_allowed=true;
13640 @ @<Check if the file has ended while flushing \TeX\ material and set...@>=
13641 if ( mp->cur_sym!=0 ) {
13644 mp->deletions_allowed=false;
13645 print_err("TeX mode didn't end; all text was ignored after line ");
13646 mp_print_int(mp, mp->warning_info);
13647 help2("The file ended while I was looking for the `etex' to")
13648 ("finish this TeX material. I've inserted `etex' now.");
13649 mp->cur_sym = frozen_etex;
13651 mp->deletions_allowed=true;
13655 @ @<Back up an outer symbolic token so that it can be reread@>=
13656 if ( mp->cur_sym!=0 ) {
13657 p=mp_get_avail(mp); info(p)=mp->cur_sym;
13658 back_list(p); /* prepare to read the symbolic token again */
13661 @ @<Tell the user what has run away...@>=
13663 mp_runaway(mp); /* print the definition-so-far */
13664 if ( mp->cur_sym==0 ) {
13665 print_err("File ended");
13666 @.File ended while scanning...@>
13668 print_err("Forbidden token found");
13669 @.Forbidden token found...@>
13671 mp_print(mp, " while scanning ");
13672 help4("I suspect you have forgotten an `enddef',")
13673 ("causing me to read past where you wanted me to stop.")
13674 ("I'll try to recover; but if the error is serious,")
13675 ("you'd better type `E' or `X' now and fix your file.");
13676 switch (mp->scanner_status) {
13677 @<Complete the error message,
13678 and set |cur_sym| to a token that might help recover from the error@>
13679 } /* there are no other cases */
13683 @ As we consider various kinds of errors, it is also appropriate to
13684 change the first line of the help message just given; |help_line[3]|
13685 points to the string that might be changed.
13687 @<Complete the error message,...@>=
13689 mp_print(mp, "to the end of the statement");
13690 mp->help_line[3]="A previous error seems to have propagated,";
13691 mp->cur_sym=frozen_semicolon;
13694 mp_print(mp, "a text argument");
13695 mp->help_line[3]="It seems that a right delimiter was left out,";
13696 if ( mp->warning_info==0 ) {
13697 mp->cur_sym=frozen_end_group;
13699 mp->cur_sym=frozen_right_delimiter;
13700 equiv(frozen_right_delimiter)=mp->warning_info;
13705 mp_print(mp, "the definition of ");
13706 if ( mp->scanner_status==op_defining )
13707 mp_print_text(mp->warning_info);
13709 mp_print_variable_name(mp, mp->warning_info);
13710 mp->cur_sym=frozen_end_def;
13712 case loop_defining:
13713 mp_print(mp, "the text of a ");
13714 mp_print_text(mp->warning_info);
13715 mp_print(mp, " loop");
13716 mp->help_line[3]="I suspect you have forgotten an `endfor',";
13717 mp->cur_sym=frozen_end_for;
13720 @ The |runaway| procedure displays the first part of the text that occurred
13721 when \MP\ began its special |scanner_status|, if that text has been saved.
13723 @<Declare the procedure called |runaway|@>=
13724 void mp_runaway (MP mp) {
13725 if ( mp->scanner_status>flushing ) {
13726 mp_print_nl(mp, "Runaway ");
13727 switch (mp->scanner_status) {
13728 case absorbing: mp_print(mp, "text?"); break;
13730 case op_defining: mp_print(mp,"definition?"); break;
13731 case loop_defining: mp_print(mp, "loop?"); break;
13732 } /* there are no other cases */
13734 mp_show_token_list(mp, link(hold_head),null,mp->error_line-10,0);
13738 @ We need to mention a procedure that may be called by |get_next|.
13741 void mp_firm_up_the_line (MP mp);
13743 @ And now we're ready to take the plunge into |get_next| itself.
13744 Note that the behavior depends on the |scanner_status| because percent signs
13745 and double quotes need to be passed over when skipping TeX material.
13748 void mp_get_next (MP mp) {
13749 /* sets |cur_cmd|, |cur_mod|, |cur_sym| to next token */
13751 /*restart*/ /* go here to get the next input token */
13752 /*exit*/ /* go here when the next input token has been got */
13753 /*|common_ending|*/ /* go here to finish getting a symbolic token */
13754 /*found*/ /* go here when the end of a symbolic token has been found */
13755 /*switch*/ /* go here to branch on the class of an input character */
13756 /*|start_numeric_token|,|start_decimal_token|,|fin_numeric_token|,|done|*/
13757 /* go here at crucial stages when scanning a number */
13758 int k; /* an index into |buffer| */
13759 ASCII_code c; /* the current character in the buffer */
13760 ASCII_code class; /* its class number */
13761 integer n,f; /* registers for decimal-to-binary conversion */
13764 if ( file_state ) {
13765 @<Input from external file; |goto restart| if no input found,
13766 or |return| if a non-symbolic token is found@>;
13768 @<Input from token list; |goto restart| if end of list or
13769 if a parameter needs to be expanded,
13770 or |return| if a non-symbolic token is found@>;
13773 @<Finish getting the symbolic token in |cur_sym|;
13774 |goto restart| if it is illegal@>;
13777 @ When a symbolic token is declared to be `\&{outer}', its command code
13778 is increased by |outer_tag|.
13781 @<Finish getting the symbolic token in |cur_sym|...@>=
13782 mp->cur_cmd=eq_type(mp->cur_sym); mp->cur_mod=equiv(mp->cur_sym);
13783 if ( mp->cur_cmd>=outer_tag ) {
13784 if ( mp_check_outer_validity(mp) )
13785 mp->cur_cmd=mp->cur_cmd-outer_tag;
13790 @ A percent sign appears in |buffer[limit]|; this makes it unnecessary
13791 to have a special test for end-of-line.
13794 @<Input from external file;...@>=
13797 c=mp->buffer[loc]; incr(loc); class=mp->char_class[c];
13799 case digit_class: goto START_NUMERIC_TOKEN; break;
13801 class=mp->char_class[mp->buffer[loc]];
13802 if ( class>period_class ) {
13804 } else if ( class<period_class ) { /* |class=digit_class| */
13805 n=0; goto START_DECIMAL_TOKEN;
13809 case space_class: goto SWITCH; break;
13810 case percent_class:
13811 if ( mp->scanner_status==tex_flushing ) {
13812 if ( loc<limit ) goto SWITCH;
13814 @<Move to next line of file, or |goto restart| if there is no next line@>;
13819 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13820 else @<Get a string token and |return|@>;
13822 case isolated_classes:
13823 k=loc-1; goto FOUND; break;
13824 case invalid_class:
13825 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13826 else @<Decry the invalid character and |goto restart|@>;
13828 default: break; /* letters, etc. */
13831 while ( mp->char_class[mp->buffer[loc]]==class ) incr(loc);
13833 START_NUMERIC_TOKEN:
13834 @<Get the integer part |n| of a numeric token;
13835 set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
13836 START_DECIMAL_TOKEN:
13837 @<Get the fraction part |f| of a numeric token@>;
13839 @<Pack the numeric and fraction parts of a numeric token
13842 mp->cur_sym=mp_id_lookup(mp, k,loc-k);
13845 @ We go to |restart| instead of to |SWITCH|, because |state| might equal
13846 |token_list| after the error has been dealt with
13847 (cf.\ |clear_for_error_prompt|).
13849 @<Decry the invalid...@>=
13851 print_err("Text line contains an invalid character");
13852 @.Text line contains...@>
13853 help2("A funny symbol that I can\'t read has just been input.")
13854 ("Continue, and I'll forget that it ever happened.");
13855 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13859 @ @<Get a string token and |return|@>=
13861 if ( mp->buffer[loc]=='"' ) {
13862 mp->cur_mod=rts("");
13864 k=loc; mp->buffer[limit+1]='"';
13867 } while (mp->buffer[loc]!='"');
13869 @<Decry the missing string delimiter and |goto restart|@>;
13872 mp->cur_mod=mp->buffer[k];
13876 append_char(mp->buffer[k]); incr(k);
13878 mp->cur_mod=mp_make_string(mp);
13881 incr(loc); mp->cur_cmd=string_token;
13885 @ We go to |restart| after this error message, not to |SWITCH|,
13886 because the |clear_for_error_prompt| routine might have reinstated
13887 |token_state| after |error| has finished.
13889 @<Decry the missing string delimiter and |goto restart|@>=
13891 loc=limit; /* the next character to be read on this line will be |"%"| */
13892 print_err("Incomplete string token has been flushed");
13893 @.Incomplete string token...@>
13894 help3("Strings should finish on the same line as they began.")
13895 ("I've deleted the partial string; you might want to")
13896 ("insert another by typing, e.g., `I\"new string\"'.");
13897 mp->deletions_allowed=false; mp_error(mp);
13898 mp->deletions_allowed=true;
13902 @ @<Get the integer part |n| of a numeric token...@>=
13904 while ( mp->char_class[mp->buffer[loc]]==digit_class ) {
13905 if ( n<32768 ) n=10*n+mp->buffer[loc]-'0';
13908 if ( mp->buffer[loc]=='.' )
13909 if ( mp->char_class[mp->buffer[loc+1]]==digit_class )
13912 goto FIN_NUMERIC_TOKEN;
13915 @ @<Get the fraction part |f| of a numeric token@>=
13918 if ( k<17 ) { /* digits for |k>=17| cannot affect the result */
13919 mp->dig[k]=mp->buffer[loc]-'0'; incr(k);
13922 } while (mp->char_class[mp->buffer[loc]]==digit_class);
13923 f=mp_round_decimals(mp, k);
13928 @ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
13930 @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>;
13931 } else if ( mp->scanner_status!=tex_flushing ) {
13932 print_err("Enormous number has been reduced");
13933 @.Enormous number...@>
13934 help2("I can\'t handle numbers bigger than 32767.99998;")
13935 ("so I've changed your constant to that maximum amount.");
13936 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13937 mp->cur_mod=el_gordo;
13939 mp->cur_cmd=numeric_token; return
13941 @ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
13943 mp->cur_mod=n*unity+f;
13944 if ( mp->cur_mod>=fraction_one ) {
13945 if ( (mp->internal[mp_warning_check]>0) &&
13946 (mp->scanner_status!=tex_flushing) ) {
13947 print_err("Number is too large (");
13948 mp_print_scaled(mp, mp->cur_mod);
13949 mp_print_char(mp, ')');
13950 help3("It is at least 4096. Continue and I'll try to cope")
13951 ("with that big value; but it might be dangerous.")
13952 ("(Set warningcheck:=0 to suppress this message.)");
13958 @ Let's consider now what happens when |get_next| is looking at a token list.
13961 @<Input from token list;...@>=
13962 if ( loc>=mp->hi_mem_min ) { /* one-word token */
13963 mp->cur_sym=info(loc); loc=link(loc); /* move to next */
13964 if ( mp->cur_sym>=expr_base ) {
13965 if ( mp->cur_sym>=suffix_base ) {
13966 @<Insert a suffix or text parameter and |goto restart|@>;
13968 mp->cur_cmd=capsule_token;
13969 mp->cur_mod=mp->param_stack[param_start+mp->cur_sym-(expr_base)];
13970 mp->cur_sym=0; return;
13973 } else if ( loc>null ) {
13974 @<Get a stored numeric or string or capsule token and |return|@>
13975 } else { /* we are done with this token list */
13976 mp_end_token_list(mp); goto RESTART; /* resume previous level */
13979 @ @<Insert a suffix or text parameter...@>=
13981 if ( mp->cur_sym>=text_base ) mp->cur_sym=mp->cur_sym-mp->param_size;
13982 /* |param_size=text_base-suffix_base| */
13983 mp_begin_token_list(mp,
13984 mp->param_stack[param_start+mp->cur_sym-(suffix_base)],
13989 @ @<Get a stored numeric or string or capsule token...@>=
13991 if ( name_type(loc)==mp_token ) {
13992 mp->cur_mod=value(loc);
13993 if ( type(loc)==mp_known ) {
13994 mp->cur_cmd=numeric_token;
13996 mp->cur_cmd=string_token; add_str_ref(mp->cur_mod);
13999 mp->cur_mod=loc; mp->cur_cmd=capsule_token;
14001 loc=link(loc); return;
14004 @ All of the easy branches of |get_next| have now been taken care of.
14005 There is one more branch.
14007 @<Move to next line of file, or |goto restart|...@>=
14008 if ( name>max_spec_src ) {
14009 @<Read next line of file into |buffer|, or
14010 |goto restart| if the file has ended@>;
14012 if ( mp->input_ptr>0 ) {
14013 /* text was inserted during error recovery or by \&{scantokens} */
14014 mp_end_file_reading(mp); goto RESTART; /* resume previous level */
14016 if ( mp->selector<log_only || mp->selector>=write_file) mp_open_log_file(mp);
14017 if ( mp->interaction>mp_nonstop_mode ) {
14018 if ( limit==start ) /* previous line was empty */
14019 mp_print_nl(mp, "(Please type a command or say `end')");
14021 mp_print_ln(mp); mp->first=start;
14022 prompt_input("*"); /* input on-line into |buffer| */
14024 limit=mp->last; mp->buffer[limit]='%';
14025 mp->first=limit+1; loc=start;
14027 mp_fatal_error(mp, "*** (job aborted, no legal end found)");
14029 /* nonstop mode, which is intended for overnight batch processing,
14030 never waits for on-line input */
14034 @ The global variable |force_eof| is normally |false|; it is set |true|
14035 by an \&{endinput} command.
14038 boolean force_eof; /* should the next \&{input} be aborted early? */
14040 @ We must decrement |loc| in order to leave the buffer in a valid state
14041 when an error condition causes us to |goto restart| without calling
14042 |end_file_reading|.
14044 @<Read next line of file into |buffer|, or
14045 |goto restart| if the file has ended@>=
14047 incr(line); mp->first=start;
14048 if ( ! mp->force_eof ) {
14049 if ( mp_input_ln(mp, cur_file ) ) /* not end of file */
14050 mp_firm_up_the_line(mp); /* this sets |limit| */
14052 mp->force_eof=true;
14054 if ( mp->force_eof ) {
14055 mp->force_eof=false;
14057 if ( mpx_reading ) {
14058 @<Complain that the \.{MPX} file ended unexpectly; then set
14059 |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>;
14061 mp_print_char(mp, ')'); decr(mp->open_parens);
14062 update_terminal; /* show user that file has been read */
14063 mp_end_file_reading(mp); /* resume previous level */
14064 if ( mp_check_outer_validity(mp) ) goto RESTART;
14068 mp->buffer[limit]='%'; mp->first=limit+1; loc=start; /* ready to read */
14071 @ We should never actually come to the end of an \.{MPX} file because such
14072 files should have an \&{mpxbreak} after the translation of the last
14073 \&{btex}$\,\ldots\,$\&{etex} block.
14075 @<Complain that the \.{MPX} file ended unexpectly; then set...@>=
14077 mp->mpx_name[index]=finished;
14078 print_err("mpx file ended unexpectedly");
14079 help4("The file had too few picture expressions for btex...etex")
14080 ("blocks. Such files are normally generated automatically")
14081 ("but this one got messed up. You might want to insert a")
14082 ("picture expression now.");
14083 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
14084 mp->cur_sym=frozen_mpx_break; goto COMMON_ENDING;
14087 @ Sometimes we want to make it look as though we have just read a blank line
14088 without really doing so.
14090 @<Put an empty line in the input buffer@>=
14091 mp->last=mp->first; limit=mp->last; /* simulate |input_ln| and |firm_up_the_line| */
14092 mp->buffer[limit]='%'; mp->first=limit+1; loc=start
14094 @ If the user has set the |mp_pausing| parameter to some positive value,
14095 and if nonstop mode has not been selected, each line of input is displayed
14096 on the terminal and the transcript file, followed by `\.{=>}'.
14097 \MP\ waits for a response. If the response is null (i.e., if nothing is
14098 typed except perhaps a few blank spaces), the original
14099 line is accepted as it stands; otherwise the line typed is
14100 used instead of the line in the file.
14102 @c void mp_firm_up_the_line (MP mp) {
14103 size_t k; /* an index into |buffer| */
14105 if ( mp->internal[mp_pausing]>0) if ( mp->interaction>mp_nonstop_mode ) {
14106 wake_up_terminal; mp_print_ln(mp);
14107 if ( start<limit ) {
14108 for (k=(size_t)start;k<=(size_t)(limit-1);k++) {
14109 mp_print_str(mp, mp->buffer[k]);
14112 mp->first=limit; prompt_input("=>"); /* wait for user response */
14114 if ( mp->last>mp->first ) {
14115 for (k=mp->first;k<=mp->last-1;k++) { /* move line down in buffer */
14116 mp->buffer[k+start-mp->first]=mp->buffer[k];
14118 limit=start+mp->last-mp->first;
14123 @* \[30] Dealing with \TeX\ material.
14124 The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
14125 features need to be implemented at a low level in the scanning process
14126 so that \MP\ can stay in synch with the a preprocessor that treats
14127 blocks of \TeX\ material as they occur in the input file without trying
14128 to expand \MP\ macros. Thus we need a special version of |get_next|
14129 that does not expand macros and such but does handle \&{btex},
14130 \&{verbatimtex}, etc.
14132 The special version of |get_next| is called |get_t_next|. It works by flushing
14133 \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
14134 $\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
14135 \&{btex}, and switching back when it sees \&{mpxbreak}.
14141 mp_primitive(mp, "btex",start_tex,btex_code);
14142 @:btex_}{\&{btex} primitive@>
14143 mp_primitive(mp, "verbatimtex",start_tex,verbatim_code);
14144 @:verbatimtex_}{\&{verbatimtex} primitive@>
14145 mp_primitive(mp, "etex",etex_marker,0); mp->eqtb[frozen_etex]=mp->eqtb[mp->cur_sym];
14146 @:etex_}{\&{etex} primitive@>
14147 mp_primitive(mp, "mpxbreak",mpx_break,0); mp->eqtb[frozen_mpx_break]=mp->eqtb[mp->cur_sym];
14148 @:mpx_break_}{\&{mpxbreak} primitive@>
14150 @ @<Cases of |print_cmd...@>=
14151 case start_tex: if ( m==btex_code ) mp_print(mp, "btex");
14152 else mp_print(mp, "verbatimtex"); break;
14153 case etex_marker: mp_print(mp, "etex"); break;
14154 case mpx_break: mp_print(mp, "mpxbreak"); break;
14156 @ Actually, |get_t_next| is a macro that avoids procedure overhead except
14157 in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
14160 @d get_t_next {mp_get_next(mp); if ( mp->cur_cmd<=max_pre_command ) mp_t_next(mp); }
14163 void mp_start_mpx_input (MP mp);
14166 void mp_t_next (MP mp) {
14167 int old_status; /* saves the |scanner_status| */
14168 integer old_info; /* saves the |warning_info| */
14169 while ( mp->cur_cmd<=max_pre_command ) {
14170 if ( mp->cur_cmd==mpx_break ) {
14171 if ( ! file_state || (mp->mpx_name[index]==absent) ) {
14172 @<Complain about a misplaced \&{mpxbreak}@>;
14174 mp_end_mpx_reading(mp);
14177 } else if ( mp->cur_cmd==start_tex ) {
14178 if ( token_state || (name<=max_spec_src) ) {
14179 @<Complain that we are not reading a file@>;
14180 } else if ( mpx_reading ) {
14181 @<Complain that \.{MPX} files cannot contain \TeX\ material@>;
14182 } else if ( (mp->cur_mod!=verbatim_code)&&
14183 (mp->mpx_name[index]!=finished) ) {
14184 if ( ! mp_begin_mpx_reading(mp) ) mp_start_mpx_input(mp);
14189 @<Complain about a misplaced \&{etex}@>;
14191 goto COMMON_ENDING;
14193 @<Flush the \TeX\ material@>;
14199 @ We could be in the middle of an operation such as skipping false conditional
14200 text when \TeX\ material is encountered, so we must be careful to save the
14203 @<Flush the \TeX\ material@>=
14204 old_status=mp->scanner_status;
14205 old_info=mp->warning_info;
14206 mp->scanner_status=tex_flushing;
14207 mp->warning_info=line;
14208 do { mp_get_next(mp); } while (mp->cur_cmd!=etex_marker);
14209 mp->scanner_status=old_status;
14210 mp->warning_info=old_info
14212 @ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
14213 { print_err("An mpx file cannot contain btex or verbatimtex blocks");
14214 help4("This file contains picture expressions for btex...etex")
14215 ("blocks. Such files are normally generated automatically")
14216 ("but this one seems to be messed up. I'll just keep going")
14217 ("and hope for the best.");
14221 @ @<Complain that we are not reading a file@>=
14222 { print_err("You can only use `btex' or `verbatimtex' in a file");
14223 help3("I'll have to ignore this preprocessor command because it")
14224 ("only works when there is a file to preprocess. You might")
14225 ("want to delete everything up to the next `etex`.");
14229 @ @<Complain about a misplaced \&{mpxbreak}@>=
14230 { print_err("Misplaced mpxbreak");
14231 help2("I'll ignore this preprocessor command because it")
14232 ("doesn't belong here");
14236 @ @<Complain about a misplaced \&{etex}@>=
14237 { print_err("Extra etex will be ignored");
14238 help1("There is no btex or verbatimtex for this to match");
14242 @* \[31] Scanning macro definitions.
14243 \MP\ has a variety of ways to tuck tokens away into token lists for later
14244 use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
14245 repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
14246 All such operations are handled by the routines in this part of the program.
14248 The modifier part of each command code is zero for the ``ending delimiters''
14249 like \&{enddef} and \&{endfor}.
14251 @d start_def 1 /* command modifier for \&{def} */
14252 @d var_def 2 /* command modifier for \&{vardef} */
14253 @d end_def 0 /* command modifier for \&{enddef} */
14254 @d start_forever 1 /* command modifier for \&{forever} */
14255 @d end_for 0 /* command modifier for \&{endfor} */
14258 mp_primitive(mp, "def",macro_def,start_def);
14259 @:def_}{\&{def} primitive@>
14260 mp_primitive(mp, "vardef",macro_def,var_def);
14261 @:var_def_}{\&{vardef} primitive@>
14262 mp_primitive(mp, "primarydef",macro_def,secondary_primary_macro);
14263 @:primary_def_}{\&{primarydef} primitive@>
14264 mp_primitive(mp, "secondarydef",macro_def,tertiary_secondary_macro);
14265 @:secondary_def_}{\&{secondarydef} primitive@>
14266 mp_primitive(mp, "tertiarydef",macro_def,expression_tertiary_macro);
14267 @:tertiary_def_}{\&{tertiarydef} primitive@>
14268 mp_primitive(mp, "enddef",macro_def,end_def); mp->eqtb[frozen_end_def]=mp->eqtb[mp->cur_sym];
14269 @:end_def_}{\&{enddef} primitive@>
14271 mp_primitive(mp, "for",iteration,expr_base);
14272 @:for_}{\&{for} primitive@>
14273 mp_primitive(mp, "forsuffixes",iteration,suffix_base);
14274 @:for_suffixes_}{\&{forsuffixes} primitive@>
14275 mp_primitive(mp, "forever",iteration,start_forever);
14276 @:forever_}{\&{forever} primitive@>
14277 mp_primitive(mp, "endfor",iteration,end_for); mp->eqtb[frozen_end_for]=mp->eqtb[mp->cur_sym];
14278 @:end_for_}{\&{endfor} primitive@>
14280 @ @<Cases of |print_cmd...@>=
14282 if ( m<=var_def ) {
14283 if ( m==start_def ) mp_print(mp, "def");
14284 else if ( m<start_def ) mp_print(mp, "enddef");
14285 else mp_print(mp, "vardef");
14286 } else if ( m==secondary_primary_macro ) {
14287 mp_print(mp, "primarydef");
14288 } else if ( m==tertiary_secondary_macro ) {
14289 mp_print(mp, "secondarydef");
14291 mp_print(mp, "tertiarydef");
14295 if ( m<=start_forever ) {
14296 if ( m==start_forever ) mp_print(mp, "forever");
14297 else mp_print(mp, "endfor");
14298 } else if ( m==expr_base ) {
14299 mp_print(mp, "for");
14301 mp_print(mp, "forsuffixes");
14305 @ Different macro-absorbing operations have different syntaxes, but they
14306 also have a lot in common. There is a list of special symbols that are to
14307 be replaced by parameter tokens; there is a special command code that
14308 ends the definition; the quotation conventions are identical. Therefore
14309 it makes sense to have most of the work done by a single subroutine. That
14310 subroutine is called |scan_toks|.
14312 The first parameter to |scan_toks| is the command code that will
14313 terminate scanning (either |macro_def|, |loop_repeat|, or |iteration|).
14315 The second parameter, |subst_list|, points to a (possibly empty) list
14316 of two-word nodes whose |info| and |value| fields specify symbol tokens
14317 before and after replacement. The list will be returned to free storage
14320 The third parameter is simply appended to the token list that is built.
14321 And the final parameter tells how many of the special operations
14322 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
14323 When such parameters are present, they are called \.{(SUFFIX0)},
14324 \.{(SUFFIX1)}, and \.{(SUFFIX2)}.
14326 @c pointer mp_scan_toks (MP mp,command_code terminator, pointer
14327 subst_list, pointer tail_end, small_number suffix_count) {
14328 pointer p; /* tail of the token list being built */
14329 pointer q; /* temporary for link management */
14330 integer balance; /* left delimiters minus right delimiters */
14331 p=hold_head; balance=1; link(hold_head)=null;
14334 if ( mp->cur_sym>0 ) {
14335 @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
14336 if ( mp->cur_cmd==terminator ) {
14337 @<Adjust the balance; |break| if it's zero@>;
14338 } else if ( mp->cur_cmd==macro_special ) {
14339 @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
14342 link(p)=mp_cur_tok(mp); p=link(p);
14344 link(p)=tail_end; mp_flush_node_list(mp, subst_list);
14345 return link(hold_head);
14348 @ @<Substitute for |cur_sym|...@>=
14351 while ( q!=null ) {
14352 if ( info(q)==mp->cur_sym ) {
14353 mp->cur_sym=value(q); mp->cur_cmd=relax; break;
14359 @ @<Adjust the balance; |break| if it's zero@>=
14360 if ( mp->cur_mod>0 ) {
14368 @ Four commands are intended to be used only within macro texts: \&{quote},
14369 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
14370 code called |macro_special|.
14372 @d quote 0 /* |macro_special| modifier for \&{quote} */
14373 @d macro_prefix 1 /* |macro_special| modifier for \.{\#\AT!} */
14374 @d macro_at 2 /* |macro_special| modifier for \.{\AT!} */
14375 @d macro_suffix 3 /* |macro_special| modifier for \.{\AT!\#} */
14378 mp_primitive(mp, "quote",macro_special,quote);
14379 @:quote_}{\&{quote} primitive@>
14380 mp_primitive(mp, "#@@",macro_special,macro_prefix);
14381 @:]]]\#\AT!_}{\.{\#\AT!} primitive@>
14382 mp_primitive(mp, "@@",macro_special,macro_at);
14383 @:]]]\AT!_}{\.{\AT!} primitive@>
14384 mp_primitive(mp, "@@#",macro_special,macro_suffix);
14385 @:]]]\AT!\#_}{\.{\AT!\#} primitive@>
14387 @ @<Cases of |print_cmd...@>=
14388 case macro_special:
14390 case macro_prefix: mp_print(mp, "#@@"); break;
14391 case macro_at: mp_print_char(mp, '@@'); break;
14392 case macro_suffix: mp_print(mp, "@@#"); break;
14393 default: mp_print(mp, "quote"); break;
14397 @ @<Handle quoted...@>=
14399 if ( mp->cur_mod==quote ) { get_t_next; }
14400 else if ( mp->cur_mod<=suffix_count )
14401 mp->cur_sym=suffix_base-1+mp->cur_mod;
14404 @ Here is a routine that's used whenever a token will be redefined. If
14405 the user's token is unredefinable, the `|frozen_inaccessible|' token is
14406 substituted; the latter is redefinable but essentially impossible to use,
14407 hence \MP's tables won't get fouled up.
14409 @c void mp_get_symbol (MP mp) { /* sets |cur_sym| to a safe symbol */
14412 if ( (mp->cur_sym==0)||(mp->cur_sym>frozen_inaccessible) ) {
14413 print_err("Missing symbolic token inserted");
14414 @.Missing symbolic token...@>
14415 help3("Sorry: You can\'t redefine a number, string, or expr.")
14416 ("I've inserted an inaccessible symbol so that your")
14417 ("definition will be completed without mixing me up too badly.");
14418 if ( mp->cur_sym>0 )
14419 mp->help_line[2]="Sorry: You can\'t redefine my error-recovery tokens.";
14420 else if ( mp->cur_cmd==string_token )
14421 delete_str_ref(mp->cur_mod);
14422 mp->cur_sym=frozen_inaccessible; mp_ins_error(mp); goto RESTART;
14426 @ Before we actually redefine a symbolic token, we need to clear away its
14427 former value, if it was a variable. The following stronger version of
14428 |get_symbol| does that.
14430 @c void mp_get_clear_symbol (MP mp) {
14431 mp_get_symbol(mp); mp_clear_symbol(mp, mp->cur_sym,false);
14434 @ Here's another little subroutine; it checks that an equals sign
14435 or assignment sign comes along at the proper place in a macro definition.
14437 @c void mp_check_equals (MP mp) {
14438 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
14439 mp_missing_err(mp, "=");
14441 help5("The next thing in this `def' should have been `=',")
14442 ("because I've already looked at the definition heading.")
14443 ("But don't worry; I'll pretend that an equals sign")
14444 ("was present. Everything from here to `enddef'")
14445 ("will be the replacement text of this macro.");
14450 @ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
14451 handled now that we have |scan_toks|. In this case there are
14452 two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
14453 |expr_base| and |expr_base+1|).
14455 @c void mp_make_op_def (MP mp) {
14456 command_code m; /* the type of definition */
14457 pointer p,q,r; /* for list manipulation */
14459 mp_get_symbol(mp); q=mp_get_node(mp, token_node_size);
14460 info(q)=mp->cur_sym; value(q)=expr_base;
14461 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym;
14462 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14463 info(p)=mp->cur_sym; value(p)=expr_base+1; link(p)=q;
14464 get_t_next; mp_check_equals(mp);
14465 mp->scanner_status=op_defining; q=mp_get_avail(mp); ref_count(q)=null;
14466 r=mp_get_avail(mp); link(q)=r; info(r)=general_macro;
14467 link(r)=mp_scan_toks(mp, macro_def,p,null,0);
14468 mp->scanner_status=normal; eq_type(mp->warning_info)=m;
14469 equiv(mp->warning_info)=q; mp_get_x_next(mp);
14472 @ Parameters to macros are introduced by the keywords \&{expr},
14473 \&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
14476 mp_primitive(mp, "expr",param_type,expr_base);
14477 @:expr_}{\&{expr} primitive@>
14478 mp_primitive(mp, "suffix",param_type,suffix_base);
14479 @:suffix_}{\&{suffix} primitive@>
14480 mp_primitive(mp, "text",param_type,text_base);
14481 @:text_}{\&{text} primitive@>
14482 mp_primitive(mp, "primary",param_type,primary_macro);
14483 @:primary_}{\&{primary} primitive@>
14484 mp_primitive(mp, "secondary",param_type,secondary_macro);
14485 @:secondary_}{\&{secondary} primitive@>
14486 mp_primitive(mp, "tertiary",param_type,tertiary_macro);
14487 @:tertiary_}{\&{tertiary} primitive@>
14489 @ @<Cases of |print_cmd...@>=
14491 if ( m>=expr_base ) {
14492 if ( m==expr_base ) mp_print(mp, "expr");
14493 else if ( m==suffix_base ) mp_print(mp, "suffix");
14494 else mp_print(mp, "text");
14495 } else if ( m<secondary_macro ) {
14496 mp_print(mp, "primary");
14497 } else if ( m==secondary_macro ) {
14498 mp_print(mp, "secondary");
14500 mp_print(mp, "tertiary");
14504 @ Let's turn next to the more complex processing associated with \&{def}
14505 and \&{vardef}. When the following procedure is called, |cur_mod|
14506 should be either |start_def| or |var_def|.
14508 @c @<Declare the procedure called |check_delimiter|@>;
14509 @<Declare the function called |scan_declared_variable|@>;
14510 void mp_scan_def (MP mp) {
14511 int m; /* the type of definition */
14512 int n; /* the number of special suffix parameters */
14513 int k; /* the total number of parameters */
14514 int c; /* the kind of macro we're defining */
14515 pointer r; /* parameter-substitution list */
14516 pointer q; /* tail of the macro token list */
14517 pointer p; /* temporary storage */
14518 halfword base; /* |expr_base|, |suffix_base|, or |text_base| */
14519 pointer l_delim,r_delim; /* matching delimiters */
14520 m=mp->cur_mod; c=general_macro; link(hold_head)=null;
14521 q=mp_get_avail(mp); ref_count(q)=null; r=null;
14522 @<Scan the token or variable to be defined;
14523 set |n|, |scanner_status|, and |warning_info|@>;
14525 if ( mp->cur_cmd==left_delimiter ) {
14526 @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
14528 if ( mp->cur_cmd==param_type ) {
14529 @<Absorb undelimited parameters, putting them into list |r|@>;
14531 mp_check_equals(mp);
14532 p=mp_get_avail(mp); info(p)=c; link(q)=p;
14533 @<Attach the replacement text to the tail of node |p|@>;
14534 mp->scanner_status=normal; mp_get_x_next(mp);
14537 @ We don't put `|frozen_end_group|' into the replacement text of
14538 a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
14540 @<Attach the replacement text to the tail of node |p|@>=
14541 if ( m==start_def ) {
14542 link(p)=mp_scan_toks(mp, macro_def,r,null,n);
14544 q=mp_get_avail(mp); info(q)=mp->bg_loc; link(p)=q;
14545 p=mp_get_avail(mp); info(p)=mp->eg_loc;
14546 link(q)=mp_scan_toks(mp, macro_def,r,p,n);
14548 if ( mp->warning_info==bad_vardef )
14549 mp_flush_token_list(mp, value(bad_vardef))
14553 int eg_loc; /* hash addresses of `\.{begingroup}' and `\.{endgroup}' */
14555 @ @<Scan the token or variable to be defined;...@>=
14556 if ( m==start_def ) {
14557 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym; get_t_next;
14558 mp->scanner_status=op_defining; n=0;
14559 eq_type(mp->warning_info)=defined_macro; equiv(mp->warning_info)=q;
14561 p=mp_scan_declared_variable(mp);
14562 mp_flush_variable(mp, equiv(info(p)),link(p),true);
14563 mp->warning_info=mp_find_variable(mp, p); mp_flush_list(mp, p);
14564 if ( mp->warning_info==null ) @<Change to `\.{a bad variable}'@>;
14565 mp->scanner_status=var_defining; n=2;
14566 if ( mp->cur_cmd==macro_special ) if ( mp->cur_mod==macro_suffix ) {/* \.{\AT!\#} */
14569 type(mp->warning_info)=mp_unsuffixed_macro-2+n; value(mp->warning_info)=q;
14570 } /* |mp_suffixed_macro=mp_unsuffixed_macro+1| */
14572 @ @<Change to `\.{a bad variable}'@>=
14574 print_err("This variable already starts with a macro");
14575 @.This variable already...@>
14576 help2("After `vardef a' you can\'t say `vardef a.b'.")
14577 ("So I'll have to discard this definition.");
14578 mp_error(mp); mp->warning_info=bad_vardef;
14581 @ @<Initialize table entries...@>=
14582 name_type(bad_vardef)=mp_root; link(bad_vardef)=frozen_bad_vardef;
14583 equiv(frozen_bad_vardef)=bad_vardef; eq_type(frozen_bad_vardef)=tag_token;
14585 @ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
14587 l_delim=mp->cur_sym; r_delim=mp->cur_mod; get_t_next;
14588 if ( (mp->cur_cmd==param_type)&&(mp->cur_mod>=expr_base) ) {
14591 print_err("Missing parameter type; `expr' will be assumed");
14592 @.Missing parameter type@>
14593 help1("You should've had `expr' or `suffix' or `text' here.");
14594 mp_back_error(mp); base=expr_base;
14596 @<Absorb parameter tokens for type |base|@>;
14597 mp_check_delimiter(mp, l_delim,r_delim);
14599 } while (mp->cur_cmd==left_delimiter)
14601 @ @<Absorb parameter tokens for type |base|@>=
14603 link(q)=mp_get_avail(mp); q=link(q); info(q)=base+k;
14604 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14605 value(p)=base+k; info(p)=mp->cur_sym;
14606 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14607 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14608 incr(k); link(p)=r; r=p; get_t_next;
14609 } while (mp->cur_cmd==comma)
14611 @ @<Absorb undelimited parameters, putting them into list |r|@>=
14613 p=mp_get_node(mp, token_node_size);
14614 if ( mp->cur_mod<expr_base ) {
14615 c=mp->cur_mod; value(p)=expr_base+k;
14617 value(p)=mp->cur_mod+k;
14618 if ( mp->cur_mod==expr_base ) c=expr_macro;
14619 else if ( mp->cur_mod==suffix_base ) c=suffix_macro;
14622 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14623 incr(k); mp_get_symbol(mp); info(p)=mp->cur_sym; link(p)=r; r=p; get_t_next;
14624 if ( c==expr_macro ) if ( mp->cur_cmd==of_token ) {
14625 c=of_macro; p=mp_get_node(mp, token_node_size);
14626 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14627 value(p)=expr_base+k; mp_get_symbol(mp); info(p)=mp->cur_sym;
14628 link(p)=r; r=p; get_t_next;
14632 @* \[32] Expanding the next token.
14633 Only a few command codes |<min_command| can possibly be returned by
14634 |get_t_next|; in increasing order, they are
14635 |if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
14636 |exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
14638 \MP\ usually gets the next token of input by saying |get_x_next|. This is
14639 like |get_t_next| except that it keeps getting more tokens until
14640 finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
14641 macros and removes conditionals or iterations or input instructions that
14644 It follows that |get_x_next| might invoke itself recursively. In fact,
14645 there is massive recursion, since macro expansion can involve the
14646 scanning of arbitrarily complex expressions, which in turn involve
14647 macro expansion and conditionals, etc.
14650 Therefore it's necessary to declare a whole bunch of |forward|
14651 procedures at this point, and to insert some other procedures
14652 that will be invoked by |get_x_next|.
14655 void mp_scan_primary (MP mp);
14656 void mp_scan_secondary (MP mp);
14657 void mp_scan_tertiary (MP mp);
14658 void mp_scan_expression (MP mp);
14659 void mp_scan_suffix (MP mp);
14660 @<Declare the procedure called |macro_call|@>;
14661 void mp_get_boolean (MP mp);
14662 void mp_pass_text (MP mp);
14663 void mp_conditional (MP mp);
14664 void mp_start_input (MP mp);
14665 void mp_begin_iteration (MP mp);
14666 void mp_resume_iteration (MP mp);
14667 void mp_stop_iteration (MP mp);
14669 @ An auxiliary subroutine called |expand| is used by |get_x_next|
14670 when it has to do exotic expansion commands.
14672 @c void mp_expand (MP mp) {
14673 pointer p; /* for list manipulation */
14674 size_t k; /* something that we hope is |<=buf_size| */
14675 pool_pointer j; /* index into |str_pool| */
14676 if ( mp->internal[mp_tracing_commands]>unity )
14677 if ( mp->cur_cmd!=defined_macro )
14679 switch (mp->cur_cmd) {
14681 mp_conditional(mp); /* this procedure is discussed in Part 36 below */
14684 @<Terminate the current conditional and skip to \&{fi}@>;
14687 @<Initiate or terminate input from a file@>;
14690 if ( mp->cur_mod==end_for ) {
14691 @<Scold the user for having an extra \&{endfor}@>;
14693 mp_begin_iteration(mp); /* this procedure is discussed in Part 37 below */
14700 @<Exit a loop if the proper time has come@>;
14705 @<Expand the token after the next token@>;
14708 @<Put a string into the input buffer@>;
14710 case defined_macro:
14711 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14713 }; /* there are no other cases */
14716 @ @<Scold the user...@>=
14718 print_err("Extra `endfor'");
14720 help2("I'm not currently working on a for loop,")
14721 ("so I had better not try to end anything.");
14725 @ The processing of \&{input} involves the |start_input| subroutine,
14726 which will be declared later; the processing of \&{endinput} is trivial.
14729 mp_primitive(mp, "input",input,0);
14730 @:input_}{\&{input} primitive@>
14731 mp_primitive(mp, "endinput",input,1);
14732 @:end_input_}{\&{endinput} primitive@>
14734 @ @<Cases of |print_cmd_mod|...@>=
14736 if ( m==0 ) mp_print(mp, "input");
14737 else mp_print(mp, "endinput");
14740 @ @<Initiate or terminate input...@>=
14741 if ( mp->cur_mod>0 ) mp->force_eof=true;
14742 else mp_start_input(mp)
14744 @ We'll discuss the complicated parts of loop operations later. For now
14745 it suffices to know that there's a global variable called |loop_ptr|
14746 that will be |null| if no loop is in progress.
14749 { while ( token_state &&(loc==null) )
14750 mp_end_token_list(mp); /* conserve stack space */
14751 if ( mp->loop_ptr==null ) {
14752 print_err("Lost loop");
14754 help2("I'm confused; after exiting from a loop, I still seem")
14755 ("to want to repeat it. I'll try to forget the problem.");
14758 mp_resume_iteration(mp); /* this procedure is in Part 37 below */
14762 @ @<Exit a loop if the proper time has come@>=
14763 { mp_get_boolean(mp);
14764 if ( mp->internal[mp_tracing_commands]>unity )
14765 mp_show_cmd_mod(mp, nullary,mp->cur_exp);
14766 if ( mp->cur_exp==true_code ) {
14767 if ( mp->loop_ptr==null ) {
14768 print_err("No loop is in progress");
14769 @.No loop is in progress@>
14770 help1("Why say `exitif' when there's nothing to exit from?");
14771 if ( mp->cur_cmd==semicolon ) mp_error(mp); else mp_back_error(mp);
14773 @<Exit prematurely from an iteration@>;
14775 } else if ( mp->cur_cmd!=semicolon ) {
14776 mp_missing_err(mp, ";");
14778 help2("After `exitif <boolean exp>' I expect to see a semicolon.")
14779 ("I shall pretend that one was there."); mp_back_error(mp);
14783 @ Here we use the fact that |forever_text| is the only |token_type| that
14784 is less than |loop_text|.
14786 @<Exit prematurely...@>=
14789 if ( file_state ) {
14790 mp_end_file_reading(mp);
14792 if ( token_type<=loop_text ) p=start;
14793 mp_end_token_list(mp);
14796 if ( p!=info(mp->loop_ptr) ) mp_fatal_error(mp, "*** (loop confusion)");
14798 mp_stop_iteration(mp); /* this procedure is in Part 34 below */
14801 @ @<Expand the token after the next token@>=
14803 p=mp_cur_tok(mp); get_t_next;
14804 if ( mp->cur_cmd<min_command ) mp_expand(mp);
14805 else mp_back_input(mp);
14809 @ @<Put a string into the input buffer@>=
14810 { mp_get_x_next(mp); mp_scan_primary(mp);
14811 if ( mp->cur_type!=mp_string_type ) {
14812 mp_disp_err(mp, null,"Not a string");
14814 help2("I'm going to flush this expression, since")
14815 ("scantokens should be followed by a known string.");
14816 mp_put_get_flush_error(mp, 0);
14819 if ( length(mp->cur_exp)>0 )
14820 @<Pretend we're reading a new one-line file@>;
14824 @ @<Pretend we're reading a new one-line file@>=
14825 { mp_begin_file_reading(mp); name=is_scantok;
14826 k=mp->first+length(mp->cur_exp);
14827 if ( k>=mp->max_buf_stack ) {
14828 while ( k>=mp->buf_size ) {
14829 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
14831 mp->max_buf_stack=k+1;
14833 j=mp->str_start[mp->cur_exp]; limit=k;
14834 while ( mp->first<(size_t)limit ) {
14835 mp->buffer[mp->first]=mp->str_pool[j]; incr(j); incr(mp->first);
14837 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
14838 mp_flush_cur_exp(mp, 0);
14841 @ Here finally is |get_x_next|.
14843 The expression scanning routines to be considered later
14844 communicate via the global quantities |cur_type| and |cur_exp|;
14845 we must be very careful to save and restore these quantities while
14846 macros are being expanded.
14850 void mp_get_x_next (MP mp);
14852 @ @c void mp_get_x_next (MP mp) {
14853 pointer save_exp; /* a capsule to save |cur_type| and |cur_exp| */
14855 if ( mp->cur_cmd<min_command ) {
14856 save_exp=mp_stash_cur_exp(mp);
14858 if ( mp->cur_cmd==defined_macro )
14859 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14863 } while (mp->cur_cmd<min_command);
14864 mp_unstash_cur_exp(mp, save_exp); /* that restores |cur_type| and |cur_exp| */
14868 @ Now let's consider the |macro_call| procedure, which is used to start up
14869 all user-defined macros. Since the arguments to a macro might be expressions,
14870 |macro_call| is recursive.
14873 The first parameter to |macro_call| points to the reference count of the
14874 token list that defines the macro. The second parameter contains any
14875 arguments that have already been parsed (see below). The third parameter
14876 points to the symbolic token that names the macro. If the third parameter
14877 is |null|, the macro was defined by \&{vardef}, so its name can be
14878 reconstructed from the prefix and ``at'' arguments found within the
14881 What is this second parameter? It's simply a linked list of one-word items,
14882 whose |info| fields point to the arguments. In other words, if |arg_list=null|,
14883 no arguments have been scanned yet; otherwise |info(arg_list)| points to
14884 the first scanned argument, and |link(arg_list)| points to the list of
14885 further arguments (if any).
14887 Arguments of type \&{expr} are so-called capsules, which we will
14888 discuss later when we concentrate on expressions; they can be
14889 recognized easily because their |link| field is |void|. Arguments of type
14890 \&{suffix} and \&{text} are token lists without reference counts.
14892 @ After argument scanning is complete, the arguments are moved to the
14893 |param_stack|. (They can't be put on that stack any sooner, because
14894 the stack is growing and shrinking in unpredictable ways as more arguments
14895 are being acquired.) Then the macro body is fed to the scanner; i.e.,
14896 the replacement text of the macro is placed at the top of the \MP's
14897 input stack, so that |get_t_next| will proceed to read it next.
14899 @<Declare the procedure called |macro_call|@>=
14900 @<Declare the procedure called |print_macro_name|@>;
14901 @<Declare the procedure called |print_arg|@>;
14902 @<Declare the procedure called |scan_text_arg|@>;
14903 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14904 pointer macro_name) ;
14907 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14908 pointer macro_name) {
14909 /* invokes a user-defined control sequence */
14910 pointer r; /* current node in the macro's token list */
14911 pointer p,q; /* for list manipulation */
14912 integer n; /* the number of arguments */
14913 pointer tail = 0; /* tail of the argument list */
14914 pointer l_delim=0,r_delim=0; /* a delimiter pair */
14915 r=link(def_ref); add_mac_ref(def_ref);
14916 if ( arg_list==null ) {
14919 @<Determine the number |n| of arguments already supplied,
14920 and set |tail| to the tail of |arg_list|@>;
14922 if ( mp->internal[mp_tracing_macros]>0 ) {
14923 @<Show the text of the macro being expanded, and the existing arguments@>;
14925 @<Scan the remaining arguments, if any; set |r| to the first token
14926 of the replacement text@>;
14927 @<Feed the arguments and replacement text to the scanner@>;
14930 @ @<Show the text of the macro...@>=
14931 mp_begin_diagnostic(mp); mp_print_ln(mp);
14932 mp_print_macro_name(mp, arg_list,macro_name);
14933 if ( n==3 ) mp_print(mp, "@@#"); /* indicate a suffixed macro */
14934 mp_show_macro(mp, def_ref,null,100000);
14935 if ( arg_list!=null ) {
14939 mp_print_arg(mp, q,n,0);
14940 incr(n); p=link(p);
14943 mp_end_diagnostic(mp, false)
14946 @ @<Declare the procedure called |print_macro_name|@>=
14947 void mp_print_macro_name (MP mp,pointer a, pointer n);
14950 void mp_print_macro_name (MP mp,pointer a, pointer n) {
14951 pointer p,q; /* they traverse the first part of |a| */
14957 mp_print_text(info(info(link(a))));
14960 while ( link(q)!=null ) q=link(q);
14961 link(q)=info(link(a));
14962 mp_show_token_list(mp, p,null,1000,0);
14968 @ @<Declare the procedure called |print_arg|@>=
14969 void mp_print_arg (MP mp,pointer q, integer n, pointer b) ;
14972 void mp_print_arg (MP mp,pointer q, integer n, pointer b) {
14973 if ( link(q)==mp_void ) mp_print_nl(mp, "(EXPR");
14974 else if ( (b<text_base)&&(b!=text_macro) ) mp_print_nl(mp, "(SUFFIX");
14975 else mp_print_nl(mp, "(TEXT");
14976 mp_print_int(mp, n); mp_print(mp, ")<-");
14977 if ( link(q)==mp_void ) mp_print_exp(mp, q,1);
14978 else mp_show_token_list(mp, q,null,1000,0);
14981 @ @<Determine the number |n| of arguments already supplied...@>=
14983 n=1; tail=arg_list;
14984 while ( link(tail)!=null ) {
14985 incr(n); tail=link(tail);
14989 @ @<Scan the remaining arguments, if any; set |r|...@>=
14990 mp->cur_cmd=comma+1; /* anything |<>comma| will do */
14991 while ( info(r)>=expr_base ) {
14992 @<Scan the delimited argument represented by |info(r)|@>;
14995 if ( mp->cur_cmd==comma ) {
14996 print_err("Too many arguments to ");
14997 @.Too many arguments...@>
14998 mp_print_macro_name(mp, arg_list,macro_name); mp_print_char(mp, ';');
14999 mp_print_nl(mp, " Missing `"); mp_print_text(r_delim);
15001 mp_print(mp, "' has been inserted");
15002 help3("I'm going to assume that the comma I just read was a")
15003 ("right delimiter, and then I'll begin expanding the macro.")
15004 ("You might want to delete some tokens before continuing.");
15007 if ( info(r)!=general_macro ) {
15008 @<Scan undelimited argument(s)@>;
15012 @ At this point, the reader will find it advisable to review the explanation
15013 of token list format that was presented earlier, paying special attention to
15014 the conventions that apply only at the beginning of a macro's token list.
15016 On the other hand, the reader will have to take the expression-parsing
15017 aspects of the following program on faith; we will explain |cur_type|
15018 and |cur_exp| later. (Several things in this program depend on each other,
15019 and it's necessary to jump into the circle somewhere.)
15021 @<Scan the delimited argument represented by |info(r)|@>=
15022 if ( mp->cur_cmd!=comma ) {
15024 if ( mp->cur_cmd!=left_delimiter ) {
15025 print_err("Missing argument to ");
15026 @.Missing argument...@>
15027 mp_print_macro_name(mp, arg_list,macro_name);
15028 help3("That macro has more parameters than you thought.")
15029 ("I'll continue by pretending that each missing argument")
15030 ("is either zero or null.");
15031 if ( info(r)>=suffix_base ) {
15032 mp->cur_exp=null; mp->cur_type=mp_token_list;
15034 mp->cur_exp=0; mp->cur_type=mp_known;
15036 mp_back_error(mp); mp->cur_cmd=right_delimiter;
15039 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
15041 @<Scan the argument represented by |info(r)|@>;
15042 if ( mp->cur_cmd!=comma )
15043 @<Check that the proper right delimiter was present@>;
15045 @<Append the current expression to |arg_list|@>
15047 @ @<Check that the proper right delim...@>=
15048 if ( (mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15049 if ( info(link(r))>=expr_base ) {
15050 mp_missing_err(mp, ",");
15052 help3("I've finished reading a macro argument and am about to")
15053 ("read another; the arguments weren't delimited correctly.")
15054 ("You might want to delete some tokens before continuing.");
15055 mp_back_error(mp); mp->cur_cmd=comma;
15057 mp_missing_err(mp, str(text(r_delim)));
15059 help2("I've gotten to the end of the macro parameter list.")
15060 ("You might want to delete some tokens before continuing.");
15065 @ A \&{suffix} or \&{text} parameter will be have been scanned as
15066 a token list pointed to by |cur_exp|, in which case we will have
15067 |cur_type=token_list|.
15069 @<Append the current expression to |arg_list|@>=
15071 p=mp_get_avail(mp);
15072 if ( mp->cur_type==mp_token_list ) info(p)=mp->cur_exp;
15073 else info(p)=mp_stash_cur_exp(mp);
15074 if ( mp->internal[mp_tracing_macros]>0 ) {
15075 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,info(r));
15076 mp_end_diagnostic(mp, false);
15078 if ( arg_list==null ) arg_list=p;
15083 @ @<Scan the argument represented by |info(r)|@>=
15084 if ( info(r)>=text_base ) {
15085 mp_scan_text_arg(mp, l_delim,r_delim);
15088 if ( info(r)>=suffix_base ) mp_scan_suffix(mp);
15089 else mp_scan_expression(mp);
15092 @ The parameters to |scan_text_arg| are either a pair of delimiters
15093 or zero; the latter case is for undelimited text arguments, which
15094 end with the first semicolon or \&{endgroup} or \&{end} that is not
15095 contained in a group.
15097 @<Declare the procedure called |scan_text_arg|@>=
15098 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) ;
15101 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) {
15102 integer balance; /* excess of |l_delim| over |r_delim| */
15103 pointer p; /* list tail */
15104 mp->warning_info=l_delim; mp->scanner_status=absorbing;
15105 p=hold_head; balance=1; link(hold_head)=null;
15108 if ( l_delim==0 ) {
15109 @<Adjust the balance for an undelimited argument; |break| if done@>;
15111 @<Adjust the balance for a delimited argument; |break| if done@>;
15113 link(p)=mp_cur_tok(mp); p=link(p);
15115 mp->cur_exp=link(hold_head); mp->cur_type=mp_token_list;
15116 mp->scanner_status=normal;
15119 @ @<Adjust the balance for a delimited argument...@>=
15120 if ( mp->cur_cmd==right_delimiter ) {
15121 if ( mp->cur_mod==l_delim ) {
15123 if ( balance==0 ) break;
15125 } else if ( mp->cur_cmd==left_delimiter ) {
15126 if ( mp->cur_mod==r_delim ) incr(balance);
15129 @ @<Adjust the balance for an undelimited...@>=
15130 if ( end_of_statement ) { /* |cur_cmd=semicolon|, |end_group|, or |stop| */
15131 if ( balance==1 ) { break; }
15132 else { if ( mp->cur_cmd==end_group ) decr(balance); }
15133 } else if ( mp->cur_cmd==begin_group ) {
15137 @ @<Scan undelimited argument(s)@>=
15139 if ( info(r)<text_macro ) {
15141 if ( info(r)!=suffix_macro ) {
15142 if ( (mp->cur_cmd==equals)||(mp->cur_cmd==assignment) ) mp_get_x_next(mp);
15146 case primary_macro:mp_scan_primary(mp); break;
15147 case secondary_macro:mp_scan_secondary(mp); break;
15148 case tertiary_macro:mp_scan_tertiary(mp); break;
15149 case expr_macro:mp_scan_expression(mp); break;
15151 @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
15154 @<Scan a suffix with optional delimiters@>;
15156 case text_macro:mp_scan_text_arg(mp, 0,0); break;
15157 } /* there are no other cases */
15159 @<Append the current expression to |arg_list|@>;
15162 @ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
15164 mp_scan_expression(mp); p=mp_get_avail(mp); info(p)=mp_stash_cur_exp(mp);
15165 if ( mp->internal[mp_tracing_macros]>0 ) {
15166 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,0);
15167 mp_end_diagnostic(mp, false);
15169 if ( arg_list==null ) arg_list=p; else link(tail)=p;
15171 if ( mp->cur_cmd!=of_token ) {
15172 mp_missing_err(mp, "of"); mp_print(mp, " for ");
15174 mp_print_macro_name(mp, arg_list,macro_name);
15175 help1("I've got the first argument; will look now for the other.");
15178 mp_get_x_next(mp); mp_scan_primary(mp);
15181 @ @<Scan a suffix with optional delimiters@>=
15183 if ( mp->cur_cmd!=left_delimiter ) {
15186 l_delim=mp->cur_sym; r_delim=mp->cur_mod; mp_get_x_next(mp);
15188 mp_scan_suffix(mp);
15189 if ( l_delim!=null ) {
15190 if ((mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15191 mp_missing_err(mp, str(text(r_delim)));
15193 help2("I've gotten to the end of the macro parameter list.")
15194 ("You might want to delete some tokens before continuing.");
15201 @ Before we put a new token list on the input stack, it is wise to clean off
15202 all token lists that have recently been depleted. Then a user macro that ends
15203 with a call to itself will not require unbounded stack space.
15205 @<Feed the arguments and replacement text to the scanner@>=
15206 while ( token_state &&(loc==null) ) mp_end_token_list(mp); /* conserve stack space */
15207 if ( mp->param_ptr+n>mp->max_param_stack ) {
15208 mp->max_param_stack=mp->param_ptr+n;
15209 if ( mp->max_param_stack>mp->param_size )
15210 mp_overflow(mp, "parameter stack size",mp->param_size);
15211 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15213 mp_begin_token_list(mp, def_ref,macro); name=macro_name; loc=r;
15217 mp->param_stack[mp->param_ptr]=info(p); incr(mp->param_ptr); p=link(p);
15219 mp_flush_list(mp, arg_list);
15222 @ It's sometimes necessary to put a single argument onto |param_stack|.
15223 The |stack_argument| subroutine does this.
15225 @c void mp_stack_argument (MP mp,pointer p) {
15226 if ( mp->param_ptr==mp->max_param_stack ) {
15227 incr(mp->max_param_stack);
15228 if ( mp->max_param_stack>mp->param_size )
15229 mp_overflow(mp, "parameter stack size",mp->param_size);
15230 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15232 mp->param_stack[mp->param_ptr]=p; incr(mp->param_ptr);
15235 @* \[33] Conditional processing.
15236 Let's consider now the way \&{if} commands are handled.
15238 Conditions can be inside conditions, and this nesting has a stack
15239 that is independent of other stacks.
15240 Four global variables represent the top of the condition stack:
15241 |cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
15242 we are processing \&{if} or \&{elseif}; |if_limit| specifies
15243 the largest code of a |fi_or_else| command that is syntactically legal;
15244 and |if_line| is the line number at which the current conditional began.
15246 If no conditions are currently in progress, the condition stack has the
15247 special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
15248 Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
15249 |link| fields of the first word contain |if_limit|, |cur_if|, and
15250 |cond_ptr| at the next level, and the second word contains the
15251 corresponding |if_line|.
