1 % $Id: mp.web,v 1.8 2005/08/24 10:54:02 taco Exp $
2 % MetaPost, by John Hobby. Public domain.
4 % Much of this program was copied with permission from MF.web Version 1.9
5 % It interprets a language very similar to D.E. Knuth's METAFONT, but with
6 % changes designed to make it more suitable for PostScript output.
8 % TeX is a trademark of the American Mathematical Society.
9 % METAFONT is a trademark of Addison-Wesley Publishing Company.
10 % PostScript is a trademark of Adobe Systems Incorporated.
12 % Here is TeX material that gets inserted after \input webmac
13 \def\hang{\hangindent 3em\noindent\ignorespaces}
14 \def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
17 \def\ph{\hbox{Pascal-H}}
18 \def\psqrt#1{\sqrt{\mathstrut#1}}
20 \def\pct!{{\char`\%}} % percent sign in ordinary text
21 \font\tenlogo=logo10 % font used for the METAFONT logo
23 \def\MF{{\tenlogo META}\-{\tenlogo FONT}}
24 \def\MP{{\tenlogo META}\-{\tenlogo POST}}
25 \def\[#1]{#1.} % from pascal web
26 \def\<#1>{$\langle#1\rangle$}
27 \def\section{\mathhexbox278}
28 \let\swap=\leftrightarrow
29 \def\round{\mathop{\rm round}\nolimits}
30 \mathchardef\vb="026A % synonym for `\|'
32 \def\(#1){} % this is used to make section names sort themselves better
33 \def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
35 \def\glob{15} % this should be the section number of "<Global...>"
36 \def\gglob{23, 28} % this should be the next two sections of "<Global...>"
41 This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
43 The main purpose of the following program is to explain the algorithms of \MP\
44 as clearly as possible. As a result, the program will not necessarily be very
45 efficient when a particular \PASCAL\ compiler has translated it into a
46 particular machine language. However, the program has been written so that it
47 can be tuned to run efficiently in a wide variety of operating environments
48 by making comparatively few changes. Such flexibility is possible because
49 the documentation that follows is written in the \.{WEB} language, which is
50 at a higher level than \PASCAL; the preprocessing step that converts \.{WEB}
51 to \PASCAL\ is able to introduce most of the necessary refinements.
52 Semi-automatic translation to other languages is also feasible, because the
53 program below does not make extensive use of features that are peculiar to
56 A large piece of software like \MP\ has inherent complexity that cannot
57 be reduced below a certain level of difficulty, although each individual
58 part is fairly simple by itself. The \.{WEB} language is intended to make
59 the algorithms as readable as possible, by reflecting the way the
60 individual program pieces fit together and by providing the
61 cross-references that connect different parts. Detailed comments about
62 what is going on, and about why things were done in certain ways, have
63 been liberally sprinkled throughout the program. These comments explain
64 features of the implementation, but they rarely attempt to explain the
65 \MP\ language itself, since the reader is supposed to be familiar with
66 {\sl The {\logos METAFONT\/}book} as well as the manual
68 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
69 {\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
70 AT\AM T Bell Laboratories.
72 @ The present implementation is a preliminary version, but the possibilities
73 for new features are limited by the desire to remain as nearly compatible
74 with \MF\ as possible.
76 On the other hand, the \.{WEB} description can be extended without changing
77 the core of the program, and it has been designed so that such
78 extensions are not extremely difficult to make.
79 The |banner| string defined here should be changed whenever \MP\
80 undergoes any modifications, so that it will be clear which version of
81 \MP\ might be the guilty party when a problem arises.
83 @^system dependencies@>
85 @d banner "This is MetaPost, Version 1.002" /* printed when \MP\ starts */
86 @d metapost_version "1.002"
87 @d mplib_version "0.20"
88 @d version_string " (Cweb version 0.20)"
90 @ Different \PASCAL s have slightly different conventions, and the present
92 program is expressed in a version of \PASCAL\ that D. E. Knuth used for \MF.
93 Constructions that apply to
94 this particular compiler, which we shall call \ph, should help the
95 reader see how to make an appropriate interface for other systems
96 if necessary. (\ph\ is Charles Hedrick's modification of a compiler
97 @^Hedrick, Charles Locke@>
98 for the DECsystem-10 that was originally developed at the University of
99 Hamburg; cf.\ {\sl SOFTWARE---Practice \AM\ Experience \bf6} (1976),
100 29--42. The \MP\ program below is intended to be adaptable, without
101 extensive changes, to most other versions of \PASCAL\ and commonly used
102 \PASCAL-to-C translators, so it does not fully
104 use the admirable features of \ph. Indeed, a conscious effort has been
105 made here to avoid using several idiosyncratic features of standard
106 \PASCAL\ itself, so that most of the code can be translated mechanically
107 into other high-level languages. For example, the `\&{with}' and `\\{new}'
108 features are not used, nor are pointer types, set types, or enumerated
109 scalar types; there are no `\&{var}' parameters, except in the case of files;
110 there are no tag fields on variant records; there are no |real| variables;
111 no procedures are declared local to other procedures.)
113 The portions of this program that involve system-dependent code, where
114 changes might be necessary because of differences between \PASCAL\ compilers
115 and/or differences between
116 operating systems, can be identified by looking at the sections whose
117 numbers are listed under `system dependencies' in the index. Furthermore,
118 the index entries for `dirty \PASCAL' list all places where the restrictions
119 of \PASCAL\ have not been followed perfectly, for one reason or another.
120 @^system dependencies@>
123 @ The program begins with a normal \PASCAL\ program heading, whose
124 components will be filled in later, using the conventions of \.{WEB}.
126 For example, the portion of the program called `\X\glob:Global
127 variables\X' below will be replaced by a sequence of variable declarations
128 that starts in $\section\glob$ of this documentation. In this way, we are able
129 to define each individual global variable when we are prepared to
130 understand what it means; we do not have to define all of the globals at
131 once. Cross references in $\section\glob$, where it says ``See also
132 sections \gglob, \dots,'' also make it possible to look at the set of
133 all global variables, if desired. Similar remarks apply to the other
134 portions of the program heading.
136 Actually the heading shown here is not quite normal: The |program| line
137 does not mention any |output| file, because \ph\ would ask the \MP\ user
138 to specify a file name if |output| were specified here.
139 @^system dependencies@>
145 typedef struct MP_instance * MP;
147 typedef struct MP_options {
150 @<Exported function headers@>
154 typedef struct psout_data_struct * psout_data;
156 typedef signed int integer;
158 @<Types in the outer block@>;
159 @<Constants in the outer block@>
160 # ifndef LIBAVL_ALLOCATOR
161 # define LIBAVL_ALLOCATOR
162 struct libavl_allocator {
163 void *(*libavl_malloc) (struct libavl_allocator *, size_t libavl_size);
164 void (*libavl_free) (struct libavl_allocator *, void *libavl_block);
167 typedef struct MP_instance {
170 @<Internal library declarations@>
178 #include <unistd.h> /* for access() */
179 #include <time.h> /* for struct tm \& co */
181 #include "mpmp.h" /* internal header */
182 #include "mppsout.h" /* internal header */
185 @<Basic printing procedures@>
186 @<Error handling procedures@>
188 @ Here are the functions that set up the \MP\ instance.
191 @<Declare |mp_reallocate| functions@>;
192 struct MP_options *mp_options (void);
193 MP mp_new (struct MP_options *opt);
196 struct MP_options *mp_options (void) {
197 struct MP_options *opt;
198 opt = malloc(sizeof(MP_options));
200 memset (opt,0,sizeof(MP_options));
204 MP mp_new (struct MP_options *opt) {
206 mp = xmalloc(1,sizeof(MP_instance));
207 @<Set |ini_version|@>;
208 @<Setup the non-local jump buffer in |mp_new|@>;
209 @<Allocate or initialize variables@>
210 if (opt->main_memory>mp->mem_max)
211 mp_reallocate_memory(mp,opt->main_memory);
212 mp_reallocate_paths(mp,1000);
213 mp_reallocate_fonts(mp,8);
216 void mp_free (MP mp) {
217 int k; /* loop variable */
218 @<Dealloc variables@>
223 void mp_do_initialize ( MP mp) {
224 @<Local variables for initialization@>
225 @<Set initial values of key variables@>
227 int mp_initialize (MP mp) { /* this procedure gets things started properly */
228 mp->history=mp_fatal_error_stop; /* in case we quit during initialization */
229 @<Install and test the non-local jump buffer@>;
230 t_open_out; /* open the terminal for output */
231 @<Check the ``constant'' values...@>;
234 snprintf(ss,256,"Ouch---my internal constants have been clobbered!\n"
235 "---case %i",(int)mp->bad);
236 do_fprintf(mp->err_out,(char *)ss);
240 mp_do_initialize(mp); /* erase preloaded mem */
241 if (mp->ini_version) {
242 @<Run inimpost commands@>;
244 @<Initialize the output routines@>;
245 @<Get the first line of input and prepare to start@>;
247 mp_init_map_file(mp, mp->troff_mode);
248 mp->history=mp_spotless; /* ready to go! */
249 if (mp->troff_mode) {
250 mp->internal[mp_gtroffmode]=unity;
251 mp->internal[mp_prologues]=unity;
253 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
254 mp->cur_sym=mp->start_sym; mp_back_input(mp);
260 @<Exported function headers@>=
261 extern struct MP_options *mp_options (void);
262 extern MP mp_new (struct MP_options *opt) ;
263 extern void mp_free (MP mp);
264 extern int mp_initialize (MP mp);
267 void mp_do_initialize (MP mp);
270 @ The overall \MP\ program begins with the heading just shown, after which
271 comes a bunch of procedure declarations and function declarations.
272 Finally we will get to the main program, which begins with the
273 comment `|start_here|'. If you want to skip down to the
274 main program now, you can look up `|start_here|' in the index.
275 But the author suggests that the best way to understand this program
276 is to follow pretty much the order of \MP's components as they appear in the
277 \.{WEB} description you are now reading, since the present ordering is
278 intended to combine the advantages of the ``bottom up'' and ``top down''
279 approaches to the problem of understanding a somewhat complicated system.
281 @ Some of the code below is intended to be used only when diagnosing the
282 strange behavior that sometimes occurs when \MP\ is being installed or
283 when system wizards are fooling around with \MP\ without quite knowing
284 what they are doing. Such code will not normally be compiled; it is
285 delimited by the preprocessor test `|#ifdef DEBUG .. #endif|'.
287 @ This program has two important variations: (1) There is a long and slow
288 version called \.{INIMP}, which does the extra calculations needed to
290 initialize \MP's internal tables; and (2)~there is a shorter and faster
291 production version, which cuts the initialization to a bare minimum.
293 Which is which is decided at runtime.
295 @ The following parameters can be changed at compile time to extend or
296 reduce \MP's capacity. They may have different values in \.{INIMP} and
297 in production versions of \MP.
299 @^system dependencies@>
302 #define file_name_size 255 /* file names shouldn't be longer than this */
303 #define bistack_size 1500 /* size of stack for bisection algorithms;
304 should probably be left at this value */
306 @ Like the preceding parameters, the following quantities can be changed
307 at compile time to extend or reduce \MP's capacity. But if they are changed,
308 it is necessary to rerun the initialization program \.{INIMP}
310 to generate new tables for the production \MP\ program.
311 One can't simply make helter-skelter changes to the following constants,
312 since certain rather complex initialization
313 numbers are computed from them.
316 int max_strings; /* maximum number of strings; must not exceed |max_halfword| */
317 int pool_size; /* maximum number of characters in strings, including all
318 error messages and help texts, and the names of all identifiers */
319 int error_line; /* width of context lines on terminal error messages */
320 int half_error_line; /* width of first lines of contexts in terminal
321 error messages; should be between 30 and |error_line-15| */
322 int max_print_line; /* width of longest text lines output; should be at least 60 */
323 int mem_max; /* greatest index in \MP's internal |mem| array;
324 must be strictly less than |max_halfword|;
325 must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top| */
326 int mem_top; /* largest index in the |mem| array dumped by \.{INIMP};
327 must not be greater than |mem_max| */
328 int hash_size; /* maximum number of symbolic tokens,
329 must be less than |max_halfword-3*param_size| */
330 int hash_prime; /* a prime number equal to about 85\pct! of |hash_size| */
331 int param_size; /* maximum number of simultaneous macro parameters */
332 int max_in_open; /* maximum number of input files and error insertions that
333 can be going on simultaneously */
335 @ @<Option variables@>=
346 @d set_value(a,b,c) do { a=c; if (b>c) a=b; } while (0)
351 set_value(mp->error_line,opt->error_line,79);
352 set_value(mp->half_error_line,opt->half_error_line,50);
353 set_value(mp->max_print_line,opt->max_print_line,100);
356 set_value(mp->hash_size,opt->hash_size,9500);
357 set_value(mp->hash_prime,opt->hash_prime,7919);
358 set_value(mp->param_size,opt->param_size,150);
359 set_value(mp->max_in_open,opt->max_in_open,10);
362 @ In case somebody has inadvertently made bad settings of the ``constants,''
363 \MP\ checks them using a global variable called |bad|.
365 This is the first of many sections of \MP\ where global variables are
369 integer bad; /* is some ``constant'' wrong? */
371 @ Later on we will say `\ignorespaces|if (mem_max>=max_halfword) bad=10;|',
372 or something similar. (We can't do that until |max_halfword| has been defined.)
374 @<Check the ``constant'' values for consistency@>=
376 if ( (mp->half_error_line<30)||(mp->half_error_line>mp->error_line-15) ) mp->bad=1;
377 if ( mp->max_print_line<60 ) mp->bad=2;
378 if ( mp->mem_top<=1100 ) mp->bad=4;
379 if (mp->hash_prime>mp->hash_size ) mp->bad=5;
381 @ Labels are given symbolic names by the following definitions, so that
382 occasional |goto| statements will be meaningful. We insert the label
383 `|exit|:' just before the `\ignorespaces|end|\unskip' of a procedure in
384 which we have used the `|return|' statement defined below; the label
385 `|restart|' is occasionally used at the very beginning of a procedure; and
386 the label `|reswitch|' is occasionally used just prior to a |case|
387 statement in which some cases change the conditions and we wish to branch
388 to the newly applicable case. Loops that are set up with the |loop|
389 construction defined below are commonly exited by going to `|done|' or to
390 `|found|' or to `|not_found|', and they are sometimes repeated by going to
391 `|continue|'. If two or more parts of a subroutine start differently but
392 end up the same, the shared code may be gathered together at
395 Incidentally, this program never declares a label that isn't actually used,
396 because some fussy \PASCAL\ compilers will complain about redundant labels.
398 @d label_exit 10 /* go here to leave a procedure */
399 @d restart 20 /* go here to start a procedure again */
400 @d reswitch 21 /* go here to start a case statement again */
401 @d continue 22 /* go here to resume a loop */
402 @d done 30 /* go here to exit a loop */
403 @d done1 31 /* like |done|, when there is more than one loop */
404 @d done2 32 /* for exiting the second loop in a long block */
405 @d done3 33 /* for exiting the third loop in a very long block */
406 @d done4 34 /* for exiting the fourth loop in an extremely long block */
407 @d done5 35 /* for exiting the fifth loop in an immense block */
408 @d done6 36 /* for exiting the sixth loop in a block */
409 @d found 40 /* go here when you've found it */
410 @d found1 41 /* like |found|, when there's more than one per routine */
411 @d found2 42 /* like |found|, when there's more than two per routine */
412 @d found3 43 /* like |found|, when there's more than three per routine */
413 @d not_found 45 /* go here when you've found nothing */
414 @d common_ending 50 /* go here when you want to merge with another branch */
416 @ Here are some macros for common programming idioms.
418 @d incr(A) (A)=(A)+1 /* increase a variable by unity */
419 @d decr(A) (A)=(A)-1 /* decrease a variable by unity */
420 @d negate(A) (A)=-(A) /* change the sign of a variable */
421 @d double(A) (A)=(A)+(A)
424 @d do_nothing /* empty statement */
425 @d Return goto exit /* terminate a procedure call */
426 @f return nil /* \.{WEB} will henceforth say |return| instead of \\{return} */
428 @* \[2] The character set.
429 In order to make \MP\ readily portable to a wide variety of
430 computers, all of its input text is converted to an internal eight-bit
431 code that includes standard ASCII, the ``American Standard Code for
432 Information Interchange.'' This conversion is done immediately when each
433 character is read in. Conversely, characters are converted from ASCII to
434 the user's external representation just before they are output to a
438 Such an internal code is relevant to users of \MP\ only with respect to
439 the \&{char} and \&{ASCII} operations, and the comparison of strings.
441 @ Characters of text that have been converted to \MP's internal form
442 are said to be of type |ASCII_code|, which is a subrange of the integers.
445 typedef unsigned char ASCII_code; /* eight-bit numbers */
447 @ The original \PASCAL\ compiler was designed in the late 60s, when six-bit
448 character sets were common, so it did not make provision for lowercase
449 letters. Nowadays, of course, we need to deal with both capital and small
450 letters in a convenient way, especially in a program for font design;
451 so the present specification of \MP\ has been written under the assumption
452 that the \PASCAL\ compiler and run-time system permit the use of text files
453 with more than 64 distinguishable characters. More precisely, we assume that
454 the character set contains at least the letters and symbols associated
455 with ASCII codes 040 through 0176; all of these characters are now
456 available on most computer terminals.
458 Since we are dealing with more characters than were present in the first
459 \PASCAL\ compilers, we have to decide what to call the associated data
460 type. Some \PASCAL s use the original name |char| for the
461 characters in text files, even though there now are more than 64 such
462 characters, while other \PASCAL s consider |char| to be a 64-element
463 subrange of a larger data type that has some other name.
465 In order to accommodate this difference, we shall use the name |text_char|
466 to stand for the data type of the characters that are converted to and
467 from |ASCII_code| when they are input and output. We shall also assume
468 that |text_char| consists of the elements |chr(first_text_char)| through
469 |chr(last_text_char)|, inclusive. The following definitions should be
470 adjusted if necessary.
471 @^system dependencies@>
473 @d first_text_char 0 /* ordinal number of the smallest element of |text_char| */
474 @d last_text_char 255 /* ordinal number of the largest element of |text_char| */
477 typedef unsigned char text_char; /* the data type of characters in text files */
479 @ @<Local variables for init...@>=
482 @ The \MP\ processor converts between ASCII code and
483 the user's external character set by means of arrays |xord| and |xchr|
484 that are analogous to \PASCAL's |ord| and |chr| functions.
486 @d xchr(A) mp->xchr[(A)]
487 @d xord(A) mp->xord[(A)]
490 ASCII_code xord[256]; /* specifies conversion of input characters */
491 text_char xchr[256]; /* specifies conversion of output characters */
493 @ The core system assumes all 8-bit is acceptable. If it is not,
494 a change file has to alter the below section.
495 @^system dependencies@>
497 Additionally, people with extended character sets can
498 assign codes arbitrarily, giving an |xchr| equivalent to whatever
499 characters the users of \MP\ are allowed to have in their input files.
500 Appropriate changes to \MP's |char_class| table should then be made.
501 (Unlike \TeX, each installation of \MP\ has a fixed assignment of category
502 codes, called the |char_class|.) Such changes make portability of programs
503 more difficult, so they should be introduced cautiously if at all.
504 @^character set dependencies@>
505 @^system dependencies@>
508 for (i=0;i<=0377;i++) { xchr(i)=i; }
510 @ The following system-independent code makes the |xord| array contain a
511 suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
512 where |i<j<0177|, the value of |xord[xchr[i]]| will turn out to be
513 |j| or more; hence, standard ASCII code numbers will be used instead of
514 codes below 040 in case there is a coincidence.
517 for (i=first_text_char;i<=last_text_char;i++) {
520 for (i=0200;i<=0377;i++) { xord(xchr(i))=i;}
521 for (i=0;i<=0176;i++) { xord(xchr(i))=i;}
523 @* \[3] Input and output.
524 The bane of portability is the fact that different operating systems treat
525 input and output quite differently, perhaps because computer scientists
526 have not given sufficient attention to this problem. People have felt somehow
527 that input and output are not part of ``real'' programming. Well, it is true
528 that some kinds of programming are more fun than others. With existing
529 input/output conventions being so diverse and so messy, the only sources of
530 joy in such parts of the code are the rare occasions when one can find a
531 way to make the program a little less bad than it might have been. We have
532 two choices, either to attack I/O now and get it over with, or to postpone
533 I/O until near the end. Neither prospect is very attractive, so let's
536 The basic operations we need to do are (1)~inputting and outputting of
537 text, to or from a file or the user's terminal; (2)~inputting and
538 outputting of eight-bit bytes, to or from a file; (3)~instructing the
539 operating system to initiate (``open'') or to terminate (``close'') input or
540 output from a specified file; (4)~testing whether the end of an input
541 file has been reached; (5)~display of bits on the user's screen.
542 The bit-display operation will be discussed in a later section; we shall
543 deal here only with more traditional kinds of I/O.
545 @ Finding files happens in a slightly roundabout fashion: the \MP\
546 instance object contains a field that holds a function pointer that finds a
547 file, and returns its name, or NULL. For this, it receives three
548 parameters: the non-qualified name |fname|, the intended |fopen|
549 operation type |fmode|, and the type of the file |ftype|.
551 The file types that are passed on in |ftype| can be used to
552 differentiate file searches if a library like kpathsea is used,
553 the fopen mode is passed along for the same reason.
556 typedef unsigned char eight_bits ; /* unsigned one-byte quantity */
558 @ @<Exported types@>=
560 mp_filetype_terminal = 0, /* the terminal */
561 mp_filetype_error, /* the terminal */
562 mp_filetype_program , /* \MP\ language input */
563 mp_filetype_log, /* the log file */
564 mp_filetype_postscript, /* the postscript output */
565 mp_filetype_memfile, /* memory dumps */
566 mp_filetype_metrics, /* TeX font metric files */
567 mp_filetype_fontmap, /* PostScript font mapping files */
568 mp_filetype_font, /* PostScript type1 font programs */
569 mp_filetype_encoding, /* PostScript font encoding files */
570 mp_filetype_text, /* first text file for readfrom and writeto primitives */
572 typedef char *(*mp_file_finder)(char *, char *, int);
573 typedef void *(*mp_file_opener)(char *, char *, int);
574 typedef char *(*mp_file_reader)(void *, size_t *);
575 typedef void (*mp_binfile_reader)(void *, void **, size_t *);
576 typedef void (*mp_file_closer)(void *);
577 typedef int (*mp_file_eoftest)(void *);
578 typedef void (*mp_file_flush)(void *);
579 typedef void (*mp_file_writer)(void *, char *);
580 typedef void (*mp_binfile_writer)(void *, void *, size_t);
584 mp_file_finder find_file;
585 mp_file_opener open_file;
586 mp_file_reader read_ascii_file;
587 mp_binfile_reader read_binary_file;
588 mp_file_closer close_file;
589 mp_file_eoftest eof_file;
590 mp_file_flush flush_file;
591 mp_file_writer write_ascii_file;
592 mp_binfile_writer write_binary_file;
594 @ @<Option variables@>=
595 mp_file_finder find_file;
596 mp_file_opener open_file;
597 mp_file_reader read_ascii_file;
598 mp_binfile_reader read_binary_file;
599 mp_file_closer close_file;
600 mp_file_eoftest eof_file;
601 mp_file_flush flush_file;
602 mp_file_writer write_ascii_file;
603 mp_binfile_writer write_binary_file;
605 @ The default function for finding files is |mp_find_file|. It is
606 pretty stupid: it will only find files in the current directory.
608 This function may disappear altogether, it is currently only
609 used for the default font map file.
612 char *mp_find_file (char *fname, char *fmode, int ftype) {
613 if (fmode[0] != 'r' || (! access (fname,R_OK)) || ftype) {
614 return strdup(fname);
619 @ This has to be done very early on, so it is best to put it in with
620 the |mp_new| allocations
622 @d set_callback_option(A) do { mp->A = mp_##A;
623 if (opt->A!=NULL) mp->A = opt->A;
626 @<Allocate or initialize ...@>=
627 set_callback_option(find_file);
628 set_callback_option(open_file);
629 set_callback_option(read_ascii_file);
630 set_callback_option(read_binary_file);
631 set_callback_option(close_file);
632 set_callback_option(eof_file);
633 set_callback_option(flush_file);
634 set_callback_option(write_ascii_file);
635 set_callback_option(write_binary_file);
637 @ Because |mp_find_file| is used so early, it has to be in the helpers
641 char *mp_find_file (char *fname, char *fmode, int ftype) ;
642 void *mp_open_file (char *fname, char *fmode, int ftype) ;
643 char *mp_read_ascii_file (void *f, size_t *size) ;
644 void mp_read_binary_file (void *f, void **d, size_t *size) ;
645 void mp_close_file (void *f) ;
646 int mp_eof_file (void *f) ;
647 void mp_flush_file (void *f) ;
648 void mp_write_ascii_file (void *f, char *s) ;
649 void mp_write_binary_file (void *f, void *s, size_t t) ;
651 @ The function to open files can now be very short.
654 void *mp_open_file(char *fname, char *fmode, int ftype) {
656 if (ftype==mp_filetype_terminal) {
657 return (fmode[0] == 'r' ? stdin : stdout);
658 } else if (ftype==mp_filetype_error) {
660 } else if (fname != NULL && (fmode[0] != 'r' || (! access (fname,R_OK)))) {
661 return (void *)fopen(fname, fmode);
667 @ This is a legacy interface: (almost) all file names pass through |name_of_file|.
670 char name_of_file[file_name_size+1]; /* the name of a system file */
671 int name_length;/* this many characters are actually
672 relevant in |name_of_file| (the rest are blank) */
673 boolean print_found_names; /* configuration parameter */
675 @ @<Option variables@>=
676 int print_found_names; /* configuration parameter */
678 @ If this parameter is true, the terminal and log will report the found
679 file names for input files instead of the requested ones.
680 It is off by default because it creates an extra filename lookup.
682 @<Allocate or initialize ...@>=
683 mp->print_found_names = (opt->print_found_names>0 ? true : false);
685 @ \MP's file-opening procedures return |false| if no file identified by
686 |name_of_file| could be opened.
688 The |OPEN_FILE| macro takes care of the |print_found_names| parameter.
689 It is not used for opening a mem file for read, because that file name
693 if (mp->print_found_names) {
694 char *s = (mp->find_file)(mp->name_of_file,A,ftype);
696 *f = (mp->open_file)(mp->name_of_file,A, ftype);
697 strncpy(mp->name_of_file,s,file_name_size);
703 *f = (mp->open_file)(mp->name_of_file,A, ftype);
706 return (*f ? true : false)
709 boolean mp_a_open_in (MP mp, void **f, int ftype) {
710 /* open a text file for input */
714 boolean mp_w_open_in (MP mp, void **f) {
715 /* open a word file for input */
716 *f = (mp->open_file)(mp->name_of_file,"rb",mp_filetype_memfile);
717 return (*f ? true : false);
720 boolean mp_a_open_out (MP mp, void **f, int ftype) {
721 /* open a text file for output */
725 boolean mp_b_open_out (MP mp, void **f, int ftype) {
726 /* open a binary file for output */
730 boolean mp_w_open_out (MP mp, void **f) {
731 /* open a word file for output */
732 int ftype = mp_filetype_memfile;
737 char *mp_read_ascii_file (void *f, size_t *size) {
739 size_t len = 0, lim = 128;
747 if (s==NULL) return NULL;
748 while (c!=EOF && c!='\n' && c!='\r') {
750 s =realloc(s, (lim+(lim>>2)));
751 if (s==NULL) return NULL;
759 if (c!=EOF && c!='\n')
769 void mp_write_ascii_file (void *f, char *s) {
778 void mp_read_binary_file (void *f, void **data, size_t *size) {
781 len = fread(*data,1,*size,f);
787 void mp_write_binary_file (void *f, void *s, size_t size) {
796 void mp_close_file (void *f) {
803 int mp_eof_file (void *f) {
812 void mp_flush_file (void *f) {
818 @ Binary input and output are done with \PASCAL's ordinary |get| and |put|
819 procedures, so we don't have to make any other special arrangements for
820 binary~I/O. Text output is also easy to do with standard \PASCAL\ routines.
821 The treatment of text input is more difficult, however, because
822 of the necessary translation to |ASCII_code| values.
823 \MP's conventions should be efficient, and they should
824 blend nicely with the user's operating environment.
826 @ Input from text files is read one line at a time, using a routine called
827 |input_ln|. This function is defined in terms of global variables called
828 |buffer|, |first|, and |last| that will be described in detail later; for
829 now, it suffices for us to know that |buffer| is an array of |ASCII_code|
830 values, and that |first| and |last| are indices into this array
831 representing the beginning and ending of a line of text.
834 size_t buf_size; /* maximum number of characters simultaneously present in
835 current lines of open files */
836 ASCII_code *buffer; /* lines of characters being read */
837 size_t first; /* the first unused position in |buffer| */
838 size_t last; /* end of the line just input to |buffer| */
839 size_t max_buf_stack; /* largest index used in |buffer| */
841 @ @<Allocate or initialize ...@>=
843 mp->buffer = xmalloc((mp->buf_size+1),sizeof(ASCII_code));
845 @ @<Dealloc variables@>=
849 void mp_reallocate_buffer(MP mp, size_t l) {
851 if (l>max_halfword) {
852 mp_confusion(mp,"buffer size"); /* can't happen (I hope) */
854 buffer = xmalloc((l+1),sizeof(ASCII_code));
855 memcpy(buffer,mp->buffer,(mp->buf_size+1));
857 mp->buffer = buffer ;
861 @ The |input_ln| function brings the next line of input from the specified
862 field into available positions of the buffer array and returns the value
863 |true|, unless the file has already been entirely read, in which case it
864 returns |false| and sets |last:=first|. In general, the |ASCII_code|
865 numbers that represent the next line of the file are input into
866 |buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
867 global variable |last| is set equal to |first| plus the length of the
868 line. Trailing blanks are removed from the line; thus, either |last=first|
869 (in which case the line was entirely blank) or |buffer[last-1]<>" "|.
872 The variable |max_buf_stack|, which is used to keep track of how large
873 the |buf_size| parameter must be to accommodate the present job, is
874 also kept up to date by |input_ln|.
877 boolean mp_input_ln (MP mp, void *f ) {
878 /* inputs the next line or returns |false| */
881 mp->last=mp->first; /* cf.\ Matthew 19\thinspace:\thinspace30 */
882 s = (mp->read_ascii_file)(f, &size);
886 mp->last = mp->first+size;
887 if ( mp->last>=mp->max_buf_stack ) {
888 mp->max_buf_stack=mp->last+1;
889 while ( mp->max_buf_stack>=mp->buf_size ) {
890 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
893 memcpy((mp->buffer+mp->first),s,size);
894 /* while ( mp->buffer[mp->last]==' ' ) mp->last--; */
900 @ The user's terminal acts essentially like other files of text, except
901 that it is used both for input and for output. When the terminal is
902 considered an input file, the file variable is called |term_in|, and when it
903 is considered an output file the file variable is |term_out|.
904 @^system dependencies@>
907 void * term_in; /* the terminal as an input file */
908 void * term_out; /* the terminal as an output file */
909 void * err_out; /* the terminal as an output file */
911 @ Here is how to open the terminal files. In the default configuration,
912 nothing happens except that the command line (if there is one) is copied
913 to the input buffer. The variable |command_line| will be filled by the
914 |main| procedure. The copying can not be done earlier in the program
915 logic because in the |INI| version, the |buffer| is also used for primitive
918 @^system dependencies@>
920 @d t_open_out do {/* open the terminal for text output */
921 mp->term_out = (mp->open_file)("terminal", "w", mp_filetype_terminal);
922 mp->err_out = (mp->open_file)("error", "w", mp_filetype_error);
924 @d t_open_in do { /* open the terminal for text input */
925 mp->term_in = (mp->open_file)("terminal", "r", mp_filetype_terminal);
926 if (mp->command_line!=NULL) {
927 mp->last = strlen(mp->command_line);
928 strncpy((char *)mp->buffer,mp->command_line,mp->last);
929 xfree(mp->command_line);
933 @d t_close_out do { /* close the terminal */
934 (mp->close_file)(mp->term_out);
935 (mp->close_file)(mp->err_out);
938 @d t_close_in do { /* close the terminal */
939 (mp->close_file)(mp->term_in);
945 @ @<Option variables@>=
948 @ @<Allocate or initialize ...@>=
949 mp->command_line = xstrdup(opt->command_line);
951 @ Sometimes it is necessary to synchronize the input/output mixture that
952 happens on the user's terminal, and three system-dependent
953 procedures are used for this
954 purpose. The first of these, |update_terminal|, is called when we want
955 to make sure that everything we have output to the terminal so far has
956 actually left the computer's internal buffers and been sent.
957 The second, |clear_terminal|, is called when we wish to cancel any
958 input that the user may have typed ahead (since we are about to
959 issue an unexpected error message). The third, |wake_up_terminal|,
960 is supposed to revive the terminal if the user has disabled it by
961 some instruction to the operating system. The following macros show how
962 these operations can be specified in \ph:
963 @^system dependencies@>
965 @d update_terminal (mp->flush_file)(mp->term_out) /* empty the terminal output buffer */
966 @d clear_terminal do_nothing /* clear the terminal input buffer */
967 @d wake_up_terminal (mp->flush_file)(mp->term_out) /* cancel the user's cancellation of output */
969 @ We need a special routine to read the first line of \MP\ input from
970 the user's terminal. This line is different because it is read before we
971 have opened the transcript file; there is sort of a ``chicken and
972 egg'' problem here. If the user types `\.{input cmr10}' on the first
973 line, or if some macro invoked by that line does such an \.{input},
974 the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
975 commands are performed during the first line of terminal input, the transcript
976 file will acquire its default name `\.{mpout.log}'. (The transcript file
977 will not contain error messages generated by the first line before the
978 first \.{input} command.)
980 The first line is even more special if we are lucky enough to have an operating
981 system that treats \MP\ differently from a run-of-the-mill \PASCAL\ object
982 program. It's nice to let the user start running a \MP\ job by typing
983 a command line like `\.{MP cmr10}'; in such a case, \MP\ will operate
984 as if the first line of input were `\.{cmr10}', i.e., the first line will
985 consist of the remainder of the command line, after the part that invoked \MP.
987 @ Different systems have different ways to get started. But regardless of
988 what conventions are adopted, the routine that initializes the terminal
989 should satisfy the following specifications:
991 \yskip\textindent{1)}It should open file |term_in| for input from the
992 terminal. (The file |term_out| will already be open for output to the
995 \textindent{2)}If the user has given a command line, this line should be
996 considered the first line of terminal input. Otherwise the
997 user should be prompted with `\.{**}', and the first line of input
998 should be whatever is typed in response.
1000 \textindent{3)}The first line of input, which might or might not be a
1001 command line, should appear in locations |first| to |last-1| of the
1004 \textindent{4)}The global variable |loc| should be set so that the
1005 character to be read next by \MP\ is in |buffer[loc]|. This
1006 character should not be blank, and we should have |loc<last|.
1008 \yskip\noindent(It may be necessary to prompt the user several times
1009 before a non-blank line comes in. The prompt is `\.{**}' instead of the
1010 later `\.*' because the meaning is slightly different: `\.{input}' need
1011 not be typed immediately after~`\.{**}'.)
1013 @d loc mp->cur_input.loc_field /* location of first unread character in |buffer| */
1015 @ The following program does the required initialization
1016 without retrieving a possible command line.
1017 It should be clear how to modify this routine to deal with command lines,
1018 if the system permits them.
1019 @^system dependencies@>
1022 boolean mp_init_terminal (MP mp) { /* gets the terminal input started */
1025 loc = mp->first = 0;
1029 wake_up_terminal; do_fprintf(mp->term_out,"**"); update_terminal;
1031 if ( ! mp_input_ln(mp, mp->term_in ) ) { /* this shouldn't happen */
1032 do_fprintf(mp->term_out,"\n! End of file on the terminal... why?");
1033 @.End of file on the terminal@>
1037 while ( (loc<(int)mp->last)&&(mp->buffer[loc]==' ') )
1039 if ( loc<(int)mp->last ) {
1040 return true; /* return unless the line was all blank */
1042 do_fprintf(mp->term_out,"Please type the name of your input file.\n");
1047 boolean mp_init_terminal (MP mp) ;
1050 @* \[4] String handling.
1051 Symbolic token names and diagnostic messages are variable-length strings
1052 of eight-bit characters. Since \PASCAL\ does not have a well-developed string
1053 mechanism, \MP\ does all of its string processing by homegrown methods.
1055 \MP\ uses strings more extensively than \MF\ does, but the necessary
1056 operations can still be handled with a fairly simple data structure.
1057 The array |str_pool| contains all of the (eight-bit) ASCII codes in all
1058 of the strings, and the array |str_start| contains indices of the starting
1059 points of each string. Strings are referred to by integer numbers, so that
1060 string number |s| comprises the characters |str_pool[j]| for
1061 |str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
1062 is allocated sequentially and |str_pool[pool_ptr]| is the next unused
1063 location. The first string number not currently in use is |str_ptr|
1064 and |next_str[str_ptr]| begins a list of free string numbers. String
1065 pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
1066 string currently being constructed.
1068 String numbers 0 to 255 are reserved for strings that correspond to single
1069 ASCII characters. This is in accordance with the conventions of \.{WEB},
1071 which converts single-character strings into the ASCII code number of the
1072 single character involved, while it converts other strings into integers
1073 and builds a string pool file. Thus, when the string constant \.{"."} appears
1074 in the program below, \.{WEB} converts it into the integer 46, which is the
1075 ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
1076 into some integer greater than~255. String number 46 will presumably be the
1077 single character `\..'\thinspace; but some ASCII codes have no standard visible
1078 representation, and \MP\ may need to be able to print an arbitrary
1079 ASCII character, so the first 256 strings are used to specify exactly what
1080 should be printed for each of the 256 possibilities.
1083 typedef int pool_pointer; /* for variables that point into |str_pool| */
1084 typedef int str_number; /* for variables that point into |str_start| */
1087 ASCII_code *str_pool; /* the characters */
1088 pool_pointer *str_start; /* the starting pointers */
1089 str_number *next_str; /* for linking strings in order */
1090 pool_pointer pool_ptr; /* first unused position in |str_pool| */
1091 str_number str_ptr; /* number of the current string being created */
1092 pool_pointer init_pool_ptr; /* the starting value of |pool_ptr| */
1093 str_number init_str_use; /* the initial number of strings in use */
1094 pool_pointer max_pool_ptr; /* the maximum so far of |pool_ptr| */
1095 str_number max_str_ptr; /* the maximum so far of |str_ptr| */
1097 @ @<Allocate or initialize ...@>=
1098 mp->str_pool = xmalloc ((mp->pool_size +1),sizeof(ASCII_code));
1099 mp->str_start = xmalloc ((mp->max_strings+1),sizeof(pool_pointer));
1100 mp->next_str = xmalloc ((mp->max_strings+1),sizeof(str_number));
1102 @ @<Dealloc variables@>=
1103 xfree(mp->str_pool);
1104 xfree(mp->str_start);
1105 xfree(mp->next_str);
1107 @ Most printing is done from |char *|s, but sometimes not. Here are
1108 functions that convert an internal string into a |char *| for use
1109 by the printing routines, and vice versa.
1111 @d str(A) mp_str(mp,A)
1112 @d rts(A) mp_rts(mp,A)
1115 int mp_xstrcmp (const char *a, const char *b);
1116 char * mp_str (MP mp, str_number s);
1119 str_number mp_rts (MP mp, char *s);
1120 str_number mp_make_string (MP mp);
1122 @ The attempt to catch interrupted strings that is in |mp_rts|, is not
1123 very good: it does not handle nesting over more than one level.
1126 int mp_xstrcmp (const char *a, const char *b) {
1127 if (a==NULL && b==NULL)
1137 char * mp_str (MP mp, str_number ss) {
1140 if (ss==mp->str_ptr) {
1144 s = xmalloc(len+1,sizeof(char));
1145 strncpy(s,(char *)(mp->str_pool+(mp->str_start[ss])),len);
1150 str_number mp_rts (MP mp, char *s) {
1151 int r; /* the new string */
1152 int old; /* a possible string in progress */
1156 } else if (strlen(s)==1) {
1160 str_room((integer)strlen(s));
1161 if (mp->str_start[mp->str_ptr]<mp->pool_ptr)
1162 old = mp_make_string(mp);
1167 r = mp_make_string(mp);
1169 str_room(length(old));
1170 while (i<length(old)) {
1171 append_char((mp->str_start[old]+i));
1173 mp_flush_string(mp,old);
1179 @ Except for |strs_used_up|, the following string statistics are only
1180 maintained when code between |stat| $\ldots$ |tats| delimiters is not
1184 integer strs_used_up; /* strings in use or unused but not reclaimed */
1185 integer pool_in_use; /* total number of cells of |str_pool| actually in use */
1186 integer strs_in_use; /* total number of strings actually in use */
1187 integer max_pl_used; /* maximum |pool_in_use| so far */
1188 integer max_strs_used; /* maximum |strs_in_use| so far */
1190 @ Several of the elementary string operations are performed using \.{WEB}
1191 macros instead of \PASCAL\ procedures, because many of the
1192 operations are done quite frequently and we want to avoid the
1193 overhead of procedure calls. For example, here is
1194 a simple macro that computes the length of a string.
1197 @d str_stop(A) mp->str_start[mp->next_str[(A)]] /* one cell past the end of string
1199 @d length(A) (str_stop((A))-mp->str_start[(A)]) /* the number of characters in string \# */
1201 @ The length of the current string is called |cur_length|. If we decide that
1202 the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
1203 |cur_length| becomes zero.
1205 @d cur_length (mp->pool_ptr - mp->str_start[mp->str_ptr])
1206 @d flush_cur_string mp->pool_ptr=mp->str_start[mp->str_ptr]
1208 @ Strings are created by appending character codes to |str_pool|.
1209 The |append_char| macro, defined here, does not check to see if the
1210 value of |pool_ptr| has gotten too high; this test is supposed to be
1211 made before |append_char| is used.
1213 To test if there is room to append |l| more characters to |str_pool|,
1214 we shall write |str_room(l)|, which tries to make sure there is enough room
1215 by compacting the string pool if necessary. If this does not work,
1216 |do_compaction| aborts \MP\ and gives an apologetic error message.
1218 @d append_char(A) /* put |ASCII_code| \# at the end of |str_pool| */
1219 { mp->str_pool[mp->pool_ptr]=(A); incr(mp->pool_ptr);
1221 @d str_room(A) /* make sure that the pool hasn't overflowed */
1222 { if ( mp->pool_ptr+(A) > mp->max_pool_ptr ) {
1223 if ( mp->pool_ptr+(A) > mp->pool_size ) mp_do_compaction(mp, (A));
1224 else mp->max_pool_ptr=mp->pool_ptr+(A); }
1227 @ The following routine is similar to |str_room(1)| but it uses the
1228 argument |mp->pool_size| to prevent |do_compaction| from aborting when
1229 string space is exhausted.
1231 @<Declare the procedure called |unit_str_room|@>=
1232 void mp_unit_str_room (MP mp);
1235 void mp_unit_str_room (MP mp) {
1236 if ( mp->pool_ptr>=mp->pool_size ) mp_do_compaction(mp, mp->pool_size);
1237 if ( mp->pool_ptr>=mp->max_pool_ptr ) mp->max_pool_ptr=mp->pool_ptr+1;
1240 @ \MP's string expressions are implemented in a brute-force way: Every
1241 new string or substring that is needed is simply copied into the string pool.
1242 Space is eventually reclaimed by a procedure called |do_compaction| with
1243 the aid of a simple system system of reference counts.
1244 @^reference counts@>
1246 The number of references to string number |s| will be |str_ref[s]|. The
1247 special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
1248 positive number of references; such strings will never be recycled. If
1249 a string is ever referred to more than 126 times, simultaneously, we
1250 put it in this category. Hence a single byte suffices to store each |str_ref|.
1252 @d max_str_ref 127 /* ``infinite'' number of references */
1253 @d add_str_ref(A) { if ( mp->str_ref[(A)]<max_str_ref ) incr(mp->str_ref[(A)]);
1259 @ @<Allocate or initialize ...@>=
1260 mp->str_ref = xmalloc ((mp->max_strings+1),sizeof(int));
1262 @ @<Dealloc variables@>=
1265 @ Here's what we do when a string reference disappears:
1267 @d delete_str_ref(A) {
1268 if ( mp->str_ref[(A)]<max_str_ref ) {
1269 if ( mp->str_ref[(A)]>1 ) decr(mp->str_ref[(A)]);
1270 else mp_flush_string(mp, (A));
1274 @<Declare the procedure called |flush_string|@>=
1275 void mp_flush_string (MP mp,str_number s) ;
1278 @ We can't flush the first set of static strings at all, so there
1279 is no point in trying
1282 void mp_flush_string (MP mp,str_number s) {
1284 mp->pool_in_use=mp->pool_in_use-length(s);
1285 decr(mp->strs_in_use);
1286 if ( mp->next_str[s]!=mp->str_ptr ) {
1290 decr(mp->strs_used_up);
1292 mp->pool_ptr=mp->str_start[mp->str_ptr];
1296 @ C literals cannot be simply added, they need to be set so they can't
1299 @d intern(A) mp_intern(mp,(A))
1302 str_number mp_intern (MP mp, char *s) {
1305 mp->str_ref[r] = max_str_ref;
1310 str_number mp_intern (MP mp, char *s);
1313 @ Once a sequence of characters has been appended to |str_pool|, it
1314 officially becomes a string when the function |make_string| is called.
1315 This function returns the identification number of the new string as its
1318 When getting the next unused string number from the linked list, we pretend
1320 $$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |mp->max_strings|} $$
1321 are linked sequentially even though the |next_str| entries have not been
1322 initialized yet. We never allow |str_ptr| to reach |mp->max_strings|;
1323 |do_compaction| is responsible for making sure of this.
1326 @<Declare the procedure called |do_compaction|@>;
1327 @<Declare the procedure called |unit_str_room|@>;
1328 str_number mp_make_string (MP mp);
1331 str_number mp_make_string (MP mp) { /* current string enters the pool */
1332 str_number s; /* the new string */
1335 mp->str_ptr=mp->next_str[s];
1336 if ( mp->str_ptr>mp->max_str_ptr ) {
1337 if ( mp->str_ptr==mp->max_strings ) {
1339 mp_do_compaction(mp, 0);
1343 if ( mp->strs_used_up!=mp->max_str_ptr ) mp_confusion(mp, "s");
1344 @:this can't happen s}{\quad \.s@>
1346 mp->max_str_ptr=mp->str_ptr;
1347 mp->next_str[mp->str_ptr]=mp->max_str_ptr+1;
1351 mp->str_start[mp->str_ptr]=mp->pool_ptr;
1352 incr(mp->strs_used_up);
1353 incr(mp->strs_in_use);
1354 mp->pool_in_use=mp->pool_in_use+length(s);
1355 if ( mp->pool_in_use>mp->max_pl_used )
1356 mp->max_pl_used=mp->pool_in_use;
1357 if ( mp->strs_in_use>mp->max_strs_used )
1358 mp->max_strs_used=mp->strs_in_use;
1362 @ The most interesting string operation is string pool compaction. The idea
1363 is to recover unused space in the |str_pool| array by recopying the strings
1364 to close the gaps created when some strings become unused. All string
1365 numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
1366 numbers after |str_ptr|. If this fails to free enough pool space we issue an
1367 |overflow| error unless |needed=mp->pool_size|. Calling |do_compaction|
1368 with |needed=mp->pool_size| supresses all overflow tests.
1370 The compaction process starts with |last_fixed_str| because all lower numbered
1371 strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
1374 str_number last_fixed_str; /* last permanently allocated string */
1375 str_number fixed_str_use; /* number of permanently allocated strings */
1377 @ @<Declare the procedure called |do_compaction|@>=
1378 void mp_do_compaction (MP mp, pool_pointer needed) ;
1381 void mp_do_compaction (MP mp, pool_pointer needed) {
1382 str_number str_use; /* a count of strings in use */
1383 str_number r,s,t; /* strings being manipulated */
1384 pool_pointer p,q; /* destination and source for copying string characters */
1385 @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
1386 r=mp->last_fixed_str;
1389 while ( s!=mp->str_ptr ) {
1390 while ( mp->str_ref[s]==0 ) {
1391 @<Advance |s| and add the old |s| to the list of free string numbers;
1392 then |break| if |s=str_ptr|@>;
1394 r=s; s=mp->next_str[s];
1396 @<Move string |r| back so that |str_start[r]=p|; make |p| the location
1397 after the end of the string@>;
1399 @<Move the current string back so that it starts at |p|@>;
1400 if ( needed<mp->pool_size ) {
1401 @<Make sure that there is room for another string with |needed| characters@>;
1403 @<Account for the compaction and make sure the statistics agree with the
1405 mp->strs_used_up=str_use;
1408 @ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
1409 t=mp->next_str[mp->last_fixed_str];
1410 while (t!=mp->str_ptr && mp->str_ref[t]==max_str_ref) {
1411 incr(mp->fixed_str_use);
1412 mp->last_fixed_str=t;
1415 str_use=mp->fixed_str_use
1417 @ Because of the way |flush_string| has been written, it should never be
1418 necessary to |break| here. The extra line of code seems worthwhile to
1419 preserve the generality of |do_compaction|.
1421 @<Advance |s| and add the old |s| to the list of free string numbers;...@>=
1426 mp->next_str[t]=mp->next_str[mp->str_ptr];
1427 mp->next_str[mp->str_ptr]=t;
1428 if ( s==mp->str_ptr ) break;
1431 @ The string currently starts at |str_start[r]| and ends just before
1432 |str_start[s]|. We don't change |str_start[s]| because it might be needed
1433 to locate the next string.
1435 @<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
1438 while ( q<mp->str_start[s] ) {
1439 mp->str_pool[p]=mp->str_pool[q];
1443 @ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
1444 we do this, anything between them should be moved.
1446 @ @<Move the current string back so that it starts at |p|@>=
1447 q=mp->str_start[mp->str_ptr];
1448 mp->str_start[mp->str_ptr]=p;
1449 while ( q<mp->pool_ptr ) {
1450 mp->str_pool[p]=mp->str_pool[q];
1455 @ We must remember that |str_ptr| is not allowed to reach |mp->max_strings|.
1457 @<Make sure that there is room for another string with |needed| char...@>=
1458 if ( str_use>=mp->max_strings-1 )
1459 mp_reallocate_strings (mp,str_use);
1460 if ( mp->pool_ptr+needed>mp->max_pool_ptr ) {
1461 mp_reallocate_pool(mp, mp->pool_ptr+needed);
1462 mp->max_pool_ptr=mp->pool_ptr+needed;
1466 void mp_reallocate_strings (MP mp, str_number str_use) ;
1467 void mp_reallocate_pool(MP mp, pool_pointer needed) ;
1470 void mp_reallocate_strings (MP mp, str_number str_use) {
1471 while ( str_use>=mp->max_strings-1 ) {
1472 int l = mp->max_strings + (mp->max_strings>>2);
1473 XREALLOC (mp->str_ref, l, int);
1474 XREALLOC (mp->str_start, l, pool_pointer);
1475 XREALLOC (mp->next_str, l, str_number);
1476 mp->max_strings = l;
1479 void mp_reallocate_pool(MP mp, pool_pointer needed) {
1480 while ( needed>mp->pool_size ) {
1481 int l = mp->pool_size + (mp->pool_size>>2);
1482 XREALLOC (mp->str_pool, l, ASCII_code);
1487 @ @<Account for the compaction and make sure the statistics agree with...@>=
1488 if ( (mp->str_start[mp->str_ptr]!=mp->pool_in_use)||(str_use!=mp->strs_in_use) )
1489 mp_confusion(mp, "string");
1490 @:this can't happen string}{\quad string@>
1491 incr(mp->pact_count);
1492 mp->pact_chars=mp->pact_chars+mp->pool_ptr-str_stop(mp->last_fixed_str);
1493 mp->pact_strs=mp->pact_strs+str_use-mp->fixed_str_use;
1495 s=mp->str_ptr; t=str_use;
1496 while ( s<=mp->max_str_ptr ){
1497 if ( t>mp->max_str_ptr ) mp_confusion(mp, "\"");
1498 incr(t); s=mp->next_str[s];
1500 if ( t<=mp->max_str_ptr ) mp_confusion(mp, "\"");
1503 @ A few more global variables are needed to keep track of statistics when
1504 |stat| $\ldots$ |tats| blocks are not commented out.
1507 integer pact_count; /* number of string pool compactions so far */
1508 integer pact_chars; /* total number of characters moved during compactions */
1509 integer pact_strs; /* total number of strings moved during compactions */
1511 @ @<Initialize compaction statistics@>=
1516 @ The following subroutine compares string |s| with another string of the
1517 same length that appears in |buffer| starting at position |k|;
1518 the result is |true| if and only if the strings are equal.
1521 boolean mp_str_eq_buf (MP mp,str_number s, integer k) {
1522 /* test equality of strings */
1523 pool_pointer j; /* running index */
1525 while ( j<str_stop(s) ) {
1526 if ( mp->str_pool[j++]!=mp->buffer[k++] )
1532 @ Here is a similar routine, but it compares two strings in the string pool,
1533 and it does not assume that they have the same length. If the first string
1534 is lexicographically greater than, less than, or equal to the second,
1535 the result is respectively positive, negative, or zero.
1538 integer mp_str_vs_str (MP mp, str_number s, str_number t) {
1539 /* test equality of strings */
1540 pool_pointer j,k; /* running indices */
1541 integer ls,lt; /* lengths */
1542 integer l; /* length remaining to test */
1543 ls=length(s); lt=length(t);
1544 if ( ls<=lt ) l=ls; else l=lt;
1545 j=mp->str_start[s]; k=mp->str_start[t];
1547 if ( mp->str_pool[j]!=mp->str_pool[k] ) {
1548 return (mp->str_pool[j]-mp->str_pool[k]);
1555 @ The initial values of |str_pool|, |str_start|, |pool_ptr|,
1556 and |str_ptr| are computed by the \.{INIMP} program, based in part
1557 on the information that \.{WEB} has output while processing \MP.
1562 void mp_get_strings_started (MP mp) {
1563 /* initializes the string pool,
1564 but returns |false| if something goes wrong */
1565 int k; /* small indices or counters */
1566 str_number g; /* a new string */
1567 mp->pool_ptr=0; mp->str_ptr=0; mp->max_pool_ptr=0; mp->max_str_ptr=0;
1570 mp->pool_in_use=0; mp->strs_in_use=0;
1571 mp->max_pl_used=0; mp->max_strs_used=0;
1572 @<Initialize compaction statistics@>;
1574 @<Make the first 256 strings@>;
1575 g=mp_make_string(mp); /* string 256 == "" */
1576 mp->str_ref[g]=max_str_ref;
1577 mp->last_fixed_str=mp->str_ptr-1;
1578 mp->fixed_str_use=mp->str_ptr;
1583 void mp_get_strings_started (MP mp);
1585 @ The first 256 strings will consist of a single character only.
1587 @<Make the first 256...@>=
1588 for (k=0;k<=255;k++) {
1590 g=mp_make_string(mp);
1591 mp->str_ref[g]=max_str_ref;
1594 @ The first 128 strings will contain 95 standard ASCII characters, and the
1595 other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
1596 unless a system-dependent change is made here. Installations that have
1597 an extended character set, where for example |xchr[032]=@t\.{'^^Z'}@>|,
1598 would like string 032 to be printed as the single character 032 instead
1599 of the three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
1600 even people with an extended character set will want to represent string
1601 015 by \.{\^\^M}, since 015 is ASCII's ``carriage return'' code; the idea is
1602 to produce visible strings instead of tabs or line-feeds or carriage-returns
1603 or bell-rings or characters that are treated anomalously in text files.
1605 Unprintable characters of codes 128--255 are, similarly, rendered
1606 \.{\^\^80}--\.{\^\^ff}.
1608 The boolean expression defined here should be |true| unless \MP\ internal
1609 code number~|k| corresponds to a non-troublesome visible symbol in the
1610 local character set.
1611 If character |k| cannot be printed, and |k<0200|, then character |k+0100| or
1612 |k-0100| must be printable; moreover, ASCII codes |[060..071, 0141..0146]|
1614 @^character set dependencies@>
1615 @^system dependencies@>
1617 @<Character |k| cannot be printed@>=
1620 @* \[5] On-line and off-line printing.
1621 Messages that are sent to a user's terminal and to the transcript-log file
1622 are produced by several `|print|' procedures. These procedures will
1623 direct their output to a variety of places, based on the setting of
1624 the global variable |selector|, which has the following possible
1628 \hang |term_and_log|, the normal setting, prints on the terminal and on the
1631 \hang |log_only|, prints only on the transcript file.
1633 \hang |term_only|, prints only on the terminal.
1635 \hang |no_print|, doesn't print at all. This is used only in rare cases
1636 before the transcript file is open.
1638 \hang |pseudo|, puts output into a cyclic buffer that is used
1639 by the |show_context| routine; when we get to that routine we shall discuss
1640 the reasoning behind this curious mode.
1642 \hang |new_string|, appends the output to the current string in the
1645 \hang |>=write_file| prints on one of the files used for the \&{write}
1646 @:write_}{\&{write} primitive@>
1650 \noindent The symbolic names `|term_and_log|', etc., have been assigned
1651 numeric codes that satisfy the convenient relations |no_print+1=term_only|,
1652 |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
1653 relations are not used when |selector| could be |pseudo|, or |new_string|.
1654 We need not check for unprintable characters when |selector<pseudo|.
1656 Three additional global variables, |tally|, |term_offset| and |file_offset|
1657 record the number of characters that have been printed
1658 since they were most recently cleared to zero. We use |tally| to record
1659 the length of (possibly very long) stretches of printing; |term_offset|,
1660 and |file_offset|, on the other hand, keep track of how many
1661 characters have appeared so far on the current line that has been output
1662 to the terminal, the transcript file, or the \ps\ output file, respectively.
1664 @d new_string 0 /* printing is deflected to the string pool */
1665 @d pseudo 2 /* special |selector| setting for |show_context| */
1666 @d no_print 3 /* |selector| setting that makes data disappear */
1667 @d term_only 4 /* printing is destined for the terminal only */
1668 @d log_only 5 /* printing is destined for the transcript file only */
1669 @d term_and_log 6 /* normal |selector| setting */
1670 @d write_file 7 /* first write file selector */
1673 void * log_file; /* transcript of \MP\ session */
1674 void * ps_file; /* the generic font output goes here */
1675 unsigned int selector; /* where to print a message */
1676 unsigned char dig[23]; /* digits in a number being output */
1677 integer tally; /* the number of characters recently printed */
1678 unsigned int term_offset;
1679 /* the number of characters on the current terminal line */
1680 unsigned int file_offset;
1681 /* the number of characters on the current file line */
1682 ASCII_code *trick_buf; /* circular buffer for pseudoprinting */
1683 integer trick_count; /* threshold for pseudoprinting, explained later */
1684 integer first_count; /* another variable for pseudoprinting */
1686 @ @<Allocate or initialize ...@>=
1687 memset(mp->dig,0,23);
1688 mp->trick_buf = xmalloc((mp->error_line+1),sizeof(ASCII_code));
1690 @ @<Dealloc variables@>=
1691 xfree(mp->trick_buf);
1693 @ @<Initialize the output routines@>=
1694 mp->selector=term_only; mp->tally=0; mp->term_offset=0; mp->file_offset=0;
1696 @ Macro abbreviations for output to the terminal and to the log file are
1697 defined here for convenience. Some systems need special conventions
1698 for terminal output, and it is possible to adhere to those conventions
1699 by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
1700 @^system dependencies@>
1702 @d do_fprintf(f,b) (mp->write_ascii_file)(f,b)
1703 @d wterm(A) do_fprintf(mp->term_out,(A))
1704 @d wterm_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->term_out,(char *)ss); }
1705 @d wterm_cr do_fprintf(mp->term_out,"\n")
1706 @d wterm_ln(A) { wterm_cr; do_fprintf(mp->term_out,(A)); }
1707 @d wlog(A) do_fprintf(mp->log_file,(A))
1708 @d wlog_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->log_file,(char *)ss); }
1709 @d wlog_cr do_fprintf(mp->log_file, "\n")
1710 @d wlog_ln(A) {wlog_cr; do_fprintf(mp->log_file,(A)); }
1713 @ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
1714 use an array |wr_file| that will be declared later.
1716 @d mp_print_text(A) mp_print_str(mp,text((A)))
1719 void mp_print_ln (MP mp);
1720 void mp_print_visible_char (MP mp, ASCII_code s);
1721 void mp_print_char (MP mp, ASCII_code k);
1722 void mp_print (MP mp, char *s);
1723 void mp_print_str (MP mp, str_number s);
1724 void mp_print_nl (MP mp, char *s);
1725 void mp_print_two (MP mp,scaled x, scaled y) ;
1726 void mp_print_scaled (MP mp,scaled s);
1728 @ @<Basic print...@>=
1729 void mp_print_ln (MP mp) { /* prints an end-of-line */
1730 switch (mp->selector) {
1733 mp->term_offset=0; mp->file_offset=0;
1736 wlog_cr; mp->file_offset=0;
1739 wterm_cr; mp->term_offset=0;
1746 do_fprintf(mp->wr_file[(mp->selector-write_file)],"\n");
1748 } /* note that |tally| is not affected */
1750 @ The |print_visible_char| procedure sends one character to the desired
1751 destination, using the |xchr| array to map it into an external character
1752 compatible with |input_ln|. (It assumes that it is always called with
1753 a visible ASCII character.) All printing comes through |print_ln| or
1754 |print_char|, which ultimately calls |print_visible_char|, hence these
1755 routines are the ones that limit lines to at most |max_print_line| characters.
1756 But we must make an exception for the \ps\ output file since it is not safe
1757 to cut up lines arbitrarily in \ps.
1759 Procedure |unit_str_room| needs to be declared |forward| here because it calls
1760 |do_compaction| and |do_compaction| can call the error routines. Actually,
1761 |unit_str_room| avoids |overflow| errors but it can call |confusion|.
1763 @<Basic printing...@>=
1764 void mp_print_visible_char (MP mp, ASCII_code s) { /* prints a single character */
1765 switch (mp->selector) {
1767 wterm_chr(xchr(s)); wlog_chr(xchr(s));
1768 incr(mp->term_offset); incr(mp->file_offset);
1769 if ( mp->term_offset==(unsigned)mp->max_print_line ) {
1770 wterm_cr; mp->term_offset=0;
1772 if ( mp->file_offset==(unsigned)mp->max_print_line ) {
1773 wlog_cr; mp->file_offset=0;
1777 wlog_chr(xchr(s)); incr(mp->file_offset);
1778 if ( mp->file_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1781 wterm_chr(xchr(s)); incr(mp->term_offset);
1782 if ( mp->term_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1787 if ( mp->tally<mp->trick_count )
1788 mp->trick_buf[mp->tally % mp->error_line]=s;
1791 if ( mp->pool_ptr>=mp->max_pool_ptr ) {
1792 mp_unit_str_room(mp);
1793 if ( mp->pool_ptr>=mp->pool_size )
1794 goto DONE; /* drop characters if string space is full */
1799 { char ss[2]; ss[0] = xchr(s); ss[1]=0;
1800 do_fprintf(mp->wr_file[(mp->selector-write_file)],(char *)ss);
1807 @ The |print_char| procedure sends one character to the desired destination.
1808 File names and string expressions might contain |ASCII_code| values that
1809 can't be printed using |print_visible_char|. These characters will be
1810 printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
1811 (This procedure assumes that it is safe to bypass all checks for unprintable
1812 characters when |selector| is in the range |0..max_write_files-1|.
1813 The user might want to write unprintable characters.
1815 @d print_lc_hex(A) do { l=(A);
1816 mp_print_visible_char(mp, (l<10 ? l+'0' : l-10+'a'));
1819 @<Basic printing...@>=
1820 void mp_print_char (MP mp, ASCII_code k) { /* prints a single character */
1821 int l; /* small index or counter */
1822 if ( mp->selector<pseudo || mp->selector>=write_file) {
1823 mp_print_visible_char(mp, k);
1824 } else if ( @<Character |k| cannot be printed@> ) {
1827 mp_print_visible_char(mp, k+0100);
1828 } else if ( k<0200 ) {
1829 mp_print_visible_char(mp, k-0100);
1831 print_lc_hex(k / 16);
1832 print_lc_hex(k % 16);
1835 mp_print_visible_char(mp, k);
1839 @ An entire string is output by calling |print|. Note that if we are outputting
1840 the single standard ASCII character \.c, we could call |print("c")|, since
1841 |"c"=99| is the number of a single-character string, as explained above. But
1842 |print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
1843 routine when it knows that this is safe. (The present implementation
1844 assumes that it is always safe to print a visible ASCII character.)
1845 @^system dependencies@>
1848 void mp_do_print (MP mp, char *ss, unsigned int len) { /* prints string |s| */
1851 mp_print_char(mp, ss[j]); incr(j);
1857 void mp_print (MP mp, char *ss) {
1858 mp_do_print(mp, ss, strlen(ss));
1860 void mp_print_str (MP mp, str_number s) {
1861 pool_pointer j; /* current character code position */
1862 if ( (s<0)||(s>mp->max_str_ptr) ) {
1863 mp_do_print(mp,"???",3); /* this can't happen */
1867 mp_do_print(mp, (char *)(mp->str_pool+j), (str_stop(s)-j));
1871 @ Here is the very first thing that \MP\ prints: a headline that identifies
1872 the version number and base name. The |term_offset| variable is temporarily
1873 incorrect, but the discrepancy is not serious since we assume that the banner
1874 and mem identifier together will occupy at most |max_print_line|
1875 character positions.
1877 @<Initialize the output...@>=
1879 wterm (version_string);
1880 if (mp->mem_ident!=NULL)
1881 mp_print(mp,mp->mem_ident);
1885 @ The procedure |print_nl| is like |print|, but it makes sure that the
1886 string appears at the beginning of a new line.
1889 void mp_print_nl (MP mp, char *s) { /* prints string |s| at beginning of line */
1890 switch(mp->selector) {
1892 if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_ln(mp);
1895 if ( mp->file_offset>0 ) mp_print_ln(mp);
1898 if ( mp->term_offset>0 ) mp_print_ln(mp);
1904 } /* there are no other cases */
1908 @ An array of digits in the range |0..9| is printed by |print_the_digs|.
1911 void mp_print_the_digs (MP mp, eight_bits k) {
1912 /* prints |dig[k-1]|$\,\ldots\,$|dig[0]| */
1914 decr(k); mp_print_char(mp, '0'+mp->dig[k]);
1918 @ The following procedure, which prints out the decimal representation of a
1919 given integer |n|, has been written carefully so that it works properly
1920 if |n=0| or if |(-n)| would cause overflow. It does not apply |mod| or |div|
1921 to negative arguments, since such operations are not implemented consistently
1922 by all \PASCAL\ compilers.
1925 void mp_print_int (MP mp,integer n) { /* prints an integer in decimal form */
1926 integer m; /* used to negate |n| in possibly dangerous cases */
1927 int k = 0; /* index to current digit; we assume that $|n|<10^{23}$ */
1929 mp_print_char(mp, '-');
1930 if ( n>-100000000 ) {
1933 m=-1-n; n=m / 10; m=(m % 10)+1; k=1;
1937 mp->dig[0]=0; incr(n);
1942 mp->dig[k]=n % 10; n=n / 10; incr(k);
1944 mp_print_the_digs(mp, k);
1948 void mp_print_int (MP mp,integer n);
1950 @ \MP\ also makes use of a trivial procedure to print two digits. The
1951 following subroutine is usually called with a parameter in the range |0<=n<=99|.
1954 void mp_print_dd (MP mp,integer n) { /* prints two least significant digits */
1956 mp_print_char(mp, '0'+(n / 10));
1957 mp_print_char(mp, '0'+(n % 10));
1962 void mp_print_dd (MP mp,integer n);
1964 @ Here is a procedure that asks the user to type a line of input,
1965 assuming that the |selector| setting is either |term_only| or |term_and_log|.
1966 The input is placed into locations |first| through |last-1| of the
1967 |buffer| array, and echoed on the transcript file if appropriate.
1969 This procedure is never called when |interaction<mp_scroll_mode|.
1971 @d prompt_input(A) do {
1972 wake_up_terminal; mp_print(mp, (A)); mp_term_input(mp);
1973 } while (0) /* prints a string and gets a line of input */
1976 void mp_term_input (MP mp) { /* gets a line from the terminal */
1977 size_t k; /* index into |buffer| */
1978 update_terminal; /* Now the user sees the prompt for sure */
1979 if (!mp_input_ln(mp, mp->term_in ))
1980 mp_fatal_error(mp, "End of file on the terminal!");
1981 @.End of file on the terminal@>
1982 mp->term_offset=0; /* the user's line ended with \<\rm return> */
1983 decr(mp->selector); /* prepare to echo the input */
1984 if ( mp->last!=mp->first ) {
1985 for (k=mp->first;k<=mp->last-1;k++) {
1986 mp_print_char(mp, mp->buffer[k]);
1990 mp->buffer[mp->last]='%';
1991 incr(mp->selector); /* restore previous status */
1994 @* \[6] Reporting errors.
1995 When something anomalous is detected, \MP\ typically does something like this:
1996 $$\vbox{\halign{#\hfil\cr
1997 |print_err("Something anomalous has been detected");|\cr
1998 |help3("This is the first line of my offer to help.")|\cr
1999 |("This is the second line. I'm trying to")|\cr
2000 |("explain the best way for you to proceed.");|\cr
2002 A two-line help message would be given using |help2|, etc.; these informal
2003 helps should use simple vocabulary that complements the words used in the
2004 official error message that was printed. (Outside the U.S.A., the help
2005 messages should preferably be translated into the local vernacular. Each
2006 line of help is at most 60 characters long, in the present implementation,
2007 so that |max_print_line| will not be exceeded.)
2009 The |print_err| procedure supplies a `\.!' before the official message,
2010 and makes sure that the terminal is awake if a stop is going to occur.
2011 The |error| procedure supplies a `\..' after the official message, then it
2012 shows the location of the error; and if |interaction=error_stop_mode|,
2013 it also enters into a dialog with the user, during which time the help
2014 message may be printed.
2015 @^system dependencies@>
2017 @ The global variable |interaction| has four settings, representing increasing
2018 amounts of user interaction:
2021 enum mp_interaction_mode {
2022 mp_unspecified_mode=0, /* extra value for command-line switch */
2023 mp_batch_mode, /* omits all stops and omits terminal output */
2024 mp_nonstop_mode, /* omits all stops */
2025 mp_scroll_mode, /* omits error stops */
2026 mp_error_stop_mode, /* stops at every opportunity to interact */
2030 int interaction; /* current level of interaction */
2032 @ @<Option variables@>=
2033 int interaction; /* current level of interaction */
2035 @ Set it here so it can be overwritten by the commandline
2037 @<Allocate or initialize ...@>=
2038 mp->interaction=opt->interaction;
2039 if (mp->interaction==mp_unspecified_mode || mp->interaction>mp_error_stop_mode)
2040 mp->interaction=mp_error_stop_mode;
2041 if (mp->interaction<mp_unspecified_mode)
2042 mp->interaction=mp_batch_mode;
2046 @d print_err(A) mp_print_err(mp,(A))
2049 void mp_print_err(MP mp, char * A);
2052 void mp_print_err(MP mp, char * A) {
2053 if ( mp->interaction==mp_error_stop_mode )
2055 mp_print_nl(mp, "! ");
2061 @ \MP\ is careful not to call |error| when the print |selector| setting
2062 might be unusual. The only possible values of |selector| at the time of
2065 \yskip\hang|no_print| (when |interaction=mp_batch_mode|
2066 and |log_file| not yet open);
2068 \hang|term_only| (when |interaction>mp_batch_mode| and |log_file| not yet open);
2070 \hang|log_only| (when |interaction=mp_batch_mode| and |log_file| is open);
2072 \hang|term_and_log| (when |interaction>mp_batch_mode| and |log_file| is open).
2074 @<Initialize the print |selector| based on |interaction|@>=
2075 if ( mp->interaction==mp_batch_mode ) mp->selector=no_print; else mp->selector=term_only
2077 @ A global variable |deletions_allowed| is set |false| if the |get_next|
2078 routine is active when |error| is called; this ensures that |get_next|
2079 will never be called recursively.
2082 The global variable |history| records the worst level of error that
2083 has been detected. It has four possible values: |spotless|, |warning_issued|,
2084 |error_message_issued|, and |fatal_error_stop|.
2086 Another global variable, |error_count|, is increased by one when an
2087 |error| occurs without an interactive dialog, and it is reset to zero at
2088 the end of every statement. If |error_count| reaches 100, \MP\ decides
2089 that there is no point in continuing further.
2092 enum mp_history_states {
2093 mp_spotless=0, /* |history| value when nothing has been amiss yet */
2094 mp_warning_issued, /* |history| value when |begin_diagnostic| has been called */
2095 mp_error_message_issued, /* |history| value when |error| has been called */
2096 mp_fatal_error_stop, /* |history| value when termination was premature */
2100 boolean deletions_allowed; /* is it safe for |error| to call |get_next|? */
2101 int history; /* has the source input been clean so far? */
2102 int error_count; /* the number of scrolled errors since the last statement ended */
2104 @ The value of |history| is initially |fatal_error_stop|, but it will
2105 be changed to |spotless| if \MP\ survives the initialization process.
2107 @<Allocate or ...@>=
2108 mp->deletions_allowed=true; mp->error_count=0; /* |history| is initialized elsewhere */
2110 @ Since errors can be detected almost anywhere in \MP, we want to declare the
2111 error procedures near the beginning of the program. But the error procedures
2112 in turn use some other procedures, which need to be declared |forward|
2113 before we get to |error| itself.
2115 It is possible for |error| to be called recursively if some error arises
2116 when |get_next| is being used to delete a token, and/or if some fatal error
2117 occurs while \MP\ is trying to fix a non-fatal one. But such recursion
2119 is never more than two levels deep.
2122 void mp_get_next (MP mp);
2123 void mp_term_input (MP mp);
2124 void mp_show_context (MP mp);
2125 void mp_begin_file_reading (MP mp);
2126 void mp_open_log_file (MP mp);
2127 void mp_clear_for_error_prompt (MP mp);
2128 void mp_debug_help (MP mp);
2129 @<Declare the procedure called |flush_string|@>
2132 void mp_normalize_selector (MP mp);
2134 @ Individual lines of help are recorded in the array |help_line|, which
2135 contains entries in positions |0..(help_ptr-1)|. They should be printed
2136 in reverse order, i.e., with |help_line[0]| appearing last.
2138 @d hlp1(A) mp->help_line[0]=(A); }
2139 @d hlp2(A) mp->help_line[1]=(A); hlp1
2140 @d hlp3(A) mp->help_line[2]=(A); hlp2
2141 @d hlp4(A) mp->help_line[3]=(A); hlp3
2142 @d hlp5(A) mp->help_line[4]=(A); hlp4
2143 @d hlp6(A) mp->help_line[5]=(A); hlp5
2144 @d help0 mp->help_ptr=0 /* sometimes there might be no help */
2145 @d help1 { mp->help_ptr=1; hlp1 /* use this with one help line */
2146 @d help2 { mp->help_ptr=2; hlp2 /* use this with two help lines */
2147 @d help3 { mp->help_ptr=3; hlp3 /* use this with three help lines */
2148 @d help4 { mp->help_ptr=4; hlp4 /* use this with four help lines */
2149 @d help5 { mp->help_ptr=5; hlp5 /* use this with five help lines */
2150 @d help6 { mp->help_ptr=6; hlp6 /* use this with six help lines */
2153 char * help_line[6]; /* helps for the next |error| */
2154 unsigned int help_ptr; /* the number of help lines present */
2155 boolean use_err_help; /* should the |err_help| string be shown? */
2156 str_number err_help; /* a string set up by \&{errhelp} */
2157 str_number filename_template; /* a string set up by \&{filenametemplate} */
2159 @ @<Allocate or ...@>=
2160 mp->help_ptr=0; mp->use_err_help=false; mp->err_help=0; mp->filename_template=0;
2162 @ The |jump_out| procedure just cuts across all active procedure levels and
2163 goes to |end_of_MP|. This is the only nonlocal |goto| statement in the
2164 whole program. It is used when there is no recovery from a particular error.
2166 The program uses a |jump_buf| to handle this, this is initialized at three
2167 spots: the start of |mp_new|, the start of |mp_initialize|, and the start
2168 of |mp_run|. Those are the only library enty points.
2170 @^system dependencies@>
2175 @ @<Install and test the non-local jump buffer@>=
2176 if (setjmp(mp->jump_buf) != 0) return mp->history;
2178 @ @<Setup the non-local jump buffer in |mp_new|@>=
2179 if (setjmp(mp->jump_buf) != 0) return NULL;
2181 @ If |mp->internal| is zero, then a crash occured during initialization,
2182 and it is not safe to run |mp_close_files_and_terminate|.
2185 void mp_jump_out (MP mp) {
2186 if(mp->internal!=NULL)
2187 mp_close_files_and_terminate(mp);
2188 longjmp(mp->jump_buf,1);
2191 @ Here now is the general |error| routine.
2194 void mp_error (MP mp) { /* completes the job of error reporting */
2195 ASCII_code c; /* what the user types */
2196 integer s1,s2,s3; /* used to save global variables when deleting tokens */
2197 pool_pointer j; /* character position being printed */
2198 if ( mp->history<mp_error_message_issued ) mp->history=mp_error_message_issued;
2199 mp_print_char(mp, '.'); mp_show_context(mp);
2200 if ( mp->interaction==mp_error_stop_mode ) {
2201 @<Get user's advice and |return|@>;
2203 incr(mp->error_count);
2204 if ( mp->error_count==100 ) {
2205 mp_print_nl(mp,"(That makes 100 errors; please try again.)");
2206 @.That makes 100 errors...@>
2207 mp->history=mp_fatal_error_stop; mp_jump_out(mp);
2209 @<Put help message on the transcript file@>;
2211 void mp_warn (MP mp, char *msg) {
2212 int saved_selector = mp->selector;
2213 mp_normalize_selector(mp);
2214 mp_print_nl(mp,"Warning: ");
2216 mp->selector = saved_selector;
2219 @ @<Exported function ...@>=
2220 void mp_error (MP mp);
2221 void mp_warn (MP mp, char *msg);
2224 @ @<Get user's advice...@>=
2227 mp_clear_for_error_prompt(mp); prompt_input("? ");
2229 if ( mp->last==mp->first ) return;
2230 c=mp->buffer[mp->first];
2231 if ( c>='a' ) c=c+'A'-'a'; /* convert to uppercase */
2232 @<Interpret code |c| and |return| if done@>;
2235 @ It is desirable to provide an `\.E' option here that gives the user
2236 an easy way to return from \MP\ to the system editor, with the offending
2237 line ready to be edited. But such an extension requires some system
2238 wizardry, so the present implementation simply types out the name of the
2240 edited and the relevant line number.
2241 @^system dependencies@>
2244 typedef void (*mp_run_editor_command)(MP, char *, int);
2247 mp_run_editor_command run_editor;
2249 @ @<Option variables@>=
2250 mp_run_editor_command run_editor;
2252 @ @<Allocate or initialize ...@>=
2253 set_callback_option(run_editor);
2256 void mp_run_editor (MP mp, char *fname, int fline);
2258 @ @c void mp_run_editor (MP mp, char *fname, int fline) {
2259 mp_print_nl(mp, "You want to edit file ");
2260 @.You want to edit file x@>
2261 mp_print(mp, fname);
2262 mp_print(mp, " at line ");
2263 mp_print_int(mp, fline);
2264 mp->interaction=mp_scroll_mode;
2269 There is a secret `\.D' option available when the debugging routines haven't
2273 @<Interpret code |c| and |return| if done@>=
2275 case '0': case '1': case '2': case '3': case '4':
2276 case '5': case '6': case '7': case '8': case '9':
2277 if ( mp->deletions_allowed ) {
2278 @<Delete |c-"0"| tokens and |continue|@>;
2283 mp_debug_help(mp); continue;
2287 if ( mp->file_ptr>0 ){
2288 (mp->run_editor)(mp,
2289 str(mp->input_stack[mp->file_ptr].name_field),
2294 @<Print the help information and |continue|@>;
2297 @<Introduce new material from the terminal and |return|@>;
2299 case 'Q': case 'R': case 'S':
2300 @<Change the interaction level and |return|@>;
2303 mp->interaction=mp_scroll_mode; mp_jump_out(mp);
2308 @<Print the menu of available options@>
2310 @ @<Print the menu...@>=
2312 mp_print(mp, "Type <return> to proceed, S to scroll future error messages,");
2313 @.Type <return> to proceed...@>
2314 mp_print_nl(mp, "R to run without stopping, Q to run quietly,");
2315 mp_print_nl(mp, "I to insert something, ");
2316 if ( mp->file_ptr>0 )
2317 mp_print(mp, "E to edit your file,");
2318 if ( mp->deletions_allowed )
2319 mp_print_nl(mp, "1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
2320 mp_print_nl(mp, "H for help, X to quit.");
2323 @ Here the author of \MP\ apologizes for making use of the numerical
2324 relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
2325 |mp_batch_mode|, |mp_nonstop_mode|, |mp_scroll_mode|.
2326 @^Knuth, Donald Ervin@>
2328 @<Change the interaction...@>=
2330 mp->error_count=0; mp->interaction=mp_batch_mode+c-'Q';
2331 mp_print(mp, "OK, entering ");
2333 case 'Q': mp_print(mp, "batchmode"); decr(mp->selector); break;
2334 case 'R': mp_print(mp, "nonstopmode"); break;
2335 case 'S': mp_print(mp, "scrollmode"); break;
2336 } /* there are no other cases */
2337 mp_print(mp, "..."); mp_print_ln(mp); update_terminal; return;
2340 @ When the following code is executed, |buffer[(first+1)..(last-1)]| may
2341 contain the material inserted by the user; otherwise another prompt will
2342 be given. In order to understand this part of the program fully, you need
2343 to be familiar with \MP's input stacks.
2345 @<Introduce new material...@>=
2347 mp_begin_file_reading(mp); /* enter a new syntactic level for terminal input */
2348 if ( mp->last>mp->first+1 ) {
2349 loc=mp->first+1; mp->buffer[mp->first]=' ';
2351 prompt_input("insert>"); loc=mp->first;
2354 mp->first=mp->last+1; mp->cur_input.limit_field=mp->last; return;
2357 @ We allow deletion of up to 99 tokens at a time.
2359 @<Delete |c-"0"| tokens...@>=
2361 s1=mp->cur_cmd; s2=mp->cur_mod; s3=mp->cur_sym; mp->OK_to_interrupt=false;
2362 if ( (mp->last>mp->first+1) && (mp->buffer[mp->first+1]>='0')&&(mp->buffer[mp->first+1]<='9') )
2363 c=c*10+mp->buffer[mp->first+1]-'0'*11;
2367 mp_get_next(mp); /* one-level recursive call of |error| is possible */
2368 @<Decrease the string reference count, if the current token is a string@>;
2371 mp->cur_cmd=s1; mp->cur_mod=s2; mp->cur_sym=s3; mp->OK_to_interrupt=true;
2372 help2("I have just deleted some text, as you asked.")
2373 ("You can now delete more, or insert, or whatever.");
2374 mp_show_context(mp);
2378 @ @<Print the help info...@>=
2380 if ( mp->use_err_help ) {
2381 @<Print the string |err_help|, possibly on several lines@>;
2382 mp->use_err_help=false;
2384 if ( mp->help_ptr==0 ) {
2385 help2("Sorry, I don't know how to help in this situation.")
2386 ("Maybe you should try asking a human?");
2389 decr(mp->help_ptr); mp_print(mp, mp->help_line[mp->help_ptr]); mp_print_ln(mp);
2390 } while (mp->help_ptr!=0);
2392 help4("Sorry, I already gave what help I could...")
2393 ("Maybe you should try asking a human?")
2394 ("An error might have occurred before I noticed any problems.")
2395 ("``If all else fails, read the instructions.''");
2399 @ @<Print the string |err_help|, possibly on several lines@>=
2400 j=mp->str_start[mp->err_help];
2401 while ( j<str_stop(mp->err_help) ) {
2402 if ( mp->str_pool[j]!='%' ) mp_print_str(mp, mp->str_pool[j]);
2403 else if ( j+1==str_stop(mp->err_help) ) mp_print_ln(mp);
2404 else if ( mp->str_pool[j+1]!='%' ) mp_print_ln(mp);
2405 else { incr(j); mp_print_char(mp, '%'); };
2409 @ @<Put help message on the transcript file@>=
2410 if ( mp->interaction>mp_batch_mode ) decr(mp->selector); /* avoid terminal output */
2411 if ( mp->use_err_help ) {
2412 mp_print_nl(mp, "");
2413 @<Print the string |err_help|, possibly on several lines@>;
2415 while ( mp->help_ptr>0 ){
2416 decr(mp->help_ptr); mp_print_nl(mp, mp->help_line[mp->help_ptr]);
2420 if ( mp->interaction>mp_batch_mode ) incr(mp->selector); /* re-enable terminal output */
2423 @ In anomalous cases, the print selector might be in an unknown state;
2424 the following subroutine is called to fix things just enough to keep
2425 running a bit longer.
2428 void mp_normalize_selector (MP mp) {
2429 if ( mp->log_opened ) mp->selector=term_and_log;
2430 else mp->selector=term_only;
2431 if ( mp->job_name==NULL ) mp_open_log_file(mp);
2432 if ( mp->interaction==mp_batch_mode ) decr(mp->selector);
2435 @ The following procedure prints \MP's last words before dying.
2437 @d succumb { if ( mp->interaction==mp_error_stop_mode )
2438 mp->interaction=mp_scroll_mode; /* no more interaction */
2439 if ( mp->log_opened ) mp_error(mp);
2440 /* if ( mp->interaction>mp_batch_mode ) mp_debug_help(mp); */
2441 mp->history=mp_fatal_error_stop; mp_jump_out(mp); /* irrecoverable error */
2445 void mp_fatal_error (MP mp, char *s) { /* prints |s|, and that's it */
2446 mp_normalize_selector(mp);
2447 print_err("Emergency stop"); help1(s); succumb;
2451 @ @<Exported function ...@>=
2452 void mp_fatal_error (MP mp, char *s);
2455 @ Here is the most dreaded error message.
2458 void mp_overflow (MP mp, char *s, integer n) { /* stop due to finiteness */
2459 mp_normalize_selector(mp);
2460 print_err("MetaPost capacity exceeded, sorry [");
2461 @.MetaPost capacity exceeded ...@>
2462 mp_print(mp, s); mp_print_char(mp, '='); mp_print_int(mp, n); mp_print_char(mp, ']');
2463 help2("If you really absolutely need more capacity,")
2464 ("you can ask a wizard to enlarge me.");
2468 @ @<Internal library declarations@>=
2469 void mp_overflow (MP mp, char *s, integer n);
2471 @ The program might sometime run completely amok, at which point there is
2472 no choice but to stop. If no previous error has been detected, that's bad
2473 news; a message is printed that is really intended for the \MP\
2474 maintenance person instead of the user (unless the user has been
2475 particularly diabolical). The index entries for `this can't happen' may
2476 help to pinpoint the problem.
2479 @<Internal library ...@>=
2480 void mp_confusion (MP mp,char *s);
2482 @ @<Error hand...@>=
2483 void mp_confusion (MP mp,char *s) {
2484 /* consistency check violated; |s| tells where */
2485 mp_normalize_selector(mp);
2486 if ( mp->history<mp_error_message_issued ) {
2487 print_err("This can't happen ("); mp_print(mp, s); mp_print_char(mp, ')');
2488 @.This can't happen@>
2489 help1("I'm broken. Please show this to someone who can fix can fix");
2491 print_err("I can\'t go on meeting you like this");
2492 @.I can't go on...@>
2493 help2("One of your faux pas seems to have wounded me deeply...")
2494 ("in fact, I'm barely conscious. Please fix it and try again.");
2499 @ Users occasionally want to interrupt \MP\ while it's running.
2500 If the \PASCAL\ runtime system allows this, one can implement
2501 a routine that sets the global variable |interrupt| to some nonzero value
2502 when such an interrupt is signaled. Otherwise there is probably at least
2503 a way to make |interrupt| nonzero using the \PASCAL\ debugger.
2504 @^system dependencies@>
2507 @d check_interrupt { if ( mp->interrupt!=0 )
2508 mp_pause_for_instructions(mp); }
2511 integer interrupt; /* should \MP\ pause for instructions? */
2512 boolean OK_to_interrupt; /* should interrupts be observed? */
2514 @ @<Allocate or ...@>=
2515 mp->interrupt=0; mp->OK_to_interrupt=true;
2517 @ When an interrupt has been detected, the program goes into its
2518 highest interaction level and lets the user have the full flexibility of
2519 the |error| routine. \MP\ checks for interrupts only at times when it is
2523 void mp_pause_for_instructions (MP mp) {
2524 if ( mp->OK_to_interrupt ) {
2525 mp->interaction=mp_error_stop_mode;
2526 if ( (mp->selector==log_only)||(mp->selector==no_print) )
2528 print_err("Interruption");
2531 ("Try to insert some instructions for me (e.g.,`I show x'),")
2532 ("unless you just want to quit by typing `X'.");
2533 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
2538 @ Many of \MP's error messages state that a missing token has been
2539 inserted behind the scenes. We can save string space and program space
2540 by putting this common code into a subroutine.
2543 void mp_missing_err (MP mp, char *s) {
2544 print_err("Missing `"); mp_print(mp, s); mp_print(mp, "' has been inserted");
2545 @.Missing...inserted@>
2548 @* \[7] Arithmetic with scaled numbers.
2549 The principal computations performed by \MP\ are done entirely in terms of
2550 integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
2551 program can be carried out in exactly the same way on a wide variety of
2552 computers, including some small ones.
2555 But \PASCAL\ does not define the |div|
2556 operation in the case of negative dividends; for example, the result of
2557 |(-2*n-1) div 2| is |-(n+1)| on some computers and |-n| on others.
2558 There are two principal types of arithmetic: ``translation-preserving,''
2559 in which the identity |(a+q*b)div b=(a div b)+q| is valid; and
2560 ``negation-preserving,'' in which |(-a)div b=-(a div b)|. This leads to
2561 two \MP s, which can produce different results, although the differences
2562 should be negligible when the language is being used properly.
2563 The \TeX\ processor has been defined carefully so that both varieties
2564 of arithmetic will produce identical output, but it would be too
2565 inefficient to constrain \MP\ in a similar way.
2567 @d el_gordo 017777777777 /* $2^{31}-1$, the largest value that \MP\ likes */
2569 @ One of \MP's most common operations is the calculation of
2570 $\lfloor{a+b\over2}\rfloor$,
2571 the midpoint of two given integers |a| and~|b|. The only decent way to do
2572 this in \PASCAL\ is to write `|(a+b) div 2|'; but on most machines it is
2573 far more efficient to calculate `|(a+b)| right shifted one bit'.
2575 Therefore the midpoint operation will always be denoted by `|half(a+b)|'
2576 in this program. If \MP\ is being implemented with languages that permit
2577 binary shifting, the |half| macro should be changed to make this operation
2578 as efficient as possible. Since some languages have shift operators that can
2579 only be trusted to work on positive numbers, there is also a macro |halfp|
2580 that is used only when the quantity being halved is known to be positive
2583 @d half(A) ((A) / 2)
2584 @d halfp(A) ((A) / 2)
2586 @ A single computation might use several subroutine calls, and it is
2587 desirable to avoid producing multiple error messages in case of arithmetic
2588 overflow. So the routines below set the global variable |arith_error| to |true|
2589 instead of reporting errors directly to the user.
2592 boolean arith_error; /* has arithmetic overflow occurred recently? */
2594 @ @<Allocate or ...@>=
2595 mp->arith_error=false;
2597 @ At crucial points the program will say |check_arith|, to test if
2598 an arithmetic error has been detected.
2600 @d check_arith { if ( mp->arith_error ) mp_clear_arith(mp); }
2603 void mp_clear_arith (MP mp) {
2604 print_err("Arithmetic overflow");
2605 @.Arithmetic overflow@>
2606 help4("Uh, oh. A little while ago one of the quantities that I was")
2607 ("computing got too large, so I'm afraid your answers will be")
2608 ("somewhat askew. You'll probably have to adopt different")
2609 ("tactics next time. But I shall try to carry on anyway.");
2611 mp->arith_error=false;
2614 @ Addition is not always checked to make sure that it doesn't overflow,
2615 but in places where overflow isn't too unlikely the |slow_add| routine
2618 @c integer mp_slow_add (MP mp,integer x, integer y) {
2620 if ( y<=el_gordo-x ) {
2623 mp->arith_error=true;
2626 } else if ( -y<=el_gordo+x ) {
2629 mp->arith_error=true;
2634 @ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
2635 of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
2636 positions from the right end of a binary computer word.
2638 @d quarter_unit 040000 /* $2^{14}$, represents 0.250000 */
2639 @d half_unit 0100000 /* $2^{15}$, represents 0.50000 */
2640 @d three_quarter_unit 0140000 /* $3\cdot2^{14}$, represents 0.75000 */
2641 @d unity 0200000 /* $2^{16}$, represents 1.00000 */
2642 @d two 0400000 /* $2^{17}$, represents 2.00000 */
2643 @d three 0600000 /* $2^{17}+2^{16}$, represents 3.00000 */
2646 typedef integer scaled; /* this type is used for scaled integers */
2647 typedef unsigned char small_number; /* this type is self-explanatory */
2649 @ The following function is used to create a scaled integer from a given decimal
2650 fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
2651 given in |dig[i]|, and the calculation produces a correctly rounded result.
2654 scaled mp_round_decimals (MP mp,small_number k) {
2655 /* converts a decimal fraction */
2656 integer a = 0; /* the accumulator */
2658 a=(a+mp->dig[k]*two) / 10;
2663 @ Conversely, here is a procedure analogous to |print_int|. If the output
2664 of this procedure is subsequently read by \MP\ and converted by the
2665 |round_decimals| routine above, it turns out that the original value will
2666 be reproduced exactly. A decimal point is printed only if the value is
2667 not an integer. If there is more than one way to print the result with
2668 the optimum number of digits following the decimal point, the closest
2669 possible value is given.
2671 The invariant relation in the \&{repeat} loop is that a sequence of
2672 decimal digits yet to be printed will yield the original number if and only if
2673 they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
2674 We can stop if and only if $f=0$ satisfies this condition; the loop will
2675 terminate before $s$ can possibly become zero.
2677 @<Basic printing...@>=
2678 void mp_print_scaled (MP mp,scaled s) { /* prints scaled real, rounded to five digits */
2679 scaled delta; /* amount of allowable inaccuracy */
2681 mp_print_char(mp, '-');
2682 negate(s); /* print the sign, if negative */
2684 mp_print_int(mp, s / unity); /* print the integer part */
2688 mp_print_char(mp, '.');
2691 s=s+0100000-(delta / 2); /* round the final digit */
2692 mp_print_char(mp, '0'+(s / unity));
2699 @ We often want to print two scaled quantities in parentheses,
2700 separated by a comma.
2702 @<Basic printing...@>=
2703 void mp_print_two (MP mp,scaled x, scaled y) { /* prints `|(x,y)|' */
2704 mp_print_char(mp, '(');
2705 mp_print_scaled(mp, x);
2706 mp_print_char(mp, ',');
2707 mp_print_scaled(mp, y);
2708 mp_print_char(mp, ')');
2711 @ The |scaled| quantities in \MP\ programs are generally supposed to be
2712 less than $2^{12}$ in absolute value, so \MP\ does much of its internal
2713 arithmetic with 28~significant bits of precision. A |fraction| denotes
2714 a scaled integer whose binary point is assumed to be 28 bit positions
2717 @d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
2718 @d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
2719 @d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
2720 @d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
2721 @d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */
2724 typedef integer fraction; /* this type is used for scaled fractions */
2726 @ In fact, the two sorts of scaling discussed above aren't quite
2727 sufficient; \MP\ has yet another, used internally to keep track of angles
2728 in units of $2^{-20}$ degrees.
2730 @d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
2731 @d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
2732 @d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
2733 @d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */
2736 typedef integer angle; /* this type is used for scaled angles */
2738 @ The |make_fraction| routine produces the |fraction| equivalent of
2739 |p/q|, given integers |p| and~|q|; it computes the integer
2740 $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
2741 positive. If |p| and |q| are both of the same scaled type |t|,
2742 the ``type relation'' |make_fraction(t,t)=fraction| is valid;
2743 and it's also possible to use the subroutine ``backwards,'' using
2744 the relation |make_fraction(t,fraction)=t| between scaled types.
2746 If the result would have magnitude $2^{31}$ or more, |make_fraction|
2747 sets |arith_error:=true|. Most of \MP's internal computations have
2748 been designed to avoid this sort of error.
2750 If this subroutine were programmed in assembly language on a typical
2751 machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
2752 double-precision product can often be input to a fixed-point division
2753 instruction. But when we are restricted to \PASCAL\ arithmetic it
2754 is necessary either to resort to multiple-precision maneuvering
2755 or to use a simple but slow iteration. The multiple-precision technique
2756 would be about three times faster than the code adopted here, but it
2757 would be comparatively long and tricky, involving about sixteen
2758 additional multiplications and divisions.
2760 This operation is part of \MP's ``inner loop''; indeed, it will
2761 consume nearly 10\pct! of the running time (exclusive of input and output)
2762 if the code below is left unchanged. A machine-dependent recoding
2763 will therefore make \MP\ run faster. The present implementation
2764 is highly portable, but slow; it avoids multiplication and division
2765 except in the initial stage. System wizards should be careful to
2766 replace it with a routine that is guaranteed to produce identical
2767 results in all cases.
2768 @^system dependencies@>
2770 As noted below, a few more routines should also be replaced by machine-dependent
2771 code, for efficiency. But when a procedure is not part of the ``inner loop,''
2772 such changes aren't advisable; simplicity and robustness are
2773 preferable to trickery, unless the cost is too high.
2777 fraction mp_make_fraction (MP mp,integer p, integer q);
2778 integer mp_take_scaled (MP mp,integer q, scaled f) ;
2780 @ If FIXPT is not defined, we need these preprocessor values
2782 @d ELGORDO 0x7fffffff
2783 @d TWEXP31 2147483648.0
2784 @d TWEXP28 268435456.0
2786 @d TWEXP_16 (1.0/65536.0)
2787 @d TWEXP_28 (1.0/268435456.0)
2791 fraction mp_make_fraction (MP mp,integer p, integer q) {
2793 integer f; /* the fraction bits, with a leading 1 bit */
2794 integer n; /* the integer part of $\vert p/q\vert$ */
2795 integer be_careful; /* disables certain compiler optimizations */
2796 boolean negative = false; /* should the result be negated? */
2798 negate(p); negative=true;
2802 if ( q==0 ) mp_confusion(mp, '/');
2804 @:this can't happen /}{\quad \./@>
2805 negate(q); negative = ! negative;
2809 mp->arith_error=true;
2810 return ( negative ? -el_gordo : el_gordo);
2812 n=(n-1)*fraction_one;
2813 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
2814 return (negative ? (-(f+n)) : (f+n));
2820 if (q==0) mp_confusion(mp,'/');
2822 d = TWEXP28 * (double)p /(double)q;
2825 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2827 if (d==i && ( ((q>0 ? -q : q)&077777)
2828 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2831 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2833 if (d==i && ( ((q>0 ? q : -q)&077777)
2834 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2840 @ The |repeat| loop here preserves the following invariant relations
2841 between |f|, |p|, and~|q|:
2842 (i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
2843 $p_0$ is the original value of~$p$.