15253 @d if_node_size 2 /* number of words in stack entry for conditionals */
15254 @d if_line_field(A) mp->mem[(A)+1].cint
15255 @d if_code 1 /* code for \&{if} being evaluated */
15256 @d fi_code 2 /* code for \&{fi} */
15257 @d else_code 3 /* code for \&{else} */
15258 @d else_if_code 4 /* code for \&{elseif} */
15261 pointer cond_ptr; /* top of the condition stack */
15262 integer if_limit; /* upper bound on |fi_or_else| codes */
15263 small_number cur_if; /* type of conditional being worked on */
15264 integer if_line; /* line where that conditional began */
15267 mp->cond_ptr=null; mp->if_limit=normal; mp->cur_if=0; mp->if_line=0;
15270 mp_primitive(mp, "if",if_test,if_code);
15271 @:if_}{\&{if} primitive@>
15272 mp_primitive(mp, "fi",fi_or_else,fi_code); mp->eqtb[frozen_fi]=mp->eqtb[mp->cur_sym];
15273 @:fi_}{\&{fi} primitive@>
15274 mp_primitive(mp, "else",fi_or_else,else_code);
15275 @:else_}{\&{else} primitive@>
15276 mp_primitive(mp, "elseif",fi_or_else,else_if_code);
15277 @:else_if_}{\&{elseif} primitive@>
15279 @ @<Cases of |print_cmd_mod|...@>=
15283 case if_code:mp_print(mp, "if"); break;
15284 case fi_code:mp_print(mp, "fi"); break;
15285 case else_code:mp_print(mp, "else"); break;
15286 default: mp_print(mp, "elseif"); break;
15290 @ Here is a procedure that ignores text until coming to an \&{elseif},
15291 \&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
15292 nesting. After it has acted, |cur_mod| will indicate the token that
15295 \MP's smallest two command codes are |if_test| and |fi_or_else|; this
15296 makes the skipping process a bit simpler.
15299 void mp_pass_text (MP mp) {
15301 mp->scanner_status=skipping;
15302 mp->warning_info=mp_true_line(mp);
15305 if ( mp->cur_cmd<=fi_or_else ) {
15306 if ( mp->cur_cmd<fi_or_else ) {
15310 if ( mp->cur_mod==fi_code ) decr(l);
15313 @<Decrease the string reference count,
15314 if the current token is a string@>;
15317 mp->scanner_status=normal;
15320 @ @<Decrease the string reference count...@>=
15321 if ( mp->cur_cmd==string_token ) { delete_str_ref(mp->cur_mod); }
15323 @ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
15324 if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
15325 condition has been evaluated, a colon will be inserted.
15326 A construction like `\.{if fi}' would otherwise get \MP\ confused.
15328 @<Push the condition stack@>=
15329 { p=mp_get_node(mp, if_node_size); link(p)=mp->cond_ptr; type(p)=mp->if_limit;
15330 name_type(p)=mp->cur_if; if_line_field(p)=mp->if_line;
15331 mp->cond_ptr=p; mp->if_limit=if_code; mp->if_line=mp_true_line(mp);
15332 mp->cur_if=if_code;
15335 @ @<Pop the condition stack@>=
15336 { p=mp->cond_ptr; mp->if_line=if_line_field(p);
15337 mp->cur_if=name_type(p); mp->if_limit=type(p); mp->cond_ptr=link(p);
15338 mp_free_node(mp, p,if_node_size);
15341 @ Here's a procedure that changes the |if_limit| code corresponding to
15342 a given value of |cond_ptr|.
15344 @c void mp_change_if_limit (MP mp,small_number l, pointer p) {
15346 if ( p==mp->cond_ptr ) {
15347 mp->if_limit=l; /* that's the easy case */
15351 if ( q==null ) mp_confusion(mp, "if");
15352 @:this can't happen if}{\quad if@>
15353 if ( link(q)==p ) {
15361 @ The user is supposed to put colons into the proper parts of conditional
15362 statements. Therefore, \MP\ has to check for their presence.
15365 void mp_check_colon (MP mp) {
15366 if ( mp->cur_cmd!=colon ) {
15367 mp_missing_err(mp, ":");
15369 help2("There should've been a colon after the condition.")
15370 ("I shall pretend that one was there.");;
15375 @ A condition is started when the |get_x_next| procedure encounters
15376 an |if_test| command; in that case |get_x_next| calls |conditional|,
15377 which is a recursive procedure.
15380 @c void mp_conditional (MP mp) {
15381 pointer save_cond_ptr; /* |cond_ptr| corresponding to this conditional */
15382 int new_if_limit; /* future value of |if_limit| */
15383 pointer p; /* temporary register */
15384 @<Push the condition stack@>;
15385 save_cond_ptr=mp->cond_ptr;
15387 mp_get_boolean(mp); new_if_limit=else_if_code;
15388 if ( mp->internal[mp_tracing_commands]>unity ) {
15389 @<Display the boolean value of |cur_exp|@>;
15392 mp_check_colon(mp);
15393 if ( mp->cur_exp==true_code ) {
15394 mp_change_if_limit(mp, new_if_limit,save_cond_ptr);
15395 return; /* wait for \&{elseif}, \&{else}, or \&{fi} */
15397 @<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
15399 mp->cur_if=mp->cur_mod; mp->if_line=mp_true_line(mp);
15400 if ( mp->cur_mod==fi_code ) {
15401 @<Pop the condition stack@>
15402 } else if ( mp->cur_mod==else_if_code ) {
15405 mp->cur_exp=true_code; new_if_limit=fi_code; mp_get_x_next(mp);
15410 @ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
15411 \&{else}: \\{bar} \&{fi}', the first \&{else}
15412 that we come to after learning that the \&{if} is false is not the
15413 \&{else} we're looking for. Hence the following curious logic is needed.
15415 @<Skip to \&{elseif}...@>=
15418 if ( mp->cond_ptr==save_cond_ptr ) goto DONE;
15419 else if ( mp->cur_mod==fi_code ) @<Pop the condition stack@>;
15423 @ @<Display the boolean value...@>=
15424 { mp_begin_diagnostic(mp);
15425 if ( mp->cur_exp==true_code ) mp_print(mp, "{true}");
15426 else mp_print(mp, "{false}");
15427 mp_end_diagnostic(mp, false);
15430 @ The processing of conditionals is complete except for the following
15431 code, which is actually part of |get_x_next|. It comes into play when
15432 \&{elseif}, \&{else}, or \&{fi} is scanned.
15434 @<Terminate the current conditional and skip to \&{fi}@>=
15435 if ( mp->cur_mod>mp->if_limit ) {
15436 if ( mp->if_limit==if_code ) { /* condition not yet evaluated */
15437 mp_missing_err(mp, ":");
15439 mp_back_input(mp); mp->cur_sym=frozen_colon; mp_ins_error(mp);
15441 print_err("Extra "); mp_print_cmd_mod(mp, fi_or_else,mp->cur_mod);
15445 help1("I'm ignoring this; it doesn't match any if.");
15449 while ( mp->cur_mod!=fi_code ) mp_pass_text(mp); /* skip to \&{fi} */
15450 @<Pop the condition stack@>;
15453 @* \[34] Iterations.
15454 To bring our treatment of |get_x_next| to a close, we need to consider what
15455 \MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
15457 There's a global variable |loop_ptr| that keeps track of the \&{for} loops
15458 that are currently active. If |loop_ptr=null|, no loops are in progress;
15459 otherwise |info(loop_ptr)| points to the iterative text of the current
15460 (innermost) loop, and |link(loop_ptr)| points to the data for any other
15461 loops that enclose the current one.
15463 A loop-control node also has two other fields, called |loop_type| and
15464 |loop_list|, whose contents depend on the type of loop:
15466 \yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
15467 points to a list of one-word nodes whose |info| fields point to the
15468 remaining argument values of a suffix list and expression list.
15470 \yskip\indent|loop_type(loop_ptr)=mp_void| means that the current loop is
15473 \yskip\indent|loop_type(loop_ptr)=progression_flag| means that
15474 |p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
15475 |step_size(p)|, and |final_value(p)| contain the data for an arithmetic
15478 \yskip\indent|loop_type(loop_ptr)=p>mp_void| means that |p| points to an edge
15479 header and |loop_list(loop_ptr)| points into the graphical object list for
15482 \yskip\noindent In the case of a progression node, the first word is not used
15483 because the link field of words in the dynamic memory area cannot be arbitrary.
15485 @d loop_list_loc(A) ((A)+1) /* where the |loop_list| field resides */
15486 @d loop_type(A) info(loop_list_loc((A))) /* the type of \&{for} loop */
15487 @d loop_list(A) link(loop_list_loc((A))) /* the remaining list elements */
15488 @d loop_node_size 2 /* the number of words in a loop control node */
15489 @d progression_node_size 4 /* the number of words in a progression node */
15490 @d step_size(A) mp->mem[(A)+2].sc /* the step size in an arithmetic progression */
15491 @d final_value(A) mp->mem[(A)+3].sc /* the final value in an arithmetic progression */
15492 @d progression_flag (null+2)
15493 /* |loop_type| value when |loop_list| points to a progression node */
15496 pointer loop_ptr; /* top of the loop-control-node stack */
15501 @ If the expressions that define an arithmetic progression in
15502 a \&{for} loop don't have known numeric values, the |bad_for|
15503 subroutine screams at the user.
15505 @c void mp_bad_for (MP mp, char * s) {
15506 mp_disp_err(mp, null,"Improper "); /* show the bad expression above the message */
15507 @.Improper...replaced by 0@>
15508 mp_print(mp, s); mp_print(mp, " has been replaced by 0");
15509 help4("When you say `for x=a step b until c',")
15510 ("the initial value `a' and the step size `b'")
15511 ("and the final value `c' must have known numeric values.")
15512 ("I'm zeroing this one. Proceed, with fingers crossed.");
15513 mp_put_get_flush_error(mp, 0);
15516 @ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
15517 has just been scanned. (This code requires slight familiarity with
15518 expression-parsing routines that we have not yet discussed; but it seems
15519 to belong in the present part of the program, even though the original author
15520 didn't write it until later. The reader may wish to come back to it.)
15522 @c void mp_begin_iteration (MP mp) {
15523 halfword m; /* |expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes}) */
15524 halfword n; /* hash address of the current symbol */
15525 pointer s; /* the new loop-control node */
15526 pointer p; /* substitution list for |scan_toks| */
15527 pointer q; /* link manipulation register */
15528 pointer pp; /* a new progression node */
15529 m=mp->cur_mod; n=mp->cur_sym; s=mp_get_node(mp, loop_node_size);
15530 if ( m==start_forever ){
15531 loop_type(s)=mp_void; p=null; mp_get_x_next(mp);
15533 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
15534 info(p)=mp->cur_sym; value(p)=m;
15536 if ( mp->cur_cmd==within_token ) {
15537 @<Set up a picture iteration@>;
15539 @<Check for the |"="| or |":="| in a loop header@>;
15540 @<Scan the values to be used in the loop@>;
15543 @<Check for the presence of a colon@>;
15544 @<Scan the loop text and put it on the loop control stack@>;
15545 mp_resume_iteration(mp);
15548 @ @<Check for the |"="| or |":="| in a loop header@>=
15549 if ( (mp->cur_cmd!=equals)&&(mp->cur_cmd!=assignment) ) {
15550 mp_missing_err(mp, "=");
15552 help3("The next thing in this loop should have been `=' or `:='.")
15553 ("But don't worry; I'll pretend that an equals sign")
15554 ("was present, and I'll look for the values next.");
15558 @ @<Check for the presence of a colon@>=
15559 if ( mp->cur_cmd!=colon ) {
15560 mp_missing_err(mp, ":");
15562 help3("The next thing in this loop should have been a `:'.")
15563 ("So I'll pretend that a colon was present;")
15564 ("everything from here to `endfor' will be iterated.");
15568 @ We append a special |frozen_repeat_loop| token in place of the
15569 `\&{endfor}' at the end of the loop. This will come through \MP's scanner
15570 at the proper time to cause the loop to be repeated.
15572 (If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
15573 he will be foiled by the |get_symbol| routine, which keeps frozen
15574 tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
15575 token, so it won't be lost accidentally.)
15577 @ @<Scan the loop text...@>=
15578 q=mp_get_avail(mp); info(q)=frozen_repeat_loop;
15579 mp->scanner_status=loop_defining; mp->warning_info=n;
15580 info(s)=mp_scan_toks(mp, iteration,p,q,0); mp->scanner_status=normal;
15581 link(s)=mp->loop_ptr; mp->loop_ptr=s
15583 @ @<Initialize table...@>=
15584 eq_type(frozen_repeat_loop)=repeat_loop+outer_tag;
15585 text(frozen_repeat_loop)=intern(" ENDFOR");
15587 @ The loop text is inserted into \MP's scanning apparatus by the
15588 |resume_iteration| routine.
15590 @c void mp_resume_iteration (MP mp) {
15591 pointer p,q; /* link registers */
15592 p=loop_type(mp->loop_ptr);
15593 if ( p==progression_flag ) {
15594 p=loop_list(mp->loop_ptr); /* now |p| points to a progression node */
15595 mp->cur_exp=value(p);
15596 if ( @<The arithmetic progression has ended@> ) {
15597 mp_stop_iteration(mp);
15600 mp->cur_type=mp_known; q=mp_stash_cur_exp(mp); /* make |q| an \&{expr} argument */
15601 value(p)=mp->cur_exp+step_size(p); /* set |value(p)| for the next iteration */
15602 } else if ( p==null ) {
15603 p=loop_list(mp->loop_ptr);
15605 mp_stop_iteration(mp);
15608 loop_list(mp->loop_ptr)=link(p); q=info(p); free_avail(p);
15609 } else if ( p==mp_void ) {
15610 mp_begin_token_list(mp, info(mp->loop_ptr),forever_text); return;
15612 @<Make |q| a capsule containing the next picture component from
15613 |loop_list(loop_ptr)| or |goto not_found|@>;
15615 mp_begin_token_list(mp, info(mp->loop_ptr),loop_text);
15616 mp_stack_argument(mp, q);
15617 if ( mp->internal[mp_tracing_commands]>unity ) {
15618 @<Trace the start of a loop@>;
15622 mp_stop_iteration(mp);
15625 @ @<The arithmetic progression has ended@>=
15626 ((step_size(p)>0)&&(mp->cur_exp>final_value(p)))||
15627 ((step_size(p)<0)&&(mp->cur_exp<final_value(p)))
15629 @ @<Trace the start of a loop@>=
15631 mp_begin_diagnostic(mp); mp_print_nl(mp, "{loop value=");
15633 if ( (q!=null)&&(link(q)==mp_void) ) mp_print_exp(mp, q,1);
15634 else mp_show_token_list(mp, q,null,50,0);
15635 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
15638 @ @<Make |q| a capsule containing the next picture component from...@>=
15639 { q=loop_list(mp->loop_ptr);
15640 if ( q==null ) goto NOT_FOUND;
15641 skip_component(q) goto NOT_FOUND;
15642 mp->cur_exp=mp_copy_objects(mp, loop_list(mp->loop_ptr),q);
15643 mp_init_bbox(mp, mp->cur_exp);
15644 mp->cur_type=mp_picture_type;
15645 loop_list(mp->loop_ptr)=q;
15646 q=mp_stash_cur_exp(mp);
15649 @ A level of loop control disappears when |resume_iteration| has decided
15650 not to resume, or when an \&{exitif} construction has removed the loop text
15651 from the input stack.
15653 @c void mp_stop_iteration (MP mp) {
15654 pointer p,q; /* the usual */
15655 p=loop_type(mp->loop_ptr);
15656 if ( p==progression_flag ) {
15657 mp_free_node(mp, loop_list(mp->loop_ptr),progression_node_size);
15658 } else if ( p==null ){
15659 q=loop_list(mp->loop_ptr);
15660 while ( q!=null ) {
15663 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
15664 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
15666 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
15669 p=q; q=link(q); free_avail(p);
15671 } else if ( p>progression_flag ) {
15672 delete_edge_ref(p);
15674 p=mp->loop_ptr; mp->loop_ptr=link(p); mp_flush_token_list(mp, info(p));
15675 mp_free_node(mp, p,loop_node_size);
15678 @ Now that we know all about loop control, we can finish up
15679 the missing portion of |begin_iteration| and we'll be done.
15681 The following code is performed after the `\.=' has been scanned in
15682 a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
15683 (if |m=suffix_base|).
15685 @<Scan the values to be used in the loop@>=
15686 loop_type(s)=null; q=loop_list_loc(s); link(q)=null; /* |link(q)=loop_list(s)| */
15689 if ( m!=expr_base ) {
15690 mp_scan_suffix(mp);
15692 if ( mp->cur_cmd>=colon ) if ( mp->cur_cmd<=comma )
15694 mp_scan_expression(mp);
15695 if ( mp->cur_cmd==step_token ) if ( q==loop_list_loc(s) ) {
15696 @<Prepare for step-until construction and |break|@>;
15698 mp->cur_exp=mp_stash_cur_exp(mp);
15700 link(q)=mp_get_avail(mp); q=link(q);
15701 info(q)=mp->cur_exp; mp->cur_type=mp_vacuous;
15704 } while (mp->cur_cmd==comma)
15706 @ @<Prepare for step-until construction and |break|@>=
15708 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "initial value");
15709 pp=mp_get_node(mp, progression_node_size); value(pp)=mp->cur_exp;
15710 mp_get_x_next(mp); mp_scan_expression(mp);
15711 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "step size");
15712 step_size(pp)=mp->cur_exp;
15713 if ( mp->cur_cmd!=until_token ) {
15714 mp_missing_err(mp, "until");
15715 @.Missing `until'@>
15716 help2("I assume you meant to say `until' after `step'.")
15717 ("So I'll look for the final value and colon next.");
15720 mp_get_x_next(mp); mp_scan_expression(mp);
15721 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "final value");
15722 final_value(pp)=mp->cur_exp; loop_list(s)=pp;
15723 loop_type(s)=progression_flag;
15727 @ The last case is when we have just seen ``\&{within}'', and we need to
15728 parse a picture expression and prepare to iterate over it.
15730 @<Set up a picture iteration@>=
15731 { mp_get_x_next(mp);
15732 mp_scan_expression(mp);
15733 @<Make sure the current expression is a known picture@>;
15734 loop_type(s)=mp->cur_exp; mp->cur_type=mp_vacuous;
15735 q=link(dummy_loc(mp->cur_exp));
15737 if ( is_start_or_stop(q) )
15738 if ( mp_skip_1component(mp, q)==null ) q=link(q);
15742 @ @<Make sure the current expression is a known picture@>=
15743 if ( mp->cur_type!=mp_picture_type ) {
15744 mp_disp_err(mp, null,"Improper iteration spec has been replaced by nullpicture");
15745 help1("When you say `for x in p', p must be a known picture.");
15746 mp_put_get_flush_error(mp, mp_get_node(mp, edge_header_size));
15747 mp_init_edges(mp, mp->cur_exp); mp->cur_type=mp_picture_type;
15750 @* \[35] File names.
15751 It's time now to fret about file names. Besides the fact that different
15752 operating systems treat files in different ways, we must cope with the
15753 fact that completely different naming conventions are used by different
15754 groups of people. The following programs show what is required for one
15755 particular operating system; similar routines for other systems are not
15756 difficult to devise.
15757 @^system dependencies@>
15759 \MP\ assumes that a file name has three parts: the name proper; its
15760 ``extension''; and a ``file area'' where it is found in an external file
15761 system. The extension of an input file is assumed to be
15762 `\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
15763 transcript file that records each run of \MP; it is `\.{.tfm}' on the font
15764 metric files that describe characters in any fonts created by \MP; it is
15765 `\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
15766 and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
15767 The file area can be arbitrary on input files, but files are usually
15768 output to the user's current area. If an input file cannot be
15769 found on the specified area, \MP\ will look for it on a special system
15770 area; this special area is intended for commonly used input files.
15772 Simple uses of \MP\ refer only to file names that have no explicit
15773 extension or area. For example, a person usually says `\.{input} \.{cmr10}'
15774 instead of `\.{input} \.{cmr10.new}'. Simple file
15775 names are best, because they make the \MP\ source files portable;
15776 whenever a file name consists entirely of letters and digits, it should be
15777 treated in the same way by all implementations of \MP. However, users
15778 need the ability to refer to other files in their environment, especially
15779 when responding to error messages concerning unopenable files; therefore
15780 we want to let them use the syntax that appears in their favorite
15783 @ \MP\ uses the same conventions that have proved to be satisfactory for
15784 \TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
15785 @^system dependencies@>
15786 the system-independent parts of \MP\ are expressed in terms
15787 of three system-dependent
15788 procedures called |begin_name|, |more_name|, and |end_name|. In
15789 essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
15790 the system-independent driver program does the operations
15791 $$|begin_name|;\,|more_name|(c_1);\,\ldots\,;|more_name|(c_n);
15793 These three procedures communicate with each other via global variables.
15794 Afterwards the file name will appear in the string pool as three strings
15795 called |cur_name|\penalty10000\hskip-.05em,
15796 |cur_area|, and |cur_ext|; the latter two are null (i.e.,
15797 |""|), unless they were explicitly specified by the user.
15799 Actually the situation is slightly more complicated, because \MP\ needs
15800 to know when the file name ends. The |more_name| routine is a function
15801 (with side effects) that returns |true| on the calls |more_name|$(c_1)$,
15802 \dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
15803 returns |false|; or, it returns |true| and $c_n$ is the last character
15804 on the current input line. In other words,
15805 |more_name| is supposed to return |true| unless it is sure that the
15806 file name has been completely scanned; and |end_name| is supposed to be able
15807 to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
15808 whether $|more_name|(c_n)$ returned |true| or |false|.
15811 char * cur_name; /* name of file just scanned */
15812 char * cur_area; /* file area just scanned, or \.{""} */
15813 char * cur_ext; /* file extension just scanned, or \.{""} */
15815 @ It is easier to maintain reference counts if we assign initial values.
15818 mp->cur_name=xstrdup("");
15819 mp->cur_area=xstrdup("");
15820 mp->cur_ext=xstrdup("");
15822 @ @<Dealloc variables@>=
15823 xfree(mp->cur_area);
15824 xfree(mp->cur_name);
15825 xfree(mp->cur_ext);
15827 @ The file names we shall deal with for illustrative purposes have the
15828 following structure: If the name contains `\.>' or `\.:', the file area
15829 consists of all characters up to and including the final such character;
15830 otherwise the file area is null. If the remaining file name contains
15831 `\..', the file extension consists of all such characters from the first
15832 remaining `\..' to the end, otherwise the file extension is null.
15833 @^system dependencies@>
15835 We can scan such file names easily by using two global variables that keep track
15836 of the occurrences of area and extension delimiters. Note that these variables
15837 cannot be of type |pool_pointer| because a string pool compaction could occur
15838 while scanning a file name.
15841 integer area_delimiter;
15842 /* most recent `\.>' or `\.:' relative to |str_start[str_ptr]| */
15843 integer ext_delimiter; /* the relevant `\..', if any */
15845 @ Input files that can't be found in the user's area may appear in standard
15846 system areas called |MP_area| and |MF_area|. (The latter is used when the file
15847 extension is |".mf"|.) The standard system area for font metric files
15848 to be read is |MP_font_area|.
15849 This system area name will, of course, vary from place to place.
15850 @^system dependencies@>
15852 @d MP_area "MPinputs:"
15854 @d MF_area "MFinputs:"
15859 @ Here now is the first of the system-dependent routines for file name scanning.
15860 @^system dependencies@>
15862 @<Declare subroutines for parsing file names@>=
15863 void mp_begin_name (MP mp) {
15864 xfree(mp->cur_name);
15865 xfree(mp->cur_area);
15866 xfree(mp->cur_ext);
15867 mp->area_delimiter=-1;
15868 mp->ext_delimiter=-1;
15871 @ And here's the second.
15872 @^system dependencies@>
15874 @<Declare subroutines for parsing file names@>=
15875 boolean mp_more_name (MP mp, ASCII_code c) {
15879 if ( (c=='>')||(c==':') ) {
15880 mp->area_delimiter=mp->pool_ptr;
15881 mp->ext_delimiter=-1;
15882 } else if ( (c=='.')&&(mp->ext_delimiter<0) ) {
15883 mp->ext_delimiter=mp->pool_ptr;
15885 str_room(1); append_char(c); /* contribute |c| to the current string */
15891 @^system dependencies@>
15893 @d copy_pool_segment(A,B,C) {
15894 A = xmalloc(C+1,sizeof(char));
15895 strncpy(A,(char *)(mp->str_pool+B),C);
15898 @<Declare subroutines for parsing file names@>=
15899 void mp_end_name (MP mp) {
15900 pool_pointer s; /* length of area, name, and extension */
15903 s = mp->str_start[mp->str_ptr];
15904 if ( mp->area_delimiter<0 ) {
15905 mp->cur_area=xstrdup("");
15907 len = mp->area_delimiter-s;
15908 copy_pool_segment(mp->cur_area,s,len);
15911 if ( mp->ext_delimiter<0 ) {
15912 mp->cur_ext=xstrdup("");
15913 len = mp->pool_ptr-s;
15915 copy_pool_segment(mp->cur_ext,mp->ext_delimiter,(mp->pool_ptr-mp->ext_delimiter));
15916 len = mp->ext_delimiter-s;
15918 copy_pool_segment(mp->cur_name,s,len);
15919 mp->pool_ptr=s; /* don't need this partial string */
15922 @ Conversely, here is a routine that takes three strings and prints a file
15923 name that might have produced them. (The routine is system dependent, because
15924 some operating systems put the file area last instead of first.)
15925 @^system dependencies@>
15927 @<Basic printing...@>=
15928 void mp_print_file_name (MP mp, char * n, char * a, char * e) {
15929 mp_print(mp, a); mp_print(mp, n); mp_print(mp, e);
15932 @ Another system-dependent routine is needed to convert three internal
15934 to the |name_of_file| value that is used to open files. The present code
15935 allows both lowercase and uppercase letters in the file name.
15936 @^system dependencies@>
15938 @d append_to_name(A) { c=(A);
15939 if ( k<file_name_size ) {
15940 mp->name_of_file[k]=xchr(c);
15945 @<Declare subroutines for parsing file names@>=
15946 void mp_pack_file_name (MP mp, char *n, char *a, char *e) {
15947 integer k; /* number of positions filled in |name_of_file| */
15948 ASCII_code c; /* character being packed */
15949 char *j; /* a character index */
15953 for (j=a;*j;j++) { append_to_name(*j); }
15955 for (j=n;*j;j++) { append_to_name(*j); }
15957 for (j=e;*j;j++) { append_to_name(*j); }
15959 mp->name_of_file[k]=0;
15963 @ @<Internal library declarations@>=
15964 void mp_pack_file_name (MP mp, char *n, char *a, char *e) ;
15966 @ A messier routine is also needed, since mem file names must be scanned
15967 before \MP's string mechanism has been initialized. We shall use the
15968 global variable |MP_mem_default| to supply the text for default system areas
15969 and extensions related to mem files.
15970 @^system dependencies@>
15972 @d mem_default_length 9 /* length of the |MP_mem_default| string */
15973 @d mem_ext_length 4 /* length of its `\.{.mem}' part */
15974 @d mem_extension ".mem" /* the extension, as a \.{WEB} constant */
15977 char *MP_mem_default;
15978 char *mem_name; /* for commandline */
15980 @ @<Option variables@>=
15981 char *mem_name; /* for commandline */
15983 @ @<Allocate or initialize ...@>=
15984 mp->MP_mem_default = xstrdup("plain.mem");
15985 mp->mem_name = xstrdup(opt->mem_name);
15987 @^system dependencies@>
15989 @ @<Dealloc variables@>=
15990 xfree(mp->MP_mem_default);
15991 xfree(mp->mem_name);
15993 @ @<Check the ``constant'' values for consistency@>=
15994 if ( mem_default_length>file_name_size ) mp->bad=20;
15996 @ Here is the messy routine that was just mentioned. It sets |name_of_file|
15997 from the first |n| characters of |MP_mem_default|, followed by
15998 |buffer[a..b-1]|, followed by the last |mem_ext_length| characters of
16001 We dare not give error messages here, since \MP\ calls this routine before
16002 the |error| routine is ready to roll. Instead, we simply drop excess characters,
16003 since the error will be detected in another way when a strange file name
16005 @^system dependencies@>
16007 @c void mp_pack_buffered_name (MP mp,small_number n, integer a,
16009 integer k; /* number of positions filled in |name_of_file| */
16010 ASCII_code c; /* character being packed */
16011 integer j; /* index into |buffer| or |MP_mem_default| */
16012 if ( n+b-a+1+mem_ext_length>file_name_size )
16013 b=a+file_name_size-n-1-mem_ext_length;
16015 for (j=0;j<n;j++) {
16016 append_to_name(xord((int)mp->MP_mem_default[j]));
16018 for (j=a;j<b;j++) {
16019 append_to_name(mp->buffer[j]);
16021 for (j=mem_default_length-mem_ext_length;
16022 j<mem_default_length;j++) {
16023 append_to_name(xord((int)mp->MP_mem_default[j]));
16025 mp->name_of_file[k]=0;
16029 @ Here is the only place we use |pack_buffered_name|. This part of the program
16030 becomes active when a ``virgin'' \MP\ is trying to get going, just after
16031 the preliminary initialization, or when the user is substituting another
16032 mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
16033 contains the first line of input in |buffer[loc..(last-1)]|, where
16034 |loc<last| and |buffer[loc]<>" "|.
16037 boolean mp_open_mem_file (MP mp) ;
16040 boolean mp_open_mem_file (MP mp) {
16041 int j; /* the first space after the file name */
16042 if (mp->mem_name!=NULL) {
16043 mp->mem_file = (mp->open_file)(mp->mem_name, "rb", mp_filetype_memfile);
16044 if ( mp->mem_file ) return true;
16047 if ( mp->buffer[loc]=='&' ) {
16048 incr(loc); j=loc; mp->buffer[mp->last]=' ';
16049 while ( mp->buffer[j]!=' ' ) incr(j);
16050 mp_pack_buffered_name(mp, 0,loc,j); /* try first without the system file area */
16051 if ( mp_w_open_in(mp, &mp->mem_file) ) goto FOUND;
16053 wterm_ln("Sorry, I can\'t find that mem file; will try PLAIN.");
16054 @.Sorry, I can't find...@>
16057 /* now pull out all the stops: try for the system \.{plain} file */
16058 mp_pack_buffered_name(mp, mem_default_length-mem_ext_length,0,0);
16059 if ( ! mp_w_open_in(mp, &mp->mem_file) ) {
16061 wterm_ln("I can\'t find the PLAIN mem file!\n");
16062 @.I can't find PLAIN...@>
16067 loc=j; return true;
16070 @ Operating systems often make it possible to determine the exact name (and
16071 possible version number) of a file that has been opened. The following routine,
16072 which simply makes a \MP\ string from the value of |name_of_file|, should
16073 ideally be changed to deduce the full name of file~|f|, which is the file
16074 most recently opened, if it is possible to do this in a \PASCAL\ program.
16075 @^system dependencies@>
16078 #define mp_a_make_name_string(A,B) mp_make_name_string(A)
16079 #define mp_b_make_name_string(A,B) mp_make_name_string(A)
16080 #define mp_w_make_name_string(A,B) mp_make_name_string(A)
16083 str_number mp_make_name_string (MP mp) {
16084 int k; /* index into |name_of_file| */
16085 str_room(mp->name_length);
16086 for (k=0;k<mp->name_length;k++) {
16087 append_char(xord((int)mp->name_of_file[k]));
16089 return mp_make_string(mp);
16092 @ Now let's consider the ``driver''
16093 routines by which \MP\ deals with file names
16094 in a system-independent manner. First comes a procedure that looks for a
16095 file name in the input by taking the information from the input buffer.
16096 (We can't use |get_next|, because the conversion to tokens would
16097 destroy necessary information.)
16099 This procedure doesn't allow semicolons or percent signs to be part of
16100 file names, because of other conventions of \MP.
16101 {\sl The {\logos METAFONT\/}book} doesn't
16102 use semicolons or percents immediately after file names, but some users
16103 no doubt will find it natural to do so; therefore system-dependent
16104 changes to allow such characters in file names should probably
16105 be made with reluctance, and only when an entire file name that
16106 includes special characters is ``quoted'' somehow.
16107 @^system dependencies@>
16109 @c void mp_scan_file_name (MP mp) {
16111 while ( mp->buffer[loc]==' ' ) incr(loc);
16113 if ( (mp->buffer[loc]==';')||(mp->buffer[loc]=='%') ) break;
16114 if ( ! mp_more_name(mp, mp->buffer[loc]) ) break;
16120 @ Here is another version that takes its input from a string.
16122 @<Declare subroutines for parsing file names@>=
16123 void mp_str_scan_file (MP mp, str_number s) {
16124 pool_pointer p,q; /* current position and stopping point */
16126 p=mp->str_start[s]; q=str_stop(s);
16128 if ( ! mp_more_name(mp, mp->str_pool[p]) ) break;
16134 @ And one that reads from a |char*|.
16136 @<Declare subroutines for parsing file names@>=
16137 void mp_ptr_scan_file (MP mp, char *s) {
16138 char *p, *q; /* current position and stopping point */
16140 p=s; q=p+strlen(s);
16142 if ( ! mp_more_name(mp, *p)) break;
16149 @ The global variable |job_name| contains the file name that was first
16150 \&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
16151 `\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
16154 char *job_name; /* principal file name */
16155 boolean log_opened; /* has the transcript file been opened? */
16156 char *log_name; /* full name of the log file */
16158 @ @<Option variables@>=
16159 char *job_name; /* principal file name */
16161 @ Initially |job_name=NULL|; it becomes nonzero as soon as the true name is known.
16162 We have |job_name=NULL| if and only if the `\.{log}' file has not been opened,
16163 except of course for a short time just after |job_name| has become nonzero.
16165 @<Allocate or ...@>=
16166 mp->job_name=opt->job_name;
16167 mp->log_opened=false;
16169 @ @<Dealloc variables@>=
16170 xfree(mp->job_name);
16172 @ Here is a routine that manufactures the output file names, assuming that
16173 |job_name<>0|. It ignores and changes the current settings of |cur_area|
16176 @d pack_cur_name mp_pack_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext)
16179 void mp_pack_job_name (MP mp, char *s) ;
16181 @ @c void mp_pack_job_name (MP mp, char *s) { /* |s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn} */
16182 xfree(mp->cur_name); mp->cur_name=xstrdup(mp->job_name);
16183 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16184 xfree(mp->cur_ext); mp->cur_ext=xstrdup(s);
16188 @ If some trouble arises when \MP\ tries to open a file, the following
16189 routine calls upon the user to supply another file name. Parameter~|s|
16190 is used in the error message to identify the type of file; parameter~|e|
16191 is the default extension if none is given. Upon exit from the routine,
16192 variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
16193 ready for another attempt at file opening.
16196 void mp_prompt_file_name (MP mp,char * s, char * e) ;
16198 @ @c void mp_prompt_file_name (MP mp,char * s, char * e) {
16199 size_t k; /* index into |buffer| */
16200 char * saved_cur_name;
16201 if ( mp->interaction==mp_scroll_mode )
16203 if (strcmp(s,"input file name")==0) {
16204 print_err("I can\'t find file `");
16205 @.I can't find file x@>
16207 print_err("I can\'t write on file `");
16209 @.I can't write on file x@>
16210 mp_print_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext);
16211 mp_print(mp, "'.");
16212 if (strcmp(e,"")==0)
16213 mp_show_context(mp);
16214 mp_print_nl(mp, "Please type another "); mp_print(mp, s);
16216 if ( mp->interaction<mp_scroll_mode )
16217 mp_fatal_error(mp, "*** (job aborted, file error in nonstop mode)");
16218 @.job aborted, file error...@>
16219 saved_cur_name = xstrdup(mp->cur_name);
16220 clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
16221 if (strcmp(mp->cur_ext,"")==0)
16223 if (strlen(mp->cur_name)==0) {
16224 mp->cur_name=saved_cur_name;
16226 xfree(saved_cur_name);
16231 @ @<Scan file name in the buffer@>=
16233 mp_begin_name(mp); k=mp->first;
16234 while ( (mp->buffer[k]==' ')&&(k<mp->last) ) incr(k);
16236 if ( k==mp->last ) break;
16237 if ( ! mp_more_name(mp, mp->buffer[k]) ) break;
16243 @ The |open_log_file| routine is used to open the transcript file and to help
16244 it catch up to what has previously been printed on the terminal.
16246 @c void mp_open_log_file (MP mp) {
16247 int old_setting; /* previous |selector| setting */
16248 int k; /* index into |months| and |buffer| */
16249 int l; /* end of first input line */
16250 integer m; /* the current month */
16251 char *months="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
16252 /* abbreviations of month names */
16253 old_setting=mp->selector;
16254 if ( mp->job_name==NULL ) {
16255 mp->job_name=xstrdup("mpout");
16257 mp_pack_job_name(mp,".log");
16258 while ( ! mp_a_open_out(mp, &mp->log_file, mp_filetype_log) ) {
16259 @<Try to get a different log file name@>;
16261 mp->log_name=xstrdup(mp->name_of_file);
16262 mp->selector=log_only; mp->log_opened=true;
16263 @<Print the banner line, including the date and time@>;
16264 mp->input_stack[mp->input_ptr]=mp->cur_input;
16265 /* make sure bottom level is in memory */
16266 mp_print_nl(mp, "**");
16268 l=mp->input_stack[0].limit_field-1; /* last position of first line */
16269 for (k=0;k<=l;k++) mp_print_str(mp, mp->buffer[k]);
16270 mp_print_ln(mp); /* now the transcript file contains the first line of input */
16271 mp->selector=old_setting+2; /* |log_only| or |term_and_log| */
16274 @ @<Dealloc variables@>=
16275 xfree(mp->log_name);
16277 @ Sometimes |open_log_file| is called at awkward moments when \MP\ is
16278 unable to print error messages or even to |show_context|.
16279 The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
16280 routine will not be invoked because |log_opened| will be false.
16282 The normal idea of |mp_batch_mode| is that nothing at all should be written
16283 on the terminal. However, in the unusual case that
16284 no log file could be opened, we make an exception and allow
16285 an explanatory message to be seen.
16287 Incidentally, the program always refers to the log file as a `\.{transcript
16288 file}', because some systems cannot use the extension `\.{.log}' for
16291 @<Try to get a different log file name@>=
16293 mp->selector=term_only;
16294 mp_prompt_file_name(mp, "transcript file name",".log");
16297 @ @<Print the banner...@>=
16300 mp_print(mp, mp->mem_ident); mp_print(mp, " ");
16301 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_day]));
16302 mp_print_char(mp, ' ');
16303 m=mp_round_unscaled(mp, mp->internal[mp_month]);
16304 for (k=3*m-3;k<3*m;k++) { wlog_chr(months[k]); }
16305 mp_print_char(mp, ' ');
16306 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_year]));
16307 mp_print_char(mp, ' ');
16308 m=mp_round_unscaled(mp, mp->internal[mp_time]);
16309 mp_print_dd(mp, m / 60); mp_print_char(mp, ':'); mp_print_dd(mp, m % 60);
16312 @ The |try_extension| function tries to open an input file determined by
16313 |cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
16314 can't find the file in |cur_area| or the appropriate system area.
16316 @c boolean mp_try_extension (MP mp,char *ext) {
16317 mp_pack_file_name(mp, mp->cur_name,mp->cur_area, ext);
16318 in_name=xstrdup(mp->cur_name);
16319 in_area=xstrdup(mp->cur_area);
16320 if ( mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16323 if (strcmp(ext,".mf")==0 ) in_area=xstrdup(MF_area);
16324 else in_area=xstrdup(MP_area);
16325 mp_pack_file_name(mp, mp->cur_name,in_area,ext);
16326 return mp_a_open_in(mp, &cur_file, mp_filetype_program);
16331 @ Let's turn now to the procedure that is used to initiate file reading
16332 when an `\.{input}' command is being processed.
16334 @c void mp_start_input (MP mp) { /* \MP\ will \.{input} something */
16335 char *fname = NULL;
16336 @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
16338 mp_begin_file_reading(mp); /* set up |cur_file| and new level of input */
16339 if ( strlen(mp->cur_ext)==0 ) {
16340 if ( mp_try_extension(mp, ".mp") ) break;
16341 else if ( mp_try_extension(mp, "") ) break;
16342 else if ( mp_try_extension(mp, ".mf") ) break;
16343 /* |else do_nothing; | */
16344 } else if ( mp_try_extension(mp, mp->cur_ext) ) {
16347 mp_end_file_reading(mp); /* remove the level that didn't work */
16348 mp_prompt_file_name(mp, "input file name","");
16350 name=mp_a_make_name_string(mp, cur_file);
16351 fname = xstrdup(mp->name_of_file);
16352 if ( mp->job_name==NULL ) {
16353 mp->job_name=xstrdup(mp->cur_name);
16354 mp_open_log_file(mp);
16355 } /* |open_log_file| doesn't |show_context|, so |limit|
16356 and |loc| needn't be set to meaningful values yet */
16357 if ( ((int)mp->term_offset+(int)strlen(fname)) > (mp->max_print_line-2)) mp_print_ln(mp);
16358 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
16359 mp_print_char(mp, '('); incr(mp->open_parens); mp_print(mp, fname);
16362 @<Flush |name| and replace it with |cur_name| if it won't be needed@>;
16363 @<Read the first line of the new file@>;
16366 @ This code should be omitted if |a_make_name_string| returns something other
16367 than just a copy of its argument and the full file name is needed for opening
16368 \.{MPX} files or implementing the switch-to-editor option.
16369 @^system dependencies@>
16371 @<Flush |name| and replace it with |cur_name| if it won't be needed@>=
16372 mp_flush_string(mp, name); name=rts(mp->cur_name); xfree(mp->cur_name)
16374 @ If the file is empty, it is considered to contain a single blank line,
16375 so there is no need to test the return value.
16377 @<Read the first line...@>=
16380 (void)mp_input_ln(mp, cur_file );
16381 mp_firm_up_the_line(mp);
16382 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
16385 @ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
16386 while ( token_state &&(loc==null) ) mp_end_token_list(mp);
16387 if ( token_state ) {
16388 print_err("File names can't appear within macros");
16389 @.File names can't...@>
16390 help3("Sorry...I've converted what follows to tokens,")
16391 ("possibly garbaging the name you gave.")
16392 ("Please delete the tokens and insert the name again.");
16395 if ( file_state ) {
16396 mp_scan_file_name(mp);
16398 xfree(mp->cur_name); mp->cur_name=xstrdup("");
16399 xfree(mp->cur_ext); mp->cur_ext =xstrdup("");
16400 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16403 @ Sometimes we need to deal with two file names at once. This procedure
16404 copies the given string into a special array for an old file name.
16406 @c void mp_copy_old_name (MP mp,str_number s) {
16407 integer k; /* number of positions filled in |old_file_name| */
16408 pool_pointer j; /* index into |str_pool| */
16410 for (j=mp->str_start[s];j<=str_stop(s)-1;j++) {
16412 if ( k<=file_name_size )
16413 mp->old_file_name[k]=xchr(mp->str_pool[j]);
16415 mp->old_file_name[++k] = 0;
16419 char old_file_name[file_name_size+1]; /* analogous to |name_of_file| */
16421 @ The following simple routine starts reading the \.{MPX} file associated
16422 with the current input file.
16424 @c void mp_start_mpx_input (MP mp) {
16425 mp_pack_file_name(mp, in_name, in_area, ".mpx");
16426 @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16427 |goto not_found| if there is a problem@>;
16428 mp_begin_file_reading(mp);
16429 if ( ! mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16430 mp_end_file_reading(mp);
16433 name=mp_a_make_name_string(mp, cur_file);
16434 mp->mpx_name[index]=name; add_str_ref(name);
16435 @<Read the first line of the new file@>;
16438 @<Explain that the \.{MPX} file can't be read and |succumb|@>;
16441 @ This should ideally be changed to do whatever is necessary to create the
16442 \.{MPX} file given by |name_of_file| if it does not exist or if it is out
16443 of date. This requires invoking \.{MPtoTeX} on the |old_file_name| and passing
16444 the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
16445 completely different typesetting program if suitable postprocessor is
16446 available to perform the function of \.{DVItoMP}.)
16447 @^system dependencies@>
16449 @ @<Exported types@>=
16450 typedef int (*mp_run_make_mpx_command)(MP mp, char *origname, char *mtxname);
16453 mp_run_make_mpx_command run_make_mpx;
16455 @ @<Option variables@>=
16456 mp_run_make_mpx_command run_make_mpx;
16458 @ @<Allocate or initialize ...@>=
16459 set_callback_option(run_make_mpx);
16461 @ @<Internal library declarations@>=
16462 int mp_run_make_mpx (MP mp, char *origname, char *mtxname);
16464 @ The default does nothing.
16466 int mp_run_make_mpx (MP mp, char *origname, char *mtxname) {
16467 if (mp && origname && mtxname) /* for -W */
16474 @ @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16475 |goto not_found| if there is a problem@>=
16476 mp_copy_old_name(mp, name);
16477 if (!(mp->run_make_mpx)(mp, mp->old_file_name, mp->name_of_file))
16480 @ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
16481 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16482 mp_print_nl(mp, ">> ");
16483 mp_print(mp, mp->old_file_name);
16484 mp_print_nl(mp, ">> ");
16485 mp_print(mp, mp->name_of_file);
16486 mp_print_nl(mp, "! Unable to make mpx file");
16487 help4("The two files given above are one of your source files")
16488 ("and an auxiliary file I need to read to find out what your")
16489 ("btex..etex blocks mean. If you don't know why I had trouble,")
16490 ("try running it manually through MPtoTeX, TeX, and DVItoMP");
16493 @ The last file-opening commands are for files accessed via the \&{readfrom}
16494 @:read_from_}{\&{readfrom} primitive@>
16495 operator and the \&{write} command. Such files are stored in separate arrays.
16496 @:write_}{\&{write} primitive@>
16498 @<Types in the outer block@>=
16499 typedef unsigned int readf_index; /* |0..max_read_files| */
16500 typedef unsigned int write_index; /* |0..max_write_files| */
16503 readf_index max_read_files; /* maximum number of simultaneously open \&{readfrom} files */
16504 void ** rd_file; /* \&{readfrom} files */
16505 char ** rd_fname; /* corresponding file name or 0 if file not open */
16506 readf_index read_files; /* number of valid entries in the above arrays */
16507 write_index max_write_files; /* maximum number of simultaneously open \&{write} */
16508 void ** wr_file; /* \&{write} files */
16509 char ** wr_fname; /* corresponding file name or 0 if file not open */
16510 write_index write_files; /* number of valid entries in the above arrays */
16512 @ @<Allocate or initialize ...@>=
16513 mp->max_read_files=8;
16514 mp->rd_file = xmalloc((mp->max_read_files+1),sizeof(void *));
16515 mp->rd_fname = xmalloc((mp->max_read_files+1),sizeof(char *));
16516 memset(mp->rd_fname, 0, sizeof(char *)*(mp->max_read_files+1));
16518 mp->max_write_files=8;
16519 mp->wr_file = xmalloc((mp->max_write_files+1),sizeof(void *));
16520 mp->wr_fname = xmalloc((mp->max_write_files+1),sizeof(char *));
16521 memset(mp->wr_fname, 0, sizeof(char *)*(mp->max_write_files+1));
16525 @ This routine starts reading the file named by string~|s| without setting
16526 |loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
16527 be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
16529 @c boolean mp_start_read_input (MP mp,char *s, readf_index n) {
16530 mp_ptr_scan_file(mp, s);
16532 mp_begin_file_reading(mp);
16533 if ( ! mp_a_open_in(mp, &mp->rd_file[n], (mp_filetype_text+n)) )
16535 if ( ! mp_input_ln(mp, mp->rd_file[n] ) ) {
16536 (mp->close_file)(mp->rd_file[n]);
16539 mp->rd_fname[n]=xstrdup(mp->name_of_file);
16542 mp_end_file_reading(mp);
16546 @ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
16549 void mp_open_write_file (MP mp, char *s, readf_index n) ;
16551 @ @c void mp_open_write_file (MP mp,char *s, readf_index n) {
16552 mp_ptr_scan_file(mp, s);
16554 while ( ! mp_a_open_out(mp, &mp->wr_file[n], (mp_filetype_text+n)) )
16555 mp_prompt_file_name(mp, "file name for write output","");
16556 mp->wr_fname[n]=xstrdup(mp->name_of_file);
16560 @* \[36] Introduction to the parsing routines.
16561 We come now to the central nervous system that sparks many of \MP's activities.
16562 By evaluating expressions, from their primary constituents to ever larger
16563 subexpressions, \MP\ builds the structures that ultimately define complete
16564 pictures or fonts of type.
16566 Four mutually recursive subroutines are involved in this process: We call them
16567 $$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
16568 and |scan_expression|.}$$
16570 Each of them is parameterless and begins with the first token to be scanned
16571 already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
16572 the value of the primary or secondary or tertiary or expression that was
16573 found will appear in the global variables |cur_type| and |cur_exp|. The
16574 token following the expression will be represented in |cur_cmd|, |cur_mod|,
16577 Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
16578 backup mechanisms have been added in order to provide reasonable error
16582 small_number cur_type; /* the type of the expression just found */
16583 integer cur_exp; /* the value of the expression just found */
16588 @ Many different kinds of expressions are possible, so it is wise to have
16589 precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
16592 |cur_type=mp_vacuous| means that this expression didn't turn out to have a
16593 value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
16594 construction in which there was no expression before the \&{endgroup}.
16595 In this case |cur_exp| has some irrelevant value.
16598 |cur_type=mp_boolean_type| means that |cur_exp| is either |true_code|
16602 |cur_type=mp_unknown_boolean| means that |cur_exp| points to a capsule
16603 node that is in the ring of variables equivalent
16604 to at least one undefined boolean variable.
16607 |cur_type=mp_string_type| means that |cur_exp| is a string number (i.e., an
16608 integer in the range |0<=cur_exp<str_ptr|). That string's reference count
16609 includes this particular reference.
16612 |cur_type=mp_unknown_string| means that |cur_exp| points to a capsule
16613 node that is in the ring of variables equivalent
16614 to at least one undefined string variable.
16617 |cur_type=mp_pen_type| means that |cur_exp| points to a node in a pen. Nobody
16618 else points to any of the nodes in this pen. The pen may be polygonal or
16622 |cur_type=mp_unknown_pen| means that |cur_exp| points to a capsule
16623 node that is in the ring of variables equivalent
16624 to at least one undefined pen variable.
16627 |cur_type=mp_path_type| means that |cur_exp| points to a the first node of
16628 a path; nobody else points to this particular path. The control points of
16629 the path will have been chosen.
16632 |cur_type=mp_unknown_path| means that |cur_exp| points to a capsule
16633 node that is in the ring of variables equivalent
16634 to at least one undefined path variable.
16637 |cur_type=mp_picture_type| means that |cur_exp| points to an edge header node.
16638 There may be other pointers to this particular set of edges. The header node
16639 contains a reference count that includes this particular reference.
16642 |cur_type=mp_unknown_picture| means that |cur_exp| points to a capsule
16643 node that is in the ring of variables equivalent
16644 to at least one undefined picture variable.
16647 |cur_type=mp_transform_type| means that |cur_exp| points to a |mp_transform_type|
16648 capsule node. The |value| part of this capsule
16649 points to a transform node that contains six numeric values,
16650 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16653 |cur_type=mp_color_type| means that |cur_exp| points to a |color_type|
16654 capsule node. The |value| part of this capsule
16655 points to a color node that contains three numeric values,
16656 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16659 |cur_type=mp_cmykcolor_type| means that |cur_exp| points to a |mp_cmykcolor_type|
16660 capsule node. The |value| part of this capsule
16661 points to a color node that contains four numeric values,
16662 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16665 |cur_type=mp_pair_type| means that |cur_exp| points to a capsule
16666 node whose type is |mp_pair_type|. The |value| part of this capsule
16667 points to a pair node that contains two numeric values,
16668 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16671 |cur_type=mp_known| means that |cur_exp| is a |scaled| value.
16674 |cur_type=mp_dependent| means that |cur_exp| points to a capsule node whose type
16675 is |dependent|. The |dep_list| field in this capsule points to the associated
16679 |cur_type=mp_proto_dependent| means that |cur_exp| points to a |mp_proto_dependent|
16680 capsule node. The |dep_list| field in this capsule
16681 points to the associated dependency list.
16684 |cur_type=independent| means that |cur_exp| points to a capsule node
16685 whose type is |independent|. This somewhat unusual case can arise, for
16686 example, in the expression
16687 `$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
16690 |cur_type=mp_token_list| means that |cur_exp| points to a linked list of
16691 tokens. This case arises only on the left-hand side of an assignment
16692 (`\.{:=}') operation, under very special circumstances.
16694 \smallskip\noindent
16695 The possible settings of |cur_type| have been listed here in increasing
16696 numerical order. Notice that |cur_type| will never be |mp_numeric_type| or
16697 |suffixed_macro| or |mp_unsuffixed_macro|, although variables of those types
16698 are allowed. Conversely, \MP\ has no variables of type |mp_vacuous| or
16701 @ Capsules are two-word nodes that have a similar meaning
16702 to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|
16703 and |link<=mp_void|; and their |type| field is one of the possibilities for
16704 |cur_type| listed above.
16706 The |value| field of a capsule is, in most cases, the value that
16707 corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
16708 However, when |cur_exp| would point to a capsule,
16709 no extra layer of indirection is present; the |value|
16710 field is what would have been called |value(cur_exp)| if it had not been
16711 encapsulated. Furthermore, if the type is |dependent| or
16712 |mp_proto_dependent|, the |value| field of a capsule is replaced by
16713 |dep_list| and |prev_dep| fields, since dependency lists in capsules are
16714 always part of the general |dep_list| structure.
16716 The |get_x_next| routine is careful not to change the values of |cur_type|
16717 and |cur_exp| when it gets an expanded token. However, |get_x_next| might
16718 call a macro, which might parse an expression, which might execute lots of
16719 commands in a group; hence it's possible that |cur_type| might change
16720 from, say, |mp_unknown_boolean| to |mp_boolean_type|, or from |dependent| to
16721 |known| or |independent|, during the time |get_x_next| is called. The
16722 programs below are careful to stash sensitive intermediate results in
16723 capsules, so that \MP's generality doesn't cause trouble.
16725 Here's a procedure that illustrates these conventions. It takes
16726 the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
16727 and stashes them away in a
16728 capsule. It is not used when |cur_type=mp_token_list|.
16729 After the operation, |cur_type=mp_vacuous|; hence there is no need to
16730 copy path lists or to update reference counts, etc.
16732 The special link |mp_void| is put on the capsule returned by
16733 |stash_cur_exp|, because this procedure is used to store macro parameters
16734 that must be easily distinguishable from token lists.
16736 @<Declare the stashing/unstashing routines@>=
16737 pointer mp_stash_cur_exp (MP mp) {
16738 pointer p; /* the capsule that will be returned */
16739 switch (mp->cur_type) {
16740 case unknown_types:
16741 case mp_transform_type:
16742 case mp_color_type:
16745 case mp_proto_dependent:
16746 case mp_independent:
16747 case mp_cmykcolor_type:
16751 p=mp_get_node(mp, value_node_size); name_type(p)=mp_capsule;
16752 type(p)=mp->cur_type; value(p)=mp->cur_exp;
16755 mp->cur_type=mp_vacuous; link(p)=mp_void;
16759 @ The inverse of |stash_cur_exp| is the following procedure, which
16760 deletes an unnecessary capsule and puts its contents into |cur_type|
16763 The program steps of \MP\ can be divided into two categories: those in
16764 which |cur_type| and |cur_exp| are ``alive'' and those in which they are
16765 ``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
16766 information or not. It's important not to ignore them when they're alive,
16767 and it's important not to pay attention to them when they're dead.
16769 There's also an intermediate category: If |cur_type=mp_vacuous|, then
16770 |cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
16771 and |cur_exp| are alive or dead. In such cases we say that |cur_type|
16772 and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
16773 only when they are alive or dormant.
16775 The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
16776 are alive or dormant. The \\{unstash} procedure assumes that they are
16777 dead or dormant; it resuscitates them.
16779 @<Declare the stashing/unstashing...@>=
16780 void mp_unstash_cur_exp (MP mp,pointer p) ;
16783 void mp_unstash_cur_exp (MP mp,pointer p) {
16784 mp->cur_type=type(p);
16785 switch (mp->cur_type) {
16786 case unknown_types:
16787 case mp_transform_type:
16788 case mp_color_type:
16791 case mp_proto_dependent:
16792 case mp_independent:
16793 case mp_cmykcolor_type:
16797 mp->cur_exp=value(p);
16798 mp_free_node(mp, p,value_node_size);
16803 @ The following procedure prints the values of expressions in an
16804 abbreviated format. If its first parameter |p| is null, the value of
16805 |(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
16806 containing the desired value. The second parameter controls the amount of
16807 output. If it is~0, dependency lists will be abbreviated to
16808 `\.{linearform}' unless they consist of a single term. If it is greater
16809 than~1, complicated structures (pens, pictures, and paths) will be displayed
16812 @<Declare subroutines for printing expressions@>=
16813 @<Declare the procedure called |print_dp|@>;
16814 @<Declare the stashing/unstashing routines@>;
16815 void mp_print_exp (MP mp,pointer p, small_number verbosity) {
16816 boolean restore_cur_exp; /* should |cur_exp| be restored? */
16817 small_number t; /* the type of the expression */
16818 pointer q; /* a big node being displayed */
16819 integer v=0; /* the value of the expression */
16821 restore_cur_exp=false;
16823 p=mp_stash_cur_exp(mp); restore_cur_exp=true;
16826 if ( t<mp_dependent ) v=value(p); else if ( t<mp_independent ) v=dep_list(p);
16827 @<Print an abbreviated value of |v| with format depending on |t|@>;
16828 if ( restore_cur_exp ) mp_unstash_cur_exp(mp, p);
16831 @ @<Print an abbreviated value of |v| with format depending on |t|@>=
16833 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
16834 case mp_boolean_type:
16835 if ( v==true_code ) mp_print(mp, "true"); else mp_print(mp, "false");
16837 case unknown_types: case mp_numeric_type:
16838 @<Display a variable that's been declared but not defined@>;
16840 case mp_string_type:
16841 mp_print_char(mp, '"'); mp_print_str(mp, v); mp_print_char(mp, '"');
16843 case mp_pen_type: case mp_path_type: case mp_picture_type:
16844 @<Display a complex type@>;
16846 case mp_transform_type: case mp_color_type: case mp_pair_type: case mp_cmykcolor_type:
16847 if ( v==null ) mp_print_type(mp, t);
16848 else @<Display a big node@>;
16850 case mp_known:mp_print_scaled(mp, v); break;
16851 case mp_dependent: case mp_proto_dependent:
16852 mp_print_dp(mp, t,v,verbosity);
16854 case mp_independent:mp_print_variable_name(mp, p); break;
16855 default: mp_confusion(mp, "exp"); break;
16856 @:this can't happen exp}{\quad exp@>
16859 @ @<Display a big node@>=
16861 mp_print_char(mp, '('); q=v+mp->big_node_size[t];
16863 if ( type(v)==mp_known ) mp_print_scaled(mp, value(v));
16864 else if ( type(v)==mp_independent ) mp_print_variable_name(mp, v);
16865 else mp_print_dp(mp, type(v),dep_list(v),verbosity);
16867 if ( v!=q ) mp_print_char(mp, ',');
16869 mp_print_char(mp, ')');
16872 @ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
16873 in the log file only, unless the user has given a positive value to
16876 @<Display a complex type@>=
16877 if ( verbosity<=1 ) {
16878 mp_print_type(mp, t);
16880 if ( mp->selector==term_and_log )
16881 if ( mp->internal[mp_tracing_online]<=0 ) {
16882 mp->selector=term_only;
16883 mp_print_type(mp, t); mp_print(mp, " (see the transcript file)");
16884 mp->selector=term_and_log;
16887 case mp_pen_type:mp_print_pen(mp, v,"",false); break;
16888 case mp_path_type:mp_print_path(mp, v,"",false); break;
16889 case mp_picture_type:mp_print_edges(mp, v,"",false); break;
16890 } /* there are no other cases */
16893 @ @<Declare the procedure called |print_dp|@>=
16894 void mp_print_dp (MP mp,small_number t, pointer p,
16895 small_number verbosity) {
16896 pointer q; /* the node following |p| */
16898 if ( (info(q)==null) || (verbosity>0) ) mp_print_dependency(mp, p,t);
16899 else mp_print(mp, "linearform");
16902 @ The displayed name of a variable in a ring will not be a capsule unless
16903 the ring consists entirely of capsules.