2845 Notice that the computation specifies
2846 |(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
2847 Let us hope that optimizing compilers do not miss this point; a
2848 special variable |be_careful| is used to emphasize the necessary
2849 order of computation. Optimizing compilers should keep |be_careful|
2850 in a register, not store it in memory.
2853 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
2857 be_careful=p-q; p=be_careful+p;
2863 } while (f<fraction_one);
2865 if ( be_careful+p>=0 ) incr(f);
2868 @ The dual of |make_fraction| is |take_fraction|, which multiplies a
2869 given integer~|q| by a fraction~|f|. When the operands are positive, it
2870 computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
2873 This routine is even more ``inner loopy'' than |make_fraction|;
2874 the present implementation consumes almost 20\pct! of \MP's computation
2875 time during typical jobs, so a machine-language substitute is advisable.
2876 @^inner loop@> @^system dependencies@>
2879 integer mp_take_fraction (MP mp,integer q, fraction f) ;
2883 integer mp_take_fraction (MP mp,integer q, fraction f) {
2884 integer p; /* the fraction so far */
2885 boolean negative; /* should the result be negated? */
2886 integer n; /* additional multiple of $q$ */
2887 integer be_careful; /* disables certain compiler optimizations */
2888 @<Reduce to the case that |f>=0| and |q>0|@>;
2889 if ( f<fraction_one ) {
2892 n=f / fraction_one; f=f % fraction_one;
2893 if ( q<=el_gordo / n ) {
2896 mp->arith_error=true; n=el_gordo;
2900 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
2901 be_careful=n-el_gordo;
2902 if ( be_careful+p>0 ){
2903 mp->arith_error=true; n=el_gordo-p;
2910 integer mp_take_fraction (MP mp,integer p, fraction q) {
2913 d = (double)p * (double)q * TWEXP_28;
2917 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2918 mp->arith_error = true;
2922 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2926 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2927 mp->arith_error = true;
2931 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2937 @ @<Reduce to the case that |f>=0| and |q>0|@>=
2941 negate( f); negative=true;
2944 negate(q); negative=! negative;
2947 @ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
2948 =\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
2949 $f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
2952 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
2953 p=fraction_half; /* that's $2^{27}$; the invariants hold now with $k=28$ */
2954 if ( q<fraction_four ) {
2956 if ( odd(f) ) p=halfp(p+q); else p=halfp(p);
2961 if ( odd(f) ) p=p+halfp(q-p); else p=halfp(p);
2967 @ When we want to multiply something by a |scaled| quantity, we use a scheme
2968 analogous to |take_fraction| but with a different scaling.
2969 Given positive operands, |take_scaled|
2970 computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
2972 Once again it is a good idea to use a machine-language replacement if
2973 possible; otherwise |take_scaled| will use more than 2\pct! of the running time
2974 when the Computer Modern fonts are being generated.
2979 integer mp_take_scaled (MP mp,integer q, scaled f) {
2980 integer p; /* the fraction so far */
2981 boolean negative; /* should the result be negated? */
2982 integer n; /* additional multiple of $q$ */
2983 integer be_careful; /* disables certain compiler optimizations */
2984 @<Reduce to the case that |f>=0| and |q>0|@>;
2988 n=f / unity; f=f % unity;
2989 if ( q<=el_gordo / n ) {
2992 mp->arith_error=true; n=el_gordo;
2996 @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
2997 be_careful=n-el_gordo;
2998 if ( be_careful+p>0 ) {
2999 mp->arith_error=true; n=el_gordo-p;
3001 return ( negative ?(-(n+p)) :(n+p));
3003 integer mp_take_scaled (MP mp,integer p, scaled q) {
3006 d = (double)p * (double)q * TWEXP_16;
3010 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
3011 mp->arith_error = true;
3015 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
3019 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
3020 mp->arith_error = true;
3024 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
3030 @ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
3031 p=half_unit; /* that's $2^{15}$; the invariants hold now with $k=16$ */
3033 if ( q<fraction_four ) {
3035 p = (odd(f) ? halfp(p+q) : halfp(p));
3040 p = (odd(f) ? p+halfp(q-p) : halfp(p));
3045 @ For completeness, there's also |make_scaled|, which computes a
3046 quotient as a |scaled| number instead of as a |fraction|.
3047 In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
3048 operands are positive. \ (This procedure is not used especially often,
3049 so it is not part of \MP's inner loop.)
3051 @<Internal library ...@>=
3052 scaled mp_make_scaled (MP mp,integer p, integer q) ;
3055 scaled mp_make_scaled (MP mp,integer p, integer q) {
3057 integer f; /* the fraction bits, with a leading 1 bit */
3058 integer n; /* the integer part of $\vert p/q\vert$ */
3059 boolean negative; /* should the result be negated? */
3060 integer be_careful; /* disables certain compiler optimizations */
3061 if ( p>=0 ) negative=false;
3062 else { negate(p); negative=true; };
3065 if ( q==0 ) mp_confusion(mp, "/");
3066 @:this can't happen /}{\quad \./@>
3068 negate(q); negative=! negative;
3072 mp->arith_error=true;
3073 return (negative ? (-el_gordo) : el_gordo);
3076 @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
3077 return ( negative ? (-(f+n)) :(f+n));
3083 if (q==0) mp_confusion(mp,"/");
3085 d = TWEXP16 * (double)p /(double)q;
3088 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
3090 if (d==i && ( ((q>0 ? -q : q)&077777)
3091 * (((i&037777)<<1)-1) & 04000)!=0) --i;
3094 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
3096 if (d==i && ( ((q>0 ? q : -q)&077777)
3097 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
3103 @ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
3106 be_careful=p-q; p=be_careful+p;
3107 if ( p>=0 ) f=f+f+1;
3108 else { f+=f; p=p+q; };
3111 if ( be_careful+p>=0 ) incr(f)
3113 @ Here is a typical example of how the routines above can be used.
3114 It computes the function
3115 $${1\over3\tau}f(\theta,\phi)=
3116 {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
3117 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3118 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
3119 where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
3120 fudge factor for placing the first control point of a curve that starts
3121 at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
3122 (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
3124 The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
3125 (It's a sum of eight terms whose absolute values can be bounded using
3126 relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
3127 is positive; and since the tension $\tau$ is constrained to be at least
3128 $3\over4$, the numerator is less than $16\over3$. The denominator is
3129 nonnegative and at most~6. Hence the fixed-point calculations below
3130 are guaranteed to stay within the bounds of a 32-bit computer word.
3132 The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
3133 arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
3134 $\sin\phi$, and $\cos\phi$, respectively.
3137 fraction mp_velocity (MP mp,fraction st, fraction ct, fraction sf,
3138 fraction cf, scaled t) {
3139 integer acc,num,denom; /* registers for intermediate calculations */
3140 acc=mp_take_fraction(mp, st-(sf / 16), sf-(st / 16));
3141 acc=mp_take_fraction(mp, acc,ct-cf);
3142 num=fraction_two+mp_take_fraction(mp, acc,379625062);
3143 /* $2^{28}\sqrt2\approx379625062.497$ */
3144 denom=fraction_three+mp_take_fraction(mp, ct,497706707)+mp_take_fraction(mp, cf,307599661);
3145 /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
3146 $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
3147 if ( t!=unity ) num=mp_make_scaled(mp, num,t);
3148 /* |make_scaled(fraction,scaled)=fraction| */
3149 if ( num / 4>=denom )
3150 return fraction_four;
3152 return mp_make_fraction(mp, num, denom);
3155 @ The following somewhat different subroutine tests rigorously if $ab$ is
3156 greater than, equal to, or less than~$cd$,
3157 given integers $(a,b,c,d)$. In most cases a quick decision is reached.
3158 The result is $+1$, 0, or~$-1$ in the three respective cases.
3160 @d mp_ab_vs_cd(M,A,B,C,D) mp_do_ab_vs_cd(A,B,C,D)
3163 integer mp_do_ab_vs_cd (integer a,integer b, integer c, integer d) {
3164 integer q,r; /* temporary registers */
3165 @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
3167 q = a / d; r = c / b;
3169 return ( q>r ? 1 : -1);
3170 q = a % d; r = c % b;
3173 if ( q==0 ) return -1;
3175 } /* now |a>d>0| and |c>b>0| */
3178 @ @<Reduce to the case that |a...@>=
3179 if ( a<0 ) { negate(a); negate(b); };
3180 if ( c<0 ) { negate(c); negate(d); };
3183 if ( (a==0||b==0)&&(c==0||d==0) ) return 0;
3187 return ( a==0 ? 0 : -1);
3188 q=a; a=c; c=q; q=-b; b=-d; d=q;
3189 } else if ( b<=0 ) {
3190 if ( b<0 ) if ( a>0 ) return -1;
3191 return (c==0 ? 0 : -1);
3194 @ We conclude this set of elementary routines with some simple rounding
3195 and truncation operations.
3197 @<Internal library declarations@>=
3198 #define mp_floor_scaled(M,i) ((i)&(-65536))
3199 #define mp_round_unscaled(M,i) (((i>>15)+1)>>1)
3200 #define mp_round_fraction(M,i) (((i>>11)+1)>>1)
3203 @* \[8] Algebraic and transcendental functions.
3204 \MP\ computes all of the necessary special functions from scratch, without
3205 relying on |real| arithmetic or system subroutines for sines, cosines, etc.
3207 @ To get the square root of a |scaled| number |x|, we want to calculate
3208 $s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
3209 integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
3210 determines $s$ by an iterative method that maintains the invariant
3211 relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
3212 -s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
3213 might, however, be zero at the start of the first iteration.
3216 scaled mp_square_rt (MP mp,scaled x) ;
3219 scaled mp_square_rt (MP mp,scaled x) {
3220 small_number k; /* iteration control counter */
3221 integer y,q; /* registers for intermediate calculations */
3223 @<Handle square root of zero or negative argument@>;
3226 while ( x<fraction_two ) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
3229 if ( x<fraction_four ) y=0;
3230 else { x=x-fraction_four; y=1; };
3232 @<Decrease |k| by 1, maintaining the invariant
3233 relations between |x|, |y|, and~|q|@>;
3239 @ @<Handle square root of zero...@>=
3242 print_err("Square root of ");
3243 @.Square root...replaced by 0@>
3244 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3245 help2("Since I don't take square roots of negative numbers,")
3246 ("I'm zeroing this one. Proceed, with fingers crossed.");
3252 @ @<Decrease |k| by 1, maintaining...@>=
3254 if ( x>=fraction_four ) { /* note that |fraction_four=@t$2^{30}$@>| */
3255 x=x-fraction_four; incr(y);
3257 x+=x; y=y+y-q; q+=q;
3258 if ( x>=fraction_four ) { x=x-fraction_four; incr(y); };
3259 if ( y>q ){ y=y-q; q=q+2; }
3260 else if ( y<=0 ) { q=q-2; y=y+q; };
3263 @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
3264 iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
3265 @^Moler, Cleve Barry@>
3266 @^Morrison, Donald Ross@>
3267 of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
3268 in such a way that their Pythagorean sum remains invariant, while the
3269 smaller argument decreases.
3271 @<Internal library ...@>=
3272 integer mp_pyth_add (MP mp,integer a, integer b);
3276 integer mp_pyth_add (MP mp,integer a, integer b) {
3277 fraction r; /* register used to transform |a| and |b| */
3278 boolean big; /* is the result dangerously near $2^{31}$? */
3280 if ( a<b ) { r=b; b=a; a=r; }; /* now |0<=b<=a| */
3282 if ( a<fraction_two ) {
3285 a=a / 4; b=b / 4; big=true;
3286 }; /* we reduced the precision to avoid arithmetic overflow */
3287 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
3289 if ( a<fraction_two ) {
3292 mp->arith_error=true; a=el_gordo;
3299 @ The key idea here is to reflect the vector $(a,b)$ about the
3300 line through $(a,b/2)$.
3302 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
3304 r=mp_make_fraction(mp, b,a);
3305 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3307 r=mp_make_fraction(mp, r,fraction_four+r);
3308 a=a+mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3312 @ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
3313 It converges slowly when $b$ is near $a$, but otherwise it works fine.
3316 integer mp_pyth_sub (MP mp,integer a, integer b) {
3317 fraction r; /* register used to transform |a| and |b| */
3318 boolean big; /* is the input dangerously near $2^{31}$? */
3321 @<Handle erroneous |pyth_sub| and set |a:=0|@>;
3323 if ( a<fraction_four ) {
3326 a=halfp(a); b=halfp(b); big=true;
3328 @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
3329 if ( big ) double(a);
3334 @ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
3336 r=mp_make_fraction(mp, b,a);
3337 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3339 r=mp_make_fraction(mp, r,fraction_four-r);
3340 a=a-mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3343 @ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
3346 print_err("Pythagorean subtraction "); mp_print_scaled(mp, a);
3347 mp_print(mp, "+-+"); mp_print_scaled(mp, b);
3348 mp_print(mp, " has been replaced by 0");
3350 help2("Since I don't take square roots of negative numbers,")
3351 ("I'm zeroing this one. Proceed, with fingers crossed.");
3357 @ The subroutines for logarithm and exponential involve two tables.
3358 The first is simple: |two_to_the[k]| equals $2^k$. The second involves
3359 a bit more calculation, which the author claims to have done correctly:
3360 |spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
3361 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
3364 @d two_to_the(A) (1<<(A))
3367 static const integer spec_log[29] = { 0, /* special logarithms */
3368 93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
3369 1052693, 525315, 262400, 131136, 65552, 32772, 16385,
3370 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1 };
3372 @ @<Local variables for initialization@>=
3373 integer k; /* all-purpose loop index */
3376 @ Here is the routine that calculates $2^8$ times the natural logarithm
3377 of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
3378 when |x| is a given positive integer.
3380 The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
3381 Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
3382 and the logarithm of $2^{30}x$ remains to be added to an accumulator
3383 register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
3384 during the calculation, and sixteen auxiliary bits to extend |y| are
3385 kept in~|z| during the initial argument reduction. (We add
3386 $100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
3387 not become negative; also, the actual amount subtracted from~|y| is~96,
3388 not~100, because we want to add~4 for rounding before the final division by~8.)
3391 scaled mp_m_log (MP mp,scaled x) {
3392 integer y,z; /* auxiliary registers */
3393 integer k; /* iteration counter */
3395 @<Handle non-positive logarithm@>;
3397 y=1302456956+4-100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
3398 z=27595+6553600; /* and $2^{16}\times .421063\approx 27595$ */
3399 while ( x<fraction_four ) {
3400 double(x); y-=93032639; z-=48782;
3401 } /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
3402 y=y+(z / unity); k=2;
3403 while ( x>fraction_four+4 ) {
3404 @<Increase |k| until |x| can be multiplied by a
3405 factor of $2^{-k}$, and adjust $y$ accordingly@>;
3411 @ @<Increase |k| until |x| can...@>=
3413 z=((x-1) / two_to_the(k))+1; /* $z=\lceil x/2^k\rceil$ */
3414 while ( x<fraction_four+z ) { z=halfp(z+1); incr(k); };
3415 y+=spec_log[k]; x-=z;
3418 @ @<Handle non-positive logarithm@>=
3420 print_err("Logarithm of ");
3421 @.Logarithm...replaced by 0@>
3422 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3423 help2("Since I don't take logs of non-positive numbers,")
3424 ("I'm zeroing this one. Proceed, with fingers crossed.");
3429 @ Conversely, the exponential routine calculates $\exp(x/2^8)$,
3430 when |x| is |scaled|. The result is an integer approximation to
3431 $2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
3434 scaled mp_m_exp (MP mp,scaled x) {
3435 small_number k; /* loop control index */
3436 integer y,z; /* auxiliary registers */
3437 if ( x>174436200 ) {
3438 /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
3439 mp->arith_error=true;
3441 } else if ( x<-197694359 ) {
3442 /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
3446 z=-8*x; y=04000000; /* $y=2^{20}$ */
3448 if ( x<=127919879 ) {
3450 /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
3452 z=8*(174436200-x); /* |z| is always nonnegative */
3456 @<Multiply |y| by $\exp(-z/2^{27})$@>;
3458 return ((y+8) / 16);
3464 @ The idea here is that subtracting |spec_log[k]| from |z| corresponds
3465 to multiplying |y| by $1-2^{-k}$.
3467 A subtle point (which had to be checked) was that if $x=127919879$, the
3468 value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
3469 $z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
3470 and by~16 when |k=27|.
3472 @<Multiply |y| by...@>=
3475 while ( z>=spec_log[k] ) {
3477 y=y-1-((y-two_to_the(k-1)) / two_to_the(k));
3482 @ The trigonometric subroutines use an auxiliary table such that
3483 |spec_atan[k]| contains an approximation to the |angle| whose tangent
3484 is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
3487 static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
3488 1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
3489 1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1 };
3491 @ Given integers |x| and |y|, not both zero, the |n_arg| function
3492 returns the |angle| whose tangent points in the direction $(x,y)$.
3493 This subroutine first determines the correct octant, then solves the
3494 problem for |0<=y<=x|, then converts the result appropriately to
3495 return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
3496 (The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
3497 |-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
3499 The octants are represented in a ``Gray code,'' since that turns out
3500 to be computationally simplest.
3506 @d second_octant (first_octant+switch_x_and_y)
3507 @d third_octant (first_octant+switch_x_and_y+negate_x)
3508 @d fourth_octant (first_octant+negate_x)
3509 @d fifth_octant (first_octant+negate_x+negate_y)
3510 @d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
3511 @d seventh_octant (first_octant+switch_x_and_y+negate_y)
3512 @d eighth_octant (first_octant+negate_y)
3515 angle mp_n_arg (MP mp,integer x, integer y) {
3516 angle z; /* auxiliary register */
3517 integer t; /* temporary storage */
3518 small_number k; /* loop counter */
3519 int octant; /* octant code */
3521 octant=first_octant;
3523 negate(x); octant=first_octant+negate_x;
3526 negate(y); octant=octant+negate_y;
3529 t=y; y=x; x=t; octant=octant+switch_x_and_y;
3532 @<Handle undefined arg@>;
3534 @<Set variable |z| to the arg of $(x,y)$@>;
3535 @<Return an appropriate answer based on |z| and |octant|@>;
3539 @ @<Handle undefined arg@>=
3541 print_err("angle(0,0) is taken as zero");
3542 @.angle(0,0)...zero@>
3543 help2("The `angle' between two identical points is undefined.")
3544 ("I'm zeroing this one. Proceed, with fingers crossed.");
3549 @ @<Return an appropriate answer...@>=
3551 case first_octant: return z;
3552 case second_octant: return (ninety_deg-z);
3553 case third_octant: return (ninety_deg+z);
3554 case fourth_octant: return (one_eighty_deg-z);
3555 case fifth_octant: return (z-one_eighty_deg);
3556 case sixth_octant: return (-z-ninety_deg);
3557 case seventh_octant: return (z-ninety_deg);
3558 case eighth_octant: return (-z);
3559 }; /* there are no other cases */
3562 @ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
3563 or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
3566 @<Set variable |z| to the arg...@>=
3567 while ( x>=fraction_two ) {
3568 x=halfp(x); y=halfp(y);
3572 while ( x<fraction_one ) {
3575 @<Increase |z| to the arg of $(x,y)$@>;
3578 @ During the calculations of this section, variables |x| and~|y|
3579 represent actual coordinates $(x,2^{-k}y)$. We will maintain the
3580 condition |x>=y|, so that the tangent will be at most $2^{-k}$.
3581 If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
3582 $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
3583 coordinates whose angle has decreased by~$\phi$; in the special case
3584 $a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
3585 to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
3586 @^Meggitt, John E.@>
3587 {\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
3589 The initial value of |x| will be multiplied by at most
3590 $(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
3591 there is no chance of integer overflow.
3593 @<Increase |z|...@>=
3598 z=z+spec_atan[k]; t=x; x=x+(y / two_to_the(k+k)); y=y-t;
3603 if ( y>x ) { z=z+spec_atan[k]; y=y-x; };
3606 @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
3607 and cosine of that angle. The results of this routine are
3608 stored in global integer variables |n_sin| and |n_cos|.
3611 fraction n_sin;fraction n_cos; /* results computed by |n_sin_cos| */
3613 @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
3614 the purpose of |n_sin_cos(z)| is to set
3615 |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
3616 for some rather large number~|r|. The maximum of |x| and |y|
3617 will be between $2^{28}$ and $2^{30}$, so that there will be hardly
3618 any loss of accuracy. Then |x| and~|y| are divided by~|r|.
3621 void mp_n_sin_cos (MP mp,angle z) { /* computes a multiple of the sine
3623 small_number k; /* loop control variable */
3624 int q; /* specifies the quadrant */
3625 fraction r; /* magnitude of |(x,y)| */
3626 integer x,y,t; /* temporary registers */
3627 while ( z<0 ) z=z+three_sixty_deg;
3628 z=z % three_sixty_deg; /* now |0<=z<three_sixty_deg| */
3629 q=z / forty_five_deg; z=z % forty_five_deg;
3630 x=fraction_one; y=x;
3631 if ( ! odd(q) ) z=forty_five_deg-z;
3632 @<Subtract angle |z| from |(x,y)|@>;
3633 @<Convert |(x,y)| to the octant determined by~|q|@>;
3634 r=mp_pyth_add(mp, x,y);
3635 mp->n_cos=mp_make_fraction(mp, x,r);
3636 mp->n_sin=mp_make_fraction(mp, y,r);
3639 @ In this case the octants are numbered sequentially.
3641 @<Convert |(x,...@>=
3644 case 1: t=x; x=y; y=t; break;
3645 case 2: t=x; x=-y; y=t; break;
3646 case 3: negate(x); break;
3647 case 4: negate(x); negate(y); break;
3648 case 5: t=x; x=-y; y=-t; break;
3649 case 6: t=x; x=y; y=-t; break;
3650 case 7: negate(y); break;
3651 } /* there are no other cases */
3653 @ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
3654 applied in reverse. The values of |spec_atan[k]| decrease slowly enough
3655 that this loop is guaranteed to terminate before the (nonexistent) value
3656 |spec_atan[27]| would be required.
3658 @<Subtract angle |z|...@>=
3661 if ( z>=spec_atan[k] ) {
3662 z=z-spec_atan[k]; t=x;
3663 x=t+y / two_to_the(k);
3664 y=y-t / two_to_the(k);
3668 if ( y<0 ) y=0 /* this precaution may never be needed */
3670 @ And now let's complete our collection of numeric utility routines
3671 by considering random number generation.
3672 \MP\ generates pseudo-random numbers with the additive scheme recommended
3673 in Section 3.6 of {\sl The Art of Computer Programming}; however, the
3674 results are random fractions between 0 and |fraction_one-1|, inclusive.
3676 There's an auxiliary array |randoms| that contains 55 pseudo-random
3677 fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
3678 we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
3679 The global variable |j_random| tells which element has most recently
3681 The global variable |random_seed| was introduced in version 0.9,
3682 for the sole reason of stressing the fact that the initial value of the
3683 random seed is system-dependant. The initialization code below will initialize
3684 this variable to |(internal[mp_time] div unity)+internal[mp_day]|, but this
3685 is not good enough on modern fast machines that are capable of running
3686 multiple MetaPost processes within the same second.
3687 @^system dependencies@>
3690 fraction randoms[55]; /* the last 55 random values generated */
3691 int j_random; /* the number of unused |randoms| */
3692 scaled random_seed; /* the default random seed */
3694 @ @<Option variables@>=
3697 @ @<Allocate or initialize ...@>=
3698 mp->random_seed = (scaled)opt->random_seed;
3700 @ To consume a random fraction, the program below will say `|next_random|'
3701 and then it will fetch |randoms[j_random]|.
3703 @d next_random { if ( mp->j_random==0 ) mp_new_randoms(mp);
3704 else decr(mp->j_random); }
3707 void mp_new_randoms (MP mp) {
3708 int k; /* index into |randoms| */
3709 fraction x; /* accumulator */
3710 for (k=0;k<=23;k++) {
3711 x=mp->randoms[k]-mp->randoms[k+31];
3712 if ( x<0 ) x=x+fraction_one;
3715 for (k=24;k<= 54;k++){
3716 x=mp->randoms[k]-mp->randoms[k-24];
3717 if ( x<0 ) x=x+fraction_one;
3724 void mp_init_randoms (MP mp,scaled seed);
3726 @ To initialize the |randoms| table, we call the following routine.
3729 void mp_init_randoms (MP mp,scaled seed) {
3730 fraction j,jj,k; /* more or less random integers */
3731 int i; /* index into |randoms| */
3733 while ( j>=fraction_one ) j=halfp(j);
3735 for (i=0;i<=54;i++ ){
3737 if ( k<0 ) k=k+fraction_one;
3738 mp->randoms[(i*21)% 55]=j;
3742 mp_new_randoms(mp); /* ``warm up'' the array */
3745 @ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
3746 or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
3748 Note that the call of |take_fraction| will produce the values 0 and~|x|
3749 with about half the probability that it will produce any other particular
3750 values between 0 and~|x|, because it rounds its answers.
3753 scaled mp_unif_rand (MP mp,scaled x) {
3754 scaled y; /* trial value */
3755 next_random; y=mp_take_fraction(mp, abs(x),mp->randoms[mp->j_random]);
3756 if ( y==abs(x) ) return 0;
3757 else if ( x>0 ) return y;
3761 @ Finally, a normal deviate with mean zero and unit standard deviation
3762 can readily be obtained with the ratio method (Algorithm 3.4.1R in
3763 {\sl The Art of Computer Programming\/}).
3766 scaled mp_norm_rand (MP mp) {
3767 integer x,u,l; /* what the book would call $2^{16}X$, $2^{28}U$, and $-2^{24}\ln U$ */
3771 x=mp_take_fraction(mp, 112429,mp->randoms[mp->j_random]-fraction_half);
3772 /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
3773 next_random; u=mp->randoms[mp->j_random];
3774 } while (abs(x)>=u);
3775 x=mp_make_fraction(mp, x,u);
3776 l=139548960-mp_m_log(mp, u); /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
3777 } while (mp_ab_vs_cd(mp, 1024,l,x,x)<0);
3781 @* \[9] Packed data.
3782 In order to make efficient use of storage space, \MP\ bases its major data
3783 structures on a |memory_word|, which contains either a (signed) integer,
3784 possibly scaled, or a small number of fields that are one half or one
3785 quarter of the size used for storing integers.
3787 If |x| is a variable of type |memory_word|, it contains up to four
3788 fields that can be referred to as follows:
3789 $$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
3790 |x|&.|int|&(an |integer|)\cr
3791 |x|&.|sc|\qquad&(a |scaled| integer)\cr
3792 |x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
3793 |x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
3795 |x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
3796 &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
3797 This is somewhat cumbersome to write, and not very readable either, but
3798 macros will be used to make the notation shorter and more transparent.
3799 The code below gives a formal definition of |memory_word| and
3800 its subsidiary types, using packed variant records. \MP\ makes no
3801 assumptions about the relative positions of the fields within a word.
3803 @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */
3804 @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */
3806 @ Here are the inequalities that the quarterword and halfword values
3807 must satisfy (or rather, the inequalities that they mustn't satisfy):
3809 @<Check the ``constant''...@>=
3810 if (mp->ini_version) {
3811 if ( mp->mem_max!=mp->mem_top ) mp->bad=8;
3813 if ( mp->mem_max<mp->mem_top ) mp->bad=8;
3815 if ( max_quarterword<255 ) mp->bad=9;
3816 if ( max_halfword<65535 ) mp->bad=10;
3817 if ( max_quarterword>max_halfword ) mp->bad=11;
3818 if ( mp->mem_max>=max_halfword ) mp->bad=12;
3819 if ( mp->max_strings>max_halfword ) mp->bad=13;
3821 @ The macros |qi| and |qo| are used for input to and output
3822 from quarterwords. These are legacy macros.
3823 @^system dependencies@>
3825 @d qo(A) (A) /* to read eight bits from a quarterword */
3826 @d qi(A) (A) /* to store eight bits in a quarterword */
3828 @ The reader should study the following definitions closely:
3829 @^system dependencies@>
3831 @d sc cint /* |scaled| data is equivalent to |integer| */
3834 typedef short quarterword; /* 1/4 of a word */
3835 typedef int halfword; /* 1/2 of a word */
3840 struct { /* Make B0,B1 overlap the most significant bytes of LH. */
3847 quarterword B2, B3, B0, B1;
3862 @ When debugging, we may want to print a |memory_word| without knowing
3863 what type it is; so we print it in all modes.
3864 @^dirty \PASCAL@>@^debugging@>
3867 void mp_print_word (MP mp,memory_word w) {
3868 /* prints |w| in all ways */
3869 mp_print_int(mp, w.cint); mp_print_char(mp, ' ');
3870 mp_print_scaled(mp, w.sc); mp_print_char(mp, ' ');
3871 mp_print_scaled(mp, w.sc / 010000); mp_print_ln(mp);
3872 mp_print_int(mp, w.hh.lh); mp_print_char(mp, '=');
3873 mp_print_int(mp, w.hh.b0); mp_print_char(mp, ':');
3874 mp_print_int(mp, w.hh.b1); mp_print_char(mp, ';');
3875 mp_print_int(mp, w.hh.rh); mp_print_char(mp, ' ');
3876 mp_print_int(mp, w.qqqq.b0); mp_print_char(mp, ':');
3877 mp_print_int(mp, w.qqqq.b1); mp_print_char(mp, ':');
3878 mp_print_int(mp, w.qqqq.b2); mp_print_char(mp, ':');
3879 mp_print_int(mp, w.qqqq.b3);
3883 @* \[10] Dynamic memory allocation.
3885 The \MP\ system does nearly all of its own memory allocation, so that it
3886 can readily be transported into environments that do not have automatic
3887 facilities for strings, garbage collection, etc., and so that it can be in
3888 control of what error messages the user receives. The dynamic storage
3889 requirements of \MP\ are handled by providing a large array |mem| in
3890 which consecutive blocks of words are used as nodes by the \MP\ routines.
3892 Pointer variables are indices into this array, or into another array
3893 called |eqtb| that will be explained later. A pointer variable might
3894 also be a special flag that lies outside the bounds of |mem|, so we
3895 allow pointers to assume any |halfword| value. The minimum memory
3896 index represents a null pointer.
3898 @d null 0 /* the null pointer */
3899 @d mp_void (null+1) /* a null pointer different from |null| */
3903 typedef halfword pointer; /* a flag or a location in |mem| or |eqtb| */
3905 @ The |mem| array is divided into two regions that are allocated separately,
3906 but the dividing line between these two regions is not fixed; they grow
3907 together until finding their ``natural'' size in a particular job.
3908 Locations less than or equal to |lo_mem_max| are used for storing
3909 variable-length records consisting of two or more words each. This region
3910 is maintained using an algorithm similar to the one described in exercise
3911 2.5--19 of {\sl The Art of Computer Programming}. However, no size field
3912 appears in the allocated nodes; the program is responsible for knowing the
3913 relevant size when a node is freed. Locations greater than or equal to
3914 |hi_mem_min| are used for storing one-word records; a conventional
3915 \.{AVAIL} stack is used for allocation in this region.
3917 Locations of |mem| between |0| and |mem_top| may be dumped as part
3918 of preloaded format files, by the \.{INIMP} preprocessor.
3920 Production versions of \MP\ may extend the memory at the top end in order to
3921 provide more space; these locations, between |mem_top| and |mem_max|,
3922 are always used for single-word nodes.
3924 The key pointers that govern |mem| allocation have a prescribed order:
3925 $$\hbox{|null=0<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
3928 memory_word *mem; /* the big dynamic storage area */
3929 pointer lo_mem_max; /* the largest location of variable-size memory in use */
3930 pointer hi_mem_min; /* the smallest location of one-word memory in use */
3934 @d xfree(A) do { mp_xfree(A); A=NULL; } while (0)
3935 @d xrealloc(P,A,B) mp_xrealloc(mp,P,A,B)
3936 @d xmalloc(A,B) mp_xmalloc(mp,A,B)
3937 @d xstrdup(A) mp_xstrdup(mp,A)
3938 @d XREALLOC(a,b,c) a = xrealloc(a,(b+1),sizeof(c));
3940 @<Declare helpers@>=
3941 void mp_xfree (void *x);
3942 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) ;
3943 void *mp_xmalloc (MP mp, size_t nmem, size_t size) ;
3944 char *mp_xstrdup(MP mp, const char *s);
3946 @ The |max_size_test| guards against overflow, on the assumption that
3947 |size_t| is at least 31bits wide.
3949 @d max_size_test 0x7FFFFFFF
3952 void mp_xfree (void *x) {
3953 if (x!=NULL) free(x);
3955 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) {
3957 if ((max_size_test/size)<nmem) {
3958 do_fprintf(mp->err_out,"Memory size overflow!\n");
3959 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3961 w = realloc (p,(nmem*size));
3963 do_fprintf(mp->err_out,"Out of memory!\n");
3964 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3968 void *mp_xmalloc (MP mp, size_t nmem, size_t size) {
3970 if ((max_size_test/size)<nmem) {
3971 do_fprintf(mp->err_out,"Memory size overflow!\n");
3972 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3974 w = malloc (nmem*size);
3976 do_fprintf(mp->err_out,"Out of memory!\n");
3977 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3981 char *mp_xstrdup(MP mp, const char *s) {
3987 do_fprintf(mp->err_out,"Out of memory!\n");
3988 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3995 @<Allocate or initialize ...@>=
3996 mp->mem = xmalloc ((mp->mem_max+1),sizeof (memory_word));
3997 memset(mp->mem,0,(mp->mem_max+1)*sizeof (memory_word));
3999 @ @<Dealloc variables@>=
4002 @ Users who wish to study the memory requirements of particular applications can
4003 can use optional special features that keep track of current and
4004 maximum memory usage. When code between the delimiters |stat| $\ldots$
4005 |tats| is not ``commented out,'' \MP\ will run a bit slower but it will
4006 report these statistics when |mp_tracing_stats| is positive.
4009 integer var_used; integer dyn_used; /* how much memory is in use */
4011 @ Let's consider the one-word memory region first, since it's the
4012 simplest. The pointer variable |mem_end| holds the highest-numbered location
4013 of |mem| that has ever been used. The free locations of |mem| that
4014 occur between |hi_mem_min| and |mem_end|, inclusive, are of type
4015 |two_halves|, and we write |info(p)| and |link(p)| for the |lh|
4016 and |rh| fields of |mem[p]| when it is of this type. The single-word
4017 free locations form a linked list
4018 $$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
4019 terminated by |null|.
4021 @d link(A) mp->mem[(A)].hh.rh /* the |link| field of a memory word */
4022 @d info(A) mp->mem[(A)].hh.lh /* the |info| field of a memory word */
4025 pointer avail; /* head of the list of available one-word nodes */
4026 pointer mem_end; /* the last one-word node used in |mem| */
4028 @ If one-word memory is exhausted, it might mean that the user has forgotten
4029 a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
4030 later that try to help pinpoint the trouble.
4033 @<Declare the procedure called |show_token_list|@>;
4034 @<Declare the procedure called |runaway|@>
4036 @ The function |get_avail| returns a pointer to a new one-word node whose
4037 |link| field is null. However, \MP\ will halt if there is no more room left.
4041 pointer mp_get_avail (MP mp) { /* single-word node allocation */
4042 pointer p; /* the new node being got */
4043 p=mp->avail; /* get top location in the |avail| stack */
4045 mp->avail=link(mp->avail); /* and pop it off */
4046 } else if ( mp->mem_end<mp->mem_max ) { /* or go into virgin territory */
4047 incr(mp->mem_end); p=mp->mem_end;
4049 decr(mp->hi_mem_min); p=mp->hi_mem_min;
4050 if ( mp->hi_mem_min<=mp->lo_mem_max ) {
4051 mp_runaway(mp); /* if memory is exhausted, display possible runaway text */
4052 mp_overflow(mp, "main memory size",mp->mem_max);
4053 /* quit; all one-word nodes are busy */
4054 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4057 link(p)=null; /* provide an oft-desired initialization of the new node */
4058 incr(mp->dyn_used);/* maintain statistics */
4062 @ Conversely, a one-word node is recycled by calling |free_avail|.
4064 @d free_avail(A) /* single-word node liberation */
4065 { link((A))=mp->avail; mp->avail=(A); decr(mp->dyn_used); }
4067 @ There's also a |fast_get_avail| routine, which saves the procedure-call
4068 overhead at the expense of extra programming. This macro is used in
4069 the places that would otherwise account for the most calls of |get_avail|.
4072 @d fast_get_avail(A) {
4073 (A)=mp->avail; /* avoid |get_avail| if possible, to save time */
4074 if ( (A)==null ) { (A)=mp_get_avail(mp); }
4075 else { mp->avail=link((A)); link((A))=null; incr(mp->dyn_used); }
4078 @ The available-space list that keeps track of the variable-size portion
4079 of |mem| is a nonempty, doubly-linked circular list of empty nodes,
4080 pointed to by the roving pointer |rover|.
4082 Each empty node has size 2 or more; the first word contains the special
4083 value |max_halfword| in its |link| field and the size in its |info| field;
4084 the second word contains the two pointers for double linking.
4086 Each nonempty node also has size 2 or more. Its first word is of type
4087 |two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
4088 Otherwise there is complete flexibility with respect to the contents
4089 of its other fields and its other words.
4091 (We require |mem_max<max_halfword| because terrible things can happen
4092 when |max_halfword| appears in the |link| field of a nonempty node.)
4094 @d empty_flag max_halfword /* the |link| of an empty variable-size node */
4095 @d is_empty(A) (link((A))==empty_flag) /* tests for empty node */
4096 @d node_size info /* the size field in empty variable-size nodes */
4097 @d llink(A) info((A)+1) /* left link in doubly-linked list of empty nodes */
4098 @d rlink(A) link((A)+1) /* right link in doubly-linked list of empty nodes */
4101 pointer rover; /* points to some node in the list of empties */
4103 @ A call to |get_node| with argument |s| returns a pointer to a new node
4104 of size~|s|, which must be 2~or more. The |link| field of the first word
4105 of this new node is set to null. An overflow stop occurs if no suitable
4108 If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
4109 areas and returns the value |max_halfword|.
4111 @<Internal library declarations@>=
4112 pointer mp_get_node (MP mp,integer s) ;
4115 pointer mp_get_node (MP mp,integer s) { /* variable-size node allocation */
4116 pointer p; /* the node currently under inspection */
4117 pointer q; /* the node physically after node |p| */
4118 integer r; /* the newly allocated node, or a candidate for this honor */
4119 integer t,tt; /* temporary registers */
4122 p=mp->rover; /* start at some free node in the ring */
4124 @<Try to allocate within node |p| and its physical successors,
4125 and |goto found| if allocation was possible@>;
4126 if (rlink(p)==null || rlink(p)==p) {
4127 print_err("Free list garbled");
4128 help3("I found an entry in the list of free nodes that links")
4129 ("badly. I will try to ignore the broken link, but something")
4130 ("is seriously amiss. It is wise to warn the maintainers.")
4134 p=rlink(p); /* move to the next node in the ring */
4135 } while (p!=mp->rover); /* repeat until the whole list has been traversed */
4136 if ( s==010000000000 ) {
4137 return max_halfword;
4139 if ( mp->lo_mem_max+2<mp->hi_mem_min ) {
4140 if ( mp->lo_mem_max+2<=max_halfword ) {
4141 @<Grow more variable-size memory and |goto restart|@>;
4144 mp_overflow(mp, "main memory size",mp->mem_max);
4145 /* sorry, nothing satisfactory is left */
4146 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4148 link(r)=null; /* this node is now nonempty */
4149 mp->var_used+=s; /* maintain usage statistics */
4153 @ The lower part of |mem| grows by 1000 words at a time, unless
4154 we are very close to going under. When it grows, we simply link
4155 a new node into the available-space list. This method of controlled
4156 growth helps to keep the |mem| usage consecutive when \MP\ is
4157 implemented on ``virtual memory'' systems.
4160 @<Grow more variable-size memory and |goto restart|@>=
4162 if ( mp->hi_mem_min-mp->lo_mem_max>=1998 ) {
4163 t=mp->lo_mem_max+1000;
4165 t=mp->lo_mem_max+1+(mp->hi_mem_min-mp->lo_mem_max) / 2;
4166 /* |lo_mem_max+2<=t<hi_mem_min| */
4168 if ( t>max_halfword ) t=max_halfword;
4169 p=llink(mp->rover); q=mp->lo_mem_max; rlink(p)=q; llink(mp->rover)=q;
4170 rlink(q)=mp->rover; llink(q)=p; link(q)=empty_flag;
4171 node_size(q)=t-mp->lo_mem_max;
4172 mp->lo_mem_max=t; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4177 @ @<Try to allocate...@>=
4178 q=p+node_size(p); /* find the physical successor */
4179 while ( is_empty(q) ) { /* merge node |p| with node |q| */
4180 t=rlink(q); tt=llink(q);
4182 if ( q==mp->rover ) mp->rover=t;
4183 llink(t)=tt; rlink(tt)=t;
4188 @<Allocate from the top of node |p| and |goto found|@>;
4191 if ( rlink(p)!=p ) {
4192 @<Allocate entire node |p| and |goto found|@>;
4195 node_size(p)=q-p /* reset the size in case it grew */
4197 @ @<Allocate from the top...@>=
4199 node_size(p)=r-p; /* store the remaining size */
4200 mp->rover=p; /* start searching here next time */
4204 @ Here we delete node |p| from the ring, and let |rover| rove around.
4206 @<Allocate entire...@>=
4208 mp->rover=rlink(p); t=llink(p);
4209 llink(mp->rover)=t; rlink(t)=mp->rover;
4213 @ Conversely, when some variable-size node |p| of size |s| is no longer needed,
4214 the operation |free_node(p,s)| will make its words available, by inserting
4215 |p| as a new empty node just before where |rover| now points.
4217 @<Internal library declarations@>=
4218 void mp_free_node (MP mp, pointer p, halfword s) ;
4221 void mp_free_node (MP mp, pointer p, halfword s) { /* variable-size node
4223 pointer q; /* |llink(rover)| */
4224 node_size(p)=s; link(p)=empty_flag;
4226 q=llink(mp->rover); llink(p)=q; rlink(p)=mp->rover; /* set both links */
4227 llink(mp->rover)=p; rlink(q)=p; /* insert |p| into the ring */
4228 mp->var_used-=s; /* maintain statistics */
4231 @ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
4232 available space list. The list is probably very short at such times, so a
4233 simple insertion sort is used. The smallest available location will be
4234 pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
4237 void mp_sort_avail (MP mp) { /* sorts the available variable-size nodes
4239 pointer p,q,r; /* indices into |mem| */
4240 pointer old_rover; /* initial |rover| setting */
4241 p=mp_get_node(mp, 010000000000); /* merge adjacent free areas */
4242 p=rlink(mp->rover); rlink(mp->rover)=max_halfword; old_rover=mp->rover;
4243 while ( p!=old_rover ) {
4244 @<Sort |p| into the list starting at |rover|
4245 and advance |p| to |rlink(p)|@>;
4248 while ( rlink(p)!=max_halfword ) {
4249 llink(rlink(p))=p; p=rlink(p);
4251 rlink(p)=mp->rover; llink(mp->rover)=p;
4254 @ The following |while| loop is guaranteed to
4255 terminate, since the list that starts at
4256 |rover| ends with |max_halfword| during the sorting procedure.
4259 if ( p<mp->rover ) {
4260 q=p; p=rlink(q); rlink(q)=mp->rover; mp->rover=q;
4263 while ( rlink(q)<p ) q=rlink(q);
4264 r=rlink(p); rlink(p)=rlink(q); rlink(q)=p; p=r;
4267 @* \[11] Memory layout.
4268 Some areas of |mem| are dedicated to fixed usage, since static allocation is
4269 more efficient than dynamic allocation when we can get away with it. For
4270 example, locations |0| to |1| are always used to store a
4271 two-word dummy token whose second word is zero.
4272 The following macro definitions accomplish the static allocation by giving
4273 symbolic names to the fixed positions. Static variable-size nodes appear
4274 in locations |0| through |lo_mem_stat_max|, and static single-word nodes
4275 appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
4277 @d null_dash (2) /* the first two words are reserved for a null value */
4278 @d dep_head (null_dash+3) /* we will define |dash_node_size=3| */
4279 @d zero_val (dep_head+2) /* two words for a permanently zero value */
4280 @d temp_val (zero_val+2) /* two words for a temporary value node */
4281 @d end_attr temp_val /* we use |end_attr+2| only */
4282 @d inf_val (end_attr+2) /* and |inf_val+1| only */
4283 @d test_pen (inf_val+2)
4284 /* nine words for a pen used when testing the turning number */
4285 @d bad_vardef (test_pen+9) /* two words for \&{vardef} error recovery */
4286 @d lo_mem_stat_max (bad_vardef+1) /* largest statically
4287 allocated word in the variable-size |mem| */
4289 @d sentinel mp->mem_top /* end of sorted lists */
4290 @d temp_head (mp->mem_top-1) /* head of a temporary list of some kind */
4291 @d hold_head (mp->mem_top-2) /* head of a temporary list of another kind */
4292 @d spec_head (mp->mem_top-3) /* head of a list of unprocessed \&{special} items */
4293 @d hi_mem_stat_min (mp->mem_top-3) /* smallest statically allocated word in
4294 the one-word |mem| */
4296 @ The following code gets the dynamic part of |mem| off to a good start,
4297 when \MP\ is initializing itself the slow way.
4299 @<Initialize table entries (done by \.{INIMP} only)@>=
4300 @^data structure assumptions@>
4301 mp->rover=lo_mem_stat_max+1; /* initialize the dynamic memory */
4302 link(mp->rover)=empty_flag;
4303 node_size(mp->rover)=1000; /* which is a 1000-word available node */
4304 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
4305 mp->lo_mem_max=mp->rover+1000;
4306 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4307 for (k=hi_mem_stat_min;k<=(int)mp->mem_top;k++) {
4308 mp->mem[k]=mp->mem[mp->lo_mem_max]; /* clear list heads */
4310 mp->avail=null; mp->mem_end=mp->mem_top;
4311 mp->hi_mem_min=hi_mem_stat_min; /* initialize the one-word memory */
4312 mp->var_used=lo_mem_stat_max+1;
4313 mp->dyn_used=mp->mem_top+1-(hi_mem_stat_min); /* initialize statistics */
4314 @<Initialize a pen at |test_pen| so that it fits in nine words@>;
4316 @ The procedure |flush_list(p)| frees an entire linked list of one-word
4317 nodes that starts at a given position, until coming to |sentinel| or a
4318 pointer that is not in the one-word region. Another procedure,
4319 |flush_node_list|, frees an entire linked list of one-word and two-word
4320 nodes, until coming to a |null| pointer.
4324 void mp_flush_list (MP mp,pointer p) { /* makes list of single-word nodes available */
4325 pointer q,r; /* list traversers */
4326 if ( p>=mp->hi_mem_min ) if ( p!=sentinel ) {
4331 if ( r<mp->hi_mem_min ) break;
4332 } while (r!=sentinel);
4333 /* now |q| is the last node on the list */
4334 link(q)=mp->avail; mp->avail=p;
4338 void mp_flush_node_list (MP mp,pointer p) {
4339 pointer q; /* the node being recycled */
4342 if ( q<mp->hi_mem_min )
4343 mp_free_node(mp, q,2);
4349 @ If \MP\ is extended improperly, the |mem| array might get screwed up.
4350 For example, some pointers might be wrong, or some ``dead'' nodes might not
4351 have been freed when the last reference to them disappeared. Procedures
4352 |check_mem| and |search_mem| are available to help diagnose such
4353 problems. These procedures make use of two arrays called |free| and
4354 |was_free| that are present only if \MP's debugging routines have
4355 been included. (You may want to decrease the size of |mem| while you
4359 Because |boolean|s are typedef-d as ints, it is better to use
4360 unsigned chars here.
4363 unsigned char *free; /* free cells */
4364 unsigned char *was_free; /* previously free cells */
4365 pointer was_mem_end; pointer was_lo_max; pointer was_hi_min;
4366 /* previous |mem_end|, |lo_mem_max|,and |hi_mem_min| */
4367 boolean panicking; /* do we want to check memory constantly? */
4369 @ @<Allocate or initialize ...@>=
4370 mp->free = xmalloc ((mp->mem_max+1),sizeof (unsigned char));
4371 mp->was_free = xmalloc ((mp->mem_max+1), sizeof (unsigned char));
4373 @ @<Dealloc variables@>=
4375 xfree(mp->was_free);
4377 @ @<Allocate or ...@>=
4378 mp->was_mem_end=0; /* indicate that everything was previously free */
4379 mp->was_lo_max=0; mp->was_hi_min=mp->mem_max;
4380 mp->panicking=false;
4382 @ @<Declare |mp_reallocate| functions@>=
4383 void mp_reallocate_memory(MP mp, int l) ;
4386 void mp_reallocate_memory(MP mp, int l) {
4387 XREALLOC(mp->free, l, unsigned char);
4388 XREALLOC(mp->was_free, l, unsigned char);
4390 int newarea = l-mp->mem_max;
4391 XREALLOC(mp->mem, l, memory_word);
4392 memset (mp->mem+(mp->mem_max+1),0,sizeof(memory_word)*(newarea));
4394 XREALLOC(mp->mem, l, memory_word);
4395 memset(mp->mem,0,sizeof(memory_word)*(l+1));
4398 if (mp->ini_version)
4404 @ Procedure |check_mem| makes sure that the available space lists of
4405 |mem| are well formed, and it optionally prints out all locations
4406 that are reserved now but were free the last time this procedure was called.
4409 void mp_check_mem (MP mp,boolean print_locs ) {
4410 pointer p,q,r; /* current locations of interest in |mem| */
4411 boolean clobbered; /* is something amiss? */
4412 for (p=0;p<=mp->lo_mem_max;p++) {
4413 mp->free[p]=false; /* you can probably do this faster */
4415 for (p=mp->hi_mem_min;p<= mp->mem_end;p++) {
4416 mp->free[p]=false; /* ditto */
4418 @<Check single-word |avail| list@>;
4419 @<Check variable-size |avail| list@>;
4420 @<Check flags of unavailable nodes@>;
4421 @<Check the list of linear dependencies@>;
4423 @<Print newly busy locations@>;
4425 memcpy(mp->was_free,mp->free, sizeof(char)*(mp->mem_end+1));
4426 mp->was_mem_end=mp->mem_end;
4427 mp->was_lo_max=mp->lo_mem_max;
4428 mp->was_hi_min=mp->hi_mem_min;
4431 @ @<Check single-word...@>=
4432 p=mp->avail; q=null; clobbered=false;
4434 if ( (p>mp->mem_end)||(p<mp->hi_mem_min) ) clobbered=true;
4435 else if ( mp->free[p] ) clobbered=true;
4437 mp_print_nl(mp, "AVAIL list clobbered at ");
4438 @.AVAIL list clobbered...@>
4439 mp_print_int(mp, q); break;
4441 mp->free[p]=true; q=p; p=link(q);
4444 @ @<Check variable-size...@>=
4445 p=mp->rover; q=null; clobbered=false;
4447 if ( (p>=mp->lo_mem_max)||(p<0) ) clobbered=true;
4448 else if ( (rlink(p)>=mp->lo_mem_max)||(rlink(p)<0) ) clobbered=true;
4449 else if ( !(is_empty(p))||(node_size(p)<2)||
4450 (p+node_size(p)>mp->lo_mem_max)|| (llink(rlink(p))!=p) ) clobbered=true;
4452 mp_print_nl(mp, "Double-AVAIL list clobbered at ");
4453 @.Double-AVAIL list clobbered...@>
4454 mp_print_int(mp, q); break;
4456 for (q=p;q<=p+node_size(p)-1;q++) { /* mark all locations free */
4457 if ( mp->free[q] ) {
4458 mp_print_nl(mp, "Doubly free location at ");
4459 @.Doubly free location...@>
4460 mp_print_int(mp, q); break;
4465 } while (p!=mp->rover)
4468 @ @<Check flags...@>=
4470 while ( p<=mp->lo_mem_max ) { /* node |p| should not be empty */
4471 if ( is_empty(p) ) {
4472 mp_print_nl(mp, "Bad flag at "); mp_print_int(mp, p);
4475 while ( (p<=mp->lo_mem_max) && ! mp->free[p] ) incr(p);
4476 while ( (p<=mp->lo_mem_max) && mp->free[p] ) incr(p);
4479 @ @<Print newly busy...@>=
4481 @<Do intialization required before printing new busy locations@>;
4482 mp_print_nl(mp, "New busy locs:");
4484 for (p=0;p<= mp->lo_mem_max;p++ ) {
4485 if ( ! mp->free[p] && ((p>mp->was_lo_max) || mp->was_free[p]) ) {
4486 @<Indicate that |p| is a new busy location@>;
4489 for (p=mp->hi_mem_min;p<=mp->mem_end;p++ ) {
4490 if ( ! mp->free[p] &&
4491 ((p<mp->was_hi_min) || (p>mp->was_mem_end) || mp->was_free[p]) ) {
4492 @<Indicate that |p| is a new busy location@>;
4495 @<Finish printing new busy locations@>;
4498 @ There might be many new busy locations so we are careful to print contiguous
4499 blocks compactly. During this operation |q| is the last new busy location and
4500 |r| is the start of the block containing |q|.
4502 @<Indicate that |p| is a new busy location@>=
4506 mp_print(mp, ".."); mp_print_int(mp, q);
4508 mp_print_char(mp, ' '); mp_print_int(mp, p);
4514 @ @<Do intialization required before printing new busy locations@>=
4515 q=mp->mem_max; r=mp->mem_max
4517 @ @<Finish printing new busy locations@>=
4519 mp_print(mp, ".."); mp_print_int(mp, q);
4522 @ The |search_mem| procedure attempts to answer the question ``Who points
4523 to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
4524 that might not be of type |two_halves|. Strictly speaking, this is
4526 undefined in \PASCAL, and it can lead to ``false drops'' (words that seem to
4527 point to |p| purely by coincidence). But for debugging purposes, we want
4528 to rule out the places that do {\sl not\/} point to |p|, so a few false
4529 drops are tolerable.
4532 void mp_search_mem (MP mp, pointer p) { /* look for pointers to |p| */
4533 integer q; /* current position being searched */
4534 for (q=0;q<=mp->lo_mem_max;q++) {
4536 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4539 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4542 for (q=mp->hi_mem_min;q<=mp->mem_end;q++) {
4544 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4547 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4550 @<Search |eqtb| for equivalents equal to |p|@>;
4553 @* \[12] The command codes.
4554 Before we can go much further, we need to define symbolic names for the internal
4555 code numbers that represent the various commands obeyed by \MP. These codes
4556 are somewhat arbitrary, but not completely so. For example,
4557 some codes have been made adjacent so that |case| statements in the
4558 program need not consider cases that are widely spaced, or so that |case|
4559 statements can be replaced by |if| statements. A command can begin an
4560 expression if and only if its code lies between |min_primary_command| and
4561 |max_primary_command|, inclusive. The first token of a statement that doesn't
4562 begin with an expression has a command code between |min_command| and
4563 |max_statement_command|, inclusive. Anything less than |min_command| is
4564 eliminated during macro expansions, and anything no more than |max_pre_command|
4565 is eliminated when expanding \TeX\ material. Ranges such as
4566 |min_secondary_command..max_secondary_command| are used when parsing
4567 expressions, but the relative ordering within such a range is generally not
4570 The ordering of the highest-numbered commands
4571 (|comma<semicolon<end_group<stop|) is crucial for the parsing and
4572 error-recovery methods of this program as is the ordering |if_test<fi_or_else|
4573 for the smallest two commands. The ordering is also important in the ranges
4574 |numeric_token..plus_or_minus| and |left_brace..ampersand|.
4576 At any rate, here is the list, for future reference.
4578 @d start_tex 1 /* begin \TeX\ material (\&{btex}, \&{verbatimtex}) */
4579 @d etex_marker 2 /* end \TeX\ material (\&{etex}) */
4580 @d mpx_break 3 /* stop reading an \.{MPX} file (\&{mpxbreak}) */
4581 @d max_pre_command mpx_break
4582 @d if_test 4 /* conditional text (\&{if}) */
4583 @d fi_or_else 5 /* delimiters for conditionals (\&{elseif}, \&{else}, \&{fi} */
4584 @d input 6 /* input a source file (\&{input}, \&{endinput}) */
4585 @d iteration 7 /* iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor}) */
4586 @d repeat_loop 8 /* special command substituted for \&{endfor} */
4587 @d exit_test 9 /* premature exit from a loop (\&{exitif}) */
4588 @d relax 10 /* do nothing (\.{\char`\\}) */
4589 @d scan_tokens 11 /* put a string into the input buffer */
4590 @d expand_after 12 /* look ahead one token */
4591 @d defined_macro 13 /* a macro defined by the user */
4592 @d min_command (defined_macro+1)
4593 @d save_command 14 /* save a list of tokens (\&{save}) */
4594 @d interim_command 15 /* save an internal quantity (\&{interim}) */
4595 @d let_command 16 /* redefine a symbolic token (\&{let}) */
4596 @d new_internal 17 /* define a new internal quantity (\&{newinternal}) */
4597 @d macro_def 18 /* define a macro (\&{def}, \&{vardef}, etc.) */
4598 @d ship_out_command 19 /* output a character (\&{shipout}) */
4599 @d add_to_command 20 /* add to edges (\&{addto}) */
4600 @d bounds_command 21 /* add bounding path to edges (\&{setbounds}, \&{clip}) */
4601 @d tfm_command 22 /* command for font metric info (\&{ligtable}, etc.) */
4602 @d protection_command 23 /* set protection flag (\&{outer}, \&{inner}) */
4603 @d show_command 24 /* diagnostic output (\&{show}, \&{showvariable}, etc.) */
4604 @d mode_command 25 /* set interaction level (\&{batchmode}, etc.) */
4605 @d mp_random_seed 26 /* initialize random number generator (\&{randomseed}) */
4606 @d message_command 27 /* communicate to user (\&{message}, \&{errmessage}) */
4607 @d every_job_command 28 /* designate a starting token (\&{everyjob}) */
4608 @d delimiters 29 /* define a pair of delimiters (\&{delimiters}) */
4609 @d special_command 30 /* output special info (\&{special})
4610 or font map info (\&{fontmapfile}, \&{fontmapline}) */
4611 @d write_command 31 /* write text to a file (\&{write}) */
4612 @d type_name 32 /* declare a type (\&{numeric}, \&{pair}, etc. */
4613 @d max_statement_command type_name
4614 @d min_primary_command type_name
4615 @d left_delimiter 33 /* the left delimiter of a matching pair */
4616 @d begin_group 34 /* beginning of a group (\&{begingroup}) */
4617 @d nullary 35 /* an operator without arguments (e.g., \&{normaldeviate}) */
4618 @d unary 36 /* an operator with one argument (e.g., \&{sqrt}) */
4619 @d str_op 37 /* convert a suffix to a string (\&{str}) */
4620 @d cycle 38 /* close a cyclic path (\&{cycle}) */
4621 @d primary_binary 39 /* binary operation taking `\&{of}' (e.g., \&{point}) */
4622 @d capsule_token 40 /* a value that has been put into a token list */
4623 @d string_token 41 /* a string constant (e.g., |"hello"|) */
4624 @d internal_quantity 42 /* internal numeric parameter (e.g., \&{pausing}) */
4625 @d min_suffix_token internal_quantity
4626 @d tag_token 43 /* a symbolic token without a primitive meaning */
4627 @d numeric_token 44 /* a numeric constant (e.g., \.{3.14159}) */
4628 @d max_suffix_token numeric_token
4629 @d plus_or_minus 45 /* either `\.+' or `\.-' */
4630 @d max_primary_command plus_or_minus /* should also be |numeric_token+1| */
4631 @d min_tertiary_command plus_or_minus
4632 @d tertiary_secondary_macro 46 /* a macro defined by \&{secondarydef} */
4633 @d tertiary_binary 47 /* an operator at the tertiary level (e.g., `\.{++}') */
4634 @d max_tertiary_command tertiary_binary
4635 @d left_brace 48 /* the operator `\.{\char`\{}' */
4636 @d min_expression_command left_brace
4637 @d path_join 49 /* the operator `\.{..}' */
4638 @d ampersand 50 /* the operator `\.\&' */
4639 @d expression_tertiary_macro 51 /* a macro defined by \&{tertiarydef} */
4640 @d expression_binary 52 /* an operator at the expression level (e.g., `\.<') */
4641 @d equals 53 /* the operator `\.=' */
4642 @d max_expression_command equals
4643 @d and_command 54 /* the operator `\&{and}' */
4644 @d min_secondary_command and_command
4645 @d secondary_primary_macro 55 /* a macro defined by \&{primarydef} */
4646 @d slash 56 /* the operator `\./' */
4647 @d secondary_binary 57 /* an operator at the binary level (e.g., \&{shifted}) */
4648 @d max_secondary_command secondary_binary
4649 @d param_type 58 /* type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.) */
4650 @d controls 59 /* specify control points explicitly (\&{controls}) */
4651 @d tension 60 /* specify tension between knots (\&{tension}) */
4652 @d at_least 61 /* bounded tension value (\&{atleast}) */
4653 @d curl_command 62 /* specify curl at an end knot (\&{curl}) */
4654 @d macro_special 63 /* special macro operators (\&{quote}, \.{\#\AT!}, etc.) */
4655 @d right_delimiter 64 /* the right delimiter of a matching pair */
4656 @d left_bracket 65 /* the operator `\.[' */
4657 @d right_bracket 66 /* the operator `\.]' */
4658 @d right_brace 67 /* the operator `\.{\char`\}}' */
4659 @d with_option 68 /* option for filling (\&{withpen}, \&{withweight}, etc.) */
4661 /* variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also}) */
4662 @d of_token 70 /* the operator `\&{of}' */
4663 @d to_token 71 /* the operator `\&{to}' */
4664 @d step_token 72 /* the operator `\&{step}' */
4665 @d until_token 73 /* the operator `\&{until}' */
4666 @d within_token 74 /* the operator `\&{within}' */
4667 @d lig_kern_token 75
4668 /* the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}, etc. */
4669 @d assignment 76 /* the operator `\.{:=}' */
4670 @d skip_to 77 /* the operation `\&{skipto}' */
4671 @d bchar_label 78 /* the operator `\.{\char'174\char'174:}' */
4672 @d double_colon 79 /* the operator `\.{::}' */
4673 @d colon 80 /* the operator `\.:' */
4675 @d comma 81 /* the operator `\.,', must be |colon+1| */
4676 @d end_of_statement (mp->cur_cmd>comma)
4677 @d semicolon 82 /* the operator `\.;', must be |comma+1| */
4678 @d end_group 83 /* end a group (\&{endgroup}), must be |semicolon+1| */
4679 @d stop 84 /* end a job (\&{end}, \&{dump}), must be |end_group+1| */
4680 @d max_command_code stop
4681 @d outer_tag (max_command_code+1) /* protection code added to command code */
4684 typedef int command_code;
4686 @ Variables and capsules in \MP\ have a variety of ``types,''
4687 distinguished by the code numbers defined here. These numbers are also
4688 not completely arbitrary. Things that get expanded must have types
4689 |>mp_independent|; a type remaining after expansion is numeric if and only if
4690 its code number is at least |numeric_type|; objects containing numeric
4691 parts must have types between |transform_type| and |pair_type|;
4692 all other types must be smaller than |transform_type|; and among the types
4693 that are not unknown or vacuous, the smallest two must be |boolean_type|
4694 and |string_type| in that order.
4696 @d undefined 0 /* no type has been declared */
4697 @d unknown_tag 1 /* this constant is added to certain type codes below */
4698 @d unknown_types mp_unknown_boolean: case mp_unknown_string:
4699 case mp_unknown_pen: case mp_unknown_picture: case mp_unknown_path
4702 enum mp_variable_type {
4703 mp_vacuous=1, /* no expression was present */
4704 mp_boolean_type, /* \&{boolean} with a known value */
4706 mp_string_type, /* \&{string} with a known value */
4708 mp_pen_type, /* \&{pen} with a known value */
4710 mp_path_type, /* \&{path} with a known value */
4712 mp_picture_type, /* \&{picture} with a known value */
4714 mp_transform_type, /* \&{transform} variable or capsule */
4715 mp_color_type, /* \&{color} variable or capsule */
4716 mp_cmykcolor_type, /* \&{cmykcolor} variable or capsule */
4717 mp_pair_type, /* \&{pair} variable or capsule */
4718 mp_numeric_type, /* variable that has been declared \&{numeric} but not used */
4719 mp_known, /* \&{numeric} with a known value */
4720 mp_dependent, /* a linear combination with |fraction| coefficients */
4721 mp_proto_dependent, /* a linear combination with |scaled| coefficients */
4722 mp_independent, /* \&{numeric} with unknown value */
4723 mp_token_list, /* variable name or suffix argument or text argument */
4724 mp_structured, /* variable with subscripts and attributes */
4725 mp_unsuffixed_macro, /* variable defined with \&{vardef} but no \.{\AT!\#} */
4726 mp_suffixed_macro /* variable defined with \&{vardef} and \.{\AT!\#} */
4730 void mp_print_type (MP mp,small_number t) ;
4732 @ @<Basic printing procedures@>=
4733 void mp_print_type (MP mp,small_number t) {
4735 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
4736 case mp_boolean_type:mp_print(mp, "boolean"); break;
4737 case mp_unknown_boolean:mp_print(mp, "unknown boolean"); break;
4738 case mp_string_type:mp_print(mp, "string"); break;
4739 case mp_unknown_string:mp_print(mp, "unknown string"); break;
4740 case mp_pen_type:mp_print(mp, "pen"); break;
4741 case mp_unknown_pen:mp_print(mp, "unknown pen"); break;
4742 case mp_path_type:mp_print(mp, "path"); break;
4743 case mp_unknown_path:mp_print(mp, "unknown path"); break;
4744 case mp_picture_type:mp_print(mp, "picture"); break;
4745 case mp_unknown_picture:mp_print(mp, "unknown picture"); break;
4746 case mp_transform_type:mp_print(mp, "transform"); break;
4747 case mp_color_type:mp_print(mp, "color"); break;
4748 case mp_cmykcolor_type:mp_print(mp, "cmykcolor"); break;
4749 case mp_pair_type:mp_print(mp, "pair"); break;
4750 case mp_known:mp_print(mp, "known numeric"); break;
4751 case mp_dependent:mp_print(mp, "dependent"); break;
4752 case mp_proto_dependent:mp_print(mp, "proto-dependent"); break;
4753 case mp_numeric_type:mp_print(mp, "numeric"); break;
4754 case mp_independent:mp_print(mp, "independent"); break;
4755 case mp_token_list:mp_print(mp, "token list"); break;
4756 case mp_structured:mp_print(mp, "mp_structured"); break;
4757 case mp_unsuffixed_macro:mp_print(mp, "unsuffixed macro"); break;
4758 case mp_suffixed_macro:mp_print(mp, "suffixed macro"); break;
4759 default: mp_print(mp, "undefined"); break;
4763 @ Values inside \MP\ are stored in two-word nodes that have a |name_type|
4764 as well as a |type|. The possibilities for |name_type| are defined
4765 here; they will be explained in more detail later.
4769 mp_root=0, /* |name_type| at the top level of a variable */
4770 mp_saved_root, /* same, when the variable has been saved */
4771 mp_structured_root, /* |name_type| where a |mp_structured| branch occurs */
4772 mp_subscr, /* |name_type| in a subscript node */
4773 mp_attr, /* |name_type| in an attribute node */
4774 mp_x_part_sector, /* |name_type| in the \&{xpart} of a node */
4775 mp_y_part_sector, /* |name_type| in the \&{ypart} of a node */
4776 mp_xx_part_sector, /* |name_type| in the \&{xxpart} of a node */
4777 mp_xy_part_sector, /* |name_type| in the \&{xypart} of a node */
4778 mp_yx_part_sector, /* |name_type| in the \&{yxpart} of a node */
4779 mp_yy_part_sector, /* |name_type| in the \&{yypart} of a node */
4780 mp_red_part_sector, /* |name_type| in the \&{redpart} of a node */
4781 mp_green_part_sector, /* |name_type| in the \&{greenpart} of a node */
4782 mp_blue_part_sector, /* |name_type| in the \&{bluepart} of a node */
4783 mp_cyan_part_sector, /* |name_type| in the \&{redpart} of a node */
4784 mp_magenta_part_sector, /* |name_type| in the \&{greenpart} of a node */
4785 mp_yellow_part_sector, /* |name_type| in the \&{bluepart} of a node */
4786 mp_black_part_sector, /* |name_type| in the \&{greenpart} of a node */
4787 mp_grey_part_sector, /* |name_type| in the \&{bluepart} of a node */
4788 mp_capsule, /* |name_type| in stashed-away subexpressions */
4789 mp_token /* |name_type| in a numeric token or string token */
4792 @ Primitive operations that produce values have a secondary identification
4793 code in addition to their command code; it's something like genera and species.
4794 For example, `\.*' has the command code |primary_binary|, and its
4795 secondary identification is |times|. The secondary codes start at 30 so that
4796 they don't overlap with the type codes; some type codes (e.g., |mp_string_type|)
4797 are used as operators as well as type identifications. The relative values
4798 are not critical, except for |true_code..false_code|, |or_op..and_op|,
4799 and |filled_op..bounded_op|. The restrictions are that
4800 |and_op-false_code=or_op-true_code|, that the ordering of
4801 |x_part...blue_part| must match that of |x_part_sector..mp_blue_part_sector|,
4802 and the ordering of |filled_op..bounded_op| must match that of the code
4803 values they test for.
4805 @d true_code 30 /* operation code for \.{true} */
4806 @d false_code 31 /* operation code for \.{false} */
4807 @d null_picture_code 32 /* operation code for \.{nullpicture} */
4808 @d null_pen_code 33 /* operation code for \.{nullpen} */
4809 @d job_name_op 34 /* operation code for \.{jobname} */
4810 @d read_string_op 35 /* operation code for \.{readstring} */
4811 @d pen_circle 36 /* operation code for \.{pencircle} */
4812 @d normal_deviate 37 /* operation code for \.{normaldeviate} */
4813 @d read_from_op 38 /* operation code for \.{readfrom} */
4814 @d close_from_op 39 /* operation code for \.{closefrom} */
4815 @d odd_op 40 /* operation code for \.{odd} */
4816 @d known_op 41 /* operation code for \.{known} */
4817 @d unknown_op 42 /* operation code for \.{unknown} */
4818 @d not_op 43 /* operation code for \.{not} */
4819 @d decimal 44 /* operation code for \.{decimal} */
4820 @d reverse 45 /* operation code for \.{reverse} */
4821 @d make_path_op 46 /* operation code for \.{makepath} */
4822 @d make_pen_op 47 /* operation code for \.{makepen} */
4823 @d oct_op 48 /* operation code for \.{oct} */
4824 @d hex_op 49 /* operation code for \.{hex} */
4825 @d ASCII_op 50 /* operation code for \.{ASCII} */
4826 @d char_op 51 /* operation code for \.{char} */
4827 @d length_op 52 /* operation code for \.{length} */
4828 @d turning_op 53 /* operation code for \.{turningnumber} */
4829 @d color_model_part 54 /* operation code for \.{colormodel} */
4830 @d x_part 55 /* operation code for \.{xpart} */
4831 @d y_part 56 /* operation code for \.{ypart} */
4832 @d xx_part 57 /* operation code for \.{xxpart} */
4833 @d xy_part 58 /* operation code for \.{xypart} */
4834 @d yx_part 59 /* operation code for \.{yxpart} */
4835 @d yy_part 60 /* operation code for \.{yypart} */
4836 @d red_part 61 /* operation code for \.{redpart} */
4837 @d green_part 62 /* operation code for \.{greenpart} */
4838 @d blue_part 63 /* operation code for \.{bluepart} */
4839 @d cyan_part 64 /* operation code for \.{cyanpart} */
4840 @d magenta_part 65 /* operation code for \.{magentapart} */
4841 @d yellow_part 66 /* operation code for \.{yellowpart} */
4842 @d black_part 67 /* operation code for \.{blackpart} */
4843 @d grey_part 68 /* operation code for \.{greypart} */
4844 @d font_part 69 /* operation code for \.{fontpart} */
4845 @d text_part 70 /* operation code for \.{textpart} */
4846 @d path_part 71 /* operation code for \.{pathpart} */
4847 @d pen_part 72 /* operation code for \.{penpart} */
4848 @d dash_part 73 /* operation code for \.{dashpart} */
4849 @d sqrt_op 74 /* operation code for \.{sqrt} */
4850 @d m_exp_op 75 /* operation code for \.{mexp} */
4851 @d m_log_op 76 /* operation code for \.{mlog} */
4852 @d sin_d_op 77 /* operation code for \.{sind} */
4853 @d cos_d_op 78 /* operation code for \.{cosd} */
4854 @d floor_op 79 /* operation code for \.{floor} */
4855 @d uniform_deviate 80 /* operation code for \.{uniformdeviate} */
4856 @d char_exists_op 81 /* operation code for \.{charexists} */
4857 @d font_size 82 /* operation code for \.{fontsize} */
4858 @d ll_corner_op 83 /* operation code for \.{llcorner} */
4859 @d lr_corner_op 84 /* operation code for \.{lrcorner} */
4860 @d ul_corner_op 85 /* operation code for \.{ulcorner} */
4861 @d ur_corner_op 86 /* operation code for \.{urcorner} */
4862 @d arc_length 87 /* operation code for \.{arclength} */
4863 @d angle_op 88 /* operation code for \.{angle} */
4864 @d cycle_op 89 /* operation code for \.{cycle} */
4865 @d filled_op 90 /* operation code for \.{filled} */
4866 @d stroked_op 91 /* operation code for \.{stroked} */
4867 @d textual_op 92 /* operation code for \.{textual} */
4868 @d clipped_op 93 /* operation code for \.{clipped} */
4869 @d bounded_op 94 /* operation code for \.{bounded} */
4870 @d plus 95 /* operation code for \.+ */
4871 @d minus 96 /* operation code for \.- */
4872 @d times 97 /* operation code for \.* */
4873 @d over 98 /* operation code for \./ */
4874 @d pythag_add 99 /* operation code for \.{++} */
4875 @d pythag_sub 100 /* operation code for \.{+-+} */
4876 @d or_op 101 /* operation code for \.{or} */
4877 @d and_op 102 /* operation code for \.{and} */
4878 @d less_than 103 /* operation code for \.< */
4879 @d less_or_equal 104 /* operation code for \.{<=} */
4880 @d greater_than 105 /* operation code for \.> */
4881 @d greater_or_equal 106 /* operation code for \.{>=} */
4882 @d equal_to 107 /* operation code for \.= */
4883 @d unequal_to 108 /* operation code for \.{<>} */
4884 @d concatenate 109 /* operation code for \.\& */
4885 @d rotated_by 110 /* operation code for \.{rotated} */
4886 @d slanted_by 111 /* operation code for \.{slanted} */
4887 @d scaled_by 112 /* operation code for \.{scaled} */
4888 @d shifted_by 113 /* operation code for \.{shifted} */
4889 @d transformed_by 114 /* operation code for \.{transformed} */
4890 @d x_scaled 115 /* operation code for \.{xscaled} */
4891 @d y_scaled 116 /* operation code for \.{yscaled} */
4892 @d z_scaled 117 /* operation code for \.{zscaled} */
4893 @d in_font 118 /* operation code for \.{infont} */
4894 @d intersect 119 /* operation code for \.{intersectiontimes} */
4895 @d double_dot 120 /* operation code for improper \.{..} */
4896 @d substring_of 121 /* operation code for \.{substring} */
4897 @d min_of substring_of
4898 @d subpath_of 122 /* operation code for \.{subpath} */
4899 @d direction_time_of 123 /* operation code for \.{directiontime} */
4900 @d point_of 124 /* operation code for \.{point} */
4901 @d precontrol_of 125 /* operation code for \.{precontrol} */
4902 @d postcontrol_of 126 /* operation code for \.{postcontrol} */
4903 @d pen_offset_of 127 /* operation code for \.{penoffset} */
4904 @d arc_time_of 128 /* operation code for \.{arctime} */
4905 @d mp_version 129 /* operation code for \.{mpversion} */
4906 @d envelope_of 130 /* operation code for \{.envelope} */
4908 @c void mp_print_op (MP mp,quarterword c) {
4909 if (c<=mp_numeric_type ) {
4910 mp_print_type(mp, c);
4913 case true_code:mp_print(mp, "true"); break;
4914 case false_code:mp_print(mp, "false"); break;
4915 case null_picture_code:mp_print(mp, "nullpicture"); break;
4916 case null_pen_code:mp_print(mp, "nullpen"); break;
4917 case job_name_op:mp_print(mp, "jobname"); break;
4918 case read_string_op:mp_print(mp, "readstring"); break;
4919 case pen_circle:mp_print(mp, "pencircle"); break;
4920 case normal_deviate:mp_print(mp, "normaldeviate"); break;
4921 case read_from_op:mp_print(mp, "readfrom"); break;
4922 case close_from_op:mp_print(mp, "closefrom"); break;
4923 case odd_op:mp_print(mp, "odd"); break;
4924 case known_op:mp_print(mp, "known"); break;
4925 case unknown_op:mp_print(mp, "unknown"); break;
4926 case not_op:mp_print(mp, "not"); break;
4927 case decimal:mp_print(mp, "decimal"); break;
4928 case reverse:mp_print(mp, "reverse"); break;
4929 case make_path_op:mp_print(mp, "makepath"); break;
4930 case make_pen_op:mp_print(mp, "makepen"); break;
4931 case oct_op:mp_print(mp, "oct"); break;
4932 case hex_op:mp_print(mp, "hex"); break;
4933 case ASCII_op:mp_print(mp, "ASCII"); break;
4934 case char_op:mp_print(mp, "char"); break;
4935 case length_op:mp_print(mp, "length"); break;
4936 case turning_op:mp_print(mp, "turningnumber"); break;
4937 case x_part:mp_print(mp, "xpart"); break;
4938 case y_part:mp_print(mp, "ypart"); break;
4939 case xx_part:mp_print(mp, "xxpart"); break;
4940 case xy_part:mp_print(mp, "xypart"); break;
4941 case yx_part:mp_print(mp, "yxpart"); break;
4942 case yy_part:mp_print(mp, "yypart"); break;
4943 case red_part:mp_print(mp, "redpart"); break;
4944 case green_part:mp_print(mp, "greenpart"); break;
4945 case blue_part:mp_print(mp, "bluepart"); break;
4946 case cyan_part:mp_print(mp, "cyanpart"); break;
4947 case magenta_part:mp_print(mp, "magentapart"); break;
4948 case yellow_part:mp_print(mp, "yellowpart"); break;
4949 case black_part:mp_print(mp, "blackpart"); break;
4950 case grey_part:mp_print(mp, "greypart"); break;
4951 case color_model_part:mp_print(mp, "colormodel"); break;
4952 case font_part:mp_print(mp, "fontpart"); break;
4953 case text_part:mp_print(mp, "textpart"); break;
4954 case path_part:mp_print(mp, "pathpart"); break;
4955 case pen_part:mp_print(mp, "penpart"); break;
4956 case dash_part:mp_print(mp, "dashpart"); break;
4957 case sqrt_op:mp_print(mp, "sqrt"); break;
4958 case m_exp_op:mp_print(mp, "mexp"); break;
4959 case m_log_op:mp_print(mp, "mlog"); break;
4960 case sin_d_op:mp_print(mp, "sind"); break;
4961 case cos_d_op:mp_print(mp, "cosd"); break;
4962 case floor_op:mp_print(mp, "floor"); break;
4963 case uniform_deviate:mp_print(mp, "uniformdeviate"); break;
4964 case char_exists_op:mp_print(mp, "charexists"); break;
4965 case font_size:mp_print(mp, "fontsize"); break;
4966 case ll_corner_op:mp_print(mp, "llcorner"); break;
4967 case lr_corner_op:mp_print(mp, "lrcorner"); break;
4968 case ul_corner_op:mp_print(mp, "ulcorner"); break;
4969 case ur_corner_op:mp_print(mp, "urcorner"); break;
4970 case arc_length:mp_print(mp, "arclength"); break;
4971 case angle_op:mp_print(mp, "angle"); break;
4972 case cycle_op:mp_print(mp, "cycle"); break;
4973 case filled_op:mp_print(mp, "filled"); break;
4974 case stroked_op:mp_print(mp, "stroked"); break;
4975 case textual_op:mp_print(mp, "textual"); break;
4976 case clipped_op:mp_print(mp, "clipped"); break;
4977 case bounded_op:mp_print(mp, "bounded"); break;
4978 case plus:mp_print_char(mp, '+'); break;
4979 case minus:mp_print_char(mp, '-'); break;
4980 case times:mp_print_char(mp, '*'); break;
4981 case over:mp_print_char(mp, '/'); break;
4982 case pythag_add:mp_print(mp, "++"); break;
4983 case pythag_sub:mp_print(mp, "+-+"); break;
4984 case or_op:mp_print(mp, "or"); break;
4985 case and_op:mp_print(mp, "and"); break;
4986 case less_than:mp_print_char(mp, '<'); break;
4987 case less_or_equal:mp_print(mp, "<="); break;
4988 case greater_than:mp_print_char(mp, '>'); break;
4989 case greater_or_equal:mp_print(mp, ">="); break;
4990 case equal_to:mp_print_char(mp, '='); break;
4991 case unequal_to:mp_print(mp, "<>"); break;
4992 case concatenate:mp_print(mp, "&"); break;
4993 case rotated_by:mp_print(mp, "rotated"); break;
4994 case slanted_by:mp_print(mp, "slanted"); break;
4995 case scaled_by:mp_print(mp, "scaled"); break;
4996 case shifted_by:mp_print(mp, "shifted"); break;
4997 case transformed_by:mp_print(mp, "transformed"); break;
4998 case x_scaled:mp_print(mp, "xscaled"); break;
4999 case y_scaled:mp_print(mp, "yscaled"); break;
5000 case z_scaled:mp_print(mp, "zscaled"); break;
5001 case in_font:mp_print(mp, "infont"); break;
5002 case intersect:mp_print(mp, "intersectiontimes"); break;
5003 case substring_of:mp_print(mp, "substring"); break;
5004 case subpath_of:mp_print(mp, "subpath"); break;
5005 case direction_time_of:mp_print(mp, "directiontime"); break;
5006 case point_of:mp_print(mp, "point"); break;
5007 case precontrol_of:mp_print(mp, "precontrol"); break;
5008 case postcontrol_of:mp_print(mp, "postcontrol"); break;
5009 case pen_offset_of:mp_print(mp, "penoffset"); break;
5010 case arc_time_of:mp_print(mp, "arctime"); break;
5011 case mp_version:mp_print(mp, "mpversion"); break;
5012 case envelope_of:mp_print(mp, "envelope"); break;
5013 default: mp_print(mp, ".."); break;
5018 @ \MP\ also has a bunch of internal parameters that a user might want to
5019 fuss with. Every such parameter has an identifying code number, defined here.
5022 enum mp_given_internal {
5023 mp_tracing_titles=1, /* show titles online when they appear */
5024 mp_tracing_equations, /* show each variable when it becomes known */
5025 mp_tracing_capsules, /* show capsules too */
5026 mp_tracing_choices, /* show the control points chosen for paths */
5027 mp_tracing_specs, /* show path subdivision prior to filling with polygonal a pen */
5028 mp_tracing_commands, /* show commands and operations before they are performed */
5029 mp_tracing_restores, /* show when a variable or internal is restored */
5030 mp_tracing_macros, /* show macros before they are expanded */
5031 mp_tracing_output, /* show digitized edges as they are output */
5032 mp_tracing_stats, /* show memory usage at end of job */
5033 mp_tracing_lost_chars, /* show characters that aren't \&{infont} */
5034 mp_tracing_online, /* show long diagnostics on terminal and in the log file */
5035 mp_year, /* the current year (e.g., 1984) */
5036 mp_month, /* the current month (e.g, 3 $\equiv$ March) */
5037 mp_day, /* the current day of the month */
5038 mp_time, /* the number of minutes past midnight when this job started */
5039 mp_char_code, /* the number of the next character to be output */
5040 mp_char_ext, /* the extension code of the next character to be output */
5041 mp_char_wd, /* the width of the next character to be output */
5042 mp_char_ht, /* the height of the next character to be output */
5043 mp_char_dp, /* the depth of the next character to be output */
5044 mp_char_ic, /* the italic correction of the next character to be output */
5045 mp_design_size, /* the unit of measure used for |mp_char_wd..mp_char_ic|, in points */
5046 mp_pausing, /* positive to display lines on the terminal before they are read */
5047 mp_showstopping, /* positive to stop after each \&{show} command */
5048 mp_fontmaking, /* positive if font metric output is to be produced */
5049 mp_linejoin, /* as in \ps: 0 for mitered, 1 for round, 2 for beveled */
5050 mp_linecap, /* as in \ps: 0 for butt, 1 for round, 2 for square */
5051 mp_miterlimit, /* controls miter length as in \ps */
5052 mp_warning_check, /* controls error message when variable value is large */
5053 mp_boundary_char, /* the right boundary character for ligatures */
5054 mp_prologues, /* positive to output conforming PostScript using built-in fonts */
5055 mp_true_corners, /* positive to make \&{llcorner} etc. ignore \&{setbounds} */
5056 mp_default_color_model, /* the default color model for unspecified items */
5057 mp_restore_clip_color,
5058 mp_procset, /* wether or not create PostScript command shortcuts */
5059 mp_gtroffmode, /* whether the user specified |-troff| on the command line */
5064 @d max_given_internal mp_gtroffmode
5067 scaled *internal; /* the values of internal quantities */
5068 char **int_name; /* their names */
5069 int int_ptr; /* the maximum internal quantity defined so far */
5070 int max_internal; /* current maximum number of internal quantities */
5073 @ @<Option variables@>=
5076 @ @<Allocate or initialize ...@>=
5077 mp->max_internal=2*max_given_internal;
5078 mp->internal = xmalloc ((mp->max_internal+1), sizeof(scaled));
5079 mp->int_name = xmalloc ((mp->max_internal+1), sizeof(char *));
5080 mp->troff_mode=(opt->troff_mode>0 ? true : false);
5082 @ @<Exported function ...@>=
5083 int mp_troff_mode(MP mp);
5086 int mp_troff_mode(MP mp) { return mp->troff_mode; }
5088 @ @<Set initial ...@>=
5089 for (k=0;k<= mp->max_internal; k++ ) {
5091 mp->int_name[k]=NULL;
5093 mp->int_ptr=max_given_internal;
5095 @ The symbolic names for internal quantities are put into \MP's hash table
5096 by using a routine called |primitive|, which will be defined later. Let us
5097 enter them now, so that we don't have to list all those names again
5100 @<Put each of \MP's primitives into the hash table@>=
5101 mp_primitive(mp, "tracingtitles",internal_quantity,mp_tracing_titles);
5102 @:tracingtitles_}{\&{tracingtitles} primitive@>
5103 mp_primitive(mp, "tracingequations",internal_quantity,mp_tracing_equations);
5104 @:mp_tracing_equations_}{\&{tracingequations} primitive@>
5105 mp_primitive(mp, "tracingcapsules",internal_quantity,mp_tracing_capsules);
5106 @:mp_tracing_capsules_}{\&{tracingcapsules} primitive@>
5107 mp_primitive(mp, "tracingchoices",internal_quantity,mp_tracing_choices);
5108 @:mp_tracing_choices_}{\&{tracingchoices} primitive@>
5109 mp_primitive(mp, "tracingspecs",internal_quantity,mp_tracing_specs);
5110 @:mp_tracing_specs_}{\&{tracingspecs} primitive@>
5111 mp_primitive(mp, "tracingcommands",internal_quantity,mp_tracing_commands);
5112 @:mp_tracing_commands_}{\&{tracingcommands} primitive@>
5113 mp_primitive(mp, "tracingrestores",internal_quantity,mp_tracing_restores);
5114 @:mp_tracing_restores_}{\&{tracingrestores} primitive@>
5115 mp_primitive(mp, "tracingmacros",internal_quantity,mp_tracing_macros);
5116 @:mp_tracing_macros_}{\&{tracingmacros} primitive@>
5117 mp_primitive(mp, "tracingoutput",internal_quantity,mp_tracing_output);
5118 @:mp_tracing_output_}{\&{tracingoutput} primitive@>
5119 mp_primitive(mp, "tracingstats",internal_quantity,mp_tracing_stats);
5120 @:mp_tracing_stats_}{\&{tracingstats} primitive@>
5121 mp_primitive(mp, "tracinglostchars",internal_quantity,mp_tracing_lost_chars);
5122 @:mp_tracing_lost_chars_}{\&{tracinglostchars} primitive@>
5123 mp_primitive(mp, "tracingonline",internal_quantity,mp_tracing_online);
5124 @:mp_tracing_online_}{\&{tracingonline} primitive@>
5125 mp_primitive(mp, "year",internal_quantity,mp_year);
5126 @:mp_year_}{\&{year} primitive@>
5127 mp_primitive(mp, "month",internal_quantity,mp_month);
5128 @:mp_month_}{\&{month} primitive@>
5129 mp_primitive(mp, "day",internal_quantity,mp_day);
5130 @:mp_day_}{\&{day} primitive@>
5131 mp_primitive(mp, "time",internal_quantity,mp_time);
5132 @:time_}{\&{time} primitive@>
5133 mp_primitive(mp, "charcode",internal_quantity,mp_char_code);
5134 @:mp_char_code_}{\&{charcode} primitive@>
5135 mp_primitive(mp, "charext",internal_quantity,mp_char_ext);
5136 @:mp_char_ext_}{\&{charext} primitive@>
5137 mp_primitive(mp, "charwd",internal_quantity,mp_char_wd);
5138 @:mp_char_wd_}{\&{charwd} primitive@>
5139 mp_primitive(mp, "charht",internal_quantity,mp_char_ht);
5140 @:mp_char_ht_}{\&{charht} primitive@>
5141 mp_primitive(mp, "chardp",internal_quantity,mp_char_dp);
5142 @:mp_char_dp_}{\&{chardp} primitive@>
5143 mp_primitive(mp, "charic",internal_quantity,mp_char_ic);
5144 @:mp_char_ic_}{\&{charic} primitive@>
5145 mp_primitive(mp, "designsize",internal_quantity,mp_design_size);
5146 @:mp_design_size_}{\&{designsize} primitive@>
5147 mp_primitive(mp, "pausing",internal_quantity,mp_pausing);
5148 @:mp_pausing_}{\&{pausing} primitive@>
5149 mp_primitive(mp, "showstopping",internal_quantity,mp_showstopping);
5150 @:mp_showstopping_}{\&{showstopping} primitive@>
5151 mp_primitive(mp, "fontmaking",internal_quantity,mp_fontmaking);
5152 @:mp_fontmaking_}{\&{fontmaking} primitive@>
5153 mp_primitive(mp, "linejoin",internal_quantity,mp_linejoin);
5154 @:mp_linejoin_}{\&{linejoin} primitive@>
5155 mp_primitive(mp, "linecap",internal_quantity,mp_linecap);
5156 @:mp_linecap_}{\&{linecap} primitive@>
5157 mp_primitive(mp, "miterlimit",internal_quantity,mp_miterlimit);
5158 @:mp_miterlimit_}{\&{miterlimit} primitive@>
5159 mp_primitive(mp, "warningcheck",internal_quantity,mp_warning_check);
5160 @:mp_warning_check_}{\&{warningcheck} primitive@>
5161 mp_primitive(mp, "boundarychar",internal_quantity,mp_boundary_char);
5162 @:mp_boundary_char_}{\&{boundarychar} primitive@>
5163 mp_primitive(mp, "prologues",internal_quantity,mp_prologues);
5164 @:mp_prologues_}{\&{prologues} primitive@>
5165 mp_primitive(mp, "truecorners",internal_quantity,mp_true_corners);
5166 @:mp_true_corners_}{\&{truecorners} primitive@>
5167 mp_primitive(mp, "mpprocset",internal_quantity,mp_procset);
5168 @:mp_procset_}{\&{mpprocset} primitive@>
5169 mp_primitive(mp, "troffmode",internal_quantity,mp_gtroffmode);
5170 @:troffmode_}{\&{troffmode} primitive@>
5171 mp_primitive(mp, "defaultcolormodel",internal_quantity,mp_default_color_model);
5172 @:mp_default_color_model_}{\&{defaultcolormodel} primitive@>
5173 mp_primitive(mp, "restoreclipcolor",internal_quantity,mp_restore_clip_color);
5174 @:mp_restore_clip_color_}{\&{restoreclipcolor} primitive@>
5176 @ Colors can be specified in four color models. In the special
5177 case of |no_model|, MetaPost does not output any color operator to
5178 the postscript output.
5180 Note: these values are passed directly on to |with_option|. This only
5181 works because the other possible values passed to |with_option| are
5182 8 and 10 respectively (from |with_pen| and |with_picture|).
5184 There is a first state, that is only used for |gs_colormodel|. It flags
5185 the fact that there has not been any kind of color specification by
5186 the user so far in the game.
5189 enum mp_color_model {
5194 mp_uninitialized_model=9,
5198 @ @<Initialize table entries (done by \.{INIMP} only)@>=
5199 mp->internal[mp_default_color_model]=(mp_rgb_model*unity);
5200 mp->internal[mp_restore_clip_color]=unity;
5202 @ Well, we do have to list the names one more time, for use in symbolic
5205 @<Initialize table...@>=
5206 mp->int_name[mp_tracing_titles]=xstrdup("tracingtitles");
5207 mp->int_name[mp_tracing_equations]=xstrdup("tracingequations");
5208 mp->int_name[mp_tracing_capsules]=xstrdup("tracingcapsules");
5209 mp->int_name[mp_tracing_choices]=xstrdup("tracingchoices");
5210 mp->int_name[mp_tracing_specs]=xstrdup("tracingspecs");
5211 mp->int_name[mp_tracing_commands]=xstrdup("tracingcommands");
5212 mp->int_name[mp_tracing_restores]=xstrdup("tracingrestores");
5213 mp->int_name[mp_tracing_macros]=xstrdup("tracingmacros");
5214 mp->int_name[mp_tracing_output]=xstrdup("tracingoutput");
5215 mp->int_name[mp_tracing_stats]=xstrdup("tracingstats");
5216 mp->int_name[mp_tracing_lost_chars]=xstrdup("tracinglostchars");
5217 mp->int_name[mp_tracing_online]=xstrdup("tracingonline");
5218 mp->int_name[mp_year]=xstrdup("year");
5219 mp->int_name[mp_month]=xstrdup("month");
5220 mp->int_name[mp_day]=xstrdup("day");
5221 mp->int_name[mp_time]=xstrdup("time");
5222 mp->int_name[mp_char_code]=xstrdup("charcode");
5223 mp->int_name[mp_char_ext]=xstrdup("charext");
5224 mp->int_name[mp_char_wd]=xstrdup("charwd");
5225 mp->int_name[mp_char_ht]=xstrdup("charht");
5226 mp->int_name[mp_char_dp]=xstrdup("chardp");
5227 mp->int_name[mp_char_ic]=xstrdup("charic");
5228 mp->int_name[mp_design_size]=xstrdup("designsize");
5229 mp->int_name[mp_pausing]=xstrdup("pausing");
5230 mp->int_name[mp_showstopping]=xstrdup("showstopping");
5231 mp->int_name[mp_fontmaking]=xstrdup("fontmaking");
5232 mp->int_name[mp_linejoin]=xstrdup("linejoin");
5233 mp->int_name[mp_linecap]=xstrdup("linecap");
5234 mp->int_name[mp_miterlimit]=xstrdup("miterlimit");
5235 mp->int_name[mp_warning_check]=xstrdup("warningcheck");
5236 mp->int_name[mp_boundary_char]=xstrdup("boundarychar");
5237 mp->int_name[mp_prologues]=xstrdup("prologues");
5238 mp->int_name[mp_true_corners]=xstrdup("truecorners");
5239 mp->int_name[mp_default_color_model]=xstrdup("defaultcolormodel");
5240 mp->int_name[mp_procset]=xstrdup("mpprocset");
5241 mp->int_name[mp_gtroffmode]=xstrdup("troffmode");
5242 mp->int_name[mp_restore_clip_color]=xstrdup("restoreclipcolor");
5244 @ The following procedure, which is called just before \MP\ initializes its
5245 input and output, establishes the initial values of the date and time.
5246 @^system dependencies@>
5248 Note that the values are |scaled| integers. Hence \MP\ can no longer
5249 be used after the year 32767.
5252 void mp_fix_date_and_time (MP mp) {
5253 time_t clock = time ((time_t *) 0);
5254 struct tm *tmptr = localtime (&clock);
5255 mp->internal[mp_time]=
5256 (tmptr->tm_hour*60+tmptr->tm_min)*unity; /* minutes since midnight */
5257 mp->internal[mp_day]=(tmptr->tm_mday)*unity; /* fourth day of the month */
5258 mp->internal[mp_month]=(tmptr->tm_mon+1)*unity; /* seventh month of the year */
5259 mp->internal[mp_year]=(tmptr->tm_year+1900)*unity; /* Anno Domini */
5263 void mp_fix_date_and_time (MP mp) ;
5265 @ \MP\ is occasionally supposed to print diagnostic information that
5266 goes only into the transcript file, unless |mp_tracing_online| is positive.
5267 Now that we have defined |mp_tracing_online| we can define
5268 two routines that adjust the destination of print commands:
5271 void mp_begin_diagnostic (MP mp) ;
5272 void mp_end_diagnostic (MP mp,boolean blank_line);
5273 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) ;
5275 @ @<Basic printing...@>=
5276 @<Declare a function called |true_line|@>;
5277 void mp_begin_diagnostic (MP mp) { /* prepare to do some tracing */
5278 mp->old_setting=mp->selector;
5279 if ((mp->internal[mp_tracing_online]<=0)&&(mp->selector==term_and_log)){
5281 if ( mp->history==mp_spotless ) mp->history=mp_warning_issued;
5285 void mp_end_diagnostic (MP mp,boolean blank_line) {
5286 /* restore proper conditions after tracing */
5287 mp_print_nl(mp, "");
5288 if ( blank_line ) mp_print_ln(mp);
5289 mp->selector=mp->old_setting;
5295 unsigned int old_setting;
5297 @ We will occasionally use |begin_diagnostic| in connection with line-number
5298 printing, as follows. (The parameter |s| is typically |"Path"| or
5299 |"Cycle spec"|, etc.)