16905 @<Display a variable that's been declared but not defined@>=
16906 { mp_print_type(mp, t);
16908 { mp_print_char(mp, ' ');
16909 while ( (name_type(v)==mp_capsule) && (v!=p) ) v=value(v);
16910 mp_print_variable_name(mp, v);
16914 @ When errors are detected during parsing, it is often helpful to
16915 display an expression just above the error message, using |exp_err|
16916 or |disp_err| instead of |print_err|.
16918 @d exp_err(A) mp_disp_err(mp, null,(A)) /* displays the current expression */
16920 @<Declare subroutines for printing expressions@>=
16921 void mp_disp_err (MP mp,pointer p, char *s) {
16922 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16923 mp_print_nl(mp, ">> ");
16925 mp_print_exp(mp, p,1); /* ``medium verbose'' printing of the expression */
16927 mp_print_nl(mp, "! "); mp_print(mp, s);
16932 @ If |cur_type| and |cur_exp| contain relevant information that should
16933 be recycled, we will use the following procedure, which changes |cur_type|
16934 to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
16935 and |cur_exp| as either alive or dormant after this has been done,
16936 because |cur_exp| will not contain a pointer value.
16938 @ @c void mp_flush_cur_exp (MP mp,scaled v) {
16939 switch (mp->cur_type) {
16940 case unknown_types: case mp_transform_type: case mp_color_type: case mp_pair_type:
16941 case mp_dependent: case mp_proto_dependent: case mp_independent: case mp_cmykcolor_type:
16942 mp_recycle_value(mp, mp->cur_exp);
16943 mp_free_node(mp, mp->cur_exp,value_node_size);
16945 case mp_string_type:
16946 delete_str_ref(mp->cur_exp); break;
16947 case mp_pen_type: case mp_path_type:
16948 mp_toss_knot_list(mp, mp->cur_exp); break;
16949 case mp_picture_type:
16950 delete_edge_ref(mp->cur_exp); break;
16954 mp->cur_type=mp_known; mp->cur_exp=v;
16957 @ There's a much more general procedure that is capable of releasing
16958 the storage associated with any two-word value packet.
16960 @<Declare the recycling subroutines@>=
16961 void mp_recycle_value (MP mp,pointer p) ;
16963 @ @c void mp_recycle_value (MP mp,pointer p) {
16964 small_number t; /* a type code */
16965 integer vv; /* another value */
16966 pointer q,r,s,pp; /* link manipulation registers */
16967 integer v=0; /* a value */
16969 if ( t<mp_dependent ) v=value(p);
16971 case undefined: case mp_vacuous: case mp_boolean_type: case mp_known:
16972 case mp_numeric_type:
16974 case unknown_types:
16975 mp_ring_delete(mp, p); break;
16976 case mp_string_type:
16977 delete_str_ref(v); break;
16978 case mp_path_type: case mp_pen_type:
16979 mp_toss_knot_list(mp, v); break;
16980 case mp_picture_type:
16981 delete_edge_ref(v); break;
16982 case mp_cmykcolor_type: case mp_pair_type: case mp_color_type:
16983 case mp_transform_type:
16984 @<Recycle a big node@>; break;
16985 case mp_dependent: case mp_proto_dependent:
16986 @<Recycle a dependency list@>; break;
16987 case mp_independent:
16988 @<Recycle an independent variable@>; break;
16989 case mp_token_list: case mp_structured:
16990 mp_confusion(mp, "recycle"); break;
16991 @:this can't happen recycle}{\quad recycle@>
16992 case mp_unsuffixed_macro: case mp_suffixed_macro:
16993 mp_delete_mac_ref(mp, value(p)); break;
16994 } /* there are no other cases */
16998 @ @<Recycle a big node@>=
17000 q=v+mp->big_node_size[t];
17002 q=q-2; mp_recycle_value(mp, q);
17004 mp_free_node(mp, v,mp->big_node_size[t]);
17007 @ @<Recycle a dependency list@>=
17010 while ( info(q)!=null ) q=link(q);
17011 link(prev_dep(p))=link(q);
17012 prev_dep(link(q))=prev_dep(p);
17013 link(q)=null; mp_flush_node_list(mp, dep_list(p));
17016 @ When an independent variable disappears, it simply fades away, unless
17017 something depends on it. In the latter case, a dependent variable whose
17018 coefficient of dependence is maximal will take its place.
17019 The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
17020 as part of his Ph.D. thesis (Stanford University, December 1982).
17021 @^Zabala Salelles, Ignacio Andres@>
17023 For example, suppose that variable $x$ is being recycled, and that the
17024 only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
17025 we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
17026 will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
17027 we will print `\.{\#\#\# -2x=-y+a}'.
17029 There's a slight complication, however: An independent variable $x$
17030 can occur both in dependency lists and in proto-dependency lists.
17031 This makes it necessary to be careful when deciding which coefficient
17034 Furthermore, this complication is not so slight when
17035 a proto-dependent variable is chosen to become independent. For example,
17036 suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
17037 then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
17038 large coefficient `50'.
17040 In order to deal with these complications without wasting too much time,
17041 we shall link together the occurrences of~$x$ among all the linear
17042 dependencies, maintaining separate lists for the dependent and
17043 proto-dependent cases.
17045 @<Recycle an independent variable@>=
17047 mp->max_c[mp_dependent]=0; mp->max_c[mp_proto_dependent]=0;
17048 mp->max_link[mp_dependent]=null; mp->max_link[mp_proto_dependent]=null;
17050 while ( q!=dep_head ) {
17051 s=value_loc(q); /* now |link(s)=dep_list(q)| */
17054 if ( info(r)==null ) break;;
17055 if ( info(r)!=p ) {
17058 t=type(q); link(s)=link(r); info(r)=q;
17059 if ( abs(value(r))>mp->max_c[t] ) {
17060 @<Record a new maximum coefficient of type |t|@>;
17062 link(r)=mp->max_link[t]; mp->max_link[t]=r;
17068 if ( (mp->max_c[mp_dependent]>0)||(mp->max_c[mp_proto_dependent]>0) ) {
17069 @<Choose a dependent variable to take the place of the disappearing
17070 independent variable, and change all remaining dependencies
17075 @ The code for independency removal makes use of three two-word arrays.
17078 integer max_c[mp_proto_dependent+1]; /* max coefficient magnitude */
17079 pointer max_ptr[mp_proto_dependent+1]; /* where |p| occurs with |max_c| */
17080 pointer max_link[mp_proto_dependent+1]; /* other occurrences of |p| */
17082 @ @<Record a new maximum coefficient...@>=
17084 if ( mp->max_c[t]>0 ) {
17085 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
17087 mp->max_c[t]=abs(value(r)); mp->max_ptr[t]=r;
17090 @ @<Choose a dependent...@>=
17092 if ( (mp->max_c[mp_dependent] / 010000 >= mp->max_c[mp_proto_dependent]) )
17095 t=mp_proto_dependent;
17096 @<Determine the dependency list |s| to substitute for the independent
17098 t=mp_dependent+mp_proto_dependent-t; /* complement |t| */
17099 if ( mp->max_c[t]>0 ) { /* we need to pick up an unchosen dependency */
17100 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
17102 if ( t!=mp_dependent ) { @<Substitute new dependencies in place of |p|@>; }
17103 else { @<Substitute new proto-dependencies in place of |p|@>;}
17104 mp_flush_node_list(mp, s);
17105 if ( mp->fix_needed ) mp_fix_dependencies(mp);
17109 @ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
17110 and |info(s)| points to the dependent variable~|pp| of type~|t| from
17111 whose dependency list we have removed node~|s|. We must reinsert
17112 node~|s| into the dependency list, with coefficient $-1.0$, and with
17113 |pp| as the new independent variable. Since |pp| will have a larger serial
17114 number than any other variable, we can put node |s| at the head of the
17117 @<Determine the dep...@>=
17118 s=mp->max_ptr[t]; pp=info(s); v=value(s);
17119 if ( t==mp_dependent ) value(s)=-fraction_one; else value(s)=-unity;
17120 r=dep_list(pp); link(s)=r;
17121 while ( info(r)!=null ) r=link(r);
17122 q=link(r); link(r)=null;
17123 prev_dep(q)=prev_dep(pp); link(prev_dep(pp))=q;
17125 if ( mp->cur_exp==pp ) if ( mp->cur_type==t ) mp->cur_type=mp_independent;
17126 if ( mp->internal[mp_tracing_equations]>0 ) {
17127 @<Show the transformed dependency@>;
17130 @ Now $(-v)$ times the formerly independent variable~|p| is being replaced
17131 by the dependency list~|s|.
17133 @<Show the transformed...@>=
17134 if ( mp_interesting(mp, p) ) {
17135 mp_begin_diagnostic(mp); mp_print_nl(mp, "### ");
17136 @:]]]\#\#\#_}{\.{\#\#\#}@>
17137 if ( v>0 ) mp_print_char(mp, '-');
17138 if ( t==mp_dependent ) vv=mp_round_fraction(mp, mp->max_c[mp_dependent]);
17139 else vv=mp->max_c[mp_proto_dependent];
17140 if ( vv!=unity ) mp_print_scaled(mp, vv);
17141 mp_print_variable_name(mp, p);
17142 while ( value(p) % s_scale>0 ) {
17143 mp_print(mp, "*4"); value(p)=value(p)-2;
17145 if ( t==mp_dependent ) mp_print_char(mp, '='); else mp_print(mp, " = ");
17146 mp_print_dependency(mp, s,t);
17147 mp_end_diagnostic(mp, false);
17150 @ Finally, there are dependent and proto-dependent variables whose
17151 dependency lists must be brought up to date.
17153 @<Substitute new dependencies...@>=
17154 for (t=mp_dependent;t<=mp_proto_dependent;t++){
17156 while ( r!=null ) {
17158 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17159 mp_make_fraction(mp, value(r),-v),s,t,mp_dependent);
17160 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17161 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17165 @ @<Substitute new proto...@>=
17166 for (t=mp_dependent;t<=mp_proto_dependent;t++) {
17168 while ( r!=null ) {
17170 if ( t==mp_dependent ) { /* for safety's sake, we change |q| to |mp_proto_dependent| */
17171 if ( mp->cur_exp==q ) if ( mp->cur_type==mp_dependent )
17172 mp->cur_type=mp_proto_dependent;
17173 dep_list(q)=mp_p_over_v(mp, dep_list(q),unity,mp_dependent,mp_proto_dependent);
17174 type(q)=mp_proto_dependent; value(r)=mp_round_fraction(mp, value(r));
17176 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17177 mp_make_scaled(mp, value(r),-v),s,mp_proto_dependent,mp_proto_dependent);
17178 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17179 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17183 @ Here are some routines that provide handy combinations of actions
17184 that are often needed during error recovery. For example,
17185 `|flush_error|' flushes the current expression, replaces it by
17186 a given value, and calls |error|.
17188 Errors often are detected after an extra token has already been scanned.
17189 The `\\{put\_get}' routines put that token back before calling |error|;
17190 then they get it back again. (Or perhaps they get another token, if
17191 the user has changed things.)
17194 void mp_flush_error (MP mp,scaled v);
17195 void mp_put_get_error (MP mp);
17196 void mp_put_get_flush_error (MP mp,scaled v) ;
17199 void mp_flush_error (MP mp,scaled v) {
17200 mp_error(mp); mp_flush_cur_exp(mp, v);
17202 void mp_put_get_error (MP mp) {
17203 mp_back_error(mp); mp_get_x_next(mp);
17205 void mp_put_get_flush_error (MP mp,scaled v) {
17206 mp_put_get_error(mp);
17207 mp_flush_cur_exp(mp, v);
17210 @ A global variable |var_flag| is set to a special command code
17211 just before \MP\ calls |scan_expression|, if the expression should be
17212 treated as a variable when this command code immediately follows. For
17213 example, |var_flag| is set to |assignment| at the beginning of a
17214 statement, because we want to know the {\sl location\/} of a variable at
17215 the left of `\.{:=}', not the {\sl value\/} of that variable.
17217 The |scan_expression| subroutine calls |scan_tertiary|,
17218 which calls |scan_secondary|, which calls |scan_primary|, which sets
17219 |var_flag:=0|. In this way each of the scanning routines ``knows''
17220 when it has been called with a special |var_flag|, but |var_flag| is
17223 A variable preceding a command that equals |var_flag| is converted to a
17224 token list rather than a value. Furthermore, an `\.{=}' sign following an
17225 expression with |var_flag=assignment| is not considered to be a relation
17226 that produces boolean expressions.
17230 int var_flag; /* command that wants a variable */
17235 @* \[37] Parsing primary expressions.
17236 The first parsing routine, |scan_primary|, is also the most complicated one,
17237 since it involves so many different cases. But each case---with one
17238 exception---is fairly simple by itself.
17240 When |scan_primary| begins, the first token of the primary to be scanned
17241 should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
17242 of |cur_type| and |cur_exp| should be either dead or dormant, as explained
17243 earlier. If |cur_cmd| is not between |min_primary_command| and
17244 |max_primary_command|, inclusive, a syntax error will be signaled.
17246 @<Declare the basic parsing subroutines@>=
17247 void mp_scan_primary (MP mp) {
17248 pointer p,q,r; /* for list manipulation */
17249 quarterword c; /* a primitive operation code */
17250 int my_var_flag; /* initial value of |my_var_flag| */
17251 pointer l_delim,r_delim; /* hash addresses of a delimiter pair */
17252 @<Other local variables for |scan_primary|@>;
17253 my_var_flag=mp->var_flag; mp->var_flag=0;
17256 @<Supply diagnostic information, if requested@>;
17257 switch (mp->cur_cmd) {
17258 case left_delimiter:
17259 @<Scan a delimited primary@>; break;
17261 @<Scan a grouped primary@>; break;
17263 @<Scan a string constant@>; break;
17264 case numeric_token:
17265 @<Scan a primary that starts with a numeric token@>; break;
17267 @<Scan a nullary operation@>; break;
17268 case unary: case type_name: case cycle: case plus_or_minus:
17269 @<Scan a unary operation@>; break;
17270 case primary_binary:
17271 @<Scan a binary operation with `\&{of}' between its operands@>; break;
17273 @<Convert a suffix to a string@>; break;
17274 case internal_quantity:
17275 @<Scan an internal numeric quantity@>; break;
17276 case capsule_token:
17277 mp_make_exp_copy(mp, mp->cur_mod); break;
17279 @<Scan a variable primary; |goto restart| if it turns out to be a macro@>; break;
17281 mp_bad_exp(mp, "A primary"); goto RESTART; break;
17282 @.A primary expression...@>
17284 mp_get_x_next(mp); /* the routines |goto done| if they don't want this */
17286 if ( mp->cur_cmd==left_bracket ) {
17287 if ( mp->cur_type>=mp_known ) {
17288 @<Scan a mediation construction@>;
17295 @ Errors at the beginning of expressions are flagged by |bad_exp|.
17297 @c void mp_bad_exp (MP mp,char * s) {
17299 print_err(s); mp_print(mp, " expression can't begin with `");
17300 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
17301 mp_print_char(mp, '\'');
17302 help4("I'm afraid I need some sort of value in order to continue,")
17303 ("so I've tentatively inserted `0'. You may want to")
17304 ("delete this zero and insert something else;")
17305 ("see Chapter 27 of The METAFONTbook for an example.");
17306 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17307 mp_back_input(mp); mp->cur_sym=0; mp->cur_cmd=numeric_token;
17308 mp->cur_mod=0; mp_ins_error(mp);
17309 save_flag=mp->var_flag; mp->var_flag=0; mp_get_x_next(mp);
17310 mp->var_flag=save_flag;
17313 @ @<Supply diagnostic information, if requested@>=
17315 if ( mp->panicking ) mp_check_mem(mp, false);
17317 if ( mp->interrupt!=0 ) if ( mp->OK_to_interrupt ) {
17318 mp_back_input(mp); check_interrupt; mp_get_x_next(mp);
17321 @ @<Scan a delimited primary@>=
17323 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
17324 mp_get_x_next(mp); mp_scan_expression(mp);
17325 if ( (mp->cur_cmd==comma) && (mp->cur_type>=mp_known) ) {
17326 @<Scan the rest of a delimited set of numerics@>;
17328 mp_check_delimiter(mp, l_delim,r_delim);
17332 @ The |stash_in| subroutine puts the current (numeric) expression into a field
17333 within a ``big node.''
17335 @c void mp_stash_in (MP mp,pointer p) {
17336 pointer q; /* temporary register */
17337 type(p)=mp->cur_type;
17338 if ( mp->cur_type==mp_known ) {
17339 value(p)=mp->cur_exp;
17341 if ( mp->cur_type==mp_independent ) {
17342 @<Stash an independent |cur_exp| into a big node@>;
17344 mp->mem[value_loc(p)]=mp->mem[value_loc(mp->cur_exp)];
17345 /* |dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)| */
17346 link(prev_dep(p))=p;
17348 mp_free_node(mp, mp->cur_exp,value_node_size);
17350 mp->cur_type=mp_vacuous;
17353 @ In rare cases the current expression can become |independent|. There
17354 may be many dependency lists pointing to such an independent capsule,
17355 so we can't simply move it into place within a big node. Instead,
17356 we copy it, then recycle it.
17358 @ @<Stash an independent |cur_exp|...@>=
17360 q=mp_single_dependency(mp, mp->cur_exp);
17361 if ( q==mp->dep_final ){
17362 type(p)=mp_known; value(p)=0; mp_free_node(mp, q,dep_node_size);
17364 type(p)=mp_dependent; mp_new_dep(mp, p,q);
17366 mp_recycle_value(mp, mp->cur_exp);
17369 @ This code uses the fact that |red_part_loc| and |green_part_loc|
17370 are synonymous with |x_part_loc| and |y_part_loc|.
17372 @<Scan the rest of a delimited set of numerics@>=
17374 p=mp_stash_cur_exp(mp);
17375 mp_get_x_next(mp); mp_scan_expression(mp);
17376 @<Make sure the second part of a pair or color has a numeric type@>;
17377 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
17378 if ( mp->cur_cmd==comma ) type(q)=mp_color_type;
17379 else type(q)=mp_pair_type;
17380 mp_init_big_node(mp, q); r=value(q);
17381 mp_stash_in(mp, y_part_loc(r));
17382 mp_unstash_cur_exp(mp, p);
17383 mp_stash_in(mp, x_part_loc(r));
17384 if ( mp->cur_cmd==comma ) {
17385 @<Scan the last of a triplet of numerics@>;
17387 if ( mp->cur_cmd==comma ) {
17388 type(q)=mp_cmykcolor_type;
17389 mp_init_big_node(mp, q); t=value(q);
17390 mp->mem[cyan_part_loc(t)]=mp->mem[red_part_loc(r)];
17391 value(cyan_part_loc(t))=value(red_part_loc(r));
17392 mp->mem[magenta_part_loc(t)]=mp->mem[green_part_loc(r)];
17393 value(magenta_part_loc(t))=value(green_part_loc(r));
17394 mp->mem[yellow_part_loc(t)]=mp->mem[blue_part_loc(r)];
17395 value(yellow_part_loc(t))=value(blue_part_loc(r));
17396 mp_recycle_value(mp, r);
17398 @<Scan the last of a quartet of numerics@>;
17400 mp_check_delimiter(mp, l_delim,r_delim);
17401 mp->cur_type=type(q);
17405 @ @<Make sure the second part of a pair or color has a numeric type@>=
17406 if ( mp->cur_type<mp_known ) {
17407 exp_err("Nonnumeric ypart has been replaced by 0");
17408 @.Nonnumeric...replaced by 0@>
17409 help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")
17410 ("but after finding a nice `a' I found a `b' that isn't")
17411 ("of numeric type. So I've changed that part to zero.")
17412 ("(The b that I didn't like appears above the error message.)");
17413 mp_put_get_flush_error(mp, 0);
17416 @ @<Scan the last of a triplet of numerics@>=
17418 mp_get_x_next(mp); mp_scan_expression(mp);
17419 if ( mp->cur_type<mp_known ) {
17420 exp_err("Nonnumeric third part has been replaced by 0");
17421 @.Nonnumeric...replaced by 0@>
17422 help3("I've just scanned a color `(a,b,c)' or cmykcolor(a,b,c,d); but the `c'")
17423 ("isn't of numeric type. So I've changed that part to zero.")
17424 ("(The c that I didn't like appears above the error message.)");
17425 mp_put_get_flush_error(mp, 0);
17427 mp_stash_in(mp, blue_part_loc(r));
17430 @ @<Scan the last of a quartet of numerics@>=
17432 mp_get_x_next(mp); mp_scan_expression(mp);
17433 if ( mp->cur_type<mp_known ) {
17434 exp_err("Nonnumeric blackpart has been replaced by 0");
17435 @.Nonnumeric...replaced by 0@>
17436 help3("I've just scanned a cmykcolor `(c,m,y,k)'; but the `k' isn't")
17437 ("of numeric type. So I've changed that part to zero.")
17438 ("(The k that I didn't like appears above the error message.)");
17439 mp_put_get_flush_error(mp, 0);
17441 mp_stash_in(mp, black_part_loc(r));
17444 @ The local variable |group_line| keeps track of the line
17445 where a \&{begingroup} command occurred; this will be useful
17446 in an error message if the group doesn't actually end.
17448 @<Other local variables for |scan_primary|@>=
17449 integer group_line; /* where a group began */
17451 @ @<Scan a grouped primary@>=
17453 group_line=mp_true_line(mp);
17454 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17455 save_boundary_item(p);
17457 mp_do_statement(mp); /* ends with |cur_cmd>=semicolon| */
17458 } while (! (mp->cur_cmd!=semicolon));
17459 if ( mp->cur_cmd!=end_group ) {
17460 print_err("A group begun on line ");
17461 @.A group...never ended@>
17462 mp_print_int(mp, group_line);
17463 mp_print(mp, " never ended");
17464 help2("I saw a `begingroup' back there that hasn't been matched")
17465 ("by `endgroup'. So I've inserted `endgroup' now.");
17466 mp_back_error(mp); mp->cur_cmd=end_group;
17469 /* this might change |cur_type|, if independent variables are recycled */
17470 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17473 @ @<Scan a string constant@>=
17475 mp->cur_type=mp_string_type; mp->cur_exp=mp->cur_mod;
17478 @ Later we'll come to procedures that perform actual operations like
17479 addition, square root, and so on; our purpose now is to do the parsing.
17480 But we might as well mention those future procedures now, so that the
17481 suspense won't be too bad:
17484 |do_nullary(c)| does primitive operations that have no operands (e.g.,
17485 `\&{true}' or `\&{pencircle}');
17488 |do_unary(c)| applies a primitive operation to the current expression;
17491 |do_binary(p,c)| applies a primitive operation to the capsule~|p|
17492 and the current expression.
17494 @<Scan a nullary operation@>=mp_do_nullary(mp, mp->cur_mod)
17496 @ @<Scan a unary operation@>=
17498 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_primary(mp);
17499 mp_do_unary(mp, c); goto DONE;
17502 @ A numeric token might be a primary by itself, or it might be the
17503 numerator of a fraction composed solely of numeric tokens, or it might
17504 multiply the primary that follows (provided that the primary doesn't begin
17505 with a plus sign or a minus sign). The code here uses the facts that
17506 |max_primary_command=plus_or_minus| and
17507 |max_primary_command-1=numeric_token|. If a fraction is found that is less
17508 than unity, we try to retain higher precision when we use it in scalar
17511 @<Other local variables for |scan_primary|@>=
17512 scaled num,denom; /* for primaries that are fractions, like `1/2' */
17514 @ @<Scan a primary that starts with a numeric token@>=
17516 mp->cur_exp=mp->cur_mod; mp->cur_type=mp_known; mp_get_x_next(mp);
17517 if ( mp->cur_cmd!=slash ) {
17521 if ( mp->cur_cmd!=numeric_token ) {
17523 mp->cur_cmd=slash; mp->cur_mod=over; mp->cur_sym=frozen_slash;
17526 num=mp->cur_exp; denom=mp->cur_mod;
17527 if ( denom==0 ) { @<Protest division by zero@>; }
17528 else { mp->cur_exp=mp_make_scaled(mp, num,denom); }
17529 check_arith; mp_get_x_next(mp);
17531 if ( mp->cur_cmd>=min_primary_command ) {
17532 if ( mp->cur_cmd<numeric_token ) { /* in particular, |cur_cmd<>plus_or_minus| */
17533 p=mp_stash_cur_exp(mp); mp_scan_primary(mp);
17534 if ( (abs(num)>=abs(denom))||(mp->cur_type<mp_color_type) ) {
17535 mp_do_binary(mp, p,times);
17537 mp_frac_mult(mp, num,denom);
17538 mp_free_node(mp, p,value_node_size);
17545 @ @<Protest division...@>=
17547 print_err("Division by zero");
17548 @.Division by zero@>
17549 help1("I'll pretend that you meant to divide by 1."); mp_error(mp);
17552 @ @<Scan a binary operation with `\&{of}' between its operands@>=
17554 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
17555 if ( mp->cur_cmd!=of_token ) {
17556 mp_missing_err(mp, "of"); mp_print(mp, " for ");
17557 mp_print_cmd_mod(mp, primary_binary,c);
17559 help1("I've got the first argument; will look now for the other.");
17562 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_primary(mp);
17563 mp_do_binary(mp, p,c); goto DONE;
17566 @ @<Convert a suffix to a string@>=
17568 mp_get_x_next(mp); mp_scan_suffix(mp);
17569 mp->old_setting=mp->selector; mp->selector=new_string;
17570 mp_show_token_list(mp, mp->cur_exp,null,100000,0);
17571 mp_flush_token_list(mp, mp->cur_exp);
17572 mp->cur_exp=mp_make_string(mp); mp->selector=mp->old_setting;
17573 mp->cur_type=mp_string_type;
17577 @ If an internal quantity appears all by itself on the left of an
17578 assignment, we return a token list of length one, containing the address
17579 of the internal quantity plus |hash_end|. (This accords with the conventions
17580 of the save stack, as described earlier.)
17582 @<Scan an internal...@>=
17585 if ( my_var_flag==assignment ) {
17587 if ( mp->cur_cmd==assignment ) {
17588 mp->cur_exp=mp_get_avail(mp);
17589 info(mp->cur_exp)=q+hash_end; mp->cur_type=mp_token_list;
17594 mp->cur_type=mp_known; mp->cur_exp=mp->internal[q];
17597 @ The most difficult part of |scan_primary| has been saved for last, since
17598 it was necessary to build up some confidence first. We can now face the task
17599 of scanning a variable.
17601 As we scan a variable, we build a token list containing the relevant
17602 names and subscript values, simultaneously following along in the
17603 ``collective'' structure to see if we are actually dealing with a macro
17604 instead of a value.
17606 The local variables |pre_head| and |post_head| will point to the beginning
17607 of the prefix and suffix lists; |tail| will point to the end of the list
17608 that is currently growing.
17610 Another local variable, |tt|, contains partial information about the
17611 declared type of the variable-so-far. If |tt>=mp_unsuffixed_macro|, the
17612 relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
17613 doesn't bother to update its information about type. And if
17614 |undefined<tt<mp_unsuffixed_macro|, the precise value of |tt| isn't critical.
17616 @ @<Other local variables for |scan_primary|@>=
17617 pointer pre_head,post_head,tail;
17618 /* prefix and suffix list variables */
17619 small_number tt; /* approximation to the type of the variable-so-far */
17620 pointer t; /* a token */
17621 pointer macro_ref = 0; /* reference count for a suffixed macro */
17623 @ @<Scan a variable primary...@>=
17625 fast_get_avail(pre_head); tail=pre_head; post_head=null; tt=mp_vacuous;
17627 t=mp_cur_tok(mp); link(tail)=t;
17628 if ( tt!=undefined ) {
17629 @<Find the approximate type |tt| and corresponding~|q|@>;
17630 if ( tt>=mp_unsuffixed_macro ) {
17631 @<Either begin an unsuffixed macro call or
17632 prepare for a suffixed one@>;
17635 mp_get_x_next(mp); tail=t;
17636 if ( mp->cur_cmd==left_bracket ) {
17637 @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
17639 if ( mp->cur_cmd>max_suffix_token ) break;
17640 if ( mp->cur_cmd<min_suffix_token ) break;
17641 } /* now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token| */
17642 @<Handle unusual cases that masquerade as variables, and |goto restart|
17643 or |goto done| if appropriate;
17644 otherwise make a copy of the variable and |goto done|@>;
17647 @ @<Either begin an unsuffixed macro call or...@>=
17650 if ( tt>mp_unsuffixed_macro ) { /* |tt=mp_suffixed_macro| */
17651 post_head=mp_get_avail(mp); tail=post_head; link(tail)=t;
17652 tt=undefined; macro_ref=value(q); add_mac_ref(macro_ref);
17654 @<Set up unsuffixed macro call and |goto restart|@>;
17658 @ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
17660 mp_get_x_next(mp); mp_scan_expression(mp);
17661 if ( mp->cur_cmd!=right_bracket ) {
17662 @<Put the left bracket and the expression back to be rescanned@>;
17664 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17665 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp; mp->cur_sym=0;
17669 @ The left bracket that we thought was introducing a subscript might have
17670 actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
17671 So we don't issue an error message at this point; but we do want to back up
17672 so as to avoid any embarrassment about our incorrect assumption.
17674 @<Put the left bracket and the expression back to be rescanned@>=
17676 mp_back_input(mp); /* that was the token following the current expression */
17677 mp_back_expr(mp); mp->cur_cmd=left_bracket;
17678 mp->cur_mod=0; mp->cur_sym=frozen_left_bracket;
17681 @ Here's a routine that puts the current expression back to be read again.
17683 @c void mp_back_expr (MP mp) {
17684 pointer p; /* capsule token */
17685 p=mp_stash_cur_exp(mp); link(p)=null; back_list(p);
17688 @ Unknown subscripts lead to the following error message.
17690 @c void mp_bad_subscript (MP mp) {
17691 exp_err("Improper subscript has been replaced by zero");
17692 @.Improper subscript...@>
17693 help3("A bracketed subscript must have a known numeric value;")
17694 ("unfortunately, what I found was the value that appears just")
17695 ("above this error message. So I'll try a zero subscript.");
17696 mp_flush_error(mp, 0);
17699 @ Every time we call |get_x_next|, there's a chance that the variable we've
17700 been looking at will disappear. Thus, we cannot safely keep |q| pointing
17701 into the variable structure; we need to start searching from the root each time.
17703 @<Find the approximate type |tt| and corresponding~|q|@>=
17706 p=link(pre_head); q=info(p); tt=undefined;
17707 if ( eq_type(q) % outer_tag==tag_token ) {
17709 if ( q==null ) goto DONE2;
17713 tt=type(q); goto DONE2;
17715 if ( type(q)!=mp_structured ) goto DONE2;
17716 q=link(attr_head(q)); /* the |collective_subscript| attribute */
17717 if ( p>=mp->hi_mem_min ) { /* it's not a subscript */
17718 do { q=link(q); } while (! (attr_loc(q)>=info(p)));
17719 if ( attr_loc(q)>info(p) ) goto DONE2;
17727 @ How do things stand now? Well, we have scanned an entire variable name,
17728 including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
17729 |cur_sym| represent the token that follows. If |post_head=null|, a
17730 token list for this variable name starts at |link(pre_head)|, with all
17731 subscripts evaluated. But if |post_head<>null|, the variable turned out
17732 to be a suffixed macro; |pre_head| is the head of the prefix list, while
17733 |post_head| is the head of a token list containing both `\.{\AT!}' and
17736 Our immediate problem is to see if this variable still exists. (Variable
17737 structures can change drastically whenever we call |get_x_next|; users
17738 aren't supposed to do this, but the fact that it is possible means that
17739 we must be cautious.)
17741 The following procedure prints an error message when a variable
17742 unexpectedly disappears. Its help message isn't quite right for
17743 our present purposes, but we'll be able to fix that up.
17746 void mp_obliterated (MP mp,pointer q) {
17747 print_err("Variable "); mp_show_token_list(mp, q,null,1000,0);
17748 mp_print(mp, " has been obliterated");
17749 @.Variable...obliterated@>
17750 help5("It seems you did a nasty thing---probably by accident,")
17751 ("but nevertheless you nearly hornswoggled me...")
17752 ("While I was evaluating the right-hand side of this")
17753 ("command, something happened, and the left-hand side")
17754 ("is no longer a variable! So I won't change anything.");
17757 @ If the variable does exist, we also need to check
17758 for a few other special cases before deciding that a plain old ordinary
17759 variable has, indeed, been scanned.
17761 @<Handle unusual cases that masquerade as variables...@>=
17762 if ( post_head!=null ) {
17763 @<Set up suffixed macro call and |goto restart|@>;
17765 q=link(pre_head); free_avail(pre_head);
17766 if ( mp->cur_cmd==my_var_flag ) {
17767 mp->cur_type=mp_token_list; mp->cur_exp=q; goto DONE;
17769 p=mp_find_variable(mp, q);
17771 mp_make_exp_copy(mp, p);
17773 mp_obliterated(mp, q);
17774 mp->help_line[2]="While I was evaluating the suffix of this variable,";
17775 mp->help_line[1]="something was redefined, and it's no longer a variable!";
17776 mp->help_line[0]="In order to get back on my feet, I've inserted `0' instead.";
17777 mp_put_get_flush_error(mp, 0);
17779 mp_flush_node_list(mp, q);
17782 @ The only complication associated with macro calling is that the prefix
17783 and ``at'' parameters must be packaged in an appropriate list of lists.
17785 @<Set up unsuffixed macro call and |goto restart|@>=
17787 p=mp_get_avail(mp); info(pre_head)=link(pre_head); link(pre_head)=p;
17788 info(p)=t; mp_macro_call(mp, value(q),pre_head,null);
17793 @ If the ``variable'' that turned out to be a suffixed macro no longer exists,
17794 we don't care, because we have reserved a pointer (|macro_ref|) to its
17797 @<Set up suffixed macro call and |goto restart|@>=
17799 mp_back_input(mp); p=mp_get_avail(mp); q=link(post_head);
17800 info(pre_head)=link(pre_head); link(pre_head)=post_head;
17801 info(post_head)=q; link(post_head)=p; info(p)=link(q); link(q)=null;
17802 mp_macro_call(mp, macro_ref,pre_head,null); decr(ref_count(macro_ref));
17803 mp_get_x_next(mp); goto RESTART;
17806 @ Our remaining job is simply to make a copy of the value that has been
17807 found. Some cases are harder than others, but complexity arises solely
17808 because of the multiplicity of possible cases.
17810 @<Declare the procedure called |make_exp_copy|@>=
17811 @<Declare subroutines needed by |make_exp_copy|@>;
17812 void mp_make_exp_copy (MP mp,pointer p) {
17813 pointer q,r,t; /* registers for list manipulation */
17815 mp->cur_type=type(p);
17816 switch (mp->cur_type) {
17817 case mp_vacuous: case mp_boolean_type: case mp_known:
17818 mp->cur_exp=value(p); break;
17819 case unknown_types:
17820 mp->cur_exp=mp_new_ring_entry(mp, p);
17822 case mp_string_type:
17823 mp->cur_exp=value(p); add_str_ref(mp->cur_exp);
17825 case mp_picture_type:
17826 mp->cur_exp=value(p);add_edge_ref(mp->cur_exp);
17829 mp->cur_exp=copy_pen(value(p));
17832 mp->cur_exp=mp_copy_path(mp, value(p));
17834 case mp_transform_type: case mp_color_type:
17835 case mp_cmykcolor_type: case mp_pair_type:
17836 @<Copy the big node |p|@>;
17838 case mp_dependent: case mp_proto_dependent:
17839 mp_encapsulate(mp, mp_copy_dep_list(mp, dep_list(p)));
17841 case mp_numeric_type:
17842 new_indep(p); goto RESTART;
17844 case mp_independent:
17845 q=mp_single_dependency(mp, p);
17846 if ( q==mp->dep_final ){
17847 mp->cur_type=mp_known; mp->cur_exp=0; mp_free_node(mp, q,value_node_size);
17849 mp->cur_type=mp_dependent; mp_encapsulate(mp, q);
17853 mp_confusion(mp, "copy");
17854 @:this can't happen copy}{\quad copy@>
17859 @ The |encapsulate| subroutine assumes that |dep_final| is the
17860 tail of dependency list~|p|.
17862 @<Declare subroutines needed by |make_exp_copy|@>=
17863 void mp_encapsulate (MP mp,pointer p) {
17864 mp->cur_exp=mp_get_node(mp, value_node_size); type(mp->cur_exp)=mp->cur_type;
17865 name_type(mp->cur_exp)=mp_capsule; mp_new_dep(mp, mp->cur_exp,p);
17868 @ The most tedious case arises when the user refers to a
17869 \&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
17870 each of which can be |independent|, |dependent|, |mp_proto_dependent|,
17873 @<Copy the big node |p|@>=
17875 if ( value(p)==null )
17876 mp_init_big_node(mp, p);
17877 t=mp_get_node(mp, value_node_size); name_type(t)=mp_capsule; type(t)=mp->cur_type;
17878 mp_init_big_node(mp, t);
17879 q=value(p)+mp->big_node_size[mp->cur_type];
17880 r=value(t)+mp->big_node_size[mp->cur_type];
17882 q=q-2; r=r-2; mp_install(mp, r,q);
17883 } while (q!=value(p));
17887 @ The |install| procedure copies a numeric field~|q| into field~|r| of
17888 a big node that will be part of a capsule.
17890 @<Declare subroutines needed by |make_exp_copy|@>=
17891 void mp_install (MP mp,pointer r, pointer q) {
17892 pointer p; /* temporary register */
17893 if ( type(q)==mp_known ){
17894 value(r)=value(q); type(r)=mp_known;
17895 } else if ( type(q)==mp_independent ) {
17896 p=mp_single_dependency(mp, q);
17897 if ( p==mp->dep_final ) {
17898 type(r)=mp_known; value(r)=0; mp_free_node(mp, p,value_node_size);
17900 type(r)=mp_dependent; mp_new_dep(mp, r,p);
17903 type(r)=type(q); mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(q)));
17907 @ Expressions of the form `\.{a[b,c]}' are converted into
17908 `\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
17909 provided that \.a is numeric.
17911 @<Scan a mediation...@>=
17913 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17914 if ( mp->cur_cmd!=comma ) {
17915 @<Put the left bracket and the expression back...@>;
17916 mp_unstash_cur_exp(mp, p);
17918 q=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17919 if ( mp->cur_cmd!=right_bracket ) {
17920 mp_missing_err(mp, "]");
17922 help3("I've scanned an expression of the form `a[b,c',")
17923 ("so a right bracket should have come next.")
17924 ("I shall pretend that one was there.");
17927 r=mp_stash_cur_exp(mp); mp_make_exp_copy(mp, q);
17928 mp_do_binary(mp, r,minus); mp_do_binary(mp, p,times);
17929 mp_do_binary(mp, q,plus); mp_get_x_next(mp);
17933 @ Here is a comparatively simple routine that is used to scan the
17934 \&{suffix} parameters of a macro.
17936 @<Declare the basic parsing subroutines@>=
17937 void mp_scan_suffix (MP mp) {
17938 pointer h,t; /* head and tail of the list being built */
17939 pointer p; /* temporary register */
17940 h=mp_get_avail(mp); t=h;
17942 if ( mp->cur_cmd==left_bracket ) {
17943 @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
17945 if ( mp->cur_cmd==numeric_token ) {
17946 p=mp_new_num_tok(mp, mp->cur_mod);
17947 } else if ((mp->cur_cmd==tag_token)||(mp->cur_cmd==internal_quantity) ) {
17948 p=mp_get_avail(mp); info(p)=mp->cur_sym;
17952 link(t)=p; t=p; mp_get_x_next(mp);
17954 mp->cur_exp=link(h); free_avail(h); mp->cur_type=mp_token_list;
17957 @ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
17959 mp_get_x_next(mp); mp_scan_expression(mp);
17960 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17961 if ( mp->cur_cmd!=right_bracket ) {
17962 mp_missing_err(mp, "]");
17964 help3("I've seen a `[' and a subscript value, in a suffix,")
17965 ("so a right bracket should have come next.")
17966 ("I shall pretend that one was there.");
17969 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp;
17972 @* \[38] Parsing secondary and higher expressions.
17973 After the intricacies of |scan_primary|\kern-1pt,
17974 the |scan_secondary| routine is
17975 refreshingly simple. It's not trivial, but the operations are relatively
17976 straightforward; the main difficulty is, again, that expressions and data
17977 structures might change drastically every time we call |get_x_next|, so a
17978 cautious approach is mandatory. For example, a macro defined by
17979 \&{primarydef} might have disappeared by the time its second argument has
17980 been scanned; we solve this by increasing the reference count of its token
17981 list, so that the macro can be called even after it has been clobbered.
17983 @<Declare the basic parsing subroutines@>=
17984 void mp_scan_secondary (MP mp) {
17985 pointer p; /* for list manipulation */
17986 halfword c,d; /* operation codes or modifiers */
17987 pointer mac_name; /* token defined with \&{primarydef} */
17989 if ((mp->cur_cmd<min_primary_command)||
17990 (mp->cur_cmd>max_primary_command) )
17991 mp_bad_exp(mp, "A secondary");
17992 @.A secondary expression...@>
17993 mp_scan_primary(mp);
17995 if ( mp->cur_cmd<=max_secondary_command )
17996 if ( mp->cur_cmd>=min_secondary_command ) {
17997 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17998 if ( d==secondary_primary_macro ) {
17999 mac_name=mp->cur_sym; add_mac_ref(c);
18001 mp_get_x_next(mp); mp_scan_primary(mp);
18002 if ( d!=secondary_primary_macro ) {
18003 mp_do_binary(mp, p,c);
18005 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
18006 decr(ref_count(c)); mp_get_x_next(mp);
18013 @ The following procedure calls a macro that has two parameters,
18016 @c void mp_binary_mac (MP mp,pointer p, pointer c, pointer n) {
18017 pointer q,r; /* nodes in the parameter list */
18018 q=mp_get_avail(mp); r=mp_get_avail(mp); link(q)=r;
18019 info(q)=p; info(r)=mp_stash_cur_exp(mp);
18020 mp_macro_call(mp, c,q,n);
18023 @ The next procedure, |scan_tertiary|, is pretty much the same deal.
18025 @<Declare the basic parsing subroutines@>=
18026 void mp_scan_tertiary (MP mp) {
18027 pointer p; /* for list manipulation */
18028 halfword c,d; /* operation codes or modifiers */
18029 pointer mac_name; /* token defined with \&{secondarydef} */
18031 if ((mp->cur_cmd<min_primary_command)||
18032 (mp->cur_cmd>max_primary_command) )
18033 mp_bad_exp(mp, "A tertiary");
18034 @.A tertiary expression...@>
18035 mp_scan_secondary(mp);
18037 if ( mp->cur_cmd<=max_tertiary_command ) {
18038 if ( mp->cur_cmd>=min_tertiary_command ) {
18039 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
18040 if ( d==tertiary_secondary_macro ) {
18041 mac_name=mp->cur_sym; add_mac_ref(c);
18043 mp_get_x_next(mp); mp_scan_secondary(mp);
18044 if ( d!=tertiary_secondary_macro ) {
18045 mp_do_binary(mp, p,c);
18047 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
18048 decr(ref_count(c)); mp_get_x_next(mp);
18056 @ Finally we reach the deepest level in our quartet of parsing routines.
18057 This one is much like the others; but it has an extra complication from
18058 paths, which materialize here.
18060 @d continue_path 25 /* a label inside of |scan_expression| */
18061 @d finish_path 26 /* another */
18063 @<Declare the basic parsing subroutines@>=
18064 void mp_scan_expression (MP mp) {
18065 pointer p,q,r,pp,qq; /* for list manipulation */
18066 halfword c,d; /* operation codes or modifiers */
18067 int my_var_flag; /* initial value of |var_flag| */
18068 pointer mac_name; /* token defined with \&{tertiarydef} */
18069 boolean cycle_hit; /* did a path expression just end with `\&{cycle}'? */
18070 scaled x,y; /* explicit coordinates or tension at a path join */
18071 int t; /* knot type following a path join */
18073 my_var_flag=mp->var_flag; mac_name=null;
18075 if ((mp->cur_cmd<min_primary_command)||
18076 (mp->cur_cmd>max_primary_command) )
18077 mp_bad_exp(mp, "An");
18078 @.An expression...@>
18079 mp_scan_tertiary(mp);
18081 if ( mp->cur_cmd<=max_expression_command )
18082 if ( mp->cur_cmd>=min_expression_command ) {
18083 if ( (mp->cur_cmd!=equals)||(my_var_flag!=assignment) ) {
18084 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
18085 if ( d==expression_tertiary_macro ) {
18086 mac_name=mp->cur_sym; add_mac_ref(c);
18088 if ( (d<ampersand)||((d==ampersand)&&
18089 ((type(p)==mp_pair_type)||(type(p)==mp_path_type))) ) {
18090 @<Scan a path construction operation;
18091 but |return| if |p| has the wrong type@>;
18093 mp_get_x_next(mp); mp_scan_tertiary(mp);
18094 if ( d!=expression_tertiary_macro ) {
18095 mp_do_binary(mp, p,c);
18097 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
18098 decr(ref_count(c)); mp_get_x_next(mp);
18107 @ The reader should review the data structure conventions for paths before
18108 hoping to understand the next part of this code.
18110 @<Scan a path construction operation...@>=
18113 @<Convert the left operand, |p|, into a partial path ending at~|q|;
18114 but |return| if |p| doesn't have a suitable type@>;
18116 @<Determine the path join parameters;
18117 but |goto finish_path| if there's only a direction specifier@>;
18118 if ( mp->cur_cmd==cycle ) {
18119 @<Get ready to close a cycle@>;
18121 mp_scan_tertiary(mp);
18122 @<Convert the right operand, |cur_exp|,
18123 into a partial path from |pp| to~|qq|@>;
18125 @<Join the partial paths and reset |p| and |q| to the head and tail
18127 if ( mp->cur_cmd>=min_expression_command )
18128 if ( mp->cur_cmd<=ampersand ) if ( ! cycle_hit ) goto CONTINUE_PATH;
18130 @<Choose control points for the path and put the result into |cur_exp|@>;
18133 @ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
18135 mp_unstash_cur_exp(mp, p);
18136 if ( mp->cur_type==mp_pair_type ) p=mp_new_knot(mp);
18137 else if ( mp->cur_type==mp_path_type ) p=mp->cur_exp;
18140 while ( link(q)!=p ) q=link(q);
18141 if ( left_type(p)!=mp_endpoint ) { /* open up a cycle */
18142 r=mp_copy_knot(mp, p); link(q)=r; q=r;
18144 left_type(p)=mp_open; right_type(q)=mp_open;
18147 @ A pair of numeric values is changed into a knot node for a one-point path
18148 when \MP\ discovers that the pair is part of a path.
18150 @c@<Declare the procedure called |known_pair|@>;
18151 pointer mp_new_knot (MP mp) { /* convert a pair to a knot with two endpoints */
18152 pointer q; /* the new node */
18153 q=mp_get_node(mp, knot_node_size); left_type(q)=mp_endpoint;
18154 right_type(q)=mp_endpoint; originator(q)=mp_metapost_user; link(q)=q;
18155 mp_known_pair(mp); x_coord(q)=mp->cur_x; y_coord(q)=mp->cur_y;
18159 @ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
18160 of the current expression, assuming that the current expression is a
18161 pair of known numerics. Unknown components are zeroed, and the
18162 current expression is flushed.
18164 @<Declare the procedure called |known_pair|@>=
18165 void mp_known_pair (MP mp) {
18166 pointer p; /* the pair node */
18167 if ( mp->cur_type!=mp_pair_type ) {
18168 exp_err("Undefined coordinates have been replaced by (0,0)");
18169 @.Undefined coordinates...@>
18170 help5("I need x and y numbers for this part of the path.")
18171 ("The value I found (see above) was no good;")
18172 ("so I'll try to keep going by using zero instead.")
18173 ("(Chapter 27 of The METAFONTbook explains that")
18174 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18175 ("you might want to type `I ??" "?' now.)");
18176 mp_put_get_flush_error(mp, 0); mp->cur_x=0; mp->cur_y=0;
18178 p=value(mp->cur_exp);
18179 @<Make sure that both |x| and |y| parts of |p| are known;
18180 copy them into |cur_x| and |cur_y|@>;
18181 mp_flush_cur_exp(mp, 0);
18185 @ @<Make sure that both |x| and |y| parts of |p| are known...@>=
18186 if ( type(x_part_loc(p))==mp_known ) {
18187 mp->cur_x=value(x_part_loc(p));
18189 mp_disp_err(mp, x_part_loc(p),
18190 "Undefined x coordinate has been replaced by 0");
18191 @.Undefined coordinates...@>
18192 help5("I need a `known' x value for this part of the path.")
18193 ("The value I found (see above) was no good;")
18194 ("so I'll try to keep going by using zero instead.")
18195 ("(Chapter 27 of The METAFONTbook explains that")
18196 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18197 ("you might want to type `I ??" "?' now.)");
18198 mp_put_get_error(mp); mp_recycle_value(mp, x_part_loc(p)); mp->cur_x=0;
18200 if ( type(y_part_loc(p))==mp_known ) {
18201 mp->cur_y=value(y_part_loc(p));
18203 mp_disp_err(mp, y_part_loc(p),
18204 "Undefined y coordinate has been replaced by 0");
18205 help5("I need a `known' y value for this part of the path.")
18206 ("The value I found (see above) was no good;")
18207 ("so I'll try to keep going by using zero instead.")
18208 ("(Chapter 27 of The METAFONTbook explains that")
18209 ("you might want to type `I ??" "?' now.)");
18210 mp_put_get_error(mp); mp_recycle_value(mp, y_part_loc(p)); mp->cur_y=0;
18213 @ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
18215 @<Determine the path join parameters...@>=
18216 if ( mp->cur_cmd==left_brace ) {
18217 @<Put the pre-join direction information into node |q|@>;
18220 if ( d==path_join ) {
18221 @<Determine the tension and/or control points@>;
18222 } else if ( d!=ampersand ) {
18226 if ( mp->cur_cmd==left_brace ) {
18227 @<Put the post-join direction information into |x| and |t|@>;
18228 } else if ( right_type(q)!=mp_explicit ) {
18232 @ The |scan_direction| subroutine looks at the directional information
18233 that is enclosed in braces, and also scans ahead to the following character.
18234 A type code is returned, either |open| (if the direction was $(0,0)$),
18235 or |curl| (if the direction was a curl of known value |cur_exp|), or
18236 |given| (if the direction is given by the |angle| value that now
18237 appears in |cur_exp|).
18239 There's nothing difficult about this subroutine, but the program is rather
18240 lengthy because a variety of potential errors need to be nipped in the bud.
18242 @c small_number mp_scan_direction (MP mp) {
18243 int t; /* the type of information found */
18244 scaled x; /* an |x| coordinate */
18246 if ( mp->cur_cmd==curl_command ) {
18247 @<Scan a curl specification@>;
18249 @<Scan a given direction@>;
18251 if ( mp->cur_cmd!=right_brace ) {
18252 mp_missing_err(mp, "}");
18253 @.Missing `\char`\}'@>
18254 help3("I've scanned a direction spec for part of a path,")
18255 ("so a right brace should have come next.")
18256 ("I shall pretend that one was there.");
18263 @ @<Scan a curl specification@>=
18264 { mp_get_x_next(mp); mp_scan_expression(mp);
18265 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<0) ){
18266 exp_err("Improper curl has been replaced by 1");
18268 help1("A curl must be a known, nonnegative number.");
18269 mp_put_get_flush_error(mp, unity);
18274 @ @<Scan a given direction@>=
18275 { mp_scan_expression(mp);
18276 if ( mp->cur_type>mp_pair_type ) {
18277 @<Get given directions separated by commas@>;
18281 if ( (mp->cur_x==0)&&(mp->cur_y==0) ) t=mp_open;
18282 else { t=mp_given; mp->cur_exp=mp_n_arg(mp, mp->cur_x,mp->cur_y);}
18285 @ @<Get given directions separated by commas@>=
18287 if ( mp->cur_type!=mp_known ) {
18288 exp_err("Undefined x coordinate has been replaced by 0");
18289 @.Undefined coordinates...@>
18290 help5("I need a `known' x value for this part of the path.")
18291 ("The value I found (see above) was no good;")
18292 ("so I'll try to keep going by using zero instead.")
18293 ("(Chapter 27 of The METAFONTbook explains that")
18294 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18295 ("you might want to type `I ??" "?' now.)");
18296 mp_put_get_flush_error(mp, 0);
18299 if ( mp->cur_cmd!=comma ) {
18300 mp_missing_err(mp, ",");
18302 help2("I've got the x coordinate of a path direction;")
18303 ("will look for the y coordinate next.");
18306 mp_get_x_next(mp); mp_scan_expression(mp);
18307 if ( mp->cur_type!=mp_known ) {
18308 exp_err("Undefined y coordinate has been replaced by 0");
18309 help5("I need a `known' y value for this part of the path.")
18310 ("The value I found (see above) was no good;")
18311 ("so I'll try to keep going by using zero instead.")
18312 ("(Chapter 27 of The METAFONTbook explains that")
18313 ("you might want to type `I ??" "?' now.)");
18314 mp_put_get_flush_error(mp, 0);
18316 mp->cur_y=mp->cur_exp; mp->cur_x=x;
18319 @ At this point |right_type(q)| is usually |open|, but it may have been
18320 set to some other value by a previous splicing operation. We must maintain
18321 the value of |right_type(q)| in unusual cases such as
18322 `\.{..z1\{z2\}\&\{z3\}z1\{0,0\}..}'.
18324 @<Put the pre-join...@>=
18326 t=mp_scan_direction(mp);
18327 if ( t!=mp_open ) {
18328 right_type(q)=t; right_given(q)=mp->cur_exp;
18329 if ( left_type(q)==mp_open ) {
18330 left_type(q)=t; left_given(q)=mp->cur_exp;
18331 } /* note that |left_given(q)=left_curl(q)| */
18335 @ Since |left_tension| and |left_y| share the same position in knot nodes,
18336 and since |left_given| is similarly equivalent to |left_x|, we use
18337 |x| and |y| to hold the given direction and tension information when
18338 there are no explicit control points.
18340 @<Put the post-join...@>=
18342 t=mp_scan_direction(mp);
18343 if ( right_type(q)!=mp_explicit ) x=mp->cur_exp;
18344 else t=mp_explicit; /* the direction information is superfluous */
18347 @ @<Determine the tension and/or...@>=
18350 if ( mp->cur_cmd==tension ) {
18351 @<Set explicit tensions@>;
18352 } else if ( mp->cur_cmd==controls ) {
18353 @<Set explicit control points@>;
18355 right_tension(q)=unity; y=unity; mp_back_input(mp); /* default tension */
18358 if ( mp->cur_cmd!=path_join ) {
18359 mp_missing_err(mp, "..");
18361 help1("A path join command should end with two dots.");
18368 @ @<Set explicit tensions@>=
18370 mp_get_x_next(mp); y=mp->cur_cmd;
18371 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18372 mp_scan_primary(mp);
18373 @<Make sure that the current expression is a valid tension setting@>;
18374 if ( y==at_least ) negate(mp->cur_exp);
18375 right_tension(q)=mp->cur_exp;
18376 if ( mp->cur_cmd==and_command ) {
18377 mp_get_x_next(mp); y=mp->cur_cmd;
18378 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18379 mp_scan_primary(mp);
18380 @<Make sure that the current expression is a valid tension setting@>;
18381 if ( y==at_least ) negate(mp->cur_exp);
18386 @ @d min_tension three_quarter_unit
18388 @<Make sure that the current expression is a valid tension setting@>=
18389 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<min_tension) ) {
18390 exp_err("Improper tension has been set to 1");
18391 @.Improper tension@>
18392 help1("The expression above should have been a number >=3/4.");
18393 mp_put_get_flush_error(mp, unity);
18396 @ @<Set explicit control points@>=
18398 right_type(q)=mp_explicit; t=mp_explicit; mp_get_x_next(mp); mp_scan_primary(mp);
18399 mp_known_pair(mp); right_x(q)=mp->cur_x; right_y(q)=mp->cur_y;
18400 if ( mp->cur_cmd!=and_command ) {
18401 x=right_x(q); y=right_y(q);
18403 mp_get_x_next(mp); mp_scan_primary(mp);
18404 mp_known_pair(mp); x=mp->cur_x; y=mp->cur_y;
18408 @ @<Convert the right operand, |cur_exp|, into a partial path...@>=
18410 if ( mp->cur_type!=mp_path_type ) pp=mp_new_knot(mp);
18411 else pp=mp->cur_exp;
18413 while ( link(qq)!=pp ) qq=link(qq);
18414 if ( left_type(pp)!=mp_endpoint ) { /* open up a cycle */
18415 r=mp_copy_knot(mp, pp); link(qq)=r; qq=r;
18417 left_type(pp)=mp_open; right_type(qq)=mp_open;
18420 @ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
18421 we silently change the specification to `\.{(x,y)..cycle}', since a cycle
18422 shouldn't have length zero.
18424 @<Get ready to close a cycle@>=
18426 cycle_hit=true; mp_get_x_next(mp); pp=p; qq=p;
18427 if ( d==ampersand ) if ( p==q ) {
18428 d=path_join; right_tension(q)=unity; y=unity;
18432 @ @<Join the partial paths and reset |p| and |q|...@>=
18434 if ( d==ampersand ) {
18435 if ( (x_coord(q)!=x_coord(pp))||(y_coord(q)!=y_coord(pp)) ) {
18436 print_err("Paths don't touch; `&' will be changed to `..'");
18437 @.Paths don't touch@>
18438 help3("When you join paths `p&q', the ending point of p")
18439 ("must be exactly equal to the starting point of q.")