5301 @<Basic printing...@>=
5302 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) {
5303 mp_begin_diagnostic(mp);
5304 if ( nuline ) mp_print_nl(mp, s); else mp_print(mp, s);
5305 mp_print(mp, " at line ");
5306 mp_print_int(mp, mp_true_line(mp));
5307 mp_print(mp, t); mp_print_char(mp, ':');
5310 @ The 256 |ASCII_code| characters are grouped into classes by means of
5311 the |char_class| table. Individual class numbers have no semantic
5312 or syntactic significance, except in a few instances defined here.
5313 There's also |max_class|, which can be used as a basis for additional
5314 class numbers in nonstandard extensions of \MP.
5316 @d digit_class 0 /* the class number of \.{0123456789} */
5317 @d period_class 1 /* the class number of `\..' */
5318 @d space_class 2 /* the class number of spaces and nonstandard characters */
5319 @d percent_class 3 /* the class number of `\.\%' */
5320 @d string_class 4 /* the class number of `\."' */
5321 @d right_paren_class 8 /* the class number of `\.)' */
5322 @d isolated_classes 5: case 6: case 7: case 8 /* characters that make length-one tokens only */
5323 @d letter_class 9 /* letters and the underline character */
5324 @d left_bracket_class 17 /* `\.[' */
5325 @d right_bracket_class 18 /* `\.]' */
5326 @d invalid_class 20 /* bad character in the input */
5327 @d max_class 20 /* the largest class number */
5330 int char_class[256]; /* the class numbers */
5332 @ If changes are made to accommodate non-ASCII character sets, they should
5333 follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
5334 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
5335 @^system dependencies@>
5337 @<Set initial ...@>=
5338 for (k='0';k<='9';k++)
5339 mp->char_class[k]=digit_class;
5340 mp->char_class['.']=period_class;
5341 mp->char_class[' ']=space_class;
5342 mp->char_class['%']=percent_class;
5343 mp->char_class['"']=string_class;
5344 mp->char_class[',']=5;
5345 mp->char_class[';']=6;
5346 mp->char_class['(']=7;
5347 mp->char_class[')']=right_paren_class;
5348 for (k='A';k<= 'Z';k++ )
5349 mp->char_class[k]=letter_class;
5350 for (k='a';k<='z';k++)
5351 mp->char_class[k]=letter_class;
5352 mp->char_class['_']=letter_class;
5353 mp->char_class['<']=10;
5354 mp->char_class['=']=10;
5355 mp->char_class['>']=10;
5356 mp->char_class[':']=10;
5357 mp->char_class['|']=10;
5358 mp->char_class['`']=11;
5359 mp->char_class['\'']=11;
5360 mp->char_class['+']=12;
5361 mp->char_class['-']=12;
5362 mp->char_class['/']=13;
5363 mp->char_class['*']=13;
5364 mp->char_class['\\']=13;
5365 mp->char_class['!']=14;
5366 mp->char_class['?']=14;
5367 mp->char_class['#']=15;
5368 mp->char_class['&']=15;
5369 mp->char_class['@@']=15;
5370 mp->char_class['$']=15;
5371 mp->char_class['^']=16;
5372 mp->char_class['~']=16;
5373 mp->char_class['[']=left_bracket_class;
5374 mp->char_class[']']=right_bracket_class;
5375 mp->char_class['{']=19;
5376 mp->char_class['}']=19;
5378 mp->char_class[k]=invalid_class;
5379 mp->char_class['\t']=space_class;
5380 mp->char_class['\f']=space_class;
5381 for (k=127;k<=255;k++)
5382 mp->char_class[k]=invalid_class;
5384 @* \[13] The hash table.
5385 Symbolic tokens are stored and retrieved by means of a fairly standard hash
5386 table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
5387 in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
5388 table, it is never removed.
5390 The actual sequence of characters forming a symbolic token is
5391 stored in the |str_pool| array together with all the other strings. An
5392 auxiliary array |hash| consists of items with two halfword fields per
5393 word. The first of these, called |next(p)|, points to the next identifier
5394 belonging to the same coalesced list as the identifier corresponding to~|p|;
5395 and the other, called |text(p)|, points to the |str_start| entry for
5396 |p|'s identifier. If position~|p| of the hash table is empty, we have
5397 |text(p)=0|; if position |p| is either empty or the end of a coalesced
5398 hash list, we have |next(p)=0|.
5400 An auxiliary pointer variable called |hash_used| is maintained in such a
5401 way that all locations |p>=hash_used| are nonempty. The global variable
5402 |st_count| tells how many symbolic tokens have been defined, if statistics
5405 The first 256 locations of |hash| are reserved for symbols of length one.
5407 There's a parallel array called |eqtb| that contains the current equivalent
5408 values of each symbolic token. The entries of this array consist of
5409 two halfwords called |eq_type| (a command code) and |equiv| (a secondary
5410 piece of information that qualifies the |eq_type|).
5412 @d next(A) mp->hash[(A)].lh /* link for coalesced lists */
5413 @d text(A) mp->hash[(A)].rh /* string number for symbolic token name */
5414 @d eq_type(A) mp->eqtb[(A)].lh /* the current ``meaning'' of a symbolic token */
5415 @d equiv(A) mp->eqtb[(A)].rh /* parametric part of a token's meaning */
5416 @d hash_base 257 /* hashing actually starts here */
5417 @d hash_is_full (mp->hash_used==hash_base) /* are all positions occupied? */
5420 pointer hash_used; /* allocation pointer for |hash| */
5421 integer st_count; /* total number of known identifiers */
5423 @ Certain entries in the hash table are ``frozen'' and not redefinable,
5424 since they are used in error recovery.
5426 @d hash_top (hash_base+mp->hash_size) /* the first location of the frozen area */
5427 @d frozen_inaccessible hash_top /* |hash| location to protect the frozen area */
5428 @d frozen_repeat_loop (hash_top+1) /* |hash| location of a loop-repeat token */
5429 @d frozen_right_delimiter (hash_top+2) /* |hash| location of a permanent `\.)' */
5430 @d frozen_left_bracket (hash_top+3) /* |hash| location of a permanent `\.[' */
5431 @d frozen_slash (hash_top+4) /* |hash| location of a permanent `\./' */
5432 @d frozen_colon (hash_top+5) /* |hash| location of a permanent `\.:' */
5433 @d frozen_semicolon (hash_top+6) /* |hash| location of a permanent `\.;' */
5434 @d frozen_end_for (hash_top+7) /* |hash| location of a permanent \&{endfor} */
5435 @d frozen_end_def (hash_top+8) /* |hash| location of a permanent \&{enddef} */
5436 @d frozen_fi (hash_top+9) /* |hash| location of a permanent \&{fi} */
5437 @d frozen_end_group (hash_top+10) /* |hash| location of a permanent `\.{endgroup}' */
5438 @d frozen_etex (hash_top+11) /* |hash| location of a permanent \&{etex} */
5439 @d frozen_mpx_break (hash_top+12) /* |hash| location of a permanent \&{mpxbreak} */
5440 @d frozen_bad_vardef (hash_top+13) /* |hash| location of `\.{a bad variable}' */
5441 @d frozen_undefined (hash_top+14) /* |hash| location that never gets defined */
5442 @d hash_end (hash_top+14) /* the actual size of the |hash| and |eqtb| arrays */
5445 two_halves *hash; /* the hash table */
5446 two_halves *eqtb; /* the equivalents */
5448 @ @<Allocate or initialize ...@>=
5449 mp->hash = xmalloc((hash_end+1),sizeof(two_halves));
5450 mp->eqtb = xmalloc((hash_end+1),sizeof(two_halves));
5452 @ @<Dealloc variables@>=
5457 next(1)=0; text(1)=0; eq_type(1)=tag_token; equiv(1)=null;
5458 for (k=2;k<=hash_end;k++) {
5459 mp->hash[k]=mp->hash[1]; mp->eqtb[k]=mp->eqtb[1];
5462 @ @<Initialize table entries...@>=
5463 mp->hash_used=frozen_inaccessible; /* nothing is used */
5465 text(frozen_bad_vardef)=intern("a bad variable");
5466 text(frozen_etex)=intern("etex");
5467 text(frozen_mpx_break)=intern("mpxbreak");
5468 text(frozen_fi)=intern("fi");
5469 text(frozen_end_group)=intern("endgroup");
5470 text(frozen_end_def)=intern("enddef");
5471 text(frozen_end_for)=intern("endfor");
5472 text(frozen_semicolon)=intern(";");
5473 text(frozen_colon)=intern(":");
5474 text(frozen_slash)=intern("/");
5475 text(frozen_left_bracket)=intern("[");
5476 text(frozen_right_delimiter)=intern(")");
5477 text(frozen_inaccessible)=intern(" INACCESSIBLE");
5478 eq_type(frozen_right_delimiter)=right_delimiter;
5480 @ @<Check the ``constant'' values...@>=
5481 if ( hash_end+mp->max_internal>max_halfword ) mp->bad=17;
5483 @ Here is the subroutine that searches the hash table for an identifier
5484 that matches a given string of length~|l| appearing in |buffer[j..
5485 (j+l-1)]|. If the identifier is not found, it is inserted; hence it
5486 will always be found, and the corresponding hash table address
5490 pointer mp_id_lookup (MP mp,integer j, integer l) { /* search the hash table */
5491 integer h; /* hash code */
5492 pointer p; /* index in |hash| array */
5493 pointer k; /* index in |buffer| array */
5495 @<Treat special case of length 1 and |break|@>;
5497 @<Compute the hash code |h|@>;
5498 p=h+hash_base; /* we start searching here; note that |0<=h<hash_prime| */
5500 if (text(p)>0 && length(text(p))==l && mp_str_eq_buf(mp, text(p),j))
5503 @<Insert a new symbolic token after |p|, then
5504 make |p| point to it and |break|@>;
5511 @ @<Treat special case of length 1...@>=
5512 p=mp->buffer[j]+1; text(p)=p-1; return p;
5515 @ @<Insert a new symbolic...@>=
5520 mp_overflow(mp, "hash size",mp->hash_size);
5521 @:MetaPost capacity exceeded hash size}{\quad hash size@>
5522 decr(mp->hash_used);
5523 } while (text(mp->hash_used)!=0); /* search for an empty location in |hash| */
5524 next(p)=mp->hash_used;
5528 for (k=j;k<=j+l-1;k++) {
5529 append_char(mp->buffer[k]);
5531 text(p)=mp_make_string(mp);
5532 mp->str_ref[text(p)]=max_str_ref;
5538 @ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
5539 should be a prime number. The theory of hashing tells us to expect fewer
5540 than two table probes, on the average, when the search is successful.
5541 [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
5542 @^Vitter, Jeffrey Scott@>
5544 @<Compute the hash code |h|@>=
5546 for (k=j+1;k<=j+l-1;k++){
5547 h=h+h+mp->buffer[k];
5548 while ( h>=mp->hash_prime ) h=h-mp->hash_prime;
5551 @ @<Search |eqtb| for equivalents equal to |p|@>=
5552 for (q=1;q<=hash_end;q++) {
5553 if ( equiv(q)==p ) {
5554 mp_print_nl(mp, "EQUIV(");
5555 mp_print_int(mp, q);
5556 mp_print_char(mp, ')');
5560 @ We need to put \MP's ``primitive'' symbolic tokens into the hash
5561 table, together with their command code (which will be the |eq_type|)
5562 and an operand (which will be the |equiv|). The |primitive| procedure
5563 does this, in a way that no \MP\ user can. The global value |cur_sym|
5564 contains the new |eqtb| pointer after |primitive| has acted.
5567 void mp_primitive (MP mp, char *ss, halfword c, halfword o) {
5568 pool_pointer k; /* index into |str_pool| */
5569 small_number j; /* index into |buffer| */
5570 small_number l; /* length of the string */
5573 k=mp->str_start[s]; l=str_stop(s)-k;
5574 /* we will move |s| into the (empty) |buffer| */
5575 for (j=0;j<=l-1;j++) {
5576 mp->buffer[j]=mp->str_pool[k+j];
5578 mp->cur_sym=mp_id_lookup(mp, 0,l);
5579 if ( s>=256 ) { /* we don't want to have the string twice */
5580 mp_flush_string(mp, text(mp->cur_sym)); text(mp->cur_sym)=s;
5582 eq_type(mp->cur_sym)=c;
5583 equiv(mp->cur_sym)=o;
5587 @ Many of \MP's primitives need no |equiv|, since they are identifiable
5588 by their |eq_type| alone. These primitives are loaded into the hash table
5591 @<Put each of \MP's primitives into the hash table@>=
5592 mp_primitive(mp, "..",path_join,0);
5593 @:.._}{\.{..} primitive@>
5594 mp_primitive(mp, "[",left_bracket,0); mp->eqtb[frozen_left_bracket]=mp->eqtb[mp->cur_sym];
5595 @:[ }{\.{[} primitive@>
5596 mp_primitive(mp, "]",right_bracket,0);
5597 @:] }{\.{]} primitive@>
5598 mp_primitive(mp, "}",right_brace,0);
5599 @:]]}{\.{\char`\}} primitive@>
5600 mp_primitive(mp, "{",left_brace,0);
5601 @:][}{\.{\char`\{} primitive@>
5602 mp_primitive(mp, ":",colon,0); mp->eqtb[frozen_colon]=mp->eqtb[mp->cur_sym];
5603 @:: }{\.{:} primitive@>
5604 mp_primitive(mp, "::",double_colon,0);
5605 @::: }{\.{::} primitive@>
5606 mp_primitive(mp, "||:",bchar_label,0);
5607 @:::: }{\.{\char'174\char'174:} primitive@>
5608 mp_primitive(mp, ":=",assignment,0);
5609 @::=_}{\.{:=} primitive@>
5610 mp_primitive(mp, ",",comma,0);
5611 @:, }{\., primitive@>
5612 mp_primitive(mp, ";",semicolon,0); mp->eqtb[frozen_semicolon]=mp->eqtb[mp->cur_sym];
5613 @:; }{\.; primitive@>
5614 mp_primitive(mp, "\\",relax,0);
5615 @:]]\\}{\.{\char`\\} primitive@>
5617 mp_primitive(mp, "addto",add_to_command,0);
5618 @:add_to_}{\&{addto} primitive@>
5619 mp_primitive(mp, "atleast",at_least,0);
5620 @:at_least_}{\&{atleast} primitive@>
5621 mp_primitive(mp, "begingroup",begin_group,0); mp->bg_loc=mp->cur_sym;
5622 @:begin_group_}{\&{begingroup} primitive@>
5623 mp_primitive(mp, "controls",controls,0);
5624 @:controls_}{\&{controls} primitive@>
5625 mp_primitive(mp, "curl",curl_command,0);
5626 @:curl_}{\&{curl} primitive@>
5627 mp_primitive(mp, "delimiters",delimiters,0);
5628 @:delimiters_}{\&{delimiters} primitive@>
5629 mp_primitive(mp, "endgroup",end_group,0);
5630 mp->eqtb[frozen_end_group]=mp->eqtb[mp->cur_sym]; mp->eg_loc=mp->cur_sym;
5631 @:endgroup_}{\&{endgroup} primitive@>
5632 mp_primitive(mp, "everyjob",every_job_command,0);
5633 @:every_job_}{\&{everyjob} primitive@>
5634 mp_primitive(mp, "exitif",exit_test,0);
5635 @:exit_if_}{\&{exitif} primitive@>
5636 mp_primitive(mp, "expandafter",expand_after,0);
5637 @:expand_after_}{\&{expandafter} primitive@>
5638 mp_primitive(mp, "interim",interim_command,0);
5639 @:interim_}{\&{interim} primitive@>
5640 mp_primitive(mp, "let",let_command,0);
5641 @:let_}{\&{let} primitive@>
5642 mp_primitive(mp, "newinternal",new_internal,0);
5643 @:new_internal_}{\&{newinternal} primitive@>
5644 mp_primitive(mp, "of",of_token,0);
5645 @:of_}{\&{of} primitive@>
5646 mp_primitive(mp, "randomseed",mp_random_seed,0);
5647 @:mp_random_seed_}{\&{randomseed} primitive@>
5648 mp_primitive(mp, "save",save_command,0);
5649 @:save_}{\&{save} primitive@>
5650 mp_primitive(mp, "scantokens",scan_tokens,0);
5651 @:scan_tokens_}{\&{scantokens} primitive@>
5652 mp_primitive(mp, "shipout",ship_out_command,0);
5653 @:ship_out_}{\&{shipout} primitive@>
5654 mp_primitive(mp, "skipto",skip_to,0);
5655 @:skip_to_}{\&{skipto} primitive@>
5656 mp_primitive(mp, "special",special_command,0);
5657 @:special}{\&{special} primitive@>
5658 mp_primitive(mp, "fontmapfile",special_command,1);
5659 @:fontmapfile}{\&{fontmapfile} primitive@>
5660 mp_primitive(mp, "fontmapline",special_command,2);
5661 @:fontmapline}{\&{fontmapline} primitive@>
5662 mp_primitive(mp, "step",step_token,0);
5663 @:step_}{\&{step} primitive@>
5664 mp_primitive(mp, "str",str_op,0);
5665 @:str_}{\&{str} primitive@>
5666 mp_primitive(mp, "tension",tension,0);
5667 @:tension_}{\&{tension} primitive@>
5668 mp_primitive(mp, "to",to_token,0);
5669 @:to_}{\&{to} primitive@>
5670 mp_primitive(mp, "until",until_token,0);
5671 @:until_}{\&{until} primitive@>
5672 mp_primitive(mp, "within",within_token,0);
5673 @:within_}{\&{within} primitive@>
5674 mp_primitive(mp, "write",write_command,0);
5675 @:write_}{\&{write} primitive@>
5677 @ Each primitive has a corresponding inverse, so that it is possible to
5678 display the cryptic numeric contents of |eqtb| in symbolic form.
5679 Every call of |primitive| in this program is therefore accompanied by some
5680 straightforward code that forms part of the |print_cmd_mod| routine
5683 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
5684 case add_to_command:mp_print(mp, "addto"); break;
5685 case assignment:mp_print(mp, ":="); break;
5686 case at_least:mp_print(mp, "atleast"); break;
5687 case bchar_label:mp_print(mp, "||:"); break;
5688 case begin_group:mp_print(mp, "begingroup"); break;
5689 case colon:mp_print(mp, ":"); break;
5690 case comma:mp_print(mp, ","); break;
5691 case controls:mp_print(mp, "controls"); break;
5692 case curl_command:mp_print(mp, "curl"); break;
5693 case delimiters:mp_print(mp, "delimiters"); break;
5694 case double_colon:mp_print(mp, "::"); break;
5695 case end_group:mp_print(mp, "endgroup"); break;
5696 case every_job_command:mp_print(mp, "everyjob"); break;
5697 case exit_test:mp_print(mp, "exitif"); break;
5698 case expand_after:mp_print(mp, "expandafter"); break;
5699 case interim_command:mp_print(mp, "interim"); break;
5700 case left_brace:mp_print(mp, "{"); break;
5701 case left_bracket:mp_print(mp, "["); break;
5702 case let_command:mp_print(mp, "let"); break;
5703 case new_internal:mp_print(mp, "newinternal"); break;
5704 case of_token:mp_print(mp, "of"); break;
5705 case path_join:mp_print(mp, ".."); break;
5706 case mp_random_seed:mp_print(mp, "randomseed"); break;
5707 case relax:mp_print_char(mp, '\\'); break;
5708 case right_brace:mp_print(mp, "}"); break;
5709 case right_bracket:mp_print(mp, "]"); break;
5710 case save_command:mp_print(mp, "save"); break;
5711 case scan_tokens:mp_print(mp, "scantokens"); break;
5712 case semicolon:mp_print(mp, ";"); break;
5713 case ship_out_command:mp_print(mp, "shipout"); break;
5714 case skip_to:mp_print(mp, "skipto"); break;
5715 case special_command: if ( m==2 ) mp_print(mp, "fontmapline"); else
5716 if ( m==1 ) mp_print(mp, "fontmapfile"); else
5717 mp_print(mp, "special"); break;
5718 case step_token:mp_print(mp, "step"); break;
5719 case str_op:mp_print(mp, "str"); break;
5720 case tension:mp_print(mp, "tension"); break;
5721 case to_token:mp_print(mp, "to"); break;
5722 case until_token:mp_print(mp, "until"); break;
5723 case within_token:mp_print(mp, "within"); break;
5724 case write_command:mp_print(mp, "write"); break;
5726 @ We will deal with the other primitives later, at some point in the program
5727 where their |eq_type| and |equiv| values are more meaningful. For example,
5728 the primitives for macro definitions will be loaded when we consider the
5729 routines that define macros.
5730 It is easy to find where each particular
5731 primitive was treated by looking in the index at the end; for example, the
5732 section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
5734 @* \[14] Token lists.
5735 A \MP\ token is either symbolic or numeric or a string, or it denotes
5736 a macro parameter or capsule; so there are five corresponding ways to encode it
5738 internally: (1)~A symbolic token whose hash code is~|p|
5739 is represented by the number |p|, in the |info| field of a single-word
5740 node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
5741 represented in a two-word node of~|mem|; the |type| field is |known|,
5742 the |name_type| field is |token|, and the |value| field holds~|v|.
5743 The fact that this token appears in a two-word node rather than a
5744 one-word node is, of course, clear from the node address.
5745 (3)~A string token is also represented in a two-word node; the |type|
5746 field is |mp_string_type|, the |name_type| field is |token|, and the
5747 |value| field holds the corresponding |str_number|. (4)~Capsules have
5748 |name_type=capsule|, and their |type| and |value| fields represent
5749 arbitrary values (in ways to be explained later). (5)~Macro parameters
5750 are like symbolic tokens in that they appear in |info| fields of
5751 one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
5752 is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
5753 by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
5754 Actual values of these parameters are kept in a separate stack, as we will
5755 see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
5756 of course, chosen so that there will be no confusion between symbolic
5757 tokens and parameters of various types.
5760 the `\\{type}' field of a node has nothing to do with ``type'' in a
5761 printer's sense. It's curious that the same word is used in such different ways.
5763 @d type(A) mp->mem[(A)].hh.b0 /* identifies what kind of value this is */
5764 @d name_type(A) mp->mem[(A)].hh.b1 /* a clue to the name of this value */
5765 @d token_node_size 2 /* the number of words in a large token node */
5766 @d value_loc(A) ((A)+1) /* the word that contains the |value| field */
5767 @d value(A) mp->mem[value_loc((A))].cint /* the value stored in a large token node */
5768 @d expr_base (hash_end+1) /* code for the zeroth \&{expr} parameter */
5769 @d suffix_base (expr_base+mp->param_size) /* code for the zeroth \&{suffix} parameter */
5770 @d text_base (suffix_base+mp->param_size) /* code for the zeroth \&{text} parameter */
5772 @<Check the ``constant''...@>=
5773 if ( text_base+mp->param_size>max_halfword ) mp->bad=18;
5775 @ We have set aside a two word node beginning at |null| so that we can have
5776 |value(null)=0|. We will make use of this coincidence later.
5778 @<Initialize table entries...@>=
5779 link(null)=null; value(null)=0;
5781 @ A numeric token is created by the following trivial routine.
5784 pointer mp_new_num_tok (MP mp,scaled v) {
5785 pointer p; /* the new node */
5786 p=mp_get_node(mp, token_node_size); value(p)=v;
5787 type(p)=mp_known; name_type(p)=mp_token;
5791 @ A token list is a singly linked list of nodes in |mem|, where
5792 each node contains a token and a link. Here's a subroutine that gets rid
5793 of a token list when it is no longer needed.
5796 void mp_token_recycle (MP mp);
5799 @c void mp_flush_token_list (MP mp,pointer p) {
5800 pointer q; /* the node being recycled */
5803 if ( q>=mp->hi_mem_min ) {
5807 case mp_vacuous: case mp_boolean_type: case mp_known:
5809 case mp_string_type:
5810 delete_str_ref(value(q));
5812 case unknown_types: case mp_pen_type: case mp_path_type:
5813 case mp_picture_type: case mp_pair_type: case mp_color_type:
5814 case mp_cmykcolor_type: case mp_transform_type: case mp_dependent:
5815 case mp_proto_dependent: case mp_independent:
5816 mp->g_pointer=q; mp_token_recycle(mp);
5818 default: mp_confusion(mp, "token");
5819 @:this can't happen token}{\quad token@>
5821 mp_free_node(mp, q,token_node_size);
5826 @ The procedure |show_token_list|, which prints a symbolic form of
5827 the token list that starts at a given node |p|, illustrates these
5828 conventions. The token list being displayed should not begin with a reference
5829 count. However, the procedure is intended to be fairly robust, so that if the
5830 memory links are awry or if |p| is not really a pointer to a token list,
5831 almost nothing catastrophic can happen.
5833 An additional parameter |q| is also given; this parameter is either null
5834 or it points to a node in the token list where a certain magic computation
5835 takes place that will be explained later. (Basically, |q| is non-null when
5836 we are printing the two-line context information at the time of an error
5837 message; |q| marks the place corresponding to where the second line
5840 The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
5841 of printing exceeds a given limit~|l|; the length of printing upon entry is
5842 assumed to be a given amount called |null_tally|. (Note that
5843 |show_token_list| sometimes uses itself recursively to print
5844 variable names within a capsule.)
5847 Unusual entries are printed in the form of all-caps tokens
5848 preceded by a space, e.g., `\.{\char`\ BAD}'.
5851 void mp_print_capsule (MP mp);
5853 @ @<Declare the procedure called |show_token_list|@>=
5854 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5855 integer null_tally) ;
5858 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5859 integer null_tally) {
5860 small_number class,c; /* the |char_class| of previous and new tokens */
5861 integer r,v; /* temporary registers */
5862 class=percent_class;
5863 mp->tally=null_tally;
5864 while ( (p!=null) && (mp->tally<l) ) {
5866 @<Do magic computation@>;
5867 @<Display token |p| and set |c| to its class;
5868 but |return| if there are problems@>;
5872 mp_print(mp, " ETC.");
5877 @ @<Display token |p| and set |c| to its class...@>=
5878 c=letter_class; /* the default */
5879 if ( (p<0)||(p>mp->mem_end) ) {
5880 mp_print(mp, " CLOBBERED"); return;
5883 if ( p<mp->hi_mem_min ) {
5884 @<Display two-word token@>;
5887 if ( r>=expr_base ) {
5888 @<Display a parameter token@>;
5892 @<Display a collective subscript@>
5894 mp_print(mp, " IMPOSSIBLE");
5899 if ( (r<0)||(r>mp->max_str_ptr) ) {
5900 mp_print(mp, " NONEXISTENT");
5903 @<Print string |r| as a symbolic token
5904 and set |c| to its class@>;
5910 @ @<Display two-word token@>=
5911 if ( name_type(p)==mp_token ) {
5912 if ( type(p)==mp_known ) {
5913 @<Display a numeric token@>;
5914 } else if ( type(p)!=mp_string_type ) {
5915 mp_print(mp, " BAD");
5918 mp_print_char(mp, '"'); mp_print_str(mp, value(p)); mp_print_char(mp, '"');
5921 } else if ((name_type(p)!=mp_capsule)||(type(p)<mp_vacuous)||(type(p)>mp_independent) ) {
5922 mp_print(mp, " BAD");
5924 mp->g_pointer=p; mp_print_capsule(mp); c=right_paren_class;
5927 @ @<Display a numeric token@>=
5928 if ( class==digit_class )
5929 mp_print_char(mp, ' ');
5932 if ( class==left_bracket_class )
5933 mp_print_char(mp, ' ');
5934 mp_print_char(mp, '['); mp_print_scaled(mp, v); mp_print_char(mp, ']');
5935 c=right_bracket_class;
5937 mp_print_scaled(mp, v); c=digit_class;
5941 @ Strictly speaking, a genuine token will never have |info(p)=0|.
5942 But we will see later (in the |print_variable_name| routine) that
5943 it is convenient to let |info(p)=0| stand for `\.{[]}'.
5945 @<Display a collective subscript@>=
5947 if ( class==left_bracket_class )
5948 mp_print_char(mp, ' ');
5949 mp_print(mp, "[]"); c=right_bracket_class;
5952 @ @<Display a parameter token@>=
5954 if ( r<suffix_base ) {
5955 mp_print(mp, "(EXPR"); r=r-(expr_base);
5957 } else if ( r<text_base ) {
5958 mp_print(mp, "(SUFFIX"); r=r-(suffix_base);
5961 mp_print(mp, "(TEXT"); r=r-(text_base);
5964 mp_print_int(mp, r); mp_print_char(mp, ')'); c=right_paren_class;
5968 @ @<Print string |r| as a symbolic token...@>=
5970 c=mp->char_class[mp->str_pool[mp->str_start[r]]];
5973 case letter_class:mp_print_char(mp, '.'); break;
5974 case isolated_classes: break;
5975 default: mp_print_char(mp, ' '); break;
5978 mp_print_str(mp, r);
5981 @ The following procedures have been declared |forward| with no parameters,
5982 because the author dislikes \PASCAL's convention about |forward| procedures
5983 with parameters. It was necessary to do something, because |show_token_list|
5984 is recursive (although the recursion is limited to one level), and because
5985 |flush_token_list| is syntactically (but not semantically) recursive.
5988 @<Declare miscellaneous procedures that were declared |forward|@>=
5989 void mp_print_capsule (MP mp) {
5990 mp_print_char(mp, '('); mp_print_exp(mp, mp->g_pointer,0); mp_print_char(mp, ')');
5993 void mp_token_recycle (MP mp) {
5994 mp_recycle_value(mp, mp->g_pointer);
5998 pointer g_pointer; /* (global) parameter to the |forward| procedures */
6000 @ Macro definitions are kept in \MP's memory in the form of token lists
6001 that have a few extra one-word nodes at the beginning.
6003 The first node contains a reference count that is used to tell when the
6004 list is no longer needed. To emphasize the fact that a reference count is
6005 present, we shall refer to the |info| field of this special node as the
6007 @^reference counts@>
6009 The next node or nodes after the reference count serve to describe the
6010 formal parameters. They either contain a code word that specifies all
6011 of the parameters, or they contain zero or more parameter tokens followed
6012 by the code `|general_macro|'.
6015 /* reference count preceding a macro definition or picture header */
6016 @d add_mac_ref(A) incr(ref_count((A))) /* make a new reference to a macro list */
6017 @d general_macro 0 /* preface to a macro defined with a parameter list */
6018 @d primary_macro 1 /* preface to a macro with a \&{primary} parameter */
6019 @d secondary_macro 2 /* preface to a macro with a \&{secondary} parameter */
6020 @d tertiary_macro 3 /* preface to a macro with a \&{tertiary} parameter */
6021 @d expr_macro 4 /* preface to a macro with an undelimited \&{expr} parameter */
6022 @d of_macro 5 /* preface to a macro with
6023 undelimited `\&{expr} |x| \&{of}~|y|' parameters */
6024 @d suffix_macro 6 /* preface to a macro with an undelimited \&{suffix} parameter */
6025 @d text_macro 7 /* preface to a macro with an undelimited \&{text} parameter */
6028 void mp_delete_mac_ref (MP mp,pointer p) {
6029 /* |p| points to the reference count of a macro list that is
6030 losing one reference */
6031 if ( ref_count(p)==null ) mp_flush_token_list(mp, p);
6032 else decr(ref_count(p));
6035 @ The following subroutine displays a macro, given a pointer to its
6039 @<Declare the procedure called |print_cmd_mod|@>;
6040 void mp_show_macro (MP mp, pointer p, integer q, integer l) {
6041 pointer r; /* temporary storage */
6042 p=link(p); /* bypass the reference count */
6043 while ( info(p)>text_macro ){
6044 r=link(p); link(p)=null;
6045 mp_show_token_list(mp, p,null,l,0); link(p)=r; p=r;
6046 if ( l>0 ) l=l-mp->tally; else return;
6047 } /* control printing of `\.{ETC.}' */
6051 case general_macro:mp_print(mp, "->"); break;
6053 case primary_macro: case secondary_macro: case tertiary_macro:
6054 mp_print_char(mp, '<');
6055 mp_print_cmd_mod(mp, param_type,info(p));
6056 mp_print(mp, ">->");
6058 case expr_macro:mp_print(mp, "<expr>->"); break;
6059 case of_macro:mp_print(mp, "<expr>of<primary>->"); break;
6060 case suffix_macro:mp_print(mp, "<suffix>->"); break;
6061 case text_macro:mp_print(mp, "<text>->"); break;
6062 } /* there are no other cases */
6063 mp_show_token_list(mp, link(p),q,l-mp->tally,0);
6066 @* \[15] Data structures for variables.
6067 The variables of \MP\ programs can be simple, like `\.x', or they can
6068 combine the structural properties of arrays and records, like `\.{x20a.b}'.
6069 A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
6070 example, `\.{boolean} \.{x20a.b}'. It's time for us to study how such
6071 things are represented inside of the computer.
6073 Each variable value occupies two consecutive words, either in a two-word
6074 node called a value node, or as a two-word subfield of a larger node. One
6075 of those two words is called the |value| field; it is an integer,
6076 containing either a |scaled| numeric value or the representation of some
6077 other type of quantity. (It might also be subdivided into halfwords, in
6078 which case it is referred to by other names instead of |value|.) The other
6079 word is broken into subfields called |type|, |name_type|, and |link|. The
6080 |type| field is a quarterword that specifies the variable's type, and
6081 |name_type| is a quarterword from which \MP\ can reconstruct the
6082 variable's name (sometimes by using the |link| field as well). Thus, only
6083 1.25 words are actually devoted to the value itself; the other
6084 three-quarters of a word are overhead, but they aren't wasted because they
6085 allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
6087 In this section we shall be concerned only with the structural aspects of
6088 variables, not their values. Later parts of the program will change the
6089 |type| and |value| fields, but we shall treat those fields as black boxes
6090 whose contents should not be touched.
6092 However, if the |type| field is |mp_structured|, there is no |value| field,
6093 and the second word is broken into two pointer fields called |attr_head|
6094 and |subscr_head|. Those fields point to additional nodes that
6095 contain structural information, as we shall see.
6097 @d subscr_head_loc(A) (A)+1 /* where |value|, |subscr_head| and |attr_head| are */
6098 @d attr_head(A) info(subscr_head_loc((A))) /* pointer to attribute info */
6099 @d subscr_head(A) link(subscr_head_loc((A))) /* pointer to subscript info */
6100 @d value_node_size 2 /* the number of words in a value node */
6102 @ An attribute node is three words long. Two of these words contain |type|
6103 and |value| fields as described above, and the third word contains
6104 additional information: There is an |attr_loc| field, which contains the
6105 hash address of the token that names this attribute; and there's also a
6106 |parent| field, which points to the value node of |mp_structured| type at the
6107 next higher level (i.e., at the level to which this attribute is
6108 subsidiary). The |name_type| in an attribute node is `|attr|'. The
6109 |link| field points to the next attribute with the same parent; these are
6110 arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
6111 final attribute node links to the constant |end_attr|, whose |attr_loc|
6112 field is greater than any legal hash address. The |attr_head| in the
6113 parent points to a node whose |name_type| is |mp_structured_root|; this
6114 node represents the null attribute, i.e., the variable that is relevant
6115 when no attributes are attached to the parent. The |attr_head| node is either
6116 a value node, a subscript node, or an attribute node, depending on what
6117 the parent would be if it were not structured; but the subscript and
6118 attribute fields are ignored, so it effectively contains only the data of
6119 a value node. The |link| field in this special node points to an attribute
6120 node whose |attr_loc| field is zero; the latter node represents a collective
6121 subscript `\.{[]}' attached to the parent, and its |link| field points to
6122 the first non-special attribute node (or to |end_attr| if there are none).
6124 A subscript node likewise occupies three words, with |type| and |value| fields
6125 plus extra information; its |name_type| is |subscr|. In this case the
6126 third word is called the |subscript| field, which is a |scaled| integer.
6127 The |link| field points to the subscript node with the next larger
6128 subscript, if any; otherwise the |link| points to the attribute node
6129 for collective subscripts at this level. We have seen that the latter node
6130 contains an upward pointer, so that the parent can be deduced.
6132 The |name_type| in a parent-less value node is |root|, and the |link|
6133 is the hash address of the token that names this value.
6135 In other words, variables have a hierarchical structure that includes
6136 enough threads running around so that the program is able to move easily
6137 between siblings, parents, and children. An example should be helpful:
6138 (The reader is advised to draw a picture while reading the following
6139 description, since that will help to firm up the ideas.)
6140 Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
6141 and `\.{x20b}' have been mentioned in a user's program, where
6142 \.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
6143 and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
6144 |eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
6145 node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=mp_structured|,
6146 |attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
6147 node and |r| to a subscript node. (Are you still following this? Use
6148 a pencil to draw a diagram.) The lone variable `\.x' is represented by
6149 |type(q)| and |value(q)|; furthermore
6150 |name_type(q)=mp_structured_root| and |link(q)=q1|, where |q1| points
6151 to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
6152 |attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
6153 |type(q1)=mp_structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
6154 |qq| is a value node with |type(qq)=mp_numeric_type| (assuming that \.{x5} is
6155 numeric, because |qq| represents `\.{x[]}' with no further attributes),
6156 |name_type(qq)=mp_structured_root|, and
6157 |link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
6158 an attribute node representing `\.{x[][]}', which has never yet
6159 occurred; its |type| field is |undefined|, and its |value| field is
6160 undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
6161 |parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
6162 `\.{x[]b}', |type(qq2)=mp_unknown_boolean|; also |attr_loc(qq2)=h(b)|,
6163 |parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
6164 (Maybe colored lines will help untangle your picture.)
6165 Node |r| is a subscript node with |type| and |value|
6166 representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
6167 and |link(r)=r1| is another subscript node. To complete the picture,
6168 see if you can guess what |link(r1)| is; give up? It's~|q1|.
6169 Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
6170 |type(r1)=mp_structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
6171 and we finish things off with three more nodes
6172 |qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
6173 with a larger sheet of paper.) The value of variable \.{x20b}
6174 appears in node~|qqq2|, as you can well imagine.
6176 If the example in the previous paragraph doesn't make things crystal
6177 clear, a glance at some of the simpler subroutines below will reveal how
6178 things work out in practice.
6180 The only really unusual thing about these conventions is the use of
6181 collective subscript attributes. The idea is to avoid repeating a lot of
6182 type information when many elements of an array are identical macros
6183 (for which distinct values need not be stored) or when they don't have
6184 all of the possible attributes. Branches of the structure below collective
6185 subscript attributes do not carry actual values except for macro identifiers;
6186 branches of the structure below subscript nodes do not carry significant
6187 information in their collective subscript attributes.
6189 @d attr_loc_loc(A) ((A)+2) /* where the |attr_loc| and |parent| fields are */
6190 @d attr_loc(A) info(attr_loc_loc((A))) /* hash address of this attribute */
6191 @d parent(A) link(attr_loc_loc((A))) /* pointer to |mp_structured| variable */
6192 @d subscript_loc(A) ((A)+2) /* where the |subscript| field lives */
6193 @d subscript(A) mp->mem[subscript_loc((A))].sc /* subscript of this variable */
6194 @d attr_node_size 3 /* the number of words in an attribute node */
6195 @d subscr_node_size 3 /* the number of words in a subscript node */
6196 @d collective_subscript 0 /* code for the attribute `\.{[]}' */
6198 @<Initialize table...@>=
6199 attr_loc(end_attr)=hash_end+1; parent(end_attr)=null;
6201 @ Variables of type \&{pair} will have values that point to four-word
6202 nodes containing two numeric values. The first of these values has
6203 |name_type=mp_x_part_sector| and the second has |name_type=mp_y_part_sector|;
6204 the |link| in the first points back to the node whose |value| points
6205 to this four-word node.
6207 Variables of type \&{transform} are similar, but in this case their
6208 |value| points to a 12-word node containing six values, identified by
6209 |x_part_sector|, |y_part_sector|, |mp_xx_part_sector|, |mp_xy_part_sector|,
6210 |mp_yx_part_sector|, and |mp_yy_part_sector|.
6211 Finally, variables of type \&{color} have three values in six words
6212 identified by |mp_red_part_sector|, |mp_green_part_sector|, and |mp_blue_part_sector|.
6214 When an entire structured variable is saved, the |root| indication
6215 is temporarily replaced by |saved_root|.
6217 Some variables have no name; they just are used for temporary storage
6218 while expressions are being evaluated. We call them {\sl capsules}.
6220 @d x_part_loc(A) (A) /* where the \&{xpart} is found in a pair or transform node */
6221 @d y_part_loc(A) ((A)+2) /* where the \&{ypart} is found in a pair or transform node */
6222 @d xx_part_loc(A) ((A)+4) /* where the \&{xxpart} is found in a transform node */
6223 @d xy_part_loc(A) ((A)+6) /* where the \&{xypart} is found in a transform node */
6224 @d yx_part_loc(A) ((A)+8) /* where the \&{yxpart} is found in a transform node */
6225 @d yy_part_loc(A) ((A)+10) /* where the \&{yypart} is found in a transform node */
6226 @d red_part_loc(A) (A) /* where the \&{redpart} is found in a color node */
6227 @d green_part_loc(A) ((A)+2) /* where the \&{greenpart} is found in a color node */
6228 @d blue_part_loc(A) ((A)+4) /* where the \&{bluepart} is found in a color node */
6229 @d cyan_part_loc(A) (A) /* where the \&{cyanpart} is found in a color node */
6230 @d magenta_part_loc(A) ((A)+2) /* where the \&{magentapart} is found in a color node */
6231 @d yellow_part_loc(A) ((A)+4) /* where the \&{yellowpart} is found in a color node */
6232 @d black_part_loc(A) ((A)+6) /* where the \&{blackpart} is found in a color node */
6233 @d grey_part_loc(A) (A) /* where the \&{greypart} is found in a color node */
6235 @d pair_node_size 4 /* the number of words in a pair node */
6236 @d transform_node_size 12 /* the number of words in a transform node */
6237 @d color_node_size 6 /* the number of words in a color node */
6238 @d cmykcolor_node_size 8 /* the number of words in a color node */
6241 small_number big_node_size[mp_pair_type+1];
6242 small_number sector0[mp_pair_type+1];
6243 small_number sector_offset[mp_black_part_sector+1];
6245 @ The |sector0| array gives for each big node type, |name_type| values
6246 for its first subfield; the |sector_offset| array gives for each
6247 |name_type| value, the offset from the first subfield in words;
6248 and the |big_node_size| array gives the size in words for each type of
6252 mp->big_node_size[mp_transform_type]=transform_node_size;
6253 mp->big_node_size[mp_pair_type]=pair_node_size;
6254 mp->big_node_size[mp_color_type]=color_node_size;
6255 mp->big_node_size[mp_cmykcolor_type]=cmykcolor_node_size;
6256 mp->sector0[mp_transform_type]=mp_x_part_sector;
6257 mp->sector0[mp_pair_type]=mp_x_part_sector;
6258 mp->sector0[mp_color_type]=mp_red_part_sector;
6259 mp->sector0[mp_cmykcolor_type]=mp_cyan_part_sector;
6260 for (k=mp_x_part_sector;k<= mp_yy_part_sector;k++ ) {
6261 mp->sector_offset[k]=2*(k-mp_x_part_sector);
6263 for (k=mp_red_part_sector;k<= mp_blue_part_sector ; k++) {
6264 mp->sector_offset[k]=2*(k-mp_red_part_sector);
6266 for (k=mp_cyan_part_sector;k<= mp_black_part_sector;k++ ) {
6267 mp->sector_offset[k]=2*(k-mp_cyan_part_sector);
6270 @ If |type(p)=mp_pair_type| or |mp_transform_type| and if |value(p)=null|, the
6271 procedure call |init_big_node(p)| will allocate a pair or transform node
6272 for~|p|. The individual parts of such nodes are initially of type
6276 void mp_init_big_node (MP mp,pointer p) {
6277 pointer q; /* the new node */
6278 small_number s; /* its size */
6279 s=mp->big_node_size[type(p)]; q=mp_get_node(mp, s);
6282 @<Make variable |q+s| newly independent@>;
6283 name_type(q+s)=halfp(s)+mp->sector0[type(p)];
6286 link(q)=p; value(p)=q;
6289 @ The |id_transform| function creates a capsule for the
6290 identity transformation.
6293 pointer mp_id_transform (MP mp) {
6294 pointer p,q,r; /* list manipulation registers */
6295 p=mp_get_node(mp, value_node_size); type(p)=mp_transform_type;
6296 name_type(p)=mp_capsule; value(p)=null; mp_init_big_node(mp, p); q=value(p);
6297 r=q+transform_node_size;
6300 type(r)=mp_known; value(r)=0;
6302 value(xx_part_loc(q))=unity;
6303 value(yy_part_loc(q))=unity;
6307 @ Tokens are of type |tag_token| when they first appear, but they point
6308 to |null| until they are first used as the root of a variable.
6309 The following subroutine establishes the root node on such grand occasions.
6312 void mp_new_root (MP mp,pointer x) {
6313 pointer p; /* the new node */
6314 p=mp_get_node(mp, value_node_size); type(p)=undefined; name_type(p)=mp_root;
6315 link(p)=x; equiv(x)=p;
6318 @ These conventions for variable representation are illustrated by the
6319 |print_variable_name| routine, which displays the full name of a
6320 variable given only a pointer to its two-word value packet.
6323 void mp_print_variable_name (MP mp, pointer p);
6326 void mp_print_variable_name (MP mp, pointer p) {
6327 pointer q; /* a token list that will name the variable's suffix */
6328 pointer r; /* temporary for token list creation */
6329 while ( name_type(p)>=mp_x_part_sector ) {
6330 @<Preface the output with a part specifier; |return| in the
6331 case of a capsule@>;
6334 while ( name_type(p)>mp_saved_root ) {
6335 @<Ascend one level, pushing a token onto list |q|
6336 and replacing |p| by its parent@>;
6338 r=mp_get_avail(mp); info(r)=link(p); link(r)=q;
6339 if ( name_type(p)==mp_saved_root ) mp_print(mp, "(SAVED)");
6341 mp_show_token_list(mp, r,null,el_gordo,mp->tally);
6342 mp_flush_token_list(mp, r);
6345 @ @<Ascend one level, pushing a token onto list |q|...@>=
6347 if ( name_type(p)==mp_subscr ) {
6348 r=mp_new_num_tok(mp, subscript(p));
6351 } while (name_type(p)!=mp_attr);
6352 } else if ( name_type(p)==mp_structured_root ) {
6353 p=link(p); goto FOUND;
6355 if ( name_type(p)!=mp_attr ) mp_confusion(mp, "var");
6356 @:this can't happen var}{\quad var@>
6357 r=mp_get_avail(mp); info(r)=attr_loc(p);
6364 @ @<Preface the output with a part specifier...@>=
6365 { switch (name_type(p)) {
6366 case mp_x_part_sector: mp_print_char(mp, 'x'); break;
6367 case mp_y_part_sector: mp_print_char(mp, 'y'); break;
6368 case mp_xx_part_sector: mp_print(mp, "xx"); break;
6369 case mp_xy_part_sector: mp_print(mp, "xy"); break;
6370 case mp_yx_part_sector: mp_print(mp, "yx"); break;
6371 case mp_yy_part_sector: mp_print(mp, "yy"); break;
6372 case mp_red_part_sector: mp_print(mp, "red"); break;
6373 case mp_green_part_sector: mp_print(mp, "green"); break;
6374 case mp_blue_part_sector: mp_print(mp, "blue"); break;
6375 case mp_cyan_part_sector: mp_print(mp, "cyan"); break;
6376 case mp_magenta_part_sector: mp_print(mp, "magenta"); break;
6377 case mp_yellow_part_sector: mp_print(mp, "yellow"); break;
6378 case mp_black_part_sector: mp_print(mp, "black"); break;
6379 case mp_grey_part_sector: mp_print(mp, "grey"); break;
6381 mp_print(mp, "%CAPSULE"); mp_print_int(mp, p-null); return;
6384 } /* there are no other cases */
6385 mp_print(mp, "part ");
6386 p=link(p-mp->sector_offset[name_type(p)]);
6389 @ The |interesting| function returns |true| if a given variable is not
6390 in a capsule, or if the user wants to trace capsules.
6393 boolean mp_interesting (MP mp,pointer p) {
6394 small_number t; /* a |name_type| */
6395 if ( mp->internal[mp_tracing_capsules]>0 ) {
6399 if ( t>=mp_x_part_sector ) if ( t!=mp_capsule )
6400 t=name_type(link(p-mp->sector_offset[t]));
6401 return (t!=mp_capsule);
6405 @ Now here is a subroutine that converts an unstructured type into an
6406 equivalent structured type, by inserting a |mp_structured| node that is
6407 capable of growing. This operation is done only when |name_type(p)=root|,
6408 |subscr|, or |attr|.
6410 The procedure returns a pointer to the new node that has taken node~|p|'s
6411 place in the structure. Node~|p| itself does not move, nor are its
6412 |value| or |type| fields changed in any way.
6415 pointer mp_new_structure (MP mp,pointer p) {
6416 pointer q,r=0; /* list manipulation registers */
6417 switch (name_type(p)) {
6419 q=link(p); r=mp_get_node(mp, value_node_size); equiv(q)=r;
6422 @<Link a new subscript node |r| in place of node |p|@>;
6425 @<Link a new attribute node |r| in place of node |p|@>;
6428 mp_confusion(mp, "struct");
6429 @:this can't happen struct}{\quad struct@>
6432 link(r)=link(p); type(r)=mp_structured; name_type(r)=name_type(p);
6433 attr_head(r)=p; name_type(p)=mp_structured_root;
6434 q=mp_get_node(mp, attr_node_size); link(p)=q; subscr_head(r)=q;
6435 parent(q)=r; type(q)=undefined; name_type(q)=mp_attr; link(q)=end_attr;
6436 attr_loc(q)=collective_subscript;
6440 @ @<Link a new subscript node |r| in place of node |p|@>=
6445 } while (name_type(q)!=mp_attr);
6446 q=parent(q); r=subscr_head_loc(q); /* |link(r)=subscr_head(q)| */
6450 r=mp_get_node(mp, subscr_node_size);
6451 link(q)=r; subscript(r)=subscript(p);
6454 @ If the attribute is |collective_subscript|, there are two pointers to
6455 node~|p|, so we must change both of them.
6457 @<Link a new attribute node |r| in place of node |p|@>=
6459 q=parent(p); r=attr_head(q);
6463 r=mp_get_node(mp, attr_node_size); link(q)=r;
6464 mp->mem[attr_loc_loc(r)]=mp->mem[attr_loc_loc(p)]; /* copy |attr_loc| and |parent| */
6465 if ( attr_loc(p)==collective_subscript ) {
6466 q=subscr_head_loc(parent(p));
6467 while ( link(q)!=p ) q=link(q);
6472 @ The |find_variable| routine is given a pointer~|t| to a nonempty token
6473 list of suffixes; it returns a pointer to the corresponding two-word
6474 value. For example, if |t| points to token \.x followed by a numeric
6475 token containing the value~7, |find_variable| finds where the value of
6476 \.{x7} is stored in memory. This may seem a simple task, and it
6477 usually is, except when \.{x7} has never been referenced before.
6478 Indeed, \.x may never have even been subscripted before; complexities
6479 arise with respect to updating the collective subscript information.
6481 If a macro type is detected anywhere along path~|t|, or if the first
6482 item on |t| isn't a |tag_token|, the value |null| is returned.
6483 Otherwise |p| will be a non-null pointer to a node such that
6484 |undefined<type(p)<mp_structured|.
6486 @d abort_find { return null; }
6489 pointer mp_find_variable (MP mp,pointer t) {
6490 pointer p,q,r,s; /* nodes in the ``value'' line */
6491 pointer pp,qq,rr,ss; /* nodes in the ``collective'' line */
6492 integer n; /* subscript or attribute */
6493 memory_word save_word; /* temporary storage for a word of |mem| */
6495 p=info(t); t=link(t);
6496 if ( (eq_type(p) % outer_tag) != tag_token ) abort_find;
6497 if ( equiv(p)==null ) mp_new_root(mp, p);
6500 @<Make sure that both nodes |p| and |pp| are of |mp_structured| type@>;
6501 if ( t<mp->hi_mem_min ) {
6502 @<Descend one level for the subscript |value(t)|@>
6504 @<Descend one level for the attribute |info(t)|@>;
6508 if ( type(pp)>=mp_structured ) {
6509 if ( type(pp)==mp_structured ) pp=attr_head(pp); else abort_find;
6511 if ( type(p)==mp_structured ) p=attr_head(p);
6512 if ( type(p)==undefined ) {
6513 if ( type(pp)==undefined ) { type(pp)=mp_numeric_type; value(pp)=null; };
6514 type(p)=type(pp); value(p)=null;
6519 @ Although |pp| and |p| begin together, they diverge when a subscript occurs;
6520 |pp|~stays in the collective line while |p|~goes through actual subscript
6523 @<Make sure that both nodes |p| and |pp|...@>=
6524 if ( type(pp)!=mp_structured ) {
6525 if ( type(pp)>mp_structured ) abort_find;
6526 ss=mp_new_structure(mp, pp);
6529 }; /* now |type(pp)=mp_structured| */
6530 if ( type(p)!=mp_structured ) /* it cannot be |>mp_structured| */
6531 p=mp_new_structure(mp, p) /* now |type(p)=mp_structured| */
6533 @ We want this part of the program to be reasonably fast, in case there are
6535 lots of subscripts at the same level of the data structure. Therefore
6536 we store an ``infinite'' value in the word that appears at the end of the
6537 subscript list, even though that word isn't part of a subscript node.
6539 @<Descend one level for the subscript |value(t)|@>=
6542 pp=link(attr_head(pp)); /* now |attr_loc(pp)=collective_subscript| */
6543 q=link(attr_head(p)); save_word=mp->mem[subscript_loc(q)];
6544 subscript(q)=el_gordo; s=subscr_head_loc(p); /* |link(s)=subscr_head(p)| */
6547 } while (n>subscript(s));
6548 if ( n==subscript(s) ) {
6551 p=mp_get_node(mp, subscr_node_size); link(r)=p; link(p)=s;
6552 subscript(p)=n; name_type(p)=mp_subscr; type(p)=undefined;
6554 mp->mem[subscript_loc(q)]=save_word;
6557 @ @<Descend one level for the attribute |info(t)|@>=
6563 } while (n>attr_loc(ss));
6564 if ( n<attr_loc(ss) ) {
6565 qq=mp_get_node(mp, attr_node_size); link(rr)=qq; link(qq)=ss;
6566 attr_loc(qq)=n; name_type(qq)=mp_attr; type(qq)=undefined;
6567 parent(qq)=pp; ss=qq;
6572 pp=ss; s=attr_head(p);
6575 } while (n>attr_loc(s));
6576 if ( n==attr_loc(s) ) {
6579 q=mp_get_node(mp, attr_node_size); link(r)=q; link(q)=s;
6580 attr_loc(q)=n; name_type(q)=mp_attr; type(q)=undefined;
6586 @ Variables lose their former values when they appear in a type declaration,
6587 or when they are defined to be macros or \&{let} equal to something else.
6588 A subroutine will be defined later that recycles the storage associated
6589 with any particular |type| or |value|; our goal now is to study a higher
6590 level process called |flush_variable|, which selectively frees parts of a
6593 This routine has some complexity because of examples such as
6594 `\hbox{\tt numeric x[]a[]b}'
6595 which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
6596 `\hbox{\tt vardef x[]a[]=...}'
6597 discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
6598 suffix, except for the collective node \.{x[]a[]} itself. The obvious way
6599 to handle such examples is to use recursion; so that's what we~do.
6602 Parameter |p| points to the root information of the variable;
6603 parameter |t| points to a list of one-word nodes that represent
6604 suffixes, with |info=collective_subscript| for subscripts.
6607 @<Declare subroutines for printing expressions@>
6608 @<Declare basic dependency-list subroutines@>
6609 @<Declare the recycling subroutines@>
6610 void mp_flush_cur_exp (MP mp,scaled v) ;
6611 @<Declare the procedure called |flush_below_variable|@>
6614 void mp_flush_variable (MP mp,pointer p, pointer t, boolean discard_suffixes) {
6615 pointer q,r; /* list manipulation */
6616 halfword n; /* attribute to match */
6618 if ( type(p)!=mp_structured ) return;
6619 n=info(t); t=link(t);
6620 if ( n==collective_subscript ) {
6621 r=subscr_head_loc(p); q=link(r); /* |q=subscr_head(p)| */
6622 while ( name_type(q)==mp_subscr ){
6623 mp_flush_variable(mp, q,t,discard_suffixes);
6625 if ( type(q)==mp_structured ) r=q;
6626 else { link(r)=link(q); mp_free_node(mp, q,subscr_node_size); }
6636 } while (attr_loc(p)<n);
6637 if ( attr_loc(p)!=n ) return;
6639 if ( discard_suffixes ) {
6640 mp_flush_below_variable(mp, p);
6642 if ( type(p)==mp_structured ) p=attr_head(p);
6643 mp_recycle_value(mp, p);
6647 @ The next procedure is simpler; it wipes out everything but |p| itself,
6648 which becomes undefined.
6650 @<Declare the procedure called |flush_below_variable|@>=
6651 void mp_flush_below_variable (MP mp, pointer p);
6654 void mp_flush_below_variable (MP mp,pointer p) {
6655 pointer q,r; /* list manipulation registers */
6656 if ( type(p)!=mp_structured ) {
6657 mp_recycle_value(mp, p); /* this sets |type(p)=undefined| */
6660 while ( name_type(q)==mp_subscr ) {
6661 mp_flush_below_variable(mp, q); r=q; q=link(q);
6662 mp_free_node(mp, r,subscr_node_size);
6664 r=attr_head(p); q=link(r); mp_recycle_value(mp, r);
6665 if ( name_type(p)<=mp_saved_root ) mp_free_node(mp, r,value_node_size);
6666 else mp_free_node(mp, r,subscr_node_size);
6667 /* we assume that |subscr_node_size=attr_node_size| */
6669 mp_flush_below_variable(mp, q); r=q; q=link(q); mp_free_node(mp, r,attr_node_size);
6670 } while (q!=end_attr);
6675 @ Just before assigning a new value to a variable, we will recycle the
6676 old value and make the old value undefined. The |und_type| routine
6677 determines what type of undefined value should be given, based on
6678 the current type before recycling.
6681 small_number mp_und_type (MP mp,pointer p) {
6683 case undefined: case mp_vacuous:
6685 case mp_boolean_type: case mp_unknown_boolean:
6686 return mp_unknown_boolean;
6687 case mp_string_type: case mp_unknown_string:
6688 return mp_unknown_string;
6689 case mp_pen_type: case mp_unknown_pen:
6690 return mp_unknown_pen;
6691 case mp_path_type: case mp_unknown_path:
6692 return mp_unknown_path;
6693 case mp_picture_type: case mp_unknown_picture:
6694 return mp_unknown_picture;
6695 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
6696 case mp_pair_type: case mp_numeric_type:
6698 case mp_known: case mp_dependent: case mp_proto_dependent: case mp_independent:
6699 return mp_numeric_type;
6700 } /* there are no other cases */
6704 @ The |clear_symbol| routine is used when we want to redefine the equivalent
6705 of a symbolic token. It must remove any variable structure or macro
6706 definition that is currently attached to that symbol. If the |saving|
6707 parameter is true, a subsidiary structure is saved instead of destroyed.
6710 void mp_clear_symbol (MP mp,pointer p, boolean saving) {
6711 pointer q; /* |equiv(p)| */
6713 switch (eq_type(p) % outer_tag) {
6715 case secondary_primary_macro:
6716 case tertiary_secondary_macro:
6717 case expression_tertiary_macro:
6718 if ( ! saving ) mp_delete_mac_ref(mp, q);
6723 name_type(q)=mp_saved_root;
6725 mp_flush_below_variable(mp, q); mp_free_node(mp,q,value_node_size);
6732 mp->eqtb[p]=mp->eqtb[frozen_undefined];
6735 @* \[16] Saving and restoring equivalents.
6736 The nested structure given by \&{begingroup} and \&{endgroup}
6737 allows |eqtb| entries to be saved and restored, so that temporary changes
6738 can be made without difficulty. When the user requests a current value to
6739 be saved, \MP\ puts that value into its ``save stack.'' An appearance of
6740 \&{endgroup} ultimately causes the old values to be removed from the save
6741 stack and put back in their former places.
6743 The save stack is a linked list containing three kinds of entries,
6744 distinguished by their |info| fields. If |p| points to a saved item,
6748 |info(p)=0| stands for a group boundary; each \&{begingroup} contributes
6749 such an item to the save stack and each \&{endgroup} cuts back the stack
6750 until the most recent such entry has been removed.
6753 |info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
6754 contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
6755 commands or suitable \&{interim} commands.
6758 |info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
6759 integer to be restored to internal parameter number~|q|. Such entries
6760 are generated by \&{interim} commands.
6763 The global variable |save_ptr| points to the top item on the save stack.
6765 @d save_node_size 2 /* number of words per non-boundary save-stack node */
6766 @d saved_equiv(A) mp->mem[(A)+1].hh /* where an |eqtb| entry gets saved */
6767 @d save_boundary_item(A) { (A)=mp_get_avail(mp); info((A))=0;
6768 link((A))=mp->save_ptr; mp->save_ptr=(A);
6772 pointer save_ptr; /* the most recently saved item */
6774 @ @<Set init...@>=mp->save_ptr=null;
6776 @ The |save_variable| routine is given a hash address |q|; it salts this
6777 address in the save stack, together with its current equivalent,
6778 then makes token~|q| behave as though it were brand new.
6780 Nothing is stacked when |save_ptr=null|, however; there's no way to remove
6781 things from the stack when the program is not inside a group, so there's
6782 no point in wasting the space.
6784 @c void mp_save_variable (MP mp,pointer q) {
6785 pointer p; /* temporary register */
6786 if ( mp->save_ptr!=null ){
6787 p=mp_get_node(mp, save_node_size); info(p)=q; link(p)=mp->save_ptr;
6788 saved_equiv(p)=mp->eqtb[q]; mp->save_ptr=p;
6790 mp_clear_symbol(mp, q,(mp->save_ptr!=null));
6793 @ Similarly, |save_internal| is given the location |q| of an internal
6794 quantity like |mp_tracing_pens|. It creates a save stack entry of the
6797 @c void mp_save_internal (MP mp,halfword q) {
6798 pointer p; /* new item for the save stack */
6799 if ( mp->save_ptr!=null ){
6800 p=mp_get_node(mp, save_node_size); info(p)=hash_end+q;
6801 link(p)=mp->save_ptr; value(p)=mp->internal[q]; mp->save_ptr=p;
6805 @ At the end of a group, the |unsave| routine restores all of the saved
6806 equivalents in reverse order. This routine will be called only when there
6807 is at least one boundary item on the save stack.
6810 void mp_unsave (MP mp) {
6811 pointer q; /* index to saved item */
6812 pointer p; /* temporary register */
6813 while ( info(mp->save_ptr)!=0 ) {
6814 q=info(mp->save_ptr);
6816 if ( mp->internal[mp_tracing_restores]>0 ) {
6817 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6818 mp_print(mp, mp->int_name[q-(hash_end)]); mp_print_char(mp, '=');
6819 mp_print_scaled(mp, value(mp->save_ptr)); mp_print_char(mp, '}');
6820 mp_end_diagnostic(mp, false);
6822 mp->internal[q-(hash_end)]=value(mp->save_ptr);
6824 if ( mp->internal[mp_tracing_restores]>0 ) {
6825 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6826 mp_print_text(q); mp_print_char(mp, '}');
6827 mp_end_diagnostic(mp, false);
6829 mp_clear_symbol(mp, q,false);
6830 mp->eqtb[q]=saved_equiv(mp->save_ptr);
6831 if ( eq_type(q) % outer_tag==tag_token ) {
6833 if ( p!=null ) name_type(p)=mp_root;
6836 p=link(mp->save_ptr);
6837 mp_free_node(mp, mp->save_ptr,save_node_size); mp->save_ptr=p;
6839 p=link(mp->save_ptr); free_avail(mp->save_ptr); mp->save_ptr=p;
6842 @* \[17] Data structures for paths.
6843 When a \MP\ user specifies a path, \MP\ will create a list of knots
6844 and control points for the associated cubic spline curves. If the
6845 knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
6846 $z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
6847 $z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
6848 @:Bezier}{B\'ezier, Pierre Etienne@>
6849 $$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
6850 &=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
6853 There is a 8-word node for each knot $z_k$, containing one word of
6854 control information and six words for the |x| and |y| coordinates of
6855 $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
6856 |left_type| and |right_type| fields, which each occupy a quarter of
6857 the first word in the node; they specify properties of the curve as it
6858 enters and leaves the knot. There's also a halfword |link| field,
6859 which points to the following knot, and a final supplementary word (of
6860 which only a quarter is used).
6862 If the path is a closed contour, knots 0 and |n| are identical;
6863 i.e., the |link| in knot |n-1| points to knot~0. But if the path
6864 is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
6865 are equal to |endpoint|. In the latter case the |link| in knot~|n| points
6866 to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
6868 @d left_type(A) mp->mem[(A)].hh.b0 /* characterizes the path entering this knot */
6869 @d right_type(A) mp->mem[(A)].hh.b1 /* characterizes the path leaving this knot */
6870 @d x_coord(A) mp->mem[(A)+1].sc /* the |x| coordinate of this knot */
6871 @d y_coord(A) mp->mem[(A)+2].sc /* the |y| coordinate of this knot */
6872 @d left_x(A) mp->mem[(A)+3].sc /* the |x| coordinate of previous control point */
6873 @d left_y(A) mp->mem[(A)+4].sc /* the |y| coordinate of previous control point */
6874 @d right_x(A) mp->mem[(A)+5].sc /* the |x| coordinate of next control point */
6875 @d right_y(A) mp->mem[(A)+6].sc /* the |y| coordinate of next control point */
6876 @d x_loc(A) ((A)+1) /* where the |x| coordinate is stored in a knot */
6877 @d y_loc(A) ((A)+2) /* where the |y| coordinate is stored in a knot */
6878 @d knot_coord(A) mp->mem[(A)].sc /* |x| or |y| coordinate given |x_loc| or |y_loc| */
6879 @d left_coord(A) mp->mem[(A)+2].sc
6880 /* coordinate of previous control point given |x_loc| or |y_loc| */
6881 @d right_coord(A) mp->mem[(A)+4].sc
6882 /* coordinate of next control point given |x_loc| or |y_loc| */
6883 @d knot_node_size 8 /* number of words in a knot node */
6887 mp_endpoint=0, /* |left_type| at path beginning and |right_type| at path end */
6888 mp_explicit, /* |left_type| or |right_type| when control points are known */
6889 mp_given, /* |left_type| or |right_type| when a direction is given */
6890 mp_curl, /* |left_type| or |right_type| when a curl is desired */
6891 mp_open, /* |left_type| or |right_type| when \MP\ should choose the direction */
6895 @ Before the B\'ezier control points have been calculated, the memory
6896 space they will ultimately occupy is taken up by information that can be
6897 used to compute them. There are four cases:
6900 \textindent{$\bullet$} If |right_type=mp_open|, the curve should leave
6901 the knot in the same direction it entered; \MP\ will figure out a
6905 \textindent{$\bullet$} If |right_type=mp_curl|, the curve should leave the
6906 knot in a direction depending on the angle at which it enters the next
6907 knot and on the curl parameter stored in |right_curl|.
6910 \textindent{$\bullet$} If |right_type=mp_given|, the curve should leave the
6911 knot in a nonzero direction stored as an |angle| in |right_given|.
6914 \textindent{$\bullet$} If |right_type=mp_explicit|, the B\'ezier control
6915 point for leaving this knot has already been computed; it is in the
6916 |right_x| and |right_y| fields.
6919 The rules for |left_type| are similar, but they refer to the curve entering
6920 the knot, and to \\{left} fields instead of \\{right} fields.
6922 Non-|explicit| control points will be chosen based on ``tension'' parameters
6923 in the |left_tension| and |right_tension| fields. The
6924 `\&{atleast}' option is represented by negative tension values.
6925 @:at_least_}{\&{atleast} primitive@>
6927 For example, the \MP\ path specification
6928 $$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
6930 where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
6932 \def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
6933 $$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
6934 |left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
6936 |endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
6937 |open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
6938 |curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
6939 |given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
6940 |open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
6941 |explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
6942 Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
6943 Of course, this example is more complicated than anything a normal user
6946 These types must satisfy certain restrictions because of the form of \MP's
6948 (i)~|open| type never appears in the same node together with |endpoint|,
6950 (ii)~The |right_type| of a node is |explicit| if and only if the
6951 |left_type| of the following node is |explicit|.
6952 (iii)~|endpoint| types occur only at the ends, as mentioned above.
6954 @d left_curl left_x /* curl information when entering this knot */
6955 @d left_given left_x /* given direction when entering this knot */
6956 @d left_tension left_y /* tension information when entering this knot */
6957 @d right_curl right_x /* curl information when leaving this knot */
6958 @d right_given right_x /* given direction when leaving this knot */
6959 @d right_tension right_y /* tension information when leaving this knot */
6961 @ Knots can be user-supplied, or they can be created by program code,
6962 like the |split_cubic| function, or |copy_path|. The distinction is
6963 needed for the cleanup routine that runs after |split_cubic|, because
6964 it should only delete knots it has previously inserted, and never
6965 anything that was user-supplied. In order to be able to differentiate
6966 one knot from another, we will set |originator(p):=mp_metapost_user| when
6967 it appeared in the actual metapost program, and
6968 |originator(p):=mp_program_code| in all other cases.
6970 @d originator(A) mp->mem[(A)+7].hh.b0 /* the creator of this knot */
6974 mp_program_code=0, /* not created by a user */
6975 mp_metapost_user, /* created by a user */
6978 @ Here is a routine that prints a given knot list
6979 in symbolic form. It illustrates the conventions discussed above,
6980 and checks for anomalies that might arise while \MP\ is being debugged.
6982 @<Declare subroutines for printing expressions@>=
6983 void mp_pr_path (MP mp,pointer h);
6986 void mp_pr_path (MP mp,pointer h) {
6987 pointer p,q; /* for list traversal */
6991 if ( (p==null)||(q==null) ) {
6992 mp_print_nl(mp, "???"); return; /* this won't happen */
6995 @<Print information for adjacent knots |p| and |q|@>;
6998 if ( (p!=h)||(left_type(h)!=mp_endpoint) ) {
6999 @<Print two dots, followed by |given| or |curl| if present@>;
7002 if ( left_type(h)!=mp_endpoint )
7003 mp_print(mp, "cycle");
7006 @ @<Print information for adjacent knots...@>=
7007 mp_print_two(mp, x_coord(p),y_coord(p));
7008 switch (right_type(p)) {
7010 if ( left_type(p)==mp_open ) mp_print(mp, "{open?}"); /* can't happen */
7012 if ( (left_type(q)!=mp_endpoint)||(q!=h) ) q=null; /* force an error */
7016 @<Print control points between |p| and |q|, then |goto done1|@>;
7019 @<Print information for a curve that begins |open|@>;
7023 @<Print information for a curve that begins |curl| or |given|@>;
7026 mp_print(mp, "???"); /* can't happen */
7030 if ( left_type(q)<=mp_explicit ) {
7031 mp_print(mp, "..control?"); /* can't happen */
7033 } else if ( (right_tension(p)!=unity)||(left_tension(q)!=unity) ) {
7034 @<Print tension between |p| and |q|@>;
7037 @ Since |n_sin_cos| produces |fraction| results, which we will print as if they
7038 were |scaled|, the magnitude of a |given| direction vector will be~4096.
7040 @<Print two dots...@>=
7042 mp_print_nl(mp, " ..");
7043 if ( left_type(p)==mp_given ) {
7044 mp_n_sin_cos(mp, left_given(p)); mp_print_char(mp, '{');
7045 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
7046 mp_print_scaled(mp, mp->n_sin); mp_print_char(mp, '}');
7047 } else if ( left_type(p)==mp_curl ){
7048 mp_print(mp, "{curl ");
7049 mp_print_scaled(mp, left_curl(p)); mp_print_char(mp, '}');
7053 @ @<Print tension between |p| and |q|@>=
7055 mp_print(mp, "..tension ");
7056 if ( right_tension(p)<0 ) mp_print(mp, "atleast");
7057 mp_print_scaled(mp, abs(right_tension(p)));
7058 if ( right_tension(p)!=left_tension(q) ){
7059 mp_print(mp, " and ");
7060 if ( left_tension(q)<0 ) mp_print(mp, "atleast");
7061 mp_print_scaled(mp, abs(left_tension(q)));
7065 @ @<Print control points between |p| and |q|, then |goto done1|@>=
7067 mp_print(mp, "..controls ");
7068 mp_print_two(mp, right_x(p),right_y(p));
7069 mp_print(mp, " and ");
7070 if ( left_type(q)!=mp_explicit ) {
7071 mp_print(mp, "??"); /* can't happen */
7074 mp_print_two(mp, left_x(q),left_y(q));
7079 @ @<Print information for a curve that begins |open|@>=
7080 if ( (left_type(p)!=mp_explicit)&&(left_type(p)!=mp_open) ) {
7081 mp_print(mp, "{open?}"); /* can't happen */
7085 @ A curl of 1 is shown explicitly, so that the user sees clearly that
7086 \MP's default curl is present.
7088 The code here uses the fact that |left_curl==left_given| and
7089 |right_curl==right_given|.
7091 @<Print information for a curve that begins |curl|...@>=
7093 if ( left_type(p)==mp_open )
7094 mp_print(mp, "??"); /* can't happen */
7096 if ( right_type(p)==mp_curl ) {
7097 mp_print(mp, "{curl "); mp_print_scaled(mp, right_curl(p));
7099 mp_n_sin_cos(mp, right_given(p)); mp_print_char(mp, '{');
7100 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
7101 mp_print_scaled(mp, mp->n_sin);
7103 mp_print_char(mp, '}');
7106 @ It is convenient to have another version of |pr_path| that prints the path
7107 as a diagnostic message.
7109 @<Declare subroutines for printing expressions@>=
7110 void mp_print_path (MP mp,pointer h, char *s, boolean nuline) {
7111 mp_print_diagnostic(mp, "Path", s, nuline); mp_print_ln(mp);
7114 mp_end_diagnostic(mp, true);
7117 @ If we want to duplicate a knot node, we can say |copy_knot|:
7120 pointer mp_copy_knot (MP mp,pointer p) {
7121 pointer q; /* the copy */
7122 int k; /* runs through the words of a knot node */
7123 q=mp_get_node(mp, knot_node_size);
7124 for (k=0;k<knot_node_size;k++) {
7125 mp->mem[q+k]=mp->mem[p+k];
7127 originator(q)=originator(p);
7131 @ The |copy_path| routine makes a clone of a given path.
7134 pointer mp_copy_path (MP mp, pointer p) {
7135 pointer q,pp,qq; /* for list manipulation */
7136 q=mp_copy_knot(mp, p);
7139 link(qq)=mp_copy_knot(mp, pp);
7148 @ Just before |ship_out|, knot lists are exported for printing.
7150 The |gr_XXXX| macros are defined in |mppsout.h|.
7153 struct mp_knot *mp_export_knot (MP mp,pointer p) {
7154 struct mp_knot *q; /* the copy */
7157 q = mp_xmalloc(mp, 1, sizeof (struct mp_knot));
7158 memset(q,0,sizeof (struct mp_knot));
7159 gr_left_type(q) = left_type(p);
7160 gr_right_type(q) = right_type(p);
7161 gr_x_coord(q) = x_coord(p);
7162 gr_y_coord(q) = y_coord(p);
7163 gr_left_x(q) = left_x(p);
7164 gr_left_y(q) = left_y(p);
7165 gr_right_x(q) = right_x(p);
7166 gr_right_y(q) = right_y(p);
7167 gr_originator(q) = originator(p);
7171 @ The |export_knot_list| routine therefore also makes a clone
7175 struct mp_knot *mp_export_knot_list (MP mp, pointer p) {
7176 struct mp_knot *q, *qq; /* for list manipulation */
7177 pointer pp; /* for list manipulation */
7180 q=mp_export_knot(mp, p);
7183 gr_next_knot(qq)=mp_export_knot(mp, pp);
7184 qq=gr_next_knot(qq);
7192 @ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
7193 returns a pointer to the first node of the copy, if the path is a cycle,
7194 but to the final node of a non-cyclic copy. The global
7195 variable |path_tail| will point to the final node of the original path;
7196 this trick makes it easier to implement `\&{doublepath}'.
7198 All node types are assumed to be |endpoint| or |explicit| only.
7201 pointer mp_htap_ypoc (MP mp,pointer p) {
7202 pointer q,pp,qq,rr; /* for list manipulation */
7203 q=mp_get_node(mp, knot_node_size); /* this will correspond to |p| */
7206 right_type(qq)=left_type(pp); left_type(qq)=right_type(pp);
7207 x_coord(qq)=x_coord(pp); y_coord(qq)=y_coord(pp);
7208 right_x(qq)=left_x(pp); right_y(qq)=left_y(pp);
7209 left_x(qq)=right_x(pp); left_y(qq)=right_y(pp);
7210 originator(qq)=originator(pp);
7211 if ( link(pp)==p ) {
7212 link(q)=qq; mp->path_tail=pp; return q;
7214 rr=mp_get_node(mp, knot_node_size); link(rr)=qq; qq=rr; pp=link(pp);
7219 pointer path_tail; /* the node that links to the beginning of a path */
7221 @ When a cyclic list of knot nodes is no longer needed, it can be recycled by
7222 calling the following subroutine.
7224 @<Declare the recycling subroutines@>=
7225 void mp_toss_knot_list (MP mp,pointer p) ;
7228 void mp_toss_knot_list (MP mp,pointer p) {
7229 pointer q; /* the node being freed */
7230 pointer r; /* the next node */
7234 mp_free_node(mp, q,knot_node_size); q=r;
7238 @* \[18] Choosing control points.
7239 Now we must actually delve into one of \MP's more difficult routines,
7240 the |make_choices| procedure that chooses angles and control points for
7241 the splines of a curve when the user has not specified them explicitly.
7242 The parameter to |make_choices| points to a list of knots and
7243 path information, as described above.
7245 A path decomposes into independent segments at ``breakpoint'' knots,
7246 which are knots whose left and right angles are both prespecified in
7247 some way (i.e., their |left_type| and |right_type| aren't both open).
7250 @<Declare the procedure called |solve_choices|@>;
7251 void mp_make_choices (MP mp,pointer knots) {
7252 pointer h; /* the first breakpoint */
7253 pointer p,q; /* consecutive breakpoints being processed */
7254 @<Other local variables for |make_choices|@>;
7255 check_arith; /* make sure that |arith_error=false| */
7256 if ( mp->internal[mp_tracing_choices]>0 )
7257 mp_print_path(mp, knots,", before choices",true);
7258 @<If consecutive knots are equal, join them explicitly@>;
7259 @<Find the first breakpoint, |h|, on the path;
7260 insert an artificial breakpoint if the path is an unbroken cycle@>;
7263 @<Fill in the control points between |p| and the next breakpoint,
7264 then advance |p| to that breakpoint@>;
7266 if ( mp->internal[mp_tracing_choices]>0 )
7267 mp_print_path(mp, knots,", after choices",true);
7268 if ( mp->arith_error ) {
7269 @<Report an unexpected problem during the choice-making@>;
7273 @ @<Report an unexpected problem during the choice...@>=
7275 print_err("Some number got too big");
7276 @.Some number got too big@>
7277 help2("The path that I just computed is out of range.")
7278 ("So it will probably look funny. Proceed, for a laugh.");
7279 mp_put_get_error(mp); mp->arith_error=false;
7282 @ Two knots in a row with the same coordinates will always be joined
7283 by an explicit ``curve'' whose control points are identical with the
7286 @<If consecutive knots are equal, join them explicitly@>=
7290 if ( x_coord(p)==x_coord(q) && y_coord(p)==y_coord(q) && right_type(p)>mp_explicit ) {
7291 right_type(p)=mp_explicit;
7292 if ( left_type(p)==mp_open ) {
7293 left_type(p)=mp_curl; left_curl(p)=unity;
7295 left_type(q)=mp_explicit;
7296 if ( right_type(q)==mp_open ) {
7297 right_type(q)=mp_curl; right_curl(q)=unity;
7299 right_x(p)=x_coord(p); left_x(q)=x_coord(p);
7300 right_y(p)=y_coord(p); left_y(q)=y_coord(p);
7305 @ If there are no breakpoints, it is necessary to compute the direction
7306 angles around an entire cycle. In this case the |left_type| of the first
7307 node is temporarily changed to |end_cycle|.
7309 @<Find the first breakpoint, |h|, on the path...@>=
7312 if ( left_type(h)!=mp_open ) break;
7313 if ( right_type(h)!=mp_open ) break;
7316 left_type(h)=mp_end_cycle; break;
7320 @ If |right_type(p)<given| and |q=link(p)|, we must have
7321 |right_type(p)=left_type(q)=mp_explicit| or |endpoint|.
7323 @<Fill in the control points between |p| and the next breakpoint...@>=
7325 if ( right_type(p)>=mp_given ) {
7326 while ( (left_type(q)==mp_open)&&(right_type(q)==mp_open) ) q=link(q);
7327 @<Fill in the control information between
7328 consecutive breakpoints |p| and |q|@>;
7329 } else if ( right_type(p)==mp_endpoint ) {
7330 @<Give reasonable values for the unused control points between |p| and~|q|@>;
7334 @ This step makes it possible to transform an explicitly computed path without
7335 checking the |left_type| and |right_type| fields.
7337 @<Give reasonable values for the unused control points between |p| and~|q|@>=
7339 right_x(p)=x_coord(p); right_y(p)=y_coord(p);
7340 left_x(q)=x_coord(q); left_y(q)=y_coord(q);
7343 @ Before we can go further into the way choices are made, we need to
7344 consider the underlying theory. The basic ideas implemented in |make_choices|
7345 are due to John Hobby, who introduced the notion of ``mock curvature''
7346 @^Hobby, John Douglas@>
7347 at a knot. Angles are chosen so that they preserve mock curvature when
7348 a knot is passed, and this has been found to produce excellent results.
7350 It is convenient to introduce some notations that simplify the necessary
7351 formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
7352 between knots |k| and |k+1|; and let
7353 $${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
7354 so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
7355 through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
7356 The control points for the spline from $z_k$ to $z\k$ will be denoted by
7357 $$\eqalign{z_k^+&=z_k+
7358 \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
7360 \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
7361 where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
7362 beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
7363 corresponding ``offset angles.'' These angles satisfy the condition
7364 $$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
7365 whenever the curve leaves an intermediate knot~|k| in the direction that
7368 @ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
7369 the curve at its beginning and ending points. This means that
7370 $\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
7371 where $f(\theta,\phi)$ is \MP's standard velocity function defined in
7372 the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
7373 z\k^-,z\k^{\phantom+};t)$
7376 $${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
7377 \qquad{\rm and}\qquad
7378 {2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
7379 at |t=0| and |t=1|, respectively. The mock curvature is the linear
7381 approximation to this true curvature that arises in the limit for
7382 small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
7383 The standard velocity function satisfies
7384 $$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
7385 hence the mock curvatures are respectively
7386 $${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
7387 \qquad{\rm and}\qquad
7388 {2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
7390 @ The turning angles $\psi_k$ are given, and equation $(*)$ above
7391 determines $\phi_k$ when $\theta_k$ is known, so the task of
7392 angle selection is essentially to choose appropriate values for each
7393 $\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
7394 from $(**)$, we obtain a system of linear equations of the form
7395 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7397 $$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7398 \qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7399 \qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
7400 \qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
7401 The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
7402 will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
7403 $C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
7404 hence they have a unique solution. Moreover, in most cases the tensions
7405 are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
7406 solution numerically stable, and there is an exponential damping
7407 effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
7408 a factor of~$O(2^{-j})$.
7410 @ However, we still must consider the angles at the starting and ending
7411 knots of a non-cyclic path. These angles might be given explicitly, or
7412 they might be specified implicitly in terms of an amount of ``curl.''
7414 Let's assume that angles need to be determined for a non-cyclic path
7415 starting at $z_0$ and ending at~$z_n$. Then equations of the form
7416 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
7417 have been given for $0<k<n$, and it will be convenient to introduce
7418 equations of the same form for $k=0$ and $k=n$, where
7419 $$A_0=B_0=C_n=D_n=0.$$
7420 If $\theta_0$ is supposed to have a given value $E_0$, we simply
7421 define $C_0=0$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
7422 parameter, $\gamma_0$, has been specified at~$z_0$; this means
7423 that the mock curvature at $z_0$ should be $\gamma_0$ times the
7424 mock curvature at $z_1$; i.e.,
7425 $${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
7426 =\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
7427 This equation simplifies to
7428 $$(\alpha_0\chi_0+3-\beta_1)\theta_0+
7429 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
7430 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
7431 where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
7432 \chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
7433 It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
7434 hence the linear equations remain nonsingular.
7436 Similar considerations apply at the right end, when the final angle $\phi_n$
7437 may or may not need to be determined. It is convenient to let $\psi_n=0$,
7438 hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
7440 $$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
7441 (\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
7442 \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
7444 When |make_choices| chooses angles, it must compute the coefficients of
7445 these linear equations, then solve the equations. To compute the coefficients,
7446 it is necessary to compute arctangents of the given turning angles~$\psi_k$.
7447 When the equations are solved, the chosen directions $\theta_k$ are put
7448 back into the form of control points by essentially computing sines and
7451 @ OK, we are ready to make the hard choices of |make_choices|.
7452 Most of the work is relegated to an auxiliary procedure
7453 called |solve_choices|, which has been introduced to keep
7454 |make_choices| from being extremely long.
7456 @<Fill in the control information between...@>=
7457 @<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
7458 set $n$ to the length of the path@>;
7459 @<Remove |open| types at the breakpoints@>;
7460 mp_solve_choices(mp, p,q,n)
7462 @ It's convenient to precompute quantities that will be needed several
7463 times later. The values of |delta_x[k]| and |delta_y[k]| will be the
7464 coordinates of $z\k-z_k$, and the magnitude of this vector will be
7465 |delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
7466 and $z\k-z_k$ will be stored in |psi[k]|.
7469 int path_size; /* maximum number of knots between breakpoints of a path */
7472 scaled *delta; /* knot differences */
7473 angle *psi; /* turning angles */
7475 @ @<Allocate or initialize ...@>=
7481 @ @<Dealloc variables@>=
7487 @ @<Other local variables for |make_choices|@>=
7488 int k,n; /* current and final knot numbers */
7489 pointer s,t; /* registers for list traversal */
7490 scaled delx,dely; /* directions where |open| meets |explicit| */
7491 fraction sine,cosine; /* trig functions of various angles */
7493 @ @<Calculate the turning angles...@>=
7496 k=0; s=p; n=mp->path_size;
7499 mp->delta_x[k]=x_coord(t)-x_coord(s);
7500 mp->delta_y[k]=y_coord(t)-y_coord(s);
7501 mp->delta[k]=mp_pyth_add(mp, mp->delta_x[k],mp->delta_y[k]);
7503 sine=mp_make_fraction(mp, mp->delta_y[k-1],mp->delta[k-1]);
7504 cosine=mp_make_fraction(mp, mp->delta_x[k-1],mp->delta[k-1]);
7505 mp->psi[k]=mp_n_arg(mp, mp_take_fraction(mp, mp->delta_x[k],cosine)+
7506 mp_take_fraction(mp, mp->delta_y[k],sine),
7507 mp_take_fraction(mp, mp->delta_y[k],cosine)-
7508 mp_take_fraction(mp, mp->delta_x[k],sine));
7511 if ( k==mp->path_size ) {
7512 mp_reallocate_paths(mp, mp->path_size+(mp->path_size>>2));
7513 goto RESTART; /* retry, loop size has changed */
7516 } while (!((k>=n)&&(left_type(s)!=mp_end_cycle)));
7517 if ( k==n ) mp->psi[n]=0; else mp->psi[k]=mp->psi[1];
7520 @ When we get to this point of the code, |right_type(p)| is either
7521 |given| or |curl| or |open|. If it is |open|, we must have
7522 |left_type(p)=mp_end_cycle| or |left_type(p)=mp_explicit|. In the latter
7523 case, the |open| type is converted to |given|; however, if the
7524 velocity coming into this knot is zero, the |open| type is
7525 converted to a |curl|, since we don't know the incoming direction.
7527 Similarly, |left_type(q)| is either |given| or |curl| or |open| or
7528 |mp_end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
7530 @<Remove |open| types at the breakpoints@>=
7531 if ( left_type(q)==mp_open ) {
7532 delx=right_x(q)-x_coord(q); dely=right_y(q)-y_coord(q);
7533 if ( (delx==0)&&(dely==0) ) {
7534 left_type(q)=mp_curl; left_curl(q)=unity;
7536 left_type(q)=mp_given; left_given(q)=mp_n_arg(mp, delx,dely);
7539 if ( (right_type(p)==mp_open)&&(left_type(p)==mp_explicit) ) {
7540 delx=x_coord(p)-left_x(p); dely=y_coord(p)-left_y(p);
7541 if ( (delx==0)&&(dely==0) ) {
7542 right_type(p)=mp_curl; right_curl(p)=unity;
7544 right_type(p)=mp_given; right_given(p)=mp_n_arg(mp, delx,dely);
7548 @ Linear equations need to be solved whenever |n>1|; and also when |n=1|
7549 and exactly one of the breakpoints involves a curl. The simplest case occurs
7550 when |n=1| and there is a curl at both breakpoints; then we simply draw
7553 But before coding up the simple cases, we might as well face the general case,
7554 since we must deal with it sooner or later, and since the general case
7555 is likely to give some insight into the way simple cases can be handled best.
7557 When there is no cycle, the linear equations to be solved form a tridiagonal
7558 system, and we can apply the standard technique of Gaussian elimination
7559 to convert that system to a sequence of equations of the form
7560 $$\theta_0+u_0\theta_1=v_0,\quad
7561 \theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
7562 \theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
7564 It is possible to do this diagonalization while generating the equations.
7565 Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
7566 $\theta_1$, $\theta_0$; thus, the equations will be solved.
7568 The procedure is slightly more complex when there is a cycle, but the
7569 basic idea will be nearly the same. In the cyclic case the right-hand
7570 sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
7571 the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
7572 $\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
7573 ending routine will take account of the fact that $\theta_n=\theta_0$ and
7574 eliminate the $w$'s from the system, after which the solution can be
7577 When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
7578 variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
7579 and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
7580 of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
7583 angle *theta; /* values of $\theta_k$ */
7584 fraction *uu; /* values of $u_k$ */
7585 angle *vv; /* values of $v_k$ */
7586 fraction *ww; /* values of $w_k$ */
7588 @ @<Allocate or initialize ...@>=
7594 @ @<Dealloc variables@>=
7600 @ @<Declare |mp_reallocate| functions@>=
7601 void mp_reallocate_paths (MP mp, int l);
7604 void mp_reallocate_paths (MP mp, int l) {
7605 XREALLOC (mp->delta_x, l, scaled);
7606 XREALLOC (mp->delta_y, l, scaled);
7607 XREALLOC (mp->delta, l, scaled);
7608 XREALLOC (mp->psi, l, angle);
7609 XREALLOC (mp->theta, l, angle);
7610 XREALLOC (mp->uu, l, fraction);
7611 XREALLOC (mp->vv, l, angle);
7612 XREALLOC (mp->ww, l, fraction);
7616 @ Our immediate problem is to get the ball rolling by setting up the
7617 first equation or by realizing that no equations are needed, and to fit
7618 this initialization into a framework suitable for the overall computation.
7620 @<Declare the procedure called |solve_choices|@>=
7621 @<Declare subroutines needed by |solve_choices|@>;
7622 void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) {
7623 int k; /* current knot number */
7624 pointer r,s,t; /* registers for list traversal */
7625 @<Other local variables for |solve_choices|@>;
7630 @<Get the linear equations started; or |return|
7631 with the control points in place, if linear equations
7634 switch (left_type(s)) {
7635 case mp_end_cycle: case mp_open:
7636 @<Set up equation to match mock curvatures
7637 at $z_k$; then |goto found| with $\theta_n$
7638 adjusted to equal $\theta_0$, if a cycle has ended@>;
7641 @<Set up equation for a curl at $\theta_n$
7645 @<Calculate the given value of $\theta_n$
7648 } /* there are no other cases */
7653 @<Finish choosing angles and assigning control points@>;
7656 @ On the first time through the loop, we have |k=0| and |r| is not yet
7657 defined. The first linear equation, if any, will have $A_0=B_0=0$.
7659 @<Get the linear equations started...@>=
7660 switch (right_type(s)) {
7662 if ( left_type(t)==mp_given ) {
7663 @<Reduce to simple case of two givens and |return|@>
7665 @<Set up the equation for a given value of $\theta_0$@>;
7669 if ( left_type(t)==mp_curl ) {
7670 @<Reduce to simple case of straight line and |return|@>
7672 @<Set up the equation for a curl at $\theta_0$@>;
7676 mp->uu[0]=0; mp->vv[0]=0; mp->ww[0]=fraction_one;
7677 /* this begins a cycle */
7679 } /* there are no other cases */
7681 @ The general equation that specifies equality of mock curvature at $z_k$ is
7682 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7683 as derived above. We want to combine this with the already-derived equation
7684 $\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
7686 $\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
7688 $$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
7689 -A_kw_{k-1}\theta_0$$
7690 by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
7691 fixed-point arithmetic, avoiding the chance of overflow while retaining
7694 The calculations will be performed in several registers that
7695 provide temporary storage for intermediate quantities.
7697 @<Other local variables for |solve_choices|@>=
7698 fraction aa,bb,cc,ff,acc; /* temporary registers */
7699 scaled dd,ee; /* likewise, but |scaled| */
7700 scaled lt,rt; /* tension values */
7702 @ @<Set up equation to match mock curvatures...@>=
7703 { @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
7704 $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
7705 and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
7706 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
7707 mp->uu[k]=mp_take_fraction(mp, ff,bb);
7708 @<Calculate the values of $v_k$ and $w_k$@>;
7709 if ( left_type(s)==mp_end_cycle ) {
7710 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
7714 @ Since tension values are never less than 3/4, the values |aa| and
7715 |bb| computed here are never more than 4/5.
7717 @<Calculate the values $\\{aa}=...@>=
7718 if ( abs(right_tension(r))==unity) {
7719 aa=fraction_half; dd=2*mp->delta[k];
7721 aa=mp_make_fraction(mp, unity,3*abs(right_tension(r))-unity);
7722 dd=mp_take_fraction(mp, mp->delta[k],
7723 fraction_three-mp_make_fraction(mp, unity,abs(right_tension(r))));
7725 if ( abs(left_tension(t))==unity ){
7726 bb=fraction_half; ee=2*mp->delta[k-1];
7728 bb=mp_make_fraction(mp, unity,3*abs(left_tension(t))-unity);
7729 ee=mp_take_fraction(mp, mp->delta[k-1],
7730 fraction_three-mp_make_fraction(mp, unity,abs(left_tension(t))));
7732 cc=fraction_one-mp_take_fraction(mp, mp->uu[k-1],aa)
7734 @ The ratio to be calculated in this step can be written in the form
7735 $$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
7736 \\{cc}\cdot\\{dd},$$
7737 because of the quantities just calculated. The values of |dd| and |ee|
7738 will not be needed after this step has been performed.
7740 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
7741 dd=mp_take_fraction(mp, dd,cc); lt=abs(left_tension(s)); rt=abs(right_tension(s));
7742 if ( lt!=rt ) { /* $\beta_k^{-1}\ne\alpha_k^{-1}$ */
7744 ff=mp_make_fraction(mp, lt,rt);
7745 ff=mp_take_fraction(mp, ff,ff); /* $\alpha_k^2/\beta_k^2$ */
7746 dd=mp_take_fraction(mp, dd,ff);
7748 ff=mp_make_fraction(mp, rt,lt);
7749 ff=mp_take_fraction(mp, ff,ff); /* $\beta_k^2/\alpha_k^2$ */
7750 ee=mp_take_fraction(mp, ee,ff);
7753 ff=mp_make_fraction(mp, ee,ee+dd)
7755 @ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
7756 equation was specified by a curl. In that case we must use a special
7757 method of computation to prevent overflow.
7759 Fortunately, the calculations turn out to be even simpler in this ``hard''
7760 case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
7761 $-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
7763 @<Calculate the values of $v_k$ and $w_k$@>=
7764 acc=-mp_take_fraction(mp, mp->psi[k+1],mp->uu[k]);
7765 if ( right_type(r)==mp_curl ) {
7767 mp->vv[k]=acc-mp_take_fraction(mp, mp->psi[1],fraction_one-ff);
7769 ff=mp_make_fraction(mp, fraction_one-ff,cc); /* this is
7770 $B_k/(C_k+B_k-u_{k-1}A_k)<5$ */
7771 acc=acc-mp_take_fraction(mp, mp->psi[k],ff);
7772 ff=mp_take_fraction(mp, ff,aa); /* this is $A_k/(C_k+B_k-u_{k-1}A_k)$ */
7773 mp->vv[k]=acc-mp_take_fraction(mp, mp->vv[k-1],ff);
7774 if ( mp->ww[k-1]==0 ) mp->ww[k]=0;
7775 else mp->ww[k]=-mp_take_fraction(mp, mp->ww[k-1],ff);
7778 @ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
7779 v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
7780 $\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
7781 for |0<=k<n|, so that the cyclic case can be finished up just as if there
7784 The idea in the following code is to observe that
7785 $$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
7786 &=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
7787 -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
7788 so we can solve for $\theta_n=\theta_0$.
7790 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
7792 aa=0; bb=fraction_one; /* we have |k=n| */
7795 aa=mp->vv[k]-mp_take_fraction(mp, aa,mp->uu[k]);
7796 bb=mp->ww[k]-mp_take_fraction(mp, bb,mp->uu[k]);
7797 } while (k!=n); /* now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$ */
7798 aa=mp_make_fraction(mp, aa,fraction_one-bb);
7799 mp->theta[n]=aa; mp->vv[0]=aa;
7800 for (k=1;k<=n-1;k++) {
7801 mp->vv[k]=mp->vv[k]+mp_take_fraction(mp, aa,mp->ww[k]);
7806 @ @d reduce_angle(A) if ( abs((A))>one_eighty_deg ) {
7807 if ( (A)>0 ) (A)=(A)-three_sixty_deg; else (A)=(A)+three_sixty_deg; }
7809 @<Calculate the given value of $\theta_n$...@>=
7811 mp->theta[n]=left_given(s)-mp_n_arg(mp, mp->delta_x[n-1],mp->delta_y[n-1]);
7812 reduce_angle(mp->theta[n]);
7816 @ @<Set up the equation for a given value of $\theta_0$@>=
7818 mp->vv[0]=right_given(s)-mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7819 reduce_angle(mp->vv[0]);
7820 mp->uu[0]=0; mp->ww[0]=0;
7823 @ @<Set up the equation for a curl at $\theta_0$@>=
7824 { cc=right_curl(s); lt=abs(left_tension(t)); rt=abs(right_tension(s));
7825 if ( (rt==unity)&&(lt==unity) )
7826 mp->uu[0]=mp_make_fraction(mp, cc+cc+unity,cc+two);
7828 mp->uu[0]=mp_curl_ratio(mp, cc,rt,lt);
7829 mp->vv[0]=-mp_take_fraction(mp, mp->psi[1],mp->uu[0]); mp->ww[0]=0;
7832 @ @<Set up equation for a curl at $\theta_n$...@>=
7833 { cc=left_curl(s); lt=abs(left_tension(s)); rt=abs(right_tension(r));
7834 if ( (rt==unity)&&(lt==unity) )
7835 ff=mp_make_fraction(mp, cc+cc+unity,cc+two);
7837 ff=mp_curl_ratio(mp, cc,lt,rt);
7838 mp->theta[n]=-mp_make_fraction(mp, mp_take_fraction(mp, mp->vv[n-1],ff),
7839 fraction_one-mp_take_fraction(mp, ff,mp->uu[n-1]));
7843 @ The |curl_ratio| subroutine has three arguments, which our previous notation
7844 encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
7845 a somewhat tedious program to calculate
7846 $${(3-\alpha)\alpha^2\gamma+\beta^3\over
7847 \alpha^3\gamma+(3-\beta)\beta^2},$$
7848 with the result reduced to 4 if it exceeds 4. (This reduction of curl
7849 is necessary only if the curl and tension are both large.)
7850 The values of $\alpha$ and $\beta$ will be at most~4/3.
7852 @<Declare subroutines needed by |solve_choices|@>=
7853 fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7855 fraction alpha,beta,num,denom,ff; /* registers */
7856 alpha=mp_make_fraction(mp, unity,a_tension);
7857 beta=mp_make_fraction(mp, unity,b_tension);
7858 if ( alpha<=beta ) {
7859 ff=mp_make_fraction(mp, alpha,beta); ff=mp_take_fraction(mp, ff,ff);
7860 gamma=mp_take_fraction(mp, gamma,ff);
7861 beta=beta / 010000; /* convert |fraction| to |scaled| */
7862 denom=mp_take_fraction(mp, gamma,alpha)+three-beta;
7863 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7865 ff=mp_make_fraction(mp, beta,alpha); ff=mp_take_fraction(mp, ff,ff);
7866 beta=mp_take_fraction(mp, beta,ff) / 010000; /* convert |fraction| to |scaled| */
7867 denom=mp_take_fraction(mp, gamma,alpha)+(ff / 1365)-beta;
7868 /* $1365\approx 2^{12}/3$ */
7869 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7871 if ( num>=denom+denom+denom+denom ) return fraction_four;
7872 else return mp_make_fraction(mp, num,denom);
7875 @ We're in the home stretch now.
7877 @<Finish choosing angles and assigning control points@>=
7878 for (k=n-1;k>=0;k--) {
7879 mp->theta[k]=mp->vv[k]-mp_take_fraction(mp,mp->theta[k+1],mp->uu[k]);
7884 mp_n_sin_cos(mp, mp->theta[k]); mp->st=mp->n_sin; mp->ct=mp->n_cos;
7885 mp_n_sin_cos(mp, -mp->psi[k+1]-mp->theta[k+1]); mp->sf=mp->n_sin; mp->cf=mp->n_cos;
7886 mp_set_controls(mp, s,t,k);
7890 @ The |set_controls| routine actually puts the control points into
7891 a pair of consecutive nodes |p| and~|q|. Global variables are used to
7892 record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
7893 $\cos\phi$ needed in this calculation.
7899 fraction cf; /* sines and cosines */
7901 @ @<Declare subroutines needed by |solve_choices|@>=
7902 void mp_set_controls (MP mp,pointer p, pointer q, integer k) {
7903 fraction rr,ss; /* velocities, divided by thrice the tension */
7904 scaled lt,rt; /* tensions */
7905 fraction sine; /* $\sin(\theta+\phi)$ */
7906 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7907 rr=mp_velocity(mp, mp->st,mp->ct,mp->sf,mp->cf,rt);
7908 ss=mp_velocity(mp, mp->sf,mp->cf,mp->st,mp->ct,lt);
7909 if ( (right_tension(p)<0)||(left_tension(q)<0) ) {
7910 @<Decrease the velocities,
7911 if necessary, to stay inside the bounding triangle@>;
7913 right_x(p)=x_coord(p)+mp_take_fraction(mp,
7914 mp_take_fraction(mp, mp->delta_x[k],mp->ct)-
7915 mp_take_fraction(mp, mp->delta_y[k],mp->st),rr);
7916 right_y(p)=y_coord(p)+mp_take_fraction(mp,
7917 mp_take_fraction(mp, mp->delta_y[k],mp->ct)+
7918 mp_take_fraction(mp, mp->delta_x[k],mp->st),rr);
7919 left_x(q)=x_coord(q)-mp_take_fraction(mp,
7920 mp_take_fraction(mp, mp->delta_x[k],mp->cf)+
7921 mp_take_fraction(mp, mp->delta_y[k],mp->sf),ss);
7922 left_y(q)=y_coord(q)-mp_take_fraction(mp,
7923 mp_take_fraction(mp, mp->delta_y[k],mp->cf)-
7924 mp_take_fraction(mp, mp->delta_x[k],mp->sf),ss);
7925 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7928 @ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
7929 $\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
7930 $\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
7931 there is no ``bounding triangle.''
7932 @:at_least_}{\&{atleast} primitive@>
7934 @<Decrease the velocities, if necessary...@>=
7935 if (((mp->st>=0)&&(mp->sf>=0))||((mp->st<=0)&&(mp->sf<=0)) ) {
7936 sine=mp_take_fraction(mp, abs(mp->st),mp->cf)+
7937 mp_take_fraction(mp, abs(mp->sf),mp->ct);
7939 sine=mp_take_fraction(mp, sine,fraction_one+unity); /* safety factor */
7940 if ( right_tension(p)<0 )
7941 if ( mp_ab_vs_cd(mp, abs(mp->sf),fraction_one,rr,sine)<0 )
7942 rr=mp_make_fraction(mp, abs(mp->sf),sine);
7943 if ( left_tension(q)<0 )
7944 if ( mp_ab_vs_cd(mp, abs(mp->st),fraction_one,ss,sine)<0 )
7945 ss=mp_make_fraction(mp, abs(mp->st),sine);
7949 @ Only the simple cases remain to be handled.
7951 @<Reduce to simple case of two givens and |return|@>=
7953 aa=mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7954 mp_n_sin_cos(mp, right_given(p)-aa); mp->ct=mp->n_cos; mp->st=mp->n_sin;
7955 mp_n_sin_cos(mp, left_given(q)-aa); mp->cf=mp->n_cos; mp->sf=-mp->n_sin;
7956 mp_set_controls(mp, p,q,0); return;
7959 @ @<Reduce to simple case of straight line and |return|@>=
7961 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7962 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7964 if ( mp->delta_x[0]>=0 ) right_x(p)=x_coord(p)+((mp->delta_x[0]+1) / 3);
7965 else right_x(p)=x_coord(p)+((mp->delta_x[0]-1) / 3);
7966 if ( mp->delta_y[0]>=0 ) right_y(p)=y_coord(p)+((mp->delta_y[0]+1) / 3);
7967 else right_y(p)=y_coord(p)+((mp->delta_y[0]-1) / 3);
7969 ff=mp_make_fraction(mp, unity,3*rt); /* $\alpha/3$ */
7970 right_x(p)=x_coord(p)+mp_take_fraction(mp, mp->delta_x[0],ff);
7971 right_y(p)=y_coord(p)+mp_take_fraction(mp, mp->delta_y[0],ff);
7974 if ( mp->delta_x[0]>=0 ) left_x(q)=x_coord(q)-((mp->delta_x[0]+1) / 3);
7975 else left_x(q)=x_coord(q)-((mp->delta_x[0]-1) / 3);
7976 if ( mp->delta_y[0]>=0 ) left_y(q)=y_coord(q)-((mp->delta_y[0]+1) / 3);
7977 else left_y(q)=y_coord(q)-((mp->delta_y[0]-1) / 3);
7979 ff=mp_make_fraction(mp, unity,3*lt); /* $\beta/3$ */
7980 left_x(q)=x_coord(q)-mp_take_fraction(mp, mp->delta_x[0],ff);
7981 left_y(q)=y_coord(q)-mp_take_fraction(mp, mp->delta_y[0],ff);
7986 @* \[19] Measuring paths.
7987 \MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
7988 allow the user to measure the bounding box of anything that can go into a
7989 picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
7990 by just finding the bounding box of the knots and the control points. We
7991 need a more accurate version of the bounding box, but we can still use the
7992 easy estimate to save time by focusing on the interesting parts of the path.
7994 @ Computing an accurate bounding box involves a theme that will come up again
7995 and again. Given a Bernshte{\u\i}n polynomial
7996 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
7997 $$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
7998 we can conveniently bisect its range as follows:
8001 \textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
8004 \textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
8005 |0<=k<n-j|, for |0<=j<n|.
8009 $$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
8010 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
8011 This formula gives us the coefficients of polynomials to use over the ranges
8012 $0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
8014 @ Now here's a subroutine that's handy for all sorts of path computations:
8015 Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
8016 returns the unique |fraction| value |t| between 0 and~1 at which
8017 $B(a,b,c;t)$ changes from positive to negative, or returns
8018 |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
8019 is already negative at |t=0|), |crossing_point| returns the value zero.
8021 @d no_crossing { return (fraction_one+1); }
8022 @d one_crossing { return fraction_one; }
8023 @d zero_crossing { return 0; }
8024 @d mp_crossing_point(M,A,B,C) mp_do_crossing_point(A,B,C)
8026 @c fraction mp_do_crossing_point (integer a, integer b, integer c) {
8027 integer d; /* recursive counter */
8028 integer x,xx,x0,x1,x2; /* temporary registers for bisection */
8029 if ( a<0 ) zero_crossing;
8032 if ( c>0 ) { no_crossing; }
8033 else if ( (a==0)&&(b==0) ) { no_crossing;}
8034 else { one_crossing; }
8036 if ( a==0 ) zero_crossing;
8037 } else if ( a==0 ) {
8038 if ( b<=0 ) zero_crossing;
8040 @<Use bisection to find the crossing point, if one exists@>;
8043 @ The general bisection method is quite simple when $n=2$, hence
8044 |crossing_point| does not take much time. At each stage in the
8045 recursion we have a subinterval defined by |l| and~|j| such that
8046 $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
8047 the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
8049 It is convenient for purposes of calculation to combine the values
8050 of |l| and~|j| in a single variable $d=2^l+j$, because the operation
8051 of bisection then corresponds simply to doubling $d$ and possibly
8052 adding~1. Furthermore it proves to be convenient to modify
8053 our previous conventions for bisection slightly, maintaining the
8054 variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
8055 With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
8056 equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
8058 The following code maintains the invariant relations
8059 $0\L|x0|<\max(|x1|,|x1|+|x2|)$,
8060 $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
8061 it has been constructed in such a way that no arithmetic overflow
8062 will occur if the inputs satisfy
8063 $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
8065 @<Use bisection to find the crossing point...@>=
8066 d=1; x0=a; x1=a-b; x2=b-c;
8077 if ( x<=x0 ) { if ( x+x2<=x0 ) no_crossing; }
8081 } while (d<fraction_one);
8082 return (d-fraction_one)
8084 @ Here is a routine that computes the $x$ or $y$ coordinate of the point on
8085 a cubic corresponding to the |fraction| value~|t|.
8087 It is convenient to define a \.{WEB} macro |t_of_the_way| such that
8088 |t_of_the_way(a,b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
8090 @d t_of_the_way(A,B) ((A)-mp_take_fraction(mp,((A)-(B)),t))
8092 @c scaled mp_eval_cubic (MP mp,pointer p, pointer q, fraction t) {
8093 scaled x1,x2,x3; /* intermediate values */
8094 x1=t_of_the_way(knot_coord(p),right_coord(p));
8095 x2=t_of_the_way(right_coord(p),left_coord(q));
8096 x3=t_of_the_way(left_coord(q),knot_coord(q));
8097 x1=t_of_the_way(x1,x2);
8098 x2=t_of_the_way(x2,x3);
8099 return t_of_the_way(x1,x2);
8102 @ The actual bounding box information is stored in global variables.
8103 Since it is convenient to address the $x$ and $y$ information
8104 separately, we define arrays indexed by |x_code..y_code| and use
8105 macros to give them more convenient names.
8109 mp_x_code=0, /* index for |minx| and |maxx| */
8110 mp_y_code /* index for |miny| and |maxy| */
8114 @d minx mp->bbmin[mp_x_code]
8115 @d maxx mp->bbmax[mp_x_code]
8116 @d miny mp->bbmin[mp_y_code]
8117 @d maxy mp->bbmax[mp_y_code]
8120 scaled bbmin[mp_y_code+1];
8121 scaled bbmax[mp_y_code+1];
8122 /* the result of procedures that compute bounding box information */
8124 @ Now we're ready for the key part of the bounding box computation.
8125 The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
8126 $$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
8127 \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
8129 for $0<t\le1$. In other words, the procedure adjusts the bounds to
8130 accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
8131 The |c| parameter is |x_code| or |y_code|.
8133 @c void mp_bound_cubic (MP mp,pointer p, pointer q, small_number c) {
8134 boolean wavy; /* whether we need to look for extremes */
8135 scaled del1,del2,del3,del,dmax; /* proportional to the control
8136 points of a quadratic derived from a cubic */
8137 fraction t,tt; /* where a quadratic crosses zero */
8138 scaled x; /* a value that |bbmin[c]| and |bbmax[c]| must accommodate */
8140 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8141 @<Check the control points against the bounding box and set |wavy:=true|
8142 if any of them lie outside@>;
8144 del1=right_coord(p)-knot_coord(p);
8145 del2=left_coord(q)-right_coord(p);
8146 del3=knot_coord(q)-left_coord(q);
8147 @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
8148 also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
8150 negate(del1); negate(del2); negate(del3);
8152 t=mp_crossing_point(mp, del1,del2,del3);
8153 if ( t<fraction_one ) {
8154 @<Test the extremes of the cubic against the bounding box@>;
8159 @ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
8160 if ( x<mp->bbmin[c] ) mp->bbmin[c]=x;
8161 if ( x>mp->bbmax[c] ) mp->bbmax[c]=x
8163 @ @<Check the control points against the bounding box and set...@>=
8165 if ( mp->bbmin[c]<=right_coord(p) )
8166 if ( right_coord(p)<=mp->bbmax[c] )
8167 if ( mp->bbmin[c]<=left_coord(q) )
8168 if ( left_coord(q)<=mp->bbmax[c] )
8171 @ If |del1=del2=del3=0|, it's impossible to obey the title of this
8172 section. We just set |del=0| in that case.
8174 @<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
8175 if ( del1!=0 ) del=del1;
8176 else if ( del2!=0 ) del=del2;
8180 if ( abs(del2)>dmax ) dmax=abs(del2);
8181 if ( abs(del3)>dmax ) dmax=abs(del3);
8182 while ( dmax<fraction_half ) {
8183 dmax+=dmax; del1+=del1; del2+=del2; del3+=del3;
8187 @ Since |crossing_point| has tried to choose |t| so that
8188 $B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
8189 slope, the value of |del2| computed below should not be positive.
8190 But rounding error could make it slightly positive in which case we
8191 must cut it to zero to avoid confusion.
8193 @<Test the extremes of the cubic against the bounding box@>=
8195 x=mp_eval_cubic(mp, p,q,t);
8196 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8197 del2=t_of_the_way(del2,del3);
8198 /* now |0,del2,del3| represent the derivative on the remaining interval */
8199 if ( del2>0 ) del2=0;
8200 tt=mp_crossing_point(mp, 0,-del2,-del3);
8201 if ( tt<fraction_one ) {
8202 @<Test the second extreme against the bounding box@>;
8206 @ @<Test the second extreme against the bounding box@>=
8208 x=mp_eval_cubic(mp, p,q,t_of_the_way(tt,fraction_one));
8209 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8212 @ Finding the bounding box of a path is basically a matter of applying
8213 |bound_cubic| twice for each pair of adjacent knots.
8215 @c void mp_path_bbox (MP mp,pointer h) {
8216 pointer p,q; /* a pair of adjacent knots */
8217 minx=x_coord(h); miny=y_coord(h);
8218 maxx=minx; maxy=miny;
8221 if ( right_type(p)==mp_endpoint ) return;
8223 mp_bound_cubic(mp, x_loc(p),x_loc(q),mp_x_code);
8224 mp_bound_cubic(mp, y_loc(p),y_loc(q),mp_y_code);
8229 @ Another important way to measure a path is to find its arc length. This
8230 is best done by using the general bisection algorithm to subdivide the path
8231 until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
8234 Since the arc length is the integral with respect to time of the magnitude of
8235 the velocity, it is natural to use Simpson's rule for the approximation.
8237 If $\dot B(t)$ is the spline velocity, Simpson's rule gives
8238 $$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
8239 for the arc length of a path of length~1. For a cubic spline
8240 $B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
8241 $3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
8243 $$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
8245 $$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
8246 is the result of the bisection algorithm.
8248 @ The remaining problem is how to decide when a subpath is ``well behaved.''
8249 This could be done via the theoretical error bound for Simpson's rule,
8251 but this is impractical because it requires an estimate of the fourth
8252 derivative of the quantity being integrated. It is much easier to just perform
8253 a bisection step and see how much the arc length estimate changes. Since the
8254 error for Simpson's rule is proportional to the fourth power of the sample
8255 spacing, the remaining error is typically about $1\over16$ of the amount of
8256 the change. We say ``typically'' because the error has a pseudo-random behavior
8257 that could cause the two estimates to agree when each contain large errors.
8259 To protect against disasters such as undetected cusps, the bisection process
8260 should always continue until all the $dz_i$ vectors belong to a single
8261 $90^\circ$ sector. This ensures that no point on the spline can have velocity
8262 less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
8263 If such a spline happens to produce an erroneous arc length estimate that
8264 is little changed by bisection, the amount of the error is likely to be fairly
8265 small. We will try to arrange things so that freak accidents of this type do
8266 not destroy the inverse relationship between the \&{arclength} and
8267 \&{arctime} operations.
8268 @:arclength_}{\&{arclength} primitive@>
8269 @:arctime_}{\&{arctime} primitive@>
8271 @ The \&{arclength} and \&{arctime} operations are both based on a recursive
8273 function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
8274 $dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
8275 returns the time when the arc length reaches |a_goal| if there is such a time.
8276 Thus the return value is either an arc length less than |a_goal| or, if the
8277 arc length would be at least |a_goal|, it returns a time value decreased by
8278 |two|. This allows the caller to use the sign of the result to distinguish
8279 between arc lengths and time values. On certain types of overflow, it is
8280 possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
8281 Otherwise, the result is always less than |a_goal|.
8283 Rather than halving the control point coordinates on each recursive call to
8284 |arc_test|, it is better to keep them proportional to velocity on the original
8285 curve and halve the results instead. This means that recursive calls can
8286 potentially use larger error tolerances in their arc length estimates. How
8287 much larger depends on to what extent the errors behave as though they are
8288 independent of each other. To save computing time, we use optimistic assumptions
8289 and increase the tolerance by a factor of about $\sqrt2$ for each recursive
8292 In addition to the tolerance parameter, |arc_test| should also have parameters
8293 for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
8294 ${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
8295 and they are needed in different instances of |arc_test|.
8297 @c @t\4@>@<Declare subroutines needed by |arc_test|@>;
8298 scaled mp_arc_test (MP mp, scaled dx0, scaled dy0, scaled dx1, scaled dy1,
8299 scaled dx2, scaled dy2, scaled v0, scaled v02,
8300 scaled v2, scaled a_goal, scaled tol) {
8301 boolean simple; /* are the control points confined to a $90^\circ$ sector? */
8302 scaled dx01, dy01, dx12, dy12, dx02, dy02; /* bisection results */
8304 /* twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$ */
8305 scaled arc; /* best arc length estimate before recursion */
8306 @<Other local variables in |arc_test|@>;
8307 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
8309 @<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
8310 set |arc_test| and |return|@>;
8311 @<Test if the control points are confined to one quadrant or rotating them
8312 $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
8313 if ( simple && (abs(arc-v02-halfp(v0+v2)) <= tol) ) {
8314 if ( arc < a_goal ) {
8317 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
8318 that time minus |two|@>;
8321 @<Use one or two recursive calls to compute the |arc_test| function@>;
8325 @ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
8326 calls, but $1.5$ is an adequate approximation. It is best to avoid using
8327 |make_fraction| in this inner loop.
8330 @<Use one or two recursive calls to compute the |arc_test| function@>=
8332 @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
8333 large as possible@>;
8334 tol = tol + halfp(tol);
8335 a = mp_arc_test(mp, dx0,dy0, dx01,dy01, dx02,dy02, v0, v002,
8336 halfp(v02), a_new, tol);
8338 return (-halfp(two-a));
8340 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
8341 b = mp_arc_test(mp, dx02,dy02, dx12,dy12, dx2,dy2,
8342 halfp(v02), v022, v2, a_new, tol);
8344 return (-halfp(-b) - half_unit);
8346 return (a + half(b-a));
8350 @ @<Other local variables in |arc_test|@>=
8351 scaled a,b; /* results of recursive calls */
8352 scaled a_new,a_aux; /* the sum of these gives the |a_goal| */
8354 @ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
8355 a_aux = el_gordo - a_goal;
8356 if ( a_goal > a_aux ) {
8357 a_aux = a_goal - a_aux;
8360 a_new = a_goal + a_goal;
8364 @ There is no need to maintain |a_aux| at this point so we use it as a temporary
8365 to force the additions and subtractions to be done in an order that avoids
8368 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
8371 a_new = a_new + a_aux;
8374 @ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
8375 |fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
8376 this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
8377 this bound. Note that recursive calls will maintain this invariant.
8379 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
8380 dx01 = half(dx0 + dx1);
8381 dx12 = half(dx1 + dx2);
8382 dx02 = half(dx01 + dx12);
8383 dy01 = half(dy0 + dy1);
8384 dy12 = half(dy1 + dy2);
8385 dy02 = half(dy01 + dy12)
8387 @ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
8388 |a_goal=el_gordo| is guaranteed to yield the arc length.
8390 @<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
8391 v002 = mp_pyth_add(mp, dx01+half(dx0+dx02), dy01+half(dy0+dy02));
8392 v022 = mp_pyth_add(mp, dx12+half(dx02+dx2), dy12+half(dy02+dy2));
8394 arc1 = v002 + half(halfp(v0+tmp) - v002);
8395 arc = v022 + half(halfp(v2+tmp) - v022);
8396 if ( (arc < el_gordo-arc1) ) {
8399 mp->arith_error = true;
8400 if ( a_goal==el_gordo ) return (el_gordo);
8404 @ @<Other local variables in |arc_test|@>=
8405 scaled tmp, tmp2; /* all purpose temporary registers */
8406 scaled arc1; /* arc length estimate for the first half */
8408 @ @<Test if the control points are confined to one quadrant or rotating...@>=
8409 simple = ((dx0>=0) && (dx1>=0) && (dx2>=0)) ||
8410 ((dx0<=0) && (dx1<=0) && (dx2<=0));
8412 simple = ((dy0>=0) && (dy1>=0) && (dy2>=0)) ||
8413 ((dy0<=0) && (dy1<=0) && (dy2<=0));
8415 simple = ((dx0>=dy0) && (dx1>=dy1) && (dx2>=dy2)) ||
8416 ((dx0<=dy0) && (dx1<=dy1) && (dx2<=dy2));
8418 simple = ((-dx0>=dy0) && (-dx1>=dy1) && (-dx2>=dy2)) ||
8419 ((-dx0<=dy0) && (-dx1<=dy1) && (-dx2<=dy2));
8422 @ Since Simpson's rule is based on approximating the integrand by a parabola,
8424 it is appropriate to use the same approximation to decide when the integral
8425 reaches the intermediate value |a_goal|. At this point
8427 {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
8428 {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
8429 {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
8430 {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
8431 {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
8435 $$ {\vb\dot B(t)\vb\over 3} \approx
8436 \cases{B\left(\hbox{|v0|},
8437 \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
8438 {1\over 2}\hbox{|v02|}; 2t \right)&
8439 if $t\le{1\over 2}$\cr
8440 B\left({1\over 2}\hbox{|v02|},
8441 \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
8442 \hbox{|v2|}; 2t-1 \right)&
8443 if $t\ge{1\over 2}$.\cr}
8446 We can integrate $\vb\dot B(t)\vb$ by using
8447 $$\int 3B(a,b,c;\tau)\,dt =
8448 {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
8451 This construction allows us to find the time when the arc length reaches
8452 |a_goal| by solving a cubic equation of the form
8453 $$ B(0,a,a+b,a+b+c;\tau) = x, $$
8454 where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
8455 and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
8456 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8457 $d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
8458 $\tau$ given $a$, $b$, $c$, and $x$.
8460 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
8462 tmp = (v02 + 2) / 4;
8463 if ( a_goal<=arc1 ) {
8466 (halfp(mp_solve_rising_cubic(mp, tmp2, arc1-tmp2-tmp, tmp, a_goal))- two);
8469 return ((half_unit - two) +
8470 halfp(mp_solve_rising_cubic(mp, tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1)));
8474 @ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
8475 $$ B(0, a, a+b, a+b+c; t) = x. $$
8476 This routine is based on |crossing_point| but is simplified by the
8477 assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
8478 If rounding error causes this condition to be violated slightly, we just ignore
8479 it and proceed with binary search. This finds a time when the function value
8480 reaches |x| and the slope is positive.
8482 @<Declare subroutines needed by |arc_test|@>=
8483 scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) {
8484 scaled ab, bc, ac; /* bisection results */
8485 integer t; /* $2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$ */
8486 integer xx; /* temporary for updating |x| */
8487 if ( (a<0) || (c<0) ) mp_confusion(mp, "rising?");
8488 @:this can't happen rising?}{\quad rising?@>
8491 } else if ( x >= a+b+c ) {
8495 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
8499 @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
8500 xx = x - a - ab - ac;
8501 if ( xx < -x ) { x+=x; b=ab; c=ac; }
8502 else { x = x + xx; a=ac; b=mp->bc; t = t+1; };
8503 } while (t < unity);
8508 @ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
8513 @ @d one_third_el_gordo 05252525252 /* upper bound on |a|, |b|, and |c| */
8515 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
8516 while ((a>one_third_el_gordo)||(b>one_third_el_gordo)||(c>one_third_el_gordo)) {
8523 @ It is convenient to have a simpler interface to |arc_test| that requires no
8524 unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
8525 length less than |fraction_four|.
8527 @d arc_tol 16 /* quit when change in arc length estimate reaches this */
8529 @c scaled mp_do_arc_test (MP mp,scaled dx0, scaled dy0, scaled dx1,
8530 scaled dy1, scaled dx2, scaled dy2, scaled a_goal) {
8531 scaled v0,v1,v2; /* length of each $({\it dx},{\it dy})$ pair */
8532 scaled v02; /* twice the norm of the quadratic at $t={1\over2}$ */
8533 v0 = mp_pyth_add(mp, dx0,dy0);
8534 v1 = mp_pyth_add(mp, dx1,dy1);
8535 v2 = mp_pyth_add(mp, dx2,dy2);
8536 if ( (v0>=fraction_four) || (v1>=fraction_four) || (v2>=fraction_four) ) {
8537 mp->arith_error = true;
8538 if ( a_goal==el_gordo ) return el_gordo;
8541 v02 = mp_pyth_add(mp, dx1+half(dx0+dx2), dy1+half(dy0+dy2));
8542 return (mp_arc_test(mp, dx0,dy0, dx1,dy1, dx2,dy2,
8543 v0, v02, v2, a_goal, arc_tol));
8547 @ Now it is easy to find the arc length of an entire path.
8549 @c scaled mp_get_arc_length (MP mp,pointer h) {
8550 pointer p,q; /* for traversing the path */
8551 scaled a,a_tot; /* current and total arc lengths */
8554 while ( right_type(p)!=mp_endpoint ){
8556 a = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8557 left_x(q)-right_x(p), left_y(q)-right_y(p),
8558 x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
8559 a_tot = mp_slow_add(mp, a, a_tot);
8560 if ( q==h ) break; else p=q;
8566 @ The inverse operation of finding the time on a path~|h| when the arc length
8567 reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
8568 is required to handle very large times or negative times on cyclic paths. For
8569 non-cyclic paths, |arc0| values that are negative or too large cause
8570 |get_arc_time| to return 0 or the length of path~|h|.
8572 If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
8573 time value greater than the length of the path. Since it could be much greater,
8574 we must be prepared to compute the arc length of path~|h| and divide this into
8575 |arc0| to find how many multiples of the length of path~|h| to add.
8577 @c scaled mp_get_arc_time (MP mp,pointer h, scaled arc0) {
8578 pointer p,q; /* for traversing the path */
8579 scaled t_tot; /* accumulator for the result */
8580 scaled t; /* the result of |do_arc_test| */
8581 scaled arc; /* portion of |arc0| not used up so far */
8582 integer n; /* number of extra times to go around the cycle */
8584 @<Deal with a negative |arc0| value and |return|@>;
8586 if ( arc0==el_gordo ) decr(arc0);
8590 while ( (right_type(p)!=mp_endpoint) && (arc>0) ) {
8592 t = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8593 left_x(q)-right_x(p), left_y(q)-right_y(p),
8594 x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
8595 @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
8597 @<Update |t_tot| and |arc| to avoid going around the cyclic
8598 path too many times but set |arith_error:=true| and |goto done| on
8607 @ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
8608 if ( t<0 ) { t_tot = t_tot + t + two; arc = 0; }
8609 else { t_tot = t_tot + unity; arc = arc - t; }
8611 @ @<Deal with a negative |arc0| value and |return|@>=
8613 if ( left_type(h)==mp_endpoint ) {
8616 p = mp_htap_ypoc(mp, h);
8617 t_tot = -mp_get_arc_time(mp, p, -arc0);
8618 mp_toss_knot_list(mp, p);
8624 @ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
8626 n = arc / (arc0 - arc);
8627 arc = arc - n*(arc0 - arc);
8628 if ( t_tot > el_gordo / (n+1) ) {
8629 mp->arith_error = true;
8633 t_tot = (n + 1)*t_tot;
8636 @* \[20] Data structures for pens.
8637 A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
8638 in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
8639 @:stroke}{\&{stroke} command@>
8640 converted into an area fill as described in the next part of this program.
8641 The mathematics behind this process is based on simple aspects of the theory
8642 of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
8643 [``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
8644 Foundations of Computer Science {\bf 24} (1983), 100--111].
8646 Polygonal pens are created from paths via \MP's \&{makepen} primitive.
8647 @:makepen_}{\&{makepen} primitive@>
8648 This path representation is almost sufficient for our purposes except that
8649 a pen path should always be a convex polygon with the vertices in
8650 counter-clockwise order.
8651 Since we will need to scan pen polygons both forward and backward, a pen
8652 should be represented as a doubly linked ring of knot nodes. There is
8653 room for the extra back pointer because we do not need the
8654 |left_type| or |right_type| fields. In fact, we don't need the |left_x|,
8655 |left_y|, |right_x|, or |right_y| fields either but we leave these alone
8656 so that certain procedures can operate on both pens and paths. In particular,
8657 pens can be copied using |copy_path| and recycled using |toss_knot_list|.
8660 /* this replaces the |left_type| and |right_type| fields in a pen knot */
8662 @ The |make_pen| procedure turns a path into a pen by initializing
8663 the |knil| pointers and making sure the knots form a convex polygon.
8664 Thus each cubic in the given path becomes a straight line and the control
8665 points are ignored. If the path is not cyclic, the ends are connected by a
8668 @d copy_pen(A) mp_make_pen(mp, mp_copy_path(mp, (A)),false)
8670 @c @<Declare a function called |convex_hull|@>;
8671 pointer mp_make_pen (MP mp,pointer h, boolean need_hull) {
8672 pointer p,q; /* two consecutive knots */
8679 h=mp_convex_hull(mp, h);
8680 @<Make sure |h| isn't confused with an elliptical pen@>;
8685 @ The only information required about an elliptical pen is the overall
8686 transformation that has been applied to the original \&{pencircle}.
8687 @:pencircle_}{\&{pencircle} primitive@>
8688 Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
8689 and $(0,1)$ are transformed, an elliptical pen can be stored in a single
8690 knot node and transformed as if it were a path.
8692 @d pen_is_elliptical(A) ((A)==link((A)))
8694 @c pointer mp_get_pen_circle (MP mp,scaled diam) {
8695 pointer h; /* the knot node to return */
8696 h=mp_get_node(mp, knot_node_size);
8697 link(h)=h; knil(h)=h;
8698 originator(h)=mp_program_code;
8699 x_coord(h)=0; y_coord(h)=0;
8700 left_x(h)=diam; left_y(h)=0;
8701 right_x(h)=0; right_y(h)=diam;
8705 @ If the polygon being returned by |make_pen| has only one vertex, it will
8706 be interpreted as an elliptical pen. This is no problem since a degenerate
8707 polygon can equally well be thought of as a degenerate ellipse. We need only
8708 initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
8710 @<Make sure |h| isn't confused with an elliptical pen@>=
8711 if ( pen_is_elliptical( h) ){
8712 left_x(h)=x_coord(h); left_y(h)=y_coord(h);
8713 right_x(h)=x_coord(h); right_y(h)=y_coord(h);
8716 @ We have to cheat a little here but most operations on pens only use
8717 the first three words in each knot node.
8718 @^data structure assumptions@>
8720 @<Initialize a pen at |test_pen| so that it fits in nine words@>=
8721 x_coord(test_pen)=-half_unit;
8722 y_coord(test_pen)=0;
8723 x_coord(test_pen+3)=half_unit;
8724 y_coord(test_pen+3)=0;
8725 x_coord(test_pen+6)=0;
8726 y_coord(test_pen+6)=unity;
8727 link(test_pen)=test_pen+3;
8728 link(test_pen+3)=test_pen+6;
8729 link(test_pen+6)=test_pen;
8730 knil(test_pen)=test_pen+6;
8731 knil(test_pen+3)=test_pen;
8732 knil(test_pen+6)=test_pen+3
8734 @ Printing a polygonal pen is very much like printing a path
8736 @<Declare subroutines for printing expressions@>=
8737 void mp_pr_pen (MP mp,pointer h) {
8738 pointer p,q; /* for list traversal */
8739 if ( pen_is_elliptical(h) ) {
8740 @<Print the elliptical pen |h|@>;
8744 mp_print_two(mp, x_coord(p),y_coord(p));
8745 mp_print_nl(mp, " .. ");
8746 @<Advance |p| making sure the links are OK and |return| if there is
8749 mp_print(mp, "cycle");
8753 @ @<Advance |p| making sure the links are OK and |return| if there is...@>=
8755 if ( (q==null) || (knil(q)!=p) ) {
8756 mp_print_nl(mp, "???"); return; /* this won't happen */
8761 @ @<Print the elliptical pen |h|@>=
8763 mp_print(mp, "pencircle transformed (");
8764 mp_print_scaled(mp, x_coord(h));
8765 mp_print_char(mp, ',');
8766 mp_print_scaled(mp, y_coord(h));
8767 mp_print_char(mp, ',');
8768 mp_print_scaled(mp, left_x(h)-x_coord(h));
8769 mp_print_char(mp, ',');
8770 mp_print_scaled(mp, right_x(h)-x_coord(h));
8771 mp_print_char(mp, ',');
8772 mp_print_scaled(mp, left_y(h)-y_coord(h));
8773 mp_print_char(mp, ',');
8774 mp_print_scaled(mp, right_y(h)-y_coord(h));
8775 mp_print_char(mp, ')');
8778 @ Here us another version of |pr_pen| that prints the pen as a diagnostic
8781 @<Declare subroutines for printing expressions@>=
8782 void mp_print_pen (MP mp,pointer h, char *s, boolean nuline) {
8783 mp_print_diagnostic(mp, "Pen",s,nuline); mp_print_ln(mp);
8786 mp_end_diagnostic(mp, true);
8789 @ Making a polygonal pen into a path involves restoring the |left_type| and
8790 |right_type| fields and setting the control points so as to make a polygonal
8794 void mp_make_path (MP mp,pointer h) {
8795 pointer p; /* for traversing the knot list */
8796 small_number k; /* a loop counter */
8797 @<Other local variables in |make_path|@>;
8798 if ( pen_is_elliptical(h) ) {
8799 @<Make the elliptical pen |h| into a path@>;
8803 left_type(p)=mp_explicit;
8804 right_type(p)=mp_explicit;
8805 @<copy the coordinates of knot |p| into its control points@>;
8811 @ @<copy the coordinates of knot |p| into its control points@>=
8812 left_x(p)=x_coord(p);
8813 left_y(p)=y_coord(p);
8814 right_x(p)=x_coord(p);
8815 right_y(p)=y_coord(p)
8817 @ We need an eight knot path to get a good approximation to an ellipse.
8819 @<Make the elliptical pen |h| into a path@>=
8821 @<Extract the transformation parameters from the elliptical pen~|h|@>;
8823 for (k=0;k<=7;k++ ) {
8824 @<Initialize |p| as the |k|th knot of a circle of unit diameter,
8825 transforming it appropriately@>;
8826 if ( k==7 ) link(p)=h; else link(p)=mp_get_node(mp, knot_node_size);
8831 @ @<Extract the transformation parameters from the elliptical pen~|h|@>=
8832 center_x=x_coord(h);
8833 center_y=y_coord(h);
8834 width_x=left_x(h)-center_x;
8835 width_y=left_y(h)-center_y;
8836 height_x=right_x(h)-center_x;
8837 height_y=right_y(h)-center_y
8839 @ @<Other local variables in |make_path|@>=
8840 scaled center_x,center_y; /* translation parameters for an elliptical pen */
8841 scaled width_x,width_y; /* the effect of a unit change in $x$ */
8842 scaled height_x,height_y; /* the effect of a unit change in $y$ */
8843 scaled dx,dy; /* the vector from knot |p| to its right control point */
8845 /* |k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$) */
8847 @ The only tricky thing here are the tables |half_cos| and |d_cos| used to
8848 find the point $k/8$ of the way around the circle and the direction vector
8851 @<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
8853 x_coord(p)=center_x+mp_take_fraction(mp, mp->half_cos[k],width_x)
8854 +mp_take_fraction(mp, mp->half_cos[kk],height_x);
8855 y_coord(p)=center_y+mp_take_fraction(mp, mp->half_cos[k],width_y)
8856 +mp_take_fraction(mp, mp->half_cos[kk],height_y);
8857 dx=-mp_take_fraction(mp, mp->d_cos[kk],width_x)
8858 +mp_take_fraction(mp, mp->d_cos[k],height_x);
8859 dy=-mp_take_fraction(mp, mp->d_cos[kk],width_y)
8860 +mp_take_fraction(mp, mp->d_cos[k],height_y);
8861 right_x(p)=x_coord(p)+dx;
8862 right_y(p)=y_coord(p)+dy;
8863 left_x(p)=x_coord(p)-dx;
8864 left_y(p)=y_coord(p)-dy;
8865 left_type(p)=mp_explicit;
8866 right_type(p)=mp_explicit;
8867 originator(p)=mp_program_code
8870 fraction half_cos[8]; /* ${1\over2}\cos(45k)$ */
8871 fraction d_cos[8]; /* a magic constant times $\cos(45k)$ */
8873 @ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
8874 $({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
8875 function for $\theta=\phi=22.5^\circ$. This comes out to be
8876 $$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
8877 \approx 0.132608244919772.
8881 mp->half_cos[0]=fraction_half;
8882 mp->half_cos[1]=94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
8884 mp->d_cos[0]=35596755; /* $2^{28}d\approx35596754.69$ */
8885 mp->d_cos[1]=25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
8887 for (k=3;k<= 4;k++ ) {
8888 mp->half_cos[k]=-mp->half_cos[4-k];
8889 mp->d_cos[k]=-mp->d_cos[4-k];
8891 for (k=5;k<= 7;k++ ) {
8892 mp->half_cos[k]=mp->half_cos[8-k];
8893 mp->d_cos[k]=mp->d_cos[8-k];
8896 @ The |convex_hull| function forces a pen polygon to be convex when it is
8897 returned by |make_pen| and after any subsequent transformation where rounding
8898 error might allow the convexity to be lost.
8899 The convex hull algorithm used here is described by F.~P. Preparata and
8900 M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
8902 @<Declare a function called |convex_hull|@>=
8903 @<Declare a procedure called |move_knot|@>;
8904 pointer mp_convex_hull (MP mp,pointer h) { /* Make a polygonal pen convex */
8905 pointer l,r; /* the leftmost and rightmost knots */
8906 pointer p,q; /* knots being scanned */
8907 pointer s; /* the starting point for an upcoming scan */
8908 scaled dx,dy; /* a temporary pointer */
8909 if ( pen_is_elliptical(h) ) {
8912 @<Set |l| to the leftmost knot in polygon~|h|@>;
8913 @<Set |r| to the rightmost knot in polygon~|h|@>;
8916 @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
8917 move them past~|r|@>;
8918 @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
8919 move them past~|l|@>;
8920 @<Sort the path from |l| to |r| by increasing $x$@>;
8921 @<Sort the path from |r| to |l| by decreasing $x$@>;
8924 @<Do a Gramm scan and remove vertices where there is no left turn@>;
8930 @ All comparisons are done primarily on $x$ and secondarily on $y$.
8932 @<Set |l| to the leftmost knot in polygon~|h|@>=
8936 if ( x_coord(p)<=x_coord(l) )
8937 if ( (x_coord(p)<x_coord(l)) || (y_coord(p)<y_coord(l)) )
8942 @ @<Set |r| to the rightmost knot in polygon~|h|@>=
8946 if ( x_coord(p)>=x_coord(r) )
8947 if ( (x_coord(p)>x_coord(r)) || (y_coord(p)>y_coord(r)) )
8952 @ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
8953 dx=x_coord(r)-x_coord(l);
8954 dy=y_coord(r)-y_coord(l);
8958 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 )
8959 mp_move_knot(mp, p, r);
8963 @ The |move_knot| procedure removes |p| from a doubly linked list and inserts
8966 @ @<Declare a procedure called |move_knot|@>=
8967 void mp_move_knot (MP mp,pointer p, pointer q) {
8968 link(knil(p))=link(p);
8969 knil(link(p))=knil(p);
8976 @ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
8980 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 )
8981 mp_move_knot(mp, p,l);
8985 @ The list is likely to be in order already so we just do linear insertions.
8986 Secondary comparisons on $y$ ensure that the sort is consistent with the
8987 choice of |l| and |r|.
8989 @<Sort the path from |l| to |r| by increasing $x$@>=
8993 while ( x_coord(q)>x_coord(p) ) q=knil(q);
8994 while ( x_coord(q)==x_coord(p) ) {
8995 if ( y_coord(q)>y_coord(p) ) q=knil(q); else break;
8997 if ( q==knil(p) ) p=link(p);
8998 else { p=link(p); mp_move_knot(mp, knil(p),q); };
9001 @ @<Sort the path from |r| to |l| by decreasing $x$@>=
9005 while ( x_coord(q)<x_coord(p) ) q=knil(q);
9006 while ( x_coord(q)==x_coord(p) ) {
9007 if ( y_coord(q)<y_coord(p) ) q=knil(q); else break;
9009 if ( q==knil(p) ) p=link(p);
9010 else { p=link(p); mp_move_knot(mp, knil(p),q); };
9013 @ The condition involving |ab_vs_cd| tests if there is not a left turn
9014 at knot |q|. There usually will be a left turn so we streamline the case
9015 where the |then| clause is not executed.
9017 @<Do a Gramm scan and remove vertices where there...@>=
9021 dx=x_coord(q)-x_coord(p);
9022 dy=y_coord(q)-y_coord(p);
9026 if ( mp_ab_vs_cd(mp, dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 ) {
9027 @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
9032 @ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
9035 mp_free_node(mp, p,knot_node_size);
9036 link(s)=q; knil(q)=s;
9038 else { p=knil(s); q=s; };
9041 @ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
9042 offset associated with the given direction |(x,y)|. If two different offsets
9043 apply, it chooses one of them.
9046 void mp_find_offset (MP mp,scaled x, scaled y, pointer h) {
9047 pointer p,q; /* consecutive knots */
9049 /* the transformation matrix for an elliptical pen */
9050 fraction xx,yy; /* untransformed offset for an elliptical pen */
9051 fraction d; /* a temporary register */
9052 if ( pen_is_elliptical(h) ) {
9053 @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
9058 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0));
9061 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0));
9062 mp->cur_x=x_coord(p);
9063 mp->cur_y=y_coord(p);
9069 scaled cur_y; /* all-purpose return value registers */
9071 @ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
9072 if ( (x==0) && (y==0) ) {
9073 mp->cur_x=x_coord(h); mp->cur_y=y_coord(h);
9075 @<Find the non-constant part of the transformation for |h|@>;
9076 while ( (abs(x)<fraction_half) && (abs(y)<fraction_half) ){
9079 @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
9080 untransformed version of |(x,y)|@>;
9081 mp->cur_x=x_coord(h)+mp_take_fraction(mp, xx,wx)+mp_take_fraction(mp, yy,hx);
9082 mp->cur_y=y_coord(h)+mp_take_fraction(mp, xx,wy)+mp_take_fraction(mp, yy,hy);
9085 @ @<Find the non-constant part of the transformation for |h|@>=
9086 wx=left_x(h)-x_coord(h);
9087 wy=left_y(h)-y_coord(h);
9088 hx=right_x(h)-x_coord(h);
9089 hy=right_y(h)-y_coord(h)
9091 @ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
9092 yy=-(mp_take_fraction(mp, x,hy)+mp_take_fraction(mp, y,-hx));
9093 xx=mp_take_fraction(mp, x,-wy)+mp_take_fraction(mp, y,wx);
9094 d=mp_pyth_add(mp, xx,yy);
9096 xx=half(mp_make_fraction(mp, xx,d));
9097 yy=half(mp_make_fraction(mp, yy,d));
9100 @ Finding the bounding box of a pen is easy except if the pen is elliptical.
9101 But we can handle that case by just calling |find_offset| twice. The answer
9102 is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
9105 void mp_pen_bbox (MP mp,pointer h) {
9106 pointer p; /* for scanning the knot list */
9107 if ( pen_is_elliptical(h) ) {
9108 @<Find the bounding box of an elliptical pen@>;
9110 minx=x_coord(h); maxx=minx;
9111 miny=y_coord(h); maxy=miny;
9114 if ( x_coord(p)<minx ) minx=x_coord(p);
9115 if ( y_coord(p)<miny ) miny=y_coord(p);
9116 if ( x_coord(p)>maxx ) maxx=x_coord(p);
9117 if ( y_coord(p)>maxy ) maxy=y_coord(p);
9123 @ @<Find the bounding box of an elliptical pen@>=
9125 mp_find_offset(mp, 0,fraction_one,h);
9127 minx=2*x_coord(h)-mp->cur_x;
9128 mp_find_offset(mp, -fraction_one,0,h);
9130 miny=2*y_coord(h)-mp->cur_y;
9133 @* \[21] Edge structures.
9134 Now we come to \MP's internal scheme for representing pictures.
9135 The representation is very different from \MF's edge structures
9136 because \MP\ pictures contain \ps\ graphics objects instead of pixel
9137 images. However, the basic idea is somewhat similar in that shapes
9138 are represented via their boundaries.
9140 The main purpose of edge structures is to keep track of graphical objects
9141 until it is time to translate them into \ps. Since \MP\ does not need to
9142 know anything about an edge structure other than how to translate it into
9143 \ps\ and how to find its bounding box, edge structures can be just linked
9144 lists of graphical objects. \MP\ has no easy way to determine whether
9145 two such objects overlap, but it suffices to draw the first one first and
9146 let the second one overwrite it if necessary.
9149 enum mp_graphical_object_code {
9150 @<Graphical object codes@>
9153 @ Let's consider the types of graphical objects one at a time.
9154 First of all, a filled contour is represented by a eight-word node. The first
9155 word contains |type| and |link| fields, and the next six words contain a
9156 pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
9157 parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
9158 give the relevant information.
9160 @d path_p(A) link((A)+1)
9161 /* a pointer to the path that needs filling */
9162 @d pen_p(A) info((A)+1)
9163 /* a pointer to the pen to fill or stroke with */
9164 @d color_model(A) type((A)+2) /* the color model */
9165 @d obj_red_loc(A) ((A)+3) /* the first of three locations for the color */
9166 @d obj_cyan_loc obj_red_loc /* the first of four locations for the color */
9167 @d obj_grey_loc obj_red_loc /* the location for the color */
9168 @d red_val(A) mp->mem[(A)+3].sc
9169 /* the red component of the color in the range $0\ldots1$ */
9172 @d green_val(A) mp->mem[(A)+4].sc
9173 /* the green component of the color in the range $0\ldots1$ */
9174 @d magenta_val green_val
9175 @d blue_val(A) mp->mem[(A)+5].sc
9176 /* the blue component of the color in the range $0\ldots1$ */
9177 @d yellow_val blue_val
9178 @d black_val(A) mp->mem[(A)+6].sc
9179 /* the blue component of the color in the range $0\ldots1$ */
9180 @d ljoin_val(A) name_type((A)) /* the value of \&{linejoin} */
9181 @:mp_linejoin_}{\&{linejoin} primitive@>
9182 @d miterlim_val(A) mp->mem[(A)+7].sc /* the value of \&{miterlimit} */
9183 @:mp_miterlimit_}{\&{miterlimit} primitive@>
9184 @d obj_color_part(A) mp->mem[(A)+3-red_part].sc
9185 /* interpret an object pointer that has been offset by |red_part..blue_part| */
9186 @d pre_script(A) mp->mem[(A)+8].hh.lh
9187 @d post_script(A) mp->mem[(A)+8].hh.rh
9190 @ @<Graphical object codes@>=
9194 pointer mp_new_fill_node (MP mp,pointer p) {
9195 /* make a fill node for cyclic path |p| and color black */
9196 pointer t; /* the new node */
9197 t=mp_get_node(mp, fill_node_size);
9198 type(t)=mp_fill_code;
9200 pen_p(t)=null; /* |null| means don't use a pen */
9205 color_model(t)=mp_uninitialized_model;
9207 post_script(t)=null;
9208 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9212 @ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
9213 if ( mp->internal[mp_linejoin]>unity ) ljoin_val(t)=2;
9214 else if ( mp->internal[mp_linejoin]>0 ) ljoin_val(t)=1;
9215 else ljoin_val(t)=0;
9216 if ( mp->internal[mp_miterlimit]<unity )
9217 miterlim_val(t)=unity;
9219 miterlim_val(t)=mp->internal[mp_miterlimit]
9221 @ A stroked path is represented by an eight-word node that is like a filled
9222 contour node except that it contains the current \&{linecap} value, a scale
9223 factor for the dash pattern, and a pointer that is non-null if the stroke
9224 is to be dashed. The purpose of the scale factor is to allow a picture to
9225 be transformed without touching the picture that |dash_p| points to.
9227 @d dash_p(A) link((A)+9)
9228 /* a pointer to the edge structure that gives the dash pattern */
9229 @d lcap_val(A) type((A)+9)
9230 /* the value of \&{linecap} */
9231 @:mp_linecap_}{\&{linecap} primitive@>
9232 @d dash_scale(A) mp->mem[(A)+10].sc /* dash lengths are scaled by this factor */
9233 @d stroked_node_size 11
9235 @ @<Graphical object codes@>=
9239 pointer mp_new_stroked_node (MP mp,pointer p) {
9240 /* make a stroked node for path |p| with |pen_p(p)| temporarily |null| */
9241 pointer t; /* the new node */
9242 t=mp_get_node(mp, stroked_node_size);
9243 type(t)=mp_stroked_code;
9244 path_p(t)=p; pen_p(t)=null;
9246 dash_scale(t)=unity;
9251 color_model(t)=mp_uninitialized_model;
9253 post_script(t)=null;
9254 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9255 if ( mp->internal[mp_linecap]>unity ) lcap_val(t)=2;
9256 else if ( mp->internal[mp_linecap]>0 ) lcap_val(t)=1;
9261 @ When a dashed line is computed in a transformed coordinate system, the dash
9262 lengths get scaled like the pen shape and we need to compensate for this. Since
9263 there is no unique scale factor for an arbitrary transformation, we use the
9264 the square root of the determinant. The properties of the determinant make it
9265 easier to maintain the |dash_scale|. The computation is fairly straight-forward
9266 except for the initialization of the scale factor |s|. The factor of 64 is
9267 needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
9268 to counteract the effect of |take_fraction|.
9270 @<Declare subroutines needed by |print_edges|@>=
9271 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) {
9272 scaled maxabs; /* $max(|a|,|b|,|c|,|d|)$ */
9273 integer s; /* amount by which the result of |square_rt| needs to be scaled */
9274 @<Initialize |maxabs|@>;
9276 while ( (maxabs<fraction_one) && (s>1) ){
9277 a+=a; b+=b; c+=c; d+=d;
9278 maxabs+=maxabs; s=halfp(s);
9280 return s*mp_square_rt(mp, abs(mp_take_fraction(mp, a,d)-mp_take_fraction(mp, b,c)));
9283 scaled mp_get_pen_scale (MP mp,pointer p) {
9284 return mp_sqrt_det(mp,
9285 left_x(p)-x_coord(p), right_x(p)-x_coord(p),
9286 left_y(p)-y_coord(p), right_y(p)-y_coord(p));
9289 @ @<Internal library ...@>=
9290 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) ;
9293 @ @<Initialize |maxabs|@>=
9295 if ( abs(b)>maxabs ) maxabs=abs(b);
9296 if ( abs(c)>maxabs ) maxabs=abs(c);
9297 if ( abs(d)>maxabs ) maxabs=abs(d)
9299 @ When a picture contains text, this is represented by a fourteen-word node
9300 where the color information and |type| and |link| fields are augmented by
9301 additional fields that describe the text and how it is transformed.
9302 The |path_p| and |pen_p| pointers are replaced by a number that identifies
9303 the font and a string number that gives the text to be displayed.
9304 The |width|, |height|, and |depth| fields
9305 give the dimensions of the text at its design size, and the remaining six
9306 words give a transformation to be applied to the text. The |new_text_node|
9307 function initializes everything to default values so that the text comes out
9308 black with its reference point at the origin.
9310 @d text_p(A) link((A)+1) /* a string pointer for the text to display */
9311 @d font_n(A) info((A)+1) /* the font number */
9312 @d width_val(A) mp->mem[(A)+7].sc /* unscaled width of the text */
9313 @d height_val(A) mp->mem[(A)+9].sc /* unscaled height of the text */
9314 @d depth_val(A) mp->mem[(A)+10].sc /* unscaled depth of the text */
9315 @d text_tx_loc(A) ((A)+11)
9316 /* the first of six locations for transformation parameters */
9317 @d tx_val(A) mp->mem[(A)+11].sc /* $x$ shift amount */
9318 @d ty_val(A) mp->mem[(A)+12].sc /* $y$ shift amount */
9319 @d txx_val(A) mp->mem[(A)+13].sc /* |txx| transformation parameter */
9320 @d txy_val(A) mp->mem[(A)+14].sc /* |txy| transformation parameter */
9321 @d tyx_val(A) mp->mem[(A)+15].sc /* |tyx| transformation parameter */
9322 @d tyy_val(A) mp->mem[(A)+16].sc /* |tyy| transformation parameter */
9323 @d text_trans_part(A) mp->mem[(A)+11-x_part].sc
9324 /* interpret a text node pointer that has been offset by |x_part..yy_part| */
9325 @d text_node_size 17
9327 @ @<Graphical object codes@>=
9330 @ @c @<Declare text measuring subroutines@>;
9331 pointer mp_new_text_node (MP mp,char *f,str_number s) {
9332 /* make a text node for font |f| and text string |s| */
9333 pointer t; /* the new node */
9334 t=mp_get_node(mp, text_node_size);
9335 type(t)=mp_text_code;
9337 font_n(t)=mp_find_font(mp, f); /* this identifies the font */
9342 color_model(t)=mp_uninitialized_model;
9344 post_script(t)=null;
9345 tx_val(t)=0; ty_val(t)=0;
9346 txx_val(t)=unity; txy_val(t)=0;
9347 tyx_val(t)=0; tyy_val(t)=unity;
9348 mp_set_text_box(mp, t); /* this finds the bounding box */
9352 @ The last two types of graphical objects that can occur in an edge structure
9353 are clipping paths and \&{setbounds} paths. These are slightly more difficult
9354 @:set_bounds_}{\&{setbounds} primitive@>
9355 to implement because we must keep track of exactly what is being clipped or
9356 bounded when pictures get merged together. For this reason, each clipping or
9357 \&{setbounds} operation is represented by a pair of nodes: first comes a
9358 two-word node whose |path_p| gives the relevant path, then there is the list
9359 of objects to clip or bound followed by a two-word node whose second word is
9362 Using at least two words for each graphical object node allows them all to be
9363 allocated and deallocated similarly with a global array |gr_object_size| to
9364 give the size in words for each object type.
9366 @d start_clip_size 2
9367 @d start_bounds_size 2
9368 @d stop_clip_size 2 /* the second word is not used here */
9369 @d stop_bounds_size 2 /* the second word is not used here */
9371 @d stop_type(A) ((A)+2)
9372 /* matching |type| for |start_clip_code| or |start_bounds_code| */
9373 @d has_color(A) (type((A))<mp_start_clip_code)
9374 /* does a graphical object have color fields? */
9375 @d has_pen(A) (type((A))<mp_text_code)
9376 /* does a graphical object have a |pen_p| field? */
9377 @d is_start_or_stop(A) (type((A))>=mp_start_clip_code)
9378 @d is_stop(A) (type((A))>=mp_stop_clip_code)
9380 @ @<Graphical object codes@>=
9381 mp_start_clip_code=4, /* |type| of a node that starts clipping */
9382 mp_start_bounds_code=5, /* |type| of a node that gives a \&{setbounds} path */
9383 mp_stop_clip_code=6, /* |type| of a node that stops clipping */
9384 mp_stop_bounds_code=7, /* |type| of a node that stops \&{setbounds} */
9387 pointer mp_new_bounds_node (MP mp,pointer p, small_number c) {
9388 /* make a node of type |c| where |p| is the clipping or \&{setbounds} path */
9389 pointer t; /* the new node */
9390 t=mp_get_node(mp, mp->gr_object_size[c]);
9396 @ We need an array to keep track of the sizes of graphical objects.
9399 small_number gr_object_size[mp_stop_bounds_code+1];
9402 mp->gr_object_size[mp_fill_code]=fill_node_size;
9403 mp->gr_object_size[mp_stroked_code]=stroked_node_size;
9404 mp->gr_object_size[mp_text_code]=text_node_size;
9405 mp->gr_object_size[mp_start_clip_code]=start_clip_size;
9406 mp->gr_object_size[mp_stop_clip_code]=stop_clip_size;
9407 mp->gr_object_size[mp_start_bounds_code]=start_bounds_size;
9408 mp->gr_object_size[mp_stop_bounds_code]=stop_bounds_size;
9410 @ All the essential information in an edge structure is encoded as a linked list
9411 of graphical objects as we have just seen, but it is helpful to add some
9412 redundant information. A single edge structure might be used as a dash pattern
9413 many times, and it would be nice to avoid scanning the same structure
9414 repeatedly. Thus, an edge structure known to be a suitable dash pattern
9415 has a header that gives a list of dashes in a sorted order designed for rapid
9416 translation into \ps.
9418 Each dash is represented by a three-word node containing the initial and final
9419 $x$~coordinates as well as the usual |link| field. The |link| fields points to
9420 the dash node with the next higher $x$-coordinates and the final link points
9421 to a special location called |null_dash|. (There should be no overlap between
9422 dashes). Since the $y$~coordinate of the dash pattern is needed to determine
9423 the period of repetition, this needs to be stored in the edge header along
9424 with a pointer to the list of dash nodes.
9426 @d start_x(A) mp->mem[(A)+1].sc /* the starting $x$~coordinate in a dash node */
9427 @d stop_x(A) mp->mem[(A)+2].sc /* the ending $x$~coordinate in a dash node */
9430 /* in an edge header this points to the first dash node */
9431 @d dash_y(A) mp->mem[(A)+1].sc /* $y$ value for the dash list in an edge header */
9433 @ It is also convenient for an edge header to contain the bounding
9434 box information needed by the \&{llcorner} and \&{urcorner} operators
9435 so that this does not have to be recomputed unnecessarily. This is done by
9436 adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
9437 how far the bounding box computation has gotten. Thus if the user asks for
9438 the bounding box and then adds some more text to the picture before asking
9439 for more bounding box information, the second computation need only look at
9440 the additional text.
9442 When the bounding box has not been computed, the |bblast| pointer points
9443 to a dummy link at the head of the graphical object list while the |minx_val|
9444 and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
9445 fields contain |-el_gordo|.
9447 Since the bounding box of pictures containing objects of type
9448 |mp_start_bounds_code| depends on the value of \&{truecorners}, the bounding box
9449 @:mp_true_corners_}{\&{truecorners} primitive@>
9450 data might not be valid for all values of this parameter. Hence, the |bbtype|
9451 field is needed to keep track of this.
9453 @d minx_val(A) mp->mem[(A)+2].sc
9454 @d miny_val(A) mp->mem[(A)+3].sc
9455 @d maxx_val(A) mp->mem[(A)+4].sc
9456 @d maxy_val(A) mp->mem[(A)+5].sc
9457 @d bblast(A) link((A)+6) /* last item considered in bounding box computation */
9458 @d bbtype(A) info((A)+6) /* tells how bounding box data depends on \&{truecorners} */
9459 @d dummy_loc(A) ((A)+7) /* where the object list begins in an edge header */
9461 /* |bbtype| value when bounding box data is valid for all \&{truecorners} values */
9463 /* |bbtype| value when bounding box data is for \&{truecorners}${}\le 0$ */
9465 /* |bbtype| value when bounding box data is for \&{truecorners}${}>0$ */
9468 void mp_init_bbox (MP mp,pointer h) {
9469 /* Initialize the bounding box information in edge structure |h| */
9470 bblast(h)=dummy_loc(h);
9471 bbtype(h)=no_bounds;
9472 minx_val(h)=el_gordo;
9473 miny_val(h)=el_gordo;
9474 maxx_val(h)=-el_gordo;
9475 maxy_val(h)=-el_gordo;
9478 @ The only other entries in an edge header are a reference count in the first
9479 word and a pointer to the tail of the object list in the last word.
9481 @d obj_tail(A) info((A)+7) /* points to the last entry in the object list */
9482 @d edge_header_size 8
9485 void mp_init_edges (MP mp,pointer h) {
9486 /* initialize an edge header to null values */
9487 dash_list(h)=null_dash;
9488 obj_tail(h)=dummy_loc(h);
9489 link(dummy_loc(h))=null;
9491 mp_init_bbox(mp, h);
9494 @ Here is how edge structures are deleted. The process can be recursive because
9495 of the need to dereference edge structures that are used as dash patterns.
9498 @d add_edge_ref(A) incr(ref_count(A))
9499 @d delete_edge_ref(A) {
9500 if ( ref_count((A))==null )
9501 mp_toss_edges(mp, A);
9506 @<Declare the recycling subroutines@>=
9507 void mp_flush_dash_list (MP mp,pointer h);
9508 pointer mp_toss_gr_object (MP mp,pointer p) ;
9509 void mp_toss_edges (MP mp,pointer h) ;
9511 @ @c void mp_toss_edges (MP mp,pointer h) {
9512 pointer p,q; /* pointers that scan the list being recycled */
9513 pointer r; /* an edge structure that object |p| refers to */
9514 mp_flush_dash_list(mp, h);
9515 q=link(dummy_loc(h));
9516 while ( (q!=null) ) {
9518 r=mp_toss_gr_object(mp, p);
9519 if ( r!=null ) delete_edge_ref(r);
9521 mp_free_node(mp, h,edge_header_size);
9523 void mp_flush_dash_list (MP mp,pointer h) {
9524 pointer p,q; /* pointers that scan the list being recycled */
9526 while ( q!=null_dash ) {
9528 mp_free_node(mp, p,dash_node_size);
9530 dash_list(h)=null_dash;
9532 pointer mp_toss_gr_object (MP mp,pointer p) {
9533 /* returns an edge structure that needs to be dereferenced */
9534 pointer e; /* the edge structure to return */
9536 @<Prepare to recycle graphical object |p|@>;
9537 mp_free_node(mp, p,mp->gr_object_size[type(p)]);
9541 @ @<Prepare to recycle graphical object |p|@>=
9544 mp_toss_knot_list(mp, path_p(p));
9545 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9546 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9547 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9549 case mp_stroked_code:
9550 mp_toss_knot_list(mp, path_p(p));
9551 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9552 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9553 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9557 delete_str_ref(text_p(p));
9558 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9559 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9561 case mp_start_clip_code:
9562 case mp_start_bounds_code:
9563 mp_toss_knot_list(mp, path_p(p));
9565 case mp_stop_clip_code:
9566 case mp_stop_bounds_code:
9568 } /* there are no other cases */
9570 @ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
9571 to be done before making a significant change to an edge structure. Much of
9572 the work is done in a separate routine |copy_objects| that copies a list of
9573 graphical objects into a new edge header.
9575 @c @<Declare a function called |copy_objects|@>;
9576 pointer mp_private_edges (MP mp,pointer h) {
9577 /* make a private copy of the edge structure headed by |h| */
9578 pointer hh; /* the edge header for the new copy */
9579 pointer p,pp; /* pointers for copying the dash list */
9580 if ( ref_count(h)==null ) {
9584 hh=mp_copy_objects(mp, link(dummy_loc(h)),null);
9585 @<Copy the dash list from |h| to |hh|@>;
9586 @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
9587 point into the new object list@>;
9592 @ Here we use the fact that |dash_list(hh)=link(hh)|.
9593 @^data structure assumptions@>
9595 @<Copy the dash list from |h| to |hh|@>=
9596 pp=hh; p=dash_list(h);
9597 while ( (p!=null_dash) ) {
9598 link(pp)=mp_get_node(mp, dash_node_size);
9600 start_x(pp)=start_x(p);
9601 stop_x(pp)=stop_x(p);
9605 dash_y(hh)=dash_y(h)
9608 @ |h| is an edge structure
9610 @d gr_start_x(A) (A)->start_x_field
9611 @d gr_stop_x(A) (A)->stop_x_field
9612 @d gr_dash_link(A) (A)->next_field
9614 @d gr_dash_list(A) (A)->list_field
9615 @d gr_dash_y(A) (A)->y_field
9618 struct mp_dash_list *mp_export_dashes (MP mp, pointer h) {
9619 struct mp_dash_list *dl;
9620 struct mp_dash_item *dh, *di;
9622 if (h==null || dash_list(h)==null_dash)
9625 dl = mp_xmalloc(mp,1,sizeof(struct mp_dash_list));
9626 gr_dash_list(dl) = NULL;
9627 gr_dash_y(dl) = dash_y(h);
9629 while (p != null_dash) {
9630 di=mp_xmalloc(mp,1,sizeof(struct mp_dash_item));
9631 gr_dash_link(di) = NULL;
9632 gr_start_x(di) = start_x(p);
9633 gr_stop_x(di) = stop_x(p);
9635 gr_dash_list(dl) = di;
9637 gr_dash_link(dh) = di;
9646 @ @<Copy the bounding box information from |h| to |hh|...@>=
9647 minx_val(hh)=minx_val(h);
9648 miny_val(hh)=miny_val(h);
9649 maxx_val(hh)=maxx_val(h);
9650 maxy_val(hh)=maxy_val(h);
9651 bbtype(hh)=bbtype(h);
9652 p=dummy_loc(h); pp=dummy_loc(hh);
9653 while ((p!=bblast(h)) ) {
9654 if ( p==null ) mp_confusion(mp, "bblast");
9655 @:this can't happen bblast}{\quad bblast@>
9656 p=link(p); pp=link(pp);
9660 @ Here is the promised routine for copying graphical objects into a new edge
9661 structure. It starts copying at object~|p| and stops just before object~|q|.
9662 If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
9663 structure requires further initialization by |init_bbox|.
9665 @<Declare a function called |copy_objects|@>=
9666 pointer mp_copy_objects (MP mp, pointer p, pointer q) {
9667 pointer hh; /* the new edge header */
9668 pointer pp; /* the last newly copied object */
9669 small_number k; /* temporary register */
9670 hh=mp_get_node(mp, edge_header_size);
9671 dash_list(hh)=null_dash;
9675 @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
9682 @ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
9683 { k=mp->gr_object_size[type(p)];
9684 link(pp)=mp_get_node(mp, k);
9686 while ( (k>0) ) { decr(k); mp->mem[pp+k]=mp->mem[p+k]; };
9687 @<Fix anything in graphical object |pp| that should differ from the
9688 corresponding field in |p|@>;
9692 @ @<Fix anything in graphical object |pp| that should differ from the...@>=
9694 case mp_start_clip_code:
9695 case mp_start_bounds_code:
9696 path_p(pp)=mp_copy_path(mp, path_p(p));
9699 path_p(pp)=mp_copy_path(mp, path_p(p));
9700 if ( pen_p(p)!=null ) pen_p(pp)=copy_pen(pen_p(p));
9702 case mp_stroked_code:
9703 path_p(pp)=mp_copy_path(mp, path_p(p));
9704 pen_p(pp)=copy_pen(pen_p(p));
9705 if ( dash_p(p)!=null ) add_edge_ref(dash_p(pp));
9708 add_str_ref(text_p(pp));
9710 case mp_stop_clip_code:
9711 case mp_stop_bounds_code:
9713 } /* there are no other cases */
9715 @ Here is one way to find an acceptable value for the second argument to
9716 |copy_objects|. Given a non-null graphical object list, |skip_1component|
9717 skips past one picture component, where a ``picture component'' is a single
9718 graphical object, or a start bounds or start clip object and everything up
9719 through the matching stop bounds or stop clip object. The macro version avoids
9720 procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
9721 unless |p| points to a stop bounds or stop clip node, in which case it executes
9724 @d skip_component(A)
9725 if ( ! is_start_or_stop((A)) ) (A)=link((A));
9726 else if ( ! is_stop((A)) ) (A)=mp_skip_1component(mp, (A));
9730 pointer mp_skip_1component (MP mp,pointer p) {
9731 integer lev; /* current nesting level */
9734 if ( is_start_or_stop(p) ) {
9735 if ( is_stop(p) ) decr(lev); else incr(lev);
9742 @ Here is a diagnostic routine for printing an edge structure in symbolic form.
9744 @<Declare subroutines for printing expressions@>=
9745 @<Declare subroutines needed by |print_edges|@>;
9746 void mp_print_edges (MP mp,pointer h, char *s, boolean nuline) {
9747 pointer p; /* a graphical object to be printed */
9748 pointer hh,pp; /* temporary pointers */
9749 scaled scf; /* a scale factor for the dash pattern */
9750 boolean ok_to_dash; /* |false| for polygonal pen strokes */
9751 mp_print_diagnostic(mp, "Edge structure",s,nuline);
9753 while ( link(p)!=null ) {
9757 @<Cases for printing graphical object node |p|@>;
9759 mp_print(mp, "[unknown object type!]");
9763 mp_print_nl(mp, "End edges");
9764 if ( p!=obj_tail(h) ) mp_print(mp, "?");
9766 mp_end_diagnostic(mp, true);
9769 @ @<Cases for printing graphical object node |p|@>=
9771 mp_print(mp, "Filled contour ");
9772 mp_print_obj_color(mp, p);
9773 mp_print_char(mp, ':'); mp_print_ln(mp);
9774 mp_pr_path(mp, path_p(p)); mp_print_ln(mp);
9775 if ( (pen_p(p)!=null) ) {
9776 @<Print join type for graphical object |p|@>;
9777 mp_print(mp, " with pen"); mp_print_ln(mp);
9778 mp_pr_pen(mp, pen_p(p));
9782 @ @<Print join type for graphical object |p|@>=
9783 switch (ljoin_val(p)) {
9785 mp_print(mp, "mitered joins limited ");
9786 mp_print_scaled(mp, miterlim_val(p));
9789 mp_print(mp, "round joins");
9792 mp_print(mp, "beveled joins");
9795 mp_print(mp, "?? joins");
9800 @ For stroked nodes, we need to print |lcap_val(p)| as well.
9802 @<Print join and cap types for stroked node |p|@>=
9803 switch (lcap_val(p)) {
9804 case 0:mp_print(mp, "butt"); break;
9805 case 1:mp_print(mp, "round"); break;
9806 case 2:mp_print(mp, "square"); break;
9807 default: mp_print(mp, "??"); break;
9810 mp_print(mp, " ends, ");
9811 @<Print join type for graphical object |p|@>
9813 @ Here is a routine that prints the color of a graphical object if it isn't
9814 black (the default color).
9816 @<Declare subroutines needed by |print_edges|@>=
9817 @<Declare a procedure called |print_compact_node|@>;
9818 void mp_print_obj_color (MP mp,pointer p) {
9819 if ( color_model(p)==mp_grey_model ) {
9820 if ( grey_val(p)>0 ) {
9821 mp_print(mp, "greyed ");
9822 mp_print_compact_node(mp, obj_grey_loc(p),1);
9824 } else if ( color_model(p)==mp_cmyk_model ) {
9825 if ( (cyan_val(p)>0) || (magenta_val(p)>0) ||
9826 (yellow_val(p)>0) || (black_val(p)>0) ) {
9827 mp_print(mp, "processcolored ");
9828 mp_print_compact_node(mp, obj_cyan_loc(p),4);
9830 } else if ( color_model(p)==mp_rgb_model ) {
9831 if ( (red_val(p)>0) || (green_val(p)>0) || (blue_val(p)>0) ) {
9832 mp_print(mp, "colored ");
9833 mp_print_compact_node(mp, obj_red_loc(p),3);
9838 @ We also need a procedure for printing consecutive scaled values as if they
9839 were a known big node.
9841 @<Declare a procedure called |print_compact_node|@>=
9842 void mp_print_compact_node (MP mp,pointer p, small_number k) {
9843 pointer q; /* last location to print */
9845 mp_print_char(mp, '(');
9847 mp_print_scaled(mp, mp->mem[p].sc);
9848 if ( p<q ) mp_print_char(mp, ',');
9851 mp_print_char(mp, ')');
9854 @ @<Cases for printing graphical object node |p|@>=
9855 case mp_stroked_code:
9856 mp_print(mp, "Filled pen stroke ");
9857 mp_print_obj_color(mp, p);
9858 mp_print_char(mp, ':'); mp_print_ln(mp);
9859 mp_pr_path(mp, path_p(p));
9860 if ( dash_p(p)!=null ) {
9861 mp_print_nl(mp, "dashed (");
9862 @<Finish printing the dash pattern that |p| refers to@>;
9865 @<Print join and cap types for stroked node |p|@>;
9866 mp_print(mp, " with pen"); mp_print_ln(mp);
9867 if ( pen_p(p)==null ) mp_print(mp, "???"); /* shouldn't happen */
9869 else mp_pr_pen(mp, pen_p(p));
9872 @ Normally, the |dash_list| field in an edge header is set to |null_dash|
9873 when it is not known to define a suitable dash pattern. This is disallowed
9874 here because the |dash_p| field should never point to such an edge header.
9875 Note that memory is allocated for |start_x(null_dash)| and we are free to
9876 give it any convenient value.
9878 @<Finish printing the dash pattern that |p| refers to@>=
9879 ok_to_dash=pen_is_elliptical(pen_p(p));
9880 if ( ! ok_to_dash ) scf=unity; else scf=dash_scale(p);
9883 if ( (pp==null_dash) || (dash_y(hh)<0) ) {
9884 mp_print(mp, " ??");
9885 } else { start_x(null_dash)=start_x(pp)+dash_y(hh);
9886 while ( pp!=null_dash ) {
9887 mp_print(mp, "on ");
9888 mp_print_scaled(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf));
9889 mp_print(mp, " off ");
9890 mp_print_scaled(mp, mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
9892 if ( pp!=null_dash ) mp_print_char(mp, ' ');
9894 mp_print(mp, ") shifted ");
9895 mp_print_scaled(mp, -mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
9896 if ( ! ok_to_dash || (dash_y(hh)==0) ) mp_print(mp, " (this will be ignored)");
9899 @ @<Declare subroutines needed by |print_edges|@>=
9900 scaled mp_dash_offset (MP mp,pointer h) {
9901 scaled x; /* the answer */
9902 if (dash_list(h)==null_dash || dash_y(h)<0) mp_confusion(mp, "dash0");
9903 @:this can't happen dash0}{\quad dash0@>
9904 if ( dash_y(h)==0 ) {
9907 x=-(start_x(dash_list(h)) % dash_y(h));
9908 if ( x<0 ) x=x+dash_y(h);
9913 @ @<Cases for printing graphical object node |p|@>=
9915 mp_print_char(mp, '"'); mp_print_str(mp,text_p(p));
9916 mp_print(mp, "\" infont \""); mp_print(mp, mp->font_name[font_n(p)]);
9917 mp_print_char(mp, '"'); mp_print_ln(mp);
9918 mp_print_obj_color(mp, p);
9919 mp_print(mp, "transformed ");
9920 mp_print_compact_node(mp, text_tx_loc(p),6);
9923 @ @<Cases for printing graphical object node |p|@>=
9924 case mp_start_clip_code:
9925 mp_print(mp, "clipping path:");
9927 mp_pr_path(mp, path_p(p));
9929 case mp_stop_clip_code:
9930 mp_print(mp, "stop clipping");
9933 @ @<Cases for printing graphical object node |p|@>=
9934 case mp_start_bounds_code:
9935 mp_print(mp, "setbounds path:");
9937 mp_pr_path(mp, path_p(p));
9939 case mp_stop_bounds_code:
9940 mp_print(mp, "end of setbounds");
9943 @ To initialize the |dash_list| field in an edge header~|h|, we need a
9944 subroutine that scans an edge structure and tries to interpret it as a dash
9945 pattern. This can only be done when there are no filled regions or clipping
9946 paths and all the pen strokes have the same color. The first step is to let
9947 $y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
9948 project all the pen stroke paths onto the line $y=y_0$ and require that there
9949 be no retracing. If the resulting paths cover a range of $x$~coordinates of
9950 length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
9951 finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
9953 @c @<Declare a procedure called |x_retrace_error|@>;
9954 pointer mp_make_dashes (MP mp,pointer h) { /* returns |h| or |null| */
9955 pointer p; /* this scans the stroked nodes in the object list */
9956 pointer p0; /* if not |null| this points to the first stroked node */
9957 pointer pp,qq,rr; /* pointers into |path_p(p)| */
9958 pointer d,dd; /* pointers used to create the dash list */
9959 @<Other local variables in |make_dashes|@>;
9960 scaled y0=0; /* the initial $y$ coordinate */
9961 if ( dash_list(h)!=null_dash )
9964 p=link(dummy_loc(h));
9966 if ( type(p)!=mp_stroked_code ) {
9967 @<Compain that the edge structure contains a node of the wrong type
9968 and |goto not_found|@>;
9971 if ( p0==null ){ p0=p; y0=y_coord(pp); };
9972 @<Make |d| point to a new dash node created from stroke |p| and path |pp|
9973 or |goto not_found| if there is an error@>;
9974 @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
9977 if ( dash_list(h)==null_dash )
9978 goto NOT_FOUND; /* No error message */
9979 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
9980 @<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
9983 @<Flush the dash list, recycle |h| and return |null|@>;
9986 @ @<Compain that the edge structure contains a node of the wrong type...@>=
9988 print_err("Picture is too complicated to use as a dash pattern");
9989 help3("When you say `dashed p', picture p should not contain any")
9990 ("text, filled regions, or clipping paths. This time it did")
9991 ("so I'll just make it a solid line instead.");
9992 mp_put_get_error(mp);
9996 @ A similar error occurs when monotonicity fails.
9998 @<Declare a procedure called |x_retrace_error|@>=
9999 void mp_x_retrace_error (MP mp) {
10000 print_err("Picture is too complicated to use as a dash pattern");
10001 help3("When you say `dashed p', every path in p should be monotone")
10002 ("in x and there must be no overlapping. This failed")
10003 ("so I'll just make it a solid line instead.");
10004 mp_put_get_error(mp);
10007 @ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
10008 handle the case where the pen stroke |p| is itself dashed.
10010 @<Make |d| point to a new dash node created from stroke |p| and path...@>=
10011 @<Make sure |p| and |p0| are the same color and |goto not_found| if there is
10014 if ( link(pp)!=pp ) {
10016 qq=rr; rr=link(rr);
10017 @<Check for retracing between knots |qq| and |rr| and |goto not_found|
10018 if there is a problem@>;
10019 } while (right_type(rr)!=mp_endpoint);
10021 d=mp_get_node(mp, dash_node_size);
10022 if ( dash_p(p)==0 ) info(d)=0; else info(d)=p;
10023 if ( x_coord(pp)<x_coord(rr) ) {
10024 start_x(d)=x_coord(pp);
10025 stop_x(d)=x_coord(rr);
10027 start_x(d)=x_coord(rr);
10028 stop_x(d)=x_coord(pp);
10031 @ We also need to check for the case where the segment from |qq| to |rr| is
10032 monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
10034 @<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
10039 if ( (x0>x1) || (x1>x2) || (x2>x3) ) {
10040 if ( (x0<x1) || (x1<x2) || (x2<x3) ) {
10041 if ( mp_ab_vs_cd(mp, x2-x1,x2-x1,x1-x0,x3-x2)>0 ) {
10042 mp_x_retrace_error(mp); goto NOT_FOUND;
10046 if ( (x_coord(pp)>x0) || (x0>x3) ) {
10047 if ( (x_coord(pp)<x0) || (x0<x3) ) {
10048 mp_x_retrace_error(mp); goto NOT_FOUND;
10052 @ @<Other local variables in |make_dashes|@>=
10053 scaled x0,x1,x2,x3; /* $x$ coordinates of the segment from |qq| to |rr| */
10055 @ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
10056 if ( (red_val(p)!=red_val(p0)) || (black_val(p)!=black_val(p0)) ||
10057 (green_val(p)!=green_val(p0)) || (blue_val(p)!=blue_val(p0)) ) {
10058 print_err("Picture is too complicated to use as a dash pattern");
10059 help3("When you say `dashed p', everything in picture p should")
10060 ("be the same color. I can\'t handle your color changes")
10061 ("so I'll just make it a solid line instead.");
10062 mp_put_get_error(mp);
10066 @ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
10067 start_x(null_dash)=stop_x(d);
10068 dd=h; /* this makes |link(dd)=dash_list(h)| */
10069 while ( start_x(link(dd))<stop_x(d) )
10072 if ( (stop_x(dd)>start_x(d)) )
10073 { mp_x_retrace_error(mp); goto NOT_FOUND; };
10078 @ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
10080 while ( (link(d)!=null_dash) )
10083 dash_y(h)=stop_x(d)-start_x(dd);
10084 if ( abs(y0)>dash_y(h) ) {
10086 } else if ( d!=dd ) {
10087 dash_list(h)=link(dd);
10088 stop_x(d)=stop_x(dd)+dash_y(h);
10089 mp_free_node(mp, dd,dash_node_size);
10092 @ We get here when the argument is a null picture or when there is an error.
10093 Recovering from an error involves making |dash_list(h)| empty to indicate
10094 that |h| is not known to be a valid dash pattern. We also dereference |h|
10095 since it is not being used for the return value.
10097 @<Flush the dash list, recycle |h| and return |null|@>=
10098 mp_flush_dash_list(mp, h);
10099 delete_edge_ref(h);
10102 @ Having carefully saved the dashed stroked nodes in the
10103 corresponding dash nodes, we must be prepared to break up these dashes into
10106 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
10107 d=h; /* now |link(d)=dash_list(h)| */
10108 while ( link(d)!=null_dash ) {
10114 hsf=dash_scale(ds);
10115 if ( (hh==null) ) mp_confusion(mp, "dash1");
10116 @:this can't happen dash0}{\quad dash1@>
10117 if ( dash_y(hh)==0 ) {
10120 if ( dash_list(hh)==null ) mp_confusion(mp, "dash1");
10121 @:this can't happen dash0}{\quad dash1@>
10122 @<Replace |link(d)| by a dashed version as determined by edge header
10123 |hh| and scale factor |ds|@>;
10128 @ @<Other local variables in |make_dashes|@>=
10129 pointer dln; /* |link(d)| */
10130 pointer hh; /* an edge header that tells how to break up |dln| */
10131 scaled hsf; /* the dash pattern from |hh| gets scaled by this */
10132 pointer ds; /* the stroked node from which |hh| and |hsf| are derived */
10133 scaled xoff; /* added to $x$ values in |dash_list(hh)| to match |dln| */
10135 @ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
10138 xoff=start_x(dln)-mp_take_scaled(mp, hsf,start_x(dd))-
10139 mp_take_scaled(mp, hsf,mp_dash_offset(mp, hh));
10140 start_x(null_dash)=mp_take_scaled(mp, hsf,start_x(dd))
10141 +mp_take_scaled(mp, hsf,dash_y(hh));
10142 stop_x(null_dash)=start_x(null_dash);
10143 @<Advance |dd| until finding the first dash that overlaps |dln| when
10144 offset by |xoff|@>;
10145 while ( start_x(dln)<=stop_x(dln) ) {
10146 @<If |dd| has `fallen off the end', back up to the beginning and fix |xoff|@>;
10147 @<Insert a dash between |d| and |dln| for the overlap with the offset version
10150 start_x(dln)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10153 mp_free_node(mp, dln,dash_node_size)
10155 @ The name of this module is a bit of a lie because we actually just find the
10156 first |dd| where |take_scaled (hsf, stop_x(dd))| is large enough to make an
10157 overlap possible. It could be that the unoffset version of dash |dln| falls
10158 in the gap between |dd| and its predecessor.
10160 @<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
10161 while ( xoff+mp_take_scaled(mp, hsf,stop_x(dd))<start_x(dln) ) {
10165 @ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
10166 if ( dd==null_dash ) {
10168 xoff=xoff+mp_take_scaled(mp, hsf,dash_y(hh));
10171 @ At this point we already know that
10172 |start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
10174 @<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
10175 if ( (xoff+mp_take_scaled(mp, hsf,start_x(dd)))<=stop_x(dln) ) {
10176 link(d)=mp_get_node(mp, dash_node_size);
10179 if ( start_x(dln)>(xoff+mp_take_scaled(mp, hsf,start_x(dd))))
10180 start_x(d)=start_x(dln);
10182 start_x(d)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10183 if ( stop_x(dln)<(xoff+mp_take_scaled(mp, hsf,stop_x(dd))))
10184 stop_x(d)=stop_x(dln);
10186 stop_x(d)=xoff+mp_take_scaled(mp, hsf,stop_x(dd));
10189 @ The next major task is to update the bounding box information in an edge
10190 header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
10191 header's bounding box to accommodate the box computed by |path_bbox| or
10192 |pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
10195 @c void mp_adjust_bbox (MP mp,pointer h) {
10196 if ( minx<minx_val(h) ) minx_val(h)=minx;
10197 if ( miny<miny_val(h) ) miny_val(h)=miny;
10198 if ( maxx>maxx_val(h) ) maxx_val(h)=maxx;
10199 if ( maxy>maxy_val(h) ) maxy_val(h)=maxy;
10202 @ Here is a special routine for updating the bounding box information in
10203 edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
10204 that is to be stroked with the pen~|pp|.
10206 @c void mp_box_ends (MP mp, pointer p, pointer pp, pointer h) {
10207 pointer q; /* a knot node adjacent to knot |p| */
10208 fraction dx,dy; /* a unit vector in the direction out of the path at~|p| */
10209 scaled d; /* a factor for adjusting the length of |(dx,dy)| */
10210 scaled z; /* a coordinate being tested against the bounding box */
10211 scaled xx,yy; /* the extreme pen vertex in the |(dx,dy)| direction */
10212 integer i; /* a loop counter */
10213 if ( right_type(p)!=mp_endpoint ) {
10216 @<Make |(dx,dy)| the final direction for the path segment from
10217 |q| to~|p|; set~|d|@>;
10218 d=mp_pyth_add(mp, dx,dy);
10220 @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>;
10221 for (i=1;i<= 2;i++) {
10222 @<Use |(dx,dy)| to generate a vertex of the square end cap and
10223 update the bounding box to accommodate it@>;
10227 if ( right_type(p)==mp_endpoint ) {
10230 @<Advance |p| to the end of the path and make |q| the previous knot@>;
10236 @ @<Make |(dx,dy)| the final direction for the path segment from...@>=
10237 if ( q==link(p) ) {
10238 dx=x_coord(p)-right_x(p);
10239 dy=y_coord(p)-right_y(p);
10240 if ( (dx==0)&&(dy==0) ) {
10241 dx=x_coord(p)-left_x(q);
10242 dy=y_coord(p)-left_y(q);
10245 dx=x_coord(p)-left_x(p);
10246 dy=y_coord(p)-left_y(p);
10247 if ( (dx==0)&&(dy==0) ) {
10248 dx=x_coord(p)-right_x(q);
10249 dy=y_coord(p)-right_y(q);
10252 dx=x_coord(p)-x_coord(q);
10253 dy=y_coord(p)-y_coord(q)
10255 @ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
10256 dx=mp_make_fraction(mp, dx,d);
10257 dy=mp_make_fraction(mp, dy,d);
10258 mp_find_offset(mp, -dy,dx,pp);
10259 xx=mp->cur_x; yy=mp->cur_y
10261 @ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
10262 mp_find_offset(mp, dx,dy,pp);
10263 d=mp_take_fraction(mp, xx-mp->cur_x,dx)+mp_take_fraction(mp, yy-mp->cur_y,dy);
10264 if ( ((d<0)&&(i==1)) || ((d>0)&&(i==2)))
10265 mp_confusion(mp, "box_ends");
10266 @:this can't happen box ends}{\quad\\{box\_ends}@>
10267 z=x_coord(p)+mp->cur_x+mp_take_fraction(mp, d,dx);
10268 if ( z<minx_val(h) ) minx_val(h)=z;
10269 if ( z>maxx_val(h) ) maxx_val(h)=z;
10270 z=y_coord(p)+mp->cur_y+mp_take_fraction(mp, d,dy);
10271 if ( z<miny_val(h) ) miny_val(h)=z;
10272 if ( z>maxy_val(h) ) maxy_val(h)=z
10274 @ @<Advance |p| to the end of the path and make |q| the previous knot@>=
10278 } while (right_type(p)!=mp_endpoint)
10280 @ The major difficulty in finding the bounding box of an edge structure is the
10281 effect of clipping paths. We treat them conservatively by only clipping to the
10282 clipping path's bounding box, but this still
10283 requires recursive calls to |set_bbox| in order to find the bounding box of
10285 the objects to be clipped. Such calls are distinguished by the fact that the
10286 boolean parameter |top_level| is false.
10288 @c void mp_set_bbox (MP mp,pointer h, boolean top_level) {
10289 pointer p; /* a graphical object being considered */
10290 scaled sminx,sminy,smaxx,smaxy;
10291 /* for saving the bounding box during recursive calls */
10292 scaled x0,x1,y0,y1; /* temporary registers */
10293 integer lev; /* nesting level for |mp_start_bounds_code| nodes */
10294 @<Wipe out any existing bounding box information if |bbtype(h)| is
10295 incompatible with |internal[mp_true_corners]|@>;
10296 while ( link(bblast(h))!=null ) {
10300 case mp_stop_clip_code:
10301 if ( top_level ) mp_confusion(mp, "bbox"); else return;
10302 @:this can't happen bbox}{\quad bbox@>
10304 @<Other cases for updating the bounding box based on the type of object |p|@>;
10305 } /* all cases are enumerated above */
10307 if ( ! top_level ) mp_confusion(mp, "bbox");
10310 @ @<Internal library declarations@>=
10311 void mp_set_bbox (MP mp,pointer h, boolean top_level);
10313 @ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
10314 switch (bbtype(h)) {
10318 if ( mp->internal[mp_true_corners]>0 ) mp_init_bbox(mp, h);
10321 if ( mp->internal[mp_true_corners]<=0 ) mp_init_bbox(mp, h);
10323 } /* there are no other cases */
10325 @ @<Other cases for updating the bounding box...@>=
10327 mp_path_bbox(mp, path_p(p));
10328 if ( pen_p(p)!=null ) {
10331 mp_pen_bbox(mp, pen_p(p));
10337 mp_adjust_bbox(mp, h);
10340 @ @<Other cases for updating the bounding box...@>=
10341 case mp_start_bounds_code:
10342 if ( mp->internal[mp_true_corners]>0 ) {
10343 bbtype(h)=bounds_unset;
10345 bbtype(h)=bounds_set;
10346 mp_path_bbox(mp, path_p(p));
10347 mp_adjust_bbox(mp, h);
10348 @<Scan to the matching |mp_stop_bounds_code| node and update |p| and
10352 case mp_stop_bounds_code:
10353 if ( mp->internal[mp_true_corners]<=0 ) mp_confusion(mp, "bbox2");
10354 @:this can't happen bbox2}{\quad bbox2@>
10357 @ @<Scan to the matching |mp_stop_bounds_code| node and update |p| and...@>=
10360 if ( link(p)==null ) mp_confusion(mp, "bbox2");
10361 @:this can't happen bbox2}{\quad bbox2@>
10363 if ( type(p)==mp_start_bounds_code ) incr(lev);
10364 else if ( type(p)==mp_stop_bounds_code ) decr(lev);
10368 @ It saves a lot of grief here to be slightly conservative and not account for
10369 omitted parts of dashed lines. We also don't worry about the material omitted
10370 when using butt end caps. The basic computation is for round end caps and
10371 |box_ends| augments it for square end caps.
10373 @<Other cases for updating the bounding box...@>=
10374 case mp_stroked_code:
10375 mp_path_bbox(mp, path_p(p));
10378 mp_pen_bbox(mp, pen_p(p));
10383 mp_adjust_bbox(mp, h);
10384 if ( (left_type(path_p(p))==mp_endpoint)&&(lcap_val(p)==2) )
10385 mp_box_ends(mp, path_p(p), pen_p(p), h);
10388 @ The height width and depth information stored in a text node determines a
10389 rectangle that needs to be transformed according to the transformation
10390 parameters stored in the text node.
10392 @<Other cases for updating the bounding box...@>=
10394 x1=mp_take_scaled(mp, txx_val(p),width_val(p));
10395 y0=mp_take_scaled(mp, txy_val(p),-depth_val(p));
10396 y1=mp_take_scaled(mp, txy_val(p),height_val(p));
10399 if ( y0<y1 ) { minx=minx+y0; maxx=maxx+y1; }
10400 else { minx=minx+y1; maxx=maxx+y0; }
10401 if ( x1<0 ) minx=minx+x1; else maxx=maxx+x1;
10402 x1=mp_take_scaled(mp, tyx_val(p),width_val(p));
10403 y0=mp_take_scaled(mp, tyy_val(p),-depth_val(p));
10404 y1=mp_take_scaled(mp, tyy_val(p),height_val(p));
10407 if ( y0<y1 ) { miny=miny+y0; maxy=maxy+y1; }
10408 else { miny=miny+y1; maxy=maxy+y0; }
10409 if ( x1<0 ) miny=miny+x1; else maxy=maxy+x1;
10410 mp_adjust_bbox(mp, h);
10413 @ This case involves a recursive call that advances |bblast(h)| to the node of
10414 type |mp_stop_clip_code| that matches |p|.
10416 @<Other cases for updating the bounding box...@>=
10417 case mp_start_clip_code:
10418 mp_path_bbox(mp, path_p(p));
10421 sminx=minx_val(h); sminy=miny_val(h);
10422 smaxx=maxx_val(h); smaxy=maxy_val(h);
10423 @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
10424 starting at |link(p)|@>;
10425 @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
10427 minx=sminx; miny=sminy;
10428 maxx=smaxx; maxy=smaxy;
10429 mp_adjust_bbox(mp, h);
10432 @ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
10433 minx_val(h)=el_gordo;
10434 miny_val(h)=el_gordo;
10435 maxx_val(h)=-el_gordo;
10436 maxy_val(h)=-el_gordo;
10437 mp_set_bbox(mp, h,false)
10439 @ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
10440 if ( minx_val(h)<x0 ) minx_val(h)=x0;
10441 if ( miny_val(h)<y0 ) miny_val(h)=y0;
10442 if ( maxx_val(h)>x1 ) maxx_val(h)=x1;
10443 if ( maxy_val(h)>y1 ) maxy_val(h)=y1
10445 @* \[22] Finding an envelope.
10446 When \MP\ has a path and a polygonal pen, it needs to express the desired
10447 shape in terms of things \ps\ can understand. The present task is to compute
10448 a new path that describes the region to be filled. It is convenient to
10449 define this as a two step process where the first step is determining what
10450 offset to use for each segment of the path.
10452 @ Given a pointer |c| to a cyclic path,
10453 and a pointer~|h| to the first knot of a pen polygon,
10454 the |offset_prep| routine changes the path into cubics that are
10455 associated with particular pen offsets. Thus if the cubic between |p|
10456 and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
10457 has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
10458 to because |l-k| could be negative.)
10460 After overwriting the type information with offset differences, we no longer
10461 have a true path so we refer to the knot list returned by |offset_prep| as an
10464 Since an envelope spec only determines relative changes in pen offsets,
10465 |offset_prep| sets a global variable |spec_offset| to the relative change from
10466 |h| to the first offset.
10468 @d zero_off 16384 /* added to offset changes to make them positive */
10471 integer spec_offset; /* number of pen edges between |h| and the initial offset */
10473 @ @c @<Declare subroutines needed by |offset_prep|@>;
10474 pointer mp_offset_prep (MP mp,pointer c, pointer h) {
10475 halfword n; /* the number of vertices in the pen polygon */
10476 pointer p,q,q0,r,w, ww; /* for list manipulation */
10477 integer k_needed; /* amount to be added to |info(p)| when it is computed */
10478 pointer w0; /* a pointer to pen offset to use just before |p| */
10479 scaled dxin,dyin; /* the direction into knot |p| */
10480 integer turn_amt; /* change in pen offsets for the current cubic */
10481 @<Other local variables for |offset_prep|@>;
10483 @<Initialize the pen size~|n|@>;
10484 @<Initialize the incoming direction and pen offset at |c|@>;
10488 @<Split the cubic between |p| and |q|, if necessary, into cubics
10489 associated with single offsets, after which |q| should
10490 point to the end of the final such cubic@>;
10492 @<Advance |p| to node |q|, removing any ``dead'' cubics that
10493 might have been introduced by the splitting process@>;
10495 @<Fix the offset change in |info(c)| and set |c| to the return value of
10500 @ We shall want to keep track of where certain knots on the cyclic path
10501 wind up in the envelope spec. It doesn't suffice just to keep pointers to
10502 knot nodes because some nodes are deleted while removing dead cubics. Thus
10503 |offset_prep| updates the following pointers
10507 pointer spec_p2; /* pointers to distinguished knots */
10510 mp->spec_p1=null; mp->spec_p2=null;
10512 @ @<Initialize the pen size~|n|@>=
10519 @ Since the true incoming direction isn't known yet, we just pick a direction
10520 consistent with the pen offset~|h|. If this is wrong, it can be corrected
10523 @<Initialize the incoming direction and pen offset at |c|@>=
10524 dxin=x_coord(link(h))-x_coord(knil(h));
10525 dyin=y_coord(link(h))-y_coord(knil(h));
10526 if ( (dxin==0)&&(dyin==0) ) {
10527 dxin=y_coord(knil(h))-y_coord(h);
10528 dyin=x_coord(h)-x_coord(knil(h));
10532 @ We must be careful not to remove the only cubic in a cycle.