18440 ("So I'm going to pretend that you said `p..q' instead.");
18441 mp_put_get_error(mp); d=path_join; right_tension(q)=unity; y=unity;
18444 @<Plug an opening in |right_type(pp)|, if possible@>;
18445 if ( d==ampersand ) {
18446 @<Splice independent paths together@>;
18448 @<Plug an opening in |right_type(q)|, if possible@>;
18449 link(q)=pp; left_y(pp)=y;
18450 if ( t!=mp_open ) { left_x(pp)=x; left_type(pp)=t; };
18455 @ @<Plug an opening in |right_type(q)|...@>=
18456 if ( right_type(q)==mp_open ) {
18457 if ( (left_type(q)==mp_curl)||(left_type(q)==mp_given) ) {
18458 right_type(q)=left_type(q); right_given(q)=left_given(q);
18462 @ @<Plug an opening in |right_type(pp)|...@>=
18463 if ( right_type(pp)==mp_open ) {
18464 if ( (t==mp_curl)||(t==mp_given) ) {
18465 right_type(pp)=t; right_given(pp)=x;
18469 @ @<Splice independent paths together@>=
18471 if ( left_type(q)==mp_open ) if ( right_type(q)==mp_open ) {
18472 left_type(q)=mp_curl; left_curl(q)=unity;
18474 if ( right_type(pp)==mp_open ) if ( t==mp_open ) {
18475 right_type(pp)=mp_curl; right_curl(pp)=unity;
18477 right_type(q)=right_type(pp); link(q)=link(pp);
18478 right_x(q)=right_x(pp); right_y(q)=right_y(pp);
18479 mp_free_node(mp, pp,knot_node_size);
18480 if ( qq==pp ) qq=q;
18483 @ @<Choose control points for the path...@>=
18485 if ( d==ampersand ) p=q;
18487 left_type(p)=mp_endpoint;
18488 if ( right_type(p)==mp_open ) {
18489 right_type(p)=mp_curl; right_curl(p)=unity;
18491 right_type(q)=mp_endpoint;
18492 if ( left_type(q)==mp_open ) {
18493 left_type(q)=mp_curl; left_curl(q)=unity;
18497 mp_make_choices(mp, p);
18498 mp->cur_type=mp_path_type; mp->cur_exp=p
18500 @ Finally, we sometimes need to scan an expression whose value is
18501 supposed to be either |true_code| or |false_code|.
18503 @<Declare the basic parsing subroutines@>=
18504 void mp_get_boolean (MP mp) {
18505 mp_get_x_next(mp); mp_scan_expression(mp);
18506 if ( mp->cur_type!=mp_boolean_type ) {
18507 exp_err("Undefined condition will be treated as `false'");
18508 @.Undefined condition...@>
18509 help2("The expression shown above should have had a definite")
18510 ("true-or-false value. I'm changing it to `false'.");
18511 mp_put_get_flush_error(mp, false_code); mp->cur_type=mp_boolean_type;
18515 @* \[39] Doing the operations.
18516 The purpose of parsing is primarily to permit people to avoid piles of
18517 parentheses. But the real work is done after the structure of an expression
18518 has been recognized; that's when new expressions are generated. We
18519 turn now to the guts of \MP, which handles individual operators that
18520 have come through the parsing mechanism.
18522 We'll start with the easy ones that take no operands, then work our way
18523 up to operators with one and ultimately two arguments. In other words,
18524 we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
18525 that are invoked periodically by the expression scanners.
18527 First let's make sure that all of the primitive operators are in the
18528 hash table. Although |scan_primary| and its relatives made use of the
18529 \\{cmd} code for these operators, the \\{do} routines base everything
18530 on the \\{mod} code. For example, |do_binary| doesn't care whether the
18531 operation it performs is a |primary_binary| or |secondary_binary|, etc.
18534 mp_primitive(mp, "true",nullary,true_code);
18535 @:true_}{\&{true} primitive@>
18536 mp_primitive(mp, "false",nullary,false_code);
18537 @:false_}{\&{false} primitive@>
18538 mp_primitive(mp, "nullpicture",nullary,null_picture_code);
18539 @:null_picture_}{\&{nullpicture} primitive@>
18540 mp_primitive(mp, "nullpen",nullary,null_pen_code);
18541 @:null_pen_}{\&{nullpen} primitive@>
18542 mp_primitive(mp, "jobname",nullary,job_name_op);
18543 @:job_name_}{\&{jobname} primitive@>
18544 mp_primitive(mp, "readstring",nullary,read_string_op);
18545 @:read_string_}{\&{readstring} primitive@>
18546 mp_primitive(mp, "pencircle",nullary,pen_circle);
18547 @:pen_circle_}{\&{pencircle} primitive@>
18548 mp_primitive(mp, "normaldeviate",nullary,normal_deviate);
18549 @:normal_deviate_}{\&{normaldeviate} primitive@>
18550 mp_primitive(mp, "readfrom",unary,read_from_op);
18551 @:read_from_}{\&{readfrom} primitive@>
18552 mp_primitive(mp, "closefrom",unary,close_from_op);
18553 @:close_from_}{\&{closefrom} primitive@>
18554 mp_primitive(mp, "odd",unary,odd_op);
18555 @:odd_}{\&{odd} primitive@>
18556 mp_primitive(mp, "known",unary,known_op);
18557 @:known_}{\&{known} primitive@>
18558 mp_primitive(mp, "unknown",unary,unknown_op);
18559 @:unknown_}{\&{unknown} primitive@>
18560 mp_primitive(mp, "not",unary,not_op);
18561 @:not_}{\&{not} primitive@>
18562 mp_primitive(mp, "decimal",unary,decimal);
18563 @:decimal_}{\&{decimal} primitive@>
18564 mp_primitive(mp, "reverse",unary,reverse);
18565 @:reverse_}{\&{reverse} primitive@>
18566 mp_primitive(mp, "makepath",unary,make_path_op);
18567 @:make_path_}{\&{makepath} primitive@>
18568 mp_primitive(mp, "makepen",unary,make_pen_op);
18569 @:make_pen_}{\&{makepen} primitive@>
18570 mp_primitive(mp, "oct",unary,oct_op);
18571 @:oct_}{\&{oct} primitive@>
18572 mp_primitive(mp, "hex",unary,hex_op);
18573 @:hex_}{\&{hex} primitive@>
18574 mp_primitive(mp, "ASCII",unary,ASCII_op);
18575 @:ASCII_}{\&{ASCII} primitive@>
18576 mp_primitive(mp, "char",unary,char_op);
18577 @:char_}{\&{char} primitive@>
18578 mp_primitive(mp, "length",unary,length_op);
18579 @:length_}{\&{length} primitive@>
18580 mp_primitive(mp, "turningnumber",unary,turning_op);
18581 @:turning_number_}{\&{turningnumber} primitive@>
18582 mp_primitive(mp, "xpart",unary,x_part);
18583 @:x_part_}{\&{xpart} primitive@>
18584 mp_primitive(mp, "ypart",unary,y_part);
18585 @:y_part_}{\&{ypart} primitive@>
18586 mp_primitive(mp, "xxpart",unary,xx_part);
18587 @:xx_part_}{\&{xxpart} primitive@>
18588 mp_primitive(mp, "xypart",unary,xy_part);
18589 @:xy_part_}{\&{xypart} primitive@>
18590 mp_primitive(mp, "yxpart",unary,yx_part);
18591 @:yx_part_}{\&{yxpart} primitive@>
18592 mp_primitive(mp, "yypart",unary,yy_part);
18593 @:yy_part_}{\&{yypart} primitive@>
18594 mp_primitive(mp, "redpart",unary,red_part);
18595 @:red_part_}{\&{redpart} primitive@>
18596 mp_primitive(mp, "greenpart",unary,green_part);
18597 @:green_part_}{\&{greenpart} primitive@>
18598 mp_primitive(mp, "bluepart",unary,blue_part);
18599 @:blue_part_}{\&{bluepart} primitive@>
18600 mp_primitive(mp, "cyanpart",unary,cyan_part);
18601 @:cyan_part_}{\&{cyanpart} primitive@>
18602 mp_primitive(mp, "magentapart",unary,magenta_part);
18603 @:magenta_part_}{\&{magentapart} primitive@>
18604 mp_primitive(mp, "yellowpart",unary,yellow_part);
18605 @:yellow_part_}{\&{yellowpart} primitive@>
18606 mp_primitive(mp, "blackpart",unary,black_part);
18607 @:black_part_}{\&{blackpart} primitive@>
18608 mp_primitive(mp, "greypart",unary,grey_part);
18609 @:grey_part_}{\&{greypart} primitive@>
18610 mp_primitive(mp, "colormodel",unary,color_model_part);
18611 @:color_model_part_}{\&{colormodel} primitive@>
18612 mp_primitive(mp, "fontpart",unary,font_part);
18613 @:font_part_}{\&{fontpart} primitive@>
18614 mp_primitive(mp, "textpart",unary,text_part);
18615 @:text_part_}{\&{textpart} primitive@>
18616 mp_primitive(mp, "pathpart",unary,path_part);
18617 @:path_part_}{\&{pathpart} primitive@>
18618 mp_primitive(mp, "penpart",unary,pen_part);
18619 @:pen_part_}{\&{penpart} primitive@>
18620 mp_primitive(mp, "dashpart",unary,dash_part);
18621 @:dash_part_}{\&{dashpart} primitive@>
18622 mp_primitive(mp, "sqrt",unary,sqrt_op);
18623 @:sqrt_}{\&{sqrt} primitive@>
18624 mp_primitive(mp, "mexp",unary,m_exp_op);
18625 @:m_exp_}{\&{mexp} primitive@>
18626 mp_primitive(mp, "mlog",unary,m_log_op);
18627 @:m_log_}{\&{mlog} primitive@>
18628 mp_primitive(mp, "sind",unary,sin_d_op);
18629 @:sin_d_}{\&{sind} primitive@>
18630 mp_primitive(mp, "cosd",unary,cos_d_op);
18631 @:cos_d_}{\&{cosd} primitive@>
18632 mp_primitive(mp, "floor",unary,floor_op);
18633 @:floor_}{\&{floor} primitive@>
18634 mp_primitive(mp, "uniformdeviate",unary,uniform_deviate);
18635 @:uniform_deviate_}{\&{uniformdeviate} primitive@>
18636 mp_primitive(mp, "charexists",unary,char_exists_op);
18637 @:char_exists_}{\&{charexists} primitive@>
18638 mp_primitive(mp, "fontsize",unary,font_size);
18639 @:font_size_}{\&{fontsize} primitive@>
18640 mp_primitive(mp, "llcorner",unary,ll_corner_op);
18641 @:ll_corner_}{\&{llcorner} primitive@>
18642 mp_primitive(mp, "lrcorner",unary,lr_corner_op);
18643 @:lr_corner_}{\&{lrcorner} primitive@>
18644 mp_primitive(mp, "ulcorner",unary,ul_corner_op);
18645 @:ul_corner_}{\&{ulcorner} primitive@>
18646 mp_primitive(mp, "urcorner",unary,ur_corner_op);
18647 @:ur_corner_}{\&{urcorner} primitive@>
18648 mp_primitive(mp, "arclength",unary,arc_length);
18649 @:arc_length_}{\&{arclength} primitive@>
18650 mp_primitive(mp, "angle",unary,angle_op);
18651 @:angle_}{\&{angle} primitive@>
18652 mp_primitive(mp, "cycle",cycle,cycle_op);
18653 @:cycle_}{\&{cycle} primitive@>
18654 mp_primitive(mp, "stroked",unary,stroked_op);
18655 @:stroked_}{\&{stroked} primitive@>
18656 mp_primitive(mp, "filled",unary,filled_op);
18657 @:filled_}{\&{filled} primitive@>
18658 mp_primitive(mp, "textual",unary,textual_op);
18659 @:textual_}{\&{textual} primitive@>
18660 mp_primitive(mp, "clipped",unary,clipped_op);
18661 @:clipped_}{\&{clipped} primitive@>
18662 mp_primitive(mp, "bounded",unary,bounded_op);
18663 @:bounded_}{\&{bounded} primitive@>
18664 mp_primitive(mp, "+",plus_or_minus,plus);
18665 @:+ }{\.{+} primitive@>
18666 mp_primitive(mp, "-",plus_or_minus,minus);
18667 @:- }{\.{-} primitive@>
18668 mp_primitive(mp, "*",secondary_binary,times);
18669 @:* }{\.{*} primitive@>
18670 mp_primitive(mp, "/",slash,over); mp->eqtb[frozen_slash]=mp->eqtb[mp->cur_sym];
18671 @:/ }{\.{/} primitive@>
18672 mp_primitive(mp, "++",tertiary_binary,pythag_add);
18673 @:++_}{\.{++} primitive@>
18674 mp_primitive(mp, "+-+",tertiary_binary,pythag_sub);
18675 @:+-+_}{\.{+-+} primitive@>
18676 mp_primitive(mp, "or",tertiary_binary,or_op);
18677 @:or_}{\&{or} primitive@>
18678 mp_primitive(mp, "and",and_command,and_op);
18679 @:and_}{\&{and} primitive@>
18680 mp_primitive(mp, "<",expression_binary,less_than);
18681 @:< }{\.{<} primitive@>
18682 mp_primitive(mp, "<=",expression_binary,less_or_equal);
18683 @:<=_}{\.{<=} primitive@>
18684 mp_primitive(mp, ">",expression_binary,greater_than);
18685 @:> }{\.{>} primitive@>
18686 mp_primitive(mp, ">=",expression_binary,greater_or_equal);
18687 @:>=_}{\.{>=} primitive@>
18688 mp_primitive(mp, "=",equals,equal_to);
18689 @:= }{\.{=} primitive@>
18690 mp_primitive(mp, "<>",expression_binary,unequal_to);
18691 @:<>_}{\.{<>} primitive@>
18692 mp_primitive(mp, "substring",primary_binary,substring_of);
18693 @:substring_}{\&{substring} primitive@>
18694 mp_primitive(mp, "subpath",primary_binary,subpath_of);
18695 @:subpath_}{\&{subpath} primitive@>
18696 mp_primitive(mp, "directiontime",primary_binary,direction_time_of);
18697 @:direction_time_}{\&{directiontime} primitive@>
18698 mp_primitive(mp, "point",primary_binary,point_of);
18699 @:point_}{\&{point} primitive@>
18700 mp_primitive(mp, "precontrol",primary_binary,precontrol_of);
18701 @:precontrol_}{\&{precontrol} primitive@>
18702 mp_primitive(mp, "postcontrol",primary_binary,postcontrol_of);
18703 @:postcontrol_}{\&{postcontrol} primitive@>
18704 mp_primitive(mp, "penoffset",primary_binary,pen_offset_of);
18705 @:pen_offset_}{\&{penoffset} primitive@>
18706 mp_primitive(mp, "arctime",primary_binary,arc_time_of);
18707 @:arc_time_of_}{\&{arctime} primitive@>
18708 mp_primitive(mp, "mpversion",nullary,mp_version);
18709 @:mp_verison_}{\&{mpversion} primitive@>
18710 mp_primitive(mp, "&",ampersand,concatenate);
18711 @:!!!}{\.{\&} primitive@>
18712 mp_primitive(mp, "rotated",secondary_binary,rotated_by);
18713 @:rotated_}{\&{rotated} primitive@>
18714 mp_primitive(mp, "slanted",secondary_binary,slanted_by);
18715 @:slanted_}{\&{slanted} primitive@>
18716 mp_primitive(mp, "scaled",secondary_binary,scaled_by);
18717 @:scaled_}{\&{scaled} primitive@>
18718 mp_primitive(mp, "shifted",secondary_binary,shifted_by);
18719 @:shifted_}{\&{shifted} primitive@>
18720 mp_primitive(mp, "transformed",secondary_binary,transformed_by);
18721 @:transformed_}{\&{transformed} primitive@>
18722 mp_primitive(mp, "xscaled",secondary_binary,x_scaled);
18723 @:x_scaled_}{\&{xscaled} primitive@>
18724 mp_primitive(mp, "yscaled",secondary_binary,y_scaled);
18725 @:y_scaled_}{\&{yscaled} primitive@>
18726 mp_primitive(mp, "zscaled",secondary_binary,z_scaled);
18727 @:z_scaled_}{\&{zscaled} primitive@>
18728 mp_primitive(mp, "infont",secondary_binary,in_font);
18729 @:in_font_}{\&{infont} primitive@>
18730 mp_primitive(mp, "intersectiontimes",tertiary_binary,intersect);
18731 @:intersection_times_}{\&{intersectiontimes} primitive@>
18732 mp_primitive(mp, "envelope",primary_binary,envelope_of);
18733 @:envelope_}{\&{envelope} primitive@>
18735 @ @<Cases of |print_cmd...@>=
18738 case primary_binary:
18739 case secondary_binary:
18740 case tertiary_binary:
18741 case expression_binary:
18743 case plus_or_minus:
18748 mp_print_op(mp, m);
18751 @ OK, let's look at the simplest \\{do} procedure first.
18753 @c @<Declare nullary action procedure@>;
18754 void mp_do_nullary (MP mp,quarterword c) {
18756 if ( mp->internal[mp_tracing_commands]>two )
18757 mp_show_cmd_mod(mp, nullary,c);
18759 case true_code: case false_code:
18760 mp->cur_type=mp_boolean_type; mp->cur_exp=c;
18762 case null_picture_code:
18763 mp->cur_type=mp_picture_type;
18764 mp->cur_exp=mp_get_node(mp, edge_header_size);
18765 mp_init_edges(mp, mp->cur_exp);
18767 case null_pen_code:
18768 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, 0);
18770 case normal_deviate:
18771 mp->cur_type=mp_known; mp->cur_exp=mp_norm_rand(mp);
18774 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, unity);
18777 if ( mp->job_name==NULL ) mp_open_log_file(mp);
18778 mp->cur_type=mp_string_type; mp->cur_exp=rts(mp->job_name);
18781 mp->cur_type=mp_string_type;
18782 mp->cur_exp=intern(metapost_version) ;
18784 case read_string_op:
18785 @<Read a string from the terminal@>;
18787 } /* there are no other cases */
18791 @ @<Read a string...@>=
18793 if ( mp->interaction<=mp_nonstop_mode )
18794 mp_fatal_error(mp, "*** (cannot readstring in nonstop modes)");
18795 mp_begin_file_reading(mp); name=is_read;
18796 limit=start; prompt_input("");
18797 mp_finish_read(mp);
18800 @ @<Declare nullary action procedure@>=
18801 void mp_finish_read (MP mp) { /* copy |buffer| line to |cur_exp| */
18803 str_room((int)mp->last-start);
18804 for (k=start;k<=mp->last-1;k++) {
18805 append_char(mp->buffer[k]);
18807 mp_end_file_reading(mp); mp->cur_type=mp_string_type;
18808 mp->cur_exp=mp_make_string(mp);
18811 @ Things get a bit more interesting when there's an operand. The
18812 operand to |do_unary| appears in |cur_type| and |cur_exp|.
18814 @c @<Declare unary action procedures@>;
18815 void mp_do_unary (MP mp,quarterword c) {
18816 pointer p,q,r; /* for list manipulation */
18817 integer x; /* a temporary register */
18819 if ( mp->internal[mp_tracing_commands]>two )
18820 @<Trace the current unary operation@>;
18823 if ( mp->cur_type<mp_color_type ) mp_bad_unary(mp, plus);
18826 @<Negate the current expression@>;
18828 @<Additional cases of unary operators@>;
18829 } /* there are no other cases */
18833 @ The |nice_pair| function returns |true| if both components of a pair
18836 @<Declare unary action procedures@>=
18837 boolean mp_nice_pair (MP mp,integer p, quarterword t) {
18838 if ( t==mp_pair_type ) {
18840 if ( type(x_part_loc(p))==mp_known )
18841 if ( type(y_part_loc(p))==mp_known )
18847 @ The |nice_color_or_pair| function is analogous except that it also accepts
18848 fully known colors.
18850 @<Declare unary action procedures@>=
18851 boolean mp_nice_color_or_pair (MP mp,integer p, quarterword t) {
18852 pointer q,r; /* for scanning the big node */
18853 if ( (t!=mp_pair_type)&&(t!=mp_color_type)&&(t!=mp_cmykcolor_type) ) {
18857 r=q+mp->big_node_size[type(p)];
18860 if ( type(r)!=mp_known )
18867 @ @<Declare unary action...@>=
18868 void mp_print_known_or_unknown_type (MP mp,small_number t, integer v) {
18869 mp_print_char(mp, '(');
18870 if ( t>mp_known ) mp_print(mp, "unknown numeric");
18871 else { if ( (t==mp_pair_type)||(t==mp_color_type)||(t==mp_cmykcolor_type) )
18872 if ( ! mp_nice_color_or_pair(mp, v,t) ) mp_print(mp, "unknown ");
18873 mp_print_type(mp, t);
18875 mp_print_char(mp, ')');
18878 @ @<Declare unary action...@>=
18879 void mp_bad_unary (MP mp,quarterword c) {
18880 exp_err("Not implemented: "); mp_print_op(mp, c);
18881 @.Not implemented...@>
18882 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
18883 help3("I'm afraid I don't know how to apply that operation to that")
18884 ("particular type. Continue, and I'll simply return the")
18885 ("argument (shown above) as the result of the operation.");
18886 mp_put_get_error(mp);
18889 @ @<Trace the current unary operation@>=
18891 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
18892 mp_print_op(mp, c); mp_print_char(mp, '(');
18893 mp_print_exp(mp, null,0); /* show the operand, but not verbosely */
18894 mp_print(mp, ")}"); mp_end_diagnostic(mp, false);
18897 @ Negation is easy except when the current expression
18898 is of type |independent|, or when it is a pair with one or more
18899 |independent| components.
18901 It is tempting to argue that the negative of an independent variable
18902 is an independent variable, hence we don't have to do anything when
18903 negating it. The fallacy is that other dependent variables pointing
18904 to the current expression must change the sign of their
18905 coefficients if we make no change to the current expression.
18907 Instead, we work around the problem by copying the current expression
18908 and recycling it afterwards (cf.~the |stash_in| routine).
18910 @<Negate the current expression@>=
18911 switch (mp->cur_type) {
18912 case mp_color_type:
18913 case mp_cmykcolor_type:
18915 case mp_independent:
18916 q=mp->cur_exp; mp_make_exp_copy(mp, q);
18917 if ( mp->cur_type==mp_dependent ) {
18918 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18919 } else if ( mp->cur_type<=mp_pair_type ) { /* |mp_color_type| or |mp_pair_type| */
18920 p=value(mp->cur_exp);
18921 r=p+mp->big_node_size[mp->cur_type];
18924 if ( type(r)==mp_known ) negate(value(r));
18925 else mp_negate_dep_list(mp, dep_list(r));
18927 } /* if |cur_type=mp_known| then |cur_exp=0| */
18928 mp_recycle_value(mp, q); mp_free_node(mp, q,value_node_size);
18931 case mp_proto_dependent:
18932 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18935 negate(mp->cur_exp);
18938 mp_bad_unary(mp, minus);
18942 @ @<Declare unary action...@>=
18943 void mp_negate_dep_list (MP mp,pointer p) {
18946 if ( info(p)==null ) return;
18951 @ @<Additional cases of unary operators@>=
18953 if ( mp->cur_type!=mp_boolean_type ) mp_bad_unary(mp, not_op);
18954 else mp->cur_exp=true_code+false_code-mp->cur_exp;
18957 @ @d three_sixty_units 23592960 /* that's |360*unity| */
18958 @d boolean_reset(A) if ( (A) ) mp->cur_exp=true_code; else mp->cur_exp=false_code
18960 @<Additional cases of unary operators@>=
18967 case uniform_deviate:
18969 case char_exists_op:
18970 if ( mp->cur_type!=mp_known ) {
18971 mp_bad_unary(mp, c);
18974 case sqrt_op:mp->cur_exp=mp_square_rt(mp, mp->cur_exp);break;
18975 case m_exp_op:mp->cur_exp=mp_m_exp(mp, mp->cur_exp);break;
18976 case m_log_op:mp->cur_exp=mp_m_log(mp, mp->cur_exp);break;
18979 mp_n_sin_cos(mp, (mp->cur_exp % three_sixty_units)*16);
18980 if ( c==sin_d_op ) mp->cur_exp=mp_round_fraction(mp, mp->n_sin);
18981 else mp->cur_exp=mp_round_fraction(mp, mp->n_cos);
18983 case floor_op:mp->cur_exp=mp_floor_scaled(mp, mp->cur_exp);break;
18984 case uniform_deviate:mp->cur_exp=mp_unif_rand(mp, mp->cur_exp);break;
18986 boolean_reset(odd(mp_round_unscaled(mp, mp->cur_exp)));
18987 mp->cur_type=mp_boolean_type;
18989 case char_exists_op:
18990 @<Determine if a character has been shipped out@>;
18992 } /* there are no other cases */
18996 @ @<Additional cases of unary operators@>=
18998 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) ) {
18999 p=value(mp->cur_exp);
19000 x=mp_n_arg(mp, value(x_part_loc(p)),value(y_part_loc(p)));
19001 if ( x>=0 ) mp_flush_cur_exp(mp, (x+8)/ 16);
19002 else mp_flush_cur_exp(mp, -((-x+8)/ 16));
19004 mp_bad_unary(mp, angle_op);
19008 @ If the current expression is a pair, but the context wants it to
19009 be a path, we call |pair_to_path|.
19011 @<Declare unary action...@>=
19012 void mp_pair_to_path (MP mp) {
19013 mp->cur_exp=mp_new_knot(mp);
19014 mp->cur_type=mp_path_type;
19017 @ @<Additional cases of unary operators@>=
19020 if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_transform_type) )
19021 mp_take_part(mp, c);
19022 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19023 else mp_bad_unary(mp, c);
19029 if ( mp->cur_type==mp_transform_type ) mp_take_part(mp, c);
19030 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19031 else mp_bad_unary(mp, c);
19036 if ( mp->cur_type==mp_color_type ) mp_take_part(mp, c);
19037 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19038 else mp_bad_unary(mp, c);
19044 if ( mp->cur_type==mp_cmykcolor_type) mp_take_part(mp, c);
19045 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19046 else mp_bad_unary(mp, c);
19049 if ( mp->cur_type==mp_known ) mp->cur_exp=value(c);
19050 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19051 else mp_bad_unary(mp, c);
19053 case color_model_part:
19054 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19055 else mp_bad_unary(mp, c);
19058 @ In the following procedure, |cur_exp| points to a capsule, which points to
19059 a big node. We want to delete all but one part of the big node.
19061 @<Declare unary action...@>=
19062 void mp_take_part (MP mp,quarterword c) {
19063 pointer p; /* the big node */
19064 p=value(mp->cur_exp); value(temp_val)=p; type(temp_val)=mp->cur_type;
19065 link(p)=temp_val; mp_free_node(mp, mp->cur_exp,value_node_size);
19066 mp_make_exp_copy(mp, p+mp->sector_offset[c+mp_x_part_sector-x_part]);
19067 mp_recycle_value(mp, temp_val);
19070 @ @<Initialize table entries...@>=
19071 name_type(temp_val)=mp_capsule;
19073 @ @<Additional cases of unary operators@>=
19079 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19080 else mp_bad_unary(mp, c);
19083 @ @<Declarations@>=
19084 void mp_scale_edges (MP mp);
19086 @ @<Declare unary action...@>=
19087 void mp_take_pict_part (MP mp,quarterword c) {
19088 pointer p; /* first graphical object in |cur_exp| */
19089 p=link(dummy_loc(mp->cur_exp));
19092 case x_part: case y_part: case xx_part:
19093 case xy_part: case yx_part: case yy_part:
19094 if ( type(p)==mp_text_code ) mp_flush_cur_exp(mp, text_trans_part(p+c));
19095 else goto NOT_FOUND;
19097 case red_part: case green_part: case blue_part:
19098 if ( has_color(p) ) mp_flush_cur_exp(mp, obj_color_part(p+c));
19099 else goto NOT_FOUND;
19101 case cyan_part: case magenta_part: case yellow_part:
19103 if ( has_color(p) ) {
19104 if ( color_model(p)==mp_uninitialized_model )
19105 mp_flush_cur_exp(mp, unity);
19107 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-cyan_part)));
19108 } else goto NOT_FOUND;
19111 if ( has_color(p) )
19112 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-grey_part)));
19113 else goto NOT_FOUND;
19115 case color_model_part:
19116 if ( has_color(p) ) {
19117 if ( color_model(p)==mp_uninitialized_model )
19118 mp_flush_cur_exp(mp, mp->internal[mp_default_color_model]);
19120 mp_flush_cur_exp(mp, color_model(p)*unity);
19121 } else goto NOT_FOUND;
19123 @<Handle other cases in |take_pict_part| or |goto not_found|@>;
19124 } /* all cases have been enumerated */
19128 @<Convert the current expression to a null value appropriate
19132 @ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
19134 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19136 mp_flush_cur_exp(mp, text_p(p));
19137 add_str_ref(mp->cur_exp);
19138 mp->cur_type=mp_string_type;
19142 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19144 mp_flush_cur_exp(mp, rts(mp->font_name[font_n(p)]));
19145 add_str_ref(mp->cur_exp);
19146 mp->cur_type=mp_string_type;
19150 if ( type(p)==mp_text_code ) goto NOT_FOUND;
19151 else if ( is_stop(p) ) mp_confusion(mp, "pict");
19152 @:this can't happen pict}{\quad pict@>
19154 mp_flush_cur_exp(mp, mp_copy_path(mp, path_p(p)));
19155 mp->cur_type=mp_path_type;
19159 if ( ! has_pen(p) ) goto NOT_FOUND;
19161 if ( pen_p(p)==null ) goto NOT_FOUND;
19162 else { mp_flush_cur_exp(mp, copy_pen(pen_p(p)));
19163 mp->cur_type=mp_pen_type;
19168 if ( type(p)!=mp_stroked_code ) goto NOT_FOUND;
19169 else { if ( dash_p(p)==null ) goto NOT_FOUND;
19170 else { add_edge_ref(dash_p(p));
19171 mp->se_sf=dash_scale(p);
19172 mp->se_pic=dash_p(p);
19173 mp_scale_edges(mp);
19174 mp_flush_cur_exp(mp, mp->se_pic);
19175 mp->cur_type=mp_picture_type;
19180 @ Since |scale_edges| had to be declared |forward|, it had to be declared as a
19181 parameterless procedure even though it really takes two arguments and updates
19182 one of them. Hence the following globals are needed.
19185 pointer se_pic; /* edge header used and updated by |scale_edges| */
19186 scaled se_sf; /* the scale factor argument to |scale_edges| */
19188 @ @<Convert the current expression to a null value appropriate...@>=
19190 case text_part: case font_part:
19191 mp_flush_cur_exp(mp, rts(""));
19192 mp->cur_type=mp_string_type;
19195 mp_flush_cur_exp(mp, mp_get_node(mp, knot_node_size));
19196 left_type(mp->cur_exp)=mp_endpoint;
19197 right_type(mp->cur_exp)=mp_endpoint;
19198 link(mp->cur_exp)=mp->cur_exp;
19199 x_coord(mp->cur_exp)=0;
19200 y_coord(mp->cur_exp)=0;
19201 originator(mp->cur_exp)=mp_metapost_user;
19202 mp->cur_type=mp_path_type;
19205 mp_flush_cur_exp(mp, mp_get_pen_circle(mp, 0));
19206 mp->cur_type=mp_pen_type;
19209 mp_flush_cur_exp(mp, mp_get_node(mp, edge_header_size));
19210 mp_init_edges(mp, mp->cur_exp);
19211 mp->cur_type=mp_picture_type;
19214 mp_flush_cur_exp(mp, 0);
19218 @ @<Additional cases of unary...@>=
19220 if ( mp->cur_type!=mp_known ) {
19221 mp_bad_unary(mp, char_op);
19223 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
19224 mp->cur_type=mp_string_type;
19225 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
19229 if ( mp->cur_type!=mp_known ) {
19230 mp_bad_unary(mp, decimal);
19232 mp->old_setting=mp->selector; mp->selector=new_string;
19233 mp_print_scaled(mp, mp->cur_exp); mp->cur_exp=mp_make_string(mp);
19234 mp->selector=mp->old_setting; mp->cur_type=mp_string_type;
19240 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19241 else mp_str_to_num(mp, c);
19244 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, font_size);
19245 else @<Find the design size of the font whose name is |cur_exp|@>;
19248 @ @<Declare unary action...@>=
19249 void mp_str_to_num (MP mp,quarterword c) { /* converts a string to a number */
19250 integer n; /* accumulator */
19251 ASCII_code m; /* current character */
19252 pool_pointer k; /* index into |str_pool| */
19253 int b; /* radix of conversion */
19254 boolean bad_char; /* did the string contain an invalid digit? */
19255 if ( c==ASCII_op ) {
19256 if ( length(mp->cur_exp)==0 ) n=-1;
19257 else n=mp->str_pool[mp->str_start[mp->cur_exp]];
19259 if ( c==oct_op ) b=8; else b=16;
19260 n=0; bad_char=false;
19261 for (k=mp->str_start[mp->cur_exp];k<=str_stop(mp->cur_exp)-1;k++) {
19263 if ( (m>='0')&&(m<='9') ) m=m-'0';
19264 else if ( (m>='A')&&(m<='F') ) m=m-'A'+10;
19265 else if ( (m>='a')&&(m<='f') ) m=m-'a'+10;
19266 else { bad_char=true; m=0; };
19267 if ( m>=b ) { bad_char=true; m=0; };
19268 if ( n<32768 / b ) n=n*b+m; else n=32767;
19270 @<Give error messages if |bad_char| or |n>=4096|@>;
19272 mp_flush_cur_exp(mp, n*unity);
19275 @ @<Give error messages if |bad_char|...@>=
19277 exp_err("String contains illegal digits");
19278 @.String contains illegal digits@>
19280 help1("I zeroed out characters that weren't in the range 0..7.");
19282 help1("I zeroed out characters that weren't hex digits.");
19284 mp_put_get_error(mp);
19287 if ( mp->internal[mp_warning_check]>0 ) {
19288 print_err("Number too large (");
19289 mp_print_int(mp, n); mp_print_char(mp, ')');
19290 @.Number too large@>
19291 help2("I have trouble with numbers greater than 4095; watch out.")
19292 ("(Set warningcheck:=0 to suppress this message.)");
19293 mp_put_get_error(mp);
19297 @ The length operation is somewhat unusual in that it applies to a variety
19298 of different types of operands.
19300 @<Additional cases of unary...@>=
19302 switch (mp->cur_type) {
19303 case mp_string_type: mp_flush_cur_exp(mp, length(mp->cur_exp)*unity); break;
19304 case mp_path_type: mp_flush_cur_exp(mp, mp_path_length(mp)); break;
19305 case mp_known: mp->cur_exp=abs(mp->cur_exp); break;
19306 case mp_picture_type: mp_flush_cur_exp(mp, mp_pict_length(mp)); break;
19308 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) )
19309 mp_flush_cur_exp(mp, mp_pyth_add(mp,
19310 value(x_part_loc(value(mp->cur_exp))),
19311 value(y_part_loc(value(mp->cur_exp)))));
19312 else mp_bad_unary(mp, c);
19317 @ @<Declare unary action...@>=
19318 scaled mp_path_length (MP mp) { /* computes the length of the current path */
19319 scaled n; /* the path length so far */
19320 pointer p; /* traverser */
19322 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
19323 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
19327 @ @<Declare unary action...@>=
19328 scaled mp_pict_length (MP mp) {
19329 /* counts interior components in picture |cur_exp| */
19330 scaled n; /* the count so far */
19331 pointer p; /* traverser */
19333 p=link(dummy_loc(mp->cur_exp));
19335 if ( is_start_or_stop(p) )
19336 if ( mp_skip_1component(mp, p)==null ) p=link(p);
19337 while ( p!=null ) {
19338 skip_component(p) return n;
19345 @ Implement |turningnumber|
19347 @<Additional cases of unary...@>=
19349 if ( mp->cur_type==mp_pair_type ) mp_flush_cur_exp(mp, 0);
19350 else if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, turning_op);
19351 else if ( left_type(mp->cur_exp)==mp_endpoint )
19352 mp_flush_cur_exp(mp, 0); /* not a cyclic path */
19354 mp_flush_cur_exp(mp, mp_turn_cycles_wrapper(mp, mp->cur_exp));
19357 @ The function |an_angle| returns the value of the |angle| primitive, or $0$ if the
19358 argument is |origin|.
19360 @<Declare unary action...@>=
19361 angle mp_an_angle (MP mp,scaled xpar, scaled ypar) {
19362 if ( (! ((xpar==0) && (ypar==0))) )
19363 return mp_n_arg(mp, xpar,ypar);
19368 @ The actual turning number is (for the moment) computed in a C function
19369 that receives eight integers corresponding to the four controlling points,
19370 and returns a single angle. Besides those, we have to account for discrete
19371 moves at the actual points.
19373 @d floor(a) (a>=0 ? a : -(int)(-a))
19374 @d bezier_error (720<<20)+1
19375 @d sign(v) ((v)>0 ? 1 : ((v)<0 ? -1 : 0 ))
19377 @d out ((double)(xo>>20))
19378 @d mid ((double)(xm>>20))
19379 @d in ((double)(xi>>20))
19380 @d divisor (256*256)
19381 @d double2angle(a) (int)floor(a*256.0*256.0*16.0)
19383 @<Declare unary action...@>=
19384 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19385 integer CX,integer CY,integer DX,integer DY);
19388 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19389 integer CX,integer CY,integer DX,integer DY) {
19391 integer deltax,deltay;
19392 double ax,ay,bx,by,cx,cy,dx,dy;
19393 angle xi = 0, xo = 0, xm = 0;
19395 ax=AX/divisor; ay=AY/divisor;
19396 bx=BX/divisor; by=BY/divisor;
19397 cx=CX/divisor; cy=CY/divisor;
19398 dx=DX/divisor; dy=DY/divisor;
19400 deltax = (BX-AX); deltay = (BY-AY);
19401 if (deltax==0 && deltay == 0) { deltax=(CX-AX); deltay=(CY-AY); }
19402 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19403 xi = mp_an_angle(mp,deltax,deltay);
19405 deltax = (CX-BX); deltay = (CY-BY);
19406 xm = mp_an_angle(mp,deltax,deltay);
19408 deltax = (DX-CX); deltay = (DY-CY);
19409 if (deltax==0 && deltay == 0) { deltax=(DX-BX); deltay=(DY-BY); }
19410 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19411 xo = mp_an_angle(mp,deltax,deltay);
19413 a = (bx-ax)*(cy-by) - (cx-bx)*(by-ay); /* a = (bp-ap)x(cp-bp); */
19414 b = (bx-ax)*(dy-cy) - (by-ay)*(dx-cx);; /* b = (bp-ap)x(dp-cp);*/
19415 c = (cx-bx)*(dy-cy) - (dx-cx)*(cy-by); /* c = (cp-bp)x(dp-cp);*/
19417 if ((a==0)&&(c==0)) {
19418 res = (b==0 ? 0 : (out-in));
19419 print_roots("no roots (a)");
19420 } else if ((a==0)||(c==0)) {
19421 if ((sign(b) == sign(a)) || (sign(b) == sign(c))) {
19422 res = out-in; /* ? */
19425 else if (res>180.0)
19427 print_roots("no roots (b)");
19429 res = out-in; /* ? */
19430 print_roots("one root (a)");
19432 } else if ((sign(a)*sign(c))<0) {
19433 res = out-in; /* ? */
19436 else if (res>180.0)
19438 print_roots("one root (b)");
19440 if (sign(a) == sign(b)) {
19441 res = out-in; /* ? */
19444 else if (res>180.0)
19446 print_roots("no roots (d)");
19448 if ((b*b) == (4*a*c)) {
19449 res = bezier_error;
19450 print_roots("double root"); /* cusp */
19451 } else if ((b*b) < (4*a*c)) {
19452 res = out-in; /* ? */
19453 if (res<=0.0 &&res>-180.0)
19455 else if (res>=0.0 && res<180.0)
19457 print_roots("no roots (e)");
19462 else if (res>180.0)
19464 print_roots("two roots"); /* two inflections */
19468 return double2angle(res);
19472 @d p_nextnext link(link(p))
19474 @d seven_twenty_deg 05500000000 /* $720\cdot2^{20}$, represents $720^\circ$ */
19476 @<Declare unary action...@>=
19477 scaled mp_new_turn_cycles (MP mp,pointer c) {
19478 angle res,ang; /* the angles of intermediate results */
19479 scaled turns; /* the turn counter */
19480 pointer p; /* for running around the path */
19481 integer xp,yp; /* coordinates of next point */
19482 integer x,y; /* helper coordinates */
19483 angle in_angle,out_angle; /* helper angles */
19484 int old_setting; /* saved |selector| setting */
19488 old_setting = mp->selector; mp->selector=term_only;
19489 if ( mp->internal[mp_tracing_commands]>unity ) {
19490 mp_begin_diagnostic(mp);
19491 mp_print_nl(mp, "");
19492 mp_end_diagnostic(mp, false);
19495 xp = x_coord(p_next); yp = y_coord(p_next);
19496 ang = mp_bezier_slope(mp,x_coord(p), y_coord(p), right_x(p), right_y(p),
19497 left_x(p_next), left_y(p_next), xp, yp);
19498 if ( ang>seven_twenty_deg ) {
19499 print_err("Strange path");
19501 mp->selector=old_setting;
19505 if ( res > one_eighty_deg ) {
19506 res = res - three_sixty_deg;
19507 turns = turns + unity;
19509 if ( res <= -one_eighty_deg ) {
19510 res = res + three_sixty_deg;
19511 turns = turns - unity;
19513 /* incoming angle at next point */
19514 x = left_x(p_next); y = left_y(p_next);
19515 if ( (xp==x)&&(yp==y) ) { x = right_x(p); y = right_y(p); };
19516 if ( (xp==x)&&(yp==y) ) { x = x_coord(p); y = y_coord(p); };
19517 in_angle = mp_an_angle(mp, xp - x, yp - y);
19518 /* outgoing angle at next point */
19519 x = right_x(p_next); y = right_y(p_next);
19520 if ( (xp==x)&&(yp==y) ) { x = left_x(p_nextnext); y = left_y(p_nextnext); };
19521 if ( (xp==x)&&(yp==y) ) { x = x_coord(p_nextnext); y = y_coord(p_nextnext); };
19522 out_angle = mp_an_angle(mp, x - xp, y- yp);
19523 ang = (out_angle - in_angle);
19527 if ( res >= one_eighty_deg ) {
19528 res = res - three_sixty_deg;
19529 turns = turns + unity;
19531 if ( res <= -one_eighty_deg ) {
19532 res = res + three_sixty_deg;
19533 turns = turns - unity;
19538 mp->selector=old_setting;
19543 @ This code is based on Bogus\l{}av Jackowski's
19544 |emergency_turningnumber| macro, with some minor changes by Taco
19545 Hoekwater. The macro code looked more like this:
19547 vardef turning\_number primary p =
19548 ~~save res, ang, turns;
19550 ~~if length p <= 2:
19551 ~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
19553 ~~~~for t = 0 upto length p-1 :
19554 ~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
19555 ~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
19556 ~~~~~~if angc > 180: angc := angc - 360; fi;
19557 ~~~~~~if angc < -180: angc := angc + 360; fi;
19558 ~~~~~~res := res + angc;
19563 The general idea is to calculate only the sum of the angles of
19564 straight lines between the points, of a path, not worrying about cusps
19565 or self-intersections in the segments at all. If the segment is not
19566 well-behaved, the result is not necesarily correct. But the old code
19567 was not always correct either, and worse, it sometimes failed for
19568 well-behaved paths as well. All known bugs that were triggered by the
19569 original code no longer occur with this code, and it runs roughly 3
19570 times as fast because the algorithm is much simpler.
19572 @ It is possible to overflow the return value of the |turn_cycles|
19573 function when the path is sufficiently long and winding, but I am not
19574 going to bother testing for that. In any case, it would only return
19575 the looped result value, which is not a big problem.
19577 The macro code for the repeat loop was a bit nicer to look
19578 at than the pascal code, because it could use |point -1 of p|. In
19579 pascal, the fastest way to loop around the path is not to look
19580 backward once, but forward twice. These defines help hide the trick.
19582 @d p_to link(link(p))
19586 @<Declare unary action...@>=
19587 scaled mp_turn_cycles (MP mp,pointer c) {
19588 angle res,ang; /* the angles of intermediate results */
19589 scaled turns; /* the turn counter */
19590 pointer p; /* for running around the path */
19591 res=0; turns= 0; p=c;
19593 ang = mp_an_angle (mp, x_coord(p_to) - x_coord(p_here),
19594 y_coord(p_to) - y_coord(p_here))
19595 - mp_an_angle (mp, x_coord(p_here) - x_coord(p_from),
19596 y_coord(p_here) - y_coord(p_from));
19599 if ( res >= three_sixty_deg ) {
19600 res = res - three_sixty_deg;
19601 turns = turns + unity;
19603 if ( res <= -three_sixty_deg ) {
19604 res = res + three_sixty_deg;
19605 turns = turns - unity;
19612 @ @<Declare unary action...@>=
19613 scaled mp_turn_cycles_wrapper (MP mp,pointer c) {
19615 scaled saved_t_o; /* tracing\_online saved */
19616 if ( (link(c)==c)||(link(link(c))==c) ) {
19617 if ( mp_an_angle (mp, x_coord(c) - right_x(c), y_coord(c) - right_y(c)) > 0 )
19622 nval = mp_new_turn_cycles(mp, c);
19623 oval = mp_turn_cycles(mp, c);
19624 if ( nval!=oval ) {
19625 saved_t_o=mp->internal[mp_tracing_online];
19626 mp->internal[mp_tracing_online]=unity;
19627 mp_begin_diagnostic(mp);
19628 mp_print_nl (mp, "Warning: the turningnumber algorithms do not agree."
19629 " The current computed value is ");
19630 mp_print_scaled(mp, nval);
19631 mp_print(mp, ", but the 'connect-the-dots' algorithm returned ");
19632 mp_print_scaled(mp, oval);
19633 mp_end_diagnostic(mp, false);
19634 mp->internal[mp_tracing_online]=saved_t_o;
19640 @ @<Declare unary action...@>=
19641 scaled mp_count_turns (MP mp,pointer c) {
19642 pointer p; /* a knot in envelope spec |c| */
19643 integer t; /* total pen offset changes counted */
19646 t=t+info(p)-zero_off;
19649 return ((t / 3)*unity);
19652 @ @d type_range(A,B) {
19653 if ( (mp->cur_type>=(A)) && (mp->cur_type<=(B)) )
19654 mp_flush_cur_exp(mp, true_code);
19655 else mp_flush_cur_exp(mp, false_code);
19656 mp->cur_type=mp_boolean_type;
19659 if ( mp->cur_type==(A) ) mp_flush_cur_exp(mp, true_code);
19660 else mp_flush_cur_exp(mp, false_code);
19661 mp->cur_type=mp_boolean_type;
19664 @<Additional cases of unary operators@>=
19665 case mp_boolean_type:
19666 type_range(mp_boolean_type,mp_unknown_boolean); break;
19667 case mp_string_type:
19668 type_range(mp_string_type,mp_unknown_string); break;
19670 type_range(mp_pen_type,mp_unknown_pen); break;
19672 type_range(mp_path_type,mp_unknown_path); break;
19673 case mp_picture_type:
19674 type_range(mp_picture_type,mp_unknown_picture); break;
19675 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
19677 type_test(c); break;
19678 case mp_numeric_type:
19679 type_range(mp_known,mp_independent); break;
19680 case known_op: case unknown_op:
19681 mp_test_known(mp, c); break;
19683 @ @<Declare unary action procedures@>=
19684 void mp_test_known (MP mp,quarterword c) {
19685 int b; /* is the current expression known? */
19686 pointer p,q; /* locations in a big node */
19688 switch (mp->cur_type) {
19689 case mp_vacuous: case mp_boolean_type: case mp_string_type:
19690 case mp_pen_type: case mp_path_type: case mp_picture_type:
19694 case mp_transform_type:
19695 case mp_color_type: case mp_cmykcolor_type: case mp_pair_type:
19696 p=value(mp->cur_exp);
19697 q=p+mp->big_node_size[mp->cur_type];
19700 if ( type(q)!=mp_known )
19709 if ( c==known_op ) mp_flush_cur_exp(mp, b);
19710 else mp_flush_cur_exp(mp, true_code+false_code-b);
19711 mp->cur_type=mp_boolean_type;
19714 @ @<Additional cases of unary operators@>=
19716 if ( mp->cur_type!=mp_path_type ) mp_flush_cur_exp(mp, false_code);
19717 else if ( left_type(mp->cur_exp)!=mp_endpoint ) mp_flush_cur_exp(mp, true_code);
19718 else mp_flush_cur_exp(mp, false_code);
19719 mp->cur_type=mp_boolean_type;
19722 @ @<Additional cases of unary operators@>=
19724 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19725 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, arc_length);
19726 else mp_flush_cur_exp(mp, mp_get_arc_length(mp, mp->cur_exp));
19729 @ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
19731 @^data structure assumptions@>
19733 @<Additional cases of unary operators@>=
19739 if ( mp->cur_type!=mp_picture_type ) mp_flush_cur_exp(mp, false_code);
19740 else if ( link(dummy_loc(mp->cur_exp))==null ) mp_flush_cur_exp(mp, false_code);
19741 else if ( type(link(dummy_loc(mp->cur_exp)))==c+mp_fill_code-filled_op )
19742 mp_flush_cur_exp(mp, true_code);
19743 else mp_flush_cur_exp(mp, false_code);
19744 mp->cur_type=mp_boolean_type;
19747 @ @<Additional cases of unary operators@>=
19749 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19750 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, make_pen_op);
19752 mp->cur_type=mp_pen_type;
19753 mp->cur_exp=mp_make_pen(mp, mp->cur_exp,true);
19757 if ( mp->cur_type!=mp_pen_type ) mp_bad_unary(mp, make_path_op);
19759 mp->cur_type=mp_path_type;
19760 mp_make_path(mp, mp->cur_exp);
19764 if ( mp->cur_type==mp_path_type ) {
19765 p=mp_htap_ypoc(mp, mp->cur_exp);
19766 if ( right_type(p)==mp_endpoint ) p=link(p);
19767 mp_toss_knot_list(mp, mp->cur_exp); mp->cur_exp=p;
19768 } else if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19769 else mp_bad_unary(mp, reverse);
19772 @ The |pair_value| routine changes the current expression to a
19773 given ordered pair of values.
19775 @<Declare unary action procedures@>=
19776 void mp_pair_value (MP mp,scaled x, scaled y) {
19777 pointer p; /* a pair node */
19778 p=mp_get_node(mp, value_node_size);
19779 mp_flush_cur_exp(mp, p); mp->cur_type=mp_pair_type;
19780 type(p)=mp_pair_type; name_type(p)=mp_capsule; mp_init_big_node(mp, p);
19782 type(x_part_loc(p))=mp_known; value(x_part_loc(p))=x;
19783 type(y_part_loc(p))=mp_known; value(y_part_loc(p))=y;
19786 @ @<Additional cases of unary operators@>=
19788 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ll_corner_op);
19789 else mp_pair_value(mp, minx,miny);
19792 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, lr_corner_op);
19793 else mp_pair_value(mp, maxx,miny);
19796 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ul_corner_op);
19797 else mp_pair_value(mp, minx,maxy);
19800 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ur_corner_op);
19801 else mp_pair_value(mp, maxx,maxy);
19804 @ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
19805 box of the current expression. The boolean result is |false| if the expression
19806 has the wrong type.
19808 @<Declare unary action procedures@>=
19809 boolean mp_get_cur_bbox (MP mp) {
19810 switch (mp->cur_type) {
19811 case mp_picture_type:
19812 mp_set_bbox(mp, mp->cur_exp,true);
19813 if ( minx_val(mp->cur_exp)>maxx_val(mp->cur_exp) ) {
19814 minx=0; maxx=0; miny=0; maxy=0;
19816 minx=minx_val(mp->cur_exp);
19817 maxx=maxx_val(mp->cur_exp);
19818 miny=miny_val(mp->cur_exp);
19819 maxy=maxy_val(mp->cur_exp);
19823 mp_path_bbox(mp, mp->cur_exp);
19826 mp_pen_bbox(mp, mp->cur_exp);
19834 @ @<Additional cases of unary operators@>=
19836 case close_from_op:
19837 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19838 else mp_do_read_or_close(mp,c);
19841 @ Here is a routine that interprets |cur_exp| as a file name and tries to read
19842 a line from the file or to close the file.
19844 @<Declare unary action procedures@>=
19845 void mp_do_read_or_close (MP mp,quarterword c) {
19846 readf_index n,n0; /* indices for searching |rd_fname| */
19847 @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
19848 call |start_read_input| and |goto found| or |not_found|@>;
19849 mp_begin_file_reading(mp);
19851 if ( mp_input_ln(mp, mp->rd_file[n] ) )
19853 mp_end_file_reading(mp);
19855 @<Record the end of file and set |cur_exp| to a dummy value@>;
19858 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
19861 mp_flush_cur_exp(mp, 0);
19862 mp_finish_read(mp);
19865 @ Free slots in the |rd_file| and |rd_fname| arrays are marked with NULL's in
19868 @<Find the |n| where |rd_fname[n]=cur_exp|...@>=
19873 fn = str(mp->cur_exp);
19874 while (mp_xstrcmp(fn,mp->rd_fname[n])!=0) {
19877 } else if ( c==close_from_op ) {
19880 if ( n0==mp->read_files ) {
19881 if ( mp->read_files<mp->max_read_files ) {
19882 incr(mp->read_files);
19887 l = mp->max_read_files + (mp->max_read_files>>2);
19888 rd_file = xmalloc((l+1), sizeof(void *));
19889 rd_fname = xmalloc((l+1), sizeof(char *));
19890 for (k=0;k<=l;k++) {
19891 if (k<=mp->max_read_files) {
19892 rd_file[k]=mp->rd_file[k];
19893 rd_fname[k]=mp->rd_fname[k];
19899 xfree(mp->rd_file); xfree(mp->rd_fname);
19900 mp->max_read_files = l;
19901 mp->rd_file = rd_file;
19902 mp->rd_fname = rd_fname;
19906 if ( mp_start_read_input(mp,fn,n) )
19911 if ( mp->rd_fname[n]==NULL ) { n0=n; }
19913 if ( c==close_from_op ) {
19914 (mp->close_file)(mp->rd_file[n]);
19919 @ @<Record the end of file and set |cur_exp| to a dummy value@>=
19920 xfree(mp->rd_fname[n]);
19921 mp->rd_fname[n]=NULL;
19922 if ( n==mp->read_files-1 ) mp->read_files=n;
19923 if ( c==close_from_op )
19925 mp_flush_cur_exp(mp, mp->eof_line);
19926 mp->cur_type=mp_string_type
19928 @ The string denoting end-of-file is a one-byte string at position zero, by definition
19931 str_number eof_line;
19936 @ Finally, we have the operations that combine a capsule~|p|
19937 with the current expression.
19939 @c @<Declare binary action procedures@>;
19940 void mp_do_binary (MP mp,pointer p, quarterword c) {
19941 pointer q,r,rr; /* for list manipulation */
19942 pointer old_p,old_exp; /* capsules to recycle */
19943 integer v; /* for numeric manipulation */
19945 if ( mp->internal[mp_tracing_commands]>two ) {
19946 @<Trace the current binary operation@>;
19948 @<Sidestep |independent| cases in capsule |p|@>;
19949 @<Sidestep |independent| cases in the current expression@>;
19951 case plus: case minus:
19952 @<Add or subtract the current expression from |p|@>;
19954 @<Additional cases of binary operators@>;
19955 }; /* there are no other cases */
19956 mp_recycle_value(mp, p);
19957 mp_free_node(mp, p,value_node_size); /* |return| to avoid this */
19959 @<Recycle any sidestepped |independent| capsules@>;
19962 @ @<Declare binary action...@>=
19963 void mp_bad_binary (MP mp,pointer p, quarterword c) {
19964 mp_disp_err(mp, p,"");
19965 exp_err("Not implemented: ");
19966 @.Not implemented...@>
19967 if ( c>=min_of ) mp_print_op(mp, c);
19968 mp_print_known_or_unknown_type(mp, type(p),p);
19969 if ( c>=min_of ) mp_print(mp, "of"); else mp_print_op(mp, c);
19970 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
19971 help3("I'm afraid I don't know how to apply that operation to that")
19972 ("combination of types. Continue, and I'll return the second")
19973 ("argument (see above) as the result of the operation.");
19974 mp_put_get_error(mp);
19976 void mp_bad_envelope_pen (MP mp) {
19977 mp_disp_err(mp, null,"");
19978 exp_err("Not implemented: envelope(elliptical pen)of(path)");
19979 @.Not implemented...@>
19980 help3("I'm afraid I don't know how to apply that operation to that")
19981 ("combination of types. Continue, and I'll return the second")
19982 ("argument (see above) as the result of the operation.");
19983 mp_put_get_error(mp);
19986 @ @<Trace the current binary operation@>=
19988 mp_begin_diagnostic(mp); mp_print_nl(mp, "{(");
19989 mp_print_exp(mp,p,0); /* show the operand, but not verbosely */
19990 mp_print_char(mp,')'); mp_print_op(mp,c); mp_print_char(mp,'(');
19991 mp_print_exp(mp,null,0); mp_print(mp,")}");
19992 mp_end_diagnostic(mp, false);
19995 @ Several of the binary operations are potentially complicated by the
19996 fact that |independent| values can sneak into capsules. For example,
19997 we've seen an instance of this difficulty in the unary operation
19998 of negation. In order to reduce the number of cases that need to be
19999 handled, we first change the two operands (if necessary)
20000 to rid them of |independent| components. The original operands are
20001 put into capsules called |old_p| and |old_exp|, which will be
20002 recycled after the binary operation has been safely carried out.
20004 @<Recycle any sidestepped |independent| capsules@>=
20005 if ( old_p!=null ) {
20006 mp_recycle_value(mp, old_p); mp_free_node(mp, old_p,value_node_size);
20008 if ( old_exp!=null ) {
20009 mp_recycle_value(mp, old_exp); mp_free_node(mp, old_exp,value_node_size);
20012 @ A big node is considered to be ``tarnished'' if it contains at least one
20013 independent component. We will define a simple function called `|tarnished|'
20014 that returns |null| if and only if its argument is not tarnished.