10534 But we must also be careful for another reason. If the user-supplied
10535 path starts with a set of degenerate cubics, the target node |q| can
10536 be collapsed to the initial node |p| which might be the same as the
10537 initial node |c| of the curve. This would cause the |offset_prep| routine
10538 to bail out too early, causing distress later on. (See for example
10539 the testcase reported by Bogus\l{}aw Jackowski in tracker id 267, case 52c
10542 @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
10546 if ( x_coord(p)==right_x(p) && y_coord(p)==right_y(p) &&
10547 x_coord(p)==left_x(r) && y_coord(p)==left_y(r) &&
10548 x_coord(p)==x_coord(r) && y_coord(p)==y_coord(r) &&
10550 @<Remove the cubic following |p| and update the data structures
10551 to merge |r| into |p|@>;
10555 /* Check if we removed too much */
10559 @ @<Remove the cubic following |p| and update the data structures...@>=
10560 { k_needed=info(p)-zero_off;
10564 info(p)=k_needed+info(r);
10567 if ( r==c ) { info(p)=info(c); c=p; };
10568 if ( r==mp->spec_p1 ) mp->spec_p1=p;
10569 if ( r==mp->spec_p2 ) mp->spec_p2=p;
10570 r=p; mp_remove_cubic(mp, p);
10573 @ Not setting the |info| field of the newly created knot allows the splitting
10574 routine to work for paths.
10576 @<Declare subroutines needed by |offset_prep|@>=
10577 void mp_split_cubic (MP mp,pointer p, fraction t) { /* splits the cubic after |p| */
10578 scaled v; /* an intermediate value */
10579 pointer q,r; /* for list manipulation */
10580 q=link(p); r=mp_get_node(mp, knot_node_size); link(p)=r; link(r)=q;
10581 originator(r)=mp_program_code;
10582 left_type(r)=mp_explicit; right_type(r)=mp_explicit;
10583 v=t_of_the_way(right_x(p),left_x(q));
10584 right_x(p)=t_of_the_way(x_coord(p),right_x(p));
10585 left_x(q)=t_of_the_way(left_x(q),x_coord(q));
10586 left_x(r)=t_of_the_way(right_x(p),v);
10587 right_x(r)=t_of_the_way(v,left_x(q));
10588 x_coord(r)=t_of_the_way(left_x(r),right_x(r));
10589 v=t_of_the_way(right_y(p),left_y(q));
10590 right_y(p)=t_of_the_way(y_coord(p),right_y(p));
10591 left_y(q)=t_of_the_way(left_y(q),y_coord(q));
10592 left_y(r)=t_of_the_way(right_y(p),v);
10593 right_y(r)=t_of_the_way(v,left_y(q));
10594 y_coord(r)=t_of_the_way(left_y(r),right_y(r));
10597 @ This does not set |info(p)| or |right_type(p)|.
10599 @<Declare subroutines needed by |offset_prep|@>=
10600 void mp_remove_cubic (MP mp,pointer p) { /* removes the dead cubic following~|p| */
10601 pointer q; /* the node that disappears */
10602 q=link(p); link(p)=link(q);
10603 right_x(p)=right_x(q); right_y(p)=right_y(q);
10604 mp_free_node(mp, q,knot_node_size);
10607 @ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
10608 strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
10609 mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
10610 $k$th pen offset, the $k$th pen edge direction is defined by the formula
10611 $$d_k=(u\k-u_k,\,v\k-v_k).$$
10612 When listed by increasing $k$, these directions occur in counter-clockwise
10613 order so that $d_k\preceq d\k$ for all~$k$.
10614 The goal of |offset_prep| is to find an offset index~|k| to associate with
10615 each cubic, such that the direction $d(t)$ of the cubic satisfies
10616 $$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
10617 We may have to split a cubic into many pieces before each
10618 piece corresponds to a unique offset.
10620 @<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
10621 info(p)=zero_off+k_needed;
10623 @<Prepare for derivative computations;
10624 |goto not_found| if the current cubic is dead@>;
10625 @<Find the initial direction |(dx,dy)|@>;
10626 @<Update |info(p)| and find the offset $w_k$ such that
10627 $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
10628 the direction change at |p|@>;
10629 @<Find the final direction |(dxin,dyin)|@>;
10630 @<Decide on the net change in pen offsets and set |turn_amt|@>;
10631 @<Complete the offset splitting process@>;
10632 w0=mp_pen_walk(mp, w0,turn_amt)
10634 @ @<Declare subroutines needed by |offset_prep|@>=
10635 pointer mp_pen_walk (MP mp,pointer w, integer k) {
10636 /* walk |k| steps around a pen from |w| */
10637 while ( k>0 ) { w=link(w); decr(k); };
10638 while ( k<0 ) { w=knil(w); incr(k); };
10642 @ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
10643 calculated from the quadratic polynomials
10644 ${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
10645 ${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
10646 Since we may be calculating directions from several cubics
10647 split from the current one, it is desirable to do these calculations
10648 without losing too much precision. ``Scaled up'' values of the
10649 derivatives, which will be less tainted by accumulated errors than
10650 derivatives found from the cubics themselves, are maintained in
10651 local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
10652 $X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
10653 represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
10655 @<Other local variables for |offset_prep|@>=
10656 integer x0,x1,x2,y0,y1,y2; /* representatives of derivatives */
10657 integer t0,t1,t2; /* coefficients of polynomial for slope testing */
10658 integer du,dv,dx,dy; /* for directions of the pen and the curve */
10659 integer dx0,dy0; /* initial direction for the first cubic in the curve */
10660 integer max_coef; /* used while scaling */
10661 integer x0a,x1a,x2a,y0a,y1a,y2a; /* intermediate values */
10662 fraction t; /* where the derivative passes through zero */
10663 fraction s; /* a temporary value */
10665 @ @<Prepare for derivative computations...@>=
10666 x0=right_x(p)-x_coord(p);
10667 x2=x_coord(q)-left_x(q);
10668 x1=left_x(q)-right_x(p);
10669 y0=right_y(p)-y_coord(p); y2=y_coord(q)-left_y(q);
10670 y1=left_y(q)-right_y(p);
10672 if ( abs(x1)>max_coef ) max_coef=abs(x1);
10673 if ( abs(x2)>max_coef ) max_coef=abs(x2);
10674 if ( abs(y0)>max_coef ) max_coef=abs(y0);
10675 if ( abs(y1)>max_coef ) max_coef=abs(y1);
10676 if ( abs(y2)>max_coef ) max_coef=abs(y2);
10677 if ( max_coef==0 ) goto NOT_FOUND;
10678 while ( max_coef<fraction_half ) {
10680 double(x0); double(x1); double(x2);
10681 double(y0); double(y1); double(y2);
10684 @ Let us first solve a special case of the problem: Suppose we
10685 know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
10686 and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
10687 $d(0)\succ d_{k-1}$.
10688 Then, in a sense, we're halfway done, since one of the two relations
10689 in $(*)$ is satisfied, and the other couldn't be satisfied for
10690 any other value of~|k|.
10692 Actually, the conditions can be relaxed somewhat since a relation such as
10693 $d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
10694 matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
10695 the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
10696 and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
10697 Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
10698 counterclockwise direction.
10700 The |fin_offset_prep| subroutine solves the stated subproblem.
10701 It has a parameter called |rise| that is |1| in
10702 case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
10703 the derivative of the cubic following |p|.
10704 The |w| parameter should point to offset~$w_k$ and |info(p)| should already
10705 be set properly. The |turn_amt| parameter gives the absolute value of the
10706 overall net change in pen offsets.
10708 @<Declare subroutines needed by |offset_prep|@>=
10709 void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10710 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10711 integer rise, integer turn_amt) {
10712 pointer ww; /* for list manipulation */
10713 scaled du,dv; /* for slope calculation */
10714 integer t0,t1,t2; /* test coefficients */
10715 fraction t; /* place where the derivative passes a critical slope */
10716 fraction s; /* slope or reciprocal slope */
10717 integer v; /* intermediate value for updating |x0..y2| */
10718 pointer q; /* original |link(p)| */
10721 if ( rise>0 ) ww=link(w); /* a pointer to $w\k$ */
10722 else ww=knil(w); /* a pointer to $w_{k-1}$ */
10723 @<Compute test coefficients |(t0,t1,t2)|
10724 for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
10725 t=mp_crossing_point(mp, t0,t1,t2);
10726 if ( t>=fraction_one ) {
10727 if ( turn_amt>0 ) t=fraction_one; else return;
10729 @<Split the cubic at $t$,
10730 and split off another cubic if the derivative crosses back@>;
10735 @ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
10736 $-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
10737 function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
10740 @<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
10741 du=x_coord(ww)-x_coord(w); dv=y_coord(ww)-y_coord(w);
10742 if ( abs(du)>=abs(dv) ) {
10743 s=mp_make_fraction(mp, dv,du);
10744 t0=mp_take_fraction(mp, x0,s)-y0;
10745 t1=mp_take_fraction(mp, x1,s)-y1;
10746 t2=mp_take_fraction(mp, x2,s)-y2;
10747 if ( du<0 ) { negate(t0); negate(t1); negate(t2); }
10749 s=mp_make_fraction(mp, du,dv);
10750 t0=x0-mp_take_fraction(mp, y0,s);
10751 t1=x1-mp_take_fraction(mp, y1,s);
10752 t2=x2-mp_take_fraction(mp, y2,s);
10753 if ( dv<0 ) { negate(t0); negate(t1); negate(t2); }
10755 if ( t0<0 ) t0=0 /* should be positive without rounding error */
10757 @ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
10758 $(*)$, and it might cross again, yielding another solution of $(*)$.
10760 @<Split the cubic at $t$, and split off another...@>=
10762 mp_split_cubic(mp, p,t); p=link(p); info(p)=zero_off+rise;
10764 v=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10765 x0=t_of_the_way(v,x1);
10766 v=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10767 y0=t_of_the_way(v,y1);
10768 if ( turn_amt<0 ) {
10769 t1=t_of_the_way(t1,t2);
10770 if ( t1>0 ) t1=0; /* without rounding error, |t1| would be |<=0| */
10771 t=mp_crossing_point(mp, 0,-t1,-t2);
10772 if ( t>fraction_one ) t=fraction_one;
10774 if ( (t==fraction_one)&&(link(p)!=q) ) {
10775 info(link(p))=info(link(p))-rise;
10777 mp_split_cubic(mp, p,t); info(link(p))=zero_off-rise;
10778 v=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10779 x2=t_of_the_way(x1,v);
10780 v=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10781 y2=t_of_the_way(y1,v);
10786 @ Now we must consider the general problem of |offset_prep|, when
10787 nothing is known about a given cubic. We start by finding its
10788 direction in the vicinity of |t=0|.
10790 If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
10791 has not yet introduced any more numerical errors. Thus we can compute
10792 the true initial direction for the given cubic, even if it is almost
10795 @<Find the initial direction |(dx,dy)|@>=
10797 if ( dx==0 && dy==0 ) {
10799 if ( dx==0 && dy==0 ) {
10803 if ( p==c ) { dx0=dx; dy0=dy; }
10805 @ @<Find the final direction |(dxin,dyin)|@>=
10807 if ( dxin==0 && dyin==0 ) {
10809 if ( dxin==0 && dyin==0 ) {
10814 @ The next step is to bracket the initial direction between consecutive
10815 edges of the pen polygon. We must be careful to turn clockwise only if
10816 this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
10817 counter-clockwise in order to make \&{doublepath} envelopes come out
10818 @:double_path_}{\&{doublepath} primitive@>
10819 right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
10821 @<Update |info(p)| and find the offset $w_k$ such that...@>=
10822 turn_amt=mp_get_turn_amt(mp,w0,dx,dy,(mp_ab_vs_cd(mp, dy,dxin,dx,dyin)>=0));
10823 w=mp_pen_walk(mp, w0, turn_amt);
10825 info(p)=info(p)+turn_amt
10827 @ Decide how many pen offsets to go away from |w| in order to find the offset
10828 for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
10829 |w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
10830 in the sense determined by |ccw| is less than or equal to $180^\circ$.
10832 If the pen polygon has only two edges, they could both be parallel
10833 to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
10834 such edge in order to avoid an infinite loop.
10836 @<Declare subroutines needed by |offset_prep|@>=
10837 integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10838 scaled dy, boolean ccw) {
10839 pointer ww; /* a neighbor of knot~|w| */
10840 integer s; /* turn amount so far */
10841 integer t; /* |ab_vs_cd| result */
10846 t=mp_ab_vs_cd(mp, dy,(x_coord(ww)-x_coord(w)),
10847 dx,(y_coord(ww)-y_coord(w)));
10854 while ( mp_ab_vs_cd(mp, dy,(x_coord(w)-x_coord(ww)),
10855 dx,(y_coord(w)-y_coord(ww))) < 0) {
10863 @ When we're all done, the final offset is |w0| and the final curve direction
10864 is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
10865 can correct |info(c)| which was erroneously based on an incoming offset
10868 @d fix_by(A) info(c)=info(c)+(A)
10870 @<Fix the offset change in |info(c)| and set |c| to the return value of...@>=
10871 mp->spec_offset=info(c)-zero_off;
10872 if ( link(c)==c ) {
10873 info(c)=zero_off+n;
10876 while ( w0!=h ) { fix_by(1); w0=link(w0); };
10877 while ( info(c)<=zero_off-n ) fix_by(n);
10878 while ( info(c)>zero_off ) fix_by(-n);
10879 if ( (info(c)!=zero_off)&&(mp_ab_vs_cd(mp, dy0,dxin,dx0,dyin)>=0) ) fix_by(n);
10883 @ Finally we want to reduce the general problem to situations that
10884 |fin_offset_prep| can handle. We split the cubic into at most three parts
10885 with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
10887 @<Complete the offset splitting process@>=
10889 @<Compute test coeff...@>;
10890 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
10891 |t:=fraction_one+1|@>;
10892 if ( t>fraction_one ) {
10893 mp_fin_offset_prep(mp, p,w,x0,x1,x2,y0,y1,y2,1,turn_amt);
10895 mp_split_cubic(mp, p,t); r=link(p);
10896 x1a=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10897 x2a=t_of_the_way(x1a,x1);
10898 y1a=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10899 y2a=t_of_the_way(y1a,y1);
10900 mp_fin_offset_prep(mp, p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0=x2a; y0=y2a;
10901 info(r)=zero_off-1;
10902 if ( turn_amt>=0 ) {
10903 t1=t_of_the_way(t1,t2);
10905 t=mp_crossing_point(mp, 0,-t1,-t2);
10906 if ( t>fraction_one ) t=fraction_one;
10907 @<Split off another rising cubic for |fin_offset_prep|@>;
10908 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,0);
10910 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,(-1-turn_amt));
10914 @ @<Split off another rising cubic for |fin_offset_prep|@>=
10915 mp_split_cubic(mp, r,t); info(link(r))=zero_off+1;
10916 x1a=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10917 x0a=t_of_the_way(x1,x1a);
10918 y1a=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10919 y0a=t_of_the_way(y1,y1a);
10920 mp_fin_offset_prep(mp, link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
10923 @ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
10924 When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
10925 need to decide whether the directions are parallel or antiparallel. We
10926 can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
10927 should be avoided when the value of |turn_amt| already determines the
10928 answer. If |t2<0|, there is one crossing and it is antiparallel only if
10929 |turn_amt>=0|. If |turn_amt<0|, there should always be at least one
10930 crossing and the first crossing cannot be antiparallel.
10932 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
10933 t=mp_crossing_point(mp, t0,t1,t2);
10934 if ( turn_amt>=0 ) {
10938 u0=t_of_the_way(x0,x1);
10939 u1=t_of_the_way(x1,x2);
10940 ss=mp_take_fraction(mp, -du,t_of_the_way(u0,u1));
10941 v0=t_of_the_way(y0,y1);
10942 v1=t_of_the_way(y1,y2);
10943 ss=ss+mp_take_fraction(mp, -dv,t_of_the_way(v0,v1));
10944 if ( ss<0 ) t=fraction_one+1;
10946 } else if ( t>fraction_one ) {
10950 @ @<Other local variables for |offset_prep|@>=
10951 integer u0,u1,v0,v1; /* intermediate values for $d(t)$ calculation */
10952 integer ss = 0; /* the part of the dot product computed so far */
10953 int d_sign; /* sign of overall change in direction for this cubic */
10955 @ If the cubic almost has a cusp, it is a numerically ill-conditioned
10956 problem to decide which way it loops around but that's OK as long we're
10957 consistent. To make \&{doublepath} envelopes work properly, reversing
10958 the path should always change the sign of |turn_amt|.
10960 @<Decide on the net change in pen offsets and set |turn_amt|@>=
10961 d_sign=mp_ab_vs_cd(mp, dx,dyin, dxin,dy);
10963 @<Check rotation direction based on node position@>
10967 if ( dy>0 ) d_sign=1; else d_sign=-1;
10969 if ( dx>0 ) d_sign=1; else d_sign=-1;
10972 @<Make |ss| negative if and only if the total change in direction is
10973 more than $180^\circ$@>;
10974 turn_amt=mp_get_turn_amt(mp, w, dxin, dyin, (d_sign>0));
10975 if ( ss<0 ) turn_amt=turn_amt-d_sign*n
10977 @ We check rotation direction by looking at the vector connecting the current
10978 node with the next. If its angle with incoming and outgoing tangents has the
10979 same sign, we pick this as |d_sign|, since it means we have a flex, not a cusp.
10980 Otherwise we proceed to the cusp code.
10982 @<Check rotation direction based on node position@>=
10983 u0=x_coord(q)-x_coord(p);
10984 u1=y_coord(q)-y_coord(p);
10985 d_sign = half(mp_ab_vs_cd(mp, dx, u1, u0, dy)+
10986 mp_ab_vs_cd(mp, u0, dyin, dxin, u1));
10988 @ In order to be invariant under path reversal, the result of this computation
10989 should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
10990 then swapped with |(x2,y2)|. We make use of the identities
10991 |take_fraction(-a,-b)=take_fraction(a,b)| and
10992 |t_of_the_way(-a,-b)=-(t_of_the_way(a,b))|.
10994 @<Make |ss| negative if and only if the total change in direction is...@>=
10995 t0=half(mp_take_fraction(mp, x0,y2))-half(mp_take_fraction(mp, x2,y0));
10996 t1=half(mp_take_fraction(mp, x1,(y0+y2)))-half(mp_take_fraction(mp, y1,(x0+x2)));
10997 if ( t0==0 ) t0=d_sign; /* path reversal always negates |d_sign| */
10999 t=mp_crossing_point(mp, t0,t1,-t0);
11000 u0=t_of_the_way(x0,x1);
11001 u1=t_of_the_way(x1,x2);
11002 v0=t_of_the_way(y0,y1);
11003 v1=t_of_the_way(y1,y2);
11005 t=mp_crossing_point(mp, -t0,t1,t0);
11006 u0=t_of_the_way(x2,x1);
11007 u1=t_of_the_way(x1,x0);
11008 v0=t_of_the_way(y2,y1);
11009 v1=t_of_the_way(y1,y0);
11011 ss=mp_take_fraction(mp, (x0+x2),t_of_the_way(u0,u1))+
11012 mp_take_fraction(mp, (y0+y2),t_of_the_way(v0,v1))
11014 @ Here's a routine that prints an envelope spec in symbolic form. It assumes
11015 that the |cur_pen| has not been walked around to the first offset.
11018 void mp_print_spec (MP mp,pointer cur_spec, pointer cur_pen, char *s) {
11019 pointer p,q; /* list traversal */
11020 pointer w; /* the current pen offset */
11021 mp_print_diagnostic(mp, "Envelope spec",s,true);
11022 p=cur_spec; w=mp_pen_walk(mp, cur_pen,mp->spec_offset);
11024 mp_print_two(mp, x_coord(cur_spec),y_coord(cur_spec));
11025 mp_print(mp, " % beginning with offset ");
11026 mp_print_two(mp, x_coord(w),y_coord(w));
11030 @<Print the cubic between |p| and |q|@>;
11032 if ((p==cur_spec) || (info(p)!=zero_off))
11035 if ( info(p)!=zero_off ) {
11036 @<Update |w| as indicated by |info(p)| and print an explanation@>;
11038 } while (p!=cur_spec);
11039 mp_print_nl(mp, " & cycle");
11040 mp_end_diagnostic(mp, true);
11043 @ @<Update |w| as indicated by |info(p)| and print an explanation@>=
11045 w=mp_pen_walk(mp, w, (info(p)-zero_off));
11046 mp_print(mp, " % ");
11047 if ( info(p)>zero_off ) mp_print(mp, "counter");
11048 mp_print(mp, "clockwise to offset ");
11049 mp_print_two(mp, x_coord(w),y_coord(w));
11052 @ @<Print the cubic between |p| and |q|@>=
11054 mp_print_nl(mp, " ..controls ");
11055 mp_print_two(mp, right_x(p),right_y(p));
11056 mp_print(mp, " and ");
11057 mp_print_two(mp, left_x(q),left_y(q));
11058 mp_print_nl(mp, " ..");
11059 mp_print_two(mp, x_coord(q),y_coord(q));
11062 @ Once we have an envelope spec, the remaining task to construct the actual
11063 envelope by offsetting each cubic as determined by the |info| fields in
11064 the knots. First we use |offset_prep| to convert the |c| into an envelope
11065 spec. Then we add the offsets so that |c| becomes a cyclic path that represents
11068 The |ljoin| and |miterlim| parameters control the treatment of points where the
11069 pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
11070 The endpoints are easily located because |c| is given in undoubled form
11071 and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
11072 track of the endpoints and treat them like very sharp corners.
11073 Butt end caps are treated like beveled joins; round end caps are treated like
11074 round joins; and square end caps are achieved by setting |join_type:=3|.
11076 None of these parameters apply to inside joins where the convolution tracing
11077 has retrograde lines. In such cases we use a simple connect-the-endpoints
11078 approach that is achieved by setting |join_type:=2|.
11080 @c @<Declare a function called |insert_knot|@>;
11081 pointer mp_make_envelope (MP mp,pointer c, pointer h, small_number ljoin,
11082 small_number lcap, scaled miterlim) {
11083 pointer p,q,r,q0; /* for manipulating the path */
11084 int join_type=0; /* codes |0..3| for mitered, round, beveled, or square */
11085 pointer w,w0; /* the pen knot for the current offset */
11086 scaled qx,qy; /* unshifted coordinates of |q| */
11087 halfword k,k0; /* controls pen edge insertion */
11088 @<Other local variables for |make_envelope|@>;
11089 dxin=0; dyin=0; dxout=0; dyout=0;
11090 mp->spec_p1=null; mp->spec_p2=null;
11091 @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>;
11092 @<Use |offset_prep| to compute the envelope spec then walk |h| around to
11093 the initial offset@>;
11098 qx=x_coord(q); qy=y_coord(q);
11101 if ( k!=zero_off ) {
11102 @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
11104 @<Add offset |w| to the cubic from |p| to |q|@>;
11105 while ( k!=zero_off ) {
11106 @<Step |w| and move |k| one step closer to |zero_off|@>;
11107 if ( (join_type==1)||(k==zero_off) )
11108 q=mp_insert_knot(mp, q,qx+x_coord(w),qy+y_coord(w));
11110 if ( q!=link(p) ) {
11111 @<Set |p=link(p)| and add knots between |p| and |q| as
11112 required by |join_type|@>;
11119 @ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
11120 c=mp_offset_prep(mp, c,h);
11121 if ( mp->internal[mp_tracing_specs]>0 )
11122 mp_print_spec(mp, c,h,"");
11123 h=mp_pen_walk(mp, h,mp->spec_offset)
11125 @ Mitered and squared-off joins depend on path directions that are difficult to
11126 compute for degenerate cubics. The envelope spec computed by |offset_prep| can
11127 have degenerate cubics only if the entire cycle collapses to a single
11128 degenerate cubic. Setting |join_type:=2| in this case makes the computed
11129 envelope degenerate as well.
11131 @<Set |join_type| to indicate how to handle offset changes at~|q|@>=
11132 if ( k<zero_off ) {
11135 if ( (q!=mp->spec_p1)&&(q!=mp->spec_p2) ) join_type=ljoin;
11136 else if ( lcap==2 ) join_type=3;
11137 else join_type=2-lcap;
11138 if ( (join_type==0)||(join_type==3) ) {
11139 @<Set the incoming and outgoing directions at |q|; in case of
11140 degeneracy set |join_type:=2|@>;
11141 if ( join_type==0 ) {
11142 @<If |miterlim| is less than the secant of half the angle at |q|
11143 then set |join_type:=2|@>;
11148 @ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
11150 tmp=mp_take_fraction(mp, miterlim,fraction_half+
11151 half(mp_take_fraction(mp, dxin,dxout)+mp_take_fraction(mp, dyin,dyout)));
11153 if ( mp_take_scaled(mp, miterlim,tmp)<unity ) join_type=2;
11156 @ @<Other local variables for |make_envelope|@>=
11157 fraction dxin,dyin,dxout,dyout; /* directions at |q| when square or mitered */
11158 scaled tmp; /* a temporary value */
11160 @ The coordinates of |p| have already been shifted unless |p| is the first
11161 knot in which case they get shifted at the very end.
11163 @<Add offset |w| to the cubic from |p| to |q|@>=
11164 right_x(p)=right_x(p)+x_coord(w);
11165 right_y(p)=right_y(p)+y_coord(w);
11166 left_x(q)=left_x(q)+x_coord(w);
11167 left_y(q)=left_y(q)+y_coord(w);
11168 x_coord(q)=x_coord(q)+x_coord(w);
11169 y_coord(q)=y_coord(q)+y_coord(w);
11170 left_type(q)=mp_explicit;
11171 right_type(q)=mp_explicit
11173 @ @<Step |w| and move |k| one step closer to |zero_off|@>=
11174 if ( k>zero_off ){ w=link(w); decr(k); }
11175 else { w=knil(w); incr(k); }
11177 @ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
11178 the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
11179 case the cubic containing these control points is ``yet to be examined.''
11181 @<Declare a function called |insert_knot|@>=
11182 pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y) {
11183 /* returns the inserted knot */
11184 pointer r; /* the new knot */
11185 r=mp_get_node(mp, knot_node_size);
11186 link(r)=link(q); link(q)=r;
11187 right_x(r)=right_x(q);
11188 right_y(r)=right_y(q);
11191 right_x(q)=x_coord(q);
11192 right_y(q)=y_coord(q);
11193 left_x(r)=x_coord(r);
11194 left_y(r)=y_coord(r);
11195 left_type(r)=mp_explicit;
11196 right_type(r)=mp_explicit;
11197 originator(r)=mp_program_code;
11201 @ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
11203 @<Set |p=link(p)| and add knots between |p| and |q| as...@>=
11206 if ( (join_type==0)||(join_type==3) ) {
11207 if ( join_type==0 ) {
11208 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
11210 @<Make |r| the last of two knots inserted between |p| and |q| to form a
11214 right_x(r)=x_coord(r);
11215 right_y(r)=y_coord(r);
11220 @ For very small angles, adding a knot is unnecessary and would cause numerical
11221 problems, so we just set |r:=null| in that case.
11223 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
11225 det=mp_take_fraction(mp, dyout,dxin)-mp_take_fraction(mp, dxout,dyin);
11226 if ( abs(det)<26844 ) {
11227 r=null; /* sine $<10^{-4}$ */
11229 tmp=mp_take_fraction(mp, x_coord(q)-x_coord(p),dyout)-
11230 mp_take_fraction(mp, y_coord(q)-y_coord(p),dxout);
11231 tmp=mp_make_fraction(mp, tmp,det);
11232 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11233 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11237 @ @<Other local variables for |make_envelope|@>=
11238 fraction det; /* a determinant used for mitered join calculations */
11240 @ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
11242 ht_x=y_coord(w)-y_coord(w0);
11243 ht_y=x_coord(w0)-x_coord(w);
11244 while ( (abs(ht_x)<fraction_half)&&(abs(ht_y)<fraction_half) ) {
11245 ht_x+=ht_x; ht_y+=ht_y;
11247 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
11248 product with |(ht_x,ht_y)|@>;
11249 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxin,ht_x)+
11250 mp_take_fraction(mp, dyin,ht_y));
11251 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11252 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11253 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxout,ht_x)+
11254 mp_take_fraction(mp, dyout,ht_y));
11255 r=mp_insert_knot(mp, r,x_coord(q)+mp_take_fraction(mp, tmp,dxout),
11256 y_coord(q)+mp_take_fraction(mp, tmp,dyout));
11259 @ @<Other local variables for |make_envelope|@>=
11260 fraction ht_x,ht_y; /* perpendicular to the segment from |p| to |q| */
11261 scaled max_ht; /* maximum height of the pen polygon above the |w0|-|w| line */
11262 halfword kk; /* keeps track of the pen vertices being scanned */
11263 pointer ww; /* the pen vertex being tested */
11265 @ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
11266 from zero to |max_ht|.
11268 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
11273 @<Step |ww| and move |kk| one step closer to |k0|@>;
11274 if ( kk==k0 ) break;
11275 tmp=mp_take_fraction(mp, (x_coord(ww)-x_coord(w0)),ht_x)+
11276 mp_take_fraction(mp, (y_coord(ww)-y_coord(w0)),ht_y);
11277 if ( tmp>max_ht ) max_ht=tmp;
11281 @ @<Step |ww| and move |kk| one step closer to |k0|@>=
11282 if ( kk>k0 ) { ww=link(ww); decr(kk); }
11283 else { ww=knil(ww); incr(kk); }
11285 @ @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>=
11286 if ( left_type(c)==mp_endpoint ) {
11287 mp->spec_p1=mp_htap_ypoc(mp, c);
11288 mp->spec_p2=mp->path_tail;
11289 originator(mp->spec_p1)=mp_program_code;
11290 link(mp->spec_p2)=link(mp->spec_p1);
11291 link(mp->spec_p1)=c;
11292 mp_remove_cubic(mp, mp->spec_p1);
11294 if ( c!=link(c) ) {
11295 originator(mp->spec_p2)=mp_program_code;
11296 mp_remove_cubic(mp, mp->spec_p2);
11298 @<Make |c| look like a cycle of length one@>;
11302 @ @<Make |c| look like a cycle of length one@>=
11304 left_type(c)=mp_explicit; right_type(c)=mp_explicit;
11305 left_x(c)=x_coord(c); left_y(c)=y_coord(c);
11306 right_x(c)=x_coord(c); right_y(c)=y_coord(c);
11309 @ In degenerate situations we might have to look at the knot preceding~|q|.
11310 That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
11312 @<Set the incoming and outgoing directions at |q|; in case of...@>=
11313 dxin=x_coord(q)-left_x(q);
11314 dyin=y_coord(q)-left_y(q);
11315 if ( (dxin==0)&&(dyin==0) ) {
11316 dxin=x_coord(q)-right_x(p);
11317 dyin=y_coord(q)-right_y(p);
11318 if ( (dxin==0)&&(dyin==0) ) {
11319 dxin=x_coord(q)-x_coord(p);
11320 dyin=y_coord(q)-y_coord(p);
11321 if ( p!=c ) { /* the coordinates of |p| have been offset by |w| */
11322 dxin=dxin+x_coord(w);
11323 dyin=dyin+y_coord(w);
11327 tmp=mp_pyth_add(mp, dxin,dyin);
11331 dxin=mp_make_fraction(mp, dxin,tmp);
11332 dyin=mp_make_fraction(mp, dyin,tmp);
11333 @<Set the outgoing direction at |q|@>;
11336 @ If |q=c| then the coordinates of |r| and the control points between |q|
11337 and~|r| have already been offset by |h|.
11339 @<Set the outgoing direction at |q|@>=
11340 dxout=right_x(q)-x_coord(q);
11341 dyout=right_y(q)-y_coord(q);
11342 if ( (dxout==0)&&(dyout==0) ) {
11344 dxout=left_x(r)-x_coord(q);
11345 dyout=left_y(r)-y_coord(q);
11346 if ( (dxout==0)&&(dyout==0) ) {
11347 dxout=x_coord(r)-x_coord(q);
11348 dyout=y_coord(r)-y_coord(q);
11352 dxout=dxout-x_coord(h);
11353 dyout=dyout-y_coord(h);
11355 tmp=mp_pyth_add(mp, dxout,dyout);
11356 if ( tmp==0 ) mp_confusion(mp, "degenerate spec");
11357 @:this can't happen degerate spec}{\quad degenerate spec@>
11358 dxout=mp_make_fraction(mp, dxout,tmp);
11359 dyout=mp_make_fraction(mp, dyout,tmp)
11361 @* \[23] Direction and intersection times.
11362 A path of length $n$ is defined parametrically by functions $x(t)$ and
11363 $y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
11364 reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
11365 we shall consider operations that determine special times associated with
11366 given paths: the first time that a path travels in a given direction, and
11367 a pair of times at which two paths cross each other.
11369 @ Let's start with the easier task. The function |find_direction_time| is
11370 given a direction |(x,y)| and a path starting at~|h|. If the path never
11371 travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
11372 it will be nonnegative.
11374 Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
11375 direction is undefined, the direction time will be~0. If $\bigl(x'(t),
11376 y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
11377 assumed to match any given direction at time~|t|.
11379 The routine solves this problem in nondegenerate cases by rotating the path
11380 and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
11381 to find when a given path first travels ``due east.''
11384 scaled mp_find_direction_time (MP mp,scaled x, scaled y, pointer h) {
11385 scaled max; /* $\max\bigl(\vert x\vert,\vert y\vert\bigr)$ */
11386 pointer p,q; /* for list traversal */
11387 scaled n; /* the direction time at knot |p| */
11388 scaled tt; /* the direction time within a cubic */
11389 @<Other local variables for |find_direction_time|@>;
11390 @<Normalize the given direction for better accuracy;
11391 but |return| with zero result if it's zero@>;
11394 if ( right_type(p)==mp_endpoint ) break;
11396 @<Rotate the cubic between |p| and |q|; then
11397 |goto found| if the rotated cubic travels due east at some time |tt|;
11398 but |break| if an entire cyclic path has been traversed@>;
11406 @ @<Normalize the given direction for better accuracy...@>=
11407 if ( abs(x)<abs(y) ) {
11408 x=mp_make_fraction(mp, x,abs(y));
11409 if ( y>0 ) y=fraction_one; else y=-fraction_one;
11410 } else if ( x==0 ) {
11413 y=mp_make_fraction(mp, y,abs(x));
11414 if ( x>0 ) x=fraction_one; else x=-fraction_one;
11417 @ Since we're interested in the tangent directions, we work with the
11418 derivative $${\textstyle1\over3}B'(x_0,x_1,x_2,x_3;t)=
11419 B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
11420 $B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
11421 in order to achieve better accuracy.
11423 The given path may turn abruptly at a knot, and it might pass the critical
11424 tangent direction at such a time. Therefore we remember the direction |phi|
11425 in which the previous rotated cubic was traveling. (The value of |phi| will be
11426 undefined on the first cubic, i.e., when |n=0|.)
11428 @<Rotate the cubic between |p| and |q|; then...@>=
11430 @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
11431 points of the rotated derivatives@>;
11432 if ( y1==0 ) if ( x1>=0 ) goto FOUND;
11434 @<Exit to |found| if an eastward direction occurs at knot |p|@>;
11437 if ( (x3!=0)||(y3!=0) ) phi=mp_n_arg(mp, x3,y3);
11438 @<Exit to |found| if the curve whose derivatives are specified by
11439 |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
11441 @ @<Other local variables for |find_direction_time|@>=
11442 scaled x1,x2,x3,y1,y2,y3; /* multiples of rotated derivatives */
11443 angle theta,phi; /* angles of exit and entry at a knot */
11444 fraction t; /* temp storage */
11446 @ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
11447 x1=right_x(p)-x_coord(p); x2=left_x(q)-right_x(p);
11448 x3=x_coord(q)-left_x(q);
11449 y1=right_y(p)-y_coord(p); y2=left_y(q)-right_y(p);
11450 y3=y_coord(q)-left_y(q);
11452 if ( abs(x2)>max ) max=abs(x2);
11453 if ( abs(x3)>max ) max=abs(x3);
11454 if ( abs(y1)>max ) max=abs(y1);
11455 if ( abs(y2)>max ) max=abs(y2);
11456 if ( abs(y3)>max ) max=abs(y3);
11457 if ( max==0 ) goto FOUND;
11458 while ( max<fraction_half ){
11459 max+=max; x1+=x1; x2+=x2; x3+=x3;
11460 y1+=y1; y2+=y2; y3+=y3;
11462 t=x1; x1=mp_take_fraction(mp, x1,x)+mp_take_fraction(mp, y1,y);
11463 y1=mp_take_fraction(mp, y1,x)-mp_take_fraction(mp, t,y);
11464 t=x2; x2=mp_take_fraction(mp, x2,x)+mp_take_fraction(mp, y2,y);
11465 y2=mp_take_fraction(mp, y2,x)-mp_take_fraction(mp, t,y);
11466 t=x3; x3=mp_take_fraction(mp, x3,x)+mp_take_fraction(mp, y3,y);
11467 y3=mp_take_fraction(mp, y3,x)-mp_take_fraction(mp, t,y)
11469 @ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
11470 theta=mp_n_arg(mp, x1,y1);
11471 if ( theta>=0 ) if ( phi<=0 ) if ( phi>=theta-one_eighty_deg ) goto FOUND;
11472 if ( theta<=0 ) if ( phi>=0 ) if ( phi<=theta+one_eighty_deg ) goto FOUND
11474 @ In this step we want to use the |crossing_point| routine to find the
11475 roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
11476 Several complications arise: If the quadratic equation has a double root,
11477 the curve never crosses zero, and |crossing_point| will find nothing;
11478 this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
11479 equation has simple roots, or only one root, we may have to negate it
11480 so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
11481 And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
11484 @ @<Exit to |found| if the curve whose derivatives are specified by...@>=
11485 if ( x1<0 ) if ( x2<0 ) if ( x3<0 ) goto DONE;
11486 if ( mp_ab_vs_cd(mp, y1,y3,y2,y2)==0 ) {
11487 @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11488 either |goto found| or |goto done|@>;
11491 if ( y1<0 ) { y1=-y1; y2=-y2; y3=-y3; }
11492 else if ( y2>0 ){ y2=-y2; y3=-y3; };
11494 @<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
11495 $B(x_1,x_2,x_3;t)\ge0$@>;
11498 @ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
11499 two roots, because we know that it isn't identically zero.
11501 It must be admitted that the |crossing_point| routine is not perfectly accurate;
11502 rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
11503 miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
11504 subject to rounding errors. Yet this code optimistically tries to
11505 do the right thing.
11507 @d we_found_it { tt=(t+04000) / 010000; goto FOUND; }
11509 @<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
11510 t=mp_crossing_point(mp, y1,y2,y3);
11511 if ( t>fraction_one ) goto DONE;
11512 y2=t_of_the_way(y2,y3);
11513 x1=t_of_the_way(x1,x2);
11514 x2=t_of_the_way(x2,x3);
11515 x1=t_of_the_way(x1,x2);
11516 if ( x1>=0 ) we_found_it;
11518 tt=t; t=mp_crossing_point(mp, 0,-y2,-y3);
11519 if ( t>fraction_one ) goto DONE;
11520 x1=t_of_the_way(x1,x2);
11521 x2=t_of_the_way(x2,x3);
11522 if ( t_of_the_way(x1,x2)>=0 ) {
11523 t=t_of_the_way(tt,fraction_one); we_found_it;
11526 @ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11527 either |goto found| or |goto done|@>=
11529 if ( mp_ab_vs_cd(mp, y1,y2,0,0)<0 ) {
11530 t=mp_make_fraction(mp, y1,y1-y2);
11531 x1=t_of_the_way(x1,x2);
11532 x2=t_of_the_way(x2,x3);
11533 if ( t_of_the_way(x1,x2)>=0 ) we_found_it;
11534 } else if ( y3==0 ) {
11536 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>;
11537 } else if ( x3>=0 ) {
11538 tt=unity; goto FOUND;
11544 @ At this point we know that the derivative of |y(t)| is identically zero,
11545 and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
11548 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
11550 t=mp_crossing_point(mp, -x1,-x2,-x3);
11551 if ( t<=fraction_one ) we_found_it;
11552 if ( mp_ab_vs_cd(mp, x1,x3,x2,x2)<=0 ) {
11553 t=mp_make_fraction(mp, x1,x1-x2); we_found_it;
11557 @ The intersection of two cubics can be found by an interesting variant
11558 of the general bisection scheme described in the introduction to
11560 Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
11561 we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
11562 if an intersection exists. First we find the smallest rectangle that
11563 encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
11564 the smallest rectangle that encloses
11565 $\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
11566 But if the rectangles do overlap, we bisect the intervals, getting
11567 new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
11568 tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
11569 between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
11570 finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
11571 levels of bisection we will have determined the intersection times $t_1$
11572 and~$t_2$ to $l$~bits of accuracy.
11574 \def\submin{_{\rm min}} \def\submax{_{\rm max}}
11575 As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
11576 and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
11577 themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
11578 to determine when the enclosing rectangles overlap. Here's why:
11579 The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
11580 and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
11581 if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
11582 \min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
11583 overlap if and only if $u\submin\L x\submax$ and
11584 $x\submin\L u\submax$. Letting
11585 $$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
11586 U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
11587 we have $u\submin=2^lu_0+U\submin$, etc.; the condition for overlap
11589 $$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
11590 Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
11591 the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
11592 coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
11593 because of the overlap condition; i.e., we know that $X\submin$,
11594 $X\submax$, and their relatives are bounded, hence $X\submax-
11595 U\submin$ and $X\submin-U\submax$ are bounded.
11597 @ Incidentally, if the given cubics intersect more than once, the process
11598 just sketched will not necessarily find the lexicographically smallest pair
11599 $(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
11600 order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
11601 $t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
11602 $a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
11603 $a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
11604 Shuffled order agrees with lexicographic order if all pairs of solutions
11605 $(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
11606 $t_2<t_2'$; but in general, lexicographic order can be quite different,
11607 and the bisection algorithm would be substantially less efficient if it were
11608 constrained by lexicographic order.
11610 For example, suppose that an overlap has been found for $l=3$ and
11611 $(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
11612 either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
11613 Then there is probably an intersection in one of the subintervals
11614 $(.1011,.011x)$; but lexicographic order would require us to explore
11615 $(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
11616 want to store all of the subdivision data for the second path, so the
11617 subdivisions would have to be regenerated many times. Such inefficiencies
11618 would be associated with every `1' in the binary representation of~$t_1$.
11620 @ The subdivision process introduces rounding errors, hence we need to
11621 make a more liberal test for overlap. It is not hard to show that the
11622 computed values of $U_i$ differ from the truth by at most~$l$, on
11623 level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
11624 If $\beta$ is an upper bound on the absolute error in the computed
11625 components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
11626 the test `$X\submin-U\submax\L|delx|$' by the more liberal test
11627 `$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
11629 More accuracy is obtained if we try the algorithm first with |tol=0|;
11630 the more liberal tolerance is used only if an exact approach fails.
11631 It is convenient to do this double-take by letting `3' in the preceding
11632 paragraph be a parameter, which is first 0, then 3.
11635 unsigned int tol_step; /* either 0 or 3, usually */
11637 @ We shall use an explicit stack to implement the recursive bisection
11638 method described above. The |bisect_stack| array will contain numerous 5-word
11639 packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
11640 comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
11642 The following macros define the allocation of stack positions to
11643 the quantities needed for bisection-intersection.
11645 @d stack_1(A) mp->bisect_stack[(A)] /* $U_1$, $V_1$, $X_1$, or $Y_1$ */
11646 @d stack_2(A) mp->bisect_stack[(A)+1] /* $U_2$, $V_2$, $X_2$, or $Y_2$ */
11647 @d stack_3(A) mp->bisect_stack[(A)+2] /* $U_3$, $V_3$, $X_3$, or $Y_3$ */
11648 @d stack_min(A) mp->bisect_stack[(A)+3]
11649 /* $U\submin$, $V\submin$, $X\submin$, or $Y\submin$ */
11650 @d stack_max(A) mp->bisect_stack[(A)+4]
11651 /* $U\submax$, $V\submax$, $X\submax$, or $Y\submax$ */
11652 @d int_packets 20 /* number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$ */
11654 @d u_packet(A) ((A)-5)
11655 @d v_packet(A) ((A)-10)
11656 @d x_packet(A) ((A)-15)
11657 @d y_packet(A) ((A)-20)
11658 @d l_packets (mp->bisect_ptr-int_packets)
11659 @d r_packets mp->bisect_ptr
11660 @d ul_packet u_packet(l_packets) /* base of $U'_k$ variables */
11661 @d vl_packet v_packet(l_packets) /* base of $V'_k$ variables */
11662 @d xl_packet x_packet(l_packets) /* base of $X'_k$ variables */
11663 @d yl_packet y_packet(l_packets) /* base of $Y'_k$ variables */
11664 @d ur_packet u_packet(r_packets) /* base of $U''_k$ variables */
11665 @d vr_packet v_packet(r_packets) /* base of $V''_k$ variables */
11666 @d xr_packet x_packet(r_packets) /* base of $X''_k$ variables */
11667 @d yr_packet y_packet(r_packets) /* base of $Y''_k$ variables */
11669 @d u1l stack_1(ul_packet) /* $U'_1$ */
11670 @d u2l stack_2(ul_packet) /* $U'_2$ */
11671 @d u3l stack_3(ul_packet) /* $U'_3$ */
11672 @d v1l stack_1(vl_packet) /* $V'_1$ */
11673 @d v2l stack_2(vl_packet) /* $V'_2$ */
11674 @d v3l stack_3(vl_packet) /* $V'_3$ */
11675 @d x1l stack_1(xl_packet) /* $X'_1$ */
11676 @d x2l stack_2(xl_packet) /* $X'_2$ */
11677 @d x3l stack_3(xl_packet) /* $X'_3$ */
11678 @d y1l stack_1(yl_packet) /* $Y'_1$ */
11679 @d y2l stack_2(yl_packet) /* $Y'_2$ */
11680 @d y3l stack_3(yl_packet) /* $Y'_3$ */
11681 @d u1r stack_1(ur_packet) /* $U''_1$ */
11682 @d u2r stack_2(ur_packet) /* $U''_2$ */
11683 @d u3r stack_3(ur_packet) /* $U''_3$ */
11684 @d v1r stack_1(vr_packet) /* $V''_1$ */
11685 @d v2r stack_2(vr_packet) /* $V''_2$ */
11686 @d v3r stack_3(vr_packet) /* $V''_3$ */
11687 @d x1r stack_1(xr_packet) /* $X''_1$ */
11688 @d x2r stack_2(xr_packet) /* $X''_2$ */
11689 @d x3r stack_3(xr_packet) /* $X''_3$ */
11690 @d y1r stack_1(yr_packet) /* $Y''_1$ */
11691 @d y2r stack_2(yr_packet) /* $Y''_2$ */
11692 @d y3r stack_3(yr_packet) /* $Y''_3$ */
11694 @d stack_dx mp->bisect_stack[mp->bisect_ptr] /* stacked value of |delx| */
11695 @d stack_dy mp->bisect_stack[mp->bisect_ptr+1] /* stacked value of |dely| */
11696 @d stack_tol mp->bisect_stack[mp->bisect_ptr+2] /* stacked value of |tol| */
11697 @d stack_uv mp->bisect_stack[mp->bisect_ptr+3] /* stacked value of |uv| */
11698 @d stack_xy mp->bisect_stack[mp->bisect_ptr+4] /* stacked value of |xy| */
11699 @d int_increment (int_packets+int_packets+5) /* number of stack words per level */
11702 integer *bisect_stack;
11703 unsigned int bisect_ptr;
11705 @ @<Allocate or initialize ...@>=
11706 mp->bisect_stack = xmalloc((bistack_size+1),sizeof(integer));
11708 @ @<Dealloc variables@>=
11709 xfree(mp->bisect_stack);
11711 @ @<Check the ``constant''...@>=
11712 if ( int_packets+17*int_increment>bistack_size ) mp->bad=19;
11714 @ Computation of the min and max is a tedious but fairly fast sequence of
11715 instructions; exactly four comparisons are made in each branch.
11718 if ( stack_1((A))<0 ) {
11719 if ( stack_3((A))>=0 ) {
11720 if ( stack_2((A))<0 ) stack_min((A))=stack_1((A))+stack_2((A));
11721 else stack_min((A))=stack_1((A));
11722 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11723 if ( stack_max((A))<0 ) stack_max((A))=0;
11725 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11726 if ( stack_min((A))>stack_1((A)) ) stack_min((A))=stack_1((A));
11727 stack_max((A))=stack_1((A))+stack_2((A));
11728 if ( stack_max((A))<0 ) stack_max((A))=0;
11730 } else if ( stack_3((A))<=0 ) {
11731 if ( stack_2((A))>0 ) stack_max((A))=stack_1((A))+stack_2((A));
11732 else stack_max((A))=stack_1((A));
11733 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11734 if ( stack_min((A))>0 ) stack_min((A))=0;
11736 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11737 if ( stack_max((A))<stack_1((A)) ) stack_max((A))=stack_1((A));
11738 stack_min((A))=stack_1((A))+stack_2((A));
11739 if ( stack_min((A))>0 ) stack_min((A))=0;
11742 @ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
11743 the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
11744 routine uses global variables |cur_t| and |cur_tt| for this purpose;
11745 after successful completion, |cur_t| and |cur_tt| will contain |unity|
11746 plus the |scaled| values of $t_1$ and~$t_2$.
11748 The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
11749 finds no intersection. The routine gives up and gives an approximate answer
11750 if it has backtracked
11751 more than 5000 times (otherwise there are cases where several minutes
11752 of fruitless computation would be possible).
11754 @d max_patience 5000
11757 integer cur_t;integer cur_tt; /* controls and results of |cubic_intersection| */
11758 integer time_to_go; /* this many backtracks before giving up */
11759 integer max_t; /* maximum of $2^{l+1}$ so far achieved */
11761 @ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
11762 $B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
11763 and |(pp,link(pp))|, respectively.
11765 @c void mp_cubic_intersection (MP mp,pointer p, pointer pp) {
11766 pointer q,qq; /* |link(p)|, |link(pp)| */
11767 mp->time_to_go=max_patience; mp->max_t=2;
11768 @<Initialize for intersections at level zero@>;
11771 if ( mp->delx-mp->tol<=stack_max(x_packet(mp->xy))-stack_min(u_packet(mp->uv)))
11772 if ( mp->delx+mp->tol>=stack_min(x_packet(mp->xy))-stack_max(u_packet(mp->uv)))
11773 if ( mp->dely-mp->tol<=stack_max(y_packet(mp->xy))-stack_min(v_packet(mp->uv)))
11774 if ( mp->dely+mp->tol>=stack_min(y_packet(mp->xy))-stack_max(v_packet(mp->uv)))
11776 if ( mp->cur_t>=mp->max_t ){
11777 if ( mp->max_t==two ) { /* we've done 17 bisections */
11778 mp->cur_t=halfp(mp->cur_t+1); mp->cur_tt=halfp(mp->cur_tt+1); return;
11780 mp->max_t+=mp->max_t; mp->appr_t=mp->cur_t; mp->appr_tt=mp->cur_tt;
11782 @<Subdivide for a new level of intersection@>;
11785 if ( mp->time_to_go>0 ) {
11786 decr(mp->time_to_go);
11788 while ( mp->appr_t<unity ) {
11789 mp->appr_t+=mp->appr_t; mp->appr_tt+=mp->appr_tt;
11791 mp->cur_t=mp->appr_t; mp->cur_tt=mp->appr_tt; return;
11793 @<Advance to the next pair |(cur_t,cur_tt)|@>;
11797 @ The following variables are global, although they are used only by
11798 |cubic_intersection|, because it is necessary on some machines to
11799 split |cubic_intersection| up into two procedures.
11802 integer delx;integer dely; /* the components of $\Delta=2^l(w_0-z_0)$ */
11803 integer tol; /* bound on the uncertainly in the overlap test */
11805 unsigned int xy; /* pointers to the current packets of interest */
11806 integer three_l; /* |tol_step| times the bisection level */
11807 integer appr_t;integer appr_tt; /* best approximations known to the answers */
11809 @ We shall assume that the coordinates are sufficiently non-extreme that
11810 integer overflow will not occur.
11812 @<Initialize for intersections at level zero@>=
11813 q=link(p); qq=link(pp); mp->bisect_ptr=int_packets;
11814 u1r=right_x(p)-x_coord(p); u2r=left_x(q)-right_x(p);
11815 u3r=x_coord(q)-left_x(q); set_min_max(ur_packet);
11816 v1r=right_y(p)-y_coord(p); v2r=left_y(q)-right_y(p);
11817 v3r=y_coord(q)-left_y(q); set_min_max(vr_packet);
11818 x1r=right_x(pp)-x_coord(pp); x2r=left_x(qq)-right_x(pp);
11819 x3r=x_coord(qq)-left_x(qq); set_min_max(xr_packet);
11820 y1r=right_y(pp)-y_coord(pp); y2r=left_y(qq)-right_y(pp);
11821 y3r=y_coord(qq)-left_y(qq); set_min_max(yr_packet);
11822 mp->delx=x_coord(p)-x_coord(pp); mp->dely=y_coord(p)-y_coord(pp);
11823 mp->tol=0; mp->uv=r_packets; mp->xy=r_packets;
11824 mp->three_l=0; mp->cur_t=1; mp->cur_tt=1
11826 @ @<Subdivide for a new level of intersection@>=
11827 stack_dx=mp->delx; stack_dy=mp->dely; stack_tol=mp->tol;
11828 stack_uv=mp->uv; stack_xy=mp->xy;
11829 mp->bisect_ptr=mp->bisect_ptr+int_increment;
11830 mp->cur_t+=mp->cur_t; mp->cur_tt+=mp->cur_tt;
11831 u1l=stack_1(u_packet(mp->uv)); u3r=stack_3(u_packet(mp->uv));
11832 u2l=half(u1l+stack_2(u_packet(mp->uv)));
11833 u2r=half(u3r+stack_2(u_packet(mp->uv)));
11834 u3l=half(u2l+u2r); u1r=u3l;
11835 set_min_max(ul_packet); set_min_max(ur_packet);
11836 v1l=stack_1(v_packet(mp->uv)); v3r=stack_3(v_packet(mp->uv));
11837 v2l=half(v1l+stack_2(v_packet(mp->uv)));
11838 v2r=half(v3r+stack_2(v_packet(mp->uv)));
11839 v3l=half(v2l+v2r); v1r=v3l;
11840 set_min_max(vl_packet); set_min_max(vr_packet);
11841 x1l=stack_1(x_packet(mp->xy)); x3r=stack_3(x_packet(mp->xy));
11842 x2l=half(x1l+stack_2(x_packet(mp->xy)));
11843 x2r=half(x3r+stack_2(x_packet(mp->xy)));
11844 x3l=half(x2l+x2r); x1r=x3l;
11845 set_min_max(xl_packet); set_min_max(xr_packet);
11846 y1l=stack_1(y_packet(mp->xy)); y3r=stack_3(y_packet(mp->xy));
11847 y2l=half(y1l+stack_2(y_packet(mp->xy)));
11848 y2r=half(y3r+stack_2(y_packet(mp->xy)));
11849 y3l=half(y2l+y2r); y1r=y3l;
11850 set_min_max(yl_packet); set_min_max(yr_packet);
11851 mp->uv=l_packets; mp->xy=l_packets;
11852 mp->delx+=mp->delx; mp->dely+=mp->dely;
11853 mp->tol=mp->tol-mp->three_l+mp->tol_step;
11854 mp->tol+=mp->tol; mp->three_l=mp->three_l+mp->tol_step
11856 @ @<Advance to the next pair |(cur_t,cur_tt)|@>=
11858 if ( odd(mp->cur_tt) ) {
11859 if ( odd(mp->cur_t) ) {
11860 @<Descend to the previous level and |goto not_found|@>;
11863 mp->delx=mp->delx+stack_1(u_packet(mp->uv))+stack_2(u_packet(mp->uv))
11864 +stack_3(u_packet(mp->uv));
11865 mp->dely=mp->dely+stack_1(v_packet(mp->uv))+stack_2(v_packet(mp->uv))
11866 +stack_3(v_packet(mp->uv));
11867 mp->uv=mp->uv+int_packets; /* switch from |l_packet| to |r_packet| */
11868 decr(mp->cur_tt); mp->xy=mp->xy-int_packets;
11869 /* switch from |r_packet| to |l_packet| */
11870 mp->delx=mp->delx+stack_1(x_packet(mp->xy))+stack_2(x_packet(mp->xy))
11871 +stack_3(x_packet(mp->xy));
11872 mp->dely=mp->dely+stack_1(y_packet(mp->xy))+stack_2(y_packet(mp->xy))
11873 +stack_3(y_packet(mp->xy));
11876 incr(mp->cur_tt); mp->tol=mp->tol+mp->three_l;
11877 mp->delx=mp->delx-stack_1(x_packet(mp->xy))-stack_2(x_packet(mp->xy))
11878 -stack_3(x_packet(mp->xy));
11879 mp->dely=mp->dely-stack_1(y_packet(mp->xy))-stack_2(y_packet(mp->xy))
11880 -stack_3(y_packet(mp->xy));
11881 mp->xy=mp->xy+int_packets; /* switch from |l_packet| to |r_packet| */
11884 @ @<Descend to the previous level...@>=
11886 mp->cur_t=halfp(mp->cur_t); mp->cur_tt=halfp(mp->cur_tt);
11887 if ( mp->cur_t==0 ) return;
11888 mp->bisect_ptr=mp->bisect_ptr-int_increment;
11889 mp->three_l=mp->three_l-mp->tol_step;
11890 mp->delx=stack_dx; mp->dely=stack_dy; mp->tol=stack_tol;
11891 mp->uv=stack_uv; mp->xy=stack_xy;
11895 @ The |path_intersection| procedure is much simpler.
11896 It invokes |cubic_intersection| in lexicographic order until finding a
11897 pair of cubics that intersect. The final intersection times are placed in
11898 |cur_t| and~|cur_tt|.
11900 @c void mp_path_intersection (MP mp,pointer h, pointer hh) {
11901 pointer p,pp; /* link registers that traverse the given paths */
11902 integer n,nn; /* integer parts of intersection times, minus |unity| */
11903 @<Change one-point paths into dead cycles@>;
11908 if ( right_type(p)!=mp_endpoint ) {
11911 if ( right_type(pp)!=mp_endpoint ) {
11912 mp_cubic_intersection(mp, p,pp);
11913 if ( mp->cur_t>0 ) {
11914 mp->cur_t=mp->cur_t+n; mp->cur_tt=mp->cur_tt+nn;
11918 nn=nn+unity; pp=link(pp);
11921 n=n+unity; p=link(p);
11923 mp->tol_step=mp->tol_step+3;
11924 } while (mp->tol_step<=3);
11925 mp->cur_t=-unity; mp->cur_tt=-unity;
11928 @ @<Change one-point paths...@>=
11929 if ( right_type(h)==mp_endpoint ) {
11930 right_x(h)=x_coord(h); left_x(h)=x_coord(h);
11931 right_y(h)=y_coord(h); left_y(h)=y_coord(h); right_type(h)=mp_explicit;
11933 if ( right_type(hh)==mp_endpoint ) {
11934 right_x(hh)=x_coord(hh); left_x(hh)=x_coord(hh);
11935 right_y(hh)=y_coord(hh); left_y(hh)=y_coord(hh); right_type(hh)=mp_explicit;
11938 @* \[24] Dynamic linear equations.
11939 \MP\ users define variables implicitly by stating equations that should be
11940 satisfied; the computer is supposed to be smart enough to solve those equations.
11941 And indeed, the computer tries valiantly to do so, by distinguishing five
11942 different types of numeric values:
11945 |type(p)=mp_known| is the nice case, when |value(p)| is the |scaled| value
11946 of the variable whose address is~|p|.
11949 |type(p)=mp_dependent| means that |value(p)| is not present, but |dep_list(p)|
11950 points to a {\sl dependency list\/} that expresses the value of variable~|p|
11951 as a |scaled| number plus a sum of independent variables with |fraction|
11955 |type(p)=mp_independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
11956 number'' reflecting the time this variable was first used in an equation;
11957 also |0<=m<64|, and each dependent variable
11958 that refers to this one is actually referring to the future value of
11959 this variable times~$2^m$. (Usually |m=0|, but higher degrees of
11960 scaling are sometimes needed to keep the coefficients in dependency lists
11961 from getting too large. The value of~|m| will always be even.)
11964 |type(p)=mp_numeric_type| means that variable |p| hasn't appeared in an
11965 equation before, but it has been explicitly declared to be numeric.
11968 |type(p)=undefined| means that variable |p| hasn't appeared before.
11970 \smallskip\noindent
11971 We have actually discussed these five types in the reverse order of their
11972 history during a computation: Once |known|, a variable never again
11973 becomes |dependent|; once |dependent|, it almost never again becomes
11974 |mp_independent|; once |mp_independent|, it never again becomes |mp_numeric_type|;
11975 and once |mp_numeric_type|, it never again becomes |undefined| (except
11976 of course when the user specifically decides to scrap the old value
11977 and start again). A backward step may, however, take place: Sometimes
11978 a |dependent| variable becomes |mp_independent| again, when one of the
11979 independent variables it depends on is reverting to |undefined|.
11982 The next patch detects overflow of independent-variable serial
11983 numbers. Diagnosed and patched by Thorsten Dahlheimer.
11985 @d s_scale 64 /* the serial numbers are multiplied by this factor */
11986 @d max_indep_vars 0177777777 /* $2^{25}-1$ */
11987 @d max_serial_no 017777777700 /* |max_indep_vars*s_scale| */
11988 @d new_indep(A) /* create a new independent variable */
11989 { if ( mp->serial_no==max_serial_no )
11990 mp_fatal_error(mp, "variable instance identifiers exhausted");
11991 type((A))=mp_independent; mp->serial_no=mp->serial_no+s_scale;
11992 value((A))=mp->serial_no;
11996 integer serial_no; /* the most recent serial number, times |s_scale| */
11998 @ @<Make variable |q+s| newly independent@>=new_indep(q+s)
12000 @ But how are dependency lists represented? It's simple: The linear combination
12001 $\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
12002 |q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
12003 @t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
12004 of $\alpha_1$; and |link(p)| points to the dependency list
12005 $\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
12006 then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
12007 The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
12008 they appear in decreasing order of their |value| fields (i.e., of
12009 their serial numbers). \ (It is convenient to use decreasing order,
12010 since |value(null)=0|. If the independent variables were not sorted by
12011 serial number but by some other criterion, such as their location in |mem|,
12012 the equation-solving mechanism would be too system-dependent, because
12013 the ordering can affect the computed results.)
12015 The |link| field in the node that contains the constant term $\beta$ is
12016 called the {\sl final link\/} of the dependency list. \MP\ maintains
12017 a doubly-linked master list of all dependency lists, in terms of a permanently
12019 in |mem| called |dep_head|. If there are no dependencies, we have
12020 |link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
12021 otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
12022 and |prev_dep(p)=dep_head|. We have |type(p)=mp_dependent|, and |dep_list(p)|
12023 points to its dependency list. If the final link of that dependency list
12024 occurs in location~|q|, then |link(q)| points to the next dependent
12025 variable (say~|r|); and we have |prev_dep(r)=q|, etc.
12027 @d dep_list(A) link(value_loc((A)))
12028 /* half of the |value| field in a |dependent| variable */
12029 @d prev_dep(A) info(value_loc((A)))
12030 /* the other half; makes a doubly linked list */
12031 @d dep_node_size 2 /* the number of words per dependency node */
12033 @<Initialize table entries...@>= mp->serial_no=0;
12034 link(dep_head)=dep_head; prev_dep(dep_head)=dep_head;
12035 info(dep_head)=null; dep_list(dep_head)=null;
12037 @ Actually the description above contains a little white lie. There's
12038 another kind of variable called |mp_proto_dependent|, which is
12039 just like a |dependent| one except that the $\alpha$ coefficients
12040 in its dependency list are |scaled| instead of being fractions.
12041 Proto-dependency lists are mixed with dependency lists in the
12042 nodes reachable from |dep_head|.
12044 @ Here is a procedure that prints a dependency list in symbolic form.
12045 The second parameter should be either |dependent| or |mp_proto_dependent|,
12046 to indicate the scaling of the coefficients.
12048 @<Declare subroutines for printing expressions@>=
12049 void mp_print_dependency (MP mp,pointer p, small_number t) {
12050 integer v; /* a coefficient */
12051 pointer pp,q; /* for list manipulation */
12054 v=abs(value(p)); q=info(p);
12055 if ( q==null ) { /* the constant term */
12056 if ( (v!=0)||(p==pp) ) {
12057 if ( value(p)>0 ) if ( p!=pp ) mp_print_char(mp, '+');
12058 mp_print_scaled(mp, value(p));
12062 @<Print the coefficient, unless it's $\pm1.0$@>;
12063 if ( type(q)!=mp_independent ) mp_confusion(mp, "dep");
12064 @:this can't happen dep}{\quad dep@>
12065 mp_print_variable_name(mp, q); v=value(q) % s_scale;
12066 while ( v>0 ) { mp_print(mp, "*4"); v=v-2; }
12071 @ @<Print the coefficient, unless it's $\pm1.0$@>=
12072 if ( value(p)<0 ) mp_print_char(mp, '-');
12073 else if ( p!=pp ) mp_print_char(mp, '+');
12074 if ( t==mp_dependent ) v=mp_round_fraction(mp, v);
12075 if ( v!=unity ) mp_print_scaled(mp, v)
12077 @ The maximum absolute value of a coefficient in a given dependency list
12078 is returned by the following simple function.
12080 @c fraction mp_max_coef (MP mp,pointer p) {
12081 fraction x; /* the maximum so far */
12083 while ( info(p)!=null ) {
12084 if ( abs(value(p))>x ) x=abs(value(p));
12090 @ One of the main operations needed on dependency lists is to add a multiple
12091 of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
12092 to dependency lists and |f| is a fraction.
12094 If the coefficient of any independent variable becomes |coef_bound| or
12095 more, in absolute value, this procedure changes the type of that variable
12096 to `|independent_needing_fix|', and sets the global variable |fix_needed|
12097 to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
12098 $\mu^2+\mu<8$; this means that the numbers we deal with won't
12099 get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
12100 2.3723$, the safer value 7/3 is taken as the threshold.)
12102 The changes mentioned in the preceding paragraph are actually done only if
12103 the global variable |watch_coefs| is |true|. But it usually is; in fact,
12104 it is |false| only when \MP\ is making a dependency list that will soon
12105 be equated to zero.
12107 Several procedures that act on dependency lists, including |p_plus_fq|,
12108 set the global variable |dep_final| to the final (constant term) node of
12109 the dependency list that they produce.
12111 @d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
12112 @d independent_needing_fix 0
12115 boolean fix_needed; /* does at least one |independent| variable need scaling? */
12116 boolean watch_coefs; /* should we scale coefficients that exceed |coef_bound|? */
12117 pointer dep_final; /* location of the constant term and final link */
12120 mp->fix_needed=false; mp->watch_coefs=true;
12122 @ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
12123 set to |mp_proto_dependent| if |p| is a proto-dependency list. In this
12124 case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
12125 should be |mp_proto_dependent| if |q| is a proto-dependency list.
12127 List |q| is unchanged by the operation; but list |p| is totally destroyed.
12129 The final link of the dependency list or proto-dependency list returned
12130 by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
12131 constant term of the result will be located in the same |mem| location
12132 as the original constant term of~|p|.
12134 Coefficients of the result are assumed to be zero if they are less than
12135 a certain threshold. This compensates for inevitable rounding errors,
12136 and tends to make more variables `|known|'. The threshold is approximately
12137 $10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
12138 proto-dependencies.
12140 @d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
12141 @d half_fraction_threshold 1342 /* half of |fraction_threshold| */
12142 @d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
12143 @d half_scaled_threshold 4 /* half of |scaled_threshold| */
12145 @<Declare basic dependency-list subroutines@>=
12146 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12147 pointer q, small_number t, small_number tt) ;
12150 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12151 pointer q, small_number t, small_number tt) {
12152 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12153 pointer r,s; /* for list manipulation */
12154 integer mp_threshold; /* defines a neighborhood of zero */
12155 integer v; /* temporary register */
12156 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12157 else mp_threshold=scaled_threshold;
12158 r=temp_head; pp=info(p); qq=info(q);
12164 @<Contribute a term from |p|, plus |f| times the
12165 corresponding term from |q|@>
12167 } else if ( value(pp)<value(qq) ) {
12168 @<Contribute a term from |q|, multiplied by~|f|@>
12170 link(r)=p; r=p; p=link(p); pp=info(p);
12173 if ( t==mp_dependent )
12174 value(p)=mp_slow_add(mp, value(p),mp_take_fraction(mp, value(q),f));
12176 value(p)=mp_slow_add(mp, value(p),mp_take_scaled(mp, value(q),f));
12177 link(r)=p; mp->dep_final=p;
12178 return link(temp_head);
12181 @ @<Contribute a term from |p|, plus |f|...@>=
12183 if ( tt==mp_dependent ) v=value(p)+mp_take_fraction(mp, f,value(q));
12184 else v=value(p)+mp_take_scaled(mp, f,value(q));
12185 value(p)=v; s=p; p=link(p);
12186 if ( abs(v)<mp_threshold ) {
12187 mp_free_node(mp, s,dep_node_size);
12189 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12190 type(qq)=independent_needing_fix; mp->fix_needed=true;
12194 pp=info(p); q=link(q); qq=info(q);
12197 @ @<Contribute a term from |q|, multiplied by~|f|@>=
12199 if ( tt==mp_dependent ) v=mp_take_fraction(mp, f,value(q));
12200 else v=mp_take_scaled(mp, f,value(q));
12201 if ( abs(v)>halfp(mp_threshold) ) {
12202 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=v;
12203 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12204 type(qq)=independent_needing_fix; mp->fix_needed=true;
12208 q=link(q); qq=info(q);
12211 @ It is convenient to have another subroutine for the special case
12212 of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
12213 both of the same type~|t| (either |dependent| or |mp_proto_dependent|).
12215 @c pointer mp_p_plus_q (MP mp,pointer p, pointer q, small_number t) {
12216 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12217 pointer r,s; /* for list manipulation */
12218 integer mp_threshold; /* defines a neighborhood of zero */
12219 integer v; /* temporary register */
12220 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12221 else mp_threshold=scaled_threshold;
12222 r=temp_head; pp=info(p); qq=info(q);
12228 @<Contribute a term from |p|, plus the
12229 corresponding term from |q|@>
12231 } else if ( value(pp)<value(qq) ) {
12232 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=value(q);
12233 q=link(q); qq=info(q); link(r)=s; r=s;
12235 link(r)=p; r=p; p=link(p); pp=info(p);
12238 value(p)=mp_slow_add(mp, value(p),value(q));
12239 link(r)=p; mp->dep_final=p;
12240 return link(temp_head);
12243 @ @<Contribute a term from |p|, plus the...@>=
12245 v=value(p)+value(q);
12246 value(p)=v; s=p; p=link(p); pp=info(p);
12247 if ( abs(v)<mp_threshold ) {
12248 mp_free_node(mp, s,dep_node_size);
12250 if ( (abs(v)>=coef_bound ) && mp->watch_coefs ) {
12251 type(qq)=independent_needing_fix; mp->fix_needed=true;
12255 q=link(q); qq=info(q);
12258 @ A somewhat simpler routine will multiply a dependency list
12259 by a given constant~|v|. The constant is either a |fraction| less than
12260 |fraction_one|, or it is |scaled|. In the latter case we might be forced to
12261 convert a dependency list to a proto-dependency list.
12262 Parameters |t0| and |t1| are the list types before and after;
12263 they should agree unless |t0=mp_dependent| and |t1=mp_proto_dependent|
12264 and |v_is_scaled=true|.
12266 @c pointer mp_p_times_v (MP mp,pointer p, integer v, small_number t0,
12267 small_number t1, boolean v_is_scaled) {
12268 pointer r,s; /* for list manipulation */
12269 integer w; /* tentative coefficient */
12270 integer mp_threshold;
12271 boolean scaling_down;
12272 if ( t0!=t1 ) scaling_down=true; else scaling_down=! v_is_scaled;
12273 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12274 else mp_threshold=half_scaled_threshold;
12276 while ( info(p)!=null ) {
12277 if ( scaling_down ) w=mp_take_fraction(mp, v,value(p));
12278 else w=mp_take_scaled(mp, v,value(p));
12279 if ( abs(w)<=mp_threshold ) {
12280 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12282 if ( abs(w)>=coef_bound ) {
12283 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12285 link(r)=p; r=p; value(p)=w; p=link(p);
12289 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
12290 else value(p)=mp_take_fraction(mp, value(p),v);
12291 return link(temp_head);
12294 @ Similarly, we sometimes need to divide a dependency list
12295 by a given |scaled| constant.
12297 @<Declare basic dependency-list subroutines@>=
12298 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12299 t0, small_number t1) ;
12302 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12303 t0, small_number t1) {
12304 pointer r,s; /* for list manipulation */
12305 integer w; /* tentative coefficient */
12306 integer mp_threshold;
12307 boolean scaling_down;
12308 if ( t0!=t1 ) scaling_down=true; else scaling_down=false;
12309 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12310 else mp_threshold=half_scaled_threshold;
12312 while ( info( p)!=null ) {
12313 if ( scaling_down ) {
12314 if ( abs(v)<02000000 ) w=mp_make_scaled(mp, value(p),v*010000);
12315 else w=mp_make_scaled(mp, mp_round_fraction(mp, value(p)),v);
12317 w=mp_make_scaled(mp, value(p),v);
12319 if ( abs(w)<=mp_threshold ) {
12320 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12322 if ( abs(w)>=coef_bound ) {
12323 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12325 link(r)=p; r=p; value(p)=w; p=link(p);
12328 link(r)=p; value(p)=mp_make_scaled(mp, value(p),v);
12329 return link(temp_head);
12332 @ Here's another utility routine for dependency lists. When an independent
12333 variable becomes dependent, we want to remove it from all existing
12334 dependencies. The |p_with_x_becoming_q| function computes the
12335 dependency list of~|p| after variable~|x| has been replaced by~|q|.
12337 This procedure has basically the same calling conventions as |p_plus_fq|:
12338 List~|q| is unchanged; list~|p| is destroyed; the constant node and the
12339 final link are inherited from~|p|; and the fourth parameter tells whether
12340 or not |p| is |mp_proto_dependent|. However, the global variable |dep_final|
12341 is not altered if |x| does not occur in list~|p|.
12343 @c pointer mp_p_with_x_becoming_q (MP mp,pointer p,
12344 pointer x, pointer q, small_number t) {
12345 pointer r,s; /* for list manipulation */
12346 integer v; /* coefficient of |x| */
12347 integer sx; /* serial number of |x| */
12348 s=p; r=temp_head; sx=value(x);
12349 while ( value(info(s))>sx ) { r=s; s=link(s); };
12350 if ( info(s)!=x ) {
12353 link(temp_head)=p; link(r)=link(s); v=value(s);
12354 mp_free_node(mp, s,dep_node_size);
12355 return mp_p_plus_fq(mp, link(temp_head),v,q,t,mp_dependent);
12359 @ Here's a simple procedure that reports an error when a variable
12360 has just received a known value that's out of the required range.
12362 @<Declare basic dependency-list subroutines@>=
12363 void mp_val_too_big (MP mp,scaled x) ;
12365 @ @c void mp_val_too_big (MP mp,scaled x) {
12366 if ( mp->internal[mp_warning_check]>0 ) {
12367 print_err("Value is too large ("); mp_print_scaled(mp, x); mp_print_char(mp, ')');
12368 @.Value is too large@>
12369 help4("The equation I just processed has given some variable")
12370 ("a value of 4096 or more. Continue and I'll try to cope")
12371 ("with that big value; but it might be dangerous.")
12372 ("(Set warningcheck:=0 to suppress this message.)");
12377 @ When a dependent variable becomes known, the following routine
12378 removes its dependency list. Here |p| points to the variable, and
12379 |q| points to the dependency list (which is one node long).
12381 @<Declare basic dependency-list subroutines@>=
12382 void mp_make_known (MP mp,pointer p, pointer q) ;
12384 @ @c void mp_make_known (MP mp,pointer p, pointer q) {
12385 int t; /* the previous type */
12386 prev_dep(link(q))=prev_dep(p);
12387 link(prev_dep(p))=link(q); t=type(p);
12388 type(p)=mp_known; value(p)=value(q); mp_free_node(mp, q,dep_node_size);
12389 if ( abs(value(p))>=fraction_one ) mp_val_too_big(mp, value(p));
12390 if (( mp->internal[mp_tracing_equations]>0) && mp_interesting(mp, p) ) {
12391 mp_begin_diagnostic(mp); mp_print_nl(mp, "#### ");
12392 @:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
12393 mp_print_variable_name(mp, p);
12394 mp_print_char(mp, '='); mp_print_scaled(mp, value(p));
12395 mp_end_diagnostic(mp, false);
12397 if (( mp->cur_exp==p ) && mp->cur_type==t ) {
12398 mp->cur_type=mp_known; mp->cur_exp=value(p);
12399 mp_free_node(mp, p,value_node_size);
12403 @ The |fix_dependencies| routine is called into action when |fix_needed|
12404 has been triggered. The program keeps a list~|s| of independent variables
12405 whose coefficients must be divided by~4.
12407 In unusual cases, this fixup process might reduce one or more coefficients
12408 to zero, so that a variable will become known more or less by default.
12410 @<Declare basic dependency-list subroutines@>=
12411 void mp_fix_dependencies (MP mp);
12413 @ @c void mp_fix_dependencies (MP mp) {
12414 pointer p,q,r,s,t; /* list manipulation registers */
12415 pointer x; /* an independent variable */
12416 r=link(dep_head); s=null;
12417 while ( r!=dep_head ){
12419 @<Run through the dependency list for variable |t|, fixing
12420 all nodes, and ending with final link~|q|@>;
12422 if ( q==dep_list(t) ) mp_make_known(mp, t,q);
12424 while ( s!=null ) {
12425 p=link(s); x=info(s); free_avail(s); s=p;
12426 type(x)=mp_independent; value(x)=value(x)+2;
12428 mp->fix_needed=false;
12431 @ @d independent_being_fixed 1 /* this variable already appears in |s| */
12433 @<Run through the dependency list for variable |t|...@>=
12434 r=value_loc(t); /* |link(r)=dep_list(t)| */
12436 q=link(r); x=info(q);
12437 if ( x==null ) break;
12438 if ( type(x)<=independent_being_fixed ) {
12439 if ( type(x)<independent_being_fixed ) {
12440 p=mp_get_avail(mp); link(p)=s; s=p;
12441 info(s)=x; type(x)=independent_being_fixed;
12443 value(q)=value(q) / 4;
12444 if ( value(q)==0 ) {
12445 link(r)=link(q); mp_free_node(mp, q,dep_node_size); q=r;
12452 @ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
12453 linking it into the list of all known dependencies. We assume that
12454 |dep_final| points to the final node of list~|p|.
12456 @c void mp_new_dep (MP mp,pointer q, pointer p) {
12457 pointer r; /* what used to be the first dependency */
12458 dep_list(q)=p; prev_dep(q)=dep_head;
12459 r=link(dep_head); link(mp->dep_final)=r; prev_dep(r)=mp->dep_final;
12463 @ Here is one of the ways a dependency list gets started.
12464 The |const_dependency| routine produces a list that has nothing but
12467 @c pointer mp_const_dependency (MP mp, scaled v) {
12468 mp->dep_final=mp_get_node(mp, dep_node_size);
12469 value(mp->dep_final)=v; info(mp->dep_final)=null;
12470 return mp->dep_final;
12473 @ And here's a more interesting way to start a dependency list from scratch:
12474 The parameter to |single_dependency| is the location of an
12475 independent variable~|x|, and the result is the simple dependency list
12478 In the unlikely event that the given independent variable has been doubled so
12479 often that we can't refer to it with a nonzero coefficient,
12480 |single_dependency| returns the simple list `0'. This case can be
12481 recognized by testing that the returned list pointer is equal to
12484 @c pointer mp_single_dependency (MP mp,pointer p) {
12485 pointer q; /* the new dependency list */
12486 integer m; /* the number of doublings */
12487 m=value(p) % s_scale;
12489 return mp_const_dependency(mp, 0);
12491 q=mp_get_node(mp, dep_node_size);
12492 value(q)=two_to_the(28-m); info(q)=p;
12493 link(q)=mp_const_dependency(mp, 0);
12498 @ We sometimes need to make an exact copy of a dependency list.
12500 @c pointer mp_copy_dep_list (MP mp,pointer p) {
12501 pointer q; /* the new dependency list */
12502 q=mp_get_node(mp, dep_node_size); mp->dep_final=q;
12504 info(mp->dep_final)=info(p); value(mp->dep_final)=value(p);
12505 if ( info(mp->dep_final)==null ) break;
12506 link(mp->dep_final)=mp_get_node(mp, dep_node_size);
12507 mp->dep_final=link(mp->dep_final); p=link(p);
12512 @ But how do variables normally become known? Ah, now we get to the heart of the
12513 equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
12514 or |mp_proto_dependent| list,~|p|, in which at least one independent variable
12515 appears. It equates this list to zero, by choosing an independent variable
12516 with the largest coefficient and making it dependent on the others. The
12517 newly dependent variable is eliminated from all current dependencies,
12518 thereby possibly making other dependent variables known.
12520 The given list |p| is, of course, totally destroyed by all this processing.
12522 @c void mp_linear_eq (MP mp, pointer p, small_number t) {
12523 pointer q,r,s; /* for link manipulation */
12524 pointer x; /* the variable that loses its independence */
12525 integer n; /* the number of times |x| had been halved */
12526 integer v; /* the coefficient of |x| in list |p| */
12527 pointer prev_r; /* lags one step behind |r| */
12528 pointer final_node; /* the constant term of the new dependency list */
12529 integer w; /* a tentative coefficient */
12530 @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
12531 x=info(q); n=value(x) % s_scale;
12532 @<Divide list |p| by |-v|, removing node |q|@>;
12533 if ( mp->internal[mp_tracing_equations]>0 ) {
12534 @<Display the new dependency@>;
12536 @<Simplify all existing dependencies by substituting for |x|@>;
12537 @<Change variable |x| from |independent| to |dependent| or |known|@>;
12538 if ( mp->fix_needed ) mp_fix_dependencies(mp);
12541 @ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
12542 q=p; r=link(p); v=value(q);
12543 while ( info(r)!=null ) {
12544 if ( abs(value(r))>abs(v) ) { q=r; v=value(r); };
12548 @ Here we want to change the coefficients from |scaled| to |fraction|,
12549 except in the constant term. In the common case of a trivial equation
12550 like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=mp_dependent|.
12552 @<Divide list |p| by |-v|, removing node |q|@>=
12553 s=temp_head; link(s)=p; r=p;
12556 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12558 w=mp_make_fraction(mp, value(r),v);
12559 if ( abs(w)<=half_fraction_threshold ) {
12560 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12566 } while (info(r)!=null);
12567 if ( t==mp_proto_dependent ) {
12568 value(r)=-mp_make_scaled(mp, value(r),v);
12569 } else if ( v!=-fraction_one ) {
12570 value(r)=-mp_make_fraction(mp, value(r),v);
12572 final_node=r; p=link(temp_head)
12574 @ @<Display the new dependency@>=
12575 if ( mp_interesting(mp, x) ) {
12576 mp_begin_diagnostic(mp); mp_print_nl(mp, "## ");
12577 mp_print_variable_name(mp, x);
12578 @:]]]\#\#_}{\.{\#\#}@>
12580 while ( w>0 ) { mp_print(mp, "*4"); w=w-2; };
12581 mp_print_char(mp, '='); mp_print_dependency(mp, p,mp_dependent);
12582 mp_end_diagnostic(mp, false);
12585 @ @<Simplify all existing dependencies by substituting for |x|@>=
12586 prev_r=dep_head; r=link(dep_head);
12587 while ( r!=dep_head ) {
12588 s=dep_list(r); q=mp_p_with_x_becoming_q(mp, s,x,p,type(r));
12589 if ( info(q)==null ) {
12590 mp_make_known(mp, r,q);
12593 do { q=link(q); } while (info(q)!=null);
12599 @ @<Change variable |x| from |independent| to |dependent| or |known|@>=
12600 if ( n>0 ) @<Divide list |p| by $2^n$@>;
12601 if ( info(p)==null ) {
12604 if ( abs(value(x))>=fraction_one ) mp_val_too_big(mp, value(x));
12605 mp_free_node(mp, p,dep_node_size);
12606 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) {
12607 mp->cur_exp=value(x); mp->cur_type=mp_known;
12608 mp_free_node(mp, x,value_node_size);
12611 type(x)=mp_dependent; mp->dep_final=final_node; mp_new_dep(mp, x,p);
12612 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) mp->cur_type=mp_dependent;
12615 @ @<Divide list |p| by $2^n$@>=
12617 s=temp_head; link(temp_head)=p; r=p;
12620 else w=value(r) / two_to_the(n);
12621 if ( (abs(w)<=half_fraction_threshold)&&(info(r)!=null) ) {
12623 mp_free_node(mp, r,dep_node_size);
12628 } while (info(s)!=null);
12632 @ The |check_mem| procedure, which is used only when \MP\ is being
12633 debugged, makes sure that the current dependency lists are well formed.
12635 @<Check the list of linear dependencies@>=
12636 q=dep_head; p=link(q);
12637 while ( p!=dep_head ) {
12638 if ( prev_dep(p)!=q ) {
12639 mp_print_nl(mp, "Bad PREVDEP at "); mp_print_int(mp, p);
12644 r=info(p); q=p; p=link(q);
12645 if ( r==null ) break;
12646 if ( value(info(p))>=value(r) ) {
12647 mp_print_nl(mp, "Out of order at "); mp_print_int(mp, p);
12648 @.Out of order...@>
12653 @* \[25] Dynamic nonlinear equations.
12654 Variables of numeric type are maintained by the general scheme of
12655 independent, dependent, and known values that we have just studied;
12656 and the components of pair and transform variables are handled in the
12657 same way. But \MP\ also has five other types of values: \&{boolean},
12658 \&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
12660 Equations are allowed between nonlinear quantities, but only in a
12661 simple form. Two variables that haven't yet been assigned values are
12662 either equal to each other, or they're not.
12664 Before a boolean variable has received a value, its type is |mp_unknown_boolean|;
12665 similarly, there are variables whose type is |mp_unknown_string|, |mp_unknown_pen|,
12666 |mp_unknown_path|, and |mp_unknown_picture|. In such cases the value is either
12667 |null| (which means that no other variables are equivalent to this one), or
12668 it points to another variable of the same undefined type. The pointers in the
12669 latter case form a cycle of nodes, which we shall call a ``ring.''
12670 Rings of undefined variables may include capsules, which arise as
12671 intermediate results within expressions or as \&{expr} parameters to macros.
12673 When one member of a ring receives a value, the same value is given to
12674 all the other members. In the case of paths and pictures, this implies
12675 making separate copies of a potentially large data structure; users should
12676 restrain their enthusiasm for such generality, unless they have lots and
12677 lots of memory space.
12679 @ The following procedure is called when a capsule node is being
12680 added to a ring (e.g., when an unknown variable is mentioned in an expression).
12682 @c pointer mp_new_ring_entry (MP mp,pointer p) {
12683 pointer q; /* the new capsule node */
12684 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
12686 if ( value(p)==null ) value(q)=p; else value(q)=value(p);
12691 @ Conversely, we might delete a capsule or a variable before it becomes known.
12692 The following procedure simply detaches a quantity from its ring,
12693 without recycling the storage.
12695 @<Declare the recycling subroutines@>=
12696 void mp_ring_delete (MP mp,pointer p) {
12699 if ( q!=null ) if ( q!=p ){
12700 while ( value(q)!=p ) q=value(q);
12705 @ Eventually there might be an equation that assigns values to all of the
12706 variables in a ring. The |nonlinear_eq| subroutine does the necessary
12707 propagation of values.
12709 If the parameter |flush_p| is |true|, node |p| itself needn't receive a
12710 value, it will soon be recycled.
12712 @c void mp_nonlinear_eq (MP mp,integer v, pointer p, boolean flush_p) {
12713 small_number t; /* the type of ring |p| */
12714 pointer q,r; /* link manipulation registers */
12715 t=type(p)-unknown_tag; q=value(p);
12716 if ( flush_p ) type(p)=mp_vacuous; else p=q;
12718 r=value(q); type(q)=t;
12720 case mp_boolean_type: value(q)=v; break;
12721 case mp_string_type: value(q)=v; add_str_ref(v); break;
12722 case mp_pen_type: value(q)=copy_pen(v); break;
12723 case mp_path_type: value(q)=mp_copy_path(mp, v); break;
12724 case mp_picture_type: value(q)=v; add_edge_ref(v); break;
12725 } /* there ain't no more cases */
12730 @ If two members of rings are equated, and if they have the same type,
12731 the |ring_merge| procedure is called on to make them equivalent.
12733 @c void mp_ring_merge (MP mp,pointer p, pointer q) {
12734 pointer r; /* traverses one list */
12738 @<Exclaim about a redundant equation@>;
12743 r=value(p); value(p)=value(q); value(q)=r;
12746 @ @<Exclaim about a redundant equation@>=
12748 print_err("Redundant equation");
12749 @.Redundant equation@>
12750 help2("I already knew that this equation was true.")
12751 ("But perhaps no harm has been done; let's continue.");
12752 mp_put_get_error(mp);
12755 @* \[26] Introduction to the syntactic routines.
12756 Let's pause a moment now and try to look at the Big Picture.
12757 The \MP\ program consists of three main parts: syntactic routines,
12758 semantic routines, and output routines. The chief purpose of the
12759 syntactic routines is to deliver the user's input to the semantic routines,
12760 while parsing expressions and locating operators and operands. The
12761 semantic routines act as an interpreter responding to these operators,
12762 which may be regarded as commands. And the output routines are
12763 periodically called on to produce compact font descriptions that can be
12764 used for typesetting or for making interim proof drawings. We have
12765 discussed the basic data structures and many of the details of semantic
12766 operations, so we are good and ready to plunge into the part of \MP\ that
12767 actually controls the activities.
12769 Our current goal is to come to grips with the |get_next| procedure,
12770 which is the keystone of \MP's input mechanism. Each call of |get_next|
12771 sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
12772 representing the next input token.
12773 $$\vbox{\halign{#\hfil\cr
12774 \hbox{|cur_cmd| denotes a command code from the long list of codes
12776 \hbox{|cur_mod| denotes a modifier of the command code;}\cr
12777 \hbox{|cur_sym| is the hash address of the symbolic token that was
12779 \hbox{\qquad or zero in the case of a numeric or string
12780 or capsule token.}\cr}}$$
12781 Underlying this external behavior of |get_next| is all the machinery
12782 necessary to convert from character files to tokens. At a given time we
12783 may be only partially finished with the reading of several files (for
12784 which \&{input} was specified), and partially finished with the expansion
12785 of some user-defined macros and/or some macro parameters, and partially
12786 finished reading some text that the user has inserted online,
12787 and so on. When reading a character file, the characters must be
12788 converted to tokens; comments and blank spaces must
12789 be removed, numeric and string tokens must be evaluated.
12791 To handle these situations, which might all be present simultaneously,
12792 \MP\ uses various stacks that hold information about the incomplete
12793 activities, and there is a finite state control for each level of the
12794 input mechanism. These stacks record the current state of an implicitly
12795 recursive process, but the |get_next| procedure is not recursive.
12798 eight_bits cur_cmd; /* current command set by |get_next| */
12799 integer cur_mod; /* operand of current command */
12800 halfword cur_sym; /* hash address of current symbol */
12802 @ The |print_cmd_mod| routine prints a symbolic interpretation of a
12803 command code and its modifier.
12804 It consists of a rather tedious sequence of print
12805 commands, and most of it is essentially an inverse to the |primitive|
12806 routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
12807 all of this procedure appears elsewhere in the program, together with the
12808 corresponding |primitive| calls.
12810 @<Declare the procedure called |print_cmd_mod|@>=
12811 void mp_print_cmd_mod (MP mp,integer c, integer m) {
12813 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>
12814 default: mp_print(mp, "[unknown command code!]"); break;
12818 @ Here is a procedure that displays a given command in braces, in the
12819 user's transcript file.
12821 @d show_cur_cmd_mod mp_show_cmd_mod(mp, mp->cur_cmd,mp->cur_mod)
12824 void mp_show_cmd_mod (MP mp,integer c, integer m) {
12825 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
12826 mp_print_cmd_mod(mp, c,m); mp_print_char(mp, '}');
12827 mp_end_diagnostic(mp, false);
12830 @* \[27] Input stacks and states.
12831 The state of \MP's input mechanism appears in the input stack, whose
12832 entries are records with five fields, called |index|, |start|, |loc|,
12833 |limit|, and |name|. The top element of this stack is maintained in a
12834 global variable for which no subscripting needs to be done; the other
12835 elements of the stack appear in an array. Hence the stack is declared thus:
12839 quarterword index_field;
12840 halfword start_field, loc_field, limit_field, name_field;
12844 in_state_record *input_stack;
12845 integer input_ptr; /* first unused location of |input_stack| */
12846 integer max_in_stack; /* largest value of |input_ptr| when pushing */
12847 in_state_record cur_input; /* the ``top'' input state */
12848 int stack_size; /* maximum number of simultaneous input sources */
12850 @ @<Allocate or initialize ...@>=
12851 mp->stack_size = 300;
12852 mp->input_stack = xmalloc((mp->stack_size+1),sizeof(in_state_record));
12854 @ @<Dealloc variables@>=
12855 xfree(mp->input_stack);
12857 @ We've already defined the special variable |loc==cur_input.loc_field|
12858 in our discussion of basic input-output routines. The other components of
12859 |cur_input| are defined in the same way:
12861 @d index mp->cur_input.index_field /* reference for buffer information */
12862 @d start mp->cur_input.start_field /* starting position in |buffer| */
12863 @d limit mp->cur_input.limit_field /* end of current line in |buffer| */
12864 @d name mp->cur_input.name_field /* name of the current file */
12866 @ Let's look more closely now at the five control variables
12867 (|index|,~|start|,~|loc|,~|limit|,~|name|),
12868 assuming that \MP\ is reading a line of characters that have been input
12869 from some file or from the user's terminal. There is an array called
12870 |buffer| that acts as a stack of all lines of characters that are
12871 currently being read from files, including all lines on subsidiary
12872 levels of the input stack that are not yet completed. \MP\ will return to
12873 the other lines when it is finished with the present input file.
12875 (Incidentally, on a machine with byte-oriented addressing, it would be
12876 appropriate to combine |buffer| with the |str_pool| array,
12877 letting the buffer entries grow downward from the top of the string pool
12878 and checking that these two tables don't bump into each other.)
12880 The line we are currently working on begins in position |start| of the
12881 buffer; the next character we are about to read is |buffer[loc]|; and
12882 |limit| is the location of the last character present. We always have
12883 |loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
12884 that the end of a line is easily sensed.
12886 The |name| variable is a string number that designates the name of
12887 the current file, if we are reading an ordinary text file. Special codes
12888 |is_term..max_spec_src| indicate other sources of input text.
12890 @d is_term 0 /* |name| value when reading from the terminal for normal input */
12891 @d is_read 1 /* |name| value when executing a \&{readstring} or \&{readfrom} */
12892 @d is_scantok 2 /* |name| value when reading text generated by \&{scantokens} */
12893 @d max_spec_src is_scantok
12895 @ Additional information about the current line is available via the
12896 |index| variable, which counts how many lines of characters are present
12897 in the buffer below the current level. We have |index=0| when reading
12898 from the terminal and prompting the user for each line; then if the user types,
12899 e.g., `\.{input figs}', we will have |index=1| while reading
12900 the file \.{figs.mp}. However, it does not follow that |index| is the
12901 same as the input stack pointer, since many of the levels on the input
12902 stack may come from token lists and some |index| values may correspond
12903 to \.{MPX} files that are not currently on the stack.
12905 The global variable |in_open| is equal to the highest |index| value counting
12906 \.{MPX} files but excluding token-list input levels. Thus, the number of
12907 partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
12908 when we are not reading a token list.
12910 If we are not currently reading from the terminal,
12911 we are reading from the file variable |input_file[index]|. We use
12912 the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
12913 and |cur_file| as an abbreviation for |input_file[index]|.
12915 When \MP\ is not reading from the terminal, the global variable |line| contains
12916 the line number in the current file, for use in error messages. More precisely,
12917 |line| is a macro for |line_stack[index]| and the |line_stack| array gives
12918 the line number for each file in the |input_file| array.
12920 When an \.{MPX} file is opened the file name is stored in the |mpx_name|
12921 array so that the name doesn't get lost when the file is temporarily removed
12922 from the input stack.
12923 Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
12924 and it contains translated \TeX\ pictures for |input_file[k-1]|.
12925 Since this is not an \.{MPX} file, we have
12926 $$ \hbox{|mpx_name[k-1]<=absent|}. $$
12927 This |name| field is set to |finished| when |input_file[k]| is completely
12930 If more information about the input state is needed, it can be
12931 included in small arrays like those shown here. For example,
12932 the current page or segment number in the input file might be put
12933 into a variable |page|, that is really a macro for the current entry
12934 in `\ignorespaces|page_stack:array[0..max_in_open] of integer|\unskip'
12935 by analogy with |line_stack|.
12936 @^system dependencies@>
12938 @d terminal_input (name==is_term) /* are we reading from the terminal? */
12939 @d cur_file mp->input_file[index] /* the current |void *| variable */
12940 @d line mp->line_stack[index] /* current line number in the current source file */
12941 @d in_name mp->iname_stack[index] /* a string used to construct \.{MPX} file names */
12942 @d in_area mp->iarea_stack[index] /* another string for naming \.{MPX} files */
12943 @d absent 1 /* |name_field| value for unused |mpx_in_stack| entries */
12944 @d mpx_reading (mp->mpx_name[index]>absent)
12945 /* when reading a file, is it an \.{MPX} file? */
12947 /* |name_field| value when the corresponding \.{MPX} file is finished */
12950 integer in_open; /* the number of lines in the buffer, less one */
12951 unsigned int open_parens; /* the number of open text files */
12952 void * *input_file ;
12953 integer *line_stack ; /* the line number for each file */
12954 char * *iname_stack; /* used for naming \.{MPX} files */
12955 char * *iarea_stack; /* used for naming \.{MPX} files */
12956 halfword*mpx_name ;
12958 @ @<Allocate or ...@>=
12959 mp->input_file = xmalloc((mp->max_in_open+1),sizeof(void *));
12960 mp->line_stack = xmalloc((mp->max_in_open+1),sizeof(integer));
12961 mp->iname_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12962 mp->iarea_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12963 mp->mpx_name = xmalloc((mp->max_in_open+1),sizeof(halfword));
12966 for (k=0;k<=mp->max_in_open;k++) {
12967 mp->iname_stack[k] =NULL;
12968 mp->iarea_stack[k] =NULL;
12972 @ @<Dealloc variables@>=
12975 for (l=0;l<=mp->max_in_open;l++) {
12976 xfree(mp->iname_stack[l]);
12977 xfree(mp->iarea_stack[l]);
12980 xfree(mp->input_file);
12981 xfree(mp->line_stack);
12982 xfree(mp->iname_stack);
12983 xfree(mp->iarea_stack);
12984 xfree(mp->mpx_name);
12987 @ However, all this discussion about input state really applies only to the
12988 case that we are inputting from a file. There is another important case,
12989 namely when we are currently getting input from a token list. In this case
12990 |index>max_in_open|, and the conventions about the other state variables
12993 \yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
12994 the node that will be read next. If |loc=null|, the token list has been
12997 \yskip\hang|start| points to the first node of the token list; this node
12998 may or may not contain a reference count, depending on the type of token
13001 \yskip\hang|token_type|, which takes the place of |index| in the
13002 discussion above, is a code number that explains what kind of token list
13005 \yskip\hang|name| points to the |eqtb| address of the control sequence
13006 being expanded, if the current token list is a macro not defined by
13007 \&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
13008 can be deduced by looking at their first two parameters.
13010 \yskip\hang|param_start|, which takes the place of |limit|, tells where
13011 the parameters of the current macro or loop text begin in the |param_stack|.
13013 \yskip\noindent The |token_type| can take several values, depending on
13014 where the current token list came from:
13017 \indent|forever_text|, if the token list being scanned is the body of
13018 a \&{forever} loop;
13020 \indent|loop_text|, if the token list being scanned is the body of
13021 a \&{for} or \&{forsuffixes} loop;
13023 \indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
13025 \indent|backed_up|, if the token list being scanned has been inserted as
13026 `to be read again'.
13028 \indent|inserted|, if the token list being scanned has been inserted as
13029 part of error recovery;
13031 \indent|macro|, if the expansion of a user-defined symbolic token is being
13035 The token list begins with a reference count if and only if |token_type=
13037 @^reference counts@>
13039 @d token_type index /* type of current token list */
13040 @d token_state (index>(int)mp->max_in_open) /* are we scanning a token list? */
13041 @d file_state (index<=(int)mp->max_in_open) /* are we scanning a file line? */
13042 @d param_start limit /* base of macro parameters in |param_stack| */
13043 @d forever_text (mp->max_in_open+1) /* |token_type| code for loop texts */
13044 @d loop_text (mp->max_in_open+2) /* |token_type| code for loop texts */
13045 @d parameter (mp->max_in_open+3) /* |token_type| code for parameter texts */
13046 @d backed_up (mp->max_in_open+4) /* |token_type| code for texts to be reread */
13047 @d inserted (mp->max_in_open+5) /* |token_type| code for inserted texts */
13048 @d macro (mp->max_in_open+6) /* |token_type| code for macro replacement texts */
13050 @ The |param_stack| is an auxiliary array used to hold pointers to the token
13051 lists for parameters at the current level and subsidiary levels of input.
13052 This stack grows at a different rate from the others.
13055 pointer *param_stack; /* token list pointers for parameters */
13056 integer param_ptr; /* first unused entry in |param_stack| */
13057 integer max_param_stack; /* largest value of |param_ptr| */
13059 @ @<Allocate or initialize ...@>=
13060 mp->param_stack = xmalloc((mp->param_size+1),sizeof(pointer));
13062 @ @<Dealloc variables@>=
13063 xfree(mp->param_stack);
13065 @ Notice that the |line| isn't valid when |token_state| is true because it
13066 depends on |index|. If we really need to know the line number for the
13067 topmost file in the index stack we use the following function. If a page
13068 number or other information is needed, this routine should be modified to
13069 compute it as well.
13070 @^system dependencies@>
13072 @<Declare a function called |true_line|@>=
13073 integer mp_true_line (MP mp) {
13074 int k; /* an index into the input stack */
13075 if ( file_state && (name>max_spec_src) ) {
13080 ((mp->input_stack[(k-1)].index_field>mp->max_in_open)||
13081 (mp->input_stack[(k-1)].name_field<=max_spec_src))) {
13084 return mp->line_stack[(k-1)];
13089 @ Thus, the ``current input state'' can be very complicated indeed; there
13090 can be many levels and each level can arise in a variety of ways. The
13091 |show_context| procedure, which is used by \MP's error-reporting routine to
13092 print out the current input state on all levels down to the most recent
13093 line of characters from an input file, illustrates most of these conventions.
13094 The global variable |file_ptr| contains the lowest level that was
13095 displayed by this procedure.
13098 integer file_ptr; /* shallowest level shown by |show_context| */
13100 @ The status at each level is indicated by printing two lines, where the first
13101 line indicates what was read so far and the second line shows what remains
13102 to be read. The context is cropped, if necessary, so that the first line
13103 contains at most |half_error_line| characters, and the second contains
13104 at most |error_line|. Non-current input levels whose |token_type| is
13105 `|backed_up|' are shown only if they have not been fully read.
13107 @c void mp_show_context (MP mp) { /* prints where the scanner is */
13108 int old_setting; /* saved |selector| setting */
13109 @<Local variables for formatting calculations@>
13110 mp->file_ptr=mp->input_ptr; mp->input_stack[mp->file_ptr]=mp->cur_input;
13111 /* store current state */
13113 mp->cur_input=mp->input_stack[mp->file_ptr]; /* enter into the context */
13114 @<Display the current context@>;
13116 if ( (name>max_spec_src) || (mp->file_ptr==0) ) break;
13117 decr(mp->file_ptr);
13119 mp->cur_input=mp->input_stack[mp->input_ptr]; /* restore original state */
13122 @ @<Display the current context@>=
13123 if ( (mp->file_ptr==mp->input_ptr) || file_state ||
13124 (token_type!=backed_up) || (loc!=null) ) {
13125 /* we omit backed-up token lists that have already been read */
13126 mp->tally=0; /* get ready to count characters */
13127 old_setting=mp->selector;
13128 if ( file_state ) {
13129 @<Print location of current line@>;
13130 @<Pseudoprint the line@>;
13132 @<Print type of token list@>;
13133 @<Pseudoprint the token list@>;
13135 mp->selector=old_setting; /* stop pseudoprinting */
13136 @<Print two lines using the tricky pseudoprinted information@>;
13139 @ This routine should be changed, if necessary, to give the best possible
13140 indication of where the current line resides in the input file.
13141 For example, on some systems it is best to print both a page and line number.
13142 @^system dependencies@>
13144 @<Print location of current line@>=
13145 if ( name>max_spec_src ) {
13146 mp_print_nl(mp, "l."); mp_print_int(mp, mp_true_line(mp));
13147 } else if ( terminal_input ) {
13148 if ( mp->file_ptr==0 ) mp_print_nl(mp, "<*>");
13149 else mp_print_nl(mp, "<insert>");
13150 } else if ( name==is_scantok ) {
13151 mp_print_nl(mp, "<scantokens>");
13153 mp_print_nl(mp, "<read>");
13155 mp_print_char(mp, ' ')
13157 @ Can't use case statement here because the |token_type| is not
13158 a constant expression.
13160 @<Print type of token list@>=
13162 if(token_type==forever_text) {
13163 mp_print_nl(mp, "<forever> ");
13164 } else if (token_type==loop_text) {
13165 @<Print the current loop value@>;
13166 } else if (token_type==parameter) {
13167 mp_print_nl(mp, "<argument> ");
13168 } else if (token_type==backed_up) {
13169 if ( loc==null ) mp_print_nl(mp, "<recently read> ");
13170 else mp_print_nl(mp, "<to be read again> ");
13171 } else if (token_type==inserted) {
13172 mp_print_nl(mp, "<inserted text> ");
13173 } else if (token_type==macro) {
13175 if ( name!=null ) mp_print_text(name);
13176 else @<Print the name of a \&{vardef}'d macro@>;
13177 mp_print(mp, "->");
13179 mp_print_nl(mp, "?");/* this should never happen */
13184 @ The parameter that corresponds to a loop text is either a token list
13185 (in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
13186 We'll discuss capsules later; for now, all we need to know is that
13187 the |link| field in a capsule parameter is |void| and that
13188 |print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
13190 @<Print the current loop value@>=
13191 { mp_print_nl(mp, "<for("); p=mp->param_stack[param_start];
13193 if ( link(p)==mp_void ) mp_print_exp(mp, p,0); /* we're in a \&{for} loop */
13194 else mp_show_token_list(mp, p,null,20,mp->tally);
13196 mp_print(mp, ")> ");
13199 @ The first two parameters of a macro defined by \&{vardef} will be token
13200 lists representing the macro's prefix and ``at point.'' By putting these
13201 together, we get the macro's full name.
13203 @<Print the name of a \&{vardef}'d macro@>=
13204 { p=mp->param_stack[param_start];
13206 mp_show_token_list(mp, mp->param_stack[param_start+1],null,20,mp->tally);
13209 while ( link(q)!=null ) q=link(q);
13210 link(q)=mp->param_stack[param_start+1];
13211 mp_show_token_list(mp, p,null,20,mp->tally);
13216 @ Now it is necessary to explain a little trick. We don't want to store a long
13217 string that corresponds to a token list, because that string might take up
13218 lots of memory; and we are printing during a time when an error message is
13219 being given, so we dare not do anything that might overflow one of \MP's
13220 tables. So `pseudoprinting' is the answer: We enter a mode of printing
13221 that stores characters into a buffer of length |error_line|, where character
13222 $k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
13223 |k<trick_count|, otherwise character |k| is dropped. Initially we set
13224 |tally:=0| and |trick_count:=1000000|; then when we reach the
13225 point where transition from line 1 to line 2 should occur, we
13226 set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
13227 tally+1+error_line-half_error_line)|. At the end of the
13228 pseudoprinting, the values of |first_count|, |tally|, and
13229 |trick_count| give us all the information we need to print the two lines,
13230 and all of the necessary text is in |trick_buf|.
13232 Namely, let |l| be the length of the descriptive information that appears
13233 on the first line. The length of the context information gathered for that
13234 line is |k=first_count|, and the length of the context information
13235 gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
13236 where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
13237 descriptive information on line~1, and set |n:=l+k|; here |n| is the
13238 length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
13239 and print `\.{...}' followed by
13240 $$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
13241 where subscripts of |trick_buf| are circular modulo |error_line|. The
13242 second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
13243 unless |n+m>error_line|; in the latter case, further cropping is done.
13244 This is easier to program than to explain.
13246 @<Local variables for formatting...@>=
13247 int i; /* index into |buffer| */
13248 integer l; /* length of descriptive information on line 1 */
13249 integer m; /* context information gathered for line 2 */
13250 int n; /* length of line 1 */
13251 integer p; /* starting or ending place in |trick_buf| */
13252 integer q; /* temporary index */
13254 @ The following code tells the print routines to gather
13255 the desired information.
13257 @d begin_pseudoprint {
13258 l=mp->tally; mp->tally=0; mp->selector=pseudo;
13259 mp->trick_count=1000000;
13261 @d set_trick_count {
13262 mp->first_count=mp->tally;
13263 mp->trick_count=mp->tally+1+mp->error_line-mp->half_error_line;
13264 if ( mp->trick_count<mp->error_line ) mp->trick_count=mp->error_line;
13267 @ And the following code uses the information after it has been gathered.
13269 @<Print two lines using the tricky pseudoprinted information@>=
13270 if ( mp->trick_count==1000000 ) set_trick_count;
13271 /* |set_trick_count| must be performed */
13272 if ( mp->tally<mp->trick_count ) m=mp->tally-mp->first_count;
13273 else m=mp->trick_count-mp->first_count; /* context on line 2 */
13274 if ( l+mp->first_count<=mp->half_error_line ) {
13275 p=0; n=l+mp->first_count;
13277 mp_print(mp, "..."); p=l+mp->first_count-mp->half_error_line+3;
13278 n=mp->half_error_line;
13280 for (q=p;q<=mp->first_count-1;q++) {
13281 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13284 for (q=1;q<=n;q++) {
13285 mp_print_char(mp, ' '); /* print |n| spaces to begin line~2 */
13287 if ( m+n<=mp->error_line ) p=mp->first_count+m;
13288 else p=mp->first_count+(mp->error_line-n-3);
13289 for (q=mp->first_count;q<=p-1;q++) {
13290 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13292 if ( m+n>mp->error_line ) mp_print(mp, "...")
13294 @ But the trick is distracting us from our current goal, which is to
13295 understand the input state. So let's concentrate on the data structures that
13296 are being pseudoprinted as we finish up the |show_context| procedure.
13298 @<Pseudoprint the line@>=
13301 for (i=start;i<=limit-1;i++) {
13302 if ( i==loc ) set_trick_count;
13303 mp_print_str(mp, mp->buffer[i]);
13307 @ @<Pseudoprint the token list@>=
13309 if ( token_type!=macro ) mp_show_token_list(mp, start,loc,100000,0);
13310 else mp_show_macro(mp, start,loc,100000)
13312 @ Here is the missing piece of |show_token_list| that is activated when the
13313 token beginning line~2 is about to be shown:
13315 @<Do magic computation@>=set_trick_count
13317 @* \[28] Maintaining the input stacks.
13318 The following subroutines change the input status in commonly needed ways.
13320 First comes |push_input|, which stores the current state and creates a
13321 new level (having, initially, the same properties as the old).
13323 @d push_input { /* enter a new input level, save the old */
13324 if ( mp->input_ptr>mp->max_in_stack ) {
13325 mp->max_in_stack=mp->input_ptr;
13326 if ( mp->input_ptr==mp->stack_size ) {
13327 int l = (mp->stack_size+(mp->stack_size>>2));
13328 XREALLOC(mp->input_stack, l, in_state_record);
13329 mp->stack_size = l;
13332 mp->input_stack[mp->input_ptr]=mp->cur_input; /* stack the record */
13333 incr(mp->input_ptr);
13336 @ And of course what goes up must come down.
13338 @d pop_input { /* leave an input level, re-enter the old */
13339 decr(mp->input_ptr); mp->cur_input=mp->input_stack[mp->input_ptr];
13342 @ Here is a procedure that starts a new level of token-list input, given
13343 a token list |p| and its type |t|. If |t=macro|, the calling routine should
13344 set |name|, reset~|loc|, and increase the macro's reference count.
13346 @d back_list(A) mp_begin_token_list(mp, (A),backed_up) /* backs up a simple token list */
13348 @c void mp_begin_token_list (MP mp,pointer p, quarterword t) {
13349 push_input; start=p; token_type=t;
13350 param_start=mp->param_ptr; loc=p;
13353 @ When a token list has been fully scanned, the following computations
13354 should be done as we leave that level of input.
13357 @c void mp_end_token_list (MP mp) { /* leave a token-list input level */
13358 pointer p; /* temporary register */
13359 if ( token_type>=backed_up ) { /* token list to be deleted */
13360 if ( token_type<=inserted ) {
13361 mp_flush_token_list(mp, start); goto DONE;
13363 mp_delete_mac_ref(mp, start); /* update reference count */
13366 while ( mp->param_ptr>param_start ) { /* parameters must be flushed */
13367 decr(mp->param_ptr);
13368 p=mp->param_stack[mp->param_ptr];
13370 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
13371 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
13373 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
13378 pop_input; check_interrupt;
13381 @ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
13382 token by the |cur_tok| routine.
13385 @c @<Declare the procedure called |make_exp_copy|@>;
13386 pointer mp_cur_tok (MP mp) {
13387 pointer p; /* a new token node */
13388 small_number save_type; /* |cur_type| to be restored */
13389 integer save_exp; /* |cur_exp| to be restored */
13390 if ( mp->cur_sym==0 ) {
13391 if ( mp->cur_cmd==capsule_token ) {
13392 save_type=mp->cur_type; save_exp=mp->cur_exp;
13393 mp_make_exp_copy(mp, mp->cur_mod); p=mp_stash_cur_exp(mp); link(p)=null;
13394 mp->cur_type=save_type; mp->cur_exp=save_exp;
13396 p=mp_get_node(mp, token_node_size);
13397 value(p)=mp->cur_mod; name_type(p)=mp_token;
13398 if ( mp->cur_cmd==numeric_token ) type(p)=mp_known;
13399 else type(p)=mp_string_type;
13402 fast_get_avail(p); info(p)=mp->cur_sym;
13407 @ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
13408 seen. The |back_input| procedure takes care of this by putting the token
13409 just scanned back into the input stream, ready to be read again.
13410 If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
13413 void mp_back_input (MP mp);
13415 @ @c void mp_back_input (MP mp) {/* undoes one token of input */
13416 pointer p; /* a token list of length one */
13418 while ( token_state &&(loc==null) )
13419 mp_end_token_list(mp); /* conserve stack space */
13423 @ The |back_error| routine is used when we want to restore or replace an
13424 offending token just before issuing an error message. We disable interrupts
13425 during the call of |back_input| so that the help message won't be lost.
13428 void mp_error (MP mp);
13429 void mp_back_error (MP mp);
13431 @ @c void mp_back_error (MP mp) { /* back up one token and call |error| */
13432 mp->OK_to_interrupt=false;
13434 mp->OK_to_interrupt=true; mp_error(mp);
13436 void mp_ins_error (MP mp) { /* back up one inserted token and call |error| */
13437 mp->OK_to_interrupt=false;
13438 mp_back_input(mp); token_type=inserted;
13439 mp->OK_to_interrupt=true; mp_error(mp);
13442 @ The |begin_file_reading| procedure starts a new level of input for lines
13443 of characters to be read from a file, or as an insertion from the
13444 terminal. It does not take care of opening the file, nor does it set |loc|
13445 or |limit| or |line|.
13446 @^system dependencies@>
13448 @c void mp_begin_file_reading (MP mp) {
13449 if ( mp->in_open==mp->max_in_open )
13450 mp_overflow(mp, "text input levels",mp->max_in_open);
13451 @:MetaPost capacity exceeded text input levels}{\quad text input levels@>
13452 if ( mp->first==mp->buf_size )
13453 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13454 incr(mp->in_open); push_input; index=mp->in_open;
13455 mp->mpx_name[index]=absent;
13457 name=is_term; /* |terminal_input| is now |true| */
13460 @ Conversely, the variables must be downdated when such a level of input
13461 is finished. Any associated \.{MPX} file must also be closed and popped
13462 off the file stack.
13464 @c void mp_end_file_reading (MP mp) {
13465 if ( mp->in_open>index ) {
13466 if ( (mp->mpx_name[mp->in_open]==absent)||(name<=max_spec_src) ) {
13467 mp_confusion(mp, "endinput");
13468 @:this can't happen endinput}{\quad endinput@>
13470 (mp->close_file)(mp->input_file[mp->in_open]); /* close an \.{MPX} file */
13471 delete_str_ref(mp->mpx_name[mp->in_open]);
13476 if ( index!=mp->in_open ) mp_confusion(mp, "endinput");
13477 if ( name>max_spec_src ) {
13478 (mp->close_file)(cur_file);
13479 delete_str_ref(name);
13483 pop_input; decr(mp->in_open);
13486 @ Here is a function that tries to resume input from an \.{MPX} file already
13487 associated with the current input file. It returns |false| if this doesn't
13490 @c boolean mp_begin_mpx_reading (MP mp) {
13491 if ( mp->in_open!=index+1 ) {
13494 if ( mp->mpx_name[mp->in_open]<=absent ) mp_confusion(mp, "mpx");
13495 @:this can't happen mpx}{\quad mpx@>
13496 if ( mp->first==mp->buf_size )
13497 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13498 push_input; index=mp->in_open;
13500 name=mp->mpx_name[mp->in_open]; add_str_ref(name);
13501 @<Put an empty line in the input buffer@>;
13506 @ This procedure temporarily stops reading an \.{MPX} file.
13508 @c void mp_end_mpx_reading (MP mp) {
13509 if ( mp->in_open!=index ) mp_confusion(mp, "mpx");
13510 @:this can't happen mpx}{\quad mpx@>
13512 @<Complain that we are not at the end of a line in the \.{MPX} file@>;
13518 @ Here we enforce a restriction that simplifies the input stacks considerably.
13519 This should not inconvenience the user because \.{MPX} files are generated
13520 by an auxiliary program called \.{DVItoMP}.
13522 @ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
13524 print_err("`mpxbreak' must be at the end of a line");
13525 help4("This file contains picture expressions for btex...etex")
13526 ("blocks. Such files are normally generated automatically")
13527 ("but this one seems to be messed up. I'm going to ignore")
13528 ("the rest of this line.");
13532 @ In order to keep the stack from overflowing during a long sequence of
13533 inserted `\.{show}' commands, the following routine removes completed
13534 error-inserted lines from memory.
13536 @c void mp_clear_for_error_prompt (MP mp) {
13537 while ( file_state && terminal_input &&
13538 (mp->input_ptr>0)&&(loc==limit) ) mp_end_file_reading(mp);
13539 mp_print_ln(mp); clear_terminal;
13542 @ To get \MP's whole input mechanism going, we perform the following
13545 @<Initialize the input routines@>=
13546 { mp->input_ptr=0; mp->max_in_stack=0;
13547 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
13548 mp->param_ptr=0; mp->max_param_stack=0;
13550 start=1; index=0; line=0; name=is_term;
13551 mp->mpx_name[0]=absent;
13552 mp->force_eof=false;
13553 if ( ! mp_init_terminal(mp) ) mp_jump_out(mp);
13554 limit=mp->last; mp->first=mp->last+1;
13555 /* |init_terminal| has set |loc| and |last| */
13558 @* \[29] Getting the next token.
13559 The heart of \MP's input mechanism is the |get_next| procedure, which
13560 we shall develop in the next few sections of the program. Perhaps we
13561 shouldn't actually call it the ``heart,'' however; it really acts as \MP's
13562 eyes and mouth, reading the source files and gobbling them up. And it also
13563 helps \MP\ to regurgitate stored token lists that are to be processed again.
13565 The main duty of |get_next| is to input one token and to set |cur_cmd|
13566 and |cur_mod| to that token's command code and modifier. Furthermore, if
13567 the input token is a symbolic token, that token's |hash| address
13568 is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
13570 Underlying this simple description is a certain amount of complexity
13571 because of all the cases that need to be handled.
13572 However, the inner loop of |get_next| is reasonably short and fast.
13574 @ Before getting into |get_next|, we need to consider a mechanism by which
13575 \MP\ helps keep errors from propagating too far. Whenever the program goes
13576 into a mode where it keeps calling |get_next| repeatedly until a certain
13577 condition is met, it sets |scanner_status| to some value other than |normal|.
13578 Then if an input file ends, or if an `\&{outer}' symbol appears,
13579 an appropriate error recovery will be possible.
13581 The global variable |warning_info| helps in this error recovery by providing
13582 additional information. For example, |warning_info| might indicate the
13583 name of a macro whose replacement text is being scanned.
13585 @d normal 0 /* |scanner_status| at ``quiet times'' */
13586 @d skipping 1 /* |scanner_status| when false conditional text is being skipped */
13587 @d flushing 2 /* |scanner_status| when junk after a statement is being ignored */
13588 @d absorbing 3 /* |scanner_status| when a \&{text} parameter is being scanned */
13589 @d var_defining 4 /* |scanner_status| when a \&{vardef} is being scanned */
13590 @d op_defining 5 /* |scanner_status| when a macro \&{def} is being scanned */
13591 @d loop_defining 6 /* |scanner_status| when a \&{for} loop is being scanned */
13592 @d tex_flushing 7 /* |scanner_status| when skipping \TeX\ material */
13595 integer scanner_status; /* are we scanning at high speed? */
13596 integer warning_info; /* if so, what else do we need to know,
13597 in case an error occurs? */
13599 @ @<Initialize the input routines@>=
13600 mp->scanner_status=normal;
13602 @ The following subroutine
13603 is called when an `\&{outer}' symbolic token has been scanned or
13604 when the end of a file has been reached. These two cases are distinguished
13605 by |cur_sym|, which is zero at the end of a file.
13607 @c boolean mp_check_outer_validity (MP mp) {
13608 pointer p; /* points to inserted token list */
13609 if ( mp->scanner_status==normal ) {
13611 } else if ( mp->scanner_status==tex_flushing ) {
13612 @<Check if the file has ended while flushing \TeX\ material and set the
13613 result value for |check_outer_validity|@>;
13615 mp->deletions_allowed=false;
13616 @<Back up an outer symbolic token so that it can be reread@>;
13617 if ( mp->scanner_status>skipping ) {
13618 @<Tell the user what has run away and try to recover@>;
13620 print_err("Incomplete if; all text was ignored after line ");
13621 @.Incomplete if...@>
13622 mp_print_int(mp, mp->warning_info);
13623 help3("A forbidden `outer' token occurred in skipped text.")
13624 ("This kind of error happens when you say `if...' and forget")
13625 ("the matching `fi'. I've inserted a `fi'; this might work.");
13626 if ( mp->cur_sym==0 )
13627 mp->help_line[2]="The file ended while I was skipping conditional text.";
13628 mp->cur_sym=frozen_fi; mp_ins_error(mp);
13630 mp->deletions_allowed=true;
13635 @ @<Check if the file has ended while flushing \TeX\ material and set...@>=
13636 if ( mp->cur_sym!=0 ) {
13639 mp->deletions_allowed=false;
13640 print_err("TeX mode didn't end; all text was ignored after line ");
13641 mp_print_int(mp, mp->warning_info);
13642 help2("The file ended while I was looking for the `etex' to")
13643 ("finish this TeX material. I've inserted `etex' now.");
13644 mp->cur_sym = frozen_etex;
13646 mp->deletions_allowed=true;
13650 @ @<Back up an outer symbolic token so that it can be reread@>=
13651 if ( mp->cur_sym!=0 ) {
13652 p=mp_get_avail(mp); info(p)=mp->cur_sym;
13653 back_list(p); /* prepare to read the symbolic token again */
13656 @ @<Tell the user what has run away...@>=
13658 mp_runaway(mp); /* print the definition-so-far */
13659 if ( mp->cur_sym==0 ) {
13660 print_err("File ended");
13661 @.File ended while scanning...@>
13663 print_err("Forbidden token found");
13664 @.Forbidden token found...@>
13666 mp_print(mp, " while scanning ");
13667 help4("I suspect you have forgotten an `enddef',")
13668 ("causing me to read past where you wanted me to stop.")
13669 ("I'll try to recover; but if the error is serious,")
13670 ("you'd better type `E' or `X' now and fix your file.");
13671 switch (mp->scanner_status) {
13672 @<Complete the error message,
13673 and set |cur_sym| to a token that might help recover from the error@>
13674 } /* there are no other cases */
13678 @ As we consider various kinds of errors, it is also appropriate to
13679 change the first line of the help message just given; |help_line[3]|
13680 points to the string that might be changed.
13682 @<Complete the error message,...@>=
13684 mp_print(mp, "to the end of the statement");
13685 mp->help_line[3]="A previous error seems to have propagated,";
13686 mp->cur_sym=frozen_semicolon;
13689 mp_print(mp, "a text argument");
13690 mp->help_line[3]="It seems that a right delimiter was left out,";
13691 if ( mp->warning_info==0 ) {
13692 mp->cur_sym=frozen_end_group;
13694 mp->cur_sym=frozen_right_delimiter;
13695 equiv(frozen_right_delimiter)=mp->warning_info;
13700 mp_print(mp, "the definition of ");
13701 if ( mp->scanner_status==op_defining )
13702 mp_print_text(mp->warning_info);
13704 mp_print_variable_name(mp, mp->warning_info);
13705 mp->cur_sym=frozen_end_def;
13707 case loop_defining:
13708 mp_print(mp, "the text of a ");
13709 mp_print_text(mp->warning_info);
13710 mp_print(mp, " loop");
13711 mp->help_line[3]="I suspect you have forgotten an `endfor',";
13712 mp->cur_sym=frozen_end_for;
13715 @ The |runaway| procedure displays the first part of the text that occurred
13716 when \MP\ began its special |scanner_status|, if that text has been saved.
13718 @<Declare the procedure called |runaway|@>=
13719 void mp_runaway (MP mp) {
13720 if ( mp->scanner_status>flushing ) {
13721 mp_print_nl(mp, "Runaway ");
13722 switch (mp->scanner_status) {
13723 case absorbing: mp_print(mp, "text?"); break;
13725 case op_defining: mp_print(mp,"definition?"); break;
13726 case loop_defining: mp_print(mp, "loop?"); break;
13727 } /* there are no other cases */
13729 mp_show_token_list(mp, link(hold_head),null,mp->error_line-10,0);
13733 @ We need to mention a procedure that may be called by |get_next|.
13736 void mp_firm_up_the_line (MP mp);
13738 @ And now we're ready to take the plunge into |get_next| itself.
13739 Note that the behavior depends on the |scanner_status| because percent signs
13740 and double quotes need to be passed over when skipping TeX material.
13743 void mp_get_next (MP mp) {
13744 /* sets |cur_cmd|, |cur_mod|, |cur_sym| to next token */
13746 /*restart*/ /* go here to get the next input token */
13747 /*exit*/ /* go here when the next input token has been got */
13748 /*|common_ending|*/ /* go here to finish getting a symbolic token */
13749 /*found*/ /* go here when the end of a symbolic token has been found */
13750 /*switch*/ /* go here to branch on the class of an input character */
13751 /*|start_numeric_token|,|start_decimal_token|,|fin_numeric_token|,|done|*/
13752 /* go here at crucial stages when scanning a number */
13753 int k; /* an index into |buffer| */
13754 ASCII_code c; /* the current character in the buffer */
13755 ASCII_code class; /* its class number */
13756 integer n,f; /* registers for decimal-to-binary conversion */
13759 if ( file_state ) {
13760 @<Input from external file; |goto restart| if no input found,
13761 or |return| if a non-symbolic token is found@>;
13763 @<Input from token list; |goto restart| if end of list or
13764 if a parameter needs to be expanded,
13765 or |return| if a non-symbolic token is found@>;
13768 @<Finish getting the symbolic token in |cur_sym|;
13769 |goto restart| if it is illegal@>;
13772 @ When a symbolic token is declared to be `\&{outer}', its command code
13773 is increased by |outer_tag|.
13776 @<Finish getting the symbolic token in |cur_sym|...@>=
13777 mp->cur_cmd=eq_type(mp->cur_sym); mp->cur_mod=equiv(mp->cur_sym);
13778 if ( mp->cur_cmd>=outer_tag ) {
13779 if ( mp_check_outer_validity(mp) )
13780 mp->cur_cmd=mp->cur_cmd-outer_tag;
13785 @ A percent sign appears in |buffer[limit]|; this makes it unnecessary
13786 to have a special test for end-of-line.
13789 @<Input from external file;...@>=
13792 c=mp->buffer[loc]; incr(loc); class=mp->char_class[c];
13794 case digit_class: goto START_NUMERIC_TOKEN; break;
13796 class=mp->char_class[mp->buffer[loc]];
13797 if ( class>period_class ) {
13799 } else if ( class<period_class ) { /* |class=digit_class| */
13800 n=0; goto START_DECIMAL_TOKEN;
13804 case space_class: goto SWITCH; break;
13805 case percent_class:
13806 if ( mp->scanner_status==tex_flushing ) {
13807 if ( loc<limit ) goto SWITCH;
13809 @<Move to next line of file, or |goto restart| if there is no next line@>;
13814 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13815 else @<Get a string token and |return|@>;
13817 case isolated_classes:
13818 k=loc-1; goto FOUND; break;
13819 case invalid_class:
13820 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13821 else @<Decry the invalid character and |goto restart|@>;
13823 default: break; /* letters, etc. */
13826 while ( mp->char_class[mp->buffer[loc]]==class ) incr(loc);
13828 START_NUMERIC_TOKEN:
13829 @<Get the integer part |n| of a numeric token;
13830 set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
13831 START_DECIMAL_TOKEN:
13832 @<Get the fraction part |f| of a numeric token@>;
13834 @<Pack the numeric and fraction parts of a numeric token
13837 mp->cur_sym=mp_id_lookup(mp, k,loc-k);
13840 @ We go to |restart| instead of to |SWITCH|, because |state| might equal
13841 |token_list| after the error has been dealt with
13842 (cf.\ |clear_for_error_prompt|).
13844 @<Decry the invalid...@>=
13846 print_err("Text line contains an invalid character");
13847 @.Text line contains...@>
13848 help2("A funny symbol that I can\'t read has just been input.")
13849 ("Continue, and I'll forget that it ever happened.");
13850 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13854 @ @<Get a string token and |return|@>=
13856 if ( mp->buffer[loc]=='"' ) {
13857 mp->cur_mod=rts("");
13859 k=loc; mp->buffer[limit+1]='"';
13862 } while (mp->buffer[loc]!='"');
13864 @<Decry the missing string delimiter and |goto restart|@>;
13867 mp->cur_mod=mp->buffer[k];
13871 append_char(mp->buffer[k]); incr(k);
13873 mp->cur_mod=mp_make_string(mp);
13876 incr(loc); mp->cur_cmd=string_token;
13880 @ We go to |restart| after this error message, not to |SWITCH|,
13881 because the |clear_for_error_prompt| routine might have reinstated
13882 |token_state| after |error| has finished.
13884 @<Decry the missing string delimiter and |goto restart|@>=
13886 loc=limit; /* the next character to be read on this line will be |"%"| */
13887 print_err("Incomplete string token has been flushed");
13888 @.Incomplete string token...@>
13889 help3("Strings should finish on the same line as they began.")
13890 ("I've deleted the partial string; you might want to")
13891 ("insert another by typing, e.g., `I\"new string\"'.");
13892 mp->deletions_allowed=false; mp_error(mp);
13893 mp->deletions_allowed=true;
13897 @ @<Get the integer part |n| of a numeric token...@>=
13899 while ( mp->char_class[mp->buffer[loc]]==digit_class ) {
13900 if ( n<32768 ) n=10*n+mp->buffer[loc]-'0';
13903 if ( mp->buffer[loc]=='.' )
13904 if ( mp->char_class[mp->buffer[loc+1]]==digit_class )
13907 goto FIN_NUMERIC_TOKEN;
13910 @ @<Get the fraction part |f| of a numeric token@>=
13913 if ( k<17 ) { /* digits for |k>=17| cannot affect the result */
13914 mp->dig[k]=mp->buffer[loc]-'0'; incr(k);
13917 } while (mp->char_class[mp->buffer[loc]]==digit_class);
13918 f=mp_round_decimals(mp, k);
13923 @ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
13925 @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>;
13926 } else if ( mp->scanner_status!=tex_flushing ) {
13927 print_err("Enormous number has been reduced");
13928 @.Enormous number...@>
13929 help2("I can\'t handle numbers bigger than 32767.99998;")
13930 ("so I've changed your constant to that maximum amount.");
13931 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13932 mp->cur_mod=el_gordo;
13934 mp->cur_cmd=numeric_token; return
13936 @ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
13938 mp->cur_mod=n*unity+f;
13939 if ( mp->cur_mod>=fraction_one ) {
13940 if ( (mp->internal[mp_warning_check]>0) &&
13941 (mp->scanner_status!=tex_flushing) ) {
13942 print_err("Number is too large (");
13943 mp_print_scaled(mp, mp->cur_mod);
13944 mp_print_char(mp, ')');
13945 help3("It is at least 4096. Continue and I'll try to cope")
13946 ("with that big value; but it might be dangerous.")
13947 ("(Set warningcheck:=0 to suppress this message.)");
13953 @ Let's consider now what happens when |get_next| is looking at a token list.
13956 @<Input from token list;...@>=
13957 if ( loc>=mp->hi_mem_min ) { /* one-word token */
13958 mp->cur_sym=info(loc); loc=link(loc); /* move to next */
13959 if ( mp->cur_sym>=expr_base ) {
13960 if ( mp->cur_sym>=suffix_base ) {
13961 @<Insert a suffix or text parameter and |goto restart|@>;
13963 mp->cur_cmd=capsule_token;
13964 mp->cur_mod=mp->param_stack[param_start+mp->cur_sym-(expr_base)];
13965 mp->cur_sym=0; return;
13968 } else if ( loc>null ) {
13969 @<Get a stored numeric or string or capsule token and |return|@>
13970 } else { /* we are done with this token list */
13971 mp_end_token_list(mp); goto RESTART; /* resume previous level */
13974 @ @<Insert a suffix or text parameter...@>=
13976 if ( mp->cur_sym>=text_base ) mp->cur_sym=mp->cur_sym-mp->param_size;
13977 /* |param_size=text_base-suffix_base| */
13978 mp_begin_token_list(mp,
13979 mp->param_stack[param_start+mp->cur_sym-(suffix_base)],
13984 @ @<Get a stored numeric or string or capsule token...@>=
13986 if ( name_type(loc)==mp_token ) {
13987 mp->cur_mod=value(loc);
13988 if ( type(loc)==mp_known ) {
13989 mp->cur_cmd=numeric_token;
13991 mp->cur_cmd=string_token; add_str_ref(mp->cur_mod);
13994 mp->cur_mod=loc; mp->cur_cmd=capsule_token;
13996 loc=link(loc); return;
13999 @ All of the easy branches of |get_next| have now been taken care of.
14000 There is one more branch.
14002 @<Move to next line of file, or |goto restart|...@>=
14003 if ( name>max_spec_src ) {
14004 @<Read next line of file into |buffer|, or
14005 |goto restart| if the file has ended@>;
14007 if ( mp->input_ptr>0 ) {
14008 /* text was inserted during error recovery or by \&{scantokens} */
14009 mp_end_file_reading(mp); goto RESTART; /* resume previous level */
14011 if ( mp->selector<log_only || mp->selector>=write_file) mp_open_log_file(mp);
14012 if ( mp->interaction>mp_nonstop_mode ) {
14013 if ( limit==start ) /* previous line was empty */
14014 mp_print_nl(mp, "(Please type a command or say `end')");
14016 mp_print_ln(mp); mp->first=start;
14017 prompt_input("*"); /* input on-line into |buffer| */
14019 limit=mp->last; mp->buffer[limit]='%';
14020 mp->first=limit+1; loc=start;
14022 mp_fatal_error(mp, "*** (job aborted, no legal end found)");
14024 /* nonstop mode, which is intended for overnight batch processing,
14025 never waits for on-line input */
14029 @ The global variable |force_eof| is normally |false|; it is set |true|
14030 by an \&{endinput} command.
14033 boolean force_eof; /* should the next \&{input} be aborted early? */
14035 @ We must decrement |loc| in order to leave the buffer in a valid state
14036 when an error condition causes us to |goto restart| without calling
14037 |end_file_reading|.
14039 @<Read next line of file into |buffer|, or
14040 |goto restart| if the file has ended@>=
14042 incr(line); mp->first=start;
14043 if ( ! mp->force_eof ) {
14044 if ( mp_input_ln(mp, cur_file ) ) /* not end of file */
14045 mp_firm_up_the_line(mp); /* this sets |limit| */
14047 mp->force_eof=true;
14049 if ( mp->force_eof ) {
14050 mp->force_eof=false;
14052 if ( mpx_reading ) {
14053 @<Complain that the \.{MPX} file ended unexpectly; then set
14054 |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>;
14056 mp_print_char(mp, ')'); decr(mp->open_parens);
14057 update_terminal; /* show user that file has been read */
14058 mp_end_file_reading(mp); /* resume previous level */
14059 if ( mp_check_outer_validity(mp) ) goto RESTART;
14063 mp->buffer[limit]='%'; mp->first=limit+1; loc=start; /* ready to read */
14066 @ We should never actually come to the end of an \.{MPX} file because such
14067 files should have an \&{mpxbreak} after the translation of the last
14068 \&{btex}$\,\ldots\,$\&{etex} block.
14070 @<Complain that the \.{MPX} file ended unexpectly; then set...@>=
14072 mp->mpx_name[index]=finished;
14073 print_err("mpx file ended unexpectedly");
14074 help4("The file had too few picture expressions for btex...etex")
14075 ("blocks. Such files are normally generated automatically")
14076 ("but this one got messed up. You might want to insert a")
14077 ("picture expression now.");
14078 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
14079 mp->cur_sym=frozen_mpx_break; goto COMMON_ENDING;
14082 @ Sometimes we want to make it look as though we have just read a blank line
14083 without really doing so.
14085 @<Put an empty line in the input buffer@>=
14086 mp->last=mp->first; limit=mp->last; /* simulate |input_ln| and |firm_up_the_line| */
14087 mp->buffer[limit]='%'; mp->first=limit+1; loc=start
14089 @ If the user has set the |mp_pausing| parameter to some positive value,
14090 and if nonstop mode has not been selected, each line of input is displayed
14091 on the terminal and the transcript file, followed by `\.{=>}'.
14092 \MP\ waits for a response. If the response is null (i.e., if nothing is
14093 typed except perhaps a few blank spaces), the original
14094 line is accepted as it stands; otherwise the line typed is
14095 used instead of the line in the file.
14097 @c void mp_firm_up_the_line (MP mp) {
14098 size_t k; /* an index into |buffer| */
14100 if ( mp->internal[mp_pausing]>0) if ( mp->interaction>mp_nonstop_mode ) {
14101 wake_up_terminal; mp_print_ln(mp);
14102 if ( start<limit ) {
14103 for (k=(size_t)start;k<=(size_t)(limit-1);k++) {
14104 mp_print_str(mp, mp->buffer[k]);
14107 mp->first=limit; prompt_input("=>"); /* wait for user response */
14109 if ( mp->last>mp->first ) {
14110 for (k=mp->first;k<=mp->last-1;k++) { /* move line down in buffer */
14111 mp->buffer[k+start-mp->first]=mp->buffer[k];
14113 limit=start+mp->last-mp->first;
14118 @* \[30] Dealing with \TeX\ material.
14119 The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
14120 features need to be implemented at a low level in the scanning process
14121 so that \MP\ can stay in synch with the a preprocessor that treats
14122 blocks of \TeX\ material as they occur in the input file without trying
14123 to expand \MP\ macros. Thus we need a special version of |get_next|
14124 that does not expand macros and such but does handle \&{btex},
14125 \&{verbatimtex}, etc.
14127 The special version of |get_next| is called |get_t_next|. It works by flushing
14128 \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
14129 $\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
14130 \&{btex}, and switching back when it sees \&{mpxbreak}.
14136 mp_primitive(mp, "btex",start_tex,btex_code);
14137 @:btex_}{\&{btex} primitive@>
14138 mp_primitive(mp, "verbatimtex",start_tex,verbatim_code);
14139 @:verbatimtex_}{\&{verbatimtex} primitive@>
14140 mp_primitive(mp, "etex",etex_marker,0); mp->eqtb[frozen_etex]=mp->eqtb[mp->cur_sym];
14141 @:etex_}{\&{etex} primitive@>
14142 mp_primitive(mp, "mpxbreak",mpx_break,0); mp->eqtb[frozen_mpx_break]=mp->eqtb[mp->cur_sym];
14143 @:mpx_break_}{\&{mpxbreak} primitive@>
14145 @ @<Cases of |print_cmd...@>=
14146 case start_tex: if ( m==btex_code ) mp_print(mp, "btex");
14147 else mp_print(mp, "verbatimtex"); break;
14148 case etex_marker: mp_print(mp, "etex"); break;
14149 case mpx_break: mp_print(mp, "mpxbreak"); break;
14151 @ Actually, |get_t_next| is a macro that avoids procedure overhead except
14152 in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
14155 @d get_t_next {mp_get_next(mp); if ( mp->cur_cmd<=max_pre_command ) mp_t_next(mp); }
14158 void mp_start_mpx_input (MP mp);
14161 void mp_t_next (MP mp) {
14162 int old_status; /* saves the |scanner_status| */
14163 integer old_info; /* saves the |warning_info| */
14164 while ( mp->cur_cmd<=max_pre_command ) {
14165 if ( mp->cur_cmd==mpx_break ) {
14166 if ( ! file_state || (mp->mpx_name[index]==absent) ) {
14167 @<Complain about a misplaced \&{mpxbreak}@>;
14169 mp_end_mpx_reading(mp);
14172 } else if ( mp->cur_cmd==start_tex ) {
14173 if ( token_state || (name<=max_spec_src) ) {
14174 @<Complain that we are not reading a file@>;
14175 } else if ( mpx_reading ) {
14176 @<Complain that \.{MPX} files cannot contain \TeX\ material@>;
14177 } else if ( (mp->cur_mod!=verbatim_code)&&
14178 (mp->mpx_name[index]!=finished) ) {
14179 if ( ! mp_begin_mpx_reading(mp) ) mp_start_mpx_input(mp);
14184 @<Complain about a misplaced \&{etex}@>;
14186 goto COMMON_ENDING;
14188 @<Flush the \TeX\ material@>;
14194 @ We could be in the middle of an operation such as skipping false conditional
14195 text when \TeX\ material is encountered, so we must be careful to save the
14198 @<Flush the \TeX\ material@>=
14199 old_status=mp->scanner_status;
14200 old_info=mp->warning_info;
14201 mp->scanner_status=tex_flushing;
14202 mp->warning_info=line;
14203 do { mp_get_next(mp); } while (mp->cur_cmd!=etex_marker);
14204 mp->scanner_status=old_status;
14205 mp->warning_info=old_info
14207 @ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
14208 { print_err("An mpx file cannot contain btex or verbatimtex blocks");
14209 help4("This file contains picture expressions for btex...etex")
14210 ("blocks. Such files are normally generated automatically")
14211 ("but this one seems to be messed up. I'll just keep going")
14212 ("and hope for the best.");
14216 @ @<Complain that we are not reading a file@>=
14217 { print_err("You can only use `btex' or `verbatimtex' in a file");
14218 help3("I'll have to ignore this preprocessor command because it")
14219 ("only works when there is a file to preprocess. You might")
14220 ("want to delete everything up to the next `etex`.");
14224 @ @<Complain about a misplaced \&{mpxbreak}@>=
14225 { print_err("Misplaced mpxbreak");
14226 help2("I'll ignore this preprocessor command because it")
14227 ("doesn't belong here");
14231 @ @<Complain about a misplaced \&{etex}@>=
14232 { print_err("Extra etex will be ignored");
14233 help1("There is no btex or verbatimtex for this to match");
14237 @* \[31] Scanning macro definitions.
14238 \MP\ has a variety of ways to tuck tokens away into token lists for later
14239 use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
14240 repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
14241 All such operations are handled by the routines in this part of the program.
14243 The modifier part of each command code is zero for the ``ending delimiters''
14244 like \&{enddef} and \&{endfor}.
14246 @d start_def 1 /* command modifier for \&{def} */
14247 @d var_def 2 /* command modifier for \&{vardef} */
14248 @d end_def 0 /* command modifier for \&{enddef} */
14249 @d start_forever 1 /* command modifier for \&{forever} */
14250 @d end_for 0 /* command modifier for \&{endfor} */
14253 mp_primitive(mp, "def",macro_def,start_def);
14254 @:def_}{\&{def} primitive@>
14255 mp_primitive(mp, "vardef",macro_def,var_def);
14256 @:var_def_}{\&{vardef} primitive@>
14257 mp_primitive(mp, "primarydef",macro_def,secondary_primary_macro);
14258 @:primary_def_}{\&{primarydef} primitive@>
14259 mp_primitive(mp, "secondarydef",macro_def,tertiary_secondary_macro);
14260 @:secondary_def_}{\&{secondarydef} primitive@>
14261 mp_primitive(mp, "tertiarydef",macro_def,expression_tertiary_macro);
14262 @:tertiary_def_}{\&{tertiarydef} primitive@>
14263 mp_primitive(mp, "enddef",macro_def,end_def); mp->eqtb[frozen_end_def]=mp->eqtb[mp->cur_sym];
14264 @:end_def_}{\&{enddef} primitive@>
14266 mp_primitive(mp, "for",iteration,expr_base);
14267 @:for_}{\&{for} primitive@>
14268 mp_primitive(mp, "forsuffixes",iteration,suffix_base);
14269 @:for_suffixes_}{\&{forsuffixes} primitive@>
14270 mp_primitive(mp, "forever",iteration,start_forever);
14271 @:forever_}{\&{forever} primitive@>
14272 mp_primitive(mp, "endfor",iteration,end_for); mp->eqtb[frozen_end_for]=mp->eqtb[mp->cur_sym];
14273 @:end_for_}{\&{endfor} primitive@>
14275 @ @<Cases of |print_cmd...@>=
14277 if ( m<=var_def ) {
14278 if ( m==start_def ) mp_print(mp, "def");
14279 else if ( m<start_def ) mp_print(mp, "enddef");
14280 else mp_print(mp, "vardef");
14281 } else if ( m==secondary_primary_macro ) {
14282 mp_print(mp, "primarydef");
14283 } else if ( m==tertiary_secondary_macro ) {
14284 mp_print(mp, "secondarydef");
14286 mp_print(mp, "tertiarydef");
14290 if ( m<=start_forever ) {
14291 if ( m==start_forever ) mp_print(mp, "forever");
14292 else mp_print(mp, "endfor");
14293 } else if ( m==expr_base ) {
14294 mp_print(mp, "for");
14296 mp_print(mp, "forsuffixes");
14300 @ Different macro-absorbing operations have different syntaxes, but they
14301 also have a lot in common. There is a list of special symbols that are to
14302 be replaced by parameter tokens; there is a special command code that
14303 ends the definition; the quotation conventions are identical. Therefore
14304 it makes sense to have most of the work done by a single subroutine. That
14305 subroutine is called |scan_toks|.
14307 The first parameter to |scan_toks| is the command code that will
14308 terminate scanning (either |macro_def|, |loop_repeat|, or |iteration|).
14310 The second parameter, |subst_list|, points to a (possibly empty) list
14311 of two-word nodes whose |info| and |value| fields specify symbol tokens
14312 before and after replacement. The list will be returned to free storage
14315 The third parameter is simply appended to the token list that is built.
14316 And the final parameter tells how many of the special operations
14317 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
14318 When such parameters are present, they are called \.{(SUFFIX0)},
14319 \.{(SUFFIX1)}, and \.{(SUFFIX2)}.
14321 @c pointer mp_scan_toks (MP mp,command_code terminator, pointer
14322 subst_list, pointer tail_end, small_number suffix_count) {
14323 pointer p; /* tail of the token list being built */
14324 pointer q; /* temporary for link management */
14325 integer balance; /* left delimiters minus right delimiters */
14326 p=hold_head; balance=1; link(hold_head)=null;
14329 if ( mp->cur_sym>0 ) {
14330 @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
14331 if ( mp->cur_cmd==terminator ) {
14332 @<Adjust the balance; |break| if it's zero@>;
14333 } else if ( mp->cur_cmd==macro_special ) {
14334 @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
14337 link(p)=mp_cur_tok(mp); p=link(p);
14339 link(p)=tail_end; mp_flush_node_list(mp, subst_list);
14340 return link(hold_head);
14343 @ @<Substitute for |cur_sym|...@>=
14346 while ( q!=null ) {
14347 if ( info(q)==mp->cur_sym ) {
14348 mp->cur_sym=value(q); mp->cur_cmd=relax; break;
14354 @ @<Adjust the balance; |break| if it's zero@>=
14355 if ( mp->cur_mod>0 ) {
14363 @ Four commands are intended to be used only within macro texts: \&{quote},
14364 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
14365 code called |macro_special|.
14367 @d quote 0 /* |macro_special| modifier for \&{quote} */
14368 @d macro_prefix 1 /* |macro_special| modifier for \.{\#\AT!} */
14369 @d macro_at 2 /* |macro_special| modifier for \.{\AT!} */
14370 @d macro_suffix 3 /* |macro_special| modifier for \.{\AT!\#} */
14373 mp_primitive(mp, "quote",macro_special,quote);
14374 @:quote_}{\&{quote} primitive@>
14375 mp_primitive(mp, "#@@",macro_special,macro_prefix);
14376 @:]]]\#\AT!_}{\.{\#\AT!} primitive@>
14377 mp_primitive(mp, "@@",macro_special,macro_at);
14378 @:]]]\AT!_}{\.{\AT!} primitive@>
14379 mp_primitive(mp, "@@#",macro_special,macro_suffix);
14380 @:]]]\AT!\#_}{\.{\AT!\#} primitive@>
14382 @ @<Cases of |print_cmd...@>=
14383 case macro_special:
14385 case macro_prefix: mp_print(mp, "#@@"); break;
14386 case macro_at: mp_print_char(mp, '@@'); break;
14387 case macro_suffix: mp_print(mp, "@@#"); break;
14388 default: mp_print(mp, "quote"); break;
14392 @ @<Handle quoted...@>=
14394 if ( mp->cur_mod==quote ) { get_t_next; }
14395 else if ( mp->cur_mod<=suffix_count )
14396 mp->cur_sym=suffix_base-1+mp->cur_mod;
14399 @ Here is a routine that's used whenever a token will be redefined. If
14400 the user's token is unredefinable, the `|frozen_inaccessible|' token is
14401 substituted; the latter is redefinable but essentially impossible to use,
14402 hence \MP's tables won't get fouled up.
14404 @c void mp_get_symbol (MP mp) { /* sets |cur_sym| to a safe symbol */
14407 if ( (mp->cur_sym==0)||(mp->cur_sym>frozen_inaccessible) ) {
14408 print_err("Missing symbolic token inserted");
14409 @.Missing symbolic token...@>
14410 help3("Sorry: You can\'t redefine a number, string, or expr.")
14411 ("I've inserted an inaccessible symbol so that your")
14412 ("definition will be completed without mixing me up too badly.");
14413 if ( mp->cur_sym>0 )
14414 mp->help_line[2]="Sorry: You can\'t redefine my error-recovery tokens.";
14415 else if ( mp->cur_cmd==string_token )
14416 delete_str_ref(mp->cur_mod);
14417 mp->cur_sym=frozen_inaccessible; mp_ins_error(mp); goto RESTART;
14421 @ Before we actually redefine a symbolic token, we need to clear away its
14422 former value, if it was a variable. The following stronger version of
14423 |get_symbol| does that.
14425 @c void mp_get_clear_symbol (MP mp) {
14426 mp_get_symbol(mp); mp_clear_symbol(mp, mp->cur_sym,false);
14429 @ Here's another little subroutine; it checks that an equals sign
14430 or assignment sign comes along at the proper place in a macro definition.
14432 @c void mp_check_equals (MP mp) {
14433 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
14434 mp_missing_err(mp, "=");
14436 help5("The next thing in this `def' should have been `=',")
14437 ("because I've already looked at the definition heading.")
14438 ("But don't worry; I'll pretend that an equals sign")
14439 ("was present. Everything from here to `enddef'")
14440 ("will be the replacement text of this macro.");
14445 @ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
14446 handled now that we have |scan_toks|. In this case there are
14447 two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
14448 |expr_base| and |expr_base+1|).
14450 @c void mp_make_op_def (MP mp) {
14451 command_code m; /* the type of definition */
14452 pointer p,q,r; /* for list manipulation */
14454 mp_get_symbol(mp); q=mp_get_node(mp, token_node_size);
14455 info(q)=mp->cur_sym; value(q)=expr_base;
14456 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym;
14457 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14458 info(p)=mp->cur_sym; value(p)=expr_base+1; link(p)=q;
14459 get_t_next; mp_check_equals(mp);
14460 mp->scanner_status=op_defining; q=mp_get_avail(mp); ref_count(q)=null;
14461 r=mp_get_avail(mp); link(q)=r; info(r)=general_macro;
14462 link(r)=mp_scan_toks(mp, macro_def,p,null,0);
14463 mp->scanner_status=normal; eq_type(mp->warning_info)=m;
14464 equiv(mp->warning_info)=q; mp_get_x_next(mp);
14467 @ Parameters to macros are introduced by the keywords \&{expr},
14468 \&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
14471 mp_primitive(mp, "expr",param_type,expr_base);
14472 @:expr_}{\&{expr} primitive@>
14473 mp_primitive(mp, "suffix",param_type,suffix_base);
14474 @:suffix_}{\&{suffix} primitive@>
14475 mp_primitive(mp, "text",param_type,text_base);
14476 @:text_}{\&{text} primitive@>
14477 mp_primitive(mp, "primary",param_type,primary_macro);
14478 @:primary_}{\&{primary} primitive@>
14479 mp_primitive(mp, "secondary",param_type,secondary_macro);
14480 @:secondary_}{\&{secondary} primitive@>
14481 mp_primitive(mp, "tertiary",param_type,tertiary_macro);
14482 @:tertiary_}{\&{tertiary} primitive@>
14484 @ @<Cases of |print_cmd...@>=
14486 if ( m>=expr_base ) {
14487 if ( m==expr_base ) mp_print(mp, "expr");
14488 else if ( m==suffix_base ) mp_print(mp, "suffix");
14489 else mp_print(mp, "text");
14490 } else if ( m<secondary_macro ) {
14491 mp_print(mp, "primary");
14492 } else if ( m==secondary_macro ) {
14493 mp_print(mp, "secondary");
14495 mp_print(mp, "tertiary");
14499 @ Let's turn next to the more complex processing associated with \&{def}
14500 and \&{vardef}. When the following procedure is called, |cur_mod|
14501 should be either |start_def| or |var_def|.
14503 @c @<Declare the procedure called |check_delimiter|@>;
14504 @<Declare the function called |scan_declared_variable|@>;
14505 void mp_scan_def (MP mp) {
14506 int m; /* the type of definition */
14507 int n; /* the number of special suffix parameters */
14508 int k; /* the total number of parameters */
14509 int c; /* the kind of macro we're defining */
14510 pointer r; /* parameter-substitution list */
14511 pointer q; /* tail of the macro token list */
14512 pointer p; /* temporary storage */
14513 halfword base; /* |expr_base|, |suffix_base|, or |text_base| */
14514 pointer l_delim,r_delim; /* matching delimiters */
14515 m=mp->cur_mod; c=general_macro; link(hold_head)=null;
14516 q=mp_get_avail(mp); ref_count(q)=null; r=null;
14517 @<Scan the token or variable to be defined;
14518 set |n|, |scanner_status|, and |warning_info|@>;
14520 if ( mp->cur_cmd==left_delimiter ) {
14521 @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
14523 if ( mp->cur_cmd==param_type ) {
14524 @<Absorb undelimited parameters, putting them into list |r|@>;
14526 mp_check_equals(mp);
14527 p=mp_get_avail(mp); info(p)=c; link(q)=p;
14528 @<Attach the replacement text to the tail of node |p|@>;
14529 mp->scanner_status=normal; mp_get_x_next(mp);
14532 @ We don't put `|frozen_end_group|' into the replacement text of
14533 a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
14535 @<Attach the replacement text to the tail of node |p|@>=
14536 if ( m==start_def ) {
14537 link(p)=mp_scan_toks(mp, macro_def,r,null,n);
14539 q=mp_get_avail(mp); info(q)=mp->bg_loc; link(p)=q;
14540 p=mp_get_avail(mp); info(p)=mp->eg_loc;
14541 link(q)=mp_scan_toks(mp, macro_def,r,p,n);
14543 if ( mp->warning_info==bad_vardef )
14544 mp_flush_token_list(mp, value(bad_vardef))
14548 int eg_loc; /* hash addresses of `\.{begingroup}' and `\.{endgroup}' */
14550 @ @<Scan the token or variable to be defined;...@>=
14551 if ( m==start_def ) {
14552 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym; get_t_next;
14553 mp->scanner_status=op_defining; n=0;
14554 eq_type(mp->warning_info)=defined_macro; equiv(mp->warning_info)=q;
14556 p=mp_scan_declared_variable(mp);
14557 mp_flush_variable(mp, equiv(info(p)),link(p),true);
14558 mp->warning_info=mp_find_variable(mp, p); mp_flush_list(mp, p);
14559 if ( mp->warning_info==null ) @<Change to `\.{a bad variable}'@>;
14560 mp->scanner_status=var_defining; n=2;
14561 if ( mp->cur_cmd==macro_special ) if ( mp->cur_mod==macro_suffix ) {/* \.{\AT!\#} */
14564 type(mp->warning_info)=mp_unsuffixed_macro-2+n; value(mp->warning_info)=q;
14565 } /* |mp_suffixed_macro=mp_unsuffixed_macro+1| */
14567 @ @<Change to `\.{a bad variable}'@>=
14569 print_err("This variable already starts with a macro");
14570 @.This variable already...@>
14571 help2("After `vardef a' you can\'t say `vardef a.b'.")
14572 ("So I'll have to discard this definition.");
14573 mp_error(mp); mp->warning_info=bad_vardef;
14576 @ @<Initialize table entries...@>=
14577 name_type(bad_vardef)=mp_root; link(bad_vardef)=frozen_bad_vardef;
14578 equiv(frozen_bad_vardef)=bad_vardef; eq_type(frozen_bad_vardef)=tag_token;
14580 @ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
14582 l_delim=mp->cur_sym; r_delim=mp->cur_mod; get_t_next;
14583 if ( (mp->cur_cmd==param_type)&&(mp->cur_mod>=expr_base) ) {
14586 print_err("Missing parameter type; `expr' will be assumed");
14587 @.Missing parameter type@>
14588 help1("You should've had `expr' or `suffix' or `text' here.");
14589 mp_back_error(mp); base=expr_base;
14591 @<Absorb parameter tokens for type |base|@>;
14592 mp_check_delimiter(mp, l_delim,r_delim);
14594 } while (mp->cur_cmd==left_delimiter)
14596 @ @<Absorb parameter tokens for type |base|@>=
14598 link(q)=mp_get_avail(mp); q=link(q); info(q)=base+k;
14599 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14600 value(p)=base+k; info(p)=mp->cur_sym;
14601 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14602 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14603 incr(k); link(p)=r; r=p; get_t_next;
14604 } while (mp->cur_cmd==comma)
14606 @ @<Absorb undelimited parameters, putting them into list |r|@>=
14608 p=mp_get_node(mp, token_node_size);
14609 if ( mp->cur_mod<expr_base ) {
14610 c=mp->cur_mod; value(p)=expr_base+k;
14612 value(p)=mp->cur_mod+k;
14613 if ( mp->cur_mod==expr_base ) c=expr_macro;
14614 else if ( mp->cur_mod==suffix_base ) c=suffix_macro;
14617 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14618 incr(k); mp_get_symbol(mp); info(p)=mp->cur_sym; link(p)=r; r=p; get_t_next;
14619 if ( c==expr_macro ) if ( mp->cur_cmd==of_token ) {
14620 c=of_macro; p=mp_get_node(mp, token_node_size);
14621 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14622 value(p)=expr_base+k; mp_get_symbol(mp); info(p)=mp->cur_sym;
14623 link(p)=r; r=p; get_t_next;
14627 @* \[32] Expanding the next token.
14628 Only a few command codes |<min_command| can possibly be returned by
14629 |get_t_next|; in increasing order, they are
14630 |if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
14631 |exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
14633 \MP\ usually gets the next token of input by saying |get_x_next|. This is
14634 like |get_t_next| except that it keeps getting more tokens until
14635 finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
14636 macros and removes conditionals or iterations or input instructions that
14639 It follows that |get_x_next| might invoke itself recursively. In fact,
14640 there is massive recursion, since macro expansion can involve the
14641 scanning of arbitrarily complex expressions, which in turn involve
14642 macro expansion and conditionals, etc.
14645 Therefore it's necessary to declare a whole bunch of |forward|
14646 procedures at this point, and to insert some other procedures
14647 that will be invoked by |get_x_next|.
14650 void mp_scan_primary (MP mp);
14651 void mp_scan_secondary (MP mp);
14652 void mp_scan_tertiary (MP mp);
14653 void mp_scan_expression (MP mp);
14654 void mp_scan_suffix (MP mp);
14655 @<Declare the procedure called |macro_call|@>;
14656 void mp_get_boolean (MP mp);
14657 void mp_pass_text (MP mp);
14658 void mp_conditional (MP mp);
14659 void mp_start_input (MP mp);
14660 void mp_begin_iteration (MP mp);
14661 void mp_resume_iteration (MP mp);
14662 void mp_stop_iteration (MP mp);
14664 @ An auxiliary subroutine called |expand| is used by |get_x_next|
14665 when it has to do exotic expansion commands.
14667 @c void mp_expand (MP mp) {
14668 pointer p; /* for list manipulation */
14669 size_t k; /* something that we hope is |<=buf_size| */
14670 pool_pointer j; /* index into |str_pool| */
14671 if ( mp->internal[mp_tracing_commands]>unity )
14672 if ( mp->cur_cmd!=defined_macro )
14674 switch (mp->cur_cmd) {
14676 mp_conditional(mp); /* this procedure is discussed in Part 36 below */
14679 @<Terminate the current conditional and skip to \&{fi}@>;
14682 @<Initiate or terminate input from a file@>;
14685 if ( mp->cur_mod==end_for ) {
14686 @<Scold the user for having an extra \&{endfor}@>;
14688 mp_begin_iteration(mp); /* this procedure is discussed in Part 37 below */
14695 @<Exit a loop if the proper time has come@>;
14700 @<Expand the token after the next token@>;
14703 @<Put a string into the input buffer@>;
14705 case defined_macro:
14706 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14708 }; /* there are no other cases */
14711 @ @<Scold the user...@>=
14713 print_err("Extra `endfor'");
14715 help2("I'm not currently working on a for loop,")
14716 ("so I had better not try to end anything.");
14720 @ The processing of \&{input} involves the |start_input| subroutine,
14721 which will be declared later; the processing of \&{endinput} is trivial.
14724 mp_primitive(mp, "input",input,0);
14725 @:input_}{\&{input} primitive@>
14726 mp_primitive(mp, "endinput",input,1);
14727 @:end_input_}{\&{endinput} primitive@>
14729 @ @<Cases of |print_cmd_mod|...@>=
14731 if ( m==0 ) mp_print(mp, "input");
14732 else mp_print(mp, "endinput");
14735 @ @<Initiate or terminate input...@>=
14736 if ( mp->cur_mod>0 ) mp->force_eof=true;
14737 else mp_start_input(mp)
14739 @ We'll discuss the complicated parts of loop operations later. For now
14740 it suffices to know that there's a global variable called |loop_ptr|
14741 that will be |null| if no loop is in progress.
14744 { while ( token_state &&(loc==null) )
14745 mp_end_token_list(mp); /* conserve stack space */
14746 if ( mp->loop_ptr==null ) {
14747 print_err("Lost loop");
14749 help2("I'm confused; after exiting from a loop, I still seem")
14750 ("to want to repeat it. I'll try to forget the problem.");
14753 mp_resume_iteration(mp); /* this procedure is in Part 37 below */
14757 @ @<Exit a loop if the proper time has come@>=
14758 { mp_get_boolean(mp);
14759 if ( mp->internal[mp_tracing_commands]>unity )
14760 mp_show_cmd_mod(mp, nullary,mp->cur_exp);
14761 if ( mp->cur_exp==true_code ) {
14762 if ( mp->loop_ptr==null ) {
14763 print_err("No loop is in progress");
14764 @.No loop is in progress@>
14765 help1("Why say `exitif' when there's nothing to exit from?");
14766 if ( mp->cur_cmd==semicolon ) mp_error(mp); else mp_back_error(mp);
14768 @<Exit prematurely from an iteration@>;
14770 } else if ( mp->cur_cmd!=semicolon ) {
14771 mp_missing_err(mp, ";");
14773 help2("After `exitif <boolean exp>' I expect to see a semicolon.")
14774 ("I shall pretend that one was there."); mp_back_error(mp);
14778 @ Here we use the fact that |forever_text| is the only |token_type| that
14779 is less than |loop_text|.
14781 @<Exit prematurely...@>=
14784 if ( file_state ) {
14785 mp_end_file_reading(mp);
14787 if ( token_type<=loop_text ) p=start;
14788 mp_end_token_list(mp);
14791 if ( p!=info(mp->loop_ptr) ) mp_fatal_error(mp, "*** (loop confusion)");
14793 mp_stop_iteration(mp); /* this procedure is in Part 34 below */
14796 @ @<Expand the token after the next token@>=
14798 p=mp_cur_tok(mp); get_t_next;
14799 if ( mp->cur_cmd<min_command ) mp_expand(mp);
14800 else mp_back_input(mp);
14804 @ @<Put a string into the input buffer@>=
14805 { mp_get_x_next(mp); mp_scan_primary(mp);
14806 if ( mp->cur_type!=mp_string_type ) {
14807 mp_disp_err(mp, null,"Not a string");
14809 help2("I'm going to flush this expression, since")
14810 ("scantokens should be followed by a known string.");
14811 mp_put_get_flush_error(mp, 0);
14814 if ( length(mp->cur_exp)>0 )
14815 @<Pretend we're reading a new one-line file@>;
14819 @ @<Pretend we're reading a new one-line file@>=
14820 { mp_begin_file_reading(mp); name=is_scantok;
14821 k=mp->first+length(mp->cur_exp);
14822 if ( k>=mp->max_buf_stack ) {
14823 while ( k>=mp->buf_size ) {
14824 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
14826 mp->max_buf_stack=k+1;
14828 j=mp->str_start[mp->cur_exp]; limit=k;
14829 while ( mp->first<(size_t)limit ) {
14830 mp->buffer[mp->first]=mp->str_pool[j]; incr(j); incr(mp->first);
14832 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
14833 mp_flush_cur_exp(mp, 0);
14836 @ Here finally is |get_x_next|.
14838 The expression scanning routines to be considered later
14839 communicate via the global quantities |cur_type| and |cur_exp|;
14840 we must be very careful to save and restore these quantities while
14841 macros are being expanded.
14845 void mp_get_x_next (MP mp);
14847 @ @c void mp_get_x_next (MP mp) {
14848 pointer save_exp; /* a capsule to save |cur_type| and |cur_exp| */
14850 if ( mp->cur_cmd<min_command ) {
14851 save_exp=mp_stash_cur_exp(mp);
14853 if ( mp->cur_cmd==defined_macro )
14854 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14858 } while (mp->cur_cmd<min_command);
14859 mp_unstash_cur_exp(mp, save_exp); /* that restores |cur_type| and |cur_exp| */
14863 @ Now let's consider the |macro_call| procedure, which is used to start up
14864 all user-defined macros. Since the arguments to a macro might be expressions,
14865 |macro_call| is recursive.
14868 The first parameter to |macro_call| points to the reference count of the
14869 token list that defines the macro. The second parameter contains any
14870 arguments that have already been parsed (see below). The third parameter
14871 points to the symbolic token that names the macro. If the third parameter
14872 is |null|, the macro was defined by \&{vardef}, so its name can be
14873 reconstructed from the prefix and ``at'' arguments found within the
14876 What is this second parameter? It's simply a linked list of one-word items,
14877 whose |info| fields point to the arguments. In other words, if |arg_list=null|,
14878 no arguments have been scanned yet; otherwise |info(arg_list)| points to
14879 the first scanned argument, and |link(arg_list)| points to the list of
14880 further arguments (if any).
14882 Arguments of type \&{expr} are so-called capsules, which we will
14883 discuss later when we concentrate on expressions; they can be
14884 recognized easily because their |link| field is |void|. Arguments of type
14885 \&{suffix} and \&{text} are token lists without reference counts.
14887 @ After argument scanning is complete, the arguments are moved to the
14888 |param_stack|. (They can't be put on that stack any sooner, because
14889 the stack is growing and shrinking in unpredictable ways as more arguments
14890 are being acquired.) Then the macro body is fed to the scanner; i.e.,
14891 the replacement text of the macro is placed at the top of the \MP's
14892 input stack, so that |get_t_next| will proceed to read it next.
14894 @<Declare the procedure called |macro_call|@>=
14895 @<Declare the procedure called |print_macro_name|@>;
14896 @<Declare the procedure called |print_arg|@>;
14897 @<Declare the procedure called |scan_text_arg|@>;
14898 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14899 pointer macro_name) ;
14902 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14903 pointer macro_name) {
14904 /* invokes a user-defined control sequence */
14905 pointer r; /* current node in the macro's token list */
14906 pointer p,q; /* for list manipulation */
14907 integer n; /* the number of arguments */
14908 pointer tail = 0; /* tail of the argument list */
14909 pointer l_delim=0,r_delim=0; /* a delimiter pair */
14910 r=link(def_ref); add_mac_ref(def_ref);
14911 if ( arg_list==null ) {
14914 @<Determine the number |n| of arguments already supplied,
14915 and set |tail| to the tail of |arg_list|@>;
14917 if ( mp->internal[mp_tracing_macros]>0 ) {
14918 @<Show the text of the macro being expanded, and the existing arguments@>;
14920 @<Scan the remaining arguments, if any; set |r| to the first token
14921 of the replacement text@>;
14922 @<Feed the arguments and replacement text to the scanner@>;
14925 @ @<Show the text of the macro...@>=
14926 mp_begin_diagnostic(mp); mp_print_ln(mp);
14927 mp_print_macro_name(mp, arg_list,macro_name);
14928 if ( n==3 ) mp_print(mp, "@@#"); /* indicate a suffixed macro */
14929 mp_show_macro(mp, def_ref,null,100000);
14930 if ( arg_list!=null ) {
14934 mp_print_arg(mp, q,n,0);
14935 incr(n); p=link(p);
14938 mp_end_diagnostic(mp, false)
14941 @ @<Declare the procedure called |print_macro_name|@>=
14942 void mp_print_macro_name (MP mp,pointer a, pointer n);
14945 void mp_print_macro_name (MP mp,pointer a, pointer n) {
14946 pointer p,q; /* they traverse the first part of |a| */
14952 mp_print_text(info(info(link(a))));
14955 while ( link(q)!=null ) q=link(q);
14956 link(q)=info(link(a));
14957 mp_show_token_list(mp, p,null,1000,0);
14963 @ @<Declare the procedure called |print_arg|@>=
14964 void mp_print_arg (MP mp,pointer q, integer n, pointer b) ;
14967 void mp_print_arg (MP mp,pointer q, integer n, pointer b) {
14968 if ( link(q)==mp_void ) mp_print_nl(mp, "(EXPR");
14969 else if ( (b<text_base)&&(b!=text_macro) ) mp_print_nl(mp, "(SUFFIX");
14970 else mp_print_nl(mp, "(TEXT");
14971 mp_print_int(mp, n); mp_print(mp, ")<-");
14972 if ( link(q)==mp_void ) mp_print_exp(mp, q,1);
14973 else mp_show_token_list(mp, q,null,1000,0);
14976 @ @<Determine the number |n| of arguments already supplied...@>=
14978 n=1; tail=arg_list;
14979 while ( link(tail)!=null ) {
14980 incr(n); tail=link(tail);
14984 @ @<Scan the remaining arguments, if any; set |r|...@>=
14985 mp->cur_cmd=comma+1; /* anything |<>comma| will do */
14986 while ( info(r)>=expr_base ) {
14987 @<Scan the delimited argument represented by |info(r)|@>;
14990 if ( mp->cur_cmd==comma ) {
14991 print_err("Too many arguments to ");
14992 @.Too many arguments...@>
14993 mp_print_macro_name(mp, arg_list,macro_name); mp_print_char(mp, ';');
14994 mp_print_nl(mp, " Missing `"); mp_print_text(r_delim);
14996 mp_print(mp, "' has been inserted");
14997 help3("I'm going to assume that the comma I just read was a")
14998 ("right delimiter, and then I'll begin expanding the macro.")
14999 ("You might want to delete some tokens before continuing.");
15002 if ( info(r)!=general_macro ) {
15003 @<Scan undelimited argument(s)@>;
15007 @ At this point, the reader will find it advisable to review the explanation
15008 of token list format that was presented earlier, paying special attention to
15009 the conventions that apply only at the beginning of a macro's token list.
15011 On the other hand, the reader will have to take the expression-parsing
15012 aspects of the following program on faith; we will explain |cur_type|
15013 and |cur_exp| later. (Several things in this program depend on each other,
15014 and it's necessary to jump into the circle somewhere.)
15016 @<Scan the delimited argument represented by |info(r)|@>=
15017 if ( mp->cur_cmd!=comma ) {
15019 if ( mp->cur_cmd!=left_delimiter ) {
15020 print_err("Missing argument to ");
15021 @.Missing argument...@>
15022 mp_print_macro_name(mp, arg_list,macro_name);
15023 help3("That macro has more parameters than you thought.")
15024 ("I'll continue by pretending that each missing argument")
15025 ("is either zero or null.");
15026 if ( info(r)>=suffix_base ) {
15027 mp->cur_exp=null; mp->cur_type=mp_token_list;
15029 mp->cur_exp=0; mp->cur_type=mp_known;
15031 mp_back_error(mp); mp->cur_cmd=right_delimiter;
15034 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
15036 @<Scan the argument represented by |info(r)|@>;
15037 if ( mp->cur_cmd!=comma )
15038 @<Check that the proper right delimiter was present@>;
15040 @<Append the current expression to |arg_list|@>
15042 @ @<Check that the proper right delim...@>=
15043 if ( (mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15044 if ( info(link(r))>=expr_base ) {
15045 mp_missing_err(mp, ",");
15047 help3("I've finished reading a macro argument and am about to")
15048 ("read another; the arguments weren't delimited correctly.")
15049 ("You might want to delete some tokens before continuing.");
15050 mp_back_error(mp); mp->cur_cmd=comma;
15052 mp_missing_err(mp, str(text(r_delim)));
15054 help2("I've gotten to the end of the macro parameter list.")
15055 ("You might want to delete some tokens before continuing.");
15060 @ A \&{suffix} or \&{text} parameter will be have been scanned as
15061 a token list pointed to by |cur_exp|, in which case we will have
15062 |cur_type=token_list|.
15064 @<Append the current expression to |arg_list|@>=
15066 p=mp_get_avail(mp);
15067 if ( mp->cur_type==mp_token_list ) info(p)=mp->cur_exp;
15068 else info(p)=mp_stash_cur_exp(mp);
15069 if ( mp->internal[mp_tracing_macros]>0 ) {
15070 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,info(r));
15071 mp_end_diagnostic(mp, false);
15073 if ( arg_list==null ) arg_list=p;
15078 @ @<Scan the argument represented by |info(r)|@>=
15079 if ( info(r)>=text_base ) {
15080 mp_scan_text_arg(mp, l_delim,r_delim);
15083 if ( info(r)>=suffix_base ) mp_scan_suffix(mp);
15084 else mp_scan_expression(mp);
15087 @ The parameters to |scan_text_arg| are either a pair of delimiters
15088 or zero; the latter case is for undelimited text arguments, which
15089 end with the first semicolon or \&{endgroup} or \&{end} that is not
15090 contained in a group.
15092 @<Declare the procedure called |scan_text_arg|@>=
15093 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) ;
15096 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) {
15097 integer balance; /* excess of |l_delim| over |r_delim| */
15098 pointer p; /* list tail */
15099 mp->warning_info=l_delim; mp->scanner_status=absorbing;
15100 p=hold_head; balance=1; link(hold_head)=null;
15103 if ( l_delim==0 ) {
15104 @<Adjust the balance for an undelimited argument; |break| if done@>;
15106 @<Adjust the balance for a delimited argument; |break| if done@>;
15108 link(p)=mp_cur_tok(mp); p=link(p);
15110 mp->cur_exp=link(hold_head); mp->cur_type=mp_token_list;
15111 mp->scanner_status=normal;
15114 @ @<Adjust the balance for a delimited argument...@>=
15115 if ( mp->cur_cmd==right_delimiter ) {
15116 if ( mp->cur_mod==l_delim ) {
15118 if ( balance==0 ) break;
15120 } else if ( mp->cur_cmd==left_delimiter ) {
15121 if ( mp->cur_mod==r_delim ) incr(balance);
15124 @ @<Adjust the balance for an undelimited...@>=
15125 if ( end_of_statement ) { /* |cur_cmd=semicolon|, |end_group|, or |stop| */
15126 if ( balance==1 ) { break; }
15127 else { if ( mp->cur_cmd==end_group ) decr(balance); }
15128 } else if ( mp->cur_cmd==begin_group ) {
15132 @ @<Scan undelimited argument(s)@>=
15134 if ( info(r)<text_macro ) {
15136 if ( info(r)!=suffix_macro ) {
15137 if ( (mp->cur_cmd==equals)||(mp->cur_cmd==assignment) ) mp_get_x_next(mp);
15141 case primary_macro:mp_scan_primary(mp); break;
15142 case secondary_macro:mp_scan_secondary(mp); break;
15143 case tertiary_macro:mp_scan_tertiary(mp); break;
15144 case expr_macro:mp_scan_expression(mp); break;
15146 @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
15149 @<Scan a suffix with optional delimiters@>;
15151 case text_macro:mp_scan_text_arg(mp, 0,0); break;
15152 } /* there are no other cases */
15154 @<Append the current expression to |arg_list|@>;
15157 @ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
15159 mp_scan_expression(mp); p=mp_get_avail(mp); info(p)=mp_stash_cur_exp(mp);
15160 if ( mp->internal[mp_tracing_macros]>0 ) {
15161 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,0);
15162 mp_end_diagnostic(mp, false);
15164 if ( arg_list==null ) arg_list=p; else link(tail)=p;
15166 if ( mp->cur_cmd!=of_token ) {
15167 mp_missing_err(mp, "of"); mp_print(mp, " for ");
15169 mp_print_macro_name(mp, arg_list,macro_name);
15170 help1("I've got the first argument; will look now for the other.");
15173 mp_get_x_next(mp); mp_scan_primary(mp);
15176 @ @<Scan a suffix with optional delimiters@>=
15178 if ( mp->cur_cmd!=left_delimiter ) {
15181 l_delim=mp->cur_sym; r_delim=mp->cur_mod; mp_get_x_next(mp);
15183 mp_scan_suffix(mp);
15184 if ( l_delim!=null ) {
15185 if ((mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15186 mp_missing_err(mp, str(text(r_delim)));
15188 help2("I've gotten to the end of the macro parameter list.")
15189 ("You might want to delete some tokens before continuing.");
15196 @ Before we put a new token list on the input stack, it is wise to clean off
15197 all token lists that have recently been depleted. Then a user macro that ends
15198 with a call to itself will not require unbounded stack space.
15200 @<Feed the arguments and replacement text to the scanner@>=
15201 while ( token_state &&(loc==null) ) mp_end_token_list(mp); /* conserve stack space */
15202 if ( mp->param_ptr+n>mp->max_param_stack ) {
15203 mp->max_param_stack=mp->param_ptr+n;
15204 if ( mp->max_param_stack>mp->param_size )
15205 mp_overflow(mp, "parameter stack size",mp->param_size);
15206 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15208 mp_begin_token_list(mp, def_ref,macro); name=macro_name; loc=r;
15212 mp->param_stack[mp->param_ptr]=info(p); incr(mp->param_ptr); p=link(p);
15214 mp_flush_list(mp, arg_list);
15217 @ It's sometimes necessary to put a single argument onto |param_stack|.
15218 The |stack_argument| subroutine does this.
15220 @c void mp_stack_argument (MP mp,pointer p) {
15221 if ( mp->param_ptr==mp->max_param_stack ) {
15222 incr(mp->max_param_stack);
15223 if ( mp->max_param_stack>mp->param_size )
15224 mp_overflow(mp, "parameter stack size",mp->param_size);
15225 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15227 mp->param_stack[mp->param_ptr]=p; incr(mp->param_ptr);
15230 @* \[33] Conditional processing.
15231 Let's consider now the way \&{if} commands are handled.
15233 Conditions can be inside conditions, and this nesting has a stack
15234 that is independent of other stacks.
15235 Four global variables represent the top of the condition stack:
15236 |cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
15237 we are processing \&{if} or \&{elseif}; |if_limit| specifies
15238 the largest code of a |fi_or_else| command that is syntactically legal;
15239 and |if_line| is the line number at which the current conditional began.
15241 If no conditions are currently in progress, the condition stack has the
15242 special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
15243 Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
15244 |link| fields of the first word contain |if_limit|, |cur_if|, and
15245 |cond_ptr| at the next level, and the second word contains the
15246 corresponding |if_line|.
15248 @d if_node_size 2 /* number of words in stack entry for conditionals */
15249 @d if_line_field(A) mp->mem[(A)+1].cint
15250 @d if_code 1 /* code for \&{if} being evaluated */
15251 @d fi_code 2 /* code for \&{fi} */
15252 @d else_code 3 /* code for \&{else} */
15253 @d else_if_code 4 /* code for \&{elseif} */
15256 pointer cond_ptr; /* top of the condition stack */
15257 integer if_limit; /* upper bound on |fi_or_else| codes */
15258 small_number cur_if; /* type of conditional being worked on */
15259 integer if_line; /* line where that conditional began */
15262 mp->cond_ptr=null; mp->if_limit=normal; mp->cur_if=0; mp->if_line=0;
15265 mp_primitive(mp, "if",if_test,if_code);
15266 @:if_}{\&{if} primitive@>
15267 mp_primitive(mp, "fi",fi_or_else,fi_code); mp->eqtb[frozen_fi]=mp->eqtb[mp->cur_sym];
15268 @:fi_}{\&{fi} primitive@>
15269 mp_primitive(mp, "else",fi_or_else,else_code);
15270 @:else_}{\&{else} primitive@>
15271 mp_primitive(mp, "elseif",fi_or_else,else_if_code);
15272 @:else_if_}{\&{elseif} primitive@>
15274 @ @<Cases of |print_cmd_mod|...@>=
15278 case if_code:mp_print(mp, "if"); break;
15279 case fi_code:mp_print(mp, "fi"); break;
15280 case else_code:mp_print(mp, "else"); break;
15281 default: mp_print(mp, "elseif"); break;
15285 @ Here is a procedure that ignores text until coming to an \&{elseif},
15286 \&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
15287 nesting. After it has acted, |cur_mod| will indicate the token that
15290 \MP's smallest two command codes are |if_test| and |fi_or_else|; this
15291 makes the skipping process a bit simpler.
15294 void mp_pass_text (MP mp) {
15296 mp->scanner_status=skipping;
15297 mp->warning_info=mp_true_line(mp);
15300 if ( mp->cur_cmd<=fi_or_else ) {
15301 if ( mp->cur_cmd<fi_or_else ) {
15305 if ( mp->cur_mod==fi_code ) decr(l);
15308 @<Decrease the string reference count,
15309 if the current token is a string@>;
15312 mp->scanner_status=normal;
15315 @ @<Decrease the string reference count...@>=
15316 if ( mp->cur_cmd==string_token ) { delete_str_ref(mp->cur_mod); }
15318 @ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
15319 if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
15320 condition has been evaluated, a colon will be inserted.
15321 A construction like `\.{if fi}' would otherwise get \MP\ confused.
15323 @<Push the condition stack@>=
15324 { p=mp_get_node(mp, if_node_size); link(p)=mp->cond_ptr; type(p)=mp->if_limit;
15325 name_type(p)=mp->cur_if; if_line_field(p)=mp->if_line;
15326 mp->cond_ptr=p; mp->if_limit=if_code; mp->if_line=mp_true_line(mp);
15327 mp->cur_if=if_code;
15330 @ @<Pop the condition stack@>=
15331 { p=mp->cond_ptr; mp->if_line=if_line_field(p);
15332 mp->cur_if=name_type(p); mp->if_limit=type(p); mp->cond_ptr=link(p);
15333 mp_free_node(mp, p,if_node_size);
15336 @ Here's a procedure that changes the |if_limit| code corresponding to
15337 a given value of |cond_ptr|.
15339 @c void mp_change_if_limit (MP mp,small_number l, pointer p) {
15341 if ( p==mp->cond_ptr ) {
15342 mp->if_limit=l; /* that's the easy case */
15346 if ( q==null ) mp_confusion(mp, "if");
15347 @:this can't happen if}{\quad if@>
15348 if ( link(q)==p ) {
15356 @ The user is supposed to put colons into the proper parts of conditional
15357 statements. Therefore, \MP\ has to check for their presence.
15360 void mp_check_colon (MP mp) {
15361 if ( mp->cur_cmd!=colon ) {
15362 mp_missing_err(mp, ":");
15364 help2("There should've been a colon after the condition.")
15365 ("I shall pretend that one was there.");;
15370 @ A condition is started when the |get_x_next| procedure encounters
15371 an |if_test| command; in that case |get_x_next| calls |conditional|,
15372 which is a recursive procedure.
15375 @c void mp_conditional (MP mp) {
15376 pointer save_cond_ptr; /* |cond_ptr| corresponding to this conditional */
15377 int new_if_limit; /* future value of |if_limit| */
15378 pointer p; /* temporary register */
15379 @<Push the condition stack@>;
15380 save_cond_ptr=mp->cond_ptr;
15382 mp_get_boolean(mp); new_if_limit=else_if_code;
15383 if ( mp->internal[mp_tracing_commands]>unity ) {
15384 @<Display the boolean value of |cur_exp|@>;
15387 mp_check_colon(mp);
15388 if ( mp->cur_exp==true_code ) {
15389 mp_change_if_limit(mp, new_if_limit,save_cond_ptr);
15390 return; /* wait for \&{elseif}, \&{else}, or \&{fi} */
15392 @<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
15394 mp->cur_if=mp->cur_mod; mp->if_line=mp_true_line(mp);
15395 if ( mp->cur_mod==fi_code ) {
15396 @<Pop the condition stack@>
15397 } else if ( mp->cur_mod==else_if_code ) {
15400 mp->cur_exp=true_code; new_if_limit=fi_code; mp_get_x_next(mp);
15405 @ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
15406 \&{else}: \\{bar} \&{fi}', the first \&{else}
15407 that we come to after learning that the \&{if} is false is not the
15408 \&{else} we're looking for. Hence the following curious logic is needed.
15410 @<Skip to \&{elseif}...@>=
15413 if ( mp->cond_ptr==save_cond_ptr ) goto DONE;
15414 else if ( mp->cur_mod==fi_code ) @<Pop the condition stack@>;
15418 @ @<Display the boolean value...@>=
15419 { mp_begin_diagnostic(mp);
15420 if ( mp->cur_exp==true_code ) mp_print(mp, "{true}");
15421 else mp_print(mp, "{false}");
15422 mp_end_diagnostic(mp, false);
15425 @ The processing of conditionals is complete except for the following
15426 code, which is actually part of |get_x_next|. It comes into play when
15427 \&{elseif}, \&{else}, or \&{fi} is scanned.
15429 @<Terminate the current conditional and skip to \&{fi}@>=
15430 if ( mp->cur_mod>mp->if_limit ) {
15431 if ( mp->if_limit==if_code ) { /* condition not yet evaluated */
15432 mp_missing_err(mp, ":");
15434 mp_back_input(mp); mp->cur_sym=frozen_colon; mp_ins_error(mp);
15436 print_err("Extra "); mp_print_cmd_mod(mp, fi_or_else,mp->cur_mod);
15440 help1("I'm ignoring this; it doesn't match any if.");
15444 while ( mp->cur_mod!=fi_code ) mp_pass_text(mp); /* skip to \&{fi} */
15445 @<Pop the condition stack@>;
15448 @* \[34] Iterations.
15449 To bring our treatment of |get_x_next| to a close, we need to consider what
15450 \MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
15452 There's a global variable |loop_ptr| that keeps track of the \&{for} loops
15453 that are currently active. If |loop_ptr=null|, no loops are in progress;
15454 otherwise |info(loop_ptr)| points to the iterative text of the current
15455 (innermost) loop, and |link(loop_ptr)| points to the data for any other
15456 loops that enclose the current one.
15458 A loop-control node also has two other fields, called |loop_type| and
15459 |loop_list|, whose contents depend on the type of loop:
15461 \yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
15462 points to a list of one-word nodes whose |info| fields point to the
15463 remaining argument values of a suffix list and expression list.
15465 \yskip\indent|loop_type(loop_ptr)=mp_void| means that the current loop is
15468 \yskip\indent|loop_type(loop_ptr)=progression_flag| means that
15469 |p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
15470 |step_size(p)|, and |final_value(p)| contain the data for an arithmetic
15473 \yskip\indent|loop_type(loop_ptr)=p>mp_void| means that |p| points to an edge
15474 header and |loop_list(loop_ptr)| points into the graphical object list for
15477 \yskip\noindent In the case of a progression node, the first word is not used
15478 because the link field of words in the dynamic memory area cannot be arbitrary.
15480 @d loop_list_loc(A) ((A)+1) /* where the |loop_list| field resides */
15481 @d loop_type(A) info(loop_list_loc((A))) /* the type of \&{for} loop */
15482 @d loop_list(A) link(loop_list_loc((A))) /* the remaining list elements */
15483 @d loop_node_size 2 /* the number of words in a loop control node */
15484 @d progression_node_size 4 /* the number of words in a progression node */
15485 @d step_size(A) mp->mem[(A)+2].sc /* the step size in an arithmetic progression */
15486 @d final_value(A) mp->mem[(A)+3].sc /* the final value in an arithmetic progression */
15487 @d progression_flag (null+2)
15488 /* |loop_type| value when |loop_list| points to a progression node */
15491 pointer loop_ptr; /* top of the loop-control-node stack */
15496 @ If the expressions that define an arithmetic progression in
15497 a \&{for} loop don't have known numeric values, the |bad_for|
15498 subroutine screams at the user.
15500 @c void mp_bad_for (MP mp, char * s) {
15501 mp_disp_err(mp, null,"Improper "); /* show the bad expression above the message */
15502 @.Improper...replaced by 0@>
15503 mp_print(mp, s); mp_print(mp, " has been replaced by 0");
15504 help4("When you say `for x=a step b until c',")
15505 ("the initial value `a' and the step size `b'")
15506 ("and the final value `c' must have known numeric values.")
15507 ("I'm zeroing this one. Proceed, with fingers crossed.");
15508 mp_put_get_flush_error(mp, 0);
15511 @ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
15512 has just been scanned. (This code requires slight familiarity with
15513 expression-parsing routines that we have not yet discussed; but it seems
15514 to belong in the present part of the program, even though the original author
15515 didn't write it until later. The reader may wish to come back to it.)
15517 @c void mp_begin_iteration (MP mp) {
15518 halfword m; /* |expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes}) */
15519 halfword n; /* hash address of the current symbol */
15520 pointer s; /* the new loop-control node */
15521 pointer p; /* substitution list for |scan_toks| */
15522 pointer q; /* link manipulation register */
15523 pointer pp; /* a new progression node */
15524 m=mp->cur_mod; n=mp->cur_sym; s=mp_get_node(mp, loop_node_size);
15525 if ( m==start_forever ){
15526 loop_type(s)=mp_void; p=null; mp_get_x_next(mp);
15528 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
15529 info(p)=mp->cur_sym; value(p)=m;
15531 if ( mp->cur_cmd==within_token ) {
15532 @<Set up a picture iteration@>;
15534 @<Check for the |"="| or |":="| in a loop header@>;
15535 @<Scan the values to be used in the loop@>;
15538 @<Check for the presence of a colon@>;
15539 @<Scan the loop text and put it on the loop control stack@>;
15540 mp_resume_iteration(mp);
15543 @ @<Check for the |"="| or |":="| in a loop header@>=
15544 if ( (mp->cur_cmd!=equals)&&(mp->cur_cmd!=assignment) ) {
15545 mp_missing_err(mp, "=");
15547 help3("The next thing in this loop should have been `=' or `:='.")
15548 ("But don't worry; I'll pretend that an equals sign")
15549 ("was present, and I'll look for the values next.");
15553 @ @<Check for the presence of a colon@>=
15554 if ( mp->cur_cmd!=colon ) {
15555 mp_missing_err(mp, ":");
15557 help3("The next thing in this loop should have been a `:'.")
15558 ("So I'll pretend that a colon was present;")
15559 ("everything from here to `endfor' will be iterated.");
15563 @ We append a special |frozen_repeat_loop| token in place of the
15564 `\&{endfor}' at the end of the loop. This will come through \MP's scanner
15565 at the proper time to cause the loop to be repeated.
15567 (If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
15568 he will be foiled by the |get_symbol| routine, which keeps frozen
15569 tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
15570 token, so it won't be lost accidentally.)
15572 @ @<Scan the loop text...@>=
15573 q=mp_get_avail(mp); info(q)=frozen_repeat_loop;
15574 mp->scanner_status=loop_defining; mp->warning_info=n;
15575 info(s)=mp_scan_toks(mp, iteration,p,q,0); mp->scanner_status=normal;
15576 link(s)=mp->loop_ptr; mp->loop_ptr=s
15578 @ @<Initialize table...@>=
15579 eq_type(frozen_repeat_loop)=repeat_loop+outer_tag;
15580 text(frozen_repeat_loop)=intern(" ENDFOR");
15582 @ The loop text is inserted into \MP's scanning apparatus by the
15583 |resume_iteration| routine.
15585 @c void mp_resume_iteration (MP mp) {
15586 pointer p,q; /* link registers */
15587 p=loop_type(mp->loop_ptr);
15588 if ( p==progression_flag ) {
15589 p=loop_list(mp->loop_ptr); /* now |p| points to a progression node */
15590 mp->cur_exp=value(p);
15591 if ( @<The arithmetic progression has ended@> ) {
15592 mp_stop_iteration(mp);
15595 mp->cur_type=mp_known; q=mp_stash_cur_exp(mp); /* make |q| an \&{expr} argument */
15596 value(p)=mp->cur_exp+step_size(p); /* set |value(p)| for the next iteration */
15597 } else if ( p==null ) {
15598 p=loop_list(mp->loop_ptr);
15600 mp_stop_iteration(mp);
15603 loop_list(mp->loop_ptr)=link(p); q=info(p); free_avail(p);
15604 } else if ( p==mp_void ) {
15605 mp_begin_token_list(mp, info(mp->loop_ptr),forever_text); return;
15607 @<Make |q| a capsule containing the next picture component from
15608 |loop_list(loop_ptr)| or |goto not_found|@>;
15610 mp_begin_token_list(mp, info(mp->loop_ptr),loop_text);
15611 mp_stack_argument(mp, q);
15612 if ( mp->internal[mp_tracing_commands]>unity ) {
15613 @<Trace the start of a loop@>;
15617 mp_stop_iteration(mp);
15620 @ @<The arithmetic progression has ended@>=
15621 ((step_size(p)>0)&&(mp->cur_exp>final_value(p)))||
15622 ((step_size(p)<0)&&(mp->cur_exp<final_value(p)))
15624 @ @<Trace the start of a loop@>=
15626 mp_begin_diagnostic(mp); mp_print_nl(mp, "{loop value=");
15628 if ( (q!=null)&&(link(q)==mp_void) ) mp_print_exp(mp, q,1);
15629 else mp_show_token_list(mp, q,null,50,0);
15630 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
15633 @ @<Make |q| a capsule containing the next picture component from...@>=
15634 { q=loop_list(mp->loop_ptr);
15635 if ( q==null ) goto NOT_FOUND;
15636 skip_component(q) goto NOT_FOUND;
15637 mp->cur_exp=mp_copy_objects(mp, loop_list(mp->loop_ptr),q);
15638 mp_init_bbox(mp, mp->cur_exp);
15639 mp->cur_type=mp_picture_type;
15640 loop_list(mp->loop_ptr)=q;
15641 q=mp_stash_cur_exp(mp);
15644 @ A level of loop control disappears when |resume_iteration| has decided
15645 not to resume, or when an \&{exitif} construction has removed the loop text
15646 from the input stack.