20016 @<Sidestep |independent| cases in capsule |p|@>=
20018 case mp_transform_type:
20019 case mp_color_type:
20020 case mp_cmykcolor_type:
20022 old_p=mp_tarnished(mp, p);
20024 case mp_independent: old_p=mp_void; break;
20025 default: old_p=null; break;
20027 if ( old_p!=null ) {
20028 q=mp_stash_cur_exp(mp); old_p=p; mp_make_exp_copy(mp, old_p);
20029 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
20032 @ @<Sidestep |independent| cases in the current expression@>=
20033 switch (mp->cur_type) {
20034 case mp_transform_type:
20035 case mp_color_type:
20036 case mp_cmykcolor_type:
20038 old_exp=mp_tarnished(mp, mp->cur_exp);
20040 case mp_independent:old_exp=mp_void; break;
20041 default: old_exp=null; break;
20043 if ( old_exp!=null ) {
20044 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20047 @ @<Declare binary action...@>=
20048 pointer mp_tarnished (MP mp,pointer p) {
20049 pointer q; /* beginning of the big node */
20050 pointer r; /* current position in the big node */
20051 q=value(p); r=q+mp->big_node_size[type(p)];
20054 if ( type(r)==mp_independent ) return mp_void;
20059 @ @<Add or subtract the current expression from |p|@>=
20060 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20061 mp_bad_binary(mp, p,c);
20063 if ((mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20064 mp_add_or_subtract(mp, p,null,c);
20066 if ( mp->cur_type!=type(p) ) {
20067 mp_bad_binary(mp, p,c);
20069 q=value(p); r=value(mp->cur_exp);
20070 rr=r+mp->big_node_size[mp->cur_type];
20072 mp_add_or_subtract(mp, q,r,c);
20079 @ The first argument to |add_or_subtract| is the location of a value node
20080 in a capsule or pair node that will soon be recycled. The second argument
20081 is either a location within a pair or transform node of |cur_exp|,
20082 or it is null (which means that |cur_exp| itself should be the second
20083 argument). The third argument is either |plus| or |minus|.
20085 The sum or difference of the numeric quantities will replace the second
20086 operand. Arithmetic overflow may go undetected; users aren't supposed to
20087 be monkeying around with really big values.
20089 @<Declare binary action...@>=
20090 @<Declare the procedure called |dep_finish|@>;
20091 void mp_add_or_subtract (MP mp,pointer p, pointer q, quarterword c) {
20092 small_number s,t; /* operand types */
20093 pointer r; /* list traverser */
20094 integer v; /* second operand value */
20097 if ( t<mp_dependent ) v=mp->cur_exp; else v=dep_list(mp->cur_exp);
20100 if ( t<mp_dependent ) v=value(q); else v=dep_list(q);
20102 if ( t==mp_known ) {
20103 if ( c==minus ) negate(v);
20104 if ( type(p)==mp_known ) {
20105 v=mp_slow_add(mp, value(p),v);
20106 if ( q==null ) mp->cur_exp=v; else value(q)=v;
20109 @<Add a known value to the constant term of |dep_list(p)|@>;
20111 if ( c==minus ) mp_negate_dep_list(mp, v);
20112 @<Add operand |p| to the dependency list |v|@>;
20116 @ @<Add a known value to the constant term of |dep_list(p)|@>=
20118 while ( info(r)!=null ) r=link(r);
20119 value(r)=mp_slow_add(mp, value(r),v);
20121 q=mp_get_node(mp, value_node_size); mp->cur_exp=q; mp->cur_type=type(p);
20122 name_type(q)=mp_capsule;
20124 dep_list(q)=dep_list(p); type(q)=type(p);
20125 prev_dep(q)=prev_dep(p); link(prev_dep(p))=q;
20126 type(p)=mp_known; /* this will keep the recycler from collecting non-garbage */
20128 @ We prefer |dependent| lists to |mp_proto_dependent| ones, because it is
20129 nice to retain the extra accuracy of |fraction| coefficients.
20130 But we have to handle both kinds, and mixtures too.
20132 @<Add operand |p| to the dependency list |v|@>=
20133 if ( type(p)==mp_known ) {
20134 @<Add the known |value(p)| to the constant term of |v|@>;
20136 s=type(p); r=dep_list(p);
20137 if ( t==mp_dependent ) {
20138 if ( s==mp_dependent ) {
20139 if ( mp_max_coef(mp, r)+mp_max_coef(mp, v)<coef_bound )
20140 v=mp_p_plus_q(mp, v,r,mp_dependent); goto DONE;
20141 } /* |fix_needed| will necessarily be false */
20142 t=mp_proto_dependent;
20143 v=mp_p_over_v(mp, v,unity,mp_dependent,mp_proto_dependent);
20145 if ( s==mp_proto_dependent ) v=mp_p_plus_q(mp, v,r,mp_proto_dependent);
20146 else v=mp_p_plus_fq(mp, v,unity,r,mp_proto_dependent,mp_dependent);
20148 @<Output the answer, |v| (which might have become |known|)@>;
20151 @ @<Add the known |value(p)| to the constant term of |v|@>=
20153 while ( info(v)!=null ) v=link(v);
20154 value(v)=mp_slow_add(mp, value(p),value(v));
20157 @ @<Output the answer, |v| (which might have become |known|)@>=
20158 if ( q!=null ) mp_dep_finish(mp, v,q,t);
20159 else { mp->cur_type=t; mp_dep_finish(mp, v,null,t); }
20161 @ Here's the current situation: The dependency list |v| of type |t|
20162 should either be put into the current expression (if |q=null|) or
20163 into location |q| within a pair node (otherwise). The destination (|cur_exp|
20164 or |q|) formerly held a dependency list with the same
20165 final pointer as the list |v|.
20167 @<Declare the procedure called |dep_finish|@>=
20168 void mp_dep_finish (MP mp, pointer v, pointer q, small_number t) {
20169 pointer p; /* the destination */
20170 scaled vv; /* the value, if it is |known| */
20171 if ( q==null ) p=mp->cur_exp; else p=q;
20172 dep_list(p)=v; type(p)=t;
20173 if ( info(v)==null ) {
20176 mp_flush_cur_exp(mp, vv);
20178 mp_recycle_value(mp, p); type(q)=mp_known; value(q)=vv;
20180 } else if ( q==null ) {
20183 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20186 @ Let's turn now to the six basic relations of comparison.
20188 @<Additional cases of binary operators@>=
20189 case less_than: case less_or_equal: case greater_than:
20190 case greater_or_equal: case equal_to: case unequal_to:
20191 check_arith; /* at this point |arith_error| should be |false|? */
20192 if ( (mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20193 mp_add_or_subtract(mp, p,null,minus); /* |cur_exp:=(p)-cur_exp| */
20194 } else if ( mp->cur_type!=type(p) ) {
20195 mp_bad_binary(mp, p,c); goto DONE;
20196 } else if ( mp->cur_type==mp_string_type ) {
20197 mp_flush_cur_exp(mp, mp_str_vs_str(mp, value(p),mp->cur_exp));
20198 } else if ((mp->cur_type==mp_unknown_string)||
20199 (mp->cur_type==mp_unknown_boolean) ) {
20200 @<Check if unknowns have been equated@>;
20201 } else if ( (mp->cur_type<=mp_pair_type)&&(mp->cur_type>=mp_transform_type)) {
20202 @<Reduce comparison of big nodes to comparison of scalars@>;
20203 } else if ( mp->cur_type==mp_boolean_type ) {
20204 mp_flush_cur_exp(mp, mp->cur_exp-value(p));
20206 mp_bad_binary(mp, p,c); goto DONE;
20208 @<Compare the current expression with zero@>;
20210 mp->arith_error=false; /* ignore overflow in comparisons */
20213 @ @<Compare the current expression with zero@>=
20214 if ( mp->cur_type!=mp_known ) {
20215 if ( mp->cur_type<mp_known ) {
20216 mp_disp_err(mp, p,"");
20217 help1("The quantities shown above have not been equated.")
20219 help2("Oh dear. I can\'t decide if the expression above is positive,")
20220 ("negative, or zero. So this comparison test won't be `true'.");
20222 exp_err("Unknown relation will be considered false");
20223 @.Unknown relation...@>
20224 mp_put_get_flush_error(mp, false_code);
20227 case less_than: boolean_reset(mp->cur_exp<0); break;
20228 case less_or_equal: boolean_reset(mp->cur_exp<=0); break;
20229 case greater_than: boolean_reset(mp->cur_exp>0); break;
20230 case greater_or_equal: boolean_reset(mp->cur_exp>=0); break;
20231 case equal_to: boolean_reset(mp->cur_exp==0); break;
20232 case unequal_to: boolean_reset(mp->cur_exp!=0); break;
20233 }; /* there are no other cases */
20235 mp->cur_type=mp_boolean_type
20237 @ When two unknown strings are in the same ring, we know that they are
20238 equal. Otherwise, we don't know whether they are equal or not, so we
20241 @<Check if unknowns have been equated@>=
20243 q=value(mp->cur_exp);
20244 while ( (q!=mp->cur_exp)&&(q!=p) ) q=value(q);
20245 if ( q==p ) mp_flush_cur_exp(mp, 0);
20248 @ @<Reduce comparison of big nodes to comparison of scalars@>=
20250 q=value(p); r=value(mp->cur_exp);
20251 rr=r+mp->big_node_size[mp->cur_type]-2;
20252 while (1) { mp_add_or_subtract(mp, q,r,minus);
20253 if ( type(r)!=mp_known ) break;
20254 if ( value(r)!=0 ) break;
20255 if ( r==rr ) break;
20258 mp_take_part(mp, name_type(r)+x_part-mp_x_part_sector);
20261 @ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
20263 @<Additional cases of binary operators@>=
20266 if ( (type(p)!=mp_boolean_type)||(mp->cur_type!=mp_boolean_type) )
20267 mp_bad_binary(mp, p,c);
20268 else if ( value(p)==c+false_code-and_op ) mp->cur_exp=value(p);
20271 @ @<Additional cases of binary operators@>=
20273 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20274 mp_bad_binary(mp, p,times);
20275 } else if ( (mp->cur_type==mp_known)||(type(p)==mp_known) ) {
20276 @<Multiply when at least one operand is known@>;
20277 } else if ( (mp_nice_color_or_pair(mp, p,type(p))&&(mp->cur_type>mp_pair_type))
20278 ||(mp_nice_color_or_pair(mp, mp->cur_exp,mp->cur_type)&&
20279 (type(p)>mp_pair_type)) ) {
20280 mp_hard_times(mp, p); return;
20282 mp_bad_binary(mp, p,times);
20286 @ @<Multiply when at least one operand is known@>=
20288 if ( type(p)==mp_known ) {
20289 v=value(p); mp_free_node(mp, p,value_node_size);
20291 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20293 if ( mp->cur_type==mp_known ) {
20294 mp->cur_exp=mp_take_scaled(mp, mp->cur_exp,v);
20295 } else if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_color_type)||
20296 (mp->cur_type==mp_cmykcolor_type) ) {
20297 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20299 p=p-2; mp_dep_mult(mp, p,v,true);
20300 } while (p!=value(mp->cur_exp));
20302 mp_dep_mult(mp, null,v,true);
20307 @ @<Declare binary action...@>=
20308 void mp_dep_mult (MP mp,pointer p, integer v, boolean v_is_scaled) {
20309 pointer q; /* the dependency list being multiplied by |v| */
20310 small_number s,t; /* its type, before and after */
20313 } else if ( type(p)!=mp_known ) {
20316 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
20317 else value(p)=mp_take_fraction(mp, value(p),v);
20320 t=type(q); q=dep_list(q); s=t;
20321 if ( t==mp_dependent ) if ( v_is_scaled )
20322 if (mp_ab_vs_cd(mp, mp_max_coef(mp,q),abs(v),coef_bound-1,unity)>=0 )
20323 t=mp_proto_dependent;
20324 q=mp_p_times_v(mp, q,v,s,t,v_is_scaled);
20325 mp_dep_finish(mp, q,p,t);
20328 @ Here is a routine that is similar to |times|; but it is invoked only
20329 internally, when |v| is a |fraction| whose magnitude is at most~1,
20330 and when |cur_type>=mp_color_type|.
20332 @c void mp_frac_mult (MP mp,scaled n, scaled d) {
20333 /* multiplies |cur_exp| by |n/d| */
20334 pointer p; /* a pair node */
20335 pointer old_exp; /* a capsule to recycle */
20336 fraction v; /* |n/d| */
20337 if ( mp->internal[mp_tracing_commands]>two ) {
20338 @<Trace the fraction multiplication@>;
20340 switch (mp->cur_type) {
20341 case mp_transform_type:
20342 case mp_color_type:
20343 case mp_cmykcolor_type:
20345 old_exp=mp_tarnished(mp, mp->cur_exp);
20347 case mp_independent: old_exp=mp_void; break;
20348 default: old_exp=null; break;
20350 if ( old_exp!=null ) {
20351 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20353 v=mp_make_fraction(mp, n,d);
20354 if ( mp->cur_type==mp_known ) {
20355 mp->cur_exp=mp_take_fraction(mp, mp->cur_exp,v);
20356 } else if ( mp->cur_type<=mp_pair_type ) {
20357 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20360 mp_dep_mult(mp, p,v,false);
20361 } while (p!=value(mp->cur_exp));
20363 mp_dep_mult(mp, null,v,false);
20365 if ( old_exp!=null ) {
20366 mp_recycle_value(mp, old_exp);
20367 mp_free_node(mp, old_exp,value_node_size);
20371 @ @<Trace the fraction multiplication@>=
20373 mp_begin_diagnostic(mp);
20374 mp_print_nl(mp, "{("); mp_print_scaled(mp,n); mp_print_char(mp,'/');
20375 mp_print_scaled(mp,d); mp_print(mp,")*("); mp_print_exp(mp,null,0);
20377 mp_end_diagnostic(mp, false);
20380 @ The |hard_times| routine multiplies a nice color or pair by a dependency list.
20382 @<Declare binary action procedures@>=
20383 void mp_hard_times (MP mp,pointer p) {
20384 pointer q; /* a copy of the dependent variable |p| */
20385 pointer r; /* a component of the big node for the nice color or pair */
20386 scaled v; /* the known value for |r| */
20387 if ( type(p)<=mp_pair_type ) {
20388 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p); p=q;
20389 }; /* now |cur_type=mp_pair_type| or |cur_type=mp_color_type| */
20390 r=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20395 if ( r==value(mp->cur_exp) )
20397 mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(p)));
20398 mp_dep_mult(mp, r,v,true);
20400 mp->mem[value_loc(r)]=mp->mem[value_loc(p)];
20401 link(prev_dep(p))=r;
20402 mp_free_node(mp, p,value_node_size);
20403 mp_dep_mult(mp, r,v,true);
20406 @ @<Additional cases of binary operators@>=
20408 if ( (mp->cur_type!=mp_known)||(type(p)<mp_color_type) ) {
20409 mp_bad_binary(mp, p,over);
20411 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20413 @<Squeal about division by zero@>;
20415 if ( mp->cur_type==mp_known ) {
20416 mp->cur_exp=mp_make_scaled(mp, mp->cur_exp,v);
20417 } else if ( mp->cur_type<=mp_pair_type ) {
20418 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20420 p=p-2; mp_dep_div(mp, p,v);
20421 } while (p!=value(mp->cur_exp));
20423 mp_dep_div(mp, null,v);
20430 @ @<Declare binary action...@>=
20431 void mp_dep_div (MP mp,pointer p, scaled v) {
20432 pointer q; /* the dependency list being divided by |v| */
20433 small_number s,t; /* its type, before and after */
20434 if ( p==null ) q=mp->cur_exp;
20435 else if ( type(p)!=mp_known ) q=p;
20436 else { value(p)=mp_make_scaled(mp, value(p),v); return; };
20437 t=type(q); q=dep_list(q); s=t;
20438 if ( t==mp_dependent )
20439 if ( mp_ab_vs_cd(mp, mp_max_coef(mp,q),unity,coef_bound-1,abs(v))>=0 )
20440 t=mp_proto_dependent;
20441 q=mp_p_over_v(mp, q,v,s,t);
20442 mp_dep_finish(mp, q,p,t);
20445 @ @<Squeal about division by zero@>=
20447 exp_err("Division by zero");
20448 @.Division by zero@>
20449 help2("You're trying to divide the quantity shown above the error")
20450 ("message by zero. I'm going to divide it by one instead.");
20451 mp_put_get_error(mp);
20454 @ @<Additional cases of binary operators@>=
20457 if ( (mp->cur_type==mp_known)&&(type(p)==mp_known) ) {
20458 if ( c==pythag_add ) mp->cur_exp=mp_pyth_add(mp, value(p),mp->cur_exp);
20459 else mp->cur_exp=mp_pyth_sub(mp, value(p),mp->cur_exp);
20460 } else mp_bad_binary(mp, p,c);
20463 @ The next few sections of the program deal with affine transformations
20464 of coordinate data.
20466 @<Additional cases of binary operators@>=
20467 case rotated_by: case slanted_by:
20468 case scaled_by: case shifted_by: case transformed_by:
20469 case x_scaled: case y_scaled: case z_scaled:
20470 if ( type(p)==mp_path_type ) {
20471 path_trans(c,p); return;
20472 } else if ( type(p)==mp_pen_type ) {
20474 mp->cur_exp=mp_convex_hull(mp, mp->cur_exp);
20475 /* rounding error could destroy convexity */
20477 } else if ( (type(p)==mp_pair_type)||(type(p)==mp_transform_type) ) {
20478 mp_big_trans(mp, p,c);
20479 } else if ( type(p)==mp_picture_type ) {
20480 mp_do_edges_trans(mp, p,c); return;
20482 mp_bad_binary(mp, p,c);
20486 @ Let |c| be one of the eight transform operators. The procedure call
20487 |set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
20488 |c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
20489 change at all if |c=transformed_by|.)
20491 Then, if all components of the resulting transform are |known|, they are
20492 moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
20493 and |cur_exp| is changed to the known value zero.
20495 @<Declare binary action...@>=
20496 void mp_set_up_trans (MP mp,quarterword c) {
20497 pointer p,q,r; /* list manipulation registers */
20498 if ( (c!=transformed_by)||(mp->cur_type!=mp_transform_type) ) {
20499 @<Put the current transform into |cur_exp|@>;
20501 @<If the current transform is entirely known, stash it in global variables;
20502 otherwise |return|@>;
20511 scaled ty; /* current transform coefficients */
20513 @ @<Put the current transform...@>=
20515 p=mp_stash_cur_exp(mp);
20516 mp->cur_exp=mp_id_transform(mp);
20517 mp->cur_type=mp_transform_type;
20518 q=value(mp->cur_exp);
20520 @<For each of the eight cases, change the relevant fields of |cur_exp|
20522 but do nothing if capsule |p| doesn't have the appropriate type@>;
20523 }; /* there are no other cases */
20524 mp_disp_err(mp, p,"Improper transformation argument");
20525 @.Improper transformation argument@>
20526 help3("The expression shown above has the wrong type,")
20527 ("so I can\'t transform anything using it.")
20528 ("Proceed, and I'll omit the transformation.");
20529 mp_put_get_error(mp);
20531 mp_recycle_value(mp, p);
20532 mp_free_node(mp, p,value_node_size);
20535 @ @<If the current transform is entirely known, ...@>=
20536 q=value(mp->cur_exp); r=q+transform_node_size;
20539 if ( type(r)!=mp_known ) return;
20541 mp->txx=value(xx_part_loc(q));
20542 mp->txy=value(xy_part_loc(q));
20543 mp->tyx=value(yx_part_loc(q));
20544 mp->tyy=value(yy_part_loc(q));
20545 mp->tx=value(x_part_loc(q));
20546 mp->ty=value(y_part_loc(q));
20547 mp_flush_cur_exp(mp, 0)
20549 @ @<For each of the eight cases...@>=
20551 if ( type(p)==mp_known )
20552 @<Install sines and cosines, then |goto done|@>;
20555 if ( type(p)>mp_pair_type ) {
20556 mp_install(mp, xy_part_loc(q),p); goto DONE;
20560 if ( type(p)>mp_pair_type ) {
20561 mp_install(mp, xx_part_loc(q),p); mp_install(mp, yy_part_loc(q),p);
20566 if ( type(p)==mp_pair_type ) {
20567 r=value(p); mp_install(mp, x_part_loc(q),x_part_loc(r));
20568 mp_install(mp, y_part_loc(q),y_part_loc(r)); goto DONE;
20572 if ( type(p)>mp_pair_type ) {
20573 mp_install(mp, xx_part_loc(q),p); goto DONE;
20577 if ( type(p)>mp_pair_type ) {
20578 mp_install(mp, yy_part_loc(q),p); goto DONE;
20582 if ( type(p)==mp_pair_type )
20583 @<Install a complex multiplier, then |goto done|@>;
20585 case transformed_by:
20589 @ @<Install sines and cosines, then |goto done|@>=
20590 { mp_n_sin_cos(mp, (value(p) % three_sixty_units)*16);
20591 value(xx_part_loc(q))=mp_round_fraction(mp, mp->n_cos);
20592 value(yx_part_loc(q))=mp_round_fraction(mp, mp->n_sin);
20593 value(xy_part_loc(q))=-value(yx_part_loc(q));
20594 value(yy_part_loc(q))=value(xx_part_loc(q));
20598 @ @<Install a complex multiplier, then |goto done|@>=
20601 mp_install(mp, xx_part_loc(q),x_part_loc(r));
20602 mp_install(mp, yy_part_loc(q),x_part_loc(r));
20603 mp_install(mp, yx_part_loc(q),y_part_loc(r));
20604 if ( type(y_part_loc(r))==mp_known ) negate(value(y_part_loc(r)));
20605 else mp_negate_dep_list(mp, dep_list(y_part_loc(r)));
20606 mp_install(mp, xy_part_loc(q),y_part_loc(r));
20610 @ Procedure |set_up_known_trans| is like |set_up_trans|, but it
20611 insists that the transformation be entirely known.
20613 @<Declare binary action...@>=
20614 void mp_set_up_known_trans (MP mp,quarterword c) {
20615 mp_set_up_trans(mp, c);
20616 if ( mp->cur_type!=mp_known ) {
20617 exp_err("Transform components aren't all known");
20618 @.Transform components...@>
20619 help3("I'm unable to apply a partially specified transformation")
20620 ("except to a fully known pair or transform.")
20621 ("Proceed, and I'll omit the transformation.");
20622 mp_put_get_flush_error(mp, 0);
20623 mp->txx=unity; mp->txy=0; mp->tyx=0; mp->tyy=unity;
20624 mp->tx=0; mp->ty=0;
20628 @ Here's a procedure that applies the transform |txx..ty| to a pair of
20629 coordinates in locations |p| and~|q|.
20631 @<Declare binary action...@>=
20632 void mp_trans (MP mp,pointer p, pointer q) {
20633 scaled v; /* the new |x| value */
20634 v=mp_take_scaled(mp, mp->mem[p].sc,mp->txx)+
20635 mp_take_scaled(mp, mp->mem[q].sc,mp->txy)+mp->tx;
20636 mp->mem[q].sc=mp_take_scaled(mp, mp->mem[p].sc,mp->tyx)+
20637 mp_take_scaled(mp, mp->mem[q].sc,mp->tyy)+mp->ty;
20641 @ The simplest transformation procedure applies a transform to all
20642 coordinates of a path. The |path_trans(c)(p)| macro applies
20643 a transformation defined by |cur_exp| and the transform operator |c|
20646 @d path_trans(A,B) { mp_set_up_known_trans(mp, (A));
20647 mp_unstash_cur_exp(mp, (B));
20648 mp_do_path_trans(mp, mp->cur_exp); }
20650 @<Declare binary action...@>=
20651 void mp_do_path_trans (MP mp,pointer p) {
20652 pointer q; /* list traverser */
20655 if ( left_type(q)!=mp_endpoint )
20656 mp_trans(mp, q+3,q+4); /* that's |left_x| and |left_y| */
20657 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20658 if ( right_type(q)!=mp_endpoint )
20659 mp_trans(mp, q+5,q+6); /* that's |right_x| and |right_y| */
20660 @^data structure assumptions@>
20665 @ Transforming a pen is very similar, except that there are no |left_type|
20666 and |right_type| fields.
20668 @d pen_trans(A,B) { mp_set_up_known_trans(mp, (A));
20669 mp_unstash_cur_exp(mp, (B));
20670 mp_do_pen_trans(mp, mp->cur_exp); }
20672 @<Declare binary action...@>=
20673 void mp_do_pen_trans (MP mp,pointer p) {
20674 pointer q; /* list traverser */
20675 if ( pen_is_elliptical(p) ) {
20676 mp_trans(mp, p+3,p+4); /* that's |left_x| and |left_y| */
20677 mp_trans(mp, p+5,p+6); /* that's |right_x| and |right_y| */
20681 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20682 @^data structure assumptions@>
20687 @ The next transformation procedure applies to edge structures. It will do
20688 any transformation, but the results may be substandard if the picture contains
20689 text that uses downloaded bitmap fonts. The binary action procedure is
20690 |do_edges_trans|, but we also need a function that just scales a picture.
20691 That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
20692 should be thought of as procedures that update an edge structure |h|, except
20693 that they have to return a (possibly new) structure because of the need to call
20696 @<Declare binary action...@>=
20697 pointer mp_edges_trans (MP mp, pointer h) {
20698 pointer q; /* the object being transformed */
20699 pointer r,s; /* for list manipulation */
20700 scaled sx,sy; /* saved transformation parameters */
20701 scaled sqdet; /* square root of determinant for |dash_scale| */
20702 integer sgndet; /* sign of the determinant */
20703 scaled v; /* a temporary value */
20704 h=mp_private_edges(mp, h);
20705 sqdet=mp_sqrt_det(mp, mp->txx,mp->txy,mp->tyx,mp->tyy);
20706 sgndet=mp_ab_vs_cd(mp, mp->txx,mp->tyy,mp->txy,mp->tyx);
20707 if ( dash_list(h)!=null_dash ) {
20708 @<Try to transform the dash list of |h|@>;
20710 @<Make the bounding box of |h| unknown if it can't be updated properly
20711 without scanning the whole structure@>;
20712 q=link(dummy_loc(h));
20713 while ( q!=null ) {
20714 @<Transform graphical object |q|@>;
20719 void mp_do_edges_trans (MP mp,pointer p, quarterword c) {
20720 mp_set_up_known_trans(mp, c);
20721 value(p)=mp_edges_trans(mp, value(p));
20722 mp_unstash_cur_exp(mp, p);
20724 void mp_scale_edges (MP mp) {
20725 mp->txx=mp->se_sf; mp->tyy=mp->se_sf;
20726 mp->txy=0; mp->tyx=0; mp->tx=0; mp->ty=0;
20727 mp->se_pic=mp_edges_trans(mp, mp->se_pic);
20730 @ @<Try to transform the dash list of |h|@>=
20731 if ( (mp->txy!=0)||(mp->tyx!=0)||
20732 (mp->ty!=0)||(abs(mp->txx)!=abs(mp->tyy))) {
20733 mp_flush_dash_list(mp, h);
20735 if ( mp->txx<0 ) { @<Reverse the dash list of |h|@>; }
20736 @<Scale the dash list by |txx| and shift it by |tx|@>;
20737 dash_y(h)=mp_take_scaled(mp, dash_y(h),abs(mp->tyy));
20740 @ @<Reverse the dash list of |h|@>=
20743 dash_list(h)=null_dash;
20744 while ( r!=null_dash ) {
20746 v=start_x(s); start_x(s)=stop_x(s); stop_x(s)=v;
20747 link(s)=dash_list(h);
20752 @ @<Scale the dash list by |txx| and shift it by |tx|@>=
20754 while ( r!=null_dash ) {
20755 start_x(r)=mp_take_scaled(mp, start_x(r),mp->txx)+mp->tx;
20756 stop_x(r)=mp_take_scaled(mp, stop_x(r),mp->txx)+mp->tx;
20760 @ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
20761 if ( (mp->txx==0)&&(mp->tyy==0) ) {
20762 @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>;
20763 } else if ( (mp->txy!=0)||(mp->tyx!=0) ) {
20764 mp_init_bbox(mp, h);
20767 if ( minx_val(h)<=maxx_val(h) ) {
20768 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
20775 @ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
20777 v=minx_val(h); minx_val(h)=miny_val(h); miny_val(h)=v;
20778 v=maxx_val(h); maxx_val(h)=maxy_val(h); maxy_val(h)=v;
20781 @ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
20784 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
20786 minx_val(h)=mp_take_scaled(mp, minx_val(h),mp->txx+mp->txy)+mp->tx;
20787 maxx_val(h)=mp_take_scaled(mp, maxx_val(h),mp->txx+mp->txy)+mp->tx;
20788 miny_val(h)=mp_take_scaled(mp, miny_val(h),mp->tyx+mp->tyy)+mp->ty;
20789 maxy_val(h)=mp_take_scaled(mp, maxy_val(h),mp->tyx+mp->tyy)+mp->ty;
20790 if ( mp->txx+mp->txy<0 ) {
20791 v=minx_val(h); minx_val(h)=maxx_val(h); maxx_val(h)=v;
20793 if ( mp->tyx+mp->tyy<0 ) {
20794 v=miny_val(h); miny_val(h)=maxy_val(h); maxy_val(h)=v;
20798 @ Now we ready for the main task of transforming the graphical objects in edge
20801 @<Transform graphical object |q|@>=
20803 case mp_fill_code: case mp_stroked_code:
20804 mp_do_path_trans(mp, path_p(q));
20805 @<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
20807 case mp_start_clip_code: case mp_start_bounds_code:
20808 mp_do_path_trans(mp, path_p(q));
20812 @<Transform the compact transformation starting at |r|@>;
20814 case mp_stop_clip_code: case mp_stop_bounds_code:
20816 } /* there are no other cases */
20818 @ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
20819 The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
20820 since the \ps\ output procedures will try to compensate for the transformation
20821 we are applying to |pen_p(q)|. Since this compensation is based on the square
20822 root of the determinant, |sqdet| is the appropriate factor.
20824 @<Transform |pen_p(q)|, making sure...@>=
20825 if ( pen_p(q)!=null ) {
20826 sx=mp->tx; sy=mp->ty;
20827 mp->tx=0; mp->ty=0;
20828 mp_do_pen_trans(mp, pen_p(q));
20829 if ( ((type(q)==mp_stroked_code)&&(dash_p(q)!=null)) )
20830 dash_scale(q)=mp_take_scaled(mp, dash_scale(q),sqdet);
20831 if ( ! pen_is_elliptical(pen_p(q)) )
20833 pen_p(q)=mp_make_pen(mp, mp_copy_path(mp, pen_p(q)),true);
20834 /* this unreverses the pen */
20835 mp->tx=sx; mp->ty=sy;
20838 @ This uses the fact that transformations are stored in the order
20839 |(tx,ty,txx,txy,tyx,tyy)|.
20840 @^data structure assumptions@>
20842 @<Transform the compact transformation starting at |r|@>=
20843 mp_trans(mp, r,r+1);
20844 sx=mp->tx; sy=mp->ty;
20845 mp->tx=0; mp->ty=0;
20846 mp_trans(mp, r+2,r+4);
20847 mp_trans(mp, r+3,r+5);
20848 mp->tx=sx; mp->ty=sy
20850 @ The hard cases of transformation occur when big nodes are involved,
20851 and when some of their components are unknown.
20853 @<Declare binary action...@>=
20854 @<Declare subroutines needed by |big_trans|@>;
20855 void mp_big_trans (MP mp,pointer p, quarterword c) {
20856 pointer q,r,pp,qq; /* list manipulation registers */
20857 small_number s; /* size of a big node */
20858 s=mp->big_node_size[type(p)]; q=value(p); r=q+s;
20861 if ( type(r)!=mp_known ) {
20862 @<Transform an unknown big node and |return|@>;
20865 @<Transform a known big node@>;
20866 }; /* node |p| will now be recycled by |do_binary| */
20868 @ @<Transform an unknown big node and |return|@>=
20870 mp_set_up_known_trans(mp, c); mp_make_exp_copy(mp, p);
20871 r=value(mp->cur_exp);
20872 if ( mp->cur_type==mp_transform_type ) {
20873 mp_bilin1(mp, yy_part_loc(r),mp->tyy,xy_part_loc(q),mp->tyx,0);
20874 mp_bilin1(mp, yx_part_loc(r),mp->tyy,xx_part_loc(q),mp->tyx,0);
20875 mp_bilin1(mp, xy_part_loc(r),mp->txx,yy_part_loc(q),mp->txy,0);
20876 mp_bilin1(mp, xx_part_loc(r),mp->txx,yx_part_loc(q),mp->txy,0);
20878 mp_bilin1(mp, y_part_loc(r),mp->tyy,x_part_loc(q),mp->tyx,mp->ty);
20879 mp_bilin1(mp, x_part_loc(r),mp->txx,y_part_loc(q),mp->txy,mp->tx);
20883 @ Let |p| point to a two-word value field inside a big node of |cur_exp|,
20884 and let |q| point to a another value field. The |bilin1| procedure
20885 replaces |p| by $p\cdot t+q\cdot u+\delta$.
20887 @<Declare subroutines needed by |big_trans|@>=
20888 void mp_bilin1 (MP mp, pointer p, scaled t, pointer q,
20889 scaled u, scaled delta) {
20890 pointer r; /* list traverser */
20891 if ( t!=unity ) mp_dep_mult(mp, p,t,true);
20893 if ( type(q)==mp_known ) {
20894 delta+=mp_take_scaled(mp, value(q),u);
20896 @<Ensure that |type(p)=mp_proto_dependent|@>;
20897 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),u,dep_list(q),
20898 mp_proto_dependent,type(q));
20901 if ( type(p)==mp_known ) {
20905 while ( info(r)!=null ) r=link(r);
20907 if ( r!=dep_list(p) ) value(r)=delta;
20908 else { mp_recycle_value(mp, p); type(p)=mp_known; value(p)=delta; };
20910 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20913 @ @<Ensure that |type(p)=mp_proto_dependent|@>=
20914 if ( type(p)!=mp_proto_dependent ) {
20915 if ( type(p)==mp_known )
20916 mp_new_dep(mp, p,mp_const_dependency(mp, value(p)));
20918 dep_list(p)=mp_p_times_v(mp, dep_list(p),unity,mp_dependent,
20919 mp_proto_dependent,true);
20920 type(p)=mp_proto_dependent;
20923 @ @<Transform a known big node@>=
20924 mp_set_up_trans(mp, c);
20925 if ( mp->cur_type==mp_known ) {
20926 @<Transform known by known@>;
20928 pp=mp_stash_cur_exp(mp); qq=value(pp);
20929 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20930 if ( mp->cur_type==mp_transform_type ) {
20931 mp_bilin2(mp, yy_part_loc(r),yy_part_loc(qq),
20932 value(xy_part_loc(q)),yx_part_loc(qq),null);
20933 mp_bilin2(mp, yx_part_loc(r),yy_part_loc(qq),
20934 value(xx_part_loc(q)),yx_part_loc(qq),null);
20935 mp_bilin2(mp, xy_part_loc(r),xx_part_loc(qq),
20936 value(yy_part_loc(q)),xy_part_loc(qq),null);
20937 mp_bilin2(mp, xx_part_loc(r),xx_part_loc(qq),
20938 value(yx_part_loc(q)),xy_part_loc(qq),null);
20940 mp_bilin2(mp, y_part_loc(r),yy_part_loc(qq),
20941 value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
20942 mp_bilin2(mp, x_part_loc(r),xx_part_loc(qq),
20943 value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
20944 mp_recycle_value(mp, pp); mp_free_node(mp, pp,value_node_size);
20947 @ Let |p| be a |mp_proto_dependent| value whose dependency list ends
20948 at |dep_final|. The following procedure adds |v| times another
20949 numeric quantity to~|p|.
20951 @<Declare subroutines needed by |big_trans|@>=
20952 void mp_add_mult_dep (MP mp,pointer p, scaled v, pointer r) {
20953 if ( type(r)==mp_known ) {
20954 value(mp->dep_final)+=mp_take_scaled(mp, value(r),v);
20956 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),v,dep_list(r),
20957 mp_proto_dependent,type(r));
20958 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20962 @ The |bilin2| procedure is something like |bilin1|, but with known
20963 and unknown quantities reversed. Parameter |p| points to a value field
20964 within the big node for |cur_exp|; and |type(p)=mp_known|. Parameters
20965 |t| and~|u| point to value fields elsewhere; so does parameter~|q|,
20966 unless it is |null| (which stands for zero). Location~|p| will be
20967 replaced by $p\cdot t+v\cdot u+q$.
20969 @<Declare subroutines needed by |big_trans|@>=
20970 void mp_bilin2 (MP mp,pointer p, pointer t, scaled v,
20971 pointer u, pointer q) {
20972 scaled vv; /* temporary storage for |value(p)| */
20973 vv=value(p); type(p)=mp_proto_dependent;
20974 mp_new_dep(mp, p,mp_const_dependency(mp, 0)); /* this sets |dep_final| */
20976 mp_add_mult_dep(mp, p,vv,t); /* |dep_final| doesn't change */
20977 if ( v!=0 ) mp_add_mult_dep(mp, p,v,u);
20978 if ( q!=null ) mp_add_mult_dep(mp, p,unity,q);
20979 if ( dep_list(p)==mp->dep_final ) {
20980 vv=value(mp->dep_final); mp_recycle_value(mp, p);
20981 type(p)=mp_known; value(p)=vv;
20985 @ @<Transform known by known@>=
20987 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20988 if ( mp->cur_type==mp_transform_type ) {
20989 mp_bilin3(mp, yy_part_loc(r),mp->tyy,value(xy_part_loc(q)),mp->tyx,0);
20990 mp_bilin3(mp, yx_part_loc(r),mp->tyy,value(xx_part_loc(q)),mp->tyx,0);
20991 mp_bilin3(mp, xy_part_loc(r),mp->txx,value(yy_part_loc(q)),mp->txy,0);
20992 mp_bilin3(mp, xx_part_loc(r),mp->txx,value(yx_part_loc(q)),mp->txy,0);
20994 mp_bilin3(mp, y_part_loc(r),mp->tyy,value(x_part_loc(q)),mp->tyx,mp->ty);
20995 mp_bilin3(mp, x_part_loc(r),mp->txx,value(y_part_loc(q)),mp->txy,mp->tx);
20998 @ Finally, in |bilin3| everything is |known|.
21000 @<Declare subroutines needed by |big_trans|@>=
21001 void mp_bilin3 (MP mp,pointer p, scaled t,
21002 scaled v, scaled u, scaled delta) {
21004 delta+=mp_take_scaled(mp, value(p),t);
21007 if ( u!=0 ) value(p)=delta+mp_take_scaled(mp, v,u);
21008 else value(p)=delta;
21011 @ @<Additional cases of binary operators@>=
21013 if ( (mp->cur_type==mp_string_type)&&(type(p)==mp_string_type) ) mp_cat(mp, p);
21014 else mp_bad_binary(mp, p,concatenate);
21017 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_string_type) )
21018 mp_chop_string(mp, value(p));
21019 else mp_bad_binary(mp, p,substring_of);
21022 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21023 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_path_type) )
21024 mp_chop_path(mp, value(p));
21025 else mp_bad_binary(mp, p,subpath_of);
21028 @ @<Declare binary action...@>=
21029 void mp_cat (MP mp,pointer p) {
21030 str_number a,b; /* the strings being concatenated */
21031 pool_pointer k; /* index into |str_pool| */
21032 a=value(p); b=mp->cur_exp; str_room(length(a)+length(b));
21033 for (k=mp->str_start[a];k<=str_stop(a)-1;k++) {
21034 append_char(mp->str_pool[k]);
21036 for (k=mp->str_start[b];k<=str_stop(b)-1;k++) {
21037 append_char(mp->str_pool[k]);
21039 mp->cur_exp=mp_make_string(mp); delete_str_ref(b);
21042 @ @<Declare binary action...@>=
21043 void mp_chop_string (MP mp,pointer p) {
21044 integer a, b; /* start and stop points */
21045 integer l; /* length of the original string */
21046 integer k; /* runs from |a| to |b| */
21047 str_number s; /* the original string */
21048 boolean reversed; /* was |a>b|? */
21049 a=mp_round_unscaled(mp, value(x_part_loc(p)));
21050 b=mp_round_unscaled(mp, value(y_part_loc(p)));
21051 if ( a<=b ) reversed=false;
21052 else { reversed=true; k=a; a=b; b=k; };
21053 s=mp->cur_exp; l=length(s);
21064 for (k=mp->str_start[s]+b-1;k>=mp->str_start[s]+a;k--) {
21065 append_char(mp->str_pool[k]);
21068 for (k=mp->str_start[s]+a;k<=mp->str_start[s]+b-1;k++) {
21069 append_char(mp->str_pool[k]);
21072 mp->cur_exp=mp_make_string(mp); delete_str_ref(s);
21075 @ @<Declare binary action...@>=
21076 void mp_chop_path (MP mp,pointer p) {
21077 pointer q; /* a knot in the original path */
21078 pointer pp,qq,rr,ss; /* link variables for copies of path nodes */
21079 scaled a,b,k,l; /* indices for chopping */
21080 boolean reversed; /* was |a>b|? */
21081 l=mp_path_length(mp); a=value(x_part_loc(p)); b=value(y_part_loc(p));
21082 if ( a<=b ) reversed=false;
21083 else { reversed=true; k=a; a=b; b=k; };
21084 @<Dispense with the cases |a<0| and/or |b>l|@>;
21086 while ( a>=unity ) {
21087 q=link(q); a=a-unity; b=b-unity;
21090 @<Construct a path from |pp| to |qq| of length zero@>;
21092 @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
21094 left_type(pp)=mp_endpoint; right_type(qq)=mp_endpoint; link(qq)=pp;
21095 mp_toss_knot_list(mp, mp->cur_exp);
21097 mp->cur_exp=link(mp_htap_ypoc(mp, pp)); mp_toss_knot_list(mp, pp);
21103 @ @<Dispense with the cases |a<0| and/or |b>l|@>=
21105 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21106 a=0; if ( b<0 ) b=0;
21108 do { a=a+l; b=b+l; } while (a<0); /* a cycle always has length |l>0| */
21112 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21113 b=l; if ( a>l ) a=l;
21121 @ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
21123 pp=mp_copy_knot(mp, q); qq=pp;
21125 q=link(q); rr=qq; qq=mp_copy_knot(mp, q); link(rr)=qq; b=b-unity;
21128 ss=pp; pp=link(pp);
21129 mp_split_cubic(mp, ss,a*010000); pp=link(ss);
21130 mp_free_node(mp, ss,knot_node_size);
21132 b=mp_make_scaled(mp, b,unity-a); rr=pp;
21136 mp_split_cubic(mp, rr,(b+unity)*010000);
21137 mp_free_node(mp, qq,knot_node_size);
21142 @ @<Construct a path from |pp| to |qq| of length zero@>=
21144 if ( a>0 ) { mp_split_cubic(mp, q,a*010000); q=link(q); };
21145 pp=mp_copy_knot(mp, q); qq=pp;
21148 @ @<Additional cases of binary operators@>=
21149 case point_of: case precontrol_of: case postcontrol_of:
21150 if ( mp->cur_type==mp_pair_type )
21151 mp_pair_to_path(mp);
21152 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21153 mp_find_point(mp, value(p),c);
21155 mp_bad_binary(mp, p,c);
21157 case pen_offset_of:
21158 if ( (mp->cur_type==mp_pen_type)&& mp_nice_pair(mp, p,type(p)) )
21159 mp_set_up_offset(mp, value(p));
21161 mp_bad_binary(mp, p,pen_offset_of);
21163 case direction_time_of:
21164 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21165 if ( (mp->cur_type==mp_path_type)&& mp_nice_pair(mp, p,type(p)) )
21166 mp_set_up_direction_time(mp, value(p));
21168 mp_bad_binary(mp, p,direction_time_of);
21171 if ( (type(p) != mp_pen_type) || (mp->cur_type != mp_path_type) )
21172 mp_bad_binary(mp, p,envelope_of);
21174 mp_set_up_envelope(mp, p);
21177 @ @<Declare binary action...@>=
21178 void mp_set_up_offset (MP mp,pointer p) {
21179 mp_find_offset(mp, value(x_part_loc(p)),value(y_part_loc(p)),mp->cur_exp);
21180 mp_pair_value(mp, mp->cur_x,mp->cur_y);
21182 void mp_set_up_direction_time (MP mp,pointer p) {
21183 mp_flush_cur_exp(mp, mp_find_direction_time(mp, value(x_part_loc(p)),
21184 value(y_part_loc(p)),mp->cur_exp));
21186 void mp_set_up_envelope (MP mp,pointer p) {
21187 pointer q = mp_copy_path(mp, mp->cur_exp); /* the original path */
21188 /* TODO: accept elliptical pens for straight paths */
21189 if (pen_is_elliptical(value(p))) {
21190 mp_bad_envelope_pen(mp);
21192 mp->cur_type = mp_path_type;
21195 small_number ljoin, lcap;
21197 if ( mp->internal[mp_linejoin]>unity ) ljoin=2;
21198 else if ( mp->internal[mp_linejoin]>0 ) ljoin=1;
21200 if ( mp->internal[mp_linecap]>unity ) lcap=2;
21201 else if ( mp->internal[mp_linecap]>0 ) lcap=1;
21203 if ( mp->internal[mp_miterlimit]<unity )
21206 miterlim=mp->internal[mp_miterlimit];
21207 mp->cur_exp = mp_make_envelope(mp, q, value(p), ljoin,lcap,miterlim);
21208 mp->cur_type = mp_path_type;
21211 @ @<Declare binary action...@>=
21212 void mp_find_point (MP mp,scaled v, quarterword c) {
21213 pointer p; /* the path */
21214 scaled n; /* its length */
21216 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
21217 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
21220 } else if ( v<0 ) {
21221 if ( left_type(p)==mp_endpoint ) v=0;
21222 else v=n-1-((-v-1) % n);
21223 } else if ( v>n ) {
21224 if ( left_type(p)==mp_endpoint ) v=n;
21228 while ( v>=unity ) { p=link(p); v=v-unity; };
21230 @<Insert a fractional node by splitting the cubic@>;
21232 @<Set the current expression to the desired path coordinates@>;
21235 @ @<Insert a fractional node...@>=
21236 { mp_split_cubic(mp, p,v*010000); p=link(p); }
21238 @ @<Set the current expression to the desired path coordinates...@>=
21241 mp_pair_value(mp, x_coord(p),y_coord(p));
21243 case precontrol_of:
21244 if ( left_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21245 else mp_pair_value(mp, left_x(p),left_y(p));
21247 case postcontrol_of:
21248 if ( right_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21249 else mp_pair_value(mp, right_x(p),right_y(p));
21251 } /* there are no other cases */
21253 @ @<Additional cases of binary operators@>=
21255 if ( mp->cur_type==mp_pair_type )
21256 mp_pair_to_path(mp);
21257 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21258 mp_flush_cur_exp(mp, mp_get_arc_time(mp, mp->cur_exp,value(p)));
21260 mp_bad_binary(mp, p,c);
21263 @ @<Additional cases of bin...@>=
21265 if ( type(p)==mp_pair_type ) {
21266 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p);
21267 mp_pair_to_path(mp); p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
21269 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21270 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_path_type) ) {
21271 mp_path_intersection(mp, value(p),mp->cur_exp);
21272 mp_pair_value(mp, mp->cur_t,mp->cur_tt);
21274 mp_bad_binary(mp, p,intersect);
21278 @ @<Additional cases of bin...@>=
21280 if ( (mp->cur_type!=mp_string_type)||(type(p)!=mp_string_type))
21281 mp_bad_binary(mp, p,in_font);
21282 else { mp_do_infont(mp, p); return; }
21285 @ Function |new_text_node| owns the reference count for its second argument
21286 (the text string) but not its first (the font name).
21288 @<Declare binary action...@>=
21289 void mp_do_infont (MP mp,pointer p) {
21291 q=mp_get_node(mp, edge_header_size);
21292 mp_init_edges(mp, q);
21293 link(obj_tail(q))=mp_new_text_node(mp, str(mp->cur_exp),value(p));
21294 obj_tail(q)=link(obj_tail(q));
21295 mp_free_node(mp, p,value_node_size);
21296 mp_flush_cur_exp(mp, q);
21297 mp->cur_type=mp_picture_type;
21300 @* \[40] Statements and commands.
21301 The chief executive of \MP\ is the |do_statement| routine, which
21302 contains the master switch that causes all the various pieces of \MP\
21303 to do their things, in the right order.
21305 In a sense, this is the grand climax of the program: It applies all the
21306 tools that we have worked so hard to construct. In another sense, this is
21307 the messiest part of the program: It necessarily refers to other pieces
21308 of code all over the place, so that a person can't fully understand what is
21309 going on without paging back and forth to be reminded of conventions that
21310 are defined elsewhere. We are now at the hub of the web.
21312 The structure of |do_statement| itself is quite simple. The first token
21313 of the statement is fetched using |get_x_next|. If it can be the first
21314 token of an expression, we look for an equation, an assignment, or a
21315 title. Otherwise we use a \&{case} construction to branch at high speed to
21316 the appropriate routine for various and sundry other types of commands,
21317 each of which has an ``action procedure'' that does the necessary work.
21319 The program uses the fact that
21320 $$\hbox{|min_primary_command=max_statement_command=type_name|}$$
21321 to interpret a statement that starts with, e.g., `\&{string}',
21322 as a type declaration rather than a boolean expression.
21324 @c void mp_do_statement (MP mp) { /* governs \MP's activities */
21325 mp->cur_type=mp_vacuous; mp_get_x_next(mp);
21326 if ( mp->cur_cmd>max_primary_command ) {
21327 @<Worry about bad statement@>;
21328 } else if ( mp->cur_cmd>max_statement_command ) {
21329 @<Do an equation, assignment, title, or
21330 `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>;
21332 @<Do a statement that doesn't begin with an expression@>;
21334 if ( mp->cur_cmd<semicolon )
21335 @<Flush unparsable junk that was found after the statement@>;
21339 @ @<Declarations@>=
21340 @<Declare action procedures for use by |do_statement|@>;
21342 @ The only command codes |>max_primary_command| that can be present
21343 at the beginning of a statement are |semicolon| and higher; these
21344 occur when the statement is null.
21346 @<Worry about bad statement@>=
21348 if ( mp->cur_cmd<semicolon ) {
21349 print_err("A statement can't begin with `");
21350 @.A statement can't begin with x@>
21351 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod); mp_print_char(mp, '\'');
21352 help5("I was looking for the beginning of a new statement.")
21353 ("If you just proceed without changing anything, I'll ignore")
21354 ("everything up to the next `;'. Please insert a semicolon")
21355 ("now in front of anything that you don't want me to delete.")
21356 ("(See Chapter 27 of The METAFONTbook for an example.)");
21357 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21358 mp_back_error(mp); mp_get_x_next(mp);
21362 @ The help message printed here says that everything is flushed up to
21363 a semicolon, but actually the commands |end_group| and |stop| will
21364 also terminate a statement.
21366 @<Flush unparsable junk that was found after the statement@>=
21368 print_err("Extra tokens will be flushed");
21369 @.Extra tokens will be flushed@>
21370 help6("I've just read as much of that statement as I could fathom,")
21371 ("so a semicolon should have been next. It's very puzzling...")
21372 ("but I'll try to get myself back together, by ignoring")
21373 ("everything up to the next `;'. Please insert a semicolon")
21374 ("now in front of anything that you don't want me to delete.")
21375 ("(See Chapter 27 of The METAFONTbook for an example.)");
21376 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21377 mp_back_error(mp); mp->scanner_status=flushing;
21380 @<Decrease the string reference count...@>;
21381 } while (! end_of_statement); /* |cur_cmd=semicolon|, |end_group|, or |stop| */
21382 mp->scanner_status=normal;
21385 @ If |do_statement| ends with |cur_cmd=end_group|, we should have
21386 |cur_type=mp_vacuous| unless the statement was simply an expression;
21387 in the latter case, |cur_type| and |cur_exp| should represent that
21390 @<Do a statement that doesn't...@>=
21392 if ( mp->internal[mp_tracing_commands]>0 )
21394 switch (mp->cur_cmd ) {
21395 case type_name:mp_do_type_declaration(mp); break;
21397 if ( mp->cur_mod>var_def ) mp_make_op_def(mp);
21398 else if ( mp->cur_mod>end_def ) mp_scan_def(mp);
21400 @<Cases of |do_statement| that invoke particular commands@>;
21401 } /* there are no other cases */
21402 mp->cur_type=mp_vacuous;
21405 @ The most important statements begin with expressions.
21407 @<Do an equation, assignment, title, or...@>=
21409 mp->var_flag=assignment; mp_scan_expression(mp);
21410 if ( mp->cur_cmd<end_group ) {
21411 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21412 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21413 else if ( mp->cur_type==mp_string_type ) {@<Do a title@> ; }
21414 else if ( mp->cur_type!=mp_vacuous ){
21415 exp_err("Isolated expression");
21416 @.Isolated expression@>
21417 help3("I couldn't find an `=' or `:=' after the")
21418 ("expression that is shown above this error message,")
21419 ("so I guess I'll just ignore it and carry on.");
21420 mp_put_get_error(mp);
21422 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
21428 if ( mp->internal[mp_tracing_titles]>0 ) {
21429 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp); update_terminal;
21433 @ Equations and assignments are performed by the pair of mutually recursive
21435 routines |do_equation| and |do_assignment|. These routines are called when
21436 |cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
21437 side is in |cur_type| and |cur_exp|, while the right-hand side is yet
21438 to be scanned. After the routines are finished, |cur_type| and |cur_exp|
21439 will be equal to the right-hand side (which will normally be equal
21440 to the left-hand side).
21442 @<Declare action procedures for use by |do_statement|@>=
21443 @<Declare the procedure called |try_eq|@>;
21444 @<Declare the procedure called |make_eq|@>;
21445 void mp_do_equation (MP mp) ;
21448 void mp_do_equation (MP mp) {
21449 pointer lhs; /* capsule for the left-hand side */
21450 pointer p; /* temporary register */
21451 lhs=mp_stash_cur_exp(mp); mp_get_x_next(mp);
21452 mp->var_flag=assignment; mp_scan_expression(mp);
21453 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21454 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21455 if ( mp->internal[mp_tracing_commands]>two )
21456 @<Trace the current equation@>;
21457 if ( mp->cur_type==mp_unknown_path ) if ( type(lhs)==mp_pair_type ) {
21458 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, lhs); lhs=p;
21459 }; /* in this case |make_eq| will change the pair to a path */
21460 mp_make_eq(mp, lhs); /* equate |lhs| to |(cur_type,cur_exp)| */
21463 @ And |do_assignment| is similar to |do_expression|:
21466 void mp_do_assignment (MP mp);
21468 @ @<Declare action procedures for use by |do_statement|@>=
21469 void mp_do_assignment (MP mp) ;
21472 void mp_do_assignment (MP mp) {
21473 pointer lhs; /* token list for the left-hand side */
21474 pointer p; /* where the left-hand value is stored */
21475 pointer q; /* temporary capsule for the right-hand value */
21476 if ( mp->cur_type!=mp_token_list ) {
21477 exp_err("Improper `:=' will be changed to `='");
21479 help2("I didn't find a variable name at the left of the `:=',")
21480 ("so I'm going to pretend that you said `=' instead.");
21481 mp_error(mp); mp_do_equation(mp);
21483 lhs=mp->cur_exp; mp->cur_type=mp_vacuous;
21484 mp_get_x_next(mp); mp->var_flag=assignment; mp_scan_expression(mp);
21485 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21486 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21487 if ( mp->internal[mp_tracing_commands]>two )
21488 @<Trace the current assignment@>;
21489 if ( info(lhs)>hash_end ) {
21490 @<Assign the current expression to an internal variable@>;
21492 @<Assign the current expression to the variable |lhs|@>;
21494 mp_flush_node_list(mp, lhs);
21498 @ @<Trace the current equation@>=
21500 mp_begin_diagnostic(mp); mp_print_nl(mp, "{("); mp_print_exp(mp,lhs,0);
21501 mp_print(mp,")=("); mp_print_exp(mp,null,0);
21502 mp_print(mp,")}"); mp_end_diagnostic(mp, false);
21505 @ @<Trace the current assignment@>=
21507 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
21508 if ( info(lhs)>hash_end )
21509 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21511 mp_show_token_list(mp, lhs,null,1000,0);
21512 mp_print(mp, ":="); mp_print_exp(mp, null,0);
21513 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
21516 @ @<Assign the current expression to an internal variable@>=
21517 if ( mp->cur_type==mp_known ) {
21518 mp->internal[info(lhs)-(hash_end)]=mp->cur_exp;
21520 exp_err("Internal quantity `");
21521 @.Internal quantity...@>
21522 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21523 mp_print(mp, "' must receive a known value");
21524 help2("I can\'t set an internal quantity to anything but a known")
21525 ("numeric value, so I'll have to ignore this assignment.");
21526 mp_put_get_error(mp);
21529 @ @<Assign the current expression to the variable |lhs|@>=
21531 p=mp_find_variable(mp, lhs);
21533 q=mp_stash_cur_exp(mp); mp->cur_type=mp_und_type(mp, p);
21534 mp_recycle_value(mp, p);
21535 type(p)=mp->cur_type; value(p)=null; mp_make_exp_copy(mp, p);
21536 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q); mp_make_eq(mp, p);
21538 mp_obliterated(mp, lhs); mp_put_get_error(mp);
21543 @ And now we get to the nitty-gritty. The |make_eq| procedure is given
21544 a pointer to a capsule that is to be equated to the current expression.
21546 @<Declare the procedure called |make_eq|@>=
21547 void mp_make_eq (MP mp,pointer lhs) ;
21551 @c void mp_make_eq (MP mp,pointer lhs) {
21552 small_number t; /* type of the left-hand side */
21553 pointer p,q; /* pointers inside of big nodes */
21554 integer v=0; /* value of the left-hand side */
21557 if ( t<=mp_pair_type ) v=value(lhs);
21559 @<For each type |t|, make an equation and |goto done| unless |cur_type|
21560 is incompatible with~|t|@>;
21561 } /* all cases have been listed */
21562 @<Announce that the equation cannot be performed@>;
21564 check_arith; mp_recycle_value(mp, lhs);
21565 mp_free_node(mp, lhs,value_node_size);
21568 @ @<Announce that the equation cannot be performed@>=
21569 mp_disp_err(mp, lhs,"");
21570 exp_err("Equation cannot be performed (");
21571 @.Equation cannot be performed@>
21572 if ( type(lhs)<=mp_pair_type ) mp_print_type(mp, type(lhs));
21573 else mp_print(mp, "numeric");
21574 mp_print_char(mp, '=');
21575 if ( mp->cur_type<=mp_pair_type ) mp_print_type(mp, mp->cur_type);
21576 else mp_print(mp, "numeric");
21577 mp_print_char(mp, ')');
21578 help2("I'm sorry, but I don't know how to make such things equal.")