15648 @c void mp_stop_iteration (MP mp) {
15649 pointer p,q; /* the usual */
15650 p=loop_type(mp->loop_ptr);
15651 if ( p==progression_flag ) {
15652 mp_free_node(mp, loop_list(mp->loop_ptr),progression_node_size);
15653 } else if ( p==null ){
15654 q=loop_list(mp->loop_ptr);
15655 while ( q!=null ) {
15658 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
15659 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
15661 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
15664 p=q; q=link(q); free_avail(p);
15666 } else if ( p>progression_flag ) {
15667 delete_edge_ref(p);
15669 p=mp->loop_ptr; mp->loop_ptr=link(p); mp_flush_token_list(mp, info(p));
15670 mp_free_node(mp, p,loop_node_size);
15673 @ Now that we know all about loop control, we can finish up
15674 the missing portion of |begin_iteration| and we'll be done.
15676 The following code is performed after the `\.=' has been scanned in
15677 a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
15678 (if |m=suffix_base|).
15680 @<Scan the values to be used in the loop@>=
15681 loop_type(s)=null; q=loop_list_loc(s); link(q)=null; /* |link(q)=loop_list(s)| */
15684 if ( m!=expr_base ) {
15685 mp_scan_suffix(mp);
15687 if ( mp->cur_cmd>=colon ) if ( mp->cur_cmd<=comma )
15689 mp_scan_expression(mp);
15690 if ( mp->cur_cmd==step_token ) if ( q==loop_list_loc(s) ) {
15691 @<Prepare for step-until construction and |break|@>;
15693 mp->cur_exp=mp_stash_cur_exp(mp);
15695 link(q)=mp_get_avail(mp); q=link(q);
15696 info(q)=mp->cur_exp; mp->cur_type=mp_vacuous;
15699 } while (mp->cur_cmd==comma)
15701 @ @<Prepare for step-until construction and |break|@>=
15703 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "initial value");
15704 pp=mp_get_node(mp, progression_node_size); value(pp)=mp->cur_exp;
15705 mp_get_x_next(mp); mp_scan_expression(mp);
15706 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "step size");
15707 step_size(pp)=mp->cur_exp;
15708 if ( mp->cur_cmd!=until_token ) {
15709 mp_missing_err(mp, "until");
15710 @.Missing `until'@>
15711 help2("I assume you meant to say `until' after `step'.")
15712 ("So I'll look for the final value and colon next.");
15715 mp_get_x_next(mp); mp_scan_expression(mp);
15716 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "final value");
15717 final_value(pp)=mp->cur_exp; loop_list(s)=pp;
15718 loop_type(s)=progression_flag;
15722 @ The last case is when we have just seen ``\&{within}'', and we need to
15723 parse a picture expression and prepare to iterate over it.
15725 @<Set up a picture iteration@>=
15726 { mp_get_x_next(mp);
15727 mp_scan_expression(mp);
15728 @<Make sure the current expression is a known picture@>;
15729 loop_type(s)=mp->cur_exp; mp->cur_type=mp_vacuous;
15730 q=link(dummy_loc(mp->cur_exp));
15732 if ( is_start_or_stop(q) )
15733 if ( mp_skip_1component(mp, q)==null ) q=link(q);
15737 @ @<Make sure the current expression is a known picture@>=
15738 if ( mp->cur_type!=mp_picture_type ) {
15739 mp_disp_err(mp, null,"Improper iteration spec has been replaced by nullpicture");
15740 help1("When you say `for x in p', p must be a known picture.");
15741 mp_put_get_flush_error(mp, mp_get_node(mp, edge_header_size));
15742 mp_init_edges(mp, mp->cur_exp); mp->cur_type=mp_picture_type;
15745 @* \[35] File names.
15746 It's time now to fret about file names. Besides the fact that different
15747 operating systems treat files in different ways, we must cope with the
15748 fact that completely different naming conventions are used by different
15749 groups of people. The following programs show what is required for one
15750 particular operating system; similar routines for other systems are not
15751 difficult to devise.
15752 @^system dependencies@>
15754 \MP\ assumes that a file name has three parts: the name proper; its
15755 ``extension''; and a ``file area'' where it is found in an external file
15756 system. The extension of an input file is assumed to be
15757 `\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
15758 transcript file that records each run of \MP; it is `\.{.tfm}' on the font
15759 metric files that describe characters in any fonts created by \MP; it is
15760 `\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
15761 and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
15762 The file area can be arbitrary on input files, but files are usually
15763 output to the user's current area. If an input file cannot be
15764 found on the specified area, \MP\ will look for it on a special system
15765 area; this special area is intended for commonly used input files.
15767 Simple uses of \MP\ refer only to file names that have no explicit
15768 extension or area. For example, a person usually says `\.{input} \.{cmr10}'
15769 instead of `\.{input} \.{cmr10.new}'. Simple file
15770 names are best, because they make the \MP\ source files portable;
15771 whenever a file name consists entirely of letters and digits, it should be
15772 treated in the same way by all implementations of \MP. However, users
15773 need the ability to refer to other files in their environment, especially
15774 when responding to error messages concerning unopenable files; therefore
15775 we want to let them use the syntax that appears in their favorite
15778 @ \MP\ uses the same conventions that have proved to be satisfactory for
15779 \TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
15780 @^system dependencies@>
15781 the system-independent parts of \MP\ are expressed in terms
15782 of three system-dependent
15783 procedures called |begin_name|, |more_name|, and |end_name|. In
15784 essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
15785 the system-independent driver program does the operations
15786 $$|begin_name|;\,|more_name|(c_1);\,\ldots\,;|more_name|(c_n);
15788 These three procedures communicate with each other via global variables.
15789 Afterwards the file name will appear in the string pool as three strings
15790 called |cur_name|\penalty10000\hskip-.05em,
15791 |cur_area|, and |cur_ext|; the latter two are null (i.e.,
15792 |""|), unless they were explicitly specified by the user.
15794 Actually the situation is slightly more complicated, because \MP\ needs
15795 to know when the file name ends. The |more_name| routine is a function
15796 (with side effects) that returns |true| on the calls |more_name|$(c_1)$,
15797 \dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
15798 returns |false|; or, it returns |true| and $c_n$ is the last character
15799 on the current input line. In other words,
15800 |more_name| is supposed to return |true| unless it is sure that the
15801 file name has been completely scanned; and |end_name| is supposed to be able
15802 to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
15803 whether $|more_name|(c_n)$ returned |true| or |false|.
15806 char * cur_name; /* name of file just scanned */
15807 char * cur_area; /* file area just scanned, or \.{""} */
15808 char * cur_ext; /* file extension just scanned, or \.{""} */
15810 @ It is easier to maintain reference counts if we assign initial values.
15813 mp->cur_name=xstrdup("");
15814 mp->cur_area=xstrdup("");
15815 mp->cur_ext=xstrdup("");
15817 @ @<Dealloc variables@>=
15818 xfree(mp->cur_area);
15819 xfree(mp->cur_name);
15820 xfree(mp->cur_ext);
15822 @ The file names we shall deal with for illustrative purposes have the
15823 following structure: If the name contains `\.>' or `\.:', the file area
15824 consists of all characters up to and including the final such character;
15825 otherwise the file area is null. If the remaining file name contains
15826 `\..', the file extension consists of all such characters from the first
15827 remaining `\..' to the end, otherwise the file extension is null.
15828 @^system dependencies@>
15830 We can scan such file names easily by using two global variables that keep track
15831 of the occurrences of area and extension delimiters. Note that these variables
15832 cannot be of type |pool_pointer| because a string pool compaction could occur
15833 while scanning a file name.
15836 integer area_delimiter;
15837 /* most recent `\.>' or `\.:' relative to |str_start[str_ptr]| */
15838 integer ext_delimiter; /* the relevant `\..', if any */
15840 @ Input files that can't be found in the user's area may appear in standard
15841 system areas called |MP_area| and |MF_area|. (The latter is used when the file
15842 extension is |".mf"|.) The standard system area for font metric files
15843 to be read is |MP_font_area|.
15844 This system area name will, of course, vary from place to place.
15845 @^system dependencies@>
15847 @d MP_area "MPinputs:"
15849 @d MF_area "MFinputs:"
15854 @ Here now is the first of the system-dependent routines for file name scanning.
15855 @^system dependencies@>
15857 @<Declare subroutines for parsing file names@>=
15858 void mp_begin_name (MP mp) {
15859 xfree(mp->cur_name);
15860 xfree(mp->cur_area);
15861 xfree(mp->cur_ext);
15862 mp->area_delimiter=-1;
15863 mp->ext_delimiter=-1;
15866 @ And here's the second.
15867 @^system dependencies@>
15869 @<Declare subroutines for parsing file names@>=
15870 boolean mp_more_name (MP mp, ASCII_code c) {
15874 if ( (c=='>')||(c==':') ) {
15875 mp->area_delimiter=mp->pool_ptr;
15876 mp->ext_delimiter=-1;
15877 } else if ( (c=='.')&&(mp->ext_delimiter<0) ) {
15878 mp->ext_delimiter=mp->pool_ptr;
15880 str_room(1); append_char(c); /* contribute |c| to the current string */
15886 @^system dependencies@>
15888 @d copy_pool_segment(A,B,C) {
15889 A = xmalloc(C+1,sizeof(char));
15890 strncpy(A,(char *)(mp->str_pool+B),C);
15893 @<Declare subroutines for parsing file names@>=
15894 void mp_end_name (MP mp) {
15895 pool_pointer s; /* length of area, name, and extension */
15898 s = mp->str_start[mp->str_ptr];
15899 if ( mp->area_delimiter<0 ) {
15900 mp->cur_area=xstrdup("");
15902 len = mp->area_delimiter-s;
15903 copy_pool_segment(mp->cur_area,s,len);
15906 if ( mp->ext_delimiter<0 ) {
15907 mp->cur_ext=xstrdup("");
15908 len = mp->pool_ptr-s;
15910 copy_pool_segment(mp->cur_ext,mp->ext_delimiter,(mp->pool_ptr-mp->ext_delimiter));
15911 len = mp->ext_delimiter-s;
15913 copy_pool_segment(mp->cur_name,s,len);
15914 mp->pool_ptr=s; /* don't need this partial string */
15917 @ Conversely, here is a routine that takes three strings and prints a file
15918 name that might have produced them. (The routine is system dependent, because
15919 some operating systems put the file area last instead of first.)
15920 @^system dependencies@>
15922 @<Basic printing...@>=
15923 void mp_print_file_name (MP mp, char * n, char * a, char * e) {
15924 mp_print(mp, a); mp_print(mp, n); mp_print(mp, e);
15927 @ Another system-dependent routine is needed to convert three internal
15929 to the |name_of_file| value that is used to open files. The present code
15930 allows both lowercase and uppercase letters in the file name.
15931 @^system dependencies@>
15933 @d append_to_name(A) { c=(A);
15934 if ( k<file_name_size ) {
15935 mp->name_of_file[k]=xchr(c);
15940 @<Declare subroutines for parsing file names@>=
15941 void mp_pack_file_name (MP mp, char *n, char *a, char *e) {
15942 integer k; /* number of positions filled in |name_of_file| */
15943 ASCII_code c; /* character being packed */
15944 char *j; /* a character index */
15948 for (j=a;*j;j++) { append_to_name(*j); }
15950 for (j=n;*j;j++) { append_to_name(*j); }
15952 for (j=e;*j;j++) { append_to_name(*j); }
15954 mp->name_of_file[k]=0;
15958 @ @<Internal library declarations@>=
15959 void mp_pack_file_name (MP mp, char *n, char *a, char *e) ;
15961 @ A messier routine is also needed, since mem file names must be scanned
15962 before \MP's string mechanism has been initialized. We shall use the
15963 global variable |MP_mem_default| to supply the text for default system areas
15964 and extensions related to mem files.
15965 @^system dependencies@>
15967 @d mem_default_length 9 /* length of the |MP_mem_default| string */
15968 @d mem_ext_length 4 /* length of its `\.{.mem}' part */
15969 @d mem_extension ".mem" /* the extension, as a \.{WEB} constant */
15972 char *MP_mem_default;
15973 char *mem_name; /* for commandline */
15975 @ @<Option variables@>=
15976 char *mem_name; /* for commandline */
15978 @ @<Allocate or initialize ...@>=
15979 mp->MP_mem_default = xstrdup("plain.mem");
15980 mp->mem_name = xstrdup(opt->mem_name);
15982 @^system dependencies@>
15984 @ @<Dealloc variables@>=
15985 xfree(mp->MP_mem_default);
15986 xfree(mp->mem_name);
15988 @ @<Check the ``constant'' values for consistency@>=
15989 if ( mem_default_length>file_name_size ) mp->bad=20;
15991 @ Here is the messy routine that was just mentioned. It sets |name_of_file|
15992 from the first |n| characters of |MP_mem_default|, followed by
15993 |buffer[a..b-1]|, followed by the last |mem_ext_length| characters of
15996 We dare not give error messages here, since \MP\ calls this routine before
15997 the |error| routine is ready to roll. Instead, we simply drop excess characters,
15998 since the error will be detected in another way when a strange file name
16000 @^system dependencies@>
16002 @c void mp_pack_buffered_name (MP mp,small_number n, integer a,
16004 integer k; /* number of positions filled in |name_of_file| */
16005 ASCII_code c; /* character being packed */
16006 integer j; /* index into |buffer| or |MP_mem_default| */
16007 if ( n+b-a+1+mem_ext_length>file_name_size )
16008 b=a+file_name_size-n-1-mem_ext_length;
16010 for (j=0;j<n;j++) {
16011 append_to_name(xord((int)mp->MP_mem_default[j]));
16013 for (j=a;j<b;j++) {
16014 append_to_name(mp->buffer[j]);
16016 for (j=mem_default_length-mem_ext_length;
16017 j<mem_default_length;j++) {
16018 append_to_name(xord((int)mp->MP_mem_default[j]));
16020 mp->name_of_file[k]=0;
16024 @ Here is the only place we use |pack_buffered_name|. This part of the program
16025 becomes active when a ``virgin'' \MP\ is trying to get going, just after
16026 the preliminary initialization, or when the user is substituting another
16027 mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
16028 contains the first line of input in |buffer[loc..(last-1)]|, where
16029 |loc<last| and |buffer[loc]<>" "|.
16032 boolean mp_open_mem_file (MP mp) ;
16035 boolean mp_open_mem_file (MP mp) {
16036 int j; /* the first space after the file name */
16037 if (mp->mem_name!=NULL) {
16038 mp->mem_file = (mp->open_file)(mp->mem_name, "rb", mp_filetype_memfile);
16039 if ( mp->mem_file ) return true;
16042 if ( mp->buffer[loc]=='&' ) {
16043 incr(loc); j=loc; mp->buffer[mp->last]=' ';
16044 while ( mp->buffer[j]!=' ' ) incr(j);
16045 mp_pack_buffered_name(mp, 0,loc,j); /* try first without the system file area */
16046 if ( mp_w_open_in(mp, &mp->mem_file) ) goto FOUND;
16048 wterm_ln("Sorry, I can\'t find that mem file; will try PLAIN.");
16049 @.Sorry, I can't find...@>
16052 /* now pull out all the stops: try for the system \.{plain} file */
16053 mp_pack_buffered_name(mp, mem_default_length-mem_ext_length,0,0);
16054 if ( ! mp_w_open_in(mp, &mp->mem_file) ) {
16056 wterm_ln("I can\'t find the PLAIN mem file!\n");
16057 @.I can't find PLAIN...@>
16062 loc=j; return true;
16065 @ Operating systems often make it possible to determine the exact name (and
16066 possible version number) of a file that has been opened. The following routine,
16067 which simply makes a \MP\ string from the value of |name_of_file|, should
16068 ideally be changed to deduce the full name of file~|f|, which is the file
16069 most recently opened, if it is possible to do this in a \PASCAL\ program.
16070 @^system dependencies@>
16073 #define mp_a_make_name_string(A,B) mp_make_name_string(A)
16074 #define mp_b_make_name_string(A,B) mp_make_name_string(A)
16075 #define mp_w_make_name_string(A,B) mp_make_name_string(A)
16078 str_number mp_make_name_string (MP mp) {
16079 int k; /* index into |name_of_file| */
16080 str_room(mp->name_length);
16081 for (k=0;k<mp->name_length;k++) {
16082 append_char(xord((int)mp->name_of_file[k]));
16084 return mp_make_string(mp);
16087 @ Now let's consider the ``driver''
16088 routines by which \MP\ deals with file names
16089 in a system-independent manner. First comes a procedure that looks for a
16090 file name in the input by taking the information from the input buffer.
16091 (We can't use |get_next|, because the conversion to tokens would
16092 destroy necessary information.)
16094 This procedure doesn't allow semicolons or percent signs to be part of
16095 file names, because of other conventions of \MP.
16096 {\sl The {\logos METAFONT\/}book} doesn't
16097 use semicolons or percents immediately after file names, but some users
16098 no doubt will find it natural to do so; therefore system-dependent
16099 changes to allow such characters in file names should probably
16100 be made with reluctance, and only when an entire file name that
16101 includes special characters is ``quoted'' somehow.
16102 @^system dependencies@>
16104 @c void mp_scan_file_name (MP mp) {
16106 while ( mp->buffer[loc]==' ' ) incr(loc);
16108 if ( (mp->buffer[loc]==';')||(mp->buffer[loc]=='%') ) break;
16109 if ( ! mp_more_name(mp, mp->buffer[loc]) ) break;
16115 @ Here is another version that takes its input from a string.
16117 @<Declare subroutines for parsing file names@>=
16118 void mp_str_scan_file (MP mp, str_number s) {
16119 pool_pointer p,q; /* current position and stopping point */
16121 p=mp->str_start[s]; q=str_stop(s);
16123 if ( ! mp_more_name(mp, mp->str_pool[p]) ) break;
16129 @ And one that reads from a |char*|.
16131 @<Declare subroutines for parsing file names@>=
16132 void mp_ptr_scan_file (MP mp, char *s) {
16133 char *p, *q; /* current position and stopping point */
16135 p=s; q=p+strlen(s);
16137 if ( ! mp_more_name(mp, *p)) break;
16144 @ The global variable |job_name| contains the file name that was first
16145 \&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
16146 `\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
16149 char *job_name; /* principal file name */
16150 boolean log_opened; /* has the transcript file been opened? */
16151 char *log_name; /* full name of the log file */
16153 @ @<Option variables@>=
16154 char *job_name; /* principal file name */
16156 @ Initially |job_name=NULL|; it becomes nonzero as soon as the true name is known.
16157 We have |job_name=NULL| if and only if the `\.{log}' file has not been opened,
16158 except of course for a short time just after |job_name| has become nonzero.
16160 @<Allocate or ...@>=
16161 mp->job_name=opt->job_name;
16162 mp->log_opened=false;
16164 @ @<Dealloc variables@>=
16165 xfree(mp->job_name);
16167 @ Here is a routine that manufactures the output file names, assuming that
16168 |job_name<>0|. It ignores and changes the current settings of |cur_area|
16171 @d pack_cur_name mp_pack_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext)
16174 void mp_pack_job_name (MP mp, char *s) ;
16176 @ @c void mp_pack_job_name (MP mp, char *s) { /* |s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn} */
16177 xfree(mp->cur_name); mp->cur_name=xstrdup(mp->job_name);
16178 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16179 xfree(mp->cur_ext); mp->cur_ext=xstrdup(s);
16183 @ If some trouble arises when \MP\ tries to open a file, the following
16184 routine calls upon the user to supply another file name. Parameter~|s|
16185 is used in the error message to identify the type of file; parameter~|e|
16186 is the default extension if none is given. Upon exit from the routine,
16187 variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
16188 ready for another attempt at file opening.
16191 void mp_prompt_file_name (MP mp,char * s, char * e) ;
16193 @ @c void mp_prompt_file_name (MP mp,char * s, char * e) {
16194 size_t k; /* index into |buffer| */
16195 char * saved_cur_name;
16196 if ( mp->interaction==mp_scroll_mode )
16198 if (strcmp(s,"input file name")==0) {
16199 print_err("I can\'t find file `");
16200 @.I can't find file x@>
16202 print_err("I can\'t write on file `");
16204 @.I can't write on file x@>
16205 mp_print_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext);
16206 mp_print(mp, "'.");
16207 if (strcmp(e,"")==0)
16208 mp_show_context(mp);
16209 mp_print_nl(mp, "Please type another "); mp_print(mp, s);
16211 if ( mp->interaction<mp_scroll_mode )
16212 mp_fatal_error(mp, "*** (job aborted, file error in nonstop mode)");
16213 @.job aborted, file error...@>
16214 saved_cur_name = xstrdup(mp->cur_name);
16215 clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
16216 if (strcmp(mp->cur_ext,"")==0)
16218 if (strlen(mp->cur_name)==0) {
16219 mp->cur_name=saved_cur_name;
16221 xfree(saved_cur_name);
16226 @ @<Scan file name in the buffer@>=
16228 mp_begin_name(mp); k=mp->first;
16229 while ( (mp->buffer[k]==' ')&&(k<mp->last) ) incr(k);
16231 if ( k==mp->last ) break;
16232 if ( ! mp_more_name(mp, mp->buffer[k]) ) break;
16238 @ The |open_log_file| routine is used to open the transcript file and to help
16239 it catch up to what has previously been printed on the terminal.
16241 @c void mp_open_log_file (MP mp) {
16242 int old_setting; /* previous |selector| setting */
16243 int k; /* index into |months| and |buffer| */
16244 int l; /* end of first input line */
16245 integer m; /* the current month */
16246 char *months="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
16247 /* abbreviations of month names */
16248 old_setting=mp->selector;
16249 if ( mp->job_name==NULL ) {
16250 mp->job_name=xstrdup("mpout");
16252 mp_pack_job_name(mp,".log");
16253 while ( ! mp_a_open_out(mp, &mp->log_file, mp_filetype_log) ) {
16254 @<Try to get a different log file name@>;
16256 mp->log_name=xstrdup(mp->name_of_file);
16257 mp->selector=log_only; mp->log_opened=true;
16258 @<Print the banner line, including the date and time@>;
16259 mp->input_stack[mp->input_ptr]=mp->cur_input;
16260 /* make sure bottom level is in memory */
16261 mp_print_nl(mp, "**");
16263 l=mp->input_stack[0].limit_field-1; /* last position of first line */
16264 for (k=0;k<=l;k++) mp_print_str(mp, mp->buffer[k]);
16265 mp_print_ln(mp); /* now the transcript file contains the first line of input */
16266 mp->selector=old_setting+2; /* |log_only| or |term_and_log| */
16269 @ @<Dealloc variables@>=
16270 xfree(mp->log_name);
16272 @ Sometimes |open_log_file| is called at awkward moments when \MP\ is
16273 unable to print error messages or even to |show_context|.
16274 The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
16275 routine will not be invoked because |log_opened| will be false.
16277 The normal idea of |mp_batch_mode| is that nothing at all should be written
16278 on the terminal. However, in the unusual case that
16279 no log file could be opened, we make an exception and allow
16280 an explanatory message to be seen.
16282 Incidentally, the program always refers to the log file as a `\.{transcript
16283 file}', because some systems cannot use the extension `\.{.log}' for
16286 @<Try to get a different log file name@>=
16288 mp->selector=term_only;
16289 mp_prompt_file_name(mp, "transcript file name",".log");
16292 @ @<Print the banner...@>=
16295 mp_print(mp, mp->mem_ident); mp_print(mp, " ");
16296 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_day]));
16297 mp_print_char(mp, ' ');
16298 m=mp_round_unscaled(mp, mp->internal[mp_month]);
16299 for (k=3*m-3;k<3*m;k++) { wlog_chr(months[k]); }
16300 mp_print_char(mp, ' ');
16301 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_year]));
16302 mp_print_char(mp, ' ');
16303 m=mp_round_unscaled(mp, mp->internal[mp_time]);
16304 mp_print_dd(mp, m / 60); mp_print_char(mp, ':'); mp_print_dd(mp, m % 60);
16307 @ The |try_extension| function tries to open an input file determined by
16308 |cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
16309 can't find the file in |cur_area| or the appropriate system area.
16311 @c boolean mp_try_extension (MP mp,char *ext) {
16312 mp_pack_file_name(mp, mp->cur_name,mp->cur_area, ext);
16313 in_name=xstrdup(mp->cur_name);
16314 in_area=xstrdup(mp->cur_area);
16315 if ( mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16318 if (strcmp(ext,".mf")==0 ) in_area=xstrdup(MF_area);
16319 else in_area=xstrdup(MP_area);
16320 mp_pack_file_name(mp, mp->cur_name,in_area,ext);
16321 return mp_a_open_in(mp, &cur_file, mp_filetype_program);
16326 @ Let's turn now to the procedure that is used to initiate file reading
16327 when an `\.{input}' command is being processed.
16329 @c void mp_start_input (MP mp) { /* \MP\ will \.{input} something */
16330 char *fname = NULL;
16331 @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
16333 mp_begin_file_reading(mp); /* set up |cur_file| and new level of input */
16334 if ( strlen(mp->cur_ext)==0 ) {
16335 if ( mp_try_extension(mp, ".mp") ) break;
16336 else if ( mp_try_extension(mp, "") ) break;
16337 else if ( mp_try_extension(mp, ".mf") ) break;
16338 /* |else do_nothing; | */
16339 } else if ( mp_try_extension(mp, mp->cur_ext) ) {
16342 mp_end_file_reading(mp); /* remove the level that didn't work */
16343 mp_prompt_file_name(mp, "input file name","");
16345 name=mp_a_make_name_string(mp, cur_file);
16346 fname = xstrdup(mp->name_of_file);
16347 if ( mp->job_name==NULL ) {
16348 mp->job_name=xstrdup(mp->cur_name);
16349 mp_open_log_file(mp);
16350 } /* |open_log_file| doesn't |show_context|, so |limit|
16351 and |loc| needn't be set to meaningful values yet */
16352 if ( ((int)mp->term_offset+(int)strlen(fname)) > (mp->max_print_line-2)) mp_print_ln(mp);
16353 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
16354 mp_print_char(mp, '('); incr(mp->open_parens); mp_print(mp, fname);
16357 @<Flush |name| and replace it with |cur_name| if it won't be needed@>;
16358 @<Read the first line of the new file@>;
16361 @ This code should be omitted if |a_make_name_string| returns something other
16362 than just a copy of its argument and the full file name is needed for opening
16363 \.{MPX} files or implementing the switch-to-editor option.
16364 @^system dependencies@>
16366 @<Flush |name| and replace it with |cur_name| if it won't be needed@>=
16367 mp_flush_string(mp, name); name=rts(mp->cur_name); xfree(mp->cur_name)
16369 @ If the file is empty, it is considered to contain a single blank line,
16370 so there is no need to test the return value.
16372 @<Read the first line...@>=
16375 (void)mp_input_ln(mp, cur_file );
16376 mp_firm_up_the_line(mp);
16377 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
16380 @ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
16381 while ( token_state &&(loc==null) ) mp_end_token_list(mp);
16382 if ( token_state ) {
16383 print_err("File names can't appear within macros");
16384 @.File names can't...@>
16385 help3("Sorry...I've converted what follows to tokens,")
16386 ("possibly garbaging the name you gave.")
16387 ("Please delete the tokens and insert the name again.");
16390 if ( file_state ) {
16391 mp_scan_file_name(mp);
16393 xfree(mp->cur_name); mp->cur_name=xstrdup("");
16394 xfree(mp->cur_ext); mp->cur_ext =xstrdup("");
16395 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16398 @ Sometimes we need to deal with two file names at once. This procedure
16399 copies the given string into a special array for an old file name.
16401 @c void mp_copy_old_name (MP mp,str_number s) {
16402 integer k; /* number of positions filled in |old_file_name| */
16403 pool_pointer j; /* index into |str_pool| */
16405 for (j=mp->str_start[s];j<=str_stop(s)-1;j++) {
16407 if ( k<=file_name_size )
16408 mp->old_file_name[k]=xchr(mp->str_pool[j]);
16410 mp->old_file_name[++k] = 0;
16414 char old_file_name[file_name_size+1]; /* analogous to |name_of_file| */
16416 @ The following simple routine starts reading the \.{MPX} file associated
16417 with the current input file.
16419 @c void mp_start_mpx_input (MP mp) {
16420 mp_pack_file_name(mp, in_name, in_area, ".mpx");
16421 @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16422 |goto not_found| if there is a problem@>;
16423 mp_begin_file_reading(mp);
16424 if ( ! mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16425 mp_end_file_reading(mp);
16428 name=mp_a_make_name_string(mp, cur_file);
16429 mp->mpx_name[index]=name; add_str_ref(name);
16430 @<Read the first line of the new file@>;
16433 @<Explain that the \.{MPX} file can't be read and |succumb|@>;
16436 @ This should ideally be changed to do whatever is necessary to create the
16437 \.{MPX} file given by |name_of_file| if it does not exist or if it is out
16438 of date. This requires invoking \.{MPtoTeX} on the |old_file_name| and passing
16439 the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
16440 completely different typesetting program if suitable postprocessor is
16441 available to perform the function of \.{DVItoMP}.)
16442 @^system dependencies@>
16444 @ @<Exported types@>=
16445 typedef int (*mp_run_make_mpx_command)(MP mp, char *origname, char *mtxname);
16448 mp_run_make_mpx_command run_make_mpx;
16450 @ @<Option variables@>=
16451 mp_run_make_mpx_command run_make_mpx;
16453 @ @<Allocate or initialize ...@>=
16454 set_callback_option(run_make_mpx);
16456 @ @<Internal library declarations@>=
16457 int mp_run_make_mpx (MP mp, char *origname, char *mtxname);
16459 @ The default does nothing.
16461 int mp_run_make_mpx (MP mp, char *origname, char *mtxname) {
16462 if (mp && origname && mtxname) /* for -W */
16469 @ @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16470 |goto not_found| if there is a problem@>=
16471 mp_copy_old_name(mp, name);
16472 if (!(mp->run_make_mpx)(mp, mp->old_file_name, mp->name_of_file))
16475 @ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
16476 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16477 mp_print_nl(mp, ">> ");
16478 mp_print(mp, mp->old_file_name);
16479 mp_print_nl(mp, ">> ");
16480 mp_print(mp, mp->name_of_file);
16481 mp_print_nl(mp, "! Unable to make mpx file");
16482 help4("The two files given above are one of your source files")
16483 ("and an auxiliary file I need to read to find out what your")
16484 ("btex..etex blocks mean. If you don't know why I had trouble,")
16485 ("try running it manually through MPtoTeX, TeX, and DVItoMP");
16488 @ The last file-opening commands are for files accessed via the \&{readfrom}
16489 @:read_from_}{\&{readfrom} primitive@>
16490 operator and the \&{write} command. Such files are stored in separate arrays.
16491 @:write_}{\&{write} primitive@>
16493 @<Types in the outer block@>=
16494 typedef unsigned int readf_index; /* |0..max_read_files| */
16495 typedef unsigned int write_index; /* |0..max_write_files| */
16498 readf_index max_read_files; /* maximum number of simultaneously open \&{readfrom} files */
16499 void ** rd_file; /* \&{readfrom} files */
16500 char ** rd_fname; /* corresponding file name or 0 if file not open */
16501 readf_index read_files; /* number of valid entries in the above arrays */
16502 write_index max_write_files; /* maximum number of simultaneously open \&{write} */
16503 void ** wr_file; /* \&{write} files */
16504 char ** wr_fname; /* corresponding file name or 0 if file not open */
16505 write_index write_files; /* number of valid entries in the above arrays */
16507 @ @<Allocate or initialize ...@>=
16508 mp->max_read_files=8;
16509 mp->rd_file = xmalloc((mp->max_read_files+1),sizeof(void *));
16510 mp->rd_fname = xmalloc((mp->max_read_files+1),sizeof(char *));
16511 memset(mp->rd_fname, 0, sizeof(char *)*(mp->max_read_files+1));
16513 mp->max_write_files=8;
16514 mp->wr_file = xmalloc((mp->max_write_files+1),sizeof(void *));
16515 mp->wr_fname = xmalloc((mp->max_write_files+1),sizeof(char *));
16516 memset(mp->wr_fname, 0, sizeof(char *)*(mp->max_write_files+1));
16520 @ This routine starts reading the file named by string~|s| without setting
16521 |loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
16522 be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
16524 @c boolean mp_start_read_input (MP mp,char *s, readf_index n) {
16525 mp_ptr_scan_file(mp, s);
16527 mp_begin_file_reading(mp);
16528 if ( ! mp_a_open_in(mp, &mp->rd_file[n], (mp_filetype_text+n)) )
16530 if ( ! mp_input_ln(mp, mp->rd_file[n] ) ) {
16531 (mp->close_file)(mp->rd_file[n]);
16534 mp->rd_fname[n]=xstrdup(mp->name_of_file);
16537 mp_end_file_reading(mp);
16541 @ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
16544 void mp_open_write_file (MP mp, char *s, readf_index n) ;
16546 @ @c void mp_open_write_file (MP mp,char *s, readf_index n) {
16547 mp_ptr_scan_file(mp, s);
16549 while ( ! mp_a_open_out(mp, &mp->wr_file[n], (mp_filetype_text+n)) )
16550 mp_prompt_file_name(mp, "file name for write output","");
16551 mp->wr_fname[n]=xstrdup(mp->name_of_file);
16555 @* \[36] Introduction to the parsing routines.
16556 We come now to the central nervous system that sparks many of \MP's activities.
16557 By evaluating expressions, from their primary constituents to ever larger
16558 subexpressions, \MP\ builds the structures that ultimately define complete
16559 pictures or fonts of type.
16561 Four mutually recursive subroutines are involved in this process: We call them
16562 $$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
16563 and |scan_expression|.}$$
16565 Each of them is parameterless and begins with the first token to be scanned
16566 already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
16567 the value of the primary or secondary or tertiary or expression that was
16568 found will appear in the global variables |cur_type| and |cur_exp|. The
16569 token following the expression will be represented in |cur_cmd|, |cur_mod|,
16572 Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
16573 backup mechanisms have been added in order to provide reasonable error
16577 small_number cur_type; /* the type of the expression just found */
16578 integer cur_exp; /* the value of the expression just found */
16583 @ Many different kinds of expressions are possible, so it is wise to have
16584 precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
16587 |cur_type=mp_vacuous| means that this expression didn't turn out to have a
16588 value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
16589 construction in which there was no expression before the \&{endgroup}.
16590 In this case |cur_exp| has some irrelevant value.
16593 |cur_type=mp_boolean_type| means that |cur_exp| is either |true_code|
16597 |cur_type=mp_unknown_boolean| means that |cur_exp| points to a capsule
16598 node that is in the ring of variables equivalent
16599 to at least one undefined boolean variable.
16602 |cur_type=mp_string_type| means that |cur_exp| is a string number (i.e., an
16603 integer in the range |0<=cur_exp<str_ptr|). That string's reference count
16604 includes this particular reference.
16607 |cur_type=mp_unknown_string| means that |cur_exp| points to a capsule
16608 node that is in the ring of variables equivalent
16609 to at least one undefined string variable.
16612 |cur_type=mp_pen_type| means that |cur_exp| points to a node in a pen. Nobody
16613 else points to any of the nodes in this pen. The pen may be polygonal or
16617 |cur_type=mp_unknown_pen| means that |cur_exp| points to a capsule
16618 node that is in the ring of variables equivalent
16619 to at least one undefined pen variable.
16622 |cur_type=mp_path_type| means that |cur_exp| points to a the first node of
16623 a path; nobody else points to this particular path. The control points of
16624 the path will have been chosen.
16627 |cur_type=mp_unknown_path| means that |cur_exp| points to a capsule
16628 node that is in the ring of variables equivalent
16629 to at least one undefined path variable.
16632 |cur_type=mp_picture_type| means that |cur_exp| points to an edge header node.
16633 There may be other pointers to this particular set of edges. The header node
16634 contains a reference count that includes this particular reference.
16637 |cur_type=mp_unknown_picture| means that |cur_exp| points to a capsule
16638 node that is in the ring of variables equivalent
16639 to at least one undefined picture variable.
16642 |cur_type=mp_transform_type| means that |cur_exp| points to a |mp_transform_type|
16643 capsule node. The |value| part of this capsule
16644 points to a transform node that contains six numeric values,
16645 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16648 |cur_type=mp_color_type| means that |cur_exp| points to a |color_type|
16649 capsule node. The |value| part of this capsule
16650 points to a color node that contains three numeric values,
16651 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16654 |cur_type=mp_cmykcolor_type| means that |cur_exp| points to a |mp_cmykcolor_type|
16655 capsule node. The |value| part of this capsule
16656 points to a color node that contains four numeric values,
16657 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16660 |cur_type=mp_pair_type| means that |cur_exp| points to a capsule
16661 node whose type is |mp_pair_type|. The |value| part of this capsule
16662 points to a pair node that contains two numeric values,
16663 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16666 |cur_type=mp_known| means that |cur_exp| is a |scaled| value.
16669 |cur_type=mp_dependent| means that |cur_exp| points to a capsule node whose type
16670 is |dependent|. The |dep_list| field in this capsule points to the associated
16674 |cur_type=mp_proto_dependent| means that |cur_exp| points to a |mp_proto_dependent|
16675 capsule node. The |dep_list| field in this capsule
16676 points to the associated dependency list.
16679 |cur_type=independent| means that |cur_exp| points to a capsule node
16680 whose type is |independent|. This somewhat unusual case can arise, for
16681 example, in the expression
16682 `$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
16685 |cur_type=mp_token_list| means that |cur_exp| points to a linked list of
16686 tokens. This case arises only on the left-hand side of an assignment
16687 (`\.{:=}') operation, under very special circumstances.
16689 \smallskip\noindent
16690 The possible settings of |cur_type| have been listed here in increasing
16691 numerical order. Notice that |cur_type| will never be |mp_numeric_type| or
16692 |suffixed_macro| or |mp_unsuffixed_macro|, although variables of those types
16693 are allowed. Conversely, \MP\ has no variables of type |mp_vacuous| or
16696 @ Capsules are two-word nodes that have a similar meaning
16697 to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|
16698 and |link<=mp_void|; and their |type| field is one of the possibilities for
16699 |cur_type| listed above.
16701 The |value| field of a capsule is, in most cases, the value that
16702 corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
16703 However, when |cur_exp| would point to a capsule,
16704 no extra layer of indirection is present; the |value|
16705 field is what would have been called |value(cur_exp)| if it had not been
16706 encapsulated. Furthermore, if the type is |dependent| or
16707 |mp_proto_dependent|, the |value| field of a capsule is replaced by
16708 |dep_list| and |prev_dep| fields, since dependency lists in capsules are
16709 always part of the general |dep_list| structure.
16711 The |get_x_next| routine is careful not to change the values of |cur_type|
16712 and |cur_exp| when it gets an expanded token. However, |get_x_next| might
16713 call a macro, which might parse an expression, which might execute lots of
16714 commands in a group; hence it's possible that |cur_type| might change
16715 from, say, |mp_unknown_boolean| to |mp_boolean_type|, or from |dependent| to
16716 |known| or |independent|, during the time |get_x_next| is called. The
16717 programs below are careful to stash sensitive intermediate results in
16718 capsules, so that \MP's generality doesn't cause trouble.
16720 Here's a procedure that illustrates these conventions. It takes
16721 the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
16722 and stashes them away in a
16723 capsule. It is not used when |cur_type=mp_token_list|.
16724 After the operation, |cur_type=mp_vacuous|; hence there is no need to
16725 copy path lists or to update reference counts, etc.
16727 The special link |mp_void| is put on the capsule returned by
16728 |stash_cur_exp|, because this procedure is used to store macro parameters
16729 that must be easily distinguishable from token lists.
16731 @<Declare the stashing/unstashing routines@>=
16732 pointer mp_stash_cur_exp (MP mp) {
16733 pointer p; /* the capsule that will be returned */
16734 switch (mp->cur_type) {
16735 case unknown_types:
16736 case mp_transform_type:
16737 case mp_color_type:
16740 case mp_proto_dependent:
16741 case mp_independent:
16742 case mp_cmykcolor_type:
16746 p=mp_get_node(mp, value_node_size); name_type(p)=mp_capsule;
16747 type(p)=mp->cur_type; value(p)=mp->cur_exp;
16750 mp->cur_type=mp_vacuous; link(p)=mp_void;
16754 @ The inverse of |stash_cur_exp| is the following procedure, which
16755 deletes an unnecessary capsule and puts its contents into |cur_type|
16758 The program steps of \MP\ can be divided into two categories: those in
16759 which |cur_type| and |cur_exp| are ``alive'' and those in which they are
16760 ``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
16761 information or not. It's important not to ignore them when they're alive,
16762 and it's important not to pay attention to them when they're dead.
16764 There's also an intermediate category: If |cur_type=mp_vacuous|, then
16765 |cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
16766 and |cur_exp| are alive or dead. In such cases we say that |cur_type|
16767 and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
16768 only when they are alive or dormant.
16770 The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
16771 are alive or dormant. The \\{unstash} procedure assumes that they are
16772 dead or dormant; it resuscitates them.
16774 @<Declare the stashing/unstashing...@>=
16775 void mp_unstash_cur_exp (MP mp,pointer p) ;
16778 void mp_unstash_cur_exp (MP mp,pointer p) {
16779 mp->cur_type=type(p);
16780 switch (mp->cur_type) {
16781 case unknown_types:
16782 case mp_transform_type:
16783 case mp_color_type:
16786 case mp_proto_dependent:
16787 case mp_independent:
16788 case mp_cmykcolor_type:
16792 mp->cur_exp=value(p);
16793 mp_free_node(mp, p,value_node_size);
16798 @ The following procedure prints the values of expressions in an
16799 abbreviated format. If its first parameter |p| is null, the value of
16800 |(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
16801 containing the desired value. The second parameter controls the amount of
16802 output. If it is~0, dependency lists will be abbreviated to
16803 `\.{linearform}' unless they consist of a single term. If it is greater
16804 than~1, complicated structures (pens, pictures, and paths) will be displayed
16807 @<Declare subroutines for printing expressions@>=
16808 @<Declare the procedure called |print_dp|@>;
16809 @<Declare the stashing/unstashing routines@>;
16810 void mp_print_exp (MP mp,pointer p, small_number verbosity) {
16811 boolean restore_cur_exp; /* should |cur_exp| be restored? */
16812 small_number t; /* the type of the expression */
16813 pointer q; /* a big node being displayed */
16814 integer v=0; /* the value of the expression */
16816 restore_cur_exp=false;
16818 p=mp_stash_cur_exp(mp); restore_cur_exp=true;
16821 if ( t<mp_dependent ) v=value(p); else if ( t<mp_independent ) v=dep_list(p);
16822 @<Print an abbreviated value of |v| with format depending on |t|@>;
16823 if ( restore_cur_exp ) mp_unstash_cur_exp(mp, p);
16826 @ @<Print an abbreviated value of |v| with format depending on |t|@>=
16828 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
16829 case mp_boolean_type:
16830 if ( v==true_code ) mp_print(mp, "true"); else mp_print(mp, "false");
16832 case unknown_types: case mp_numeric_type:
16833 @<Display a variable that's been declared but not defined@>;
16835 case mp_string_type:
16836 mp_print_char(mp, '"'); mp_print_str(mp, v); mp_print_char(mp, '"');
16838 case mp_pen_type: case mp_path_type: case mp_picture_type:
16839 @<Display a complex type@>;
16841 case mp_transform_type: case mp_color_type: case mp_pair_type: case mp_cmykcolor_type:
16842 if ( v==null ) mp_print_type(mp, t);
16843 else @<Display a big node@>;
16845 case mp_known:mp_print_scaled(mp, v); break;
16846 case mp_dependent: case mp_proto_dependent:
16847 mp_print_dp(mp, t,v,verbosity);
16849 case mp_independent:mp_print_variable_name(mp, p); break;
16850 default: mp_confusion(mp, "exp"); break;
16851 @:this can't happen exp}{\quad exp@>
16854 @ @<Display a big node@>=
16856 mp_print_char(mp, '('); q=v+mp->big_node_size[t];
16858 if ( type(v)==mp_known ) mp_print_scaled(mp, value(v));
16859 else if ( type(v)==mp_independent ) mp_print_variable_name(mp, v);
16860 else mp_print_dp(mp, type(v),dep_list(v),verbosity);
16862 if ( v!=q ) mp_print_char(mp, ',');
16864 mp_print_char(mp, ')');
16867 @ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
16868 in the log file only, unless the user has given a positive value to
16871 @<Display a complex type@>=
16872 if ( verbosity<=1 ) {
16873 mp_print_type(mp, t);
16875 if ( mp->selector==term_and_log )
16876 if ( mp->internal[mp_tracing_online]<=0 ) {
16877 mp->selector=term_only;
16878 mp_print_type(mp, t); mp_print(mp, " (see the transcript file)");
16879 mp->selector=term_and_log;
16882 case mp_pen_type:mp_print_pen(mp, v,"",false); break;
16883 case mp_path_type:mp_print_path(mp, v,"",false); break;
16884 case mp_picture_type:mp_print_edges(mp, v,"",false); break;
16885 } /* there are no other cases */
16888 @ @<Declare the procedure called |print_dp|@>=
16889 void mp_print_dp (MP mp,small_number t, pointer p,
16890 small_number verbosity) {
16891 pointer q; /* the node following |p| */
16893 if ( (info(q)==null) || (verbosity>0) ) mp_print_dependency(mp, p,t);
16894 else mp_print(mp, "linearform");
16897 @ The displayed name of a variable in a ring will not be a capsule unless
16898 the ring consists entirely of capsules.
16900 @<Display a variable that's been declared but not defined@>=
16901 { mp_print_type(mp, t);
16903 { mp_print_char(mp, ' ');
16904 while ( (name_type(v)==mp_capsule) && (v!=p) ) v=value(v);
16905 mp_print_variable_name(mp, v);
16909 @ When errors are detected during parsing, it is often helpful to
16910 display an expression just above the error message, using |exp_err|
16911 or |disp_err| instead of |print_err|.
16913 @d exp_err(A) mp_disp_err(mp, null,(A)) /* displays the current expression */
16915 @<Declare subroutines for printing expressions@>=
16916 void mp_disp_err (MP mp,pointer p, char *s) {
16917 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16918 mp_print_nl(mp, ">> ");
16920 mp_print_exp(mp, p,1); /* ``medium verbose'' printing of the expression */
16922 mp_print_nl(mp, "! "); mp_print(mp, s);
16927 @ If |cur_type| and |cur_exp| contain relevant information that should
16928 be recycled, we will use the following procedure, which changes |cur_type|
16929 to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
16930 and |cur_exp| as either alive or dormant after this has been done,
16931 because |cur_exp| will not contain a pointer value.
16933 @ @c void mp_flush_cur_exp (MP mp,scaled v) {
16934 switch (mp->cur_type) {
16935 case unknown_types: case mp_transform_type: case mp_color_type: case mp_pair_type:
16936 case mp_dependent: case mp_proto_dependent: case mp_independent: case mp_cmykcolor_type:
16937 mp_recycle_value(mp, mp->cur_exp);
16938 mp_free_node(mp, mp->cur_exp,value_node_size);
16940 case mp_string_type:
16941 delete_str_ref(mp->cur_exp); break;
16942 case mp_pen_type: case mp_path_type:
16943 mp_toss_knot_list(mp, mp->cur_exp); break;
16944 case mp_picture_type:
16945 delete_edge_ref(mp->cur_exp); break;
16949 mp->cur_type=mp_known; mp->cur_exp=v;
16952 @ There's a much more general procedure that is capable of releasing
16953 the storage associated with any two-word value packet.
16955 @<Declare the recycling subroutines@>=
16956 void mp_recycle_value (MP mp,pointer p) ;
16958 @ @c void mp_recycle_value (MP mp,pointer p) {
16959 small_number t; /* a type code */
16960 integer vv; /* another value */
16961 pointer q,r,s,pp; /* link manipulation registers */
16962 integer v=0; /* a value */
16964 if ( t<mp_dependent ) v=value(p);
16966 case undefined: case mp_vacuous: case mp_boolean_type: case mp_known:
16967 case mp_numeric_type:
16969 case unknown_types:
16970 mp_ring_delete(mp, p); break;
16971 case mp_string_type:
16972 delete_str_ref(v); break;
16973 case mp_path_type: case mp_pen_type:
16974 mp_toss_knot_list(mp, v); break;
16975 case mp_picture_type:
16976 delete_edge_ref(v); break;
16977 case mp_cmykcolor_type: case mp_pair_type: case mp_color_type:
16978 case mp_transform_type:
16979 @<Recycle a big node@>; break;
16980 case mp_dependent: case mp_proto_dependent:
16981 @<Recycle a dependency list@>; break;
16982 case mp_independent:
16983 @<Recycle an independent variable@>; break;
16984 case mp_token_list: case mp_structured:
16985 mp_confusion(mp, "recycle"); break;
16986 @:this can't happen recycle}{\quad recycle@>
16987 case mp_unsuffixed_macro: case mp_suffixed_macro:
16988 mp_delete_mac_ref(mp, value(p)); break;
16989 } /* there are no other cases */
16993 @ @<Recycle a big node@>=
16995 q=v+mp->big_node_size[t];
16997 q=q-2; mp_recycle_value(mp, q);
16999 mp_free_node(mp, v,mp->big_node_size[t]);
17002 @ @<Recycle a dependency list@>=
17005 while ( info(q)!=null ) q=link(q);
17006 link(prev_dep(p))=link(q);
17007 prev_dep(link(q))=prev_dep(p);
17008 link(q)=null; mp_flush_node_list(mp, dep_list(p));
17011 @ When an independent variable disappears, it simply fades away, unless
17012 something depends on it. In the latter case, a dependent variable whose
17013 coefficient of dependence is maximal will take its place.
17014 The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
17015 as part of his Ph.D. thesis (Stanford University, December 1982).
17016 @^Zabala Salelles, Ignacio Andres@>
17018 For example, suppose that variable $x$ is being recycled, and that the
17019 only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
17020 we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
17021 will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
17022 we will print `\.{\#\#\# -2x=-y+a}'.
17024 There's a slight complication, however: An independent variable $x$
17025 can occur both in dependency lists and in proto-dependency lists.
17026 This makes it necessary to be careful when deciding which coefficient
17029 Furthermore, this complication is not so slight when
17030 a proto-dependent variable is chosen to become independent. For example,
17031 suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
17032 then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
17033 large coefficient `50'.
17035 In order to deal with these complications without wasting too much time,
17036 we shall link together the occurrences of~$x$ among all the linear
17037 dependencies, maintaining separate lists for the dependent and
17038 proto-dependent cases.
17040 @<Recycle an independent variable@>=
17042 mp->max_c[mp_dependent]=0; mp->max_c[mp_proto_dependent]=0;
17043 mp->max_link[mp_dependent]=null; mp->max_link[mp_proto_dependent]=null;
17045 while ( q!=dep_head ) {
17046 s=value_loc(q); /* now |link(s)=dep_list(q)| */
17049 if ( info(r)==null ) break;;
17050 if ( info(r)!=p ) {
17053 t=type(q); link(s)=link(r); info(r)=q;
17054 if ( abs(value(r))>mp->max_c[t] ) {
17055 @<Record a new maximum coefficient of type |t|@>;
17057 link(r)=mp->max_link[t]; mp->max_link[t]=r;
17063 if ( (mp->max_c[mp_dependent]>0)||(mp->max_c[mp_proto_dependent]>0) ) {
17064 @<Choose a dependent variable to take the place of the disappearing
17065 independent variable, and change all remaining dependencies
17070 @ The code for independency removal makes use of three two-word arrays.
17073 integer max_c[mp_proto_dependent+1]; /* max coefficient magnitude */
17074 pointer max_ptr[mp_proto_dependent+1]; /* where |p| occurs with |max_c| */
17075 pointer max_link[mp_proto_dependent+1]; /* other occurrences of |p| */
17077 @ @<Record a new maximum coefficient...@>=
17079 if ( mp->max_c[t]>0 ) {
17080 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
17082 mp->max_c[t]=abs(value(r)); mp->max_ptr[t]=r;
17085 @ @<Choose a dependent...@>=
17087 if ( (mp->max_c[mp_dependent] / 010000 >= mp->max_c[mp_proto_dependent]) )
17090 t=mp_proto_dependent;
17091 @<Determine the dependency list |s| to substitute for the independent
17093 t=mp_dependent+mp_proto_dependent-t; /* complement |t| */
17094 if ( mp->max_c[t]>0 ) { /* we need to pick up an unchosen dependency */
17095 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
17097 if ( t!=mp_dependent ) { @<Substitute new dependencies in place of |p|@>; }
17098 else { @<Substitute new proto-dependencies in place of |p|@>;}
17099 mp_flush_node_list(mp, s);
17100 if ( mp->fix_needed ) mp_fix_dependencies(mp);
17104 @ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
17105 and |info(s)| points to the dependent variable~|pp| of type~|t| from
17106 whose dependency list we have removed node~|s|. We must reinsert
17107 node~|s| into the dependency list, with coefficient $-1.0$, and with
17108 |pp| as the new independent variable. Since |pp| will have a larger serial
17109 number than any other variable, we can put node |s| at the head of the
17112 @<Determine the dep...@>=
17113 s=mp->max_ptr[t]; pp=info(s); v=value(s);
17114 if ( t==mp_dependent ) value(s)=-fraction_one; else value(s)=-unity;
17115 r=dep_list(pp); link(s)=r;
17116 while ( info(r)!=null ) r=link(r);
17117 q=link(r); link(r)=null;
17118 prev_dep(q)=prev_dep(pp); link(prev_dep(pp))=q;
17120 if ( mp->cur_exp==pp ) if ( mp->cur_type==t ) mp->cur_type=mp_independent;
17121 if ( mp->internal[mp_tracing_equations]>0 ) {
17122 @<Show the transformed dependency@>;
17125 @ Now $(-v)$ times the formerly independent variable~|p| is being replaced
17126 by the dependency list~|s|.
17128 @<Show the transformed...@>=
17129 if ( mp_interesting(mp, p) ) {
17130 mp_begin_diagnostic(mp); mp_print_nl(mp, "### ");
17131 @:]]]\#\#\#_}{\.{\#\#\#}@>
17132 if ( v>0 ) mp_print_char(mp, '-');
17133 if ( t==mp_dependent ) vv=mp_round_fraction(mp, mp->max_c[mp_dependent]);
17134 else vv=mp->max_c[mp_proto_dependent];
17135 if ( vv!=unity ) mp_print_scaled(mp, vv);
17136 mp_print_variable_name(mp, p);
17137 while ( value(p) % s_scale>0 ) {
17138 mp_print(mp, "*4"); value(p)=value(p)-2;
17140 if ( t==mp_dependent ) mp_print_char(mp, '='); else mp_print(mp, " = ");
17141 mp_print_dependency(mp, s,t);
17142 mp_end_diagnostic(mp, false);
17145 @ Finally, there are dependent and proto-dependent variables whose
17146 dependency lists must be brought up to date.
17148 @<Substitute new dependencies...@>=
17149 for (t=mp_dependent;t<=mp_proto_dependent;t++){
17151 while ( r!=null ) {
17153 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17154 mp_make_fraction(mp, value(r),-v),s,t,mp_dependent);
17155 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17156 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17160 @ @<Substitute new proto...@>=
17161 for (t=mp_dependent;t<=mp_proto_dependent;t++) {
17163 while ( r!=null ) {
17165 if ( t==mp_dependent ) { /* for safety's sake, we change |q| to |mp_proto_dependent| */
17166 if ( mp->cur_exp==q ) if ( mp->cur_type==mp_dependent )
17167 mp->cur_type=mp_proto_dependent;
17168 dep_list(q)=mp_p_over_v(mp, dep_list(q),unity,mp_dependent,mp_proto_dependent);
17169 type(q)=mp_proto_dependent; value(r)=mp_round_fraction(mp, value(r));
17171 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17172 mp_make_scaled(mp, value(r),-v),s,mp_proto_dependent,mp_proto_dependent);
17173 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17174 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17178 @ Here are some routines that provide handy combinations of actions
17179 that are often needed during error recovery. For example,
17180 `|flush_error|' flushes the current expression, replaces it by
17181 a given value, and calls |error|.
17183 Errors often are detected after an extra token has already been scanned.
17184 The `\\{put\_get}' routines put that token back before calling |error|;
17185 then they get it back again. (Or perhaps they get another token, if
17186 the user has changed things.)
17189 void mp_flush_error (MP mp,scaled v);
17190 void mp_put_get_error (MP mp);
17191 void mp_put_get_flush_error (MP mp,scaled v) ;
17194 void mp_flush_error (MP mp,scaled v) {
17195 mp_error(mp); mp_flush_cur_exp(mp, v);
17197 void mp_put_get_error (MP mp) {
17198 mp_back_error(mp); mp_get_x_next(mp);
17200 void mp_put_get_flush_error (MP mp,scaled v) {
17201 mp_put_get_error(mp);
17202 mp_flush_cur_exp(mp, v);
17205 @ A global variable |var_flag| is set to a special command code
17206 just before \MP\ calls |scan_expression|, if the expression should be
17207 treated as a variable when this command code immediately follows. For
17208 example, |var_flag| is set to |assignment| at the beginning of a
17209 statement, because we want to know the {\sl location\/} of a variable at
17210 the left of `\.{:=}', not the {\sl value\/} of that variable.
17212 The |scan_expression| subroutine calls |scan_tertiary|,
17213 which calls |scan_secondary|, which calls |scan_primary|, which sets
17214 |var_flag:=0|. In this way each of the scanning routines ``knows''
17215 when it has been called with a special |var_flag|, but |var_flag| is
17218 A variable preceding a command that equals |var_flag| is converted to a
17219 token list rather than a value. Furthermore, an `\.{=}' sign following an
17220 expression with |var_flag=assignment| is not considered to be a relation
17221 that produces boolean expressions.
17225 int var_flag; /* command that wants a variable */
17230 @* \[37] Parsing primary expressions.
17231 The first parsing routine, |scan_primary|, is also the most complicated one,
17232 since it involves so many different cases. But each case---with one
17233 exception---is fairly simple by itself.
17235 When |scan_primary| begins, the first token of the primary to be scanned
17236 should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
17237 of |cur_type| and |cur_exp| should be either dead or dormant, as explained
17238 earlier. If |cur_cmd| is not between |min_primary_command| and
17239 |max_primary_command|, inclusive, a syntax error will be signaled.
17241 @<Declare the basic parsing subroutines@>=
17242 void mp_scan_primary (MP mp) {
17243 pointer p,q,r; /* for list manipulation */
17244 quarterword c; /* a primitive operation code */
17245 int my_var_flag; /* initial value of |my_var_flag| */
17246 pointer l_delim,r_delim; /* hash addresses of a delimiter pair */
17247 @<Other local variables for |scan_primary|@>;
17248 my_var_flag=mp->var_flag; mp->var_flag=0;
17251 @<Supply diagnostic information, if requested@>;
17252 switch (mp->cur_cmd) {
17253 case left_delimiter:
17254 @<Scan a delimited primary@>; break;
17256 @<Scan a grouped primary@>; break;
17258 @<Scan a string constant@>; break;
17259 case numeric_token:
17260 @<Scan a primary that starts with a numeric token@>; break;
17262 @<Scan a nullary operation@>; break;
17263 case unary: case type_name: case cycle: case plus_or_minus:
17264 @<Scan a unary operation@>; break;
17265 case primary_binary:
17266 @<Scan a binary operation with `\&{of}' between its operands@>; break;
17268 @<Convert a suffix to a string@>; break;
17269 case internal_quantity:
17270 @<Scan an internal numeric quantity@>; break;
17271 case capsule_token:
17272 mp_make_exp_copy(mp, mp->cur_mod); break;
17274 @<Scan a variable primary; |goto restart| if it turns out to be a macro@>; break;
17276 mp_bad_exp(mp, "A primary"); goto RESTART; break;
17277 @.A primary expression...@>
17279 mp_get_x_next(mp); /* the routines |goto done| if they don't want this */
17281 if ( mp->cur_cmd==left_bracket ) {
17282 if ( mp->cur_type>=mp_known ) {
17283 @<Scan a mediation construction@>;
17290 @ Errors at the beginning of expressions are flagged by |bad_exp|.
17292 @c void mp_bad_exp (MP mp,char * s) {
17294 print_err(s); mp_print(mp, " expression can't begin with `");
17295 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
17296 mp_print_char(mp, '\'');
17297 help4("I'm afraid I need some sort of value in order to continue,")
17298 ("so I've tentatively inserted `0'. You may want to")
17299 ("delete this zero and insert something else;")
17300 ("see Chapter 27 of The METAFONTbook for an example.");
17301 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17302 mp_back_input(mp); mp->cur_sym=0; mp->cur_cmd=numeric_token;
17303 mp->cur_mod=0; mp_ins_error(mp);
17304 save_flag=mp->var_flag; mp->var_flag=0; mp_get_x_next(mp);
17305 mp->var_flag=save_flag;
17308 @ @<Supply diagnostic information, if requested@>=
17310 if ( mp->panicking ) mp_check_mem(mp, false);
17312 if ( mp->interrupt!=0 ) if ( mp->OK_to_interrupt ) {
17313 mp_back_input(mp); check_interrupt; mp_get_x_next(mp);
17316 @ @<Scan a delimited primary@>=
17318 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
17319 mp_get_x_next(mp); mp_scan_expression(mp);
17320 if ( (mp->cur_cmd==comma) && (mp->cur_type>=mp_known) ) {
17321 @<Scan the rest of a delimited set of numerics@>;
17323 mp_check_delimiter(mp, l_delim,r_delim);
17327 @ The |stash_in| subroutine puts the current (numeric) expression into a field
17328 within a ``big node.''
17330 @c void mp_stash_in (MP mp,pointer p) {
17331 pointer q; /* temporary register */
17332 type(p)=mp->cur_type;
17333 if ( mp->cur_type==mp_known ) {
17334 value(p)=mp->cur_exp;
17336 if ( mp->cur_type==mp_independent ) {
17337 @<Stash an independent |cur_exp| into a big node@>;
17339 mp->mem[value_loc(p)]=mp->mem[value_loc(mp->cur_exp)];
17340 /* |dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)| */
17341 link(prev_dep(p))=p;
17343 mp_free_node(mp, mp->cur_exp,value_node_size);
17345 mp->cur_type=mp_vacuous;
17348 @ In rare cases the current expression can become |independent|. There
17349 may be many dependency lists pointing to such an independent capsule,
17350 so we can't simply move it into place within a big node. Instead,
17351 we copy it, then recycle it.
17353 @ @<Stash an independent |cur_exp|...@>=
17355 q=mp_single_dependency(mp, mp->cur_exp);
17356 if ( q==mp->dep_final ){
17357 type(p)=mp_known; value(p)=0; mp_free_node(mp, q,dep_node_size);
17359 type(p)=mp_dependent; mp_new_dep(mp, p,q);
17361 mp_recycle_value(mp, mp->cur_exp);
17364 @ This code uses the fact that |red_part_loc| and |green_part_loc|
17365 are synonymous with |x_part_loc| and |y_part_loc|.
17367 @<Scan the rest of a delimited set of numerics@>=
17369 p=mp_stash_cur_exp(mp);
17370 mp_get_x_next(mp); mp_scan_expression(mp);
17371 @<Make sure the second part of a pair or color has a numeric type@>;
17372 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
17373 if ( mp->cur_cmd==comma ) type(q)=mp_color_type;
17374 else type(q)=mp_pair_type;
17375 mp_init_big_node(mp, q); r=value(q);
17376 mp_stash_in(mp, y_part_loc(r));
17377 mp_unstash_cur_exp(mp, p);
17378 mp_stash_in(mp, x_part_loc(r));
17379 if ( mp->cur_cmd==comma ) {
17380 @<Scan the last of a triplet of numerics@>;
17382 if ( mp->cur_cmd==comma ) {
17383 type(q)=mp_cmykcolor_type;
17384 mp_init_big_node(mp, q); t=value(q);
17385 mp->mem[cyan_part_loc(t)]=mp->mem[red_part_loc(r)];
17386 value(cyan_part_loc(t))=value(red_part_loc(r));
17387 mp->mem[magenta_part_loc(t)]=mp->mem[green_part_loc(r)];
17388 value(magenta_part_loc(t))=value(green_part_loc(r));
17389 mp->mem[yellow_part_loc(t)]=mp->mem[blue_part_loc(r)];
17390 value(yellow_part_loc(t))=value(blue_part_loc(r));
17391 mp_recycle_value(mp, r);
17393 @<Scan the last of a quartet of numerics@>;
17395 mp_check_delimiter(mp, l_delim,r_delim);
17396 mp->cur_type=type(q);
17400 @ @<Make sure the second part of a pair or color has a numeric type@>=
17401 if ( mp->cur_type<mp_known ) {
17402 exp_err("Nonnumeric ypart has been replaced by 0");
17403 @.Nonnumeric...replaced by 0@>
17404 help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")
17405 ("but after finding a nice `a' I found a `b' that isn't")
17406 ("of numeric type. So I've changed that part to zero.")
17407 ("(The b that I didn't like appears above the error message.)");
17408 mp_put_get_flush_error(mp, 0);
17411 @ @<Scan the last of a triplet of numerics@>=
17413 mp_get_x_next(mp); mp_scan_expression(mp);
17414 if ( mp->cur_type<mp_known ) {
17415 exp_err("Nonnumeric third part has been replaced by 0");
17416 @.Nonnumeric...replaced by 0@>
17417 help3("I've just scanned a color `(a,b,c)' or cmykcolor(a,b,c,d); but the `c'")
17418 ("isn't of numeric type. So I've changed that part to zero.")
17419 ("(The c that I didn't like appears above the error message.)");
17420 mp_put_get_flush_error(mp, 0);
17422 mp_stash_in(mp, blue_part_loc(r));
17425 @ @<Scan the last of a quartet of numerics@>=
17427 mp_get_x_next(mp); mp_scan_expression(mp);
17428 if ( mp->cur_type<mp_known ) {
17429 exp_err("Nonnumeric blackpart has been replaced by 0");
17430 @.Nonnumeric...replaced by 0@>
17431 help3("I've just scanned a cmykcolor `(c,m,y,k)'; but the `k' isn't")
17432 ("of numeric type. So I've changed that part to zero.")
17433 ("(The k that I didn't like appears above the error message.)");
17434 mp_put_get_flush_error(mp, 0);
17436 mp_stash_in(mp, black_part_loc(r));
17439 @ The local variable |group_line| keeps track of the line
17440 where a \&{begingroup} command occurred; this will be useful
17441 in an error message if the group doesn't actually end.
17443 @<Other local variables for |scan_primary|@>=
17444 integer group_line; /* where a group began */
17446 @ @<Scan a grouped primary@>=
17448 group_line=mp_true_line(mp);
17449 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17450 save_boundary_item(p);
17452 mp_do_statement(mp); /* ends with |cur_cmd>=semicolon| */
17453 } while (! (mp->cur_cmd!=semicolon));
17454 if ( mp->cur_cmd!=end_group ) {
17455 print_err("A group begun on line ");
17456 @.A group...never ended@>
17457 mp_print_int(mp, group_line);
17458 mp_print(mp, " never ended");
17459 help2("I saw a `begingroup' back there that hasn't been matched")
17460 ("by `endgroup'. So I've inserted `endgroup' now.");
17461 mp_back_error(mp); mp->cur_cmd=end_group;
17464 /* this might change |cur_type|, if independent variables are recycled */
17465 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17468 @ @<Scan a string constant@>=
17470 mp->cur_type=mp_string_type; mp->cur_exp=mp->cur_mod;
17473 @ Later we'll come to procedures that perform actual operations like
17474 addition, square root, and so on; our purpose now is to do the parsing.
17475 But we might as well mention those future procedures now, so that the
17476 suspense won't be too bad:
17479 |do_nullary(c)| does primitive operations that have no operands (e.g.,
17480 `\&{true}' or `\&{pencircle}');
17483 |do_unary(c)| applies a primitive operation to the current expression;
17486 |do_binary(p,c)| applies a primitive operation to the capsule~|p|
17487 and the current expression.
17489 @<Scan a nullary operation@>=mp_do_nullary(mp, mp->cur_mod)
17491 @ @<Scan a unary operation@>=
17493 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_primary(mp);
17494 mp_do_unary(mp, c); goto DONE;
17497 @ A numeric token might be a primary by itself, or it might be the
17498 numerator of a fraction composed solely of numeric tokens, or it might
17499 multiply the primary that follows (provided that the primary doesn't begin
17500 with a plus sign or a minus sign). The code here uses the facts that
17501 |max_primary_command=plus_or_minus| and
17502 |max_primary_command-1=numeric_token|. If a fraction is found that is less
17503 than unity, we try to retain higher precision when we use it in scalar
17506 @<Other local variables for |scan_primary|@>=
17507 scaled num,denom; /* for primaries that are fractions, like `1/2' */
17509 @ @<Scan a primary that starts with a numeric token@>=
17511 mp->cur_exp=mp->cur_mod; mp->cur_type=mp_known; mp_get_x_next(mp);
17512 if ( mp->cur_cmd!=slash ) {
17516 if ( mp->cur_cmd!=numeric_token ) {
17518 mp->cur_cmd=slash; mp->cur_mod=over; mp->cur_sym=frozen_slash;
17521 num=mp->cur_exp; denom=mp->cur_mod;
17522 if ( denom==0 ) { @<Protest division by zero@>; }
17523 else { mp->cur_exp=mp_make_scaled(mp, num,denom); }
17524 check_arith; mp_get_x_next(mp);
17526 if ( mp->cur_cmd>=min_primary_command ) {
17527 if ( mp->cur_cmd<numeric_token ) { /* in particular, |cur_cmd<>plus_or_minus| */
17528 p=mp_stash_cur_exp(mp); mp_scan_primary(mp);
17529 if ( (abs(num)>=abs(denom))||(mp->cur_type<mp_color_type) ) {
17530 mp_do_binary(mp, p,times);
17532 mp_frac_mult(mp, num,denom);
17533 mp_free_node(mp, p,value_node_size);
17540 @ @<Protest division...@>=
17542 print_err("Division by zero");
17543 @.Division by zero@>
17544 help1("I'll pretend that you meant to divide by 1."); mp_error(mp);
17547 @ @<Scan a binary operation with `\&{of}' between its operands@>=
17549 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
17550 if ( mp->cur_cmd!=of_token ) {
17551 mp_missing_err(mp, "of"); mp_print(mp, " for ");
17552 mp_print_cmd_mod(mp, primary_binary,c);
17554 help1("I've got the first argument; will look now for the other.");
17557 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_primary(mp);
17558 mp_do_binary(mp, p,c); goto DONE;
17561 @ @<Convert a suffix to a string@>=
17563 mp_get_x_next(mp); mp_scan_suffix(mp);
17564 mp->old_setting=mp->selector; mp->selector=new_string;
17565 mp_show_token_list(mp, mp->cur_exp,null,100000,0);
17566 mp_flush_token_list(mp, mp->cur_exp);
17567 mp->cur_exp=mp_make_string(mp); mp->selector=mp->old_setting;
17568 mp->cur_type=mp_string_type;
17572 @ If an internal quantity appears all by itself on the left of an
17573 assignment, we return a token list of length one, containing the address
17574 of the internal quantity plus |hash_end|. (This accords with the conventions
17575 of the save stack, as described earlier.)
17577 @<Scan an internal...@>=
17580 if ( my_var_flag==assignment ) {
17582 if ( mp->cur_cmd==assignment ) {
17583 mp->cur_exp=mp_get_avail(mp);
17584 info(mp->cur_exp)=q+hash_end; mp->cur_type=mp_token_list;
17589 mp->cur_type=mp_known; mp->cur_exp=mp->internal[q];
17592 @ The most difficult part of |scan_primary| has been saved for last, since
17593 it was necessary to build up some confidence first. We can now face the task
17594 of scanning a variable.
17596 As we scan a variable, we build a token list containing the relevant
17597 names and subscript values, simultaneously following along in the
17598 ``collective'' structure to see if we are actually dealing with a macro
17599 instead of a value.
17601 The local variables |pre_head| and |post_head| will point to the beginning
17602 of the prefix and suffix lists; |tail| will point to the end of the list
17603 that is currently growing.
17605 Another local variable, |tt|, contains partial information about the
17606 declared type of the variable-so-far. If |tt>=mp_unsuffixed_macro|, the
17607 relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
17608 doesn't bother to update its information about type. And if
17609 |undefined<tt<mp_unsuffixed_macro|, the precise value of |tt| isn't critical.
17611 @ @<Other local variables for |scan_primary|@>=
17612 pointer pre_head,post_head,tail;
17613 /* prefix and suffix list variables */
17614 small_number tt; /* approximation to the type of the variable-so-far */
17615 pointer t; /* a token */
17616 pointer macro_ref = 0; /* reference count for a suffixed macro */
17618 @ @<Scan a variable primary...@>=
17620 fast_get_avail(pre_head); tail=pre_head; post_head=null; tt=mp_vacuous;
17622 t=mp_cur_tok(mp); link(tail)=t;
17623 if ( tt!=undefined ) {
17624 @<Find the approximate type |tt| and corresponding~|q|@>;
17625 if ( tt>=mp_unsuffixed_macro ) {
17626 @<Either begin an unsuffixed macro call or
17627 prepare for a suffixed one@>;
17630 mp_get_x_next(mp); tail=t;
17631 if ( mp->cur_cmd==left_bracket ) {
17632 @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
17634 if ( mp->cur_cmd>max_suffix_token ) break;
17635 if ( mp->cur_cmd<min_suffix_token ) break;
17636 } /* now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token| */
17637 @<Handle unusual cases that masquerade as variables, and |goto restart|
17638 or |goto done| if appropriate;
17639 otherwise make a copy of the variable and |goto done|@>;
17642 @ @<Either begin an unsuffixed macro call or...@>=
17645 if ( tt>mp_unsuffixed_macro ) { /* |tt=mp_suffixed_macro| */
17646 post_head=mp_get_avail(mp); tail=post_head; link(tail)=t;
17647 tt=undefined; macro_ref=value(q); add_mac_ref(macro_ref);
17649 @<Set up unsuffixed macro call and |goto restart|@>;
17653 @ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
17655 mp_get_x_next(mp); mp_scan_expression(mp);
17656 if ( mp->cur_cmd!=right_bracket ) {
17657 @<Put the left bracket and the expression back to be rescanned@>;
17659 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17660 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp; mp->cur_sym=0;
17664 @ The left bracket that we thought was introducing a subscript might have
17665 actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
17666 So we don't issue an error message at this point; but we do want to back up
17667 so as to avoid any embarrassment about our incorrect assumption.
17669 @<Put the left bracket and the expression back to be rescanned@>=
17671 mp_back_input(mp); /* that was the token following the current expression */
17672 mp_back_expr(mp); mp->cur_cmd=left_bracket;
17673 mp->cur_mod=0; mp->cur_sym=frozen_left_bracket;
17676 @ Here's a routine that puts the current expression back to be read again.
17678 @c void mp_back_expr (MP mp) {
17679 pointer p; /* capsule token */
17680 p=mp_stash_cur_exp(mp); link(p)=null; back_list(p);
17683 @ Unknown subscripts lead to the following error message.
17685 @c void mp_bad_subscript (MP mp) {
17686 exp_err("Improper subscript has been replaced by zero");
17687 @.Improper subscript...@>
17688 help3("A bracketed subscript must have a known numeric value;")
17689 ("unfortunately, what I found was the value that appears just")
17690 ("above this error message. So I'll try a zero subscript.");
17691 mp_flush_error(mp, 0);
17694 @ Every time we call |get_x_next|, there's a chance that the variable we've
17695 been looking at will disappear. Thus, we cannot safely keep |q| pointing
17696 into the variable structure; we need to start searching from the root each time.
17698 @<Find the approximate type |tt| and corresponding~|q|@>=
17701 p=link(pre_head); q=info(p); tt=undefined;
17702 if ( eq_type(q) % outer_tag==tag_token ) {
17704 if ( q==null ) goto DONE2;
17708 tt=type(q); goto DONE2;
17710 if ( type(q)!=mp_structured ) goto DONE2;
17711 q=link(attr_head(q)); /* the |collective_subscript| attribute */
17712 if ( p>=mp->hi_mem_min ) { /* it's not a subscript */
17713 do { q=link(q); } while (! (attr_loc(q)>=info(p)));
17714 if ( attr_loc(q)>info(p) ) goto DONE2;
17722 @ How do things stand now? Well, we have scanned an entire variable name,
17723 including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
17724 |cur_sym| represent the token that follows. If |post_head=null|, a
17725 token list for this variable name starts at |link(pre_head)|, with all
17726 subscripts evaluated. But if |post_head<>null|, the variable turned out
17727 to be a suffixed macro; |pre_head| is the head of the prefix list, while
17728 |post_head| is the head of a token list containing both `\.{\AT!}' and
17731 Our immediate problem is to see if this variable still exists. (Variable
17732 structures can change drastically whenever we call |get_x_next|; users
17733 aren't supposed to do this, but the fact that it is possible means that
17734 we must be cautious.)
17736 The following procedure prints an error message when a variable
17737 unexpectedly disappears. Its help message isn't quite right for
17738 our present purposes, but we'll be able to fix that up.
17741 void mp_obliterated (MP mp,pointer q) {
17742 print_err("Variable "); mp_show_token_list(mp, q,null,1000,0);
17743 mp_print(mp, " has been obliterated");
17744 @.Variable...obliterated@>
17745 help5("It seems you did a nasty thing---probably by accident,")
17746 ("but nevertheless you nearly hornswoggled me...")
17747 ("While I was evaluating the right-hand side of this")
17748 ("command, something happened, and the left-hand side")
17749 ("is no longer a variable! So I won't change anything.");
17752 @ If the variable does exist, we also need to check
17753 for a few other special cases before deciding that a plain old ordinary
17754 variable has, indeed, been scanned.
17756 @<Handle unusual cases that masquerade as variables...@>=
17757 if ( post_head!=null ) {
17758 @<Set up suffixed macro call and |goto restart|@>;
17760 q=link(pre_head); free_avail(pre_head);
17761 if ( mp->cur_cmd==my_var_flag ) {
17762 mp->cur_type=mp_token_list; mp->cur_exp=q; goto DONE;
17764 p=mp_find_variable(mp, q);
17766 mp_make_exp_copy(mp, p);
17768 mp_obliterated(mp, q);
17769 mp->help_line[2]="While I was evaluating the suffix of this variable,";
17770 mp->help_line[1]="something was redefined, and it's no longer a variable!";
17771 mp->help_line[0]="In order to get back on my feet, I've inserted `0' instead.";
17772 mp_put_get_flush_error(mp, 0);
17774 mp_flush_node_list(mp, q);
17777 @ The only complication associated with macro calling is that the prefix
17778 and ``at'' parameters must be packaged in an appropriate list of lists.
17780 @<Set up unsuffixed macro call and |goto restart|@>=
17782 p=mp_get_avail(mp); info(pre_head)=link(pre_head); link(pre_head)=p;
17783 info(p)=t; mp_macro_call(mp, value(q),pre_head,null);
17788 @ If the ``variable'' that turned out to be a suffixed macro no longer exists,
17789 we don't care, because we have reserved a pointer (|macro_ref|) to its
17792 @<Set up suffixed macro call and |goto restart|@>=
17794 mp_back_input(mp); p=mp_get_avail(mp); q=link(post_head);
17795 info(pre_head)=link(pre_head); link(pre_head)=post_head;
17796 info(post_head)=q; link(post_head)=p; info(p)=link(q); link(q)=null;
17797 mp_macro_call(mp, macro_ref,pre_head,null); decr(ref_count(macro_ref));
17798 mp_get_x_next(mp); goto RESTART;
17801 @ Our remaining job is simply to make a copy of the value that has been
17802 found. Some cases are harder than others, but complexity arises solely
17803 because of the multiplicity of possible cases.
17805 @<Declare the procedure called |make_exp_copy|@>=
17806 @<Declare subroutines needed by |make_exp_copy|@>;
17807 void mp_make_exp_copy (MP mp,pointer p) {
17808 pointer q,r,t; /* registers for list manipulation */
17810 mp->cur_type=type(p);
17811 switch (mp->cur_type) {
17812 case mp_vacuous: case mp_boolean_type: case mp_known:
17813 mp->cur_exp=value(p); break;
17814 case unknown_types:
17815 mp->cur_exp=mp_new_ring_entry(mp, p);
17817 case mp_string_type:
17818 mp->cur_exp=value(p); add_str_ref(mp->cur_exp);
17820 case mp_picture_type:
17821 mp->cur_exp=value(p);add_edge_ref(mp->cur_exp);
17824 mp->cur_exp=copy_pen(value(p));
17827 mp->cur_exp=mp_copy_path(mp, value(p));
17829 case mp_transform_type: case mp_color_type:
17830 case mp_cmykcolor_type: case mp_pair_type:
17831 @<Copy the big node |p|@>;
17833 case mp_dependent: case mp_proto_dependent:
17834 mp_encapsulate(mp, mp_copy_dep_list(mp, dep_list(p)));
17836 case mp_numeric_type:
17837 new_indep(p); goto RESTART;
17839 case mp_independent:
17840 q=mp_single_dependency(mp, p);
17841 if ( q==mp->dep_final ){
17842 mp->cur_type=mp_known; mp->cur_exp=0; mp_free_node(mp, q,value_node_size);
17844 mp->cur_type=mp_dependent; mp_encapsulate(mp, q);
17848 mp_confusion(mp, "copy");
17849 @:this can't happen copy}{\quad copy@>
17854 @ The |encapsulate| subroutine assumes that |dep_final| is the
17855 tail of dependency list~|p|.
17857 @<Declare subroutines needed by |make_exp_copy|@>=
17858 void mp_encapsulate (MP mp,pointer p) {
17859 mp->cur_exp=mp_get_node(mp, value_node_size); type(mp->cur_exp)=mp->cur_type;
17860 name_type(mp->cur_exp)=mp_capsule; mp_new_dep(mp, mp->cur_exp,p);
17863 @ The most tedious case arises when the user refers to a
17864 \&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
17865 each of which can be |independent|, |dependent|, |mp_proto_dependent|,
17868 @<Copy the big node |p|@>=
17870 if ( value(p)==null )
17871 mp_init_big_node(mp, p);
17872 t=mp_get_node(mp, value_node_size); name_type(t)=mp_capsule; type(t)=mp->cur_type;
17873 mp_init_big_node(mp, t);
17874 q=value(p)+mp->big_node_size[mp->cur_type];
17875 r=value(t)+mp->big_node_size[mp->cur_type];
17877 q=q-2; r=r-2; mp_install(mp, r,q);
17878 } while (q!=value(p));
17882 @ The |install| procedure copies a numeric field~|q| into field~|r| of
17883 a big node that will be part of a capsule.
17885 @<Declare subroutines needed by |make_exp_copy|@>=
17886 void mp_install (MP mp,pointer r, pointer q) {
17887 pointer p; /* temporary register */
17888 if ( type(q)==mp_known ){
17889 value(r)=value(q); type(r)=mp_known;
17890 } else if ( type(q)==mp_independent ) {
17891 p=mp_single_dependency(mp, q);
17892 if ( p==mp->dep_final ) {
17893 type(r)=mp_known; value(r)=0; mp_free_node(mp, p,value_node_size);
17895 type(r)=mp_dependent; mp_new_dep(mp, r,p);
17898 type(r)=type(q); mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(q)));
17902 @ Expressions of the form `\.{a[b,c]}' are converted into
17903 `\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
17904 provided that \.a is numeric.
17906 @<Scan a mediation...@>=
17908 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17909 if ( mp->cur_cmd!=comma ) {
17910 @<Put the left bracket and the expression back...@>;
17911 mp_unstash_cur_exp(mp, p);
17913 q=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17914 if ( mp->cur_cmd!=right_bracket ) {
17915 mp_missing_err(mp, "]");
17917 help3("I've scanned an expression of the form `a[b,c',")
17918 ("so a right bracket should have come next.")
17919 ("I shall pretend that one was there.");
17922 r=mp_stash_cur_exp(mp); mp_make_exp_copy(mp, q);
17923 mp_do_binary(mp, r,minus); mp_do_binary(mp, p,times);
17924 mp_do_binary(mp, q,plus); mp_get_x_next(mp);
17928 @ Here is a comparatively simple routine that is used to scan the
17929 \&{suffix} parameters of a macro.
17931 @<Declare the basic parsing subroutines@>=
17932 void mp_scan_suffix (MP mp) {
17933 pointer h,t; /* head and tail of the list being built */
17934 pointer p; /* temporary register */
17935 h=mp_get_avail(mp); t=h;
17937 if ( mp->cur_cmd==left_bracket ) {
17938 @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
17940 if ( mp->cur_cmd==numeric_token ) {
17941 p=mp_new_num_tok(mp, mp->cur_mod);
17942 } else if ((mp->cur_cmd==tag_token)||(mp->cur_cmd==internal_quantity) ) {
17943 p=mp_get_avail(mp); info(p)=mp->cur_sym;
17947 link(t)=p; t=p; mp_get_x_next(mp);
17949 mp->cur_exp=link(h); free_avail(h); mp->cur_type=mp_token_list;
17952 @ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
17954 mp_get_x_next(mp); mp_scan_expression(mp);
17955 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17956 if ( mp->cur_cmd!=right_bracket ) {
17957 mp_missing_err(mp, "]");
17959 help3("I've seen a `[' and a subscript value, in a suffix,")
17960 ("so a right bracket should have come next.")
17961 ("I shall pretend that one was there.");
17964 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp;
17967 @* \[38] Parsing secondary and higher expressions.
17968 After the intricacies of |scan_primary|\kern-1pt,
17969 the |scan_secondary| routine is
17970 refreshingly simple. It's not trivial, but the operations are relatively
17971 straightforward; the main difficulty is, again, that expressions and data
17972 structures might change drastically every time we call |get_x_next|, so a
17973 cautious approach is mandatory. For example, a macro defined by
17974 \&{primarydef} might have disappeared by the time its second argument has
17975 been scanned; we solve this by increasing the reference count of its token
17976 list, so that the macro can be called even after it has been clobbered.
17978 @<Declare the basic parsing subroutines@>=
17979 void mp_scan_secondary (MP mp) {
17980 pointer p; /* for list manipulation */
17981 halfword c,d; /* operation codes or modifiers */
17982 pointer mac_name; /* token defined with \&{primarydef} */
17984 if ((mp->cur_cmd<min_primary_command)||
17985 (mp->cur_cmd>max_primary_command) )
17986 mp_bad_exp(mp, "A secondary");
17987 @.A secondary expression...@>
17988 mp_scan_primary(mp);
17990 if ( mp->cur_cmd<=max_secondary_command )
17991 if ( mp->cur_cmd>=min_secondary_command ) {
17992 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17993 if ( d==secondary_primary_macro ) {
17994 mac_name=mp->cur_sym; add_mac_ref(c);
17996 mp_get_x_next(mp); mp_scan_primary(mp);
17997 if ( d!=secondary_primary_macro ) {
17998 mp_do_binary(mp, p,c);
18000 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
18001 decr(ref_count(c)); mp_get_x_next(mp);
18008 @ The following procedure calls a macro that has two parameters,
18011 @c void mp_binary_mac (MP mp,pointer p, pointer c, pointer n) {
18012 pointer q,r; /* nodes in the parameter list */
18013 q=mp_get_avail(mp); r=mp_get_avail(mp); link(q)=r;
18014 info(q)=p; info(r)=mp_stash_cur_exp(mp);
18015 mp_macro_call(mp, c,q,n);
18018 @ The next procedure, |scan_tertiary|, is pretty much the same deal.
18020 @<Declare the basic parsing subroutines@>=
18021 void mp_scan_tertiary (MP mp) {
18022 pointer p; /* for list manipulation */
18023 halfword c,d; /* operation codes or modifiers */
18024 pointer mac_name; /* token defined with \&{secondarydef} */
18026 if ((mp->cur_cmd<min_primary_command)||
18027 (mp->cur_cmd>max_primary_command) )
18028 mp_bad_exp(mp, "A tertiary");
18029 @.A tertiary expression...@>
18030 mp_scan_secondary(mp);
18032 if ( mp->cur_cmd<=max_tertiary_command ) {
18033 if ( mp->cur_cmd>=min_tertiary_command ) {
18034 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
18035 if ( d==tertiary_secondary_macro ) {
18036 mac_name=mp->cur_sym; add_mac_ref(c);
18038 mp_get_x_next(mp); mp_scan_secondary(mp);
18039 if ( d!=tertiary_secondary_macro ) {
18040 mp_do_binary(mp, p,c);
18042 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
18043 decr(ref_count(c)); mp_get_x_next(mp);
18051 @ Finally we reach the deepest level in our quartet of parsing routines.
18052 This one is much like the others; but it has an extra complication from
18053 paths, which materialize here.
18055 @d continue_path 25 /* a label inside of |scan_expression| */
18056 @d finish_path 26 /* another */
18058 @<Declare the basic parsing subroutines@>=
18059 void mp_scan_expression (MP mp) {
18060 pointer p,q,r,pp,qq; /* for list manipulation */
18061 halfword c,d; /* operation codes or modifiers */
18062 int my_var_flag; /* initial value of |var_flag| */
18063 pointer mac_name; /* token defined with \&{tertiarydef} */
18064 boolean cycle_hit; /* did a path expression just end with `\&{cycle}'? */
18065 scaled x,y; /* explicit coordinates or tension at a path join */
18066 int t; /* knot type following a path join */
18068 my_var_flag=mp->var_flag; mac_name=null;
18070 if ((mp->cur_cmd<min_primary_command)||
18071 (mp->cur_cmd>max_primary_command) )
18072 mp_bad_exp(mp, "An");
18073 @.An expression...@>
18074 mp_scan_tertiary(mp);
18076 if ( mp->cur_cmd<=max_expression_command )
18077 if ( mp->cur_cmd>=min_expression_command ) {
18078 if ( (mp->cur_cmd!=equals)||(my_var_flag!=assignment) ) {
18079 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
18080 if ( d==expression_tertiary_macro ) {
18081 mac_name=mp->cur_sym; add_mac_ref(c);
18083 if ( (d<ampersand)||((d==ampersand)&&
18084 ((type(p)==mp_pair_type)||(type(p)==mp_path_type))) ) {
18085 @<Scan a path construction operation;
18086 but |return| if |p| has the wrong type@>;
18088 mp_get_x_next(mp); mp_scan_tertiary(mp);
18089 if ( d!=expression_tertiary_macro ) {
18090 mp_do_binary(mp, p,c);
18092 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
18093 decr(ref_count(c)); mp_get_x_next(mp);
18102 @ The reader should review the data structure conventions for paths before
18103 hoping to understand the next part of this code.
18105 @<Scan a path construction operation...@>=
18108 @<Convert the left operand, |p|, into a partial path ending at~|q|;
18109 but |return| if |p| doesn't have a suitable type@>;
18111 @<Determine the path join parameters;
18112 but |goto finish_path| if there's only a direction specifier@>;
18113 if ( mp->cur_cmd==cycle ) {
18114 @<Get ready to close a cycle@>;
18116 mp_scan_tertiary(mp);
18117 @<Convert the right operand, |cur_exp|,
18118 into a partial path from |pp| to~|qq|@>;
18120 @<Join the partial paths and reset |p| and |q| to the head and tail
18122 if ( mp->cur_cmd>=min_expression_command )
18123 if ( mp->cur_cmd<=ampersand ) if ( ! cycle_hit ) goto CONTINUE_PATH;
18125 @<Choose control points for the path and put the result into |cur_exp|@>;
18128 @ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
18130 mp_unstash_cur_exp(mp, p);
18131 if ( mp->cur_type==mp_pair_type ) p=mp_new_knot(mp);
18132 else if ( mp->cur_type==mp_path_type ) p=mp->cur_exp;
18135 while ( link(q)!=p ) q=link(q);
18136 if ( left_type(p)!=mp_endpoint ) { /* open up a cycle */
18137 r=mp_copy_knot(mp, p); link(q)=r; q=r;
18139 left_type(p)=mp_open; right_type(q)=mp_open;
18142 @ A pair of numeric values is changed into a knot node for a one-point path
18143 when \MP\ discovers that the pair is part of a path.
18145 @c@<Declare the procedure called |known_pair|@>;
18146 pointer mp_new_knot (MP mp) { /* convert a pair to a knot with two endpoints */
18147 pointer q; /* the new node */
18148 q=mp_get_node(mp, knot_node_size); left_type(q)=mp_endpoint;
18149 right_type(q)=mp_endpoint; originator(q)=mp_metapost_user; link(q)=q;
18150 mp_known_pair(mp); x_coord(q)=mp->cur_x; y_coord(q)=mp->cur_y;
18154 @ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
18155 of the current expression, assuming that the current expression is a
18156 pair of known numerics. Unknown components are zeroed, and the
18157 current expression is flushed.
18159 @<Declare the procedure called |known_pair|@>=
18160 void mp_known_pair (MP mp) {
18161 pointer p; /* the pair node */
18162 if ( mp->cur_type!=mp_pair_type ) {
18163 exp_err("Undefined coordinates have been replaced by (0,0)");
18164 @.Undefined coordinates...@>
18165 help5("I need x and y numbers for this part of the path.")
18166 ("The value I found (see above) was no good;")
18167 ("so I'll try to keep going by using zero instead.")
18168 ("(Chapter 27 of The METAFONTbook explains that")
18169 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18170 ("you might want to type `I ??" "?' now.)");
18171 mp_put_get_flush_error(mp, 0); mp->cur_x=0; mp->cur_y=0;
18173 p=value(mp->cur_exp);
18174 @<Make sure that both |x| and |y| parts of |p| are known;
18175 copy them into |cur_x| and |cur_y|@>;
18176 mp_flush_cur_exp(mp, 0);
18180 @ @<Make sure that both |x| and |y| parts of |p| are known...@>=
18181 if ( type(x_part_loc(p))==mp_known ) {
18182 mp->cur_x=value(x_part_loc(p));
18184 mp_disp_err(mp, x_part_loc(p),
18185 "Undefined x coordinate has been replaced by 0");
18186 @.Undefined coordinates...@>
18187 help5("I need a `known' x value for this part of the path.")
18188 ("The value I found (see above) was no good;")
18189 ("so I'll try to keep going by using zero instead.")
18190 ("(Chapter 27 of The METAFONTbook explains that")
18191 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18192 ("you might want to type `I ??" "?' now.)");
18193 mp_put_get_error(mp); mp_recycle_value(mp, x_part_loc(p)); mp->cur_x=0;
18195 if ( type(y_part_loc(p))==mp_known ) {
18196 mp->cur_y=value(y_part_loc(p));
18198 mp_disp_err(mp, y_part_loc(p),
18199 "Undefined y coordinate has been replaced by 0");
18200 help5("I need a `known' y value for this part of the path.")
18201 ("The value I found (see above) was no good;")
18202 ("so I'll try to keep going by using zero instead.")
18203 ("(Chapter 27 of The METAFONTbook explains that")
18204 ("you might want to type `I ??" "?' now.)");
18205 mp_put_get_error(mp); mp_recycle_value(mp, y_part_loc(p)); mp->cur_y=0;
18208 @ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
18210 @<Determine the path join parameters...@>=
18211 if ( mp->cur_cmd==left_brace ) {
18212 @<Put the pre-join direction information into node |q|@>;
18215 if ( d==path_join ) {
18216 @<Determine the tension and/or control points@>;
18217 } else if ( d!=ampersand ) {
18221 if ( mp->cur_cmd==left_brace ) {
18222 @<Put the post-join direction information into |x| and |t|@>;
18223 } else if ( right_type(q)!=mp_explicit ) {
18227 @ The |scan_direction| subroutine looks at the directional information
18228 that is enclosed in braces, and also scans ahead to the following character.
18229 A type code is returned, either |open| (if the direction was $(0,0)$),
18230 or |curl| (if the direction was a curl of known value |cur_exp|), or
18231 |given| (if the direction is given by the |angle| value that now
18232 appears in |cur_exp|).
18234 There's nothing difficult about this subroutine, but the program is rather
18235 lengthy because a variety of potential errors need to be nipped in the bud.
18237 @c small_number mp_scan_direction (MP mp) {
18238 int t; /* the type of information found */
18239 scaled x; /* an |x| coordinate */
18241 if ( mp->cur_cmd==curl_command ) {
18242 @<Scan a curl specification@>;
18244 @<Scan a given direction@>;
18246 if ( mp->cur_cmd!=right_brace ) {
18247 mp_missing_err(mp, "}");
18248 @.Missing `\char`\}'@>
18249 help3("I've scanned a direction spec for part of a path,")
18250 ("so a right brace should have come next.")
18251 ("I shall pretend that one was there.");
18258 @ @<Scan a curl specification@>=
18259 { mp_get_x_next(mp); mp_scan_expression(mp);
18260 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<0) ){
18261 exp_err("Improper curl has been replaced by 1");
18263 help1("A curl must be a known, nonnegative number.");
18264 mp_put_get_flush_error(mp, unity);
18269 @ @<Scan a given direction@>=
18270 { mp_scan_expression(mp);
18271 if ( mp->cur_type>mp_pair_type ) {
18272 @<Get given directions separated by commas@>;
18276 if ( (mp->cur_x==0)&&(mp->cur_y==0) ) t=mp_open;
18277 else { t=mp_given; mp->cur_exp=mp_n_arg(mp, mp->cur_x,mp->cur_y);}
18280 @ @<Get given directions separated by commas@>=
18282 if ( mp->cur_type!=mp_known ) {
18283 exp_err("Undefined x coordinate has been replaced by 0");
18284 @.Undefined coordinates...@>
18285 help5("I need a `known' x value for this part of the path.")
18286 ("The value I found (see above) was no good;")
18287 ("so I'll try to keep going by using zero instead.")
18288 ("(Chapter 27 of The METAFONTbook explains that")
18289 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18290 ("you might want to type `I ??" "?' now.)");
18291 mp_put_get_flush_error(mp, 0);
18294 if ( mp->cur_cmd!=comma ) {
18295 mp_missing_err(mp, ",");
18297 help2("I've got the x coordinate of a path direction;")
18298 ("will look for the y coordinate next.");
18301 mp_get_x_next(mp); mp_scan_expression(mp);
18302 if ( mp->cur_type!=mp_known ) {
18303 exp_err("Undefined y coordinate has been replaced by 0");
18304 help5("I need a `known' y value for this part of the path.")
18305 ("The value I found (see above) was no good;")
18306 ("so I'll try to keep going by using zero instead.")
18307 ("(Chapter 27 of The METAFONTbook explains that")
18308 ("you might want to type `I ??" "?' now.)");
18309 mp_put_get_flush_error(mp, 0);
18311 mp->cur_y=mp->cur_exp; mp->cur_x=x;
18314 @ At this point |right_type(q)| is usually |open|, but it may have been
18315 set to some other value by a previous splicing operation. We must maintain
18316 the value of |right_type(q)| in unusual cases such as
18317 `\.{..z1\{z2\}\&\{z3\}z1\{0,0\}..}'.