21579 ("(See the two expressions just above the error message.)");
21580 mp_put_get_error(mp)
21582 @ @<For each type |t|, make an equation and |goto done| unless...@>=
21583 case mp_boolean_type: case mp_string_type: case mp_pen_type:
21584 case mp_path_type: case mp_picture_type:
21585 if ( mp->cur_type==t+unknown_tag ) {
21586 mp_nonlinear_eq(mp, v,mp->cur_exp,false); goto DONE;
21587 } else if ( mp->cur_type==t ) {
21588 @<Report redundant or inconsistent equation and |goto done|@>;
21591 case unknown_types:
21592 if ( mp->cur_type==t-unknown_tag ) {
21593 mp_nonlinear_eq(mp, mp->cur_exp,lhs,true); goto DONE;
21594 } else if ( mp->cur_type==t ) {
21595 mp_ring_merge(mp, lhs,mp->cur_exp); goto DONE;
21596 } else if ( mp->cur_type==mp_pair_type ) {
21597 if ( t==mp_unknown_path ) {
21598 mp_pair_to_path(mp); goto RESTART;
21602 case mp_transform_type: case mp_color_type:
21603 case mp_cmykcolor_type: case mp_pair_type:
21604 if ( mp->cur_type==t ) {
21605 @<Do multiple equations and |goto done|@>;
21608 case mp_known: case mp_dependent:
21609 case mp_proto_dependent: case mp_independent:
21610 if ( mp->cur_type>=mp_known ) {
21611 mp_try_eq(mp, lhs,null); goto DONE;
21617 @ @<Report redundant or inconsistent equation and |goto done|@>=
21619 if ( mp->cur_type<=mp_string_type ) {
21620 if ( mp->cur_type==mp_string_type ) {
21621 if ( mp_str_vs_str(mp, v,mp->cur_exp)!=0 ) {
21624 } else if ( v!=mp->cur_exp ) {
21627 @<Exclaim about a redundant equation@>; goto DONE;
21629 print_err("Redundant or inconsistent equation");
21630 @.Redundant or inconsistent equation@>
21631 help2("An equation between already-known quantities can't help.")
21632 ("But don't worry; continue and I'll just ignore it.");
21633 mp_put_get_error(mp); goto DONE;
21635 print_err("Inconsistent equation");
21636 @.Inconsistent equation@>
21637 help2("The equation I just read contradicts what was said before.")
21638 ("But don't worry; continue and I'll just ignore it.");
21639 mp_put_get_error(mp); goto DONE;
21642 @ @<Do multiple equations and |goto done|@>=
21644 p=v+mp->big_node_size[t];
21645 q=value(mp->cur_exp)+mp->big_node_size[t];
21647 p=p-2; q=q-2; mp_try_eq(mp, p,q);
21652 @ The first argument to |try_eq| is the location of a value node
21653 in a capsule that will soon be recycled. The second argument is
21654 either a location within a pair or transform node pointed to by
21655 |cur_exp|, or it is |null| (which means that |cur_exp| itself
21656 serves as the second argument). The idea is to leave |cur_exp| unchanged,
21657 but to equate the two operands.
21659 @<Declare the procedure called |try_eq|@>=
21660 void mp_try_eq (MP mp,pointer l, pointer r) ;
21663 @c void mp_try_eq (MP mp,pointer l, pointer r) {
21664 pointer p; /* dependency list for right operand minus left operand */
21665 int t; /* the type of list |p| */
21666 pointer q; /* the constant term of |p| is here */
21667 pointer pp; /* dependency list for right operand */
21668 int tt; /* the type of list |pp| */
21669 boolean copied; /* have we copied a list that ought to be recycled? */
21670 @<Remove the left operand from its container, negate it, and
21671 put it into dependency list~|p| with constant term~|q|@>;
21672 @<Add the right operand to list |p|@>;
21673 if ( info(p)==null ) {
21674 @<Deal with redundant or inconsistent equation@>;
21676 mp_linear_eq(mp, p,t);
21677 if ( r==null ) if ( mp->cur_type!=mp_known ) {
21678 if ( type(mp->cur_exp)==mp_known ) {
21679 pp=mp->cur_exp; mp->cur_exp=value(mp->cur_exp); mp->cur_type=mp_known;
21680 mp_free_node(mp, pp,value_node_size);
21686 @ @<Remove the left operand from its container, negate it, and...@>=
21688 if ( t==mp_known ) {
21689 t=mp_dependent; p=mp_const_dependency(mp, -value(l)); q=p;
21690 } else if ( t==mp_independent ) {
21691 t=mp_dependent; p=mp_single_dependency(mp, l); negate(value(p));
21694 p=dep_list(l); q=p;
21697 if ( info(q)==null ) break;
21700 link(prev_dep(l))=link(q); prev_dep(link(q))=prev_dep(l);
21704 @ @<Deal with redundant or inconsistent equation@>=
21706 if ( abs(value(p))>64 ) { /* off by .001 or more */
21707 print_err("Inconsistent equation");
21708 @.Inconsistent equation@>
21709 mp_print(mp, " (off by "); mp_print_scaled(mp, value(p));
21710 mp_print_char(mp, ')');
21711 help2("The equation I just read contradicts what was said before.")
21712 ("But don't worry; continue and I'll just ignore it.");
21713 mp_put_get_error(mp);
21714 } else if ( r==null ) {
21715 @<Exclaim about a redundant equation@>;
21717 mp_free_node(mp, p,dep_node_size);
21720 @ @<Add the right operand to list |p|@>=
21722 if ( mp->cur_type==mp_known ) {
21723 value(q)=value(q)+mp->cur_exp; goto DONE1;
21726 if ( tt==mp_independent ) pp=mp_single_dependency(mp, mp->cur_exp);
21727 else pp=dep_list(mp->cur_exp);
21730 if ( type(r)==mp_known ) {
21731 value(q)=value(q)+value(r); goto DONE1;
21734 if ( tt==mp_independent ) pp=mp_single_dependency(mp, r);
21735 else pp=dep_list(r);
21738 if ( tt!=mp_independent ) copied=false;
21739 else { copied=true; tt=mp_dependent; };
21740 @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
21741 if ( copied ) mp_flush_node_list(mp, pp);
21744 @ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
21745 mp->watch_coefs=false;
21747 p=mp_p_plus_q(mp, p,pp,t);
21748 } else if ( t==mp_proto_dependent ) {
21749 p=mp_p_plus_fq(mp, p,unity,pp,mp_proto_dependent,mp_dependent);
21752 while ( info(q)!=null ) {
21753 value(q)=mp_round_fraction(mp, value(q)); q=link(q);
21755 t=mp_proto_dependent; p=mp_p_plus_q(mp, p,pp,t);
21757 mp->watch_coefs=true;
21759 @ Our next goal is to process type declarations. For this purpose it's
21760 convenient to have a procedure that scans a $\langle\,$declared
21761 variable$\,\rangle$ and returns the corresponding token list. After the
21762 following procedure has acted, the token after the declared variable
21763 will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
21766 @<Declare the function called |scan_declared_variable|@>=
21767 pointer mp_scan_declared_variable (MP mp) {
21768 pointer x; /* hash address of the variable's root */
21769 pointer h,t; /* head and tail of the token list to be returned */
21770 pointer l; /* hash address of left bracket */
21771 mp_get_symbol(mp); x=mp->cur_sym;
21772 if ( mp->cur_cmd!=tag_token ) mp_clear_symbol(mp, x,false);
21773 h=mp_get_avail(mp); info(h)=x; t=h;
21776 if ( mp->cur_sym==0 ) break;
21777 if ( mp->cur_cmd!=tag_token ) if ( mp->cur_cmd!=internal_quantity) {
21778 if ( mp->cur_cmd==left_bracket ) {
21779 @<Descend past a collective subscript@>;
21784 link(t)=mp_get_avail(mp); t=link(t); info(t)=mp->cur_sym;
21786 if ( eq_type(x)!=tag_token ) mp_clear_symbol(mp, x,false);
21787 if ( equiv(x)==null ) mp_new_root(mp, x);
21791 @ If the subscript isn't collective, we don't accept it as part of the
21794 @<Descend past a collective subscript@>=
21796 l=mp->cur_sym; mp_get_x_next(mp);
21797 if ( mp->cur_cmd!=right_bracket ) {
21798 mp_back_input(mp); mp->cur_sym=l; mp->cur_cmd=left_bracket; break;
21800 mp->cur_sym=collective_subscript;
21804 @ Type declarations are introduced by the following primitive operations.
21807 mp_primitive(mp, "numeric",type_name,mp_numeric_type);
21808 @:numeric_}{\&{numeric} primitive@>
21809 mp_primitive(mp, "string",type_name,mp_string_type);
21810 @:string_}{\&{string} primitive@>
21811 mp_primitive(mp, "boolean",type_name,mp_boolean_type);
21812 @:boolean_}{\&{boolean} primitive@>
21813 mp_primitive(mp, "path",type_name,mp_path_type);
21814 @:path_}{\&{path} primitive@>
21815 mp_primitive(mp, "pen",type_name,mp_pen_type);
21816 @:pen_}{\&{pen} primitive@>
21817 mp_primitive(mp, "picture",type_name,mp_picture_type);
21818 @:picture_}{\&{picture} primitive@>
21819 mp_primitive(mp, "transform",type_name,mp_transform_type);
21820 @:transform_}{\&{transform} primitive@>
21821 mp_primitive(mp, "color",type_name,mp_color_type);
21822 @:color_}{\&{color} primitive@>
21823 mp_primitive(mp, "rgbcolor",type_name,mp_color_type);
21824 @:color_}{\&{rgbcolor} primitive@>
21825 mp_primitive(mp, "cmykcolor",type_name,mp_cmykcolor_type);
21826 @:color_}{\&{cmykcolor} primitive@>
21827 mp_primitive(mp, "pair",type_name,mp_pair_type);
21828 @:pair_}{\&{pair} primitive@>
21830 @ @<Cases of |print_cmd...@>=
21831 case type_name: mp_print_type(mp, m); break;
21833 @ Now we are ready to handle type declarations, assuming that a
21834 |type_name| has just been scanned.
21836 @<Declare action procedures for use by |do_statement|@>=
21837 void mp_do_type_declaration (MP mp) ;
21840 void mp_do_type_declaration (MP mp) {
21841 small_number t; /* the type being declared */
21842 pointer p; /* token list for a declared variable */
21843 pointer q; /* value node for the variable */
21844 if ( mp->cur_mod>=mp_transform_type )
21847 t=mp->cur_mod+unknown_tag;
21849 p=mp_scan_declared_variable(mp);
21850 mp_flush_variable(mp, equiv(info(p)),link(p),false);
21851 q=mp_find_variable(mp, p);
21853 type(q)=t; value(q)=null;
21855 print_err("Declared variable conflicts with previous vardef");
21856 @.Declared variable conflicts...@>
21857 help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")
21858 ("Proceed, and I'll ignore the illegal redeclaration.");
21859 mp_put_get_error(mp);
21861 mp_flush_list(mp, p);
21862 if ( mp->cur_cmd<comma ) {
21863 @<Flush spurious symbols after the declared variable@>;
21865 } while (! end_of_statement);
21868 @ @<Flush spurious symbols after the declared variable@>=
21870 print_err("Illegal suffix of declared variable will be flushed");
21871 @.Illegal suffix...flushed@>
21872 help5("Variables in declarations must consist entirely of")
21873 ("names and collective subscripts, e.g., `x[]a'.")
21874 ("Are you trying to use a reserved word in a variable name?")
21875 ("I'm going to discard the junk I found here,")
21876 ("up to the next comma or the end of the declaration.");
21877 if ( mp->cur_cmd==numeric_token )
21878 mp->help_line[2]="Explicit subscripts like `x15a' aren't permitted.";
21879 mp_put_get_error(mp); mp->scanner_status=flushing;
21882 @<Decrease the string reference count...@>;
21883 } while (mp->cur_cmd<comma); /* either |end_of_statement| or |cur_cmd=comma| */
21884 mp->scanner_status=normal;
21887 @ \MP's |main_control| procedure just calls |do_statement| repeatedly
21888 until coming to the end of the user's program.
21889 Each execution of |do_statement| concludes with
21890 |cur_cmd=semicolon|, |end_group|, or |stop|.
21892 @c void mp_main_control (MP mp) {
21894 mp_do_statement(mp);
21895 if ( mp->cur_cmd==end_group ) {
21896 print_err("Extra `endgroup'");
21897 @.Extra `endgroup'@>
21898 help2("I'm not currently working on a `begingroup',")
21899 ("so I had better not try to end anything.");
21900 mp_flush_error(mp, 0);
21902 } while (mp->cur_cmd!=stop);
21904 int mp_run (MP mp) {
21905 @<Install and test the non-local jump buffer@>;
21906 mp_main_control(mp); /* come to life */
21907 mp_final_cleanup(mp); /* prepare for death */
21908 mp_close_files_and_terminate(mp);
21909 return mp->history;
21911 char * mp_mplib_version (MP mp) {
21913 return mplib_version;
21915 char * mp_metapost_version (MP mp) {
21917 return metapost_version;
21920 @ @<Exported function headers@>=
21921 int mp_run (MP mp);
21922 char * mp_mplib_version (MP mp);
21923 char * mp_metapost_version (MP mp);
21926 mp_primitive(mp, "end",stop,0);
21927 @:end_}{\&{end} primitive@>
21928 mp_primitive(mp, "dump",stop,1);
21929 @:dump_}{\&{dump} primitive@>
21931 @ @<Cases of |print_cmd...@>=
21933 if ( m==0 ) mp_print(mp, "end");
21934 else mp_print(mp, "dump");
21938 Let's turn now to statements that are classified as ``commands'' because
21939 of their imperative nature. We'll begin with simple ones, so that it
21940 will be clear how to hook command processing into the |do_statement| routine;
21941 then we'll tackle the tougher commands.
21943 Here's one of the simplest:
21945 @<Cases of |do_statement|...@>=
21946 case random_seed: mp_do_random_seed(mp); break;
21948 @ @<Declare action procedures for use by |do_statement|@>=
21949 void mp_do_random_seed (MP mp) ;
21951 @ @c void mp_do_random_seed (MP mp) {
21953 if ( mp->cur_cmd!=assignment ) {
21954 mp_missing_err(mp, ":=");
21956 help1("Always say `randomseed:=<numeric expression>'.");
21959 mp_get_x_next(mp); mp_scan_expression(mp);
21960 if ( mp->cur_type!=mp_known ) {
21961 exp_err("Unknown value will be ignored");
21962 @.Unknown value...ignored@>
21963 help2("Your expression was too random for me to handle,")
21964 ("so I won't change the random seed just now.");
21965 mp_put_get_flush_error(mp, 0);
21967 @<Initialize the random seed to |cur_exp|@>;
21971 @ @<Initialize the random seed to |cur_exp|@>=
21973 mp_init_randoms(mp, mp->cur_exp);
21974 if ( mp->selector>=log_only && mp->selector<write_file) {
21975 mp->old_setting=mp->selector; mp->selector=log_only;
21976 mp_print_nl(mp, "{randomseed:=");
21977 mp_print_scaled(mp, mp->cur_exp);
21978 mp_print_char(mp, '}');
21979 mp_print_nl(mp, ""); mp->selector=mp->old_setting;
21983 @ And here's another simple one (somewhat different in flavor):
21985 @<Cases of |do_statement|...@>=
21987 mp_print_ln(mp); mp->interaction=mp->cur_mod;
21988 @<Initialize the print |selector| based on |interaction|@>;
21989 if ( mp->log_opened ) mp->selector=mp->selector+2;
21994 mp_primitive(mp, "batchmode",mode_command,mp_batch_mode);
21995 @:mp_batch_mode_}{\&{batchmode} primitive@>
21996 mp_primitive(mp, "nonstopmode",mode_command,mp_nonstop_mode);
21997 @:mp_nonstop_mode_}{\&{nonstopmode} primitive@>
21998 mp_primitive(mp, "scrollmode",mode_command,mp_scroll_mode);
21999 @:mp_scroll_mode_}{\&{scrollmode} primitive@>
22000 mp_primitive(mp, "errorstopmode",mode_command,mp_error_stop_mode);
22001 @:mp_error_stop_mode_}{\&{errorstopmode} primitive@>
22003 @ @<Cases of |print_cmd_mod|...@>=
22006 case mp_batch_mode: mp_print(mp, "batchmode"); break;
22007 case mp_nonstop_mode: mp_print(mp, "nonstopmode"); break;
22008 case mp_scroll_mode: mp_print(mp, "scrollmode"); break;
22009 default: mp_print(mp, "errorstopmode"); break;
22013 @ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
22015 @<Cases of |do_statement|...@>=
22016 case protection_command: mp_do_protection(mp); break;
22019 mp_primitive(mp, "inner",protection_command,0);
22020 @:inner_}{\&{inner} primitive@>
22021 mp_primitive(mp, "outer",protection_command,1);
22022 @:outer_}{\&{outer} primitive@>
22024 @ @<Cases of |print_cmd...@>=
22025 case protection_command:
22026 if ( m==0 ) mp_print(mp, "inner");
22027 else mp_print(mp, "outer");
22030 @ @<Declare action procedures for use by |do_statement|@>=
22031 void mp_do_protection (MP mp) ;
22033 @ @c void mp_do_protection (MP mp) {
22034 int m; /* 0 to unprotect, 1 to protect */
22035 halfword t; /* the |eq_type| before we change it */
22038 mp_get_symbol(mp); t=eq_type(mp->cur_sym);
22040 if ( t>=outer_tag )
22041 eq_type(mp->cur_sym)=t-outer_tag;
22042 } else if ( t<outer_tag ) {
22043 eq_type(mp->cur_sym)=t+outer_tag;
22046 } while (mp->cur_cmd==comma);
22049 @ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
22050 plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
22051 declaration assigns the command code |left_delimiter| to `\.{(}' and
22052 |right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
22053 hash address of its mate.
22055 @<Cases of |do_statement|...@>=
22056 case delimiters: mp_def_delims(mp); break;
22058 @ @<Declare action procedures for use by |do_statement|@>=
22059 void mp_def_delims (MP mp) ;
22061 @ @c void mp_def_delims (MP mp) {
22062 pointer l_delim,r_delim; /* the new delimiter pair */
22063 mp_get_clear_symbol(mp); l_delim=mp->cur_sym;
22064 mp_get_clear_symbol(mp); r_delim=mp->cur_sym;
22065 eq_type(l_delim)=left_delimiter; equiv(l_delim)=r_delim;
22066 eq_type(r_delim)=right_delimiter; equiv(r_delim)=l_delim;
22070 @ Here is a procedure that is called when \MP\ has reached a point
22071 where some right delimiter is mandatory.
22073 @<Declare the procedure called |check_delimiter|@>=
22074 void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim) {
22075 if ( mp->cur_cmd==right_delimiter )
22076 if ( mp->cur_mod==l_delim )
22078 if ( mp->cur_sym!=r_delim ) {
22079 mp_missing_err(mp, str(text(r_delim)));
22081 help2("I found no right delimiter to match a left one. So I've")
22082 ("put one in, behind the scenes; this may fix the problem.");
22085 print_err("The token `"); mp_print_text(r_delim);
22086 @.The token...delimiter@>
22087 mp_print(mp, "' is no longer a right delimiter");
22088 help3("Strange: This token has lost its former meaning!")
22089 ("I'll read it as a right delimiter this time;")
22090 ("but watch out, I'll probably miss it later.");
22095 @ The next four commands save or change the values associated with tokens.
22097 @<Cases of |do_statement|...@>=
22100 mp_get_symbol(mp); mp_save_variable(mp, mp->cur_sym); mp_get_x_next(mp);
22101 } while (mp->cur_cmd==comma);
22103 case interim_command: mp_do_interim(mp); break;
22104 case let_command: mp_do_let(mp); break;
22105 case new_internal: mp_do_new_internal(mp); break;
22107 @ @<Declare action procedures for use by |do_statement|@>=
22108 void mp_do_statement (MP mp);
22109 void mp_do_interim (MP mp);
22111 @ @c void mp_do_interim (MP mp) {
22113 if ( mp->cur_cmd!=internal_quantity ) {
22114 print_err("The token `");
22115 @.The token...quantity@>
22116 if ( mp->cur_sym==0 ) mp_print(mp, "(%CAPSULE)");
22117 else mp_print_text(mp->cur_sym);
22118 mp_print(mp, "' isn't an internal quantity");
22119 help1("Something like `tracingonline' should follow `interim'.");
22122 mp_save_internal(mp, mp->cur_mod); mp_back_input(mp);
22124 mp_do_statement(mp);
22127 @ The following procedure is careful not to undefine the left-hand symbol
22128 too soon, lest commands like `{\tt let x=x}' have a surprising effect.
22130 @<Declare action procedures for use by |do_statement|@>=
22131 void mp_do_let (MP mp) ;
22133 @ @c void mp_do_let (MP mp) {
22134 pointer l; /* hash location of the left-hand symbol */
22135 mp_get_symbol(mp); l=mp->cur_sym; mp_get_x_next(mp);
22136 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
22137 mp_missing_err(mp, "=");
22139 help3("You should have said `let symbol = something'.")
22140 ("But don't worry; I'll pretend that an equals sign")
22141 ("was present. The next token I read will be `something'.");
22145 switch (mp->cur_cmd) {
22146 case defined_macro: case secondary_primary_macro:
22147 case tertiary_secondary_macro: case expression_tertiary_macro:
22148 add_mac_ref(mp->cur_mod);
22153 mp_clear_symbol(mp, l,false); eq_type(l)=mp->cur_cmd;
22154 if ( mp->cur_cmd==tag_token ) equiv(l)=null;
22155 else equiv(l)=mp->cur_mod;
22159 @ @<Declarations@>=
22160 void mp_grow_internals (MP mp, int l);
22161 void mp_do_new_internal (MP mp) ;
22164 void mp_grow_internals (MP mp, int l) {
22168 if ( hash_end+l>max_halfword ) {
22169 mp_confusion(mp, "out of memory space"); /* can't be reached */
22171 int_name = xmalloc ((l+1),sizeof(char *));
22172 internal = xmalloc ((l+1),sizeof(scaled));
22173 for (k=0;k<=l; k++ ) {
22174 if (k<=mp->max_internal) {
22175 internal[k]=mp->internal[k];
22176 int_name[k]=mp->int_name[k];
22182 xfree(mp->internal); xfree(mp->int_name);
22183 mp->int_name = int_name;
22184 mp->internal = internal;
22185 mp->max_internal = l;
22189 void mp_do_new_internal (MP mp) {
22191 if ( mp->int_ptr==mp->max_internal ) {
22192 mp_grow_internals(mp, (mp->max_internal + (mp->max_internal>>2)));
22194 mp_get_clear_symbol(mp); incr(mp->int_ptr);
22195 eq_type(mp->cur_sym)=internal_quantity;
22196 equiv(mp->cur_sym)=mp->int_ptr;
22197 if(mp->int_name[mp->int_ptr]!=NULL)
22198 xfree(mp->int_name[mp->int_ptr]);
22199 mp->int_name[mp->int_ptr]=str(text(mp->cur_sym));
22200 mp->internal[mp->int_ptr]=0;
22202 } while (mp->cur_cmd==comma);
22205 @ @<Dealloc variables@>=
22206 for (k=0;k<=mp->max_internal;k++) {
22207 xfree(mp->int_name[k]);
22209 xfree(mp->internal);
22210 xfree(mp->int_name);
22213 @ The various `\&{show}' commands are distinguished by modifier fields
22216 @d show_token_code 0 /* show the meaning of a single token */
22217 @d show_stats_code 1 /* show current memory and string usage */
22218 @d show_code 2 /* show a list of expressions */
22219 @d show_var_code 3 /* show a variable and its descendents */
22220 @d show_dependencies_code 4 /* show dependent variables in terms of independents */
22223 mp_primitive(mp, "showtoken",show_command,show_token_code);
22224 @:show_token_}{\&{showtoken} primitive@>
22225 mp_primitive(mp, "showstats",show_command,show_stats_code);
22226 @:show_stats_}{\&{showstats} primitive@>
22227 mp_primitive(mp, "show",show_command,show_code);
22228 @:show_}{\&{show} primitive@>
22229 mp_primitive(mp, "showvariable",show_command,show_var_code);
22230 @:show_var_}{\&{showvariable} primitive@>
22231 mp_primitive(mp, "showdependencies",show_command,show_dependencies_code);
22232 @:show_dependencies_}{\&{showdependencies} primitive@>
22234 @ @<Cases of |print_cmd...@>=
22237 case show_token_code:mp_print(mp, "showtoken"); break;
22238 case show_stats_code:mp_print(mp, "showstats"); break;
22239 case show_code:mp_print(mp, "show"); break;
22240 case show_var_code:mp_print(mp, "showvariable"); break;
22241 default: mp_print(mp, "showdependencies"); break;
22245 @ @<Cases of |do_statement|...@>=
22246 case show_command:mp_do_show_whatever(mp); break;
22248 @ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
22249 if it's |show_code|, complicated structures are abbreviated, otherwise
22252 @<Declare action procedures for use by |do_statement|@>=
22253 void mp_do_show (MP mp) ;
22255 @ @c void mp_do_show (MP mp) {
22257 mp_get_x_next(mp); mp_scan_expression(mp);
22258 mp_print_nl(mp, ">> ");
22260 mp_print_exp(mp, null,2); mp_flush_cur_exp(mp, 0);
22261 } while (mp->cur_cmd==comma);
22264 @ @<Declare action procedures for use by |do_statement|@>=
22265 void mp_disp_token (MP mp) ;
22267 @ @c void mp_disp_token (MP mp) {
22268 mp_print_nl(mp, "> ");
22270 if ( mp->cur_sym==0 ) {
22271 @<Show a numeric or string or capsule token@>;
22273 mp_print_text(mp->cur_sym); mp_print_char(mp, '=');
22274 if ( eq_type(mp->cur_sym)>=outer_tag ) mp_print(mp, "(outer) ");
22275 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
22276 if ( mp->cur_cmd==defined_macro ) {
22277 mp_print_ln(mp); mp_show_macro(mp, mp->cur_mod,null,100000);
22278 } /* this avoids recursion between |show_macro| and |print_cmd_mod| */
22283 @ @<Show a numeric or string or capsule token@>=
22285 if ( mp->cur_cmd==numeric_token ) {
22286 mp_print_scaled(mp, mp->cur_mod);
22287 } else if ( mp->cur_cmd==capsule_token ) {
22288 mp->g_pointer=mp->cur_mod; mp_print_capsule(mp);
22290 mp_print_char(mp, '"');
22291 mp_print_str(mp, mp->cur_mod); mp_print_char(mp, '"');
22292 delete_str_ref(mp->cur_mod);
22296 @ The following cases of |print_cmd_mod| might arise in connection
22297 with |disp_token|, although they don't correspond to any
22300 @<Cases of |print_cmd_...@>=
22301 case left_delimiter:
22302 case right_delimiter:
22303 if ( c==left_delimiter ) mp_print(mp, "left");
22304 else mp_print(mp, "right");
22305 mp_print(mp, " delimiter that matches ");
22309 if ( m==null ) mp_print(mp, "tag");
22310 else mp_print(mp, "variable");
22312 case defined_macro:
22313 mp_print(mp, "macro:");
22315 case secondary_primary_macro:
22316 case tertiary_secondary_macro:
22317 case expression_tertiary_macro:
22318 mp_print_cmd_mod(mp, macro_def,c);
22319 mp_print(mp, "'d macro:");
22320 mp_print_ln(mp); mp_show_token_list(mp, link(link(m)),null,1000,0);
22323 mp_print(mp, "[repeat the loop]");
22325 case internal_quantity:
22326 mp_print(mp, mp->int_name[m]);
22329 @ @<Declare action procedures for use by |do_statement|@>=
22330 void mp_do_show_token (MP mp) ;
22332 @ @c void mp_do_show_token (MP mp) {
22334 get_t_next; mp_disp_token(mp);
22336 } while (mp->cur_cmd==comma);
22339 @ @<Declare action procedures for use by |do_statement|@>=
22340 void mp_do_show_stats (MP mp) ;
22342 @ @c void mp_do_show_stats (MP mp) {
22343 mp_print_nl(mp, "Memory usage ");
22344 @.Memory usage...@>
22345 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used);
22347 mp_print(mp, "unknown");
22348 mp_print(mp, " ("); mp_print_int(mp, mp->hi_mem_min-mp->lo_mem_max-1);
22349 mp_print(mp, " still untouched)"); mp_print_ln(mp);
22350 mp_print_nl(mp, "String usage ");
22351 mp_print_int(mp, mp->strs_in_use-mp->init_str_use);
22352 mp_print_char(mp, '&'); mp_print_int(mp, mp->pool_in_use-mp->init_pool_ptr);
22354 mp_print(mp, "unknown");
22355 mp_print(mp, " (");
22356 mp_print_int(mp, mp->max_strings-1-mp->strs_used_up); mp_print_char(mp, '&');
22357 mp_print_int(mp, mp->pool_size-mp->pool_ptr);
22358 mp_print(mp, " now untouched)"); mp_print_ln(mp);
22362 @ Here's a recursive procedure that gives an abbreviated account
22363 of a variable, for use by |do_show_var|.
22365 @<Declare action procedures for use by |do_statement|@>=
22366 void mp_disp_var (MP mp,pointer p) ;
22368 @ @c void mp_disp_var (MP mp,pointer p) {
22369 pointer q; /* traverses attributes and subscripts */
22370 int n; /* amount of macro text to show */
22371 if ( type(p)==mp_structured ) {
22372 @<Descend the structure@>;
22373 } else if ( type(p)>=mp_unsuffixed_macro ) {
22374 @<Display a variable macro@>;
22375 } else if ( type(p)!=undefined ){
22376 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22377 mp_print_char(mp, '=');
22378 mp_print_exp(mp, p,0);
22382 @ @<Descend the structure@>=
22385 do { mp_disp_var(mp, q); q=link(q); } while (q!=end_attr);
22387 while ( name_type(q)==mp_subscr ) {
22388 mp_disp_var(mp, q); q=link(q);
22392 @ @<Display a variable macro@>=
22394 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22395 if ( type(p)>mp_unsuffixed_macro )
22396 mp_print(mp, "@@#"); /* |suffixed_macro| */
22397 mp_print(mp, "=macro:");
22398 if ( (int)mp->file_offset>=mp->max_print_line-20 ) n=5;
22399 else n=mp->max_print_line-mp->file_offset-15;
22400 mp_show_macro(mp, value(p),null,n);
22403 @ @<Declare action procedures for use by |do_statement|@>=
22404 void mp_do_show_var (MP mp) ;
22406 @ @c void mp_do_show_var (MP mp) {
22409 if ( mp->cur_sym>0 ) if ( mp->cur_sym<=hash_end )
22410 if ( mp->cur_cmd==tag_token ) if ( mp->cur_mod!=null ) {
22411 mp_disp_var(mp, mp->cur_mod); goto DONE;
22416 } while (mp->cur_cmd==comma);
22419 @ @<Declare action procedures for use by |do_statement|@>=
22420 void mp_do_show_dependencies (MP mp) ;
22422 @ @c void mp_do_show_dependencies (MP mp) {
22423 pointer p; /* link that runs through all dependencies */
22425 while ( p!=dep_head ) {
22426 if ( mp_interesting(mp, p) ) {
22427 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22428 if ( type(p)==mp_dependent ) mp_print_char(mp, '=');
22429 else mp_print(mp, " = "); /* extra spaces imply proto-dependency */
22430 mp_print_dependency(mp, dep_list(p),type(p));
22433 while ( info(p)!=null ) p=link(p);
22439 @ Finally we are ready for the procedure that governs all of the
22442 @<Declare action procedures for use by |do_statement|@>=
22443 void mp_do_show_whatever (MP mp) ;
22445 @ @c void mp_do_show_whatever (MP mp) {
22446 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
22447 switch (mp->cur_mod) {
22448 case show_token_code:mp_do_show_token(mp); break;
22449 case show_stats_code:mp_do_show_stats(mp); break;
22450 case show_code:mp_do_show(mp); break;
22451 case show_var_code:mp_do_show_var(mp); break;
22452 case show_dependencies_code:mp_do_show_dependencies(mp); break;
22453 } /* there are no other cases */
22454 if ( mp->internal[mp_showstopping]>0 ){
22457 if ( mp->interaction<mp_error_stop_mode ) {
22458 help0; decr(mp->error_count);
22460 help1("This isn't an error message; I'm just showing something.");
22462 if ( mp->cur_cmd==semicolon ) mp_error(mp);
22463 else mp_put_get_error(mp);
22467 @ The `\&{addto}' command needs the following additional primitives:
22469 @d double_path_code 0 /* command modifier for `\&{doublepath}' */
22470 @d contour_code 1 /* command modifier for `\&{contour}' */
22471 @d also_code 2 /* command modifier for `\&{also}' */
22473 @ Pre and postscripts need two new identifiers:
22475 @d with_pre_script 11
22476 @d with_post_script 13
22479 mp_primitive(mp, "doublepath",thing_to_add,double_path_code);
22480 @:double_path_}{\&{doublepath} primitive@>
22481 mp_primitive(mp, "contour",thing_to_add,contour_code);
22482 @:contour_}{\&{contour} primitive@>
22483 mp_primitive(mp, "also",thing_to_add,also_code);
22484 @:also_}{\&{also} primitive@>
22485 mp_primitive(mp, "withpen",with_option,mp_pen_type);
22486 @:with_pen_}{\&{withpen} primitive@>
22487 mp_primitive(mp, "dashed",with_option,mp_picture_type);
22488 @:dashed_}{\&{dashed} primitive@>
22489 mp_primitive(mp, "withprescript",with_option,with_pre_script);
22490 @:with_pre_script_}{\&{withprescript} primitive@>
22491 mp_primitive(mp, "withpostscript",with_option,with_post_script);
22492 @:with_post_script_}{\&{withpostscript} primitive@>
22493 mp_primitive(mp, "withoutcolor",with_option,mp_no_model);
22494 @:with_color_}{\&{withoutcolor} primitive@>
22495 mp_primitive(mp, "withgreyscale",with_option,mp_grey_model);
22496 @:with_color_}{\&{withgreyscale} primitive@>
22497 mp_primitive(mp, "withcolor",with_option,mp_uninitialized_model);
22498 @:with_color_}{\&{withcolor} primitive@>
22499 /* \&{withrgbcolor} is an alias for \&{withcolor} */
22500 mp_primitive(mp, "withrgbcolor",with_option,mp_rgb_model);
22501 @:with_color_}{\&{withrgbcolor} primitive@>
22502 mp_primitive(mp, "withcmykcolor",with_option,mp_cmyk_model);
22503 @:with_color_}{\&{withcmykcolor} primitive@>
22505 @ @<Cases of |print_cmd...@>=
22507 if ( m==contour_code ) mp_print(mp, "contour");
22508 else if ( m==double_path_code ) mp_print(mp, "doublepath");
22509 else mp_print(mp, "also");
22512 if ( m==mp_pen_type ) mp_print(mp, "withpen");
22513 else if ( m==with_pre_script ) mp_print(mp, "withprescript");
22514 else if ( m==with_post_script ) mp_print(mp, "withpostscript");
22515 else if ( m==mp_no_model ) mp_print(mp, "withoutcolor");
22516 else if ( m==mp_rgb_model ) mp_print(mp, "withrgbcolor");
22517 else if ( m==mp_uninitialized_model ) mp_print(mp, "withcolor");
22518 else if ( m==mp_cmyk_model ) mp_print(mp, "withcmykcolor");
22519 else if ( m==mp_grey_model ) mp_print(mp, "withgreyscale");
22520 else mp_print(mp, "dashed");
22523 @ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
22524 updates the list of graphical objects starting at |p|. Each $\langle$with
22525 clause$\rangle$ updates all graphical objects whose |type| is compatible.
22526 Other objects are ignored.
22528 @<Declare action procedures for use by |do_statement|@>=
22529 void mp_scan_with_list (MP mp,pointer p) ;
22531 @ @c void mp_scan_with_list (MP mp,pointer p) {
22532 small_number t; /* |cur_mod| of the |with_option| (should match |cur_type|) */
22533 pointer q; /* for list manipulation */
22534 int old_setting; /* saved |selector| setting */
22535 pointer k; /* for finding the near-last item in a list */
22536 str_number s; /* for string cleanup after combining */
22537 pointer cp,pp,dp,ap,bp;
22538 /* objects being updated; |void| initially; |null| to suppress update */
22539 cp=mp_void; pp=mp_void; dp=mp_void; ap=mp_void; bp=mp_void;
22541 while ( mp->cur_cmd==with_option ){
22544 if ( t!=mp_no_model ) mp_scan_expression(mp);
22545 if (((t==with_pre_script)&&(mp->cur_type!=mp_string_type))||
22546 ((t==with_post_script)&&(mp->cur_type!=mp_string_type))||
22547 ((t==mp_uninitialized_model)&&
22548 ((mp->cur_type!=mp_cmykcolor_type)&&(mp->cur_type!=mp_color_type)
22549 &&(mp->cur_type!=mp_known)&&(mp->cur_type!=mp_boolean_type)))||
22550 ((t==mp_cmyk_model)&&(mp->cur_type!=mp_cmykcolor_type))||
22551 ((t==mp_rgb_model)&&(mp->cur_type!=mp_color_type))||
22552 ((t==mp_grey_model)&&(mp->cur_type!=mp_known))||
22553 ((t==mp_pen_type)&&(mp->cur_type!=t))||
22554 ((t==mp_picture_type)&&(mp->cur_type!=t)) ) {
22555 @<Complain about improper type@>;
22556 } else if ( t==mp_uninitialized_model ) {
22557 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22559 @<Transfer a color from the current expression to object~|cp|@>;
22560 mp_flush_cur_exp(mp, 0);
22561 } else if ( t==mp_rgb_model ) {
22562 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22564 @<Transfer a rgbcolor from the current expression to object~|cp|@>;
22565 mp_flush_cur_exp(mp, 0);
22566 } else if ( t==mp_cmyk_model ) {
22567 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22569 @<Transfer a cmykcolor from the current expression to object~|cp|@>;
22570 mp_flush_cur_exp(mp, 0);
22571 } else if ( t==mp_grey_model ) {
22572 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22574 @<Transfer a greyscale from the current expression to object~|cp|@>;
22575 mp_flush_cur_exp(mp, 0);
22576 } else if ( t==mp_no_model ) {
22577 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22579 @<Transfer a noncolor from the current expression to object~|cp|@>;
22580 } else if ( t==mp_pen_type ) {
22581 if ( pp==mp_void ) @<Make |pp| an object in list~|p| that needs a pen@>;
22583 if ( pen_p(pp)!=null ) mp_toss_knot_list(mp, pen_p(pp));
22584 pen_p(pp)=mp->cur_exp; mp->cur_type=mp_vacuous;
22586 } else if ( t==with_pre_script ) {
22589 while ( (ap!=null)&&(! has_color(ap)) )
22592 if ( pre_script(ap)!=null ) { /* build a new,combined string */
22594 old_setting=mp->selector;
22595 mp->selector=new_string;
22596 str_room(length(pre_script(ap))+length(mp->cur_exp)+2);
22597 mp_print_str(mp, mp->cur_exp);
22598 append_char(13); /* a forced \ps\ newline */
22599 mp_print_str(mp, pre_script(ap));
22600 pre_script(ap)=mp_make_string(mp);
22602 mp->selector=old_setting;
22604 pre_script(ap)=mp->cur_exp;
22606 mp->cur_type=mp_vacuous;
22608 } else if ( t==with_post_script ) {
22612 while ( link(k)!=null ) {
22614 if ( has_color(k) ) bp=k;
22617 if ( post_script(bp)!=null ) {
22619 old_setting=mp->selector;
22620 mp->selector=new_string;
22621 str_room(length(post_script(bp))+length(mp->cur_exp)+2);
22622 mp_print_str(mp, post_script(bp));
22623 append_char(13); /* a forced \ps\ newline */
22624 mp_print_str(mp, mp->cur_exp);
22625 post_script(bp)=mp_make_string(mp);
22627 mp->selector=old_setting;
22629 post_script(bp)=mp->cur_exp;
22631 mp->cur_type=mp_vacuous;
22634 if ( dp==mp_void ) {
22635 @<Make |dp| a stroked node in list~|p|@>;
22638 if ( dash_p(dp)!=null ) delete_edge_ref(dash_p(dp));
22639 dash_p(dp)=mp_make_dashes(mp, mp->cur_exp);
22640 dash_scale(dp)=unity;
22641 mp->cur_type=mp_vacuous;
22645 @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
22649 @ @<Complain about improper type@>=
22650 { exp_err("Improper type");
22652 help2("Next time say `withpen <known pen expression>';")
22653 ("I'll ignore the bad `with' clause and look for another.");
22654 if ( t==with_pre_script )
22655 mp->help_line[1]="Next time say `withprescript <known string expression>';";
22656 else if ( t==with_post_script )
22657 mp->help_line[1]="Next time say `withpostscript <known string expression>';";
22658 else if ( t==mp_picture_type )
22659 mp->help_line[1]="Next time say `dashed <known picture expression>';";
22660 else if ( t==mp_uninitialized_model )
22661 mp->help_line[1]="Next time say `withcolor <known color expression>';";
22662 else if ( t==mp_rgb_model )
22663 mp->help_line[1]="Next time say `withrgbcolor <known color expression>';";
22664 else if ( t==mp_cmyk_model )
22665 mp->help_line[1]="Next time say `withcmykcolor <known cmykcolor expression>';";
22666 else if ( t==mp_grey_model )
22667 mp->help_line[1]="Next time say `withgreyscale <known numeric expression>';";;
22668 mp_put_get_flush_error(mp, 0);
22671 @ Forcing the color to be between |0| and |unity| here guarantees that no
22672 picture will ever contain a color outside the legal range for \ps\ graphics.
22674 @<Transfer a color from the current expression to object~|cp|@>=
22675 { if ( mp->cur_type==mp_color_type )
22676 @<Transfer a rgbcolor from the current expression to object~|cp|@>
22677 else if ( mp->cur_type==mp_cmykcolor_type )
22678 @<Transfer a cmykcolor from the current expression to object~|cp|@>
22679 else if ( mp->cur_type==mp_known )
22680 @<Transfer a greyscale from the current expression to object~|cp|@>
22681 else if ( mp->cur_exp==false_code )
22682 @<Transfer a noncolor from the current expression to object~|cp|@>;
22685 @ @<Transfer a rgbcolor from the current expression to object~|cp|@>=
22686 { q=value(mp->cur_exp);
22691 red_val(cp)=value(red_part_loc(q));
22692 green_val(cp)=value(green_part_loc(q));
22693 blue_val(cp)=value(blue_part_loc(q));
22694 color_model(cp)=mp_rgb_model;
22695 if ( red_val(cp)<0 ) red_val(cp)=0;
22696 if ( green_val(cp)<0 ) green_val(cp)=0;
22697 if ( blue_val(cp)<0 ) blue_val(cp)=0;
22698 if ( red_val(cp)>unity ) red_val(cp)=unity;
22699 if ( green_val(cp)>unity ) green_val(cp)=unity;
22700 if ( blue_val(cp)>unity ) blue_val(cp)=unity;
22703 @ @<Transfer a cmykcolor from the current expression to object~|cp|@>=
22704 { q=value(mp->cur_exp);
22705 cyan_val(cp)=value(cyan_part_loc(q));
22706 magenta_val(cp)=value(magenta_part_loc(q));
22707 yellow_val(cp)=value(yellow_part_loc(q));
22708 black_val(cp)=value(black_part_loc(q));
22709 color_model(cp)=mp_cmyk_model;
22710 if ( cyan_val(cp)<0 ) cyan_val(cp)=0;
22711 if ( magenta_val(cp)<0 ) magenta_val(cp)=0;
22712 if ( yellow_val(cp)<0 ) yellow_val(cp)=0;
22713 if ( black_val(cp)<0 ) black_val(cp)=0;
22714 if ( cyan_val(cp)>unity ) cyan_val(cp)=unity;
22715 if ( magenta_val(cp)>unity ) magenta_val(cp)=unity;
22716 if ( yellow_val(cp)>unity ) yellow_val(cp)=unity;
22717 if ( black_val(cp)>unity ) black_val(cp)=unity;
22720 @ @<Transfer a greyscale from the current expression to object~|cp|@>=
22727 color_model(cp)=mp_grey_model;
22728 if ( grey_val(cp)<0 ) grey_val(cp)=0;
22729 if ( grey_val(cp)>unity ) grey_val(cp)=unity;
22732 @ @<Transfer a noncolor from the current expression to object~|cp|@>=
22739 color_model(cp)=mp_no_model;
22742 @ @<Make |cp| a colored object in object list~|p|@>=
22744 while ( cp!=null ){
22745 if ( has_color(cp) ) break;
22750 @ @<Make |pp| an object in list~|p| that needs a pen@>=
22752 while ( pp!=null ) {
22753 if ( has_pen(pp) ) break;
22758 @ @<Make |dp| a stroked node in list~|p|@>=
22760 while ( dp!=null ) {
22761 if ( type(dp)==mp_stroked_code ) break;
22766 @ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
22767 @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
22768 if ( pp>mp_void ) {
22769 @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
22771 if ( dp>mp_void ) {
22772 @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>;
22776 @ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
22778 while ( q!=null ) {
22779 if ( has_color(q) ) {
22780 red_val(q)=red_val(cp);
22781 green_val(q)=green_val(cp);
22782 blue_val(q)=blue_val(cp);
22783 black_val(q)=black_val(cp);
22784 color_model(q)=color_model(cp);
22790 @ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
22792 while ( q!=null ) {
22793 if ( has_pen(q) ) {
22794 if ( pen_p(q)!=null ) mp_toss_knot_list(mp, pen_p(q));
22795 pen_p(q)=copy_pen(pen_p(pp));
22801 @ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
22803 while ( q!=null ) {
22804 if ( type(q)==mp_stroked_code ) {
22805 if ( dash_p(q)!=null ) delete_edge_ref(dash_p(q));
22806 dash_p(q)=dash_p(dp);
22807 dash_scale(q)=unity;
22808 if ( dash_p(q)!=null ) add_edge_ref(dash_p(q));
22814 @ One of the things we need to do when we've parsed an \&{addto} or
22815 similar command is find the header of a supposed \&{picture} variable, given
22816 a token list for that variable. Since the edge structure is about to be
22817 updated, we use |private_edges| to make sure that this is possible.
22819 @<Declare action procedures for use by |do_statement|@>=
22820 pointer mp_find_edges_var (MP mp, pointer t) ;
22822 @ @c pointer mp_find_edges_var (MP mp, pointer t) {
22824 pointer cur_edges; /* the return value */
22825 p=mp_find_variable(mp, t); cur_edges=null;
22827 mp_obliterated(mp, t); mp_put_get_error(mp);
22828 } else if ( type(p)!=mp_picture_type ) {
22829 print_err("Variable "); mp_show_token_list(mp, t,null,1000,0);
22830 @.Variable x is the wrong type@>
22831 mp_print(mp, " is the wrong type (");
22832 mp_print_type(mp, type(p)); mp_print_char(mp, ')');
22833 help2("I was looking for a \"known\" picture variable.")
22834 ("So I'll not change anything just now.");
22835 mp_put_get_error(mp);
22837 value(p)=mp_private_edges(mp, value(p));
22838 cur_edges=value(p);
22840 mp_flush_node_list(mp, t);
22844 @ @<Cases of |do_statement|...@>=
22845 case add_to_command: mp_do_add_to(mp); break;
22846 case bounds_command:mp_do_bounds(mp); break;
22849 mp_primitive(mp, "clip",bounds_command,mp_start_clip_code);
22850 @:clip_}{\&{clip} primitive@>
22851 mp_primitive(mp, "setbounds",bounds_command,mp_start_bounds_code);
22852 @:set_bounds_}{\&{setbounds} primitive@>
22854 @ @<Cases of |print_cmd...@>=
22855 case bounds_command:
22856 if ( m==mp_start_clip_code ) mp_print(mp, "clip");
22857 else mp_print(mp, "setbounds");
22860 @ The following function parses the beginning of an \&{addto} or \&{clip}
22861 command: it expects a variable name followed by a token with |cur_cmd=sep|
22862 and then an expression. The function returns the token list for the variable
22863 and stores the command modifier for the separator token in the global variable
22864 |last_add_type|. We must be careful because this variable might get overwritten
22865 any time we call |get_x_next|.
22868 quarterword last_add_type;
22869 /* command modifier that identifies the last \&{addto} command */
22871 @ @<Declare action procedures for use by |do_statement|@>=
22872 pointer mp_start_draw_cmd (MP mp,quarterword sep) ;
22874 @ @c pointer mp_start_draw_cmd (MP mp,quarterword sep) {
22875 pointer lhv; /* variable to add to left */
22876 quarterword add_type=0; /* value to be returned in |last_add_type| */
22878 mp_get_x_next(mp); mp->var_flag=sep; mp_scan_primary(mp);
22879 if ( mp->cur_type!=mp_token_list ) {
22880 @<Abandon edges command because there's no variable@>;
22882 lhv=mp->cur_exp; add_type=mp->cur_mod;
22883 mp->cur_type=mp_vacuous; mp_get_x_next(mp); mp_scan_expression(mp);
22885 mp->last_add_type=add_type;
22889 @ @<Abandon edges command because there's no variable@>=
22890 { exp_err("Not a suitable variable");
22891 @.Not a suitable variable@>
22892 help4("At this point I needed to see the name of a picture variable.")
22893 ("(Or perhaps you have indeed presented me with one; I might")
22894 ("have missed it, if it wasn't followed by the proper token.)")
22895 ("So I'll not change anything just now.");
22896 mp_put_get_flush_error(mp, 0);
22899 @ Here is an example of how to use |start_draw_cmd|.
22901 @<Declare action procedures for use by |do_statement|@>=
22902 void mp_do_bounds (MP mp) ;
22904 @ @c void mp_do_bounds (MP mp) {
22905 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22906 pointer p; /* for list manipulation */
22907 integer m; /* initial value of |cur_mod| */
22909 lhv=mp_start_draw_cmd(mp, to_token);
22911 lhe=mp_find_edges_var(mp, lhv);
22913 mp_flush_cur_exp(mp, 0);
22914 } else if ( mp->cur_type!=mp_path_type ) {
22915 exp_err("Improper `clip'");
22916 @.Improper `addto'@>
22917 help2("This expression should have specified a known path.")
22918 ("So I'll not change anything just now.");
22919 mp_put_get_flush_error(mp, 0);
22920 } else if ( left_type(mp->cur_exp)==mp_endpoint ) {
22921 @<Complain about a non-cycle@>;
22923 @<Make |cur_exp| into a \&{setbounds} or clipping path and add it to |lhe|@>;
22928 @ @<Complain about a non-cycle@>=
22929 { print_err("Not a cycle");
22931 help2("That contour should have ended with `..cycle' or `&cycle'.")
22932 ("So I'll not change anything just now."); mp_put_get_error(mp);
22935 @ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
22936 { p=mp_new_bounds_node(mp, mp->cur_exp,m);
22937 link(p)=link(dummy_loc(lhe));
22938 link(dummy_loc(lhe))=p;
22939 if ( obj_tail(lhe)==dummy_loc(lhe) ) obj_tail(lhe)=p;
22940 p=mp_get_node(mp, mp->gr_object_size[stop_type(m)]);
22941 type(p)=stop_type(m);
22942 link(obj_tail(lhe))=p;
22944 mp_init_bbox(mp, lhe);
22947 @ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
22948 cases to deal with.
22950 @<Declare action procedures for use by |do_statement|@>=
22951 void mp_do_add_to (MP mp) ;
22953 @ @c void mp_do_add_to (MP mp) {
22954 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22955 pointer p; /* the graphical object or list for |scan_with_list| to update */
22956 pointer e; /* an edge structure to be merged */
22957 quarterword add_type; /* |also_code|, |contour_code|, or |double_path_code| */
22958 lhv=mp_start_draw_cmd(mp, thing_to_add); add_type=mp->last_add_type;
22960 if ( add_type==also_code ) {
22961 @<Make sure the current expression is a suitable picture and set |e| and |p|
22964 @<Create a graphical object |p| based on |add_type| and the current
22967 mp_scan_with_list(mp, p);
22968 @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
22972 @ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
22973 setting |e:=null| prevents anything from being added to |lhe|.
22975 @ @<Make sure the current expression is a suitable picture and set |e|...@>=
22978 if ( mp->cur_type!=mp_picture_type ) {
22979 exp_err("Improper `addto'");
22980 @.Improper `addto'@>
22981 help2("This expression should have specified a known picture.")
22982 ("So I'll not change anything just now."); mp_put_get_flush_error(mp, 0);
22984 e=mp_private_edges(mp, mp->cur_exp); mp->cur_type=mp_vacuous;
22985 p=link(dummy_loc(e));
22989 @ In this case |add_type<>also_code| so setting |p:=null| suppresses future
22990 attempts to add to the edge structure.
22992 @<Create a graphical object |p| based on |add_type| and the current...@>=
22994 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
22995 if ( mp->cur_type!=mp_path_type ) {
22996 exp_err("Improper `addto'");
22997 @.Improper `addto'@>
22998 help2("This expression should have specified a known path.")
22999 ("So I'll not change anything just now.");
23000 mp_put_get_flush_error(mp, 0);
23001 } else if ( add_type==contour_code ) {
23002 if ( left_type(mp->cur_exp)==mp_endpoint ) {
23003 @<Complain about a non-cycle@>;
23005 p=mp_new_fill_node(mp, mp->cur_exp);
23006 mp->cur_type=mp_vacuous;
23009 p=mp_new_stroked_node(mp, mp->cur_exp);
23010 mp->cur_type=mp_vacuous;
23014 @ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
23015 lhe=mp_find_edges_var(mp, lhv);
23017 if ( (e==null)&&(p!=null) ) e=mp_toss_gr_object(mp, p);
23018 if ( e!=null ) delete_edge_ref(e);
23019 } else if ( add_type==also_code ) {
23021 @<Merge |e| into |lhe| and delete |e|@>;
23025 } else if ( p!=null ) {
23026 link(obj_tail(lhe))=p;
23028 if ( add_type==double_path_code )
23029 if ( pen_p(p)==null )
23030 pen_p(p)=mp_get_pen_circle(mp, 0);
23033 @ @<Merge |e| into |lhe| and delete |e|@>=
23034 { if ( link(dummy_loc(e))!=null ) {
23035 link(obj_tail(lhe))=link(dummy_loc(e));
23036 obj_tail(lhe)=obj_tail(e);
23037 obj_tail(e)=dummy_loc(e);
23038 link(dummy_loc(e))=null;
23039 mp_flush_dash_list(mp, lhe);
23041 mp_toss_edges(mp, e);
23044 @ @<Cases of |do_statement|...@>=
23045 case ship_out_command: mp_do_ship_out(mp); break;
23047 @ @<Declare action procedures for use by |do_statement|@>=
23048 @<Declare the function called |tfm_check|@>;
23049 @<Declare the \ps\ output procedures@>;
23050 void mp_do_ship_out (MP mp) ;
23052 @ @c void mp_do_ship_out (MP mp) {
23053 integer c; /* the character code */
23054 mp_get_x_next(mp); mp_scan_expression(mp);
23055 if ( mp->cur_type!=mp_picture_type ) {
23056 @<Complain that it's not a known picture@>;
23058 c=mp_round_unscaled(mp, mp->internal[mp_char_code]) % 256;
23059 if ( c<0 ) c=c+256;
23060 @<Store the width information for character code~|c|@>;
23061 mp_ship_out(mp, mp->cur_exp);
23062 mp_flush_cur_exp(mp, 0);
23066 @ @<Complain that it's not a known picture@>=
23068 exp_err("Not a known picture");
23069 help1("I can only output known pictures.");
23070 mp_put_get_flush_error(mp, 0);
23073 @ The \&{everyjob} command simply assigns a nonzero value to the global variable
23076 @<Cases of |do_statement|...@>=
23077 case every_job_command:
23078 mp_get_symbol(mp); mp->start_sym=mp->cur_sym; mp_get_x_next(mp);
23082 halfword start_sym; /* a symbolic token to insert at beginning of job */
23087 @ Finally, we have only the ``message'' commands remaining.
23090 @d err_message_code 1
23092 @d filename_template_code 3
23093 @d print_with_leading_zeroes(A) g = mp->pool_ptr;
23094 mp_print_int(mp, (A)); g = mp->pool_ptr-g;
23096 mp->pool_ptr = mp->pool_ptr - g;
23098 mp_print_char(mp, '0');
23101 mp_print_int(mp, (A));
23106 mp_primitive(mp, "message",message_command,message_code);
23107 @:message_}{\&{message} primitive@>
23108 mp_primitive(mp, "errmessage",message_command,err_message_code);
23109 @:err_message_}{\&{errmessage} primitive@>
23110 mp_primitive(mp, "errhelp",message_command,err_help_code);
23111 @:err_help_}{\&{errhelp} primitive@>
23112 mp_primitive(mp, "filenametemplate",message_command,filename_template_code);
23113 @:filename_template_}{\&{filenametemplate} primitive@>
23115 @ @<Cases of |print_cmd...@>=
23116 case message_command:
23117 if ( m<err_message_code ) mp_print(mp, "message");
23118 else if ( m==err_message_code ) mp_print(mp, "errmessage");
23119 else if ( m==filename_template_code ) mp_print(mp, "filenametemplate");
23120 else mp_print(mp, "errhelp");
23123 @ @<Cases of |do_statement|...@>=
23124 case message_command: mp_do_message(mp); break;
23126 @ @<Declare action procedures for use by |do_statement|@>=
23127 @<Declare a procedure called |no_string_err|@>;
23128 void mp_do_message (MP mp) ;
23131 @c void mp_do_message (MP mp) {
23132 int m; /* the type of message */
23133 m=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
23134 if ( mp->cur_type!=mp_string_type )
23135 mp_no_string_err(mp, "A message should be a known string expression.");
23139 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp);
23141 case err_message_code:
23142 @<Print string |cur_exp| as an error message@>;
23144 case err_help_code:
23145 @<Save string |cur_exp| as the |err_help|@>;
23147 case filename_template_code:
23148 @<Save the filename template@>;
23150 } /* there are no other cases */
23152 mp_flush_cur_exp(mp, 0);
23155 @ @<Declare a procedure called |no_string_err|@>=
23156 void mp_no_string_err (MP mp,char *s) {
23157 exp_err("Not a string");
23160 mp_put_get_error(mp);
23163 @ The global variable |err_help| is zero when the user has most recently
23164 given an empty help string, or if none has ever been given.
23166 @<Save string |cur_exp| as the |err_help|@>=
23168 if ( mp->err_help!=0 ) delete_str_ref(mp->err_help);
23169 if ( length(mp->cur_exp)==0 ) mp->err_help=0;
23170 else { mp->err_help=mp->cur_exp; add_str_ref(mp->err_help); }
23173 @ If \&{errmessage} occurs often in |mp_scroll_mode|, without user-defined
23174 \&{errhelp}, we don't want to give a long help message each time. So we
23175 give a verbose explanation only once.
23178 boolean long_help_seen; /* has the long \.{\\errmessage} help been used? */
23180 @ @<Set init...@>=mp->long_help_seen=false;
23182 @ @<Print string |cur_exp| as an error message@>=
23184 print_err(""); mp_print_str(mp, mp->cur_exp);
23185 if ( mp->err_help!=0 ) {
23186 mp->use_err_help=true;
23187 } else if ( mp->long_help_seen ) {
23188 help1("(That was another `errmessage'.)") ;
23190 if ( mp->interaction<mp_error_stop_mode ) mp->long_help_seen=true;
23191 help4("This error message was generated by an `errmessage'")
23192 ("command, so I can\'t give any explicit help.")
23193 ("Pretend that you're Miss Marple: Examine all clues,")
23195 ("and deduce the truth by inspired guesses.");
23197 mp_put_get_error(mp); mp->use_err_help=false;
23200 @ @<Cases of |do_statement|...@>=
23201 case write_command: mp_do_write(mp); break;
23203 @ @<Declare action procedures for use by |do_statement|@>=
23204 void mp_do_write (MP mp) ;
23206 @ @c void mp_do_write (MP mp) {
23207 str_number t; /* the line of text to be written */
23208 write_index n,n0; /* for searching |wr_fname| and |wr_file| arrays */
23209 int old_setting; /* for saving |selector| during output */
23211 mp_scan_expression(mp);
23212 if ( mp->cur_type!=mp_string_type ) {
23213 mp_no_string_err(mp, "The text to be written should be a known string expression");
23214 } else if ( mp->cur_cmd!=to_token ) {
23215 print_err("Missing `to' clause");
23216 help1("A write command should end with `to <filename>'");
23217 mp_put_get_error(mp);
23219 t=mp->cur_exp; mp->cur_type=mp_vacuous;
23221 mp_scan_expression(mp);
23222 if ( mp->cur_type!=mp_string_type )
23223 mp_no_string_err(mp, "I can\'t write to that file name. It isn't a known string");
23225 @<Write |t| to the file named by |cur_exp|@>;
23229 mp_flush_cur_exp(mp, 0);
23232 @ @<Write |t| to the file named by |cur_exp|@>=
23234 @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
23235 |cur_exp| must be inserted@>;
23236 if ( mp_str_vs_str(mp, t,mp->eof_line)==0 ) {
23237 @<Record the end of file on |wr_file[n]|@>;
23239 old_setting=mp->selector;
23240 mp->selector=n+write_file;
23241 mp_print_str(mp, t); mp_print_ln(mp);
23242 mp->selector = old_setting;
23246 @ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
23248 char *fn = str(mp->cur_exp);
23250 n0=mp->write_files;
23251 while (mp_xstrcmp(fn,mp->wr_fname[n])!=0) {
23252 if ( n==0 ) { /* bottom reached */
23253 if ( n0==mp->write_files ) {
23254 if ( mp->write_files<mp->max_write_files ) {
23255 incr(mp->write_files);
23260 l = mp->max_write_files + (mp->max_write_files>>2);
23261 wr_file = xmalloc((l+1),sizeof(void *));
23262 wr_fname = xmalloc((l+1),sizeof(char *));
23263 for (k=0;k<=l;k++) {
23264 if (k<=mp->max_write_files) {
23265 wr_file[k]=mp->wr_file[k];
23266 wr_fname[k]=mp->wr_fname[k];
23272 xfree(mp->wr_file); xfree(mp->wr_fname);
23273 mp->max_write_files = l;
23274 mp->wr_file = wr_file;
23275 mp->wr_fname = wr_fname;
23279 mp_open_write_file(mp, fn ,n);
23282 if ( mp->wr_fname[n]==NULL ) n0=n;
23287 @ @<Record the end of file on |wr_file[n]|@>=
23288 { (mp->close_file)(mp->wr_file[n]);
23289 xfree(mp->wr_fname[n]);
23290 mp->wr_fname[n]=NULL;
23291 if ( n==mp->write_files-1 ) mp->write_files=n;
23295 @* \[42] Writing font metric data.
23296 \TeX\ gets its knowledge about fonts from font metric files, also called
23297 \.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
23298 but other programs know about them too. One of \MP's duties is to
23299 write \.{TFM} files so that the user's fonts can readily be
23300 applied to typesetting.
23301 @:TFM files}{\.{TFM} files@>
23302 @^font metric files@>
23304 The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
23305 Since the number of bytes is always a multiple of~4, we could
23306 also regard the file as a sequence of 32-bit words, but \MP\ uses the
23307 byte interpretation. The format of \.{TFM} files was designed by
23308 Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
23309 @^Ramshaw, Lyle Harold@>
23310 of information in a compact but useful form.
23313 void * tfm_file; /* the font metric output goes here */
23314 char * metric_file_name; /* full name of the font metric file */
23316 @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
23317 integers that give the lengths of the various subsequent portions
23318 of the file. These twelve integers are, in order:
23319 $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
23320 |lf|&length of the entire file, in words;\cr
23321 |lh|&length of the header data, in words;\cr
23322 |bc|&smallest character code in the font;\cr
23323 |ec|&largest character code in the font;\cr
23324 |nw|&number of words in the width table;\cr
23325 |nh|&number of words in the height table;\cr
23326 |nd|&number of words in the depth table;\cr
23327 |ni|&number of words in the italic correction table;\cr
23328 |nl|&number of words in the lig/kern table;\cr
23329 |nk|&number of words in the kern table;\cr
23330 |ne|&number of words in the extensible character table;\cr
23331 |np|&number of font parameter words.\cr}}$$
23332 They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
23334 $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
23335 Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
23336 and as few as 0 characters (if |bc=ec+1|).
23338 Incidentally, when two or more 8-bit bytes are combined to form an integer of
23339 16 or more bits, the most significant bytes appear first in the file.
23340 This is called BigEndian order.
23341 @^BigEndian order@>
23343 @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
23346 The most important data type used here is a |fix_word|, which is
23347 a 32-bit representation of a binary fraction. A |fix_word| is a signed
23348 quantity, with the two's complement of the entire word used to represent
23349 negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
23350 binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
23351 the smallest is $-2048$. We will see below, however, that all but two of
23352 the |fix_word| values must lie between $-16$ and $+16$.
23354 @ The first data array is a block of header information, which contains
23355 general facts about the font. The header must contain at least two words,
23356 |header[0]| and |header[1]|, whose meaning is explained below. Additional
23357 header information of use to other software routines might also be
23358 included, and \MP\ will generate it if the \.{headerbyte} command occurs.
23359 For example, 16 more words of header information are in use at the Xerox
23360 Palo Alto Research Center; the first ten specify the character coding
23361 scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
23362 give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
23363 last gives the ``face byte.''
23365 \yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
23366 the \.{GF} output file. This helps ensure consistency between files,
23367 since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
23368 should match the check sums on actual fonts that are used. The actual
23369 relation between this check sum and the rest of the \.{TFM} file is not
23370 important; the check sum is simply an identification number with the
23371 property that incompatible fonts almost always have distinct check sums.
23374 \yskip\hang|header[1]| is a |fix_word| containing the design size of the
23375 font, in units of \TeX\ points. This number must be at least 1.0; it is
23376 fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
23377 font, i.e., a font that was designed to look best at a 10-point size,
23378 whatever that really means. When a \TeX\ user asks for a font `\.{at}
23379 $\delta$ \.{pt}', the effect is to override the design size and replace it
23380 by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
23381 the font image by a factor of $\delta$ divided by the design size. {\sl
23382 All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
23383 numbers in design-size units.} Thus, for example, the value of |param[6]|,
23384 which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
23385 since many fonts have a design size equal to one em. The other dimensions
23386 must be less than 16 design-size units in absolute value; thus,
23387 |header[1]| and |param[1]| are the only |fix_word| entries in the whole
23388 \.{TFM} file whose first byte might be something besides 0 or 255.
23390 @ Next comes the |char_info| array, which contains one |char_info_word|
23391 per character. Each word in this part of the file contains six fields
23392 packed into four bytes as follows.
23394 \yskip\hang first byte: |width_index| (8 bits)\par
23395 \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
23397 \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
23399 \hang fourth byte: |remainder| (8 bits)\par
23401 The actual width of a character is \\{width}|[width_index]|, in design-size
23402 units; this is a device for compressing information, since many characters
23403 have the same width. Since it is quite common for many characters
23404 to have the same height, depth, or italic correction, the \.{TFM} format
23405 imposes a limit of 16 different heights, 16 different depths, and
23406 64 different italic corrections.
23408 Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
23409 \\{italic}[0]=0$ should always hold, so that an index of zero implies a
23410 value of zero. The |width_index| should never be zero unless the
23411 character does not exist in the font, since a character is valid if and
23412 only if it lies between |bc| and |ec| and has a nonzero |width_index|.
23414 @ The |tag| field in a |char_info_word| has four values that explain how to
23415 interpret the |remainder| field.
23417 \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
23418 \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
23419 program starting at location |remainder| in the |lig_kern| array.\par
23420 \hang|tag=2| (|list_tag|) means that this character is part of a chain of
23421 characters of ascending sizes, and not the largest in the chain. The
23422 |remainder| field gives the character code of the next larger character.\par
23423 \hang|tag=3| (|ext_tag|) means that this character code represents an
23424 extensible character, i.e., a character that is built up of smaller pieces
23425 so that it can be made arbitrarily large. The pieces are specified in
23426 |exten[remainder]|.\par
23428 Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
23429 unless they are used in special circumstances in math formulas. For example,
23430 \TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
23431 operation looks for both |list_tag| and |ext_tag|.
23433 @d no_tag 0 /* vanilla character */
23434 @d lig_tag 1 /* character has a ligature/kerning program */
23435 @d list_tag 2 /* character has a successor in a charlist */
23436 @d ext_tag 3 /* character is extensible */
23438 @ The |lig_kern| array contains instructions in a simple programming language
23439 that explains what to do for special letter pairs. Each word in this array is a
23440 |lig_kern_command| of four bytes.
23442 \yskip\hang first byte: |skip_byte|, indicates that this is the final program
23443 step if the byte is 128 or more, otherwise the next step is obtained by
23444 skipping this number of intervening steps.\par
23445 \hang second byte: |next_char|, ``if |next_char| follows the current character,
23446 then perform the operation and stop, otherwise continue.''\par
23447 \hang third byte: |op_byte|, indicates a ligature step if less than~128,
23448 a kern step otherwise.\par
23449 \hang fourth byte: |remainder|.\par
23452 additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
23453 between the current character and |next_char|. This amount is
23454 often negative, so that the characters are brought closer together
23455 by kerning; but it might be positive.
23457 There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
23458 $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
23459 |remainder| is inserted between the current character and |next_char|;
23460 then the current character is deleted if $b=0$, and |next_char| is
23461 deleted if $c=0$; then we pass over $a$~characters to reach the next
23462 current character (which may have a ligature/kerning program of its own).
23464 If the very first instruction of the |lig_kern| array has |skip_byte=255|,
23465 the |next_char| byte is the so-called right boundary character of this font;
23466 the value of |next_char| need not lie between |bc| and~|ec|.
23467 If the very last instruction of the |lig_kern| array has |skip_byte=255|,
23468 there is a special ligature/kerning program for a left boundary character,
23469 beginning at location |256*op_byte+remainder|.
23470 The interpretation is that \TeX\ puts implicit boundary characters
23471 before and after each consecutive string of characters from the same font.
23472 These implicit characters do not appear in the output, but they can affect
23473 ligatures and kerning.
23475 If the very first instruction of a character's |lig_kern| program has
23476 |skip_byte>128|, the program actually begins in location
23477 |256*op_byte+remainder|. This feature allows access to large |lig_kern|
23478 arrays, because the first instruction must otherwise
23479 appear in a location |<=255|.
23481 Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
23483 $$\hbox{|256*op_byte+remainder<nl|.}$$
23484 If such an instruction is encountered during
23485 normal program execution, it denotes an unconditional halt; no ligature
23486 command is performed.
23489 /* value indicating `\.{STOP}' in a lig/kern program */
23490 @d kern_flag (128) /* op code for a kern step */
23491 @d skip_byte(A) mp->lig_kern[(A)].b0
23492 @d next_char(A) mp->lig_kern[(A)].b1
23493 @d op_byte(A) mp->lig_kern[(A)].b2
23494 @d rem_byte(A) mp->lig_kern[(A)].b3
23496 @ Extensible characters are specified by an |extensible_recipe|, which
23497 consists of four bytes called |top|, |mid|, |bot|, and |rep| (in this
23498 order). These bytes are the character codes of individual pieces used to
23499 build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
23500 present in the built-up result. For example, an extensible vertical line is
23501 like an extensible bracket, except that the top and bottom pieces are missing.
23503 Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
23504 if the piece isn't present. Then the extensible characters have the form
23505 $TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
23506 in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
23507 The width of the extensible character is the width of $R$; and the
23508 height-plus-depth is the sum of the individual height-plus-depths of the
23509 components used, since the pieces are butted together in a vertical list.
23511 @d ext_top(A) mp->exten[(A)].b0 /* |top| piece in a recipe */
23512 @d ext_mid(A) mp->exten[(A)].b1 /* |mid| piece in a recipe */
23513 @d ext_bot(A) mp->exten[(A)].b2 /* |bot| piece in a recipe */
23514 @d ext_rep(A) mp->exten[(A)].b3 /* |rep| piece in a recipe */
23516 @ The final portion of a \.{TFM} file is the |param| array, which is another
23517 sequence of |fix_word| values.
23519 \yskip\hang|param[1]=slant| is the amount of italic slant, which is used
23520 to help position accents. For example, |slant=.25| means that when you go
23521 up one unit, you also go .25 units to the right. The |slant| is a pure
23522 number; it is the only |fix_word| other than the design size itself that is
23523 not scaled by the design size.
23525 \hang|param[2]=space| is the normal spacing between words in text.
23526 Note that character 040 in the font need not have anything to do with
23529 \hang|param[3]=space_stretch| is the amount of glue stretching between words.
23531 \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
23533 \hang|param[5]=x_height| is the size of one ex in the font; it is also
23534 the height of letters for which accents don't have to be raised or lowered.
23536 \hang|param[6]=quad| is the size of one em in the font.
23538 \hang|param[7]=extra_space| is the amount added to |param[2]| at the
23542 If fewer than seven parameters are present, \TeX\ sets the missing parameters
23547 @d space_stretch_code 3
23548 @d space_shrink_code 4
23551 @d extra_space_code 7
23553 @ So that is what \.{TFM} files hold. One of \MP's duties is to output such
23554 information, and it does this all at once at the end of a job.
23555 In order to prepare for such frenetic activity, it squirrels away the
23556 necessary facts in various arrays as information becomes available.
23558 Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
23559 are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
23560 |tfm_ital_corr|. Other information about a character (e.g., about
23561 its ligatures or successors) is accessible via the |char_tag| and
23562 |char_remainder| arrays. Other information about the font as a whole
23563 is kept in additional arrays called |header_byte|, |lig_kern|,
23564 |kern|, |exten|, and |param|.
23566 @d max_tfm_int 32510
23567 @d undefined_label max_tfm_int /* an undefined local label */
23570 #define TFM_ITEMS 257
23572 eight_bits ec; /* smallest and largest character codes shipped out */
23573 scaled tfm_width[TFM_ITEMS]; /* \&{charwd} values */
23574 scaled tfm_height[TFM_ITEMS]; /* \&{charht} values */
23575 scaled tfm_depth[TFM_ITEMS]; /* \&{chardp} values */
23576 scaled tfm_ital_corr[TFM_ITEMS]; /* \&{charic} values */
23577 boolean char_exists[TFM_ITEMS]; /* has this code been shipped out? */
23578 int char_tag[TFM_ITEMS]; /* |remainder| category */
23579 int char_remainder[TFM_ITEMS]; /* the |remainder| byte */
23580 char *header_byte; /* bytes of the \.{TFM} header */
23581 int header_last; /* last initialized \.{TFM} header byte */
23582 int header_size; /* size of the \.{TFM} header */
23583 four_quarters *lig_kern; /* the ligature/kern table */
23584 short nl; /* the number of ligature/kern steps so far */
23585 scaled *kern; /* distinct kerning amounts */
23586 short nk; /* the number of distinct kerns so far */
23587 four_quarters exten[TFM_ITEMS]; /* extensible character recipes */
23588 short ne; /* the number of extensible characters so far */
23589 scaled *param; /* \&{fontinfo} parameters */
23590 short np; /* the largest \&{fontinfo} parameter specified so far */
23591 short nw;short nh;short nd;short ni; /* sizes of \.{TFM} subtables */
23592 short skip_table[TFM_ITEMS]; /* local label status */
23593 boolean lk_started; /* has there been a lig/kern step in this command yet? */
23594 integer bchar; /* right boundary character */
23595 short bch_label; /* left boundary starting location */
23596 short ll;short lll; /* registers used for lig/kern processing */
23597 short label_loc[257]; /* lig/kern starting addresses */
23598 eight_bits label_char[257]; /* characters for |label_loc| */
23599 short label_ptr; /* highest position occupied in |label_loc| */
23601 @ @<Allocate or initialize ...@>=
23602 mp->header_last = 0; mp->header_size = 128; /* just for init */
23603 mp->header_byte = xmalloc(mp->header_size, sizeof(char));
23604 mp->lig_kern = NULL; /* allocated when needed */
23605 mp->kern = NULL; /* allocated when needed */
23606 mp->param = NULL; /* allocated when needed */
23608 @ @<Dealloc variables@>=
23609 xfree(mp->header_byte);
23610 xfree(mp->lig_kern);
23615 for (k=0;k<= 255;k++ ) {
23616 mp->tfm_width[k]=0; mp->tfm_height[k]=0; mp->tfm_depth[k]=0; mp->tfm_ital_corr[k]=0;
23617 mp->char_exists[k]=false; mp->char_tag[k]=no_tag; mp->char_remainder[k]=0;
23618 mp->skip_table[k]=undefined_label;
23620 memset(mp->header_byte,0,mp->header_size);
23621 mp->bc=255; mp->ec=0; mp->nl=0; mp->nk=0; mp->ne=0; mp->np=0;
23622 mp->internal[mp_boundary_char]=-unity;
23623 mp->bch_label=undefined_label;
23624 mp->label_loc[0]=-1; mp->label_ptr=0;
23626 @ @<Declarations@>=
23627 scaled mp_tfm_check (MP mp,small_number m) ;
23629 @ @<Declare the function called |tfm_check|@>=
23630 scaled mp_tfm_check (MP mp,small_number m) {
23631 if ( abs(mp->internal[m])>=fraction_half ) {
23632 print_err("Enormous "); mp_print(mp, mp->int_name[m]);
23633 @.Enormous charwd...@>
23634 @.Enormous chardp...@>
23635 @.Enormous charht...@>
23636 @.Enormous charic...@>
23637 @.Enormous designsize...@>
23638 mp_print(mp, " has been reduced");
23639 help1("Font metric dimensions must be less than 2048pt.");
23640 mp_put_get_error(mp);
23641 if ( mp->internal[m]>0 ) return (fraction_half-1);
23642 else return (1-fraction_half);
23644 return mp->internal[m];
23648 @ @<Store the width information for character code~|c|@>=
23649 if ( c<mp->bc ) mp->bc=c;
23650 if ( c>mp->ec ) mp->ec=c;
23651 mp->char_exists[c]=true;
23652 mp->tfm_width[c]=mp_tfm_check(mp, mp_char_wd);
23653 mp->tfm_height[c]=mp_tfm_check(mp, mp_char_ht);
23654 mp->tfm_depth[c]=mp_tfm_check(mp, mp_char_dp);
23655 mp->tfm_ital_corr[c]=mp_tfm_check(mp, mp_char_ic)
23657 @ Now let's consider \MP's special \.{TFM}-oriented commands.
23659 @<Cases of |do_statement|...@>=
23660 case tfm_command: mp_do_tfm_command(mp); break;
23662 @ @d char_list_code 0
23663 @d lig_table_code 1
23664 @d extensible_code 2
23665 @d header_byte_code 3
23666 @d font_dimen_code 4
23669 mp_primitive(mp, "charlist",tfm_command,char_list_code);
23670 @:char_list_}{\&{charlist} primitive@>
23671 mp_primitive(mp, "ligtable",tfm_command,lig_table_code);
23672 @:lig_table_}{\&{ligtable} primitive@>
23673 mp_primitive(mp, "extensible",tfm_command,extensible_code);
23674 @:extensible_}{\&{extensible} primitive@>
23675 mp_primitive(mp, "headerbyte",tfm_command,header_byte_code);
23676 @:header_byte_}{\&{headerbyte} primitive@>
23677 mp_primitive(mp, "fontdimen",tfm_command,font_dimen_code);
23678 @:font_dimen_}{\&{fontdimen} primitive@>
23680 @ @<Cases of |print_cmd...@>=
23683 case char_list_code:mp_print(mp, "charlist"); break;
23684 case lig_table_code:mp_print(mp, "ligtable"); break;
23685 case extensible_code:mp_print(mp, "extensible"); break;
23686 case header_byte_code:mp_print(mp, "headerbyte"); break;
23687 default: mp_print(mp, "fontdimen"); break;
23691 @ @<Declare action procedures for use by |do_statement|@>=
23692 eight_bits mp_get_code (MP mp) ;
23694 @ @c eight_bits mp_get_code (MP mp) { /* scans a character code value */
23695 integer c; /* the code value found */
23696 mp_get_x_next(mp); mp_scan_expression(mp);
23697 if ( mp->cur_type==mp_known ) {
23698 c=mp_round_unscaled(mp, mp->cur_exp);
23699 if ( c>=0 ) if ( c<256 ) return c;
23700 } else if ( mp->cur_type==mp_string_type ) {
23701 if ( length(mp->cur_exp)==1 ) {
23702 c=mp->str_pool[mp->str_start[mp->cur_exp]];
23706 exp_err("Invalid code has been replaced by 0");
23707 @.Invalid code...@>
23708 help2("I was looking for a number between 0 and 255, or for a")
23709 ("string of length 1. Didn't find it; will use 0 instead.");
23710 mp_put_get_flush_error(mp, 0); c=0;
23714 @ @<Declare action procedures for use by |do_statement|@>=
23715 void mp_set_tag (MP mp,halfword c, small_number t, halfword r) ;
23717 @ @c void mp_set_tag (MP mp,halfword c, small_number t, halfword r) {
23718 if ( mp->char_tag[c]==no_tag ) {
23719 mp->char_tag[c]=t; mp->char_remainder[c]=r;
23721 incr(mp->label_ptr); mp->label_loc[mp->label_ptr]=r;
23722 mp->label_char[mp->label_ptr]=c;
23725 @<Complain about a character tag conflict@>;
23729 @ @<Complain about a character tag conflict@>=
23731 print_err("Character ");
23732 if ( (c>' ')&&(c<127) ) mp_print_char(mp,c);
23733 else if ( c==256 ) mp_print(mp, "||");
23734 else { mp_print(mp, "code "); mp_print_int(mp, c); };
23735 mp_print(mp, " is already ");
23736 @.Character c is already...@>
23737 switch (mp->char_tag[c]) {
23738 case lig_tag: mp_print(mp, "in a ligtable"); break;
23739 case list_tag: mp_print(mp, "in a charlist"); break;
23740 case ext_tag: mp_print(mp, "extensible"); break;
23741 } /* there are no other cases */
23742 help2("It's not legal to label a character more than once.")
23743 ("So I'll not change anything just now.");
23744 mp_put_get_error(mp);
23747 @ @<Declare action procedures for use by |do_statement|@>=
23748 void mp_do_tfm_command (MP mp) ;
23750 @ @c void mp_do_tfm_command (MP mp) {
23751 int c,cc; /* character codes */
23752 int k; /* index into the |kern| array */
23753 int j; /* index into |header_byte| or |param| */
23754 switch (mp->cur_mod) {
23755 case char_list_code:
23757 /* we will store a list of character successors */
23758 while ( mp->cur_cmd==colon ) {
23759 cc=mp_get_code(mp); mp_set_tag(mp, c,list_tag,cc); c=cc;
23762 case lig_table_code:
23763 if (mp->lig_kern==NULL)
23764 mp->lig_kern = xmalloc((max_tfm_int+1),sizeof(four_quarters));
23765 if (mp->kern==NULL)
23766 mp->kern = xmalloc((max_tfm_int+1),sizeof(scaled));
23767 @<Store a list of ligature/kern steps@>;
23769 case extensible_code:
23770 @<Define an extensible recipe@>;
23772 case header_byte_code:
23773 case font_dimen_code:
23774 c=mp->cur_mod; mp_get_x_next(mp);
23775 mp_scan_expression(mp);
23776 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<half_unit) ) {
23777 exp_err("Improper location");
23778 @.Improper location@>
23779 help2("I was looking for a known, positive number.")
23780 ("For safety's sake I'll ignore the present command.");
23781 mp_put_get_error(mp);
23783 j=mp_round_unscaled(mp, mp->cur_exp);
23784 if ( mp->cur_cmd!=colon ) {
23785 mp_missing_err(mp, ":");
23787 help1("A colon should follow a headerbyte or fontinfo location.");
23790 if ( c==header_byte_code ) {
23791 @<Store a list of header bytes@>;
23793 if (mp->param==NULL)
23794 mp->param = xmalloc((max_tfm_int+1),sizeof(scaled));
23795 @<Store a list of font dimensions@>;
23799 } /* there are no other cases */
23802 @ @<Store a list of ligature/kern steps@>=
23804 mp->lk_started=false;
23807 if ((mp->cur_cmd==skip_to)&& mp->lk_started )
23808 @<Process a |skip_to| command and |goto done|@>;
23809 if ( mp->cur_cmd==bchar_label ) { c=256; mp->cur_cmd=colon; }
23810 else { mp_back_input(mp); c=mp_get_code(mp); };
23811 if ((mp->cur_cmd==colon)||(mp->cur_cmd==double_colon)) {
23812 @<Record a label in a lig/kern subprogram and |goto continue|@>;
23814 if ( mp->cur_cmd==lig_kern_token ) {
23815 @<Compile a ligature/kern command@>;
23817 print_err("Illegal ligtable step");
23818 @.Illegal ligtable step@>
23819 help1("I was looking for `=:' or `kern' here.");
23820 mp_back_error(mp); next_char(mp->nl)=qi(0);
23821 op_byte(mp->nl)=qi(0); rem_byte(mp->nl)=qi(0);
23822 skip_byte(mp->nl)=stop_flag+1; /* this specifies an unconditional stop */
23824 if ( mp->nl==max_tfm_int) mp_fatal_error(mp, "ligtable too large");
23826 if ( mp->cur_cmd==comma ) goto CONTINUE;
23827 if ( skip_byte(mp->nl-1)<stop_flag ) skip_byte(mp->nl-1)=stop_flag;
23832 mp_primitive(mp, "=:",lig_kern_token,0);
23833 @:=:_}{\.{=:} primitive@>
23834 mp_primitive(mp, "=:|",lig_kern_token,1);
23835 @:=:/_}{\.{=:\char'174} primitive@>
23836 mp_primitive(mp, "=:|>",lig_kern_token,5);
23837 @:=:/>_}{\.{=:\char'174>} primitive@>
23838 mp_primitive(mp, "|=:",lig_kern_token,2);
23839 @:=:/_}{\.{\char'174=:} primitive@>
23840 mp_primitive(mp, "|=:>",lig_kern_token,6);
23841 @:=:/>_}{\.{\char'174=:>} primitive@>
23842 mp_primitive(mp, "|=:|",lig_kern_token,3);
23843 @:=:/_}{\.{\char'174=:\char'174} primitive@>
23844 mp_primitive(mp, "|=:|>",lig_kern_token,7);
23845 @:=:/>_}{\.{\char'174=:\char'174>} primitive@>
23846 mp_primitive(mp, "|=:|>>",lig_kern_token,11);
23847 @:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
23848 mp_primitive(mp, "kern",lig_kern_token,128);
23849 @:kern_}{\&{kern} primitive@>
23851 @ @<Cases of |print_cmd...@>=
23852 case lig_kern_token:
23854 case 0:mp_print(mp, "=:"); break;
23855 case 1:mp_print(mp, "=:|"); break;
23856 case 2:mp_print(mp, "|=:"); break;
23857 case 3:mp_print(mp, "|=:|"); break;
23858 case 5:mp_print(mp, "=:|>"); break;
23859 case 6:mp_print(mp, "|=:>"); break;
23860 case 7:mp_print(mp, "|=:|>"); break;
23861 case 11:mp_print(mp, "|=:|>>"); break;
23862 default: mp_print(mp, "kern"); break;
23866 @ Local labels are implemented by maintaining the |skip_table| array,
23867 where |skip_table[c]| is either |undefined_label| or the address of the
23868 most recent lig/kern instruction that skips to local label~|c|. In the
23869 latter case, the |skip_byte| in that instruction will (temporarily)
23870 be zero if there were no prior skips to this label, or it will be the
23871 distance to the prior skip.
23873 We may need to cancel skips that span more than 127 lig/kern steps.
23875 @d cancel_skips(A) mp->ll=(A);
23877 mp->lll=qo(skip_byte(mp->ll));
23878 skip_byte(mp->ll)=stop_flag; mp->ll=mp->ll-mp->lll;
23879 } while (mp->lll!=0)
23880 @d skip_error(A) { print_err("Too far to skip");
23881 @.Too far to skip@>
23882 help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
23883 mp_error(mp); cancel_skips((A));
23886 @<Process a |skip_to| command and |goto done|@>=
23889 if ( mp->nl-mp->skip_table[c]>128 ) { /* |skip_table[c]<<nl<=undefined_label| */
23890 skip_error(mp->skip_table[c]); mp->skip_table[c]=undefined_label;
23892 if ( mp->skip_table[c]==undefined_label ) skip_byte(mp->nl-1)=qi(0);
23893 else skip_byte(mp->nl-1)=qi(mp->nl-mp->skip_table[c]-1);
23894 mp->skip_table[c]=mp->nl-1; goto DONE;
23897 @ @<Record a label in a lig/kern subprogram and |goto continue|@>=
23899 if ( mp->cur_cmd==colon ) {
23900 if ( c==256 ) mp->bch_label=mp->nl;
23901 else mp_set_tag(mp, c,lig_tag,mp->nl);
23902 } else if ( mp->skip_table[c]<undefined_label ) {
23903 mp->ll=mp->skip_table[c]; mp->skip_table[c]=undefined_label;
23905 mp->lll=qo(skip_byte(mp->ll));
23906 if ( mp->nl-mp->ll>128 ) {
23907 skip_error(mp->ll); goto CONTINUE;
23909 skip_byte(mp->ll)=qi(mp->nl-mp->ll-1); mp->ll=mp->ll-mp->lll;
23910 } while (mp->lll!=0);
23915 @ @<Compile a ligature/kern...@>=
23917 next_char(mp->nl)=qi(c); skip_byte(mp->nl)=qi(0);
23918 if ( mp->cur_mod<128 ) { /* ligature op */
23919 op_byte(mp->nl)=qi(mp->cur_mod); rem_byte(mp->nl)=qi(mp_get_code(mp));
23921 mp_get_x_next(mp); mp_scan_expression(mp);
23922 if ( mp->cur_type!=mp_known ) {
23923 exp_err("Improper kern");
23925 help2("The amount of kern should be a known numeric value.")
23926 ("I'm zeroing this one. Proceed, with fingers crossed.");
23927 mp_put_get_flush_error(mp, 0);
23929 mp->kern[mp->nk]=mp->cur_exp;
23931 while ( mp->kern[k]!=mp->cur_exp ) incr(k);
23933 if ( mp->nk==max_tfm_int ) mp_fatal_error(mp, "too many TFM kerns");
23936 op_byte(mp->nl)=kern_flag+(k / 256);
23937 rem_byte(mp->nl)=qi((k % 256));
23939 mp->lk_started=true;
23942 @ @d missing_extensible_punctuation(A)
23943 { mp_missing_err(mp, (A));
23944 @.Missing `\char`\#'@>
23945 help1("I'm processing `extensible c: t,m,b,r'."); mp_back_error(mp);
23948 @<Define an extensible recipe@>=
23950 if ( mp->ne==256 ) mp_fatal_error(mp, "too many extensible recipies");
23951 c=mp_get_code(mp); mp_set_tag(mp, c,ext_tag,mp->ne);
23952 if ( mp->cur_cmd!=colon ) missing_extensible_punctuation(":");
23953 ext_top(mp->ne)=qi(mp_get_code(mp));
23954 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23955 ext_mid(mp->ne)=qi(mp_get_code(mp));
23956 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23957 ext_bot(mp->ne)=qi(mp_get_code(mp));
23958 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23959 ext_rep(mp->ne)=qi(mp_get_code(mp));
23963 @ The header could contain ASCII zeroes, so can't use |strdup|.
23965 @<Store a list of header bytes@>=
23967 if ( j>=mp->header_size ) {
23968 int l = mp->header_size + (mp->header_size >> 2);
23969 char *t = xmalloc(l,sizeof(char));
23971 memcpy(t,mp->header_byte,mp->header_size);
23972 xfree (mp->header_byte);
23973 mp->header_byte = t;
23974 mp->header_size = l;
23976 mp->header_byte[j]=mp_get_code(mp);
23977 incr(j); incr(mp->header_last);
23978 } while (mp->cur_cmd==comma)
23980 @ @<Store a list of font dimensions@>=
23982 if ( j>max_tfm_int ) mp_fatal_error(mp, "too many fontdimens");
23983 while ( j>mp->np ) { incr(mp->np); mp->param[mp->np]=0; };
23984 mp_get_x_next(mp); mp_scan_expression(mp);
23985 if ( mp->cur_type!=mp_known ){
23986 exp_err("Improper font parameter");
23987 @.Improper font parameter@>
23988 help1("I'm zeroing this one. Proceed, with fingers crossed.");
23989 mp_put_get_flush_error(mp, 0);
23991 mp->param[j]=mp->cur_exp; incr(j);
23992 } while (mp->cur_cmd==comma)
23994 @ OK: We've stored all the data that is needed for the \.{TFM} file.
23995 All that remains is to output it in the correct format.
23997 An interesting problem needs to be solved in this connection, because
23998 the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
23999 and 64~italic corrections. If the data has more distinct values than
24000 this, we want to meet the necessary restrictions by perturbing the
24001 given values as little as possible.
24003 \MP\ solves this problem in two steps. First the values of a given
24004 kind (widths, heights, depths, or italic corrections) are sorted;
24005 then the list of sorted values is perturbed, if necessary.
24007 The sorting operation is facilitated by having a special node of
24008 essentially infinite |value| at the end of the current list.
24010 @<Initialize table entries...@>=
24011 value(inf_val)=fraction_four;
24013 @ Straight linear insertion is good enough for sorting, since the lists
24014 are usually not terribly long. As we work on the data, the current list
24015 will start at |link(temp_head)| and end at |inf_val|; the nodes in this
24016 list will be in increasing order of their |value| fields.
24018 Given such a list, the |sort_in| function takes a value and returns a pointer
24019 to where that value can be found in the list. The value is inserted in
24020 the proper place, if necessary.
24022 At the time we need to do these operations, most of \MP's work has been
24023 completed, so we will have plenty of memory to play with. The value nodes
24024 that are allocated for sorting will never be returned to free storage.
24026 @d clear_the_list link(temp_head)=inf_val
24028 @c pointer mp_sort_in (MP mp,scaled v) {
24029 pointer p,q,r; /* list manipulation registers */
24033 if ( v<=value(q) ) break;
24036 if ( v<value(q) ) {
24037 r=mp_get_node(mp, value_node_size); value(r)=v; link(r)=q; link(p)=r;
24042 @ Now we come to the interesting part, where we reduce the list if necessary
24043 until it has the required size. The |min_cover| routine is basic to this
24044 process; it computes the minimum number~|m| such that the values of the
24045 current sorted list can be covered by |m|~intervals of width~|d|. It
24046 also sets the global value |perturbation| to the smallest value $d'>d$
24047 such that the covering found by this algorithm would be different.
24049 In particular, |min_cover(0)| returns the number of distinct values in the
24050 current list and sets |perturbation| to the minimum distance between
24053 @c integer mp_min_cover (MP mp,scaled d) {
24054 pointer p; /* runs through the current list */
24055 scaled l; /* the least element covered by the current interval */
24056 integer m; /* lower bound on the size of the minimum cover */
24057 m=0; p=link(temp_head); mp->perturbation=el_gordo;
24058 while ( p!=inf_val ){
24059 incr(m); l=value(p);
24060 do { p=link(p); } while (value(p)<=l+d);
24061 if ( value(p)-l<mp->perturbation )
24062 mp->perturbation=value(p)-l;
24068 scaled perturbation; /* quantity related to \.{TFM} rounding */
24069 integer excess; /* the list is this much too long */
24071 @ The smallest |d| such that a given list can be covered with |m| intervals
24072 is determined by the |threshold| routine, which is sort of an inverse
24073 to |min_cover|. The idea is to increase the interval size rapidly until
24074 finding the range, then to go sequentially until the exact borderline has
24077 @c scaled mp_threshold (MP mp,integer m) {
24078 scaled d; /* lower bound on the smallest interval size */
24079 mp->excess=mp_min_cover(mp, 0)-m;
24080 if ( mp->excess<=0 ) {
24084 d=mp->perturbation;
24085 } while (mp_min_cover(mp, d+d)>m);
24086 while ( mp_min_cover(mp, d)>m )
24087 d=mp->perturbation;
24092 @ The |skimp| procedure reduces the current list to at most |m| entries,
24093 by changing values if necessary. It also sets |info(p):=k| if |value(p)|
24094 is the |k|th distinct value on the resulting list, and it sets
24095 |perturbation| to the maximum amount by which a |value| field has
24096 been changed. The size of the resulting list is returned as the
24099 @c integer mp_skimp (MP mp,integer m) {
24100 scaled d; /* the size of intervals being coalesced */
24101 pointer p,q,r; /* list manipulation registers */
24102 scaled l; /* the least value in the current interval */
24103 scaled v; /* a compromise value */
24104 d=mp_threshold(mp, m); mp->perturbation=0;
24105 q=temp_head; m=0; p=link(temp_head);
24106 while ( p!=inf_val ) {
24107 incr(m); l=value(p); info(p)=m;
24108 if ( value(link(p))<=l+d ) {
24109 @<Replace an interval of values by its midpoint@>;
24116 @ @<Replace an interval...@>=
24119 p=link(p); info(p)=m;
24120 decr(mp->excess); if ( mp->excess==0 ) d=0;
24121 } while (value(link(p))<=l+d);
24122 v=l+halfp(value(p)-l);
24123 if ( value(p)-v>mp->perturbation )
24124 mp->perturbation=value(p)-v;
24127 r=link(r); value(r)=v;
24129 link(q)=p; /* remove duplicate values from the current list */
24132 @ A warning message is issued whenever something is perturbed by
24133 more than 1/16\thinspace pt.
24135 @c void mp_tfm_warning (MP mp,small_number m) {
24136 mp_print_nl(mp, "(some ");
24137 mp_print(mp, mp->int_name[m]);
24138 @.some charwds...@>
24139 @.some chardps...@>
24140 @.some charhts...@>
24141 @.some charics...@>
24142 mp_print(mp, " values had to be adjusted by as much as ");
24143 mp_print_scaled(mp, mp->perturbation); mp_print(mp, "pt)");
24146 @ Here's an example of how we use these routines.
24147 The width data needs to be perturbed only if there are 256 distinct
24148 widths, but \MP\ must check for this case even though it is
24151 An integer variable |k| will be defined when we use this code.
24152 The |dimen_head| array will contain pointers to the sorted
24153 lists of dimensions.
24155 @<Massage the \.{TFM} widths@>=
24157 for (k=mp->bc;k<=mp->ec;k++) {
24158 if ( mp->char_exists[k] )
24159 mp->tfm_width[k]=mp_sort_in(mp, mp->tfm_width[k]);
24161 mp->nw=mp_skimp(mp, 255)+1; mp->dimen_head[1]=link(temp_head);
24162 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_wd)
24165 pointer dimen_head[5]; /* lists of \.{TFM} dimensions */
24167 @ Heights, depths, and italic corrections are different from widths
24168 not only because their list length is more severely restricted, but
24169 also because zero values do not need to be put into the lists.
24171 @<Massage the \.{TFM} heights, depths, and italic corrections@>=
24173 for (k=mp->bc;k<=mp->ec;k++) {
24174 if ( mp->char_exists[k] ) {
24175 if ( mp->tfm_height[k]==0 ) mp->tfm_height[k]=zero_val;
24176 else mp->tfm_height[k]=mp_sort_in(mp, mp->tfm_height[k]);
24179 mp->nh=mp_skimp(mp, 15)+1; mp->dimen_head[2]=link(temp_head);
24180 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ht);
24182 for (k=mp->bc;k<=mp->ec;k++) {
24183 if ( mp->char_exists[k] ) {
24184 if ( mp->tfm_depth[k]==0 ) mp->tfm_depth[k]=zero_val;
24185 else mp->tfm_depth[k]=mp_sort_in(mp, mp->tfm_depth[k]);
24188 mp->nd=mp_skimp(mp, 15)+1; mp->dimen_head[3]=link(temp_head);
24189 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_dp);
24191 for (k=mp->bc;k<=mp->ec;k++) {
24192 if ( mp->char_exists[k] ) {
24193 if ( mp->tfm_ital_corr[k]==0 ) mp->tfm_ital_corr[k]=zero_val;
24194 else mp->tfm_ital_corr[k]=mp_sort_in(mp, mp->tfm_ital_corr[k]);
24197 mp->ni=mp_skimp(mp, 63)+1; mp->dimen_head[4]=link(temp_head);
24198 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ic)
24200 @ @<Initialize table entries...@>=
24201 value(zero_val)=0; info(zero_val)=0;
24203 @ Bytes 5--8 of the header are set to the design size, unless the user has
24204 some crazy reason for specifying them differently.
24206 Error messages are not allowed at the time this procedure is called,
24207 so a warning is printed instead.
24209 The value of |max_tfm_dimen| is calculated so that
24210 $$\hbox{|make_scaled(16*max_tfm_dimen,internal[mp_design_size])|}
24211 < \\{three\_bytes}.$$
24213 @d three_bytes 0100000000 /* $2^{24}$ */
24216 void mp_fix_design_size (MP mp) {
24217 scaled d; /* the design size */
24218 d=mp->internal[mp_design_size];
24219 if ( (d<unity)||(d>=fraction_half) ) {
24221 mp_print_nl(mp, "(illegal design size has been changed to 128pt)");
24222 @.illegal design size...@>
24223 d=040000000; mp->internal[mp_design_size]=d;
24225 if ( mp->header_byte[4]<0 ) if ( mp->header_byte[5]<0 )
24226 if ( mp->header_byte[6]<0 ) if ( mp->header_byte[7]<0 ) {
24227 mp->header_byte[4]=d / 04000000;
24228 mp->header_byte[5]=(d / 4096) % 256;
24229 mp->header_byte[6]=(d / 16) % 256;
24230 mp->header_byte[7]=(d % 16)*16;
24232 mp->max_tfm_dimen=16*mp->internal[mp_design_size]-mp->internal[mp_design_size] / 010000000;
24233 if ( mp->max_tfm_dimen>=fraction_half ) mp->max_tfm_dimen=fraction_half-1;
24236 @ The |dimen_out| procedure computes a |fix_word| relative to the
24237 design size. If the data was out of range, it is corrected and the
24238 global variable |tfm_changed| is increased by~one.
24240 @c integer mp_dimen_out (MP mp,scaled x) {
24241 if ( abs(x)>mp->max_tfm_dimen ) {
24242 incr(mp->tfm_changed);
24243 if ( x>0 ) x=three_bytes-1; else x=1-three_bytes;
24245 x=mp_make_scaled(mp, x*16,mp->internal[mp_design_size]);
24251 scaled max_tfm_dimen; /* bound on widths, heights, kerns, etc. */
24252 integer tfm_changed; /* the number of data entries that were out of bounds */
24254 @ If the user has not specified any of the first four header bytes,
24255 the |fix_check_sum| procedure replaces them by a ``check sum'' computed
24256 from the |tfm_width| data relative to the design size.
24259 @c void mp_fix_check_sum (MP mp) {
24260 eight_bits k; /* runs through character codes */
24261 eight_bits B1,B2,B3,B4; /* bytes of the check sum */
24262 integer x; /* hash value used in check sum computation */
24263 if ( mp->header_byte[0]==0 && mp->header_byte[1]==0 &&
24264 mp->header_byte[2]==0 && mp->header_byte[3]==0 ) {
24265 @<Compute a check sum in |(b1,b2,b3,b4)|@>;
24266 mp->header_byte[0]=B1; mp->header_byte[1]=B2;
24267 mp->header_byte[2]=B3; mp->header_byte[3]=B4;
24272 @ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
24273 B1=mp->bc; B2=mp->ec; B3=mp->bc; B4=mp->ec; mp->tfm_changed=0;
24274 for (k=mp->bc;k<=mp->ec;k++) {
24275 if ( mp->char_exists[k] ) {
24276 x=mp_dimen_out(mp, value(mp->tfm_width[k]))+(k+4)*020000000; /* this is positive */
24277 B1=(B1+B1+x) % 255;
24278 B2=(B2+B2+x) % 253;
24279 B3=(B3+B3+x) % 251;
24280 B4=(B4+B4+x) % 247;
24284 @ Finally we're ready to actually write the \.{TFM} information.
24285 Here are some utility routines for this purpose.
24287 @d tfm_out(A) do { /* output one byte to |tfm_file| */
24288 unsigned char s=(A);
24289 (mp->write_binary_file)(mp->tfm_file,(void *)&s,1);
24292 @c void mp_tfm_two (MP mp,integer x) { /* output two bytes to |tfm_file| */
24293 tfm_out(x / 256); tfm_out(x % 256);
24295 void mp_tfm_four (MP mp,integer x) { /* output four bytes to |tfm_file| */
24296 if ( x>=0 ) tfm_out(x / three_bytes);
24298 x=x+010000000000; /* use two's complement for negative values */
24300 tfm_out((x / three_bytes) + 128);
24302 x=x % three_bytes; tfm_out(x / unity);
24303 x=x % unity; tfm_out(x / 0400);
24306 void mp_tfm_qqqq (MP mp,four_quarters x) { /* output four quarterwords to |tfm_file| */
24307 tfm_out(qo(x.b0)); tfm_out(qo(x.b1));
24308 tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
24311 @ @<Finish the \.{TFM} file@>=
24312 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24313 mp_pack_job_name(mp, ".tfm");
24314 while ( ! mp_b_open_out(mp, &mp->tfm_file, mp_filetype_metrics) )
24315 mp_prompt_file_name(mp, "file name for font metrics",".tfm");
24316 mp->metric_file_name=xstrdup(mp->name_of_file);
24317 @<Output the subfile sizes and header bytes@>;
24318 @<Output the character information bytes, then
24319 output the dimensions themselves@>;
24320 @<Output the ligature/kern program@>;
24321 @<Output the extensible character recipes and the font metric parameters@>;
24322 if ( mp->internal[mp_tracing_stats]>0 )
24323 @<Log the subfile sizes of the \.{TFM} file@>;
24324 mp_print_nl(mp, "Font metrics written on ");
24325 mp_print(mp, mp->metric_file_name); mp_print_char(mp, '.');
24326 @.Font metrics written...@>
24327 (mp->close_file)(mp->tfm_file)
24329 @ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
24332 @<Output the subfile sizes and header bytes@>=
24334 LH=(k+3) / 4; /* this is the number of header words */
24335 if ( mp->bc>mp->ec ) mp->bc=1; /* if there are no characters, |ec=0| and |bc=1| */
24336 @<Compute the ligature/kern program offset and implant the
24337 left boundary label@>;
24338 mp_tfm_two(mp,6+LH+(mp->ec-mp->bc+1)+mp->nw+mp->nh+mp->nd+mp->ni+mp->nl
24339 +lk_offset+mp->nk+mp->ne+mp->np);
24340 /* this is the total number of file words that will be output */
24341 mp_tfm_two(mp, LH); mp_tfm_two(mp, mp->bc); mp_tfm_two(mp, mp->ec);
24342 mp_tfm_two(mp, mp->nw); mp_tfm_two(mp, mp->nh);
24343 mp_tfm_two(mp, mp->nd); mp_tfm_two(mp, mp->ni); mp_tfm_two(mp, mp->nl+lk_offset);
24344 mp_tfm_two(mp, mp->nk); mp_tfm_two(mp, mp->ne);
24345 mp_tfm_two(mp, mp->np);
24346 for (k=0;k< 4*LH;k++) {
24347 tfm_out(mp->header_byte[k]);
24350 @ @<Output the character information bytes...@>=
24351 for (k=mp->bc;k<=mp->ec;k++) {
24352 if ( ! mp->char_exists[k] ) {
24353 mp_tfm_four(mp, 0);
24355 tfm_out(info(mp->tfm_width[k])); /* the width index */
24356 tfm_out((info(mp->tfm_height[k]))*16+info(mp->tfm_depth[k]));
24357 tfm_out((info(mp->tfm_ital_corr[k]))*4+mp->char_tag[k]);
24358 tfm_out(mp->char_remainder[k]);
24362 for (k=1;k<=4;k++) {
24363 mp_tfm_four(mp, 0); p=mp->dimen_head[k];
24364 while ( p!=inf_val ) {
24365 mp_tfm_four(mp, mp_dimen_out(mp, value(p))); p=link(p);
24370 @ We need to output special instructions at the beginning of the
24371 |lig_kern| array in order to specify the right boundary character
24372 and/or to handle starting addresses that exceed 255. The |label_loc|
24373 and |label_char| arrays have been set up to record all the
24374 starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
24375 \le|label_loc|[|label_ptr]|$.
24377 @<Compute the ligature/kern program offset...@>=
24378 mp->bchar=mp_round_unscaled(mp, mp->internal[mp_boundary_char]);
24379 if ((mp->bchar<0)||(mp->bchar>255))
24380 { mp->bchar=-1; mp->lk_started=false; lk_offset=0; }
24381 else { mp->lk_started=true; lk_offset=1; };
24382 @<Find the minimum |lk_offset| and adjust all remainders@>;
24383 if ( mp->bch_label<undefined_label )
24384 { skip_byte(mp->nl)=qi(255); next_char(mp->nl)=qi(0);
24385 op_byte(mp->nl)=qi(((mp->bch_label+lk_offset)/ 256));
24386 rem_byte(mp->nl)=qi(((mp->bch_label+lk_offset)% 256));
24387 incr(mp->nl); /* possibly |nl=lig_table_size+1| */
24390 @ @<Find the minimum |lk_offset|...@>=
24391 k=mp->label_ptr; /* pointer to the largest unallocated label */
24392 if ( mp->label_loc[k]+lk_offset>255 ) {
24393 lk_offset=0; mp->lk_started=false; /* location 0 can do double duty */
24395 mp->char_remainder[mp->label_char[k]]=lk_offset;
24396 while ( mp->label_loc[k-1]==mp->label_loc[k] ) {
24397 decr(k); mp->char_remainder[mp->label_char[k]]=lk_offset;
24399 incr(lk_offset); decr(k);
24400 } while (! (lk_offset+mp->label_loc[k]<256));
24401 /* N.B.: |lk_offset=256| satisfies this when |k=0| */
24403 if ( lk_offset>0 ) {
24405 mp->char_remainder[mp->label_char[k]]
24406 =mp->char_remainder[mp->label_char[k]]+lk_offset;
24411 @ @<Output the ligature/kern program@>=
24412 for (k=0;k<= 255;k++ ) {
24413 if ( mp->skip_table[k]<undefined_label ) {
24414 mp_print_nl(mp, "(local label "); mp_print_int(mp, k); mp_print(mp, ":: was missing)");
24415 @.local label l:: was missing@>
24416 cancel_skips(mp->skip_table[k]);
24419 if ( mp->lk_started ) { /* |lk_offset=1| for the special |bchar| */
24420 tfm_out(255); tfm_out(mp->bchar); mp_tfm_two(mp, 0);
24422 for (k=1;k<=lk_offset;k++) {/* output the redirection specs */
24423 mp->ll=mp->label_loc[mp->label_ptr];
24424 if ( mp->bchar<0 ) { tfm_out(254); tfm_out(0); }
24425 else { tfm_out(255); tfm_out(mp->bchar); };
24426 mp_tfm_two(mp, mp->ll+lk_offset);
24428 decr(mp->label_ptr);
24429 } while (! (mp->label_loc[mp->label_ptr]<mp->ll));
24432 for (k=0;k<=mp->nl-1;k++) mp_tfm_qqqq(mp, mp->lig_kern[k]);
24433 for (k=0;k<=mp->nk-1;k++) mp_tfm_four(mp, mp_dimen_out(mp, mp->kern[k]))
24435 @ @<Output the extensible character recipes...@>=
24436 for (k=0;k<=mp->ne-1;k++)
24437 mp_tfm_qqqq(mp, mp->exten[k]);
24438 for (k=1;k<=mp->np;k++) {
24440 if ( abs(mp->param[1])<fraction_half ) {
24441 mp_tfm_four(mp, mp->param[1]*16);
24443 incr(mp->tfm_changed);
24444 if ( mp->param[1]>0 ) mp_tfm_four(mp, el_gordo);
24445 else mp_tfm_four(mp, -el_gordo);
24448 mp_tfm_four(mp, mp_dimen_out(mp, mp->param[k]));
24451 if ( mp->tfm_changed>0 ) {
24452 if ( mp->tfm_changed==1 ) mp_print_nl(mp, "(a font metric dimension");
24453 @.a font metric dimension...@>
24455 mp_print_nl(mp, "("); mp_print_int(mp, mp->tfm_changed);
24456 @.font metric dimensions...@>
24457 mp_print(mp, " font metric dimensions");
24459 mp_print(mp, " had to be decreased)");
24462 @ @<Log the subfile sizes of the \.{TFM} file@>=
24466 if ( mp->bch_label<undefined_label ) decr(mp->nl);
24467 snprintf(s,128,"(You used %iw,%ih,%id,%ii,%il,%ik,%ie,%ip metric file positions)",
24468 mp->nw, mp->nh, mp->nd, mp->ni, mp->nl, mp->nk, mp->ne,mp->np);
24472 @* \[43] Reading font metric data.
24474 \MP\ isn't a typesetting program but it does need to find the bounding box
24475 of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
24476 well as write them.
24481 @ All the width, height, and depth information is stored in an array called
24482 |font_info|. This array is allocated sequentially and each font is stored
24483 as a series of |char_info| words followed by the width, height, and depth
24484 tables. Since |font_name| entries are permanent, their |str_ref| values are
24485 set to |max_str_ref|.
24488 typedef unsigned int font_number; /* |0..font_max| */
24490 @ The |font_info| array is indexed via a group directory arrays.
24491 For example, the |char_info| data for character~|c| in font~|f| will be
24492 in |font_info[char_base[f]+c].qqqq|.
24495 font_number font_max; /* maximum font number for included text fonts */
24496 size_t font_mem_size; /* number of words for \.{TFM} information for text fonts */
24497 memory_word *font_info; /* height, width, and depth data */
24498 char **font_enc_name; /* encoding names, if any */
24499 boolean *font_ps_name_fixed; /* are the postscript names fixed already? */
24500 int next_fmem; /* next unused entry in |font_info| */
24501 font_number last_fnum; /* last font number used so far */
24502 scaled *font_dsize; /* 16 times the ``design'' size in \ps\ points */
24503 char **font_name; /* name as specified in the \&{infont} command */
24504 char **font_ps_name; /* PostScript name for use when |internal[mp_prologues]>0| */
24505 font_number last_ps_fnum; /* last valid |font_ps_name| index */
24506 eight_bits *font_bc;
24507 eight_bits *font_ec; /* first and last character code */
24508 int *char_base; /* base address for |char_info| */
24509 int *width_base; /* index for zeroth character width */
24510 int *height_base; /* index for zeroth character height */
24511 int *depth_base; /* index for zeroth character depth */
24512 pointer *font_sizes;
24514 @ @<Allocate or initialize ...@>=
24515 mp->font_mem_size = 10000;
24516 mp->font_info = xmalloc ((mp->font_mem_size+1),sizeof(memory_word));
24517 memset (mp->font_info,0,sizeof(memory_word)*(mp->font_mem_size+1));
24518 mp->font_enc_name = NULL;
24519 mp->font_ps_name_fixed = NULL;
24520 mp->font_dsize = NULL;
24521 mp->font_name = NULL;
24522 mp->font_ps_name = NULL;
24523 mp->font_bc = NULL;
24524 mp->font_ec = NULL;
24525 mp->last_fnum = null_font;
24526 mp->char_base = NULL;
24527 mp->width_base = NULL;
24528 mp->height_base = NULL;
24529 mp->depth_base = NULL;
24530 mp->font_sizes = null;
24532 @ @<Dealloc variables@>=
24533 xfree(mp->font_info);
24534 xfree(mp->font_enc_name);
24535 xfree(mp->font_ps_name_fixed);
24536 xfree(mp->font_dsize);
24537 xfree(mp->font_name);
24538 xfree(mp->font_ps_name);
24539 xfree(mp->font_bc);
24540 xfree(mp->font_ec);
24541 xfree(mp->char_base);
24542 xfree(mp->width_base);
24543 xfree(mp->height_base);
24544 xfree(mp->depth_base);
24545 xfree(mp->font_sizes);
24549 void mp_reallocate_fonts (MP mp, font_number l) {
24551 XREALLOC(mp->font_enc_name, l, char *);
24552 XREALLOC(mp->font_ps_name_fixed, l, boolean);
24553 XREALLOC(mp->font_dsize, l, scaled);
24554 XREALLOC(mp->font_name, l, char *);
24555 XREALLOC(mp->font_ps_name, l, char *);
24556 XREALLOC(mp->font_bc, l, eight_bits);
24557 XREALLOC(mp->font_ec, l, eight_bits);
24558 XREALLOC(mp->char_base, l, int);
24559 XREALLOC(mp->width_base, l, int);
24560 XREALLOC(mp->height_base, l, int);
24561 XREALLOC(mp->depth_base, l, int);
24562 XREALLOC(mp->font_sizes, l, pointer);
24563 for (f=(mp->last_fnum+1);f<=l;f++) {
24564 mp->font_enc_name[f]=NULL;
24565 mp->font_ps_name_fixed[f] = false;
24566 mp->font_name[f]=NULL;
24567 mp->font_ps_name[f]=NULL;
24568 mp->font_sizes[f]=null;
24573 @ @<Declare |mp_reallocate| functions@>=
24574 void mp_reallocate_fonts (MP mp, font_number l);
24577 @ A |null_font| containing no characters is useful for error recovery. Its
24578 |font_name| entry starts out empty but is reset each time an erroneous font is
24579 found. This helps to cut down on the number of duplicate error messages without
24580 wasting a lot of space.
24582 @d null_font 0 /* the |font_number| for an empty font */
24584 @<Set initial...@>=
24585 mp->font_dsize[null_font]=0;
24586 mp->font_bc[null_font]=1;
24587 mp->font_ec[null_font]=0;
24588 mp->char_base[null_font]=0;
24589 mp->width_base[null_font]=0;
24590 mp->height_base[null_font]=0;
24591 mp->depth_base[null_font]=0;
24593 mp->last_fnum=null_font;
24594 mp->last_ps_fnum=null_font;
24595 mp->font_name[null_font]="nullfont";
24596 mp->font_ps_name[null_font]="";
24598 @ Each |char_info| word is of type |four_quarters|. The |b0| field contains
24599 the |width index|; the |b1| field contains the height
24600 index; the |b2| fields contains the depth index, and the |b3| field used only
24601 for temporary storage. (It is used to keep track of which characters occur in
24602 an edge structure that is being shipped out.)
24603 The corresponding words in the width, height, and depth tables are stored as
24604 |scaled| values in units of \ps\ points.
24606 With the macros below, the |char_info| word for character~|c| in font~|f| is
24607 |char_info(f)(c)| and the width is
24608 $$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
24610 @d char_info_end(A) (A)].qqqq
24611 @d char_info(A) mp->font_info[mp->char_base[(A)]+char_info_end
24612 @d char_width_end(A) (A).b0].sc
24613 @d char_width(A) mp->font_info[mp->width_base[(A)]+char_width_end
24614 @d char_height_end(A) (A).b1].sc
24615 @d char_height(A) mp->font_info[mp->height_base[(A)]+char_height_end
24616 @d char_depth_end(A) (A).b2].sc
24617 @d char_depth(A) mp->font_info[mp->depth_base[(A)]+char_depth_end
24618 @d ichar_exists(A) ((A).b0>0)
24620 @ The |font_ps_name| for a built-in font should be what PostScript expects.
24621 A preliminary name is obtained here from the \.{TFM} name as given in the
24622 |fname| argument. This gets updated later from an external table if necessary.
24624 @<Declare text measuring subroutines@>=
24625 @<Declare subroutines for parsing file names@>;
24626 font_number mp_read_font_info (MP mp, char*fname) {
24627 boolean file_opened; /* has |tfm_infile| been opened? */
24628 font_number n; /* the number to return */
24629 halfword lf,tfm_lh,bc,ec,nw,nh,nd; /* subfile size parameters */
24630 size_t whd_size; /* words needed for heights, widths, and depths */
24631 int i,ii; /* |font_info| indices */
24632 int jj; /* counts bytes to be ignored */
24633 scaled z; /* used to compute the design size */
24635 /* height, width, or depth as a fraction of design size times $2^{-8}$ */
24636 eight_bits h_and_d; /* height and depth indices being unpacked */
24637 unsigned char tfbyte; /* a byte read from the file */
24639 @<Open |tfm_infile| for input@>;
24640 @<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
24641 otherwise |goto bad_tfm| or |goto done| as appropriate@>;
24643 @<Complain that the \.{TFM} file is bad@>;
24645 if ( file_opened ) (mp->close_file)(mp->tfm_infile);
24646 if ( n!=null_font ) {
24647 mp->font_ps_name[n]=fname;
24648 mp->font_name[n]=fname;
24653 @ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
24654 precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
24655 @.TFtoPL@> @.PLtoTF@>
24656 and \.{PLtoTF} can be used to debug \.{TFM} files.
24658 @<Complain that the \.{TFM} file is bad@>=
24659 print_err("Font ");
24660 mp_print(mp, fname);
24661 if ( file_opened ) mp_print(mp, " not usable: TFM file is bad");
24662 else mp_print(mp, " not usable: TFM file not found");
24663 help3("I wasn't able to read the size data for this font so this")
24664 ("`infont' operation won't produce anything. If the font name")
24665 ("is right, you might ask an expert to make a TFM file");
24667 mp->help_line[0]="is right, try asking an expert to fix the TFM file";
24670 @ @<Read data from |tfm_infile|; if there is no room, say so...@>=
24671 @<Read the \.{TFM} size fields@>;
24672 @<Use the size fields to allocate space in |font_info|@>;
24673 @<Read the \.{TFM} header@>;
24674 @<Read the character data and the width, height, and depth tables and
24677 @ A bad \.{TFM} file can be shorter than it claims to be. The code given here
24678 might try to read past the end of the file if this happens. Changes will be
24679 needed if it causes a system error to refer to |tfm_infile^| or call
24680 |get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
24681 @^system dependencies@>
24682 of |tfget| could be changed to
24683 ``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
24687 void *tfbyte_ptr = &tfbyte;
24688 (mp->read_binary_file)(mp->tfm_infile,&tfbyte_ptr,&wanted);
24689 if (wanted==0) goto BAD_TFM;
24691 @d read_two(A) { (A)=tfbyte;
24692 if ( (A)>127 ) goto BAD_TFM;
24693 tfget; (A)=(A)*0400+tfbyte;
24695 @d tf_ignore(A) { for (jj=(A);jj>=1;jj--) tfget; }
24697 @<Read the \.{TFM} size fields@>=
24698 tfget; read_two(lf);
24699 tfget; read_two(tfm_lh);
24700 tfget; read_two(bc);
24701 tfget; read_two(ec);
24702 if ( (bc>1+ec)||(ec>255) ) goto BAD_TFM;
24703 tfget; read_two(nw);
24704 tfget; read_two(nh);
24705 tfget; read_two(nd);
24706 whd_size=(ec+1-bc)+nw+nh+nd;
24707 if ( lf<(int)(6+tfm_lh+whd_size) ) goto BAD_TFM;
24710 @ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
24711 necessary to apply the |so| and |qo| macros when looking up the width of a
24712 character in the string pool. In order to ensure nonnegative |char_base|
24713 values when |bc>0|, it may be necessary to reserve a few unused |font_info|
24716 @<Use the size fields to allocate space in |font_info|@>=
24717 if ( mp->next_fmem<bc) mp->next_fmem=bc; /* ensure nonnegative |char_base| */
24718 if (mp->last_fnum==mp->font_max)
24719 mp_reallocate_fonts(mp,(mp->font_max+(mp->font_max>>2)));
24720 while (mp->next_fmem+whd_size>=mp->font_mem_size) {
24721 size_t l = mp->font_mem_size+(mp->font_mem_size>>2);
24722 memory_word *font_info;
24723 font_info = xmalloc ((l+1),sizeof(memory_word));
24724 memset (font_info,0,sizeof(memory_word)*(l+1));
24725 memcpy (font_info,mp->font_info,sizeof(memory_word)*(mp->font_mem_size+1));
24726 xfree(mp->font_info);
24727 mp->font_info = font_info;
24728 mp->font_mem_size = l;
24730 incr(mp->last_fnum);
24734 mp->char_base[n]=mp->next_fmem-bc;
24735 mp->width_base[n]=mp->next_fmem+ec-bc+1;
24736 mp->height_base[n]=mp->width_base[n]+nw;
24737 mp->depth_base[n]=mp->height_base[n]+nh;
24738 mp->next_fmem=mp->next_fmem+whd_size;
24741 @ @<Read the \.{TFM} header@>=
24742 if ( tfm_lh<2 ) goto BAD_TFM;
24744 tfget; read_two(z);
24745 tfget; z=z*0400+tfbyte;
24746 tfget; z=z*0400+tfbyte; /* now |z| is 16 times the design size */
24747 mp->font_dsize[n]=mp_take_fraction(mp, z,267432584);
24748 /* times ${72\over72.27}2^{28}$ to convert from \TeX\ points */
24749 tf_ignore(4*(tfm_lh-2))
24751 @ @<Read the character data and the width, height, and depth tables...@>=
24752 ii=mp->width_base[n];
24753 i=mp->char_base[n]+bc;
24755 tfget; mp->font_info[i].qqqq.b0=qi(tfbyte);
24756 tfget; h_and_d=tfbyte;
24757 mp->font_info[i].qqqq.b1=h_and_d / 16;
24758 mp->font_info[i].qqqq.b2=h_and_d % 16;
24762 while ( i<mp->next_fmem ) {
24763 @<Read a four byte dimension, scale it by the design size, store it in
24764 |font_info[i]|, and increment |i|@>;
24768 @ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
24769 interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
24770 we can multiply it by sixteen and think of it as a |fraction| that has been
24771 divided by sixteen. This cancels the extra scale factor contained in
24774 @<Read a four byte dimension, scale it by the design size, store it in...@>=
24777 if ( d>=0200 ) d=d-0400;
24778 tfget; d=d*0400+tfbyte;
24779 tfget; d=d*0400+tfbyte;
24780 tfget; d=d*0400+tfbyte;
24781 mp->font_info[i].sc=mp_take_fraction(mp, d*16,mp->font_dsize[n]);
24785 @ This function does no longer use the file name parser, because |fname| is
24786 a C string already.
24787 @<Open |tfm_infile| for input@>=
24789 mp_ptr_scan_file(mp, fname);
24790 if ( strlen(mp->cur_area)==0 ) { xfree(mp->cur_area); mp->cur_area=xstrdup(MP_font_area);}
24791 if ( strlen(mp->cur_ext)==0 ) { xfree(mp->cur_ext); mp->cur_ext=xstrdup(".tfm"); }
24793 mp->tfm_infile = (mp->open_file)( mp->name_of_file, "rb",mp_filetype_metrics);
24794 if ( !mp->tfm_infile ) goto BAD_TFM;
24797 @ When we have a font name and we don't know whether it has been loaded yet,
24798 we scan the |font_name| array before calling |read_font_info|.
24800 @<Declare text measuring subroutines@>=
24801 font_number mp_find_font (MP mp, char *f) {
24803 for (n=0;n<=mp->last_fnum;n++) {
24804 if (mp_xstrcmp(f,mp->font_name[n])==0 )
24807 return mp_read_font_info(mp, f);
24810 @ One simple application of |find_font| is the implementation of the |font_size|
24811 operator that gets the design size for a given font name.
24813 @<Find the design size of the font whose name is |cur_exp|@>=
24814 mp_flush_cur_exp(mp, (mp->font_dsize[mp_find_font(mp, str(mp->cur_exp))]+8) / 16)
24816 @ If we discover that the font doesn't have a requested character, we omit it
24817 from the bounding box computation and expect the \ps\ interpreter to drop it.
24818 This routine issues a warning message if the user has asked for it.
24820 @<Declare text measuring subroutines@>=
24821 void mp_lost_warning (MP mp,font_number f, pool_pointer k) {
24822 if ( mp->internal[mp_tracing_lost_chars]>0 ) {
24823 mp_begin_diagnostic(mp);
24824 if ( mp->selector==log_only ) incr(mp->selector);
24825 mp_print_nl(mp, "Missing character: There is no ");
24826 @.Missing character@>
24827 mp_print_str(mp, mp->str_pool[k]);
24828 mp_print(mp, " in font ");
24829 mp_print(mp, mp->font_name[f]); mp_print_char(mp, '!');
24830 mp_end_diagnostic(mp, false);
24834 @ The whole purpose of saving the height, width, and depth information is to be
24835 able to find the bounding box of an item of text in an edge structure. The
24836 |set_text_box| procedure takes a text node and adds this information.
24838 @<Declare text measuring subroutines@>=
24839 void mp_set_text_box (MP mp,pointer p) {
24840 font_number f; /* |font_n(p)| */
24841 ASCII_code bc,ec; /* range of valid characters for font |f| */
24842 pool_pointer k,kk; /* current character and character to stop at */
24843 four_quarters cc; /* the |char_info| for the current character */
24844 scaled h,d; /* dimensions of the current character */
24846 height_val(p)=-el_gordo;
24847 depth_val(p)=-el_gordo;
24851 kk=str_stop(text_p(p));
24852 k=mp->str_start[text_p(p)];
24854 @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
24856 @<Set the height and depth to zero if the bounding box is empty@>;
24859 @ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
24861 if ( (mp->str_pool[k]<bc)||(mp->str_pool[k]>ec) ) {
24862 mp_lost_warning(mp, f,k);
24864 cc=char_info(f)(mp->str_pool[k]);
24865 if ( ! ichar_exists(cc) ) {
24866 mp_lost_warning(mp, f,k);
24868 width_val(p)=width_val(p)+char_width(f)(cc);
24869 h=char_height(f)(cc);
24870 d=char_depth(f)(cc);
24871 if ( h>height_val(p) ) height_val(p)=h;
24872 if ( d>depth_val(p) ) depth_val(p)=d;
24878 @ Let's hope modern compilers do comparisons correctly when the difference would
24881 @<Set the height and depth to zero if the bounding box is empty@>=
24882 if ( height_val(p)<-depth_val(p) ) {
24887 @ The new primitives fontmapfile and fontmapline.
24889 @<Declare action procedures for use by |do_statement|@>=
24890 void mp_do_mapfile (MP mp) ;
24891 void mp_do_mapline (MP mp) ;
24893 @ @c void mp_do_mapfile (MP mp) {
24894 mp_get_x_next(mp); mp_scan_expression(mp);
24895 if ( mp->cur_type!=mp_string_type ) {
24896 @<Complain about improper map operation@>;
24898 mp_map_file(mp,mp->cur_exp);
24901 void mp_do_mapline (MP mp) {
24902 mp_get_x_next(mp); mp_scan_expression(mp);
24903 if ( mp->cur_type!=mp_string_type ) {
24904 @<Complain about improper map operation@>;
24906 mp_map_line(mp,mp->cur_exp);
24910 @ @<Complain about improper map operation@>=
24912 exp_err("Unsuitable expression");
24913 help1("Only known strings can be map files or map lines.");
24914 mp_put_get_error(mp);
24917 @ To print |scaled| value to PDF output we need some subroutines to ensure
24920 @d max_integer 0x7FFFFFFF /* $2^{31}-1$ */
24923 scaled one_bp; /* scaled value corresponds to 1bp */
24924 scaled one_hundred_bp; /* scaled value corresponds to 100bp */
24925 scaled one_hundred_inch; /* scaled value corresponds to 100in */
24926 integer ten_pow[10]; /* $10^0..10^9$ */
24927 integer scaled_out; /* amount of |scaled| that was taken out in |divide_scaled| */
24930 mp->one_bp = 65782; /* 65781.76 */
24931 mp->one_hundred_bp = 6578176;
24932 mp->one_hundred_inch = 473628672;
24933 mp->ten_pow[0] = 1;
24934 for (i = 1;i<= 9; i++ ) {
24935 mp->ten_pow[i] = 10*mp->ten_pow[i - 1];
24938 @ The following function divides |s| by |m|. |dd| is number of decimal digits.
24940 @c scaled mp_divide_scaled (MP mp,scaled s, scaled m, integer dd) {
24944 if ( s < 0 ) { sign = -sign; s = -s; }
24945 if ( m < 0 ) { sign = -sign; m = -m; }
24947 mp_confusion(mp, "arithmetic: divided by zero");
24948 else if ( m >= (max_integer / 10) )
24949 mp_confusion(mp, "arithmetic: number too big");
24952 for (i = 1;i<=dd;i++) {
24953 q = 10*q + (10*r) / m;
24956 if ( 2*r >= m ) { incr(q); r = r - m; }
24957 mp->scaled_out = sign*(s - (r / mp->ten_pow[dd]));
24961 @* \[44] Shipping pictures out.
24962 The |ship_out| procedure, to be described below, is given a pointer to
24963 an edge structure. Its mission is to output a file containing the \ps\
24964 description of an edge structure.
24966 @ Each time an edge structure is shipped out we write a new \ps\ output
24967 file named according to the current \&{charcode}.
24968 @:char_code_}{\&{charcode} primitive@>
24970 This is the only backend function that remains in the main |mpost.w| file.
24971 There are just too many variable accesses needed for status reporting
24972 etcetera to make it worthwile to move the code to |psout.w|.
24974 @<Internal library declarations@>=
24975 void mp_open_output_file (MP mp) ;
24977 @ @c void mp_open_output_file (MP mp) {
24978 integer c; /* \&{charcode} rounded to the nearest integer */
24979 int old_setting; /* previous |selector| setting */
24980 pool_pointer i; /* indexes into |filename_template| */
24981 integer cc; /* a temporary integer for template building */
24982 integer f,g=0; /* field widths */
24983 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24984 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
24985 if ( mp->filename_template==0 ) {
24986 char *s; /* a file extension derived from |c| */
24990 @<Use |c| to compute the file extension |s|@>;
24991 mp_pack_job_name(mp, s);
24993 while ( ! mp_a_open_out(mp, (void *)&mp->ps_file, mp_filetype_postscript) )
24994 mp_prompt_file_name(mp, "file name for output",s);
24995 } else { /* initializations */
24996 str_number s, n; /* a file extension derived from |c| */
24997 old_setting=mp->selector;
24998 mp->selector=new_string;
25000 i = mp->str_start[mp->filename_template];
25001 n = rts(""); /* initialize */
25002 while ( i<str_stop(mp->filename_template) ) {
25003 if ( mp->str_pool[i]=='%' ) {
25006 if ( i<str_stop(mp->filename_template) ) {
25007 if ( mp->str_pool[i]=='j' ) {
25008 mp_print(mp, mp->job_name);
25009 } else if ( mp->str_pool[i]=='d' ) {
25010 cc= mp_round_unscaled(mp, mp->internal[mp_day]);
25011 print_with_leading_zeroes(cc);
25012 } else if ( mp->str_pool[i]=='m' ) {
25013 cc= mp_round_unscaled(mp, mp->internal[mp_month]);
25014 print_with_leading_zeroes(cc);
25015 } else if ( mp->str_pool[i]=='y' ) {
25016 cc= mp_round_unscaled(mp, mp->internal[mp_year]);
25017 print_with_leading_zeroes(cc);
25018 } else if ( mp->str_pool[i]=='H' ) {
25019 cc= mp_round_unscaled(mp, mp->internal[mp_time]) / 60;
25020 print_with_leading_zeroes(cc);
25021 } else if ( mp->str_pool[i]=='M' ) {
25022 cc= mp_round_unscaled(mp, mp->internal[mp_time]) % 60;
25023 print_with_leading_zeroes(cc);
25024 } else if ( mp->str_pool[i]=='c' ) {
25025 if ( c<0 ) mp_print(mp, "ps");
25026 else print_with_leading_zeroes(c);
25027 } else if ( (mp->str_pool[i]>='0') &&
25028 (mp->str_pool[i]<='9') ) {
25030 f = (f*10) + mp->str_pool[i]-'0';
25033 mp_print_str(mp, mp->str_pool[i]);
25037 if ( mp->str_pool[i]=='.' )
25039 n = mp_make_string(mp);
25040 mp_print_str(mp, mp->str_pool[i]);
25044 s = mp_make_string(mp);
25045 mp->selector= old_setting;
25046 if (length(n)==0) {
25050 mp_pack_file_name(mp, str(n),"",str(s));
25051 while ( ! mp_a_open_out(mp, (void *)&mp->ps_file, mp_filetype_postscript) )
25052 mp_prompt_file_name(mp, "file name for output",str(s));
25056 @<Store the true output file name if appropriate@>;
25057 @<Begin the progress report for the output of picture~|c|@>;
25060 @ The file extension created here could be up to five characters long in
25061 extreme cases so it may have to be shortened on some systems.
25062 @^system dependencies@>
25064 @<Use |c| to compute the file extension |s|@>=
25067 snprintf(s,7,".%i",(int)c);
25070 @ The user won't want to see all the output file names so we only save the
25071 first and last ones and a count of how many there were. For this purpose
25072 files are ordered primarily by \&{charcode} and secondarily by order of
25074 @:char_code_}{\&{charcode} primitive@>
25076 @<Store the true output file name if appropriate@>=
25077 if ((c<mp->first_output_code)&&(mp->first_output_code>=0)) {
25078 mp->first_output_code=c;
25079 xfree(mp->first_file_name);
25080 mp->first_file_name=xstrdup(mp->name_of_file);
25082 if ( c>=mp->last_output_code ) {
25083 mp->last_output_code=c;
25084 xfree(mp->last_file_name);
25085 mp->last_file_name=xstrdup(mp->name_of_file);
25089 char * first_file_name;
25090 char * last_file_name; /* full file names */
25091 integer first_output_code;integer last_output_code; /* rounded \&{charcode} values */
25092 @:char_code_}{\&{charcode} primitive@>
25093 integer total_shipped; /* total number of |ship_out| operations completed */
25096 mp->first_file_name=xstrdup("");
25097 mp->last_file_name=xstrdup("");
25098 mp->first_output_code=32768;
25099 mp->last_output_code=-32768;
25100 mp->total_shipped=0;
25102 @ @<Dealloc variables@>=
25103 xfree(mp->first_file_name);
25104 xfree(mp->last_file_name);
25106 @ @<Begin the progress report for the output of picture~|c|@>=
25107 if ( (int)mp->term_offset>mp->max_print_line-6 ) mp_print_ln(mp);
25108 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
25109 mp_print_char(mp, '[');
25110 if ( c>=0 ) mp_print_int(mp, c)
25112 @ @<End progress report@>=
25113 mp_print_char(mp, ']');
25115 incr(mp->total_shipped)
25117 @ @<Explain what output files were written@>=
25118 if ( mp->total_shipped>0 ) {
25119 mp_print_nl(mp, "");
25120 mp_print_int(mp, mp->total_shipped);
25121 mp_print(mp, " output file");
25122 if ( mp->total_shipped>1 ) mp_print_char(mp, 's');
25123 mp_print(mp, " written: ");
25124 mp_print(mp, mp->first_file_name);
25125 if ( mp->total_shipped>1 ) {
25126 if ( 31+strlen(mp->first_file_name)+
25127 strlen(mp->last_file_name)> (unsigned)mp->max_print_line)
25129 mp_print(mp, " .. ");
25130 mp_print(mp, mp->last_file_name);
25134 @ @<Internal library declarations@>=
25135 boolean mp_has_font_size(MP mp, font_number f );
25138 boolean mp_has_font_size(MP mp, font_number f ) {
25139 return (mp->font_sizes[f]!=null);
25142 @ The \&{special} command saves up lines of text to be printed during the next
25143 |ship_out| operation. The saved items are stored as a list of capsule tokens.
25146 pointer last_pending; /* the last token in a list of pending specials */
25149 mp->last_pending=spec_head;
25151 @ @<Cases of |do_statement|...@>=
25152 case special_command:
25153 if ( mp->cur_mod==0 ) mp_do_special(mp); else
25154 if ( mp->cur_mod==1 ) mp_do_mapfile(mp); else
25158 @ @<Declare action procedures for use by |do_statement|@>=
25159 void mp_do_special (MP mp) ;
25161 @ @c void mp_do_special (MP mp) {
25162 mp_get_x_next(mp); mp_scan_expression(mp);
25163 if ( mp->cur_type!=mp_string_type ) {
25164 @<Complain about improper special operation@>;
25166 link(mp->last_pending)=mp_stash_cur_exp(mp);
25167 mp->last_pending=link(mp->last_pending);
25168 link(mp->last_pending)=null;
25172 @ @<Complain about improper special operation@>=
25174 exp_err("Unsuitable expression");
25175 help1("Only known strings are allowed for output as specials.");
25176 mp_put_get_error(mp);
25179 @ On the export side, we need an extra object type for special strings.
25181 @<Graphical object codes@>=
25184 @ @<Export pending specials@>=
25186 while ( p!=null ) {
25187 hq = mp_new_graphic_object(mp,mp_special_code);
25188 gr_pre_script(hq) = str(value(p));
25189 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25193 mp_flush_token_list(mp, link(spec_head));
25194 link(spec_head)=null;
25195 mp->last_pending=spec_head
25197 @ We are now ready for the main output procedure. Note that the |selector|
25198 setting is saved in a global variable so that |begin_diagnostic| can access it.
25200 @<Declare the \ps\ output procedures@>=
25201 void mp_ship_out (MP mp, pointer h) ;
25203 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25206 struct mp_edge_object *mp_gr_export(MP mp, pointer h) {
25207 pointer p; /* the current graphical object */
25208 integer t; /* a temporary value */
25209 struct mp_edge_object *hh; /* the first graphical object */
25210 struct mp_graphic_object *hp; /* the current graphical object */
25211 struct mp_graphic_object *hq; /* something |hp| points to */
25212 mp_set_bbox(mp, h, true);
25213 hh = mp_xmalloc(mp,1,sizeof(struct mp_edge_object));
25215 hh->_minx = minx_val(h);
25216 hh->_miny = miny_val(h);
25217 hh->_maxx = maxx_val(h);
25218 hh->_maxy = maxy_val(h);
25219 @<Export pending specials@>;
25220 p=link(dummy_loc(h));
25221 while ( p!=null ) {
25222 hq = mp_new_graphic_object(mp,type(p));
25225 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25226 if ((pen_p(p)==null) || pen_is_elliptical(pen_p(p))) {
25227 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25230 pc = mp_copy_path(mp, path_p(p));
25231 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25232 gr_path_p(hq) = mp_export_knot_list(mp,pp);
25233 mp_toss_knot_list(mp, pp);
25234 pc = mp_htap_ypoc(mp, path_p(p));
25235 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25236 gr_htap_p(hq) = mp_export_knot_list(mp,pp);
25237 mp_toss_knot_list(mp, pp);
25239 @<Export object color@>;
25240 @<Export object scripts@>;
25241 gr_ljoin_val(hq) = ljoin_val(p);
25242 gr_miterlim_val(hq) = miterlim_val(p);
25244 case mp_stroked_code:
25245 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25246 if (pen_is_elliptical(pen_p(p))) {
25247 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25250 pc=mp_copy_path(mp, path_p(p));
25252 if ( left_type(pc)!=mp_endpoint ) {
25253 left_type(mp_insert_knot(mp, pc,x_coord(pc),y_coord(pc)))=mp_endpoint;
25254 right_type(pc)=mp_endpoint;
25258 pc=mp_make_envelope(mp,pc,pen_p(p),ljoin_val(p),t,miterlim_val(p));
25259 gr_path_p(hq) = mp_export_knot_list(mp,pc);
25260 mp_toss_knot_list(mp, pc);
25262 @<Export object color@>;
25263 @<Export object scripts@>;
25264 gr_ljoin_val(hq) = ljoin_val(p);
25265 gr_miterlim_val(hq) = miterlim_val(p);
25266 gr_lcap_val(hq) = lcap_val(p);
25267 gr_dash_scale(hq) = dash_scale(p);
25268 gr_dash_p(hq) = mp_export_dashes(mp,dash_p(p));
25271 gr_text_p(hq) = str(text_p(p));
25272 gr_font_n(hq) = font_n(p);
25273 @<Export object color@>;
25274 @<Export object scripts@>;
25275 gr_width_val(hq) = width_val(p);
25276 gr_height_val(hq) = height_val(p);
25277 gr_depth_val(hq) = depth_val(p);
25278 gr_tx_val(hq) = tx_val(p);
25279 gr_ty_val(hq) = ty_val(p);
25280 gr_txx_val(hq) = txx_val(p);
25281 gr_txy_val(hq) = txy_val(p);
25282 gr_tyx_val(hq) = tyx_val(p);
25283 gr_tyy_val(hq) = tyy_val(p);
25285 case mp_start_clip_code:
25286 case mp_start_bounds_code:
25287 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25289 case mp_stop_clip_code:
25290 case mp_stop_bounds_code:
25291 /* nothing to do here */
25294 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25301 @ This function is now nearly trivial.
25304 void mp_ship_out (MP mp, pointer h) { /* output edge structure |h| */
25305 struct mp_edge_object *hh; /* the first graphical object */
25306 hh = mp_gr_export(mp,h);
25307 mp_gr_ship_out (mp, hh);
25309 @<End progress report@>;
25310 if ( mp->internal[mp_tracing_output]>0 )
25311 mp_print_edges(mp, h," (just shipped out)",true);
25315 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25317 @<Export object color@>=
25318 gr_color_model(hq) = color_model(p);
25319 gr_cyan_val(hq) = cyan_val(p);
25320 gr_magenta_val(hq) = magenta_val(p);
25321 gr_yellow_val(hq) = yellow_val(p);
25322 gr_black_val(hq) = black_val(p);
25323 gr_red_val(hq) = red_val(p);
25324 gr_green_val(hq) = green_val(p);
25325 gr_blue_val(hq) = blue_val(p);
25326 gr_grey_val(hq) = grey_val(p)
25329 @ @<Export object scripts@>=
25330 if (pre_script(p)!=null)
25331 gr_pre_script(hq) = str(pre_script(p));
25332 if (post_script(p)!=null)
25333 gr_post_script(hq) = str(post_script(p));
25335 @ Now that we've finished |ship_out|, let's look at the other commands
25336 by which a user can send things to the \.{GF} file.
25338 @ @<Determine if a character has been shipped out@>=
25340 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
25341 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
25342 boolean_reset(mp->char_exists[mp->cur_exp]);
25343 mp->cur_type=mp_boolean_type;
25349 @ @<Allocate or initialize ...@>=
25350 mp_backend_initialize(mp);
25353 mp_backend_free(mp);
25356 @* \[45] Dumping and undumping the tables.
25357 After \.{INIMP} has seen a collection of macros, it
25358 can write all the necessary information on an auxiliary file so
25359 that production versions of \MP\ are able to initialize their
25360 memory at high speed. The present section of the program takes
25361 care of such output and input. We shall consider simultaneously
25362 the processes of storing and restoring,
25363 so that the inverse relation between them is clear.
25366 The global variable |mem_ident| is a string that is printed right
25367 after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
25368 string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
25369 for example, `\.{(mem=plain 90.4.14)}', showing the year,
25370 month, and day that the mem file was created. We have |mem_ident=0|
25371 before \MP's tables are loaded.
25377 mp->mem_ident=NULL;
25379 @ @<Initialize table entries...@>=
25380 mp->mem_ident=xstrdup(" (INIMP)");
25382 @ @<Declare act...@>=
25383 void mp_store_mem_file (MP mp) ;
25385 @ @c void mp_store_mem_file (MP mp) {
25386 integer k; /* all-purpose index */
25387 pointer p,q; /* all-purpose pointers */
25388 integer x; /* something to dump */
25389 four_quarters w; /* four ASCII codes */
25391 @<Create the |mem_ident|, open the mem file,
25392 and inform the user that dumping has begun@>;
25393 @<Dump constants for consistency check@>;
25394 @<Dump the string pool@>;
25395 @<Dump the dynamic memory@>;
25396 @<Dump the table of equivalents and the hash table@>;
25397 @<Dump a few more things and the closing check word@>;
25398 @<Close the mem file@>;
25401 @ Corresponding to the procedure that dumps a mem file, we also have a function
25402 that reads~one~in. The function returns |false| if the dumped mem is
25403 incompatible with the present \MP\ table sizes, etc.
25405 @d off_base 6666 /* go here if the mem file is unacceptable */
25406 @d too_small(A) { wake_up_terminal;
25407 wterm_ln("---! Must increase the "); wterm((A));
25408 @.Must increase the x@>
25413 boolean mp_load_mem_file (MP mp) {
25414 integer k; /* all-purpose index */
25415 pointer p,q; /* all-purpose pointers */
25416 integer x; /* something undumped */
25417 str_number s; /* some temporary string */
25418 four_quarters w; /* four ASCII codes */
25420 @<Undump constants for consistency check@>;
25421 @<Undump the string pool@>;
25422 @<Undump the dynamic memory@>;
25423 @<Undump the table of equivalents and the hash table@>;
25424 @<Undump a few more things and the closing check word@>;
25425 return true; /* it worked! */
25428 wterm_ln("(Fatal mem file error; I'm stymied)\n");
25429 @.Fatal mem file error@>
25433 @ @<Declarations@>=
25434 boolean mp_load_mem_file (MP mp) ;
25436 @ Mem files consist of |memory_word| items, and we use the following
25437 macros to dump words of different types:
25439 @d dump_wd(A) { WW=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25440 @d dump_int(A) { int cint=(A); (mp->write_binary_file)(mp->mem_file,&cint,sizeof(cint)); }
25441 @d dump_hh(A) { WW.hh=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25442 @d dump_qqqq(A) { WW.qqqq=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25443 @d dump_string(A) { dump_int(strlen(A)+1);
25444 (mp->write_binary_file)(mp->mem_file,A,strlen(A)+1); }
25447 void * mem_file; /* for input or output of mem information */
25449 @ The inverse macros are slightly more complicated, since we need to check
25450 the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
25451 read an integer value |x| that is supposed to be in the range |a<=x<=b|.
25454 size_t wanted = sizeof(A);
25456 (mp->read_binary_file)(mp->mem_file,&A_ptr,&wanted);
25457 if (wanted!=sizeof(A)) goto OFF_BASE;
25461 size_t wanted = sizeof(A);
25463 (mp->read_binary_file)(mp->mem_file,&A_ptr,&wanted);
25464 if (wanted!=sizeof(A)) goto OFF_BASE;
25467 @d undump_wd(A) { mgetw(WW); A=WW; }
25468 @d undump_int(A) { int cint; mgeti(cint); A=cint; }
25469 @d undump_hh(A) { mgetw(WW); A=WW.hh; }
25470 @d undump_qqqq(A) { mgetw(WW); A=WW.qqqq; }
25471 @d undump_strings(A,B,C) {
25472 undump_int(x); if ( (x<(A)) || (x>(B)) ) goto OFF_BASE; else C=str(x); }
25473 @d undump(A,B,C) { undump_int(x); if ( (x<(A)) || (x>(int)(B)) ) goto OFF_BASE; else C=x; }
25474 @d undump_size(A,B,C,D) { undump_int(x);
25475 if (x<(A)) goto OFF_BASE;
25476 if (x>(B)) { too_small((C)); } else { D=x;} }
25477 @d undump_string(A) do {
25482 A = xmalloc(XX,sizeof(char));
25483 (mp->read_binary_file)(mp->mem_file,(void **)&A,&wanted);
25484 if (wanted!=(size_t)XX) goto OFF_BASE;
25487 @ The next few sections of the program should make it clear how we use the
25488 dump/undump macros.
25490 @<Dump constants for consistency check@>=
25491 dump_int(mp->mem_top);
25492 dump_int(mp->hash_size);
25493 dump_int(mp->hash_prime)
25494 dump_int(mp->param_size);
25495 dump_int(mp->max_in_open);
25497 @ Sections of a \.{WEB} program that are ``commented out'' still contribute
25498 strings to the string pool; therefore \.{INIMP} and \MP\ will have
25499 the same strings. (And it is, of course, a good thing that they do.)
25503 @<Undump constants for consistency check@>=
25504 undump_int(x); mp->mem_top = x;
25505 undump_int(x); if (mp->hash_size != x) goto OFF_BASE;
25506 undump_int(x); if (mp->hash_prime != x) goto OFF_BASE;
25507 undump_int(x); if (mp->param_size != x) goto OFF_BASE;
25508 undump_int(x); if (mp->max_in_open != x) goto OFF_BASE
25510 @ We do string pool compaction to avoid dumping unused strings.
25513 w.b0=qi(mp->str_pool[k]); w.b1=qi(mp->str_pool[k+1]);
25514 w.b2=qi(mp->str_pool[k+2]); w.b3=qi(mp->str_pool[k+3]);
25517 @<Dump the string pool@>=
25518 mp_do_compaction(mp, mp->pool_size);
25519 dump_int(mp->pool_ptr);
25520 dump_int(mp->max_str_ptr);
25521 dump_int(mp->str_ptr);
25523 while ( (mp->next_str[k]==k+1) && (k<=mp->max_str_ptr) )
25526 while ( k<=mp->max_str_ptr ) {
25527 dump_int(mp->next_str[k]); incr(k);
25531 dump_int(mp->str_start[k]); /* TODO: valgrind warning here */
25532 if ( k==mp->str_ptr ) {
25539 while (k+4<mp->pool_ptr ) {
25540 dump_four_ASCII; k=k+4;
25542 k=mp->pool_ptr-4; dump_four_ASCII;
25543 mp_print_ln(mp); mp_print(mp, "at most "); mp_print_int(mp, mp->max_str_ptr);
25544 mp_print(mp, " strings of total length ");
25545 mp_print_int(mp, mp->pool_ptr)
25547 @ @d undump_four_ASCII
25549 mp->str_pool[k]=qo(w.b0); mp->str_pool[k+1]=qo(w.b1);
25550 mp->str_pool[k+2]=qo(w.b2); mp->str_pool[k+3]=qo(w.b3)
25552 @<Undump the string pool@>=
25553 undump_int(mp->pool_ptr);
25554 mp_reallocate_pool(mp, mp->pool_ptr) ;
25555 undump_int(mp->max_str_ptr);
25556 mp_reallocate_strings (mp,mp->max_str_ptr) ;
25557 undump(0,mp->max_str_ptr,mp->str_ptr);
25558 undump(0,mp->max_str_ptr+1,s);
25559 for (k=0;k<=s-1;k++)
25560 mp->next_str[k]=k+1;
25561 for (k=s;k<=mp->max_str_ptr;k++)
25562 undump(s+1,mp->max_str_ptr+1,mp->next_str[k]);
25563 mp->fixed_str_use=0;
25566 undump(0,mp->pool_ptr,mp->str_start[k]);
25567 if ( k==mp->str_ptr ) break;
25568 mp->str_ref[k]=max_str_ref;
25569 incr(mp->fixed_str_use);
25570 mp->last_fixed_str=k; k=mp->next_str[k];
25573 while ( k+4<mp->pool_ptr ) {
25574 undump_four_ASCII; k=k+4;
25576 k=mp->pool_ptr-4; undump_four_ASCII;
25577 mp->init_str_use=mp->fixed_str_use; mp->init_pool_ptr=mp->pool_ptr;
25578 mp->max_pool_ptr=mp->pool_ptr;
25579 mp->strs_used_up=mp->fixed_str_use;
25580 mp->pool_in_use=mp->str_start[mp->str_ptr]; mp->strs_in_use=mp->fixed_str_use;
25581 mp->max_pl_used=mp->pool_in_use; mp->max_strs_used=mp->strs_in_use;
25582 mp->pact_count=0; mp->pact_chars=0; mp->pact_strs=0;
25584 @ By sorting the list of available spaces in the variable-size portion of
25585 |mem|, we are usually able to get by without having to dump very much
25586 of the dynamic memory.
25588 We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
25589 information even when it has not been gathering statistics.
25591 @<Dump the dynamic memory@>=
25592 mp_sort_avail(mp); mp->var_used=0;
25593 dump_int(mp->lo_mem_max); dump_int(mp->rover);
25594 p=0; q=mp->rover; x=0;
25596 for (k=p;k<= q+1;k++)
25597 dump_wd(mp->mem[k]);
25598 x=x+q+2-p; mp->var_used=mp->var_used+q-p;
25599 p=q+node_size(q); q=rlink(q);
25600 } while (q!=mp->rover);
25601 mp->var_used=mp->var_used+mp->lo_mem_max-p;
25602 mp->dyn_used=mp->mem_end+1-mp->hi_mem_min;
25603 for (k=p;k<= mp->lo_mem_max;k++ )
25604 dump_wd(mp->mem[k]);
25605 x=x+mp->lo_mem_max+1-p;
25606 dump_int(mp->hi_mem_min); dump_int(mp->avail);
25607 for (k=mp->hi_mem_min;k<=mp->mem_end;k++ )
25608 dump_wd(mp->mem[k]);
25609 x=x+mp->mem_end+1-mp->hi_mem_min;
25611 while ( p!=null ) {
25612 decr(mp->dyn_used); p=link(p);
25614 dump_int(mp->var_used); dump_int(mp->dyn_used);
25615 mp_print_ln(mp); mp_print_int(mp, x);
25616 mp_print(mp, " memory locations dumped; current usage is ");
25617 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used)
25619 @ @<Undump the dynamic memory@>=
25620 undump(lo_mem_stat_max+1000,hi_mem_stat_min-1,mp->lo_mem_max);
25621 undump(lo_mem_stat_max+1,mp->lo_mem_max,mp->rover);
25624 for (k=p;k<= q+1; k++)
25625 undump_wd(mp->mem[k]);
25627 if ( (p>mp->lo_mem_max)||((q>=rlink(q))&&(rlink(q)!=mp->rover)) )
25630 } while (q!=mp->rover);
25631 for (k=p;k<=mp->lo_mem_max;k++ )
25632 undump_wd(mp->mem[k]);
25633 undump(mp->lo_mem_max+1,hi_mem_stat_min,mp->hi_mem_min);
25634 undump(null,mp->mem_top,mp->avail); mp->mem_end=mp->mem_top;
25635 for (k=mp->hi_mem_min;k<= mp->mem_end;k++)
25636 undump_wd(mp->mem[k]);
25637 undump_int(mp->var_used); undump_int(mp->dyn_used)
25639 @ A different scheme is used to compress the hash table, since its lower region
25640 is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
25641 words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
25642 packed for |p>=hash_used|, so the remaining entries are output in~a~block.
25644 @<Dump the table of equivalents and the hash table@>=
25645 dump_int(mp->hash_used);
25646 mp->st_count=frozen_inaccessible-1-mp->hash_used;
25647 for (p=1;p<=mp->hash_used;p++) {
25648 if ( text(p)!=0 ) {
25649 dump_int(p); dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); incr(mp->st_count);
25652 for (p=mp->hash_used+1;p<=(int)hash_end;p++) {
25653 dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]);
25655 dump_int(mp->st_count);
25656 mp_print_ln(mp); mp_print_int(mp, mp->st_count); mp_print(mp, " symbolic tokens")
25658 @ @<Undump the table of equivalents and the hash table@>=
25659 undump(1,frozen_inaccessible,mp->hash_used);
25662 undump(p+1,mp->hash_used,p);
25663 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25664 } while (p!=mp->hash_used);
25665 for (p=mp->hash_used+1;p<=(int)hash_end;p++ ) {
25666 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25668 undump_int(mp->st_count)
25670 @ We have already printed a lot of statistics, so we set |mp_tracing_stats:=0|
25671 to prevent them appearing again.
25673 @<Dump a few more things and the closing check word@>=
25674 dump_int(mp->max_internal);
25675 dump_int(mp->int_ptr);
25676 for (k=1;k<= mp->int_ptr;k++ ) {
25677 dump_int(mp->internal[k]);
25678 dump_string(mp->int_name[k]);
25680 dump_int(mp->start_sym);
25681 dump_int(mp->interaction);
25682 dump_string(mp->mem_ident);
25683 dump_int(mp->bg_loc); dump_int(mp->eg_loc); dump_int(mp->serial_no); dump_int(69073);
25684 mp->internal[mp_tracing_stats]=0
25686 @ @<Undump a few more things and the closing check word@>=
25688 if (x>mp->max_internal) mp_grow_internals(mp,x);
25689 undump_int(mp->int_ptr);
25690 for (k=1;k<= mp->int_ptr;k++) {
25691 undump_int(mp->internal[k]);
25692 undump_string(mp->int_name[k]);
25694 undump(0,frozen_inaccessible,mp->start_sym);
25695 if (mp->interaction==mp_unspecified_mode) {
25696 undump(mp_unspecified_mode,mp_error_stop_mode,mp->interaction);
25698 undump(mp_unspecified_mode,mp_error_stop_mode,x);
25700 undump_string(mp->mem_ident);
25701 undump(1,hash_end,mp->bg_loc);
25702 undump(1,hash_end,mp->eg_loc);
25703 undump_int(mp->serial_no);
25705 if (x!=69073) goto OFF_BASE
25707 @ @<Create the |mem_ident|...@>=
25709 xfree(mp->mem_ident);
25710 mp->mem_ident = xmalloc(256,1);
25711 snprintf(mp->mem_ident,256," (mem=%s %i.%i.%i)",
25713 (int)(mp_round_unscaled(mp, mp->internal[mp_year]) % 100),
25714 (int)mp_round_unscaled(mp, mp->internal[mp_month]),
25715 (int)mp_round_unscaled(mp, mp->internal[mp_day]));
25716 mp_pack_job_name(mp, mem_extension);
25717 while (! mp_w_open_out(mp, &mp->mem_file) )
25718 mp_prompt_file_name(mp, "mem file name", mem_extension);
25719 mp_print_nl(mp, "Beginning to dump on file ");
25720 @.Beginning to dump...@>
25721 mp_print(mp, mp->name_of_file);
25722 mp_print_nl(mp, mp->mem_ident);
25725 @ @<Dealloc variables@>=
25726 xfree(mp->mem_ident);
25728 @ @<Close the mem file@>=
25729 (mp->close_file)(mp->mem_file)
25731 @* \[46] The main program.
25732 This is it: the part of \MP\ that executes all those procedures we have
25735 Well---almost. We haven't put the parsing subroutines into the
25736 program yet; and we'd better leave space for a few more routines that may
25737 have been forgotten.
25739 @c @<Declare the basic parsing subroutines@>;
25740 @<Declare miscellaneous procedures that were declared |forward|@>;
25741 @<Last-minute procedures@>
25743 @ We've noted that there are two versions of \MP. One, called \.{INIMP},
25745 has to be run first; it initializes everything from scratch, without
25746 reading a mem file, and it has the capability of dumping a mem file.
25747 The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
25749 to input a mem file in order to get started. \.{VIRMP} typically has
25750 a bit more memory capacity than \.{INIMP}, because it does not need the
25751 space consumed by the dumping/undumping routines and the numerous calls on
25754 The \.{VIRMP} program cannot read a mem file instantaneously, of course;
25755 the best implementations therefore allow for production versions of \MP\ that
25756 not only avoid the loading routine for \PASCAL\ object code, they also have
25757 a mem file pre-loaded.
25760 boolean ini_version; /* are we iniMP? */
25762 @ @<Option variables@>=
25763 int ini_version; /* are we iniMP? */
25765 @ @<Set |ini_version|@>=
25766 mp->ini_version = (opt->ini_version ? true : false);
25768 @ Here we do whatever is needed to complete \MP's job gracefully on the
25769 local operating system. The code here might come into play after a fatal
25770 error; it must therefore consist entirely of ``safe'' operations that
25771 cannot produce error messages. For example, it would be a mistake to call
25772 |str_room| or |make_string| at this time, because a call on |overflow|
25773 might lead to an infinite loop.
25774 @^system dependencies@>
25776 This program doesn't bother to close the input files that may still be open.
25778 @<Last-minute...@>=
25779 void mp_close_files_and_terminate (MP mp) {
25780 integer k; /* all-purpose index */
25781 integer LH; /* the length of the \.{TFM} header, in words */
25782 int lk_offset; /* extra words inserted at beginning of |lig_kern| array */
25783 pointer p; /* runs through a list of \.{TFM} dimensions */
25784 @<Close all open files in the |rd_file| and |wr_file| arrays@>;
25785 if ( mp->internal[mp_tracing_stats]>0 )
25786 @<Output statistics about this job@>;
25788 @<Do all the finishing work on the \.{TFM} file@>;
25789 @<Explain what output files were written@>;
25790 if ( mp->log_opened ){
25792 (mp->close_file)(mp->log_file);
25793 mp->selector=mp->selector-2;
25794 if ( mp->selector==term_only ) {
25795 mp_print_nl(mp, "Transcript written on ");
25796 @.Transcript written...@>
25797 mp_print(mp, mp->log_name); mp_print_char(mp, '.');
25803 @ @<Declarations@>=
25804 void mp_close_files_and_terminate (MP mp) ;
25806 @ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
25807 if (mp->rd_fname!=NULL) {
25808 for (k=0;k<=(int)mp->read_files-1;k++ ) {
25809 if ( mp->rd_fname[k]!=NULL ) {
25810 (mp->close_file)(mp->rd_file[k]);
25814 if (mp->wr_fname!=NULL) {
25815 for (k=0;k<=(int)mp->write_files-1;k++) {
25816 if ( mp->wr_fname[k]!=NULL ) {
25817 (mp->close_file)(mp->wr_file[k]);
25823 for (k=0;k<(int)mp->max_read_files;k++ ) {
25824 if ( mp->rd_fname[k]!=NULL ) {
25825 (mp->close_file)(mp->rd_file[k]);
25826 mp_xfree(mp->rd_fname[k]);
25829 mp_xfree(mp->rd_file);
25830 mp_xfree(mp->rd_fname);
25831 for (k=0;k<(int)mp->max_write_files;k++) {
25832 if ( mp->wr_fname[k]!=NULL ) {
25833 (mp->close_file)(mp->wr_file[k]);
25834 mp_xfree(mp->wr_fname[k]);
25837 mp_xfree(mp->wr_file);
25838 mp_xfree(mp->wr_fname);
25841 @ We want to produce a \.{TFM} file if and only if |mp_fontmaking| is positive.
25843 We reclaim all of the variable-size memory at this point, so that
25844 there is no chance of another memory overflow after the memory capacity
25845 has already been exceeded.
25847 @<Do all the finishing work on the \.{TFM} file@>=
25848 if ( mp->internal[mp_fontmaking]>0 ) {
25849 @<Make the dynamic memory into one big available node@>;
25850 @<Massage the \.{TFM} widths@>;
25851 mp_fix_design_size(mp); mp_fix_check_sum(mp);
25852 @<Massage the \.{TFM} heights, depths, and italic corrections@>;
25853 mp->internal[mp_fontmaking]=0; /* avoid loop in case of fatal error */
25854 @<Finish the \.{TFM} file@>;
25857 @ @<Make the dynamic memory into one big available node@>=
25858 mp->rover=lo_mem_stat_max+1; link(mp->rover)=empty_flag; mp->lo_mem_max=mp->hi_mem_min-1;
25859 if ( mp->lo_mem_max-mp->rover>max_halfword ) mp->lo_mem_max=max_halfword+mp->rover;
25860 node_size(mp->rover)=mp->lo_mem_max-mp->rover;
25861 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
25862 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null
25864 @ The present section goes directly to the log file instead of using
25865 |print| commands, because there's no need for these strings to take
25866 up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
25868 @<Output statistics...@>=
25869 if ( mp->log_opened ) {
25872 wlog_ln("Here is how much of MetaPost's memory you used:");
25873 @.Here is how much...@>
25874 snprintf(s,128," %i string%s out of %i",(int)mp->max_strs_used-mp->init_str_use,
25875 (mp->max_strs_used!=mp->init_str_use+1 ? "s" : ""),
25876 (int)(mp->max_strings-1-mp->init_str_use));
25878 snprintf(s,128," %i string characters out of %i",
25879 (int)mp->max_pl_used-mp->init_pool_ptr,
25880 (int)mp->pool_size-mp->init_pool_ptr);
25882 snprintf(s,128," %i words of memory out of %i",
25883 (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2,
25884 (int)mp->mem_end+1);
25886 snprintf(s,128," %i symbolic tokens out of %i", (int)mp->st_count, (int)mp->hash_size);
25888 snprintf(s,128," %ii, %in, %ip, %ib stack positions out of %ii, %in, %ip, %ib",
25889 (int)mp->max_in_stack,(int)mp->int_ptr,
25890 (int)mp->max_param_stack,(int)mp->max_buf_stack+1,
25891 (int)mp->stack_size,(int)mp->max_internal,(int)mp->param_size,(int)mp->buf_size);
25893 snprintf(s,128," %i string compactions (moved %i characters, %i strings)",
25894 (int)mp->pact_count,(int)mp->pact_chars,(int)mp->pact_strs);
25898 @ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
25901 @<Last-minute...@>=
25902 void mp_final_cleanup (MP mp) {
25903 small_number c; /* 0 for \&{end}, 1 for \&{dump} */
25905 if ( mp->job_name==NULL ) mp_open_log_file(mp);
25906 while ( mp->input_ptr>0 ) {
25907 if ( token_state ) mp_end_token_list(mp);
25908 else mp_end_file_reading(mp);
25910 while ( mp->loop_ptr!=null ) mp_stop_iteration(mp);
25911 while ( mp->open_parens>0 ) {
25912 mp_print(mp, " )"); decr(mp->open_parens);
25914 while ( mp->cond_ptr!=null ) {
25915 mp_print_nl(mp, "(end occurred when ");
25916 @.end occurred...@>
25917 mp_print_cmd_mod(mp, fi_or_else,mp->cur_if);
25918 /* `\.{if}' or `\.{elseif}' or `\.{else}' */
25919 if ( mp->if_line!=0 ) {
25920 mp_print(mp, " on line "); mp_print_int(mp, mp->if_line);
25922 mp_print(mp, " was incomplete)");
25923 mp->if_line=if_line_field(mp->cond_ptr);
25924 mp->cur_if=name_type(mp->cond_ptr); mp->cond_ptr=link(mp->cond_ptr);
25926 if ( mp->history!=mp_spotless )
25927 if ( ((mp->history==mp_warning_issued)||(mp->interaction<mp_error_stop_mode)) )
25928 if ( mp->selector==term_and_log ) {
25929 mp->selector=term_only;
25930 mp_print_nl(mp, "(see the transcript file for additional information)");
25931 @.see the transcript file...@>
25932 mp->selector=term_and_log;
25935 if (mp->ini_version) {
25936 mp_store_mem_file(mp); return;
25938 mp_print_nl(mp, "(dump is performed only by INIMP)"); return;
25939 @.dump...only by INIMP@>
25943 @ @<Declarations@>=
25944 void mp_final_cleanup (MP mp) ;
25945 void mp_init_prim (MP mp) ;
25946 void mp_init_tab (MP mp) ;
25948 @ @<Last-minute...@>=
25949 void mp_init_prim (MP mp) { /* initialize all the primitives */
25953 void mp_init_tab (MP mp) { /* initialize other tables */
25954 integer k; /* all-purpose index */
25955 @<Initialize table entries (done by \.{INIMP} only)@>;
25959 @ When we begin the following code, \MP's tables may still contain garbage;
25960 the strings might not even be present. Thus we must proceed cautiously to get
25963 But when we finish this part of the program, \MP\ is ready to call on the
25964 |main_control| routine to do its work.
25966 @<Get the first line...@>=
25968 @<Initialize the input routines@>;
25969 if ( (mp->mem_ident==NULL)||(mp->buffer[loc]=='&') ) {
25970 if ( mp->mem_ident!=NULL ) {
25971 mp_do_initialize(mp); /* erase preloaded mem */
25973 if ( ! mp_open_mem_file(mp) ) return mp_fatal_error_stop;
25974 if ( ! mp_load_mem_file(mp) ) {
25975 (mp->close_file)(mp->mem_file);
25976 return mp_fatal_error_stop;
25978 (mp->close_file)( mp->mem_file);
25979 while ( (loc<limit)&&(mp->buffer[loc]==' ') ) incr(loc);
25981 mp->buffer[limit]='%';
25982 mp_fix_date_and_time(mp);
25983 mp->sys_random_seed = (scaled)(mp->get_random_seed)(mp);
25984 mp_init_randoms(mp, mp->sys_random_seed);
25985 @<Initialize the print |selector|...@>;
25986 if ( loc<limit ) if ( mp->buffer[loc]!='\\' )
25987 mp_start_input(mp); /* \&{input} assumed */
25990 @ @<Run inimpost commands@>=
25992 mp_get_strings_started(mp);
25993 mp_init_tab(mp); /* initialize the tables */
25994 mp_init_prim(mp); /* call |primitive| for each primitive */
25995 mp->init_str_use=mp->str_ptr; mp->init_pool_ptr=mp->pool_ptr;
25996 mp->max_str_ptr=mp->str_ptr; mp->max_pool_ptr=mp->pool_ptr;
25997 mp_fix_date_and_time(mp);
26001 @* \[47] Debugging.
26002 Once \MP\ is working, you should be able to diagnose most errors with
26003 the \.{show} commands and other diagnostic features. But for the initial
26004 stages of debugging, and for the revelation of really deep mysteries, you
26005 can compile \MP\ with a few more aids, including the \PASCAL\ runtime
26006 checks and its debugger. An additional routine called |debug_help|
26007 will also come into play when you type `\.D' after an error message;
26008 |debug_help| also occurs just before a fatal error causes \MP\ to succumb.
26010 @^system dependencies@>
26012 The interface to |debug_help| is primitive, but it is good enough when used
26013 with a \PASCAL\ debugger that allows you to set breakpoints and to read
26014 variables and change their values. After getting the prompt `\.{debug \#}', you
26015 type either a negative number (this exits |debug_help|), or zero (this
26016 goes to a location where you can set a breakpoint, thereby entering into
26017 dialog with the \PASCAL\ debugger), or a positive number |m| followed by
26018 an argument |n|. The meaning of |m| and |n| will be clear from the
26019 program below. (If |m=13|, there is an additional argument, |l|.)
26022 @<Last-minute...@>=
26023 void mp_debug_help (MP mp) { /* routine to display various things */
26030 mp_print_nl(mp, "debug # (-1 to exit):"); update_terminal;
26033 aline = (mp->read_ascii_file)(mp->term_in, &len);
26034 if (len) { sscanf(aline,"%i",&m); xfree(aline); }
26038 aline = (mp->read_ascii_file)(mp->term_in, &len);
26039 if (len) { sscanf(aline,"%i",&n); xfree(aline); }
26041 @<Numbered cases for |debug_help|@>;
26042 default: mp_print(mp, "?"); break;
26047 @ @<Numbered cases...@>=
26048 case 1: mp_print_word(mp, mp->mem[n]); /* display |mem[n]| in all forms */
26050 case 2: mp_print_int(mp, info(n));
26052 case 3: mp_print_int(mp, link(n));
26054 case 4: mp_print_int(mp, eq_type(n)); mp_print_char(mp, ':'); mp_print_int(mp, equiv(n));
26056 case 5: mp_print_variable_name(mp, n);
26058 case 6: mp_print_int(mp, mp->internal[n]);
26060 case 7: mp_do_show_dependencies(mp);
26062 case 9: mp_show_token_list(mp, n,null,100000,0);
26064 case 10: mp_print_str(mp, n);
26066 case 11: mp_check_mem(mp, n>0); /* check wellformedness; print new busy locations if |n>0| */
26068 case 12: mp_search_mem(mp, n); /* look for pointers to |n| */
26072 aline = (mp->read_ascii_file)(mp->term_in, &len);
26073 if (len) { sscanf(aline,"%i",&l); xfree(aline); }
26074 mp_print_cmd_mod(mp, n,l);
26076 case 14: for (k=0;k<=n;k++) mp_print_str(mp, mp->buffer[k]);
26078 case 15: mp->panicking=! mp->panicking;
26082 @ Saving the filename template
26084 @<Save the filename template@>=
26086 if ( mp->filename_template!=0 ) delete_str_ref(mp->filename_template);
26087 if ( length(mp->cur_exp)==0 ) mp->filename_template=0;
26089 mp->filename_template=mp->cur_exp; add_str_ref(mp->filename_template);
26093 @* \[48] System-dependent changes.
26094 This section should be replaced, if necessary, by any special
26095 modification of the program
26096 that are necessary to make \MP\ work at a particular installation.
26097 It is usually best to design your change file so that all changes to
26098 previous sections preserve the section numbering; then everybody's version
26099 will be consistent with the published program. More extensive changes,
26100 which introduce new sections, can be inserted here; then only the index
26101 itself will get a new section number.
26102 @^system dependencies@>
26105 Here is where you can find all uses of each identifier in the program,
26106 with underlined entries pointing to where the identifier was defined.
26107 If the identifier is only one letter long, however, you get to see only
26108 the underlined entries. {\sl All references are to section numbers instead of
26111 This index also lists error messages and other aspects of the program
26112 that you might want to look up some day. For example, the entry
26113 for ``system dependencies'' lists all sections that should receive
26114 special attention from people who are installing \MP\ in a new
26115 operating environment. A list of various things that can't happen appears
26116 under ``this can't happen''.
26117 Approximately 25 sections are listed under ``inner loop''; these account
26118 for more than 60\pct! of \MP's running time, exclusive of input and output.