18319 @<Put the pre-join...@>=
18321 t=mp_scan_direction(mp);
18322 if ( t!=mp_open ) {
18323 right_type(q)=t; right_given(q)=mp->cur_exp;
18324 if ( left_type(q)==mp_open ) {
18325 left_type(q)=t; left_given(q)=mp->cur_exp;
18326 } /* note that |left_given(q)=left_curl(q)| */
18330 @ Since |left_tension| and |left_y| share the same position in knot nodes,
18331 and since |left_given| is similarly equivalent to |left_x|, we use
18332 |x| and |y| to hold the given direction and tension information when
18333 there are no explicit control points.
18335 @<Put the post-join...@>=
18337 t=mp_scan_direction(mp);
18338 if ( right_type(q)!=mp_explicit ) x=mp->cur_exp;
18339 else t=mp_explicit; /* the direction information is superfluous */
18342 @ @<Determine the tension and/or...@>=
18345 if ( mp->cur_cmd==tension ) {
18346 @<Set explicit tensions@>;
18347 } else if ( mp->cur_cmd==controls ) {
18348 @<Set explicit control points@>;
18350 right_tension(q)=unity; y=unity; mp_back_input(mp); /* default tension */
18353 if ( mp->cur_cmd!=path_join ) {
18354 mp_missing_err(mp, "..");
18356 help1("A path join command should end with two dots.");
18363 @ @<Set explicit tensions@>=
18365 mp_get_x_next(mp); y=mp->cur_cmd;
18366 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18367 mp_scan_primary(mp);
18368 @<Make sure that the current expression is a valid tension setting@>;
18369 if ( y==at_least ) negate(mp->cur_exp);
18370 right_tension(q)=mp->cur_exp;
18371 if ( mp->cur_cmd==and_command ) {
18372 mp_get_x_next(mp); y=mp->cur_cmd;
18373 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18374 mp_scan_primary(mp);
18375 @<Make sure that the current expression is a valid tension setting@>;
18376 if ( y==at_least ) negate(mp->cur_exp);
18381 @ @d min_tension three_quarter_unit
18383 @<Make sure that the current expression is a valid tension setting@>=
18384 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<min_tension) ) {
18385 exp_err("Improper tension has been set to 1");
18386 @.Improper tension@>
18387 help1("The expression above should have been a number >=3/4.");
18388 mp_put_get_flush_error(mp, unity);
18391 @ @<Set explicit control points@>=
18393 right_type(q)=mp_explicit; t=mp_explicit; mp_get_x_next(mp); mp_scan_primary(mp);
18394 mp_known_pair(mp); right_x(q)=mp->cur_x; right_y(q)=mp->cur_y;
18395 if ( mp->cur_cmd!=and_command ) {
18396 x=right_x(q); y=right_y(q);
18398 mp_get_x_next(mp); mp_scan_primary(mp);
18399 mp_known_pair(mp); x=mp->cur_x; y=mp->cur_y;
18403 @ @<Convert the right operand, |cur_exp|, into a partial path...@>=
18405 if ( mp->cur_type!=mp_path_type ) pp=mp_new_knot(mp);
18406 else pp=mp->cur_exp;
18408 while ( link(qq)!=pp ) qq=link(qq);
18409 if ( left_type(pp)!=mp_endpoint ) { /* open up a cycle */
18410 r=mp_copy_knot(mp, pp); link(qq)=r; qq=r;
18412 left_type(pp)=mp_open; right_type(qq)=mp_open;
18415 @ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
18416 we silently change the specification to `\.{(x,y)..cycle}', since a cycle
18417 shouldn't have length zero.
18419 @<Get ready to close a cycle@>=
18421 cycle_hit=true; mp_get_x_next(mp); pp=p; qq=p;
18422 if ( d==ampersand ) if ( p==q ) {
18423 d=path_join; right_tension(q)=unity; y=unity;
18427 @ @<Join the partial paths and reset |p| and |q|...@>=
18429 if ( d==ampersand ) {
18430 if ( (x_coord(q)!=x_coord(pp))||(y_coord(q)!=y_coord(pp)) ) {
18431 print_err("Paths don't touch; `&' will be changed to `..'");
18432 @.Paths don't touch@>
18433 help3("When you join paths `p&q', the ending point of p")
18434 ("must be exactly equal to the starting point of q.")
18435 ("So I'm going to pretend that you said `p..q' instead.");
18436 mp_put_get_error(mp); d=path_join; right_tension(q)=unity; y=unity;
18439 @<Plug an opening in |right_type(pp)|, if possible@>;
18440 if ( d==ampersand ) {
18441 @<Splice independent paths together@>;
18443 @<Plug an opening in |right_type(q)|, if possible@>;
18444 link(q)=pp; left_y(pp)=y;
18445 if ( t!=mp_open ) { left_x(pp)=x; left_type(pp)=t; };
18450 @ @<Plug an opening in |right_type(q)|...@>=
18451 if ( right_type(q)==mp_open ) {
18452 if ( (left_type(q)==mp_curl)||(left_type(q)==mp_given) ) {
18453 right_type(q)=left_type(q); right_given(q)=left_given(q);
18457 @ @<Plug an opening in |right_type(pp)|...@>=
18458 if ( right_type(pp)==mp_open ) {
18459 if ( (t==mp_curl)||(t==mp_given) ) {
18460 right_type(pp)=t; right_given(pp)=x;
18464 @ @<Splice independent paths together@>=
18466 if ( left_type(q)==mp_open ) if ( right_type(q)==mp_open ) {
18467 left_type(q)=mp_curl; left_curl(q)=unity;
18469 if ( right_type(pp)==mp_open ) if ( t==mp_open ) {
18470 right_type(pp)=mp_curl; right_curl(pp)=unity;
18472 right_type(q)=right_type(pp); link(q)=link(pp);
18473 right_x(q)=right_x(pp); right_y(q)=right_y(pp);
18474 mp_free_node(mp, pp,knot_node_size);
18475 if ( qq==pp ) qq=q;
18478 @ @<Choose control points for the path...@>=
18480 if ( d==ampersand ) p=q;
18482 left_type(p)=mp_endpoint;
18483 if ( right_type(p)==mp_open ) {
18484 right_type(p)=mp_curl; right_curl(p)=unity;
18486 right_type(q)=mp_endpoint;
18487 if ( left_type(q)==mp_open ) {
18488 left_type(q)=mp_curl; left_curl(q)=unity;
18492 mp_make_choices(mp, p);
18493 mp->cur_type=mp_path_type; mp->cur_exp=p
18495 @ Finally, we sometimes need to scan an expression whose value is
18496 supposed to be either |true_code| or |false_code|.
18498 @<Declare the basic parsing subroutines@>=
18499 void mp_get_boolean (MP mp) {
18500 mp_get_x_next(mp); mp_scan_expression(mp);
18501 if ( mp->cur_type!=mp_boolean_type ) {
18502 exp_err("Undefined condition will be treated as `false'");
18503 @.Undefined condition...@>
18504 help2("The expression shown above should have had a definite")
18505 ("true-or-false value. I'm changing it to `false'.");
18506 mp_put_get_flush_error(mp, false_code); mp->cur_type=mp_boolean_type;
18510 @* \[39] Doing the operations.
18511 The purpose of parsing is primarily to permit people to avoid piles of
18512 parentheses. But the real work is done after the structure of an expression
18513 has been recognized; that's when new expressions are generated. We
18514 turn now to the guts of \MP, which handles individual operators that
18515 have come through the parsing mechanism.
18517 We'll start with the easy ones that take no operands, then work our way
18518 up to operators with one and ultimately two arguments. In other words,
18519 we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
18520 that are invoked periodically by the expression scanners.
18522 First let's make sure that all of the primitive operators are in the
18523 hash table. Although |scan_primary| and its relatives made use of the
18524 \\{cmd} code for these operators, the \\{do} routines base everything
18525 on the \\{mod} code. For example, |do_binary| doesn't care whether the
18526 operation it performs is a |primary_binary| or |secondary_binary|, etc.
18529 mp_primitive(mp, "true",nullary,true_code);
18530 @:true_}{\&{true} primitive@>
18531 mp_primitive(mp, "false",nullary,false_code);
18532 @:false_}{\&{false} primitive@>
18533 mp_primitive(mp, "nullpicture",nullary,null_picture_code);
18534 @:null_picture_}{\&{nullpicture} primitive@>
18535 mp_primitive(mp, "nullpen",nullary,null_pen_code);
18536 @:null_pen_}{\&{nullpen} primitive@>
18537 mp_primitive(mp, "jobname",nullary,job_name_op);
18538 @:job_name_}{\&{jobname} primitive@>
18539 mp_primitive(mp, "readstring",nullary,read_string_op);
18540 @:read_string_}{\&{readstring} primitive@>
18541 mp_primitive(mp, "pencircle",nullary,pen_circle);
18542 @:pen_circle_}{\&{pencircle} primitive@>
18543 mp_primitive(mp, "normaldeviate",nullary,normal_deviate);
18544 @:normal_deviate_}{\&{normaldeviate} primitive@>
18545 mp_primitive(mp, "readfrom",unary,read_from_op);
18546 @:read_from_}{\&{readfrom} primitive@>
18547 mp_primitive(mp, "closefrom",unary,close_from_op);
18548 @:close_from_}{\&{closefrom} primitive@>
18549 mp_primitive(mp, "odd",unary,odd_op);
18550 @:odd_}{\&{odd} primitive@>
18551 mp_primitive(mp, "known",unary,known_op);
18552 @:known_}{\&{known} primitive@>
18553 mp_primitive(mp, "unknown",unary,unknown_op);
18554 @:unknown_}{\&{unknown} primitive@>
18555 mp_primitive(mp, "not",unary,not_op);
18556 @:not_}{\&{not} primitive@>
18557 mp_primitive(mp, "decimal",unary,decimal);
18558 @:decimal_}{\&{decimal} primitive@>
18559 mp_primitive(mp, "reverse",unary,reverse);
18560 @:reverse_}{\&{reverse} primitive@>
18561 mp_primitive(mp, "makepath",unary,make_path_op);
18562 @:make_path_}{\&{makepath} primitive@>
18563 mp_primitive(mp, "makepen",unary,make_pen_op);
18564 @:make_pen_}{\&{makepen} primitive@>
18565 mp_primitive(mp, "oct",unary,oct_op);
18566 @:oct_}{\&{oct} primitive@>
18567 mp_primitive(mp, "hex",unary,hex_op);
18568 @:hex_}{\&{hex} primitive@>
18569 mp_primitive(mp, "ASCII",unary,ASCII_op);
18570 @:ASCII_}{\&{ASCII} primitive@>
18571 mp_primitive(mp, "char",unary,char_op);
18572 @:char_}{\&{char} primitive@>
18573 mp_primitive(mp, "length",unary,length_op);
18574 @:length_}{\&{length} primitive@>
18575 mp_primitive(mp, "turningnumber",unary,turning_op);
18576 @:turning_number_}{\&{turningnumber} primitive@>
18577 mp_primitive(mp, "xpart",unary,x_part);
18578 @:x_part_}{\&{xpart} primitive@>
18579 mp_primitive(mp, "ypart",unary,y_part);
18580 @:y_part_}{\&{ypart} primitive@>
18581 mp_primitive(mp, "xxpart",unary,xx_part);
18582 @:xx_part_}{\&{xxpart} primitive@>
18583 mp_primitive(mp, "xypart",unary,xy_part);
18584 @:xy_part_}{\&{xypart} primitive@>
18585 mp_primitive(mp, "yxpart",unary,yx_part);
18586 @:yx_part_}{\&{yxpart} primitive@>
18587 mp_primitive(mp, "yypart",unary,yy_part);
18588 @:yy_part_}{\&{yypart} primitive@>
18589 mp_primitive(mp, "redpart",unary,red_part);
18590 @:red_part_}{\&{redpart} primitive@>
18591 mp_primitive(mp, "greenpart",unary,green_part);
18592 @:green_part_}{\&{greenpart} primitive@>
18593 mp_primitive(mp, "bluepart",unary,blue_part);
18594 @:blue_part_}{\&{bluepart} primitive@>
18595 mp_primitive(mp, "cyanpart",unary,cyan_part);
18596 @:cyan_part_}{\&{cyanpart} primitive@>
18597 mp_primitive(mp, "magentapart",unary,magenta_part);
18598 @:magenta_part_}{\&{magentapart} primitive@>
18599 mp_primitive(mp, "yellowpart",unary,yellow_part);
18600 @:yellow_part_}{\&{yellowpart} primitive@>
18601 mp_primitive(mp, "blackpart",unary,black_part);
18602 @:black_part_}{\&{blackpart} primitive@>
18603 mp_primitive(mp, "greypart",unary,grey_part);
18604 @:grey_part_}{\&{greypart} primitive@>
18605 mp_primitive(mp, "colormodel",unary,color_model_part);
18606 @:color_model_part_}{\&{colormodel} primitive@>
18607 mp_primitive(mp, "fontpart",unary,font_part);
18608 @:font_part_}{\&{fontpart} primitive@>
18609 mp_primitive(mp, "textpart",unary,text_part);
18610 @:text_part_}{\&{textpart} primitive@>
18611 mp_primitive(mp, "pathpart",unary,path_part);
18612 @:path_part_}{\&{pathpart} primitive@>
18613 mp_primitive(mp, "penpart",unary,pen_part);
18614 @:pen_part_}{\&{penpart} primitive@>
18615 mp_primitive(mp, "dashpart",unary,dash_part);
18616 @:dash_part_}{\&{dashpart} primitive@>
18617 mp_primitive(mp, "sqrt",unary,sqrt_op);
18618 @:sqrt_}{\&{sqrt} primitive@>
18619 mp_primitive(mp, "mexp",unary,m_exp_op);
18620 @:m_exp_}{\&{mexp} primitive@>
18621 mp_primitive(mp, "mlog",unary,m_log_op);
18622 @:m_log_}{\&{mlog} primitive@>
18623 mp_primitive(mp, "sind",unary,sin_d_op);
18624 @:sin_d_}{\&{sind} primitive@>
18625 mp_primitive(mp, "cosd",unary,cos_d_op);
18626 @:cos_d_}{\&{cosd} primitive@>
18627 mp_primitive(mp, "floor",unary,floor_op);
18628 @:floor_}{\&{floor} primitive@>
18629 mp_primitive(mp, "uniformdeviate",unary,uniform_deviate);
18630 @:uniform_deviate_}{\&{uniformdeviate} primitive@>
18631 mp_primitive(mp, "charexists",unary,char_exists_op);
18632 @:char_exists_}{\&{charexists} primitive@>
18633 mp_primitive(mp, "fontsize",unary,font_size);
18634 @:font_size_}{\&{fontsize} primitive@>
18635 mp_primitive(mp, "llcorner",unary,ll_corner_op);
18636 @:ll_corner_}{\&{llcorner} primitive@>
18637 mp_primitive(mp, "lrcorner",unary,lr_corner_op);
18638 @:lr_corner_}{\&{lrcorner} primitive@>
18639 mp_primitive(mp, "ulcorner",unary,ul_corner_op);
18640 @:ul_corner_}{\&{ulcorner} primitive@>
18641 mp_primitive(mp, "urcorner",unary,ur_corner_op);
18642 @:ur_corner_}{\&{urcorner} primitive@>
18643 mp_primitive(mp, "arclength",unary,arc_length);
18644 @:arc_length_}{\&{arclength} primitive@>
18645 mp_primitive(mp, "angle",unary,angle_op);
18646 @:angle_}{\&{angle} primitive@>
18647 mp_primitive(mp, "cycle",cycle,cycle_op);
18648 @:cycle_}{\&{cycle} primitive@>
18649 mp_primitive(mp, "stroked",unary,stroked_op);
18650 @:stroked_}{\&{stroked} primitive@>
18651 mp_primitive(mp, "filled",unary,filled_op);
18652 @:filled_}{\&{filled} primitive@>
18653 mp_primitive(mp, "textual",unary,textual_op);
18654 @:textual_}{\&{textual} primitive@>
18655 mp_primitive(mp, "clipped",unary,clipped_op);
18656 @:clipped_}{\&{clipped} primitive@>
18657 mp_primitive(mp, "bounded",unary,bounded_op);
18658 @:bounded_}{\&{bounded} primitive@>
18659 mp_primitive(mp, "+",plus_or_minus,plus);
18660 @:+ }{\.{+} primitive@>
18661 mp_primitive(mp, "-",plus_or_minus,minus);
18662 @:- }{\.{-} primitive@>
18663 mp_primitive(mp, "*",secondary_binary,times);
18664 @:* }{\.{*} primitive@>
18665 mp_primitive(mp, "/",slash,over); mp->eqtb[frozen_slash]=mp->eqtb[mp->cur_sym];
18666 @:/ }{\.{/} primitive@>
18667 mp_primitive(mp, "++",tertiary_binary,pythag_add);
18668 @:++_}{\.{++} primitive@>
18669 mp_primitive(mp, "+-+",tertiary_binary,pythag_sub);
18670 @:+-+_}{\.{+-+} primitive@>
18671 mp_primitive(mp, "or",tertiary_binary,or_op);
18672 @:or_}{\&{or} primitive@>
18673 mp_primitive(mp, "and",and_command,and_op);
18674 @:and_}{\&{and} primitive@>
18675 mp_primitive(mp, "<",expression_binary,less_than);
18676 @:< }{\.{<} primitive@>
18677 mp_primitive(mp, "<=",expression_binary,less_or_equal);
18678 @:<=_}{\.{<=} primitive@>
18679 mp_primitive(mp, ">",expression_binary,greater_than);
18680 @:> }{\.{>} primitive@>
18681 mp_primitive(mp, ">=",expression_binary,greater_or_equal);
18682 @:>=_}{\.{>=} primitive@>
18683 mp_primitive(mp, "=",equals,equal_to);
18684 @:= }{\.{=} primitive@>
18685 mp_primitive(mp, "<>",expression_binary,unequal_to);
18686 @:<>_}{\.{<>} primitive@>
18687 mp_primitive(mp, "substring",primary_binary,substring_of);
18688 @:substring_}{\&{substring} primitive@>
18689 mp_primitive(mp, "subpath",primary_binary,subpath_of);
18690 @:subpath_}{\&{subpath} primitive@>
18691 mp_primitive(mp, "directiontime",primary_binary,direction_time_of);
18692 @:direction_time_}{\&{directiontime} primitive@>
18693 mp_primitive(mp, "point",primary_binary,point_of);
18694 @:point_}{\&{point} primitive@>
18695 mp_primitive(mp, "precontrol",primary_binary,precontrol_of);
18696 @:precontrol_}{\&{precontrol} primitive@>
18697 mp_primitive(mp, "postcontrol",primary_binary,postcontrol_of);
18698 @:postcontrol_}{\&{postcontrol} primitive@>
18699 mp_primitive(mp, "penoffset",primary_binary,pen_offset_of);
18700 @:pen_offset_}{\&{penoffset} primitive@>
18701 mp_primitive(mp, "arctime",primary_binary,arc_time_of);
18702 @:arc_time_of_}{\&{arctime} primitive@>
18703 mp_primitive(mp, "mpversion",nullary,mp_version);
18704 @:mp_verison_}{\&{mpversion} primitive@>
18705 mp_primitive(mp, "&",ampersand,concatenate);
18706 @:!!!}{\.{\&} primitive@>
18707 mp_primitive(mp, "rotated",secondary_binary,rotated_by);
18708 @:rotated_}{\&{rotated} primitive@>
18709 mp_primitive(mp, "slanted",secondary_binary,slanted_by);
18710 @:slanted_}{\&{slanted} primitive@>
18711 mp_primitive(mp, "scaled",secondary_binary,scaled_by);
18712 @:scaled_}{\&{scaled} primitive@>
18713 mp_primitive(mp, "shifted",secondary_binary,shifted_by);
18714 @:shifted_}{\&{shifted} primitive@>
18715 mp_primitive(mp, "transformed",secondary_binary,transformed_by);
18716 @:transformed_}{\&{transformed} primitive@>
18717 mp_primitive(mp, "xscaled",secondary_binary,x_scaled);
18718 @:x_scaled_}{\&{xscaled} primitive@>
18719 mp_primitive(mp, "yscaled",secondary_binary,y_scaled);
18720 @:y_scaled_}{\&{yscaled} primitive@>
18721 mp_primitive(mp, "zscaled",secondary_binary,z_scaled);
18722 @:z_scaled_}{\&{zscaled} primitive@>
18723 mp_primitive(mp, "infont",secondary_binary,in_font);
18724 @:in_font_}{\&{infont} primitive@>
18725 mp_primitive(mp, "intersectiontimes",tertiary_binary,intersect);
18726 @:intersection_times_}{\&{intersectiontimes} primitive@>
18727 mp_primitive(mp, "envelope",primary_binary,envelope_of);
18728 @:envelope_}{\&{envelope} primitive@>
18730 @ @<Cases of |print_cmd...@>=
18733 case primary_binary:
18734 case secondary_binary:
18735 case tertiary_binary:
18736 case expression_binary:
18738 case plus_or_minus:
18743 mp_print_op(mp, m);
18746 @ OK, let's look at the simplest \\{do} procedure first.
18748 @c @<Declare nullary action procedure@>;
18749 void mp_do_nullary (MP mp,quarterword c) {
18751 if ( mp->internal[mp_tracing_commands]>two )
18752 mp_show_cmd_mod(mp, nullary,c);
18754 case true_code: case false_code:
18755 mp->cur_type=mp_boolean_type; mp->cur_exp=c;
18757 case null_picture_code:
18758 mp->cur_type=mp_picture_type;
18759 mp->cur_exp=mp_get_node(mp, edge_header_size);
18760 mp_init_edges(mp, mp->cur_exp);
18762 case null_pen_code:
18763 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, 0);
18765 case normal_deviate:
18766 mp->cur_type=mp_known; mp->cur_exp=mp_norm_rand(mp);
18769 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, unity);
18772 if ( mp->job_name==NULL ) mp_open_log_file(mp);
18773 mp->cur_type=mp_string_type; mp->cur_exp=rts(mp->job_name);
18776 mp->cur_type=mp_string_type;
18777 mp->cur_exp=intern(metapost_version) ;
18779 case read_string_op:
18780 @<Read a string from the terminal@>;
18782 } /* there are no other cases */
18786 @ @<Read a string...@>=
18788 if ( mp->interaction<=mp_nonstop_mode )
18789 mp_fatal_error(mp, "*** (cannot readstring in nonstop modes)");
18790 mp_begin_file_reading(mp); name=is_read;
18791 limit=start; prompt_input("");
18792 mp_finish_read(mp);
18795 @ @<Declare nullary action procedure@>=
18796 void mp_finish_read (MP mp) { /* copy |buffer| line to |cur_exp| */
18798 str_room((int)mp->last-start);
18799 for (k=start;k<=mp->last-1;k++) {
18800 append_char(mp->buffer[k]);
18802 mp_end_file_reading(mp); mp->cur_type=mp_string_type;
18803 mp->cur_exp=mp_make_string(mp);
18806 @ Things get a bit more interesting when there's an operand. The
18807 operand to |do_unary| appears in |cur_type| and |cur_exp|.
18809 @c @<Declare unary action procedures@>;
18810 void mp_do_unary (MP mp,quarterword c) {
18811 pointer p,q,r; /* for list manipulation */
18812 integer x; /* a temporary register */
18814 if ( mp->internal[mp_tracing_commands]>two )
18815 @<Trace the current unary operation@>;
18818 if ( mp->cur_type<mp_color_type ) mp_bad_unary(mp, plus);
18821 @<Negate the current expression@>;
18823 @<Additional cases of unary operators@>;
18824 } /* there are no other cases */
18828 @ The |nice_pair| function returns |true| if both components of a pair
18831 @<Declare unary action procedures@>=
18832 boolean mp_nice_pair (MP mp,integer p, quarterword t) {
18833 if ( t==mp_pair_type ) {
18835 if ( type(x_part_loc(p))==mp_known )
18836 if ( type(y_part_loc(p))==mp_known )
18842 @ The |nice_color_or_pair| function is analogous except that it also accepts
18843 fully known colors.
18845 @<Declare unary action procedures@>=
18846 boolean mp_nice_color_or_pair (MP mp,integer p, quarterword t) {
18847 pointer q,r; /* for scanning the big node */
18848 if ( (t!=mp_pair_type)&&(t!=mp_color_type)&&(t!=mp_cmykcolor_type) ) {
18852 r=q+mp->big_node_size[type(p)];
18855 if ( type(r)!=mp_known )
18862 @ @<Declare unary action...@>=
18863 void mp_print_known_or_unknown_type (MP mp,small_number t, integer v) {
18864 mp_print_char(mp, '(');
18865 if ( t>mp_known ) mp_print(mp, "unknown numeric");
18866 else { if ( (t==mp_pair_type)||(t==mp_color_type)||(t==mp_cmykcolor_type) )
18867 if ( ! mp_nice_color_or_pair(mp, v,t) ) mp_print(mp, "unknown ");
18868 mp_print_type(mp, t);
18870 mp_print_char(mp, ')');
18873 @ @<Declare unary action...@>=
18874 void mp_bad_unary (MP mp,quarterword c) {
18875 exp_err("Not implemented: "); mp_print_op(mp, c);
18876 @.Not implemented...@>
18877 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
18878 help3("I'm afraid I don't know how to apply that operation to that")
18879 ("particular type. Continue, and I'll simply return the")
18880 ("argument (shown above) as the result of the operation.");
18881 mp_put_get_error(mp);
18884 @ @<Trace the current unary operation@>=
18886 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
18887 mp_print_op(mp, c); mp_print_char(mp, '(');
18888 mp_print_exp(mp, null,0); /* show the operand, but not verbosely */
18889 mp_print(mp, ")}"); mp_end_diagnostic(mp, false);
18892 @ Negation is easy except when the current expression
18893 is of type |independent|, or when it is a pair with one or more
18894 |independent| components.
18896 It is tempting to argue that the negative of an independent variable
18897 is an independent variable, hence we don't have to do anything when
18898 negating it. The fallacy is that other dependent variables pointing
18899 to the current expression must change the sign of their
18900 coefficients if we make no change to the current expression.
18902 Instead, we work around the problem by copying the current expression
18903 and recycling it afterwards (cf.~the |stash_in| routine).
18905 @<Negate the current expression@>=
18906 switch (mp->cur_type) {
18907 case mp_color_type:
18908 case mp_cmykcolor_type:
18910 case mp_independent:
18911 q=mp->cur_exp; mp_make_exp_copy(mp, q);
18912 if ( mp->cur_type==mp_dependent ) {
18913 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18914 } else if ( mp->cur_type<=mp_pair_type ) { /* |mp_color_type| or |mp_pair_type| */
18915 p=value(mp->cur_exp);
18916 r=p+mp->big_node_size[mp->cur_type];
18919 if ( type(r)==mp_known ) negate(value(r));
18920 else mp_negate_dep_list(mp, dep_list(r));
18922 } /* if |cur_type=mp_known| then |cur_exp=0| */
18923 mp_recycle_value(mp, q); mp_free_node(mp, q,value_node_size);
18926 case mp_proto_dependent:
18927 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18930 negate(mp->cur_exp);
18933 mp_bad_unary(mp, minus);
18937 @ @<Declare unary action...@>=
18938 void mp_negate_dep_list (MP mp,pointer p) {
18941 if ( info(p)==null ) return;
18946 @ @<Additional cases of unary operators@>=
18948 if ( mp->cur_type!=mp_boolean_type ) mp_bad_unary(mp, not_op);
18949 else mp->cur_exp=true_code+false_code-mp->cur_exp;
18952 @ @d three_sixty_units 23592960 /* that's |360*unity| */
18953 @d boolean_reset(A) if ( (A) ) mp->cur_exp=true_code; else mp->cur_exp=false_code
18955 @<Additional cases of unary operators@>=
18962 case uniform_deviate:
18964 case char_exists_op:
18965 if ( mp->cur_type!=mp_known ) {
18966 mp_bad_unary(mp, c);
18969 case sqrt_op:mp->cur_exp=mp_square_rt(mp, mp->cur_exp);break;
18970 case m_exp_op:mp->cur_exp=mp_m_exp(mp, mp->cur_exp);break;
18971 case m_log_op:mp->cur_exp=mp_m_log(mp, mp->cur_exp);break;
18974 mp_n_sin_cos(mp, (mp->cur_exp % three_sixty_units)*16);
18975 if ( c==sin_d_op ) mp->cur_exp=mp_round_fraction(mp, mp->n_sin);
18976 else mp->cur_exp=mp_round_fraction(mp, mp->n_cos);
18978 case floor_op:mp->cur_exp=mp_floor_scaled(mp, mp->cur_exp);break;
18979 case uniform_deviate:mp->cur_exp=mp_unif_rand(mp, mp->cur_exp);break;
18981 boolean_reset(odd(mp_round_unscaled(mp, mp->cur_exp)));
18982 mp->cur_type=mp_boolean_type;
18984 case char_exists_op:
18985 @<Determine if a character has been shipped out@>;
18987 } /* there are no other cases */
18991 @ @<Additional cases of unary operators@>=
18993 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) ) {
18994 p=value(mp->cur_exp);
18995 x=mp_n_arg(mp, value(x_part_loc(p)),value(y_part_loc(p)));
18996 if ( x>=0 ) mp_flush_cur_exp(mp, (x+8)/ 16);
18997 else mp_flush_cur_exp(mp, -((-x+8)/ 16));
18999 mp_bad_unary(mp, angle_op);
19003 @ If the current expression is a pair, but the context wants it to
19004 be a path, we call |pair_to_path|.
19006 @<Declare unary action...@>=
19007 void mp_pair_to_path (MP mp) {
19008 mp->cur_exp=mp_new_knot(mp);
19009 mp->cur_type=mp_path_type;
19012 @ @<Additional cases of unary operators@>=
19015 if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_transform_type) )
19016 mp_take_part(mp, c);
19017 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19018 else mp_bad_unary(mp, c);
19024 if ( mp->cur_type==mp_transform_type ) mp_take_part(mp, c);
19025 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19026 else mp_bad_unary(mp, c);
19031 if ( mp->cur_type==mp_color_type ) mp_take_part(mp, c);
19032 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19033 else mp_bad_unary(mp, c);
19039 if ( mp->cur_type==mp_cmykcolor_type) mp_take_part(mp, c);
19040 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19041 else mp_bad_unary(mp, c);
19044 if ( mp->cur_type==mp_known ) mp->cur_exp=value(c);
19045 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19046 else mp_bad_unary(mp, c);
19048 case color_model_part:
19049 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19050 else mp_bad_unary(mp, c);
19053 @ In the following procedure, |cur_exp| points to a capsule, which points to
19054 a big node. We want to delete all but one part of the big node.
19056 @<Declare unary action...@>=
19057 void mp_take_part (MP mp,quarterword c) {
19058 pointer p; /* the big node */
19059 p=value(mp->cur_exp); value(temp_val)=p; type(temp_val)=mp->cur_type;
19060 link(p)=temp_val; mp_free_node(mp, mp->cur_exp,value_node_size);
19061 mp_make_exp_copy(mp, p+mp->sector_offset[c+mp_x_part_sector-x_part]);
19062 mp_recycle_value(mp, temp_val);
19065 @ @<Initialize table entries...@>=
19066 name_type(temp_val)=mp_capsule;
19068 @ @<Additional cases of unary operators@>=
19074 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19075 else mp_bad_unary(mp, c);
19078 @ @<Declarations@>=
19079 void mp_scale_edges (MP mp);
19081 @ @<Declare unary action...@>=
19082 void mp_take_pict_part (MP mp,quarterword c) {
19083 pointer p; /* first graphical object in |cur_exp| */
19084 p=link(dummy_loc(mp->cur_exp));
19087 case x_part: case y_part: case xx_part:
19088 case xy_part: case yx_part: case yy_part:
19089 if ( type(p)==mp_text_code ) mp_flush_cur_exp(mp, text_trans_part(p+c));
19090 else goto NOT_FOUND;
19092 case red_part: case green_part: case blue_part:
19093 if ( has_color(p) ) mp_flush_cur_exp(mp, obj_color_part(p+c));
19094 else goto NOT_FOUND;
19096 case cyan_part: case magenta_part: case yellow_part:
19098 if ( has_color(p) ) {
19099 if ( color_model(p)==mp_uninitialized_model )
19100 mp_flush_cur_exp(mp, unity);
19102 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-cyan_part)));
19103 } else goto NOT_FOUND;
19106 if ( has_color(p) )
19107 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-grey_part)));
19108 else goto NOT_FOUND;
19110 case color_model_part:
19111 if ( has_color(p) ) {
19112 if ( color_model(p)==mp_uninitialized_model )
19113 mp_flush_cur_exp(mp, mp->internal[mp_default_color_model]);
19115 mp_flush_cur_exp(mp, color_model(p)*unity);
19116 } else goto NOT_FOUND;
19118 @<Handle other cases in |take_pict_part| or |goto not_found|@>;
19119 } /* all cases have been enumerated */
19123 @<Convert the current expression to a null value appropriate
19127 @ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
19129 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19131 mp_flush_cur_exp(mp, text_p(p));
19132 add_str_ref(mp->cur_exp);
19133 mp->cur_type=mp_string_type;
19137 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19139 mp_flush_cur_exp(mp, rts(mp->font_name[font_n(p)]));
19140 add_str_ref(mp->cur_exp);
19141 mp->cur_type=mp_string_type;
19145 if ( type(p)==mp_text_code ) goto NOT_FOUND;
19146 else if ( is_stop(p) ) mp_confusion(mp, "pict");
19147 @:this can't happen pict}{\quad pict@>
19149 mp_flush_cur_exp(mp, mp_copy_path(mp, path_p(p)));
19150 mp->cur_type=mp_path_type;
19154 if ( ! has_pen(p) ) goto NOT_FOUND;
19156 if ( pen_p(p)==null ) goto NOT_FOUND;
19157 else { mp_flush_cur_exp(mp, copy_pen(pen_p(p)));
19158 mp->cur_type=mp_pen_type;
19163 if ( type(p)!=mp_stroked_code ) goto NOT_FOUND;
19164 else { if ( dash_p(p)==null ) goto NOT_FOUND;
19165 else { add_edge_ref(dash_p(p));
19166 mp->se_sf=dash_scale(p);
19167 mp->se_pic=dash_p(p);
19168 mp_scale_edges(mp);
19169 mp_flush_cur_exp(mp, mp->se_pic);
19170 mp->cur_type=mp_picture_type;
19175 @ Since |scale_edges| had to be declared |forward|, it had to be declared as a
19176 parameterless procedure even though it really takes two arguments and updates
19177 one of them. Hence the following globals are needed.
19180 pointer se_pic; /* edge header used and updated by |scale_edges| */
19181 scaled se_sf; /* the scale factor argument to |scale_edges| */
19183 @ @<Convert the current expression to a null value appropriate...@>=
19185 case text_part: case font_part:
19186 mp_flush_cur_exp(mp, rts(""));
19187 mp->cur_type=mp_string_type;
19190 mp_flush_cur_exp(mp, mp_get_node(mp, knot_node_size));
19191 left_type(mp->cur_exp)=mp_endpoint;
19192 right_type(mp->cur_exp)=mp_endpoint;
19193 link(mp->cur_exp)=mp->cur_exp;
19194 x_coord(mp->cur_exp)=0;
19195 y_coord(mp->cur_exp)=0;
19196 originator(mp->cur_exp)=mp_metapost_user;
19197 mp->cur_type=mp_path_type;
19200 mp_flush_cur_exp(mp, mp_get_pen_circle(mp, 0));
19201 mp->cur_type=mp_pen_type;
19204 mp_flush_cur_exp(mp, mp_get_node(mp, edge_header_size));
19205 mp_init_edges(mp, mp->cur_exp);
19206 mp->cur_type=mp_picture_type;
19209 mp_flush_cur_exp(mp, 0);
19213 @ @<Additional cases of unary...@>=
19215 if ( mp->cur_type!=mp_known ) {
19216 mp_bad_unary(mp, char_op);
19218 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
19219 mp->cur_type=mp_string_type;
19220 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
19224 if ( mp->cur_type!=mp_known ) {
19225 mp_bad_unary(mp, decimal);
19227 mp->old_setting=mp->selector; mp->selector=new_string;
19228 mp_print_scaled(mp, mp->cur_exp); mp->cur_exp=mp_make_string(mp);
19229 mp->selector=mp->old_setting; mp->cur_type=mp_string_type;
19235 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19236 else mp_str_to_num(mp, c);
19239 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, font_size);
19240 else @<Find the design size of the font whose name is |cur_exp|@>;
19243 @ @<Declare unary action...@>=
19244 void mp_str_to_num (MP mp,quarterword c) { /* converts a string to a number */
19245 integer n; /* accumulator */
19246 ASCII_code m; /* current character */
19247 pool_pointer k; /* index into |str_pool| */
19248 int b; /* radix of conversion */
19249 boolean bad_char; /* did the string contain an invalid digit? */
19250 if ( c==ASCII_op ) {
19251 if ( length(mp->cur_exp)==0 ) n=-1;
19252 else n=mp->str_pool[mp->str_start[mp->cur_exp]];
19254 if ( c==oct_op ) b=8; else b=16;
19255 n=0; bad_char=false;
19256 for (k=mp->str_start[mp->cur_exp];k<=str_stop(mp->cur_exp)-1;k++) {
19258 if ( (m>='0')&&(m<='9') ) m=m-'0';
19259 else if ( (m>='A')&&(m<='F') ) m=m-'A'+10;
19260 else if ( (m>='a')&&(m<='f') ) m=m-'a'+10;
19261 else { bad_char=true; m=0; };
19262 if ( m>=b ) { bad_char=true; m=0; };
19263 if ( n<32768 / b ) n=n*b+m; else n=32767;
19265 @<Give error messages if |bad_char| or |n>=4096|@>;
19267 mp_flush_cur_exp(mp, n*unity);
19270 @ @<Give error messages if |bad_char|...@>=
19272 exp_err("String contains illegal digits");
19273 @.String contains illegal digits@>
19275 help1("I zeroed out characters that weren't in the range 0..7.");
19277 help1("I zeroed out characters that weren't hex digits.");
19279 mp_put_get_error(mp);
19282 if ( mp->internal[mp_warning_check]>0 ) {
19283 print_err("Number too large (");
19284 mp_print_int(mp, n); mp_print_char(mp, ')');
19285 @.Number too large@>
19286 help2("I have trouble with numbers greater than 4095; watch out.")
19287 ("(Set warningcheck:=0 to suppress this message.)");
19288 mp_put_get_error(mp);
19292 @ The length operation is somewhat unusual in that it applies to a variety
19293 of different types of operands.
19295 @<Additional cases of unary...@>=
19297 switch (mp->cur_type) {
19298 case mp_string_type: mp_flush_cur_exp(mp, length(mp->cur_exp)*unity); break;
19299 case mp_path_type: mp_flush_cur_exp(mp, mp_path_length(mp)); break;
19300 case mp_known: mp->cur_exp=abs(mp->cur_exp); break;
19301 case mp_picture_type: mp_flush_cur_exp(mp, mp_pict_length(mp)); break;
19303 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) )
19304 mp_flush_cur_exp(mp, mp_pyth_add(mp,
19305 value(x_part_loc(value(mp->cur_exp))),
19306 value(y_part_loc(value(mp->cur_exp)))));
19307 else mp_bad_unary(mp, c);
19312 @ @<Declare unary action...@>=
19313 scaled mp_path_length (MP mp) { /* computes the length of the current path */
19314 scaled n; /* the path length so far */
19315 pointer p; /* traverser */
19317 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
19318 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
19322 @ @<Declare unary action...@>=
19323 scaled mp_pict_length (MP mp) {
19324 /* counts interior components in picture |cur_exp| */
19325 scaled n; /* the count so far */
19326 pointer p; /* traverser */
19328 p=link(dummy_loc(mp->cur_exp));
19330 if ( is_start_or_stop(p) )
19331 if ( mp_skip_1component(mp, p)==null ) p=link(p);
19332 while ( p!=null ) {
19333 skip_component(p) return n;
19340 @ Implement |turningnumber|
19342 @<Additional cases of unary...@>=
19344 if ( mp->cur_type==mp_pair_type ) mp_flush_cur_exp(mp, 0);
19345 else if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, turning_op);
19346 else if ( left_type(mp->cur_exp)==mp_endpoint )
19347 mp_flush_cur_exp(mp, 0); /* not a cyclic path */
19349 mp_flush_cur_exp(mp, mp_turn_cycles_wrapper(mp, mp->cur_exp));
19352 @ The function |an_angle| returns the value of the |angle| primitive, or $0$ if the
19353 argument is |origin|.
19355 @<Declare unary action...@>=
19356 angle mp_an_angle (MP mp,scaled xpar, scaled ypar) {
19357 if ( (! ((xpar==0) && (ypar==0))) )
19358 return mp_n_arg(mp, xpar,ypar);
19363 @ The actual turning number is (for the moment) computed in a C function
19364 that receives eight integers corresponding to the four controlling points,
19365 and returns a single angle. Besides those, we have to account for discrete
19366 moves at the actual points.
19368 @d floor(a) (a>=0 ? a : -(int)(-a))
19369 @d bezier_error (720<<20)+1
19370 @d sign(v) ((v)>0 ? 1 : ((v)<0 ? -1 : 0 ))
19372 @d out ((double)(xo>>20))
19373 @d mid ((double)(xm>>20))
19374 @d in ((double)(xi>>20))
19375 @d divisor (256*256)
19376 @d double2angle(a) (int)floor(a*256.0*256.0*16.0)
19378 @<Declare unary action...@>=
19379 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19380 integer CX,integer CY,integer DX,integer DY);
19383 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19384 integer CX,integer CY,integer DX,integer DY) {
19386 integer deltax,deltay;
19387 double ax,ay,bx,by,cx,cy,dx,dy;
19388 angle xi = 0, xo = 0, xm = 0;
19390 ax=AX/divisor; ay=AY/divisor;
19391 bx=BX/divisor; by=BY/divisor;
19392 cx=CX/divisor; cy=CY/divisor;
19393 dx=DX/divisor; dy=DY/divisor;
19395 deltax = (BX-AX); deltay = (BY-AY);
19396 if (deltax==0 && deltay == 0) { deltax=(CX-AX); deltay=(CY-AY); }
19397 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19398 xi = mp_an_angle(mp,deltax,deltay);
19400 deltax = (CX-BX); deltay = (CY-BY);
19401 xm = mp_an_angle(mp,deltax,deltay);
19403 deltax = (DX-CX); deltay = (DY-CY);
19404 if (deltax==0 && deltay == 0) { deltax=(DX-BX); deltay=(DY-BY); }
19405 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19406 xo = mp_an_angle(mp,deltax,deltay);
19408 a = (bx-ax)*(cy-by) - (cx-bx)*(by-ay); /* a = (bp-ap)x(cp-bp); */
19409 b = (bx-ax)*(dy-cy) - (by-ay)*(dx-cx);; /* b = (bp-ap)x(dp-cp);*/
19410 c = (cx-bx)*(dy-cy) - (dx-cx)*(cy-by); /* c = (cp-bp)x(dp-cp);*/
19412 if ((a==0)&&(c==0)) {
19413 res = (b==0 ? 0 : (out-in));
19414 print_roots("no roots (a)");
19415 } else if ((a==0)||(c==0)) {
19416 if ((sign(b) == sign(a)) || (sign(b) == sign(c))) {
19417 res = out-in; /* ? */
19420 else if (res>180.0)
19422 print_roots("no roots (b)");
19424 res = out-in; /* ? */
19425 print_roots("one root (a)");
19427 } else if ((sign(a)*sign(c))<0) {
19428 res = out-in; /* ? */
19431 else if (res>180.0)
19433 print_roots("one root (b)");
19435 if (sign(a) == sign(b)) {
19436 res = out-in; /* ? */
19439 else if (res>180.0)
19441 print_roots("no roots (d)");
19443 if ((b*b) == (4*a*c)) {
19444 res = bezier_error;
19445 print_roots("double root"); /* cusp */
19446 } else if ((b*b) < (4*a*c)) {
19447 res = out-in; /* ? */
19448 if (res<=0.0 &&res>-180.0)
19450 else if (res>=0.0 && res<180.0)
19452 print_roots("no roots (e)");
19457 else if (res>180.0)
19459 print_roots("two roots"); /* two inflections */
19463 return double2angle(res);
19467 @d p_nextnext link(link(p))
19469 @d seven_twenty_deg 05500000000 /* $720\cdot2^{20}$, represents $720^\circ$ */
19471 @<Declare unary action...@>=
19472 scaled mp_new_turn_cycles (MP mp,pointer c) {
19473 angle res,ang; /* the angles of intermediate results */
19474 scaled turns; /* the turn counter */
19475 pointer p; /* for running around the path */
19476 integer xp,yp; /* coordinates of next point */
19477 integer x,y; /* helper coordinates */
19478 angle in_angle,out_angle; /* helper angles */
19479 int old_setting; /* saved |selector| setting */
19483 old_setting = mp->selector; mp->selector=term_only;
19484 if ( mp->internal[mp_tracing_commands]>unity ) {
19485 mp_begin_diagnostic(mp);
19486 mp_print_nl(mp, "");
19487 mp_end_diagnostic(mp, false);
19490 xp = x_coord(p_next); yp = y_coord(p_next);
19491 ang = mp_bezier_slope(mp,x_coord(p), y_coord(p), right_x(p), right_y(p),
19492 left_x(p_next), left_y(p_next), xp, yp);
19493 if ( ang>seven_twenty_deg ) {
19494 print_err("Strange path");
19496 mp->selector=old_setting;
19500 if ( res > one_eighty_deg ) {
19501 res = res - three_sixty_deg;
19502 turns = turns + unity;
19504 if ( res <= -one_eighty_deg ) {
19505 res = res + three_sixty_deg;
19506 turns = turns - unity;
19508 /* incoming angle at next point */
19509 x = left_x(p_next); y = left_y(p_next);
19510 if ( (xp==x)&&(yp==y) ) { x = right_x(p); y = right_y(p); };
19511 if ( (xp==x)&&(yp==y) ) { x = x_coord(p); y = y_coord(p); };
19512 in_angle = mp_an_angle(mp, xp - x, yp - y);
19513 /* outgoing angle at next point */
19514 x = right_x(p_next); y = right_y(p_next);
19515 if ( (xp==x)&&(yp==y) ) { x = left_x(p_nextnext); y = left_y(p_nextnext); };
19516 if ( (xp==x)&&(yp==y) ) { x = x_coord(p_nextnext); y = y_coord(p_nextnext); };
19517 out_angle = mp_an_angle(mp, x - xp, y- yp);
19518 ang = (out_angle - in_angle);
19522 if ( res >= one_eighty_deg ) {
19523 res = res - three_sixty_deg;
19524 turns = turns + unity;
19526 if ( res <= -one_eighty_deg ) {
19527 res = res + three_sixty_deg;
19528 turns = turns - unity;
19533 mp->selector=old_setting;
19538 @ This code is based on Bogus\l{}av Jackowski's
19539 |emergency_turningnumber| macro, with some minor changes by Taco
19540 Hoekwater. The macro code looked more like this:
19542 vardef turning\_number primary p =
19543 ~~save res, ang, turns;
19545 ~~if length p <= 2:
19546 ~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
19548 ~~~~for t = 0 upto length p-1 :
19549 ~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
19550 ~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
19551 ~~~~~~if angc > 180: angc := angc - 360; fi;
19552 ~~~~~~if angc < -180: angc := angc + 360; fi;
19553 ~~~~~~res := res + angc;
19558 The general idea is to calculate only the sum of the angles of
19559 straight lines between the points, of a path, not worrying about cusps
19560 or self-intersections in the segments at all. If the segment is not
19561 well-behaved, the result is not necesarily correct. But the old code
19562 was not always correct either, and worse, it sometimes failed for
19563 well-behaved paths as well. All known bugs that were triggered by the
19564 original code no longer occur with this code, and it runs roughly 3
19565 times as fast because the algorithm is much simpler.
19567 @ It is possible to overflow the return value of the |turn_cycles|
19568 function when the path is sufficiently long and winding, but I am not
19569 going to bother testing for that. In any case, it would only return
19570 the looped result value, which is not a big problem.
19572 The macro code for the repeat loop was a bit nicer to look
19573 at than the pascal code, because it could use |point -1 of p|. In
19574 pascal, the fastest way to loop around the path is not to look
19575 backward once, but forward twice. These defines help hide the trick.
19577 @d p_to link(link(p))
19581 @<Declare unary action...@>=
19582 scaled mp_turn_cycles (MP mp,pointer c) {
19583 angle res,ang; /* the angles of intermediate results */
19584 scaled turns; /* the turn counter */
19585 pointer p; /* for running around the path */
19586 res=0; turns= 0; p=c;
19588 ang = mp_an_angle (mp, x_coord(p_to) - x_coord(p_here),
19589 y_coord(p_to) - y_coord(p_here))
19590 - mp_an_angle (mp, x_coord(p_here) - x_coord(p_from),
19591 y_coord(p_here) - y_coord(p_from));
19594 if ( res >= three_sixty_deg ) {
19595 res = res - three_sixty_deg;
19596 turns = turns + unity;
19598 if ( res <= -three_sixty_deg ) {
19599 res = res + three_sixty_deg;
19600 turns = turns - unity;
19607 @ @<Declare unary action...@>=
19608 scaled mp_turn_cycles_wrapper (MP mp,pointer c) {
19610 scaled saved_t_o; /* tracing\_online saved */
19611 if ( (link(c)==c)||(link(link(c))==c) ) {
19612 if ( mp_an_angle (mp, x_coord(c) - right_x(c), y_coord(c) - right_y(c)) > 0 )
19617 nval = mp_new_turn_cycles(mp, c);
19618 oval = mp_turn_cycles(mp, c);
19619 if ( nval!=oval ) {
19620 saved_t_o=mp->internal[mp_tracing_online];
19621 mp->internal[mp_tracing_online]=unity;
19622 mp_begin_diagnostic(mp);
19623 mp_print_nl (mp, "Warning: the turningnumber algorithms do not agree."
19624 " The current computed value is ");
19625 mp_print_scaled(mp, nval);
19626 mp_print(mp, ", but the 'connect-the-dots' algorithm returned ");
19627 mp_print_scaled(mp, oval);
19628 mp_end_diagnostic(mp, false);
19629 mp->internal[mp_tracing_online]=saved_t_o;
19635 @ @<Declare unary action...@>=
19636 scaled mp_count_turns (MP mp,pointer c) {
19637 pointer p; /* a knot in envelope spec |c| */
19638 integer t; /* total pen offset changes counted */
19641 t=t+info(p)-zero_off;
19644 return ((t / 3)*unity);
19647 @ @d type_range(A,B) {
19648 if ( (mp->cur_type>=(A)) && (mp->cur_type<=(B)) )
19649 mp_flush_cur_exp(mp, true_code);
19650 else mp_flush_cur_exp(mp, false_code);
19651 mp->cur_type=mp_boolean_type;
19654 if ( mp->cur_type==(A) ) mp_flush_cur_exp(mp, true_code);
19655 else mp_flush_cur_exp(mp, false_code);
19656 mp->cur_type=mp_boolean_type;
19659 @<Additional cases of unary operators@>=
19660 case mp_boolean_type:
19661 type_range(mp_boolean_type,mp_unknown_boolean); break;
19662 case mp_string_type:
19663 type_range(mp_string_type,mp_unknown_string); break;
19665 type_range(mp_pen_type,mp_unknown_pen); break;
19667 type_range(mp_path_type,mp_unknown_path); break;
19668 case mp_picture_type:
19669 type_range(mp_picture_type,mp_unknown_picture); break;
19670 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
19672 type_test(c); break;
19673 case mp_numeric_type:
19674 type_range(mp_known,mp_independent); break;
19675 case known_op: case unknown_op:
19676 mp_test_known(mp, c); break;
19678 @ @<Declare unary action procedures@>=
19679 void mp_test_known (MP mp,quarterword c) {
19680 int b; /* is the current expression known? */
19681 pointer p,q; /* locations in a big node */
19683 switch (mp->cur_type) {
19684 case mp_vacuous: case mp_boolean_type: case mp_string_type:
19685 case mp_pen_type: case mp_path_type: case mp_picture_type:
19689 case mp_transform_type:
19690 case mp_color_type: case mp_cmykcolor_type: case mp_pair_type:
19691 p=value(mp->cur_exp);
19692 q=p+mp->big_node_size[mp->cur_type];
19695 if ( type(q)!=mp_known )
19704 if ( c==known_op ) mp_flush_cur_exp(mp, b);
19705 else mp_flush_cur_exp(mp, true_code+false_code-b);
19706 mp->cur_type=mp_boolean_type;
19709 @ @<Additional cases of unary operators@>=
19711 if ( mp->cur_type!=mp_path_type ) mp_flush_cur_exp(mp, false_code);
19712 else if ( left_type(mp->cur_exp)!=mp_endpoint ) mp_flush_cur_exp(mp, true_code);
19713 else mp_flush_cur_exp(mp, false_code);
19714 mp->cur_type=mp_boolean_type;
19717 @ @<Additional cases of unary operators@>=
19719 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19720 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, arc_length);
19721 else mp_flush_cur_exp(mp, mp_get_arc_length(mp, mp->cur_exp));
19724 @ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
19726 @^data structure assumptions@>
19728 @<Additional cases of unary operators@>=
19734 if ( mp->cur_type!=mp_picture_type ) mp_flush_cur_exp(mp, false_code);
19735 else if ( link(dummy_loc(mp->cur_exp))==null ) mp_flush_cur_exp(mp, false_code);
19736 else if ( type(link(dummy_loc(mp->cur_exp)))==c+mp_fill_code-filled_op )
19737 mp_flush_cur_exp(mp, true_code);
19738 else mp_flush_cur_exp(mp, false_code);
19739 mp->cur_type=mp_boolean_type;
19742 @ @<Additional cases of unary operators@>=
19744 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19745 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, make_pen_op);
19747 mp->cur_type=mp_pen_type;
19748 mp->cur_exp=mp_make_pen(mp, mp->cur_exp,true);
19752 if ( mp->cur_type!=mp_pen_type ) mp_bad_unary(mp, make_path_op);
19754 mp->cur_type=mp_path_type;
19755 mp_make_path(mp, mp->cur_exp);
19759 if ( mp->cur_type==mp_path_type ) {
19760 p=mp_htap_ypoc(mp, mp->cur_exp);
19761 if ( right_type(p)==mp_endpoint ) p=link(p);
19762 mp_toss_knot_list(mp, mp->cur_exp); mp->cur_exp=p;
19763 } else if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19764 else mp_bad_unary(mp, reverse);
19767 @ The |pair_value| routine changes the current expression to a
19768 given ordered pair of values.
19770 @<Declare unary action procedures@>=
19771 void mp_pair_value (MP mp,scaled x, scaled y) {
19772 pointer p; /* a pair node */
19773 p=mp_get_node(mp, value_node_size);
19774 mp_flush_cur_exp(mp, p); mp->cur_type=mp_pair_type;
19775 type(p)=mp_pair_type; name_type(p)=mp_capsule; mp_init_big_node(mp, p);
19777 type(x_part_loc(p))=mp_known; value(x_part_loc(p))=x;
19778 type(y_part_loc(p))=mp_known; value(y_part_loc(p))=y;
19781 @ @<Additional cases of unary operators@>=
19783 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ll_corner_op);
19784 else mp_pair_value(mp, minx,miny);
19787 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, lr_corner_op);
19788 else mp_pair_value(mp, maxx,miny);
19791 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ul_corner_op);
19792 else mp_pair_value(mp, minx,maxy);
19795 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ur_corner_op);
19796 else mp_pair_value(mp, maxx,maxy);
19799 @ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
19800 box of the current expression. The boolean result is |false| if the expression
19801 has the wrong type.
19803 @<Declare unary action procedures@>=
19804 boolean mp_get_cur_bbox (MP mp) {
19805 switch (mp->cur_type) {
19806 case mp_picture_type:
19807 mp_set_bbox(mp, mp->cur_exp,true);
19808 if ( minx_val(mp->cur_exp)>maxx_val(mp->cur_exp) ) {
19809 minx=0; maxx=0; miny=0; maxy=0;
19811 minx=minx_val(mp->cur_exp);
19812 maxx=maxx_val(mp->cur_exp);
19813 miny=miny_val(mp->cur_exp);
19814 maxy=maxy_val(mp->cur_exp);
19818 mp_path_bbox(mp, mp->cur_exp);
19821 mp_pen_bbox(mp, mp->cur_exp);
19829 @ @<Additional cases of unary operators@>=
19831 case close_from_op:
19832 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19833 else mp_do_read_or_close(mp,c);
19836 @ Here is a routine that interprets |cur_exp| as a file name and tries to read
19837 a line from the file or to close the file.
19839 @<Declare unary action procedures@>=
19840 void mp_do_read_or_close (MP mp,quarterword c) {
19841 readf_index n,n0; /* indices for searching |rd_fname| */
19842 @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
19843 call |start_read_input| and |goto found| or |not_found|@>;
19844 mp_begin_file_reading(mp);
19846 if ( mp_input_ln(mp, mp->rd_file[n] ) )
19848 mp_end_file_reading(mp);
19850 @<Record the end of file and set |cur_exp| to a dummy value@>;
19853 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
19856 mp_flush_cur_exp(mp, 0);
19857 mp_finish_read(mp);
19860 @ Free slots in the |rd_file| and |rd_fname| arrays are marked with NULL's in
19863 @<Find the |n| where |rd_fname[n]=cur_exp|...@>=
19868 fn = str(mp->cur_exp);
19869 while (mp_xstrcmp(fn,mp->rd_fname[n])!=0) {
19872 } else if ( c==close_from_op ) {
19875 if ( n0==mp->read_files ) {
19876 if ( mp->read_files<mp->max_read_files ) {
19877 incr(mp->read_files);
19882 l = mp->max_read_files + (mp->max_read_files>>2);
19883 rd_file = xmalloc((l+1), sizeof(void *));
19884 rd_fname = xmalloc((l+1), sizeof(char *));
19885 for (k=0;k<=l;k++) {
19886 if (k<=mp->max_read_files) {
19887 rd_file[k]=mp->rd_file[k];
19888 rd_fname[k]=mp->rd_fname[k];
19894 xfree(mp->rd_file); xfree(mp->rd_fname);
19895 mp->max_read_files = l;
19896 mp->rd_file = rd_file;
19897 mp->rd_fname = rd_fname;
19901 if ( mp_start_read_input(mp,fn,n) )
19906 if ( mp->rd_fname[n]==NULL ) { n0=n; }
19908 if ( c==close_from_op ) {
19909 (mp->close_file)(mp->rd_file[n]);
19914 @ @<Record the end of file and set |cur_exp| to a dummy value@>=
19915 xfree(mp->rd_fname[n]);
19916 mp->rd_fname[n]=NULL;
19917 if ( n==mp->read_files-1 ) mp->read_files=n;
19918 if ( c==close_from_op )
19920 mp_flush_cur_exp(mp, mp->eof_line);
19921 mp->cur_type=mp_string_type
19923 @ The string denoting end-of-file is a one-byte string at position zero, by definition
19926 str_number eof_line;
19931 @ Finally, we have the operations that combine a capsule~|p|
19932 with the current expression.
19934 @c @<Declare binary action procedures@>;
19935 void mp_do_binary (MP mp,pointer p, quarterword c) {
19936 pointer q,r,rr; /* for list manipulation */
19937 pointer old_p,old_exp; /* capsules to recycle */
19938 integer v; /* for numeric manipulation */
19940 if ( mp->internal[mp_tracing_commands]>two ) {
19941 @<Trace the current binary operation@>;
19943 @<Sidestep |independent| cases in capsule |p|@>;
19944 @<Sidestep |independent| cases in the current expression@>;
19946 case plus: case minus:
19947 @<Add or subtract the current expression from |p|@>;
19949 @<Additional cases of binary operators@>;
19950 }; /* there are no other cases */
19951 mp_recycle_value(mp, p);
19952 mp_free_node(mp, p,value_node_size); /* |return| to avoid this */
19954 @<Recycle any sidestepped |independent| capsules@>;
19957 @ @<Declare binary action...@>=
19958 void mp_bad_binary (MP mp,pointer p, quarterword c) {
19959 mp_disp_err(mp, p,"");
19960 exp_err("Not implemented: ");
19961 @.Not implemented...@>
19962 if ( c>=min_of ) mp_print_op(mp, c);
19963 mp_print_known_or_unknown_type(mp, type(p),p);
19964 if ( c>=min_of ) mp_print(mp, "of"); else mp_print_op(mp, c);
19965 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
19966 help3("I'm afraid I don't know how to apply that operation to that")
19967 ("combination of types. Continue, and I'll return the second")
19968 ("argument (see above) as the result of the operation.");
19969 mp_put_get_error(mp);
19971 void mp_bad_envelope_pen (MP mp) {
19972 mp_disp_err(mp, null,"");
19973 exp_err("Not implemented: envelope(elliptical pen)of(path)");
19974 @.Not implemented...@>
19975 help3("I'm afraid I don't know how to apply that operation to that")
19976 ("combination of types. Continue, and I'll return the second")
19977 ("argument (see above) as the result of the operation.");
19978 mp_put_get_error(mp);
19981 @ @<Trace the current binary operation@>=
19983 mp_begin_diagnostic(mp); mp_print_nl(mp, "{(");
19984 mp_print_exp(mp,p,0); /* show the operand, but not verbosely */
19985 mp_print_char(mp,')'); mp_print_op(mp,c); mp_print_char(mp,'(');
19986 mp_print_exp(mp,null,0); mp_print(mp,")}");
19987 mp_end_diagnostic(mp, false);
19990 @ Several of the binary operations are potentially complicated by the
19991 fact that |independent| values can sneak into capsules. For example,
19992 we've seen an instance of this difficulty in the unary operation
19993 of negation. In order to reduce the number of cases that need to be
19994 handled, we first change the two operands (if necessary)
19995 to rid them of |independent| components. The original operands are
19996 put into capsules called |old_p| and |old_exp|, which will be
19997 recycled after the binary operation has been safely carried out.
19999 @<Recycle any sidestepped |independent| capsules@>=
20000 if ( old_p!=null ) {
20001 mp_recycle_value(mp, old_p); mp_free_node(mp, old_p,value_node_size);
20003 if ( old_exp!=null ) {
20004 mp_recycle_value(mp, old_exp); mp_free_node(mp, old_exp,value_node_size);
20007 @ A big node is considered to be ``tarnished'' if it contains at least one
20008 independent component. We will define a simple function called `|tarnished|'
20009 that returns |null| if and only if its argument is not tarnished.
20011 @<Sidestep |independent| cases in capsule |p|@>=
20013 case mp_transform_type:
20014 case mp_color_type:
20015 case mp_cmykcolor_type:
20017 old_p=mp_tarnished(mp, p);
20019 case mp_independent: old_p=mp_void; break;
20020 default: old_p=null; break;
20022 if ( old_p!=null ) {
20023 q=mp_stash_cur_exp(mp); old_p=p; mp_make_exp_copy(mp, old_p);
20024 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
20027 @ @<Sidestep |independent| cases in the current expression@>=
20028 switch (mp->cur_type) {
20029 case mp_transform_type:
20030 case mp_color_type:
20031 case mp_cmykcolor_type:
20033 old_exp=mp_tarnished(mp, mp->cur_exp);
20035 case mp_independent:old_exp=mp_void; break;
20036 default: old_exp=null; break;
20038 if ( old_exp!=null ) {
20039 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20042 @ @<Declare binary action...@>=
20043 pointer mp_tarnished (MP mp,pointer p) {
20044 pointer q; /* beginning of the big node */
20045 pointer r; /* current position in the big node */
20046 q=value(p); r=q+mp->big_node_size[type(p)];
20049 if ( type(r)==mp_independent ) return mp_void;
20054 @ @<Add or subtract the current expression from |p|@>=
20055 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20056 mp_bad_binary(mp, p,c);
20058 if ((mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20059 mp_add_or_subtract(mp, p,null,c);
20061 if ( mp->cur_type!=type(p) ) {
20062 mp_bad_binary(mp, p,c);
20064 q=value(p); r=value(mp->cur_exp);
20065 rr=r+mp->big_node_size[mp->cur_type];
20067 mp_add_or_subtract(mp, q,r,c);
20074 @ The first argument to |add_or_subtract| is the location of a value node
20075 in a capsule or pair node that will soon be recycled. The second argument
20076 is either a location within a pair or transform node of |cur_exp|,
20077 or it is null (which means that |cur_exp| itself should be the second
20078 argument). The third argument is either |plus| or |minus|.
20080 The sum or difference of the numeric quantities will replace the second
20081 operand. Arithmetic overflow may go undetected; users aren't supposed to
20082 be monkeying around with really big values.
20084 @<Declare binary action...@>=
20085 @<Declare the procedure called |dep_finish|@>;
20086 void mp_add_or_subtract (MP mp,pointer p, pointer q, quarterword c) {
20087 small_number s,t; /* operand types */
20088 pointer r; /* list traverser */
20089 integer v; /* second operand value */
20092 if ( t<mp_dependent ) v=mp->cur_exp; else v=dep_list(mp->cur_exp);
20095 if ( t<mp_dependent ) v=value(q); else v=dep_list(q);
20097 if ( t==mp_known ) {
20098 if ( c==minus ) negate(v);
20099 if ( type(p)==mp_known ) {
20100 v=mp_slow_add(mp, value(p),v);
20101 if ( q==null ) mp->cur_exp=v; else value(q)=v;
20104 @<Add a known value to the constant term of |dep_list(p)|@>;
20106 if ( c==minus ) mp_negate_dep_list(mp, v);
20107 @<Add operand |p| to the dependency list |v|@>;
20111 @ @<Add a known value to the constant term of |dep_list(p)|@>=
20113 while ( info(r)!=null ) r=link(r);
20114 value(r)=mp_slow_add(mp, value(r),v);
20116 q=mp_get_node(mp, value_node_size); mp->cur_exp=q; mp->cur_type=type(p);
20117 name_type(q)=mp_capsule;
20119 dep_list(q)=dep_list(p); type(q)=type(p);
20120 prev_dep(q)=prev_dep(p); link(prev_dep(p))=q;
20121 type(p)=mp_known; /* this will keep the recycler from collecting non-garbage */
20123 @ We prefer |dependent| lists to |mp_proto_dependent| ones, because it is
20124 nice to retain the extra accuracy of |fraction| coefficients.
20125 But we have to handle both kinds, and mixtures too.
20127 @<Add operand |p| to the dependency list |v|@>=
20128 if ( type(p)==mp_known ) {
20129 @<Add the known |value(p)| to the constant term of |v|@>;
20131 s=type(p); r=dep_list(p);
20132 if ( t==mp_dependent ) {
20133 if ( s==mp_dependent ) {
20134 if ( mp_max_coef(mp, r)+mp_max_coef(mp, v)<coef_bound )
20135 v=mp_p_plus_q(mp, v,r,mp_dependent); goto DONE;
20136 } /* |fix_needed| will necessarily be false */
20137 t=mp_proto_dependent;
20138 v=mp_p_over_v(mp, v,unity,mp_dependent,mp_proto_dependent);
20140 if ( s==mp_proto_dependent ) v=mp_p_plus_q(mp, v,r,mp_proto_dependent);
20141 else v=mp_p_plus_fq(mp, v,unity,r,mp_proto_dependent,mp_dependent);
20143 @<Output the answer, |v| (which might have become |known|)@>;
20146 @ @<Add the known |value(p)| to the constant term of |v|@>=
20148 while ( info(v)!=null ) v=link(v);
20149 value(v)=mp_slow_add(mp, value(p),value(v));
20152 @ @<Output the answer, |v| (which might have become |known|)@>=
20153 if ( q!=null ) mp_dep_finish(mp, v,q,t);
20154 else { mp->cur_type=t; mp_dep_finish(mp, v,null,t); }
20156 @ Here's the current situation: The dependency list |v| of type |t|
20157 should either be put into the current expression (if |q=null|) or
20158 into location |q| within a pair node (otherwise). The destination (|cur_exp|
20159 or |q|) formerly held a dependency list with the same
20160 final pointer as the list |v|.
20162 @<Declare the procedure called |dep_finish|@>=
20163 void mp_dep_finish (MP mp, pointer v, pointer q, small_number t) {
20164 pointer p; /* the destination */
20165 scaled vv; /* the value, if it is |known| */
20166 if ( q==null ) p=mp->cur_exp; else p=q;
20167 dep_list(p)=v; type(p)=t;
20168 if ( info(v)==null ) {
20171 mp_flush_cur_exp(mp, vv);
20173 mp_recycle_value(mp, p); type(q)=mp_known; value(q)=vv;
20175 } else if ( q==null ) {
20178 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20181 @ Let's turn now to the six basic relations of comparison.
20183 @<Additional cases of binary operators@>=
20184 case less_than: case less_or_equal: case greater_than:
20185 case greater_or_equal: case equal_to: case unequal_to:
20186 check_arith; /* at this point |arith_error| should be |false|? */
20187 if ( (mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20188 mp_add_or_subtract(mp, p,null,minus); /* |cur_exp:=(p)-cur_exp| */
20189 } else if ( mp->cur_type!=type(p) ) {
20190 mp_bad_binary(mp, p,c); goto DONE;
20191 } else if ( mp->cur_type==mp_string_type ) {
20192 mp_flush_cur_exp(mp, mp_str_vs_str(mp, value(p),mp->cur_exp));
20193 } else if ((mp->cur_type==mp_unknown_string)||
20194 (mp->cur_type==mp_unknown_boolean) ) {
20195 @<Check if unknowns have been equated@>;
20196 } else if ( (mp->cur_type<=mp_pair_type)&&(mp->cur_type>=mp_transform_type)) {
20197 @<Reduce comparison of big nodes to comparison of scalars@>;
20198 } else if ( mp->cur_type==mp_boolean_type ) {
20199 mp_flush_cur_exp(mp, mp->cur_exp-value(p));
20201 mp_bad_binary(mp, p,c); goto DONE;
20203 @<Compare the current expression with zero@>;
20205 mp->arith_error=false; /* ignore overflow in comparisons */
20208 @ @<Compare the current expression with zero@>=
20209 if ( mp->cur_type!=mp_known ) {
20210 if ( mp->cur_type<mp_known ) {
20211 mp_disp_err(mp, p,"");
20212 help1("The quantities shown above have not been equated.")
20214 help2("Oh dear. I can\'t decide if the expression above is positive,")
20215 ("negative, or zero. So this comparison test won't be `true'.");
20217 exp_err("Unknown relation will be considered false");
20218 @.Unknown relation...@>
20219 mp_put_get_flush_error(mp, false_code);
20222 case less_than: boolean_reset(mp->cur_exp<0); break;
20223 case less_or_equal: boolean_reset(mp->cur_exp<=0); break;
20224 case greater_than: boolean_reset(mp->cur_exp>0); break;
20225 case greater_or_equal: boolean_reset(mp->cur_exp>=0); break;
20226 case equal_to: boolean_reset(mp->cur_exp==0); break;
20227 case unequal_to: boolean_reset(mp->cur_exp!=0); break;
20228 }; /* there are no other cases */
20230 mp->cur_type=mp_boolean_type
20232 @ When two unknown strings are in the same ring, we know that they are
20233 equal. Otherwise, we don't know whether they are equal or not, so we
20236 @<Check if unknowns have been equated@>=
20238 q=value(mp->cur_exp);
20239 while ( (q!=mp->cur_exp)&&(q!=p) ) q=value(q);
20240 if ( q==p ) mp_flush_cur_exp(mp, 0);
20243 @ @<Reduce comparison of big nodes to comparison of scalars@>=
20245 q=value(p); r=value(mp->cur_exp);
20246 rr=r+mp->big_node_size[mp->cur_type]-2;
20247 while (1) { mp_add_or_subtract(mp, q,r,minus);
20248 if ( type(r)!=mp_known ) break;
20249 if ( value(r)!=0 ) break;
20250 if ( r==rr ) break;
20253 mp_take_part(mp, name_type(r)+x_part-mp_x_part_sector);
20256 @ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
20258 @<Additional cases of binary operators@>=
20261 if ( (type(p)!=mp_boolean_type)||(mp->cur_type!=mp_boolean_type) )
20262 mp_bad_binary(mp, p,c);
20263 else if ( value(p)==c+false_code-and_op ) mp->cur_exp=value(p);
20266 @ @<Additional cases of binary operators@>=
20268 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20269 mp_bad_binary(mp, p,times);
20270 } else if ( (mp->cur_type==mp_known)||(type(p)==mp_known) ) {
20271 @<Multiply when at least one operand is known@>;
20272 } else if ( (mp_nice_color_or_pair(mp, p,type(p))&&(mp->cur_type>mp_pair_type))
20273 ||(mp_nice_color_or_pair(mp, mp->cur_exp,mp->cur_type)&&
20274 (type(p)>mp_pair_type)) ) {
20275 mp_hard_times(mp, p); return;
20277 mp_bad_binary(mp, p,times);
20281 @ @<Multiply when at least one operand is known@>=
20283 if ( type(p)==mp_known ) {
20284 v=value(p); mp_free_node(mp, p,value_node_size);
20286 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20288 if ( mp->cur_type==mp_known ) {
20289 mp->cur_exp=mp_take_scaled(mp, mp->cur_exp,v);
20290 } else if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_color_type)||
20291 (mp->cur_type==mp_cmykcolor_type) ) {
20292 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20294 p=p-2; mp_dep_mult(mp, p,v,true);
20295 } while (p!=value(mp->cur_exp));
20297 mp_dep_mult(mp, null,v,true);
20302 @ @<Declare binary action...@>=
20303 void mp_dep_mult (MP mp,pointer p, integer v, boolean v_is_scaled) {
20304 pointer q; /* the dependency list being multiplied by |v| */
20305 small_number s,t; /* its type, before and after */
20308 } else if ( type(p)!=mp_known ) {
20311 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
20312 else value(p)=mp_take_fraction(mp, value(p),v);
20315 t=type(q); q=dep_list(q); s=t;
20316 if ( t==mp_dependent ) if ( v_is_scaled )
20317 if (mp_ab_vs_cd(mp, mp_max_coef(mp,q),abs(v),coef_bound-1,unity)>=0 )
20318 t=mp_proto_dependent;
20319 q=mp_p_times_v(mp, q,v,s,t,v_is_scaled);
20320 mp_dep_finish(mp, q,p,t);
20323 @ Here is a routine that is similar to |times|; but it is invoked only
20324 internally, when |v| is a |fraction| whose magnitude is at most~1,
20325 and when |cur_type>=mp_color_type|.
20327 @c void mp_frac_mult (MP mp,scaled n, scaled d) {
20328 /* multiplies |cur_exp| by |n/d| */
20329 pointer p; /* a pair node */
20330 pointer old_exp; /* a capsule to recycle */
20331 fraction v; /* |n/d| */
20332 if ( mp->internal[mp_tracing_commands]>two ) {
20333 @<Trace the fraction multiplication@>;
20335 switch (mp->cur_type) {
20336 case mp_transform_type:
20337 case mp_color_type:
20338 case mp_cmykcolor_type:
20340 old_exp=mp_tarnished(mp, mp->cur_exp);
20342 case mp_independent: old_exp=mp_void; break;
20343 default: old_exp=null; break;
20345 if ( old_exp!=null ) {
20346 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20348 v=mp_make_fraction(mp, n,d);
20349 if ( mp->cur_type==mp_known ) {
20350 mp->cur_exp=mp_take_fraction(mp, mp->cur_exp,v);
20351 } else if ( mp->cur_type<=mp_pair_type ) {
20352 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20355 mp_dep_mult(mp, p,v,false);
20356 } while (p!=value(mp->cur_exp));
20358 mp_dep_mult(mp, null,v,false);
20360 if ( old_exp!=null ) {
20361 mp_recycle_value(mp, old_exp);
20362 mp_free_node(mp, old_exp,value_node_size);
20366 @ @<Trace the fraction multiplication@>=
20368 mp_begin_diagnostic(mp);
20369 mp_print_nl(mp, "{("); mp_print_scaled(mp,n); mp_print_char(mp,'/');
20370 mp_print_scaled(mp,d); mp_print(mp,")*("); mp_print_exp(mp,null,0);
20372 mp_end_diagnostic(mp, false);
20375 @ The |hard_times| routine multiplies a nice color or pair by a dependency list.
20377 @<Declare binary action procedures@>=
20378 void mp_hard_times (MP mp,pointer p) {
20379 pointer q; /* a copy of the dependent variable |p| */
20380 pointer r; /* a component of the big node for the nice color or pair */
20381 scaled v; /* the known value for |r| */
20382 if ( type(p)<=mp_pair_type ) {
20383 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p); p=q;
20384 }; /* now |cur_type=mp_pair_type| or |cur_type=mp_color_type| */
20385 r=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20390 if ( r==value(mp->cur_exp) )
20392 mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(p)));
20393 mp_dep_mult(mp, r,v,true);
20395 mp->mem[value_loc(r)]=mp->mem[value_loc(p)];
20396 link(prev_dep(p))=r;
20397 mp_free_node(mp, p,value_node_size);
20398 mp_dep_mult(mp, r,v,true);
20401 @ @<Additional cases of binary operators@>=
20403 if ( (mp->cur_type!=mp_known)||(type(p)<mp_color_type) ) {
20404 mp_bad_binary(mp, p,over);
20406 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20408 @<Squeal about division by zero@>;
20410 if ( mp->cur_type==mp_known ) {
20411 mp->cur_exp=mp_make_scaled(mp, mp->cur_exp,v);
20412 } else if ( mp->cur_type<=mp_pair_type ) {
20413 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20415 p=p-2; mp_dep_div(mp, p,v);
20416 } while (p!=value(mp->cur_exp));
20418 mp_dep_div(mp, null,v);
20425 @ @<Declare binary action...@>=
20426 void mp_dep_div (MP mp,pointer p, scaled v) {
20427 pointer q; /* the dependency list being divided by |v| */
20428 small_number s,t; /* its type, before and after */
20429 if ( p==null ) q=mp->cur_exp;
20430 else if ( type(p)!=mp_known ) q=p;
20431 else { value(p)=mp_make_scaled(mp, value(p),v); return; };
20432 t=type(q); q=dep_list(q); s=t;
20433 if ( t==mp_dependent )
20434 if ( mp_ab_vs_cd(mp, mp_max_coef(mp,q),unity,coef_bound-1,abs(v))>=0 )
20435 t=mp_proto_dependent;
20436 q=mp_p_over_v(mp, q,v,s,t);
20437 mp_dep_finish(mp, q,p,t);
20440 @ @<Squeal about division by zero@>=
20442 exp_err("Division by zero");
20443 @.Division by zero@>
20444 help2("You're trying to divide the quantity shown above the error")
20445 ("message by zero. I'm going to divide it by one instead.");
20446 mp_put_get_error(mp);
20449 @ @<Additional cases of binary operators@>=
20452 if ( (mp->cur_type==mp_known)&&(type(p)==mp_known) ) {
20453 if ( c==pythag_add ) mp->cur_exp=mp_pyth_add(mp, value(p),mp->cur_exp);
20454 else mp->cur_exp=mp_pyth_sub(mp, value(p),mp->cur_exp);
20455 } else mp_bad_binary(mp, p,c);
20458 @ The next few sections of the program deal with affine transformations
20459 of coordinate data.
20461 @<Additional cases of binary operators@>=
20462 case rotated_by: case slanted_by:
20463 case scaled_by: case shifted_by: case transformed_by:
20464 case x_scaled: case y_scaled: case z_scaled:
20465 if ( type(p)==mp_path_type ) {
20466 path_trans(c,p); return;
20467 } else if ( type(p)==mp_pen_type ) {
20469 mp->cur_exp=mp_convex_hull(mp, mp->cur_exp);
20470 /* rounding error could destroy convexity */
20472 } else if ( (type(p)==mp_pair_type)||(type(p)==mp_transform_type) ) {
20473 mp_big_trans(mp, p,c);
20474 } else if ( type(p)==mp_picture_type ) {
20475 mp_do_edges_trans(mp, p,c); return;
20477 mp_bad_binary(mp, p,c);
20481 @ Let |c| be one of the eight transform operators. The procedure call
20482 |set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
20483 |c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
20484 change at all if |c=transformed_by|.)
20486 Then, if all components of the resulting transform are |known|, they are
20487 moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
20488 and |cur_exp| is changed to the known value zero.
20490 @<Declare binary action...@>=
20491 void mp_set_up_trans (MP mp,quarterword c) {
20492 pointer p,q,r; /* list manipulation registers */
20493 if ( (c!=transformed_by)||(mp->cur_type!=mp_transform_type) ) {
20494 @<Put the current transform into |cur_exp|@>;
20496 @<If the current transform is entirely known, stash it in global variables;
20497 otherwise |return|@>;
20506 scaled ty; /* current transform coefficients */
20508 @ @<Put the current transform...@>=
20510 p=mp_stash_cur_exp(mp);
20511 mp->cur_exp=mp_id_transform(mp);
20512 mp->cur_type=mp_transform_type;
20513 q=value(mp->cur_exp);
20515 @<For each of the eight cases, change the relevant fields of |cur_exp|
20517 but do nothing if capsule |p| doesn't have the appropriate type@>;
20518 }; /* there are no other cases */
20519 mp_disp_err(mp, p,"Improper transformation argument");
20520 @.Improper transformation argument@>
20521 help3("The expression shown above has the wrong type,")
20522 ("so I can\'t transform anything using it.")
20523 ("Proceed, and I'll omit the transformation.");
20524 mp_put_get_error(mp);
20526 mp_recycle_value(mp, p);
20527 mp_free_node(mp, p,value_node_size);
20530 @ @<If the current transform is entirely known, ...@>=
20531 q=value(mp->cur_exp); r=q+transform_node_size;
20534 if ( type(r)!=mp_known ) return;
20536 mp->txx=value(xx_part_loc(q));
20537 mp->txy=value(xy_part_loc(q));
20538 mp->tyx=value(yx_part_loc(q));
20539 mp->tyy=value(yy_part_loc(q));
20540 mp->tx=value(x_part_loc(q));
20541 mp->ty=value(y_part_loc(q));
20542 mp_flush_cur_exp(mp, 0)
20544 @ @<For each of the eight cases...@>=
20546 if ( type(p)==mp_known )
20547 @<Install sines and cosines, then |goto done|@>;
20550 if ( type(p)>mp_pair_type ) {
20551 mp_install(mp, xy_part_loc(q),p); goto DONE;
20555 if ( type(p)>mp_pair_type ) {
20556 mp_install(mp, xx_part_loc(q),p); mp_install(mp, yy_part_loc(q),p);
20561 if ( type(p)==mp_pair_type ) {
20562 r=value(p); mp_install(mp, x_part_loc(q),x_part_loc(r));
20563 mp_install(mp, y_part_loc(q),y_part_loc(r)); goto DONE;
20567 if ( type(p)>mp_pair_type ) {
20568 mp_install(mp, xx_part_loc(q),p); goto DONE;
20572 if ( type(p)>mp_pair_type ) {
20573 mp_install(mp, yy_part_loc(q),p); goto DONE;
20577 if ( type(p)==mp_pair_type )
20578 @<Install a complex multiplier, then |goto done|@>;
20580 case transformed_by:
20584 @ @<Install sines and cosines, then |goto done|@>=
20585 { mp_n_sin_cos(mp, (value(p) % three_sixty_units)*16);
20586 value(xx_part_loc(q))=mp_round_fraction(mp, mp->n_cos);
20587 value(yx_part_loc(q))=mp_round_fraction(mp, mp->n_sin);
20588 value(xy_part_loc(q))=-value(yx_part_loc(q));
20589 value(yy_part_loc(q))=value(xx_part_loc(q));
20593 @ @<Install a complex multiplier, then |goto done|@>=
20596 mp_install(mp, xx_part_loc(q),x_part_loc(r));
20597 mp_install(mp, yy_part_loc(q),x_part_loc(r));
20598 mp_install(mp, yx_part_loc(q),y_part_loc(r));
20599 if ( type(y_part_loc(r))==mp_known ) negate(value(y_part_loc(r)));
20600 else mp_negate_dep_list(mp, dep_list(y_part_loc(r)));
20601 mp_install(mp, xy_part_loc(q),y_part_loc(r));
20605 @ Procedure |set_up_known_trans| is like |set_up_trans|, but it
20606 insists that the transformation be entirely known.
20608 @<Declare binary action...@>=
20609 void mp_set_up_known_trans (MP mp,quarterword c) {
20610 mp_set_up_trans(mp, c);
20611 if ( mp->cur_type!=mp_known ) {
20612 exp_err("Transform components aren't all known");
20613 @.Transform components...@>
20614 help3("I'm unable to apply a partially specified transformation")
20615 ("except to a fully known pair or transform.")
20616 ("Proceed, and I'll omit the transformation.");
20617 mp_put_get_flush_error(mp, 0);
20618 mp->txx=unity; mp->txy=0; mp->tyx=0; mp->tyy=unity;
20619 mp->tx=0; mp->ty=0;
20623 @ Here's a procedure that applies the transform |txx..ty| to a pair of
20624 coordinates in locations |p| and~|q|.
20626 @<Declare binary action...@>=
20627 void mp_trans (MP mp,pointer p, pointer q) {
20628 scaled v; /* the new |x| value */
20629 v=mp_take_scaled(mp, mp->mem[p].sc,mp->txx)+
20630 mp_take_scaled(mp, mp->mem[q].sc,mp->txy)+mp->tx;
20631 mp->mem[q].sc=mp_take_scaled(mp, mp->mem[p].sc,mp->tyx)+
20632 mp_take_scaled(mp, mp->mem[q].sc,mp->tyy)+mp->ty;
20636 @ The simplest transformation procedure applies a transform to all
20637 coordinates of a path. The |path_trans(c)(p)| macro applies
20638 a transformation defined by |cur_exp| and the transform operator |c|
20641 @d path_trans(A,B) { mp_set_up_known_trans(mp, (A));
20642 mp_unstash_cur_exp(mp, (B));
20643 mp_do_path_trans(mp, mp->cur_exp); }
20645 @<Declare binary action...@>=
20646 void mp_do_path_trans (MP mp,pointer p) {
20647 pointer q; /* list traverser */
20650 if ( left_type(q)!=mp_endpoint )
20651 mp_trans(mp, q+3,q+4); /* that's |left_x| and |left_y| */
20652 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20653 if ( right_type(q)!=mp_endpoint )
20654 mp_trans(mp, q+5,q+6); /* that's |right_x| and |right_y| */
20655 @^data structure assumptions@>
20660 @ Transforming a pen is very similar, except that there are no |left_type|
20661 and |right_type| fields.
20663 @d pen_trans(A,B) { mp_set_up_known_trans(mp, (A));
20664 mp_unstash_cur_exp(mp, (B));
20665 mp_do_pen_trans(mp, mp->cur_exp); }
20667 @<Declare binary action...@>=
20668 void mp_do_pen_trans (MP mp,pointer p) {
20669 pointer q; /* list traverser */
20670 if ( pen_is_elliptical(p) ) {
20671 mp_trans(mp, p+3,p+4); /* that's |left_x| and |left_y| */
20672 mp_trans(mp, p+5,p+6); /* that's |right_x| and |right_y| */
20676 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20677 @^data structure assumptions@>
20682 @ The next transformation procedure applies to edge structures. It will do
20683 any transformation, but the results may be substandard if the picture contains
20684 text that uses downloaded bitmap fonts. The binary action procedure is
20685 |do_edges_trans|, but we also need a function that just scales a picture.
20686 That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
20687 should be thought of as procedures that update an edge structure |h|, except
20688 that they have to return a (possibly new) structure because of the need to call
20691 @<Declare binary action...@>=
20692 pointer mp_edges_trans (MP mp, pointer h) {
20693 pointer q; /* the object being transformed */
20694 pointer r,s; /* for list manipulation */
20695 scaled sx,sy; /* saved transformation parameters */
20696 scaled sqdet; /* square root of determinant for |dash_scale| */
20697 integer sgndet; /* sign of the determinant */
20698 scaled v; /* a temporary value */
20699 h=mp_private_edges(mp, h);
20700 sqdet=mp_sqrt_det(mp, mp->txx,mp->txy,mp->tyx,mp->tyy);
20701 sgndet=mp_ab_vs_cd(mp, mp->txx,mp->tyy,mp->txy,mp->tyx);
20702 if ( dash_list(h)!=null_dash ) {
20703 @<Try to transform the dash list of |h|@>;
20705 @<Make the bounding box of |h| unknown if it can't be updated properly
20706 without scanning the whole structure@>;
20707 q=link(dummy_loc(h));
20708 while ( q!=null ) {
20709 @<Transform graphical object |q|@>;
20714 void mp_do_edges_trans (MP mp,pointer p, quarterword c) {
20715 mp_set_up_known_trans(mp, c);
20716 value(p)=mp_edges_trans(mp, value(p));
20717 mp_unstash_cur_exp(mp, p);
20719 void mp_scale_edges (MP mp) {
20720 mp->txx=mp->se_sf; mp->tyy=mp->se_sf;
20721 mp->txy=0; mp->tyx=0; mp->tx=0; mp->ty=0;
20722 mp->se_pic=mp_edges_trans(mp, mp->se_pic);
20725 @ @<Try to transform the dash list of |h|@>=
20726 if ( (mp->txy!=0)||(mp->tyx!=0)||
20727 (mp->ty!=0)||(abs(mp->txx)!=abs(mp->tyy))) {
20728 mp_flush_dash_list(mp, h);
20730 if ( mp->txx<0 ) { @<Reverse the dash list of |h|@>; }
20731 @<Scale the dash list by |txx| and shift it by |tx|@>;
20732 dash_y(h)=mp_take_scaled(mp, dash_y(h),abs(mp->tyy));
20735 @ @<Reverse the dash list of |h|@>=
20738 dash_list(h)=null_dash;
20739 while ( r!=null_dash ) {
20741 v=start_x(s); start_x(s)=stop_x(s); stop_x(s)=v;
20742 link(s)=dash_list(h);
20747 @ @<Scale the dash list by |txx| and shift it by |tx|@>=
20749 while ( r!=null_dash ) {
20750 start_x(r)=mp_take_scaled(mp, start_x(r),mp->txx)+mp->tx;
20751 stop_x(r)=mp_take_scaled(mp, stop_x(r),mp->txx)+mp->tx;
20755 @ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
20756 if ( (mp->txx==0)&&(mp->tyy==0) ) {
20757 @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>;
20758 } else if ( (mp->txy!=0)||(mp->tyx!=0) ) {
20759 mp_init_bbox(mp, h);
20762 if ( minx_val(h)<=maxx_val(h) ) {
20763 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
20770 @ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
20772 v=minx_val(h); minx_val(h)=miny_val(h); miny_val(h)=v;
20773 v=maxx_val(h); maxx_val(h)=maxy_val(h); maxy_val(h)=v;
20776 @ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
20779 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
20781 minx_val(h)=mp_take_scaled(mp, minx_val(h),mp->txx+mp->txy)+mp->tx;
20782 maxx_val(h)=mp_take_scaled(mp, maxx_val(h),mp->txx+mp->txy)+mp->tx;
20783 miny_val(h)=mp_take_scaled(mp, miny_val(h),mp->tyx+mp->tyy)+mp->ty;
20784 maxy_val(h)=mp_take_scaled(mp, maxy_val(h),mp->tyx+mp->tyy)+mp->ty;
20785 if ( mp->txx+mp->txy<0 ) {
20786 v=minx_val(h); minx_val(h)=maxx_val(h); maxx_val(h)=v;
20788 if ( mp->tyx+mp->tyy<0 ) {
20789 v=miny_val(h); miny_val(h)=maxy_val(h); maxy_val(h)=v;
20793 @ Now we ready for the main task of transforming the graphical objects in edge
20796 @<Transform graphical object |q|@>=
20798 case mp_fill_code: case mp_stroked_code:
20799 mp_do_path_trans(mp, path_p(q));
20800 @<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
20802 case mp_start_clip_code: case mp_start_bounds_code:
20803 mp_do_path_trans(mp, path_p(q));
20807 @<Transform the compact transformation starting at |r|@>;
20809 case mp_stop_clip_code: case mp_stop_bounds_code:
20811 } /* there are no other cases */
20813 @ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
20814 The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
20815 since the \ps\ output procedures will try to compensate for the transformation
20816 we are applying to |pen_p(q)|. Since this compensation is based on the square
20817 root of the determinant, |sqdet| is the appropriate factor.
20819 @<Transform |pen_p(q)|, making sure...@>=
20820 if ( pen_p(q)!=null ) {
20821 sx=mp->tx; sy=mp->ty;
20822 mp->tx=0; mp->ty=0;
20823 mp_do_pen_trans(mp, pen_p(q));
20824 if ( ((type(q)==mp_stroked_code)&&(dash_p(q)!=null)) )
20825 dash_scale(q)=mp_take_scaled(mp, dash_scale(q),sqdet);
20826 if ( ! pen_is_elliptical(pen_p(q)) )
20828 pen_p(q)=mp_make_pen(mp, mp_copy_path(mp, pen_p(q)),true);
20829 /* this unreverses the pen */
20830 mp->tx=sx; mp->ty=sy;
20833 @ This uses the fact that transformations are stored in the order
20834 |(tx,ty,txx,txy,tyx,tyy)|.
20835 @^data structure assumptions@>
20837 @<Transform the compact transformation starting at |r|@>=
20838 mp_trans(mp, r,r+1);
20839 sx=mp->tx; sy=mp->ty;
20840 mp->tx=0; mp->ty=0;
20841 mp_trans(mp, r+2,r+4);
20842 mp_trans(mp, r+3,r+5);
20843 mp->tx=sx; mp->ty=sy
20845 @ The hard cases of transformation occur when big nodes are involved,
20846 and when some of their components are unknown.
20848 @<Declare binary action...@>=
20849 @<Declare subroutines needed by |big_trans|@>;
20850 void mp_big_trans (MP mp,pointer p, quarterword c) {
20851 pointer q,r,pp,qq; /* list manipulation registers */
20852 small_number s; /* size of a big node */
20853 s=mp->big_node_size[type(p)]; q=value(p); r=q+s;
20856 if ( type(r)!=mp_known ) {
20857 @<Transform an unknown big node and |return|@>;
20860 @<Transform a known big node@>;
20861 }; /* node |p| will now be recycled by |do_binary| */
20863 @ @<Transform an unknown big node and |return|@>=
20865 mp_set_up_known_trans(mp, c); mp_make_exp_copy(mp, p);
20866 r=value(mp->cur_exp);
20867 if ( mp->cur_type==mp_transform_type ) {
20868 mp_bilin1(mp, yy_part_loc(r),mp->tyy,xy_part_loc(q),mp->tyx,0);
20869 mp_bilin1(mp, yx_part_loc(r),mp->tyy,xx_part_loc(q),mp->tyx,0);
20870 mp_bilin1(mp, xy_part_loc(r),mp->txx,yy_part_loc(q),mp->txy,0);
20871 mp_bilin1(mp, xx_part_loc(r),mp->txx,yx_part_loc(q),mp->txy,0);
20873 mp_bilin1(mp, y_part_loc(r),mp->tyy,x_part_loc(q),mp->tyx,mp->ty);
20874 mp_bilin1(mp, x_part_loc(r),mp->txx,y_part_loc(q),mp->txy,mp->tx);
20878 @ Let |p| point to a two-word value field inside a big node of |cur_exp|,
20879 and let |q| point to a another value field. The |bilin1| procedure
20880 replaces |p| by $p\cdot t+q\cdot u+\delta$.
20882 @<Declare subroutines needed by |big_trans|@>=
20883 void mp_bilin1 (MP mp, pointer p, scaled t, pointer q,
20884 scaled u, scaled delta) {
20885 pointer r; /* list traverser */
20886 if ( t!=unity ) mp_dep_mult(mp, p,t,true);
20888 if ( type(q)==mp_known ) {
20889 delta+=mp_take_scaled(mp, value(q),u);
20891 @<Ensure that |type(p)=mp_proto_dependent|@>;
20892 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),u,dep_list(q),
20893 mp_proto_dependent,type(q));
20896 if ( type(p)==mp_known ) {
20900 while ( info(r)!=null ) r=link(r);
20902 if ( r!=dep_list(p) ) value(r)=delta;
20903 else { mp_recycle_value(mp, p); type(p)=mp_known; value(p)=delta; };
20905 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20908 @ @<Ensure that |type(p)=mp_proto_dependent|@>=
20909 if ( type(p)!=mp_proto_dependent ) {
20910 if ( type(p)==mp_known )
20911 mp_new_dep(mp, p,mp_const_dependency(mp, value(p)));
20913 dep_list(p)=mp_p_times_v(mp, dep_list(p),unity,mp_dependent,
20914 mp_proto_dependent,true);
20915 type(p)=mp_proto_dependent;
20918 @ @<Transform a known big node@>=
20919 mp_set_up_trans(mp, c);
20920 if ( mp->cur_type==mp_known ) {
20921 @<Transform known by known@>;
20923 pp=mp_stash_cur_exp(mp); qq=value(pp);
20924 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20925 if ( mp->cur_type==mp_transform_type ) {
20926 mp_bilin2(mp, yy_part_loc(r),yy_part_loc(qq),
20927 value(xy_part_loc(q)),yx_part_loc(qq),null);
20928 mp_bilin2(mp, yx_part_loc(r),yy_part_loc(qq),
20929 value(xx_part_loc(q)),yx_part_loc(qq),null);
20930 mp_bilin2(mp, xy_part_loc(r),xx_part_loc(qq),
20931 value(yy_part_loc(q)),xy_part_loc(qq),null);
20932 mp_bilin2(mp, xx_part_loc(r),xx_part_loc(qq),
20933 value(yx_part_loc(q)),xy_part_loc(qq),null);
20935 mp_bilin2(mp, y_part_loc(r),yy_part_loc(qq),
20936 value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
20937 mp_bilin2(mp, x_part_loc(r),xx_part_loc(qq),
20938 value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
20939 mp_recycle_value(mp, pp); mp_free_node(mp, pp,value_node_size);
20942 @ Let |p| be a |mp_proto_dependent| value whose dependency list ends
20943 at |dep_final|. The following procedure adds |v| times another
20944 numeric quantity to~|p|.
20946 @<Declare subroutines needed by |big_trans|@>=
20947 void mp_add_mult_dep (MP mp,pointer p, scaled v, pointer r) {
20948 if ( type(r)==mp_known ) {
20949 value(mp->dep_final)+=mp_take_scaled(mp, value(r),v);
20951 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),v,dep_list(r),
20952 mp_proto_dependent,type(r));
20953 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20957 @ The |bilin2| procedure is something like |bilin1|, but with known
20958 and unknown quantities reversed. Parameter |p| points to a value field
20959 within the big node for |cur_exp|; and |type(p)=mp_known|. Parameters
20960 |t| and~|u| point to value fields elsewhere; so does parameter~|q|,
20961 unless it is |null| (which stands for zero). Location~|p| will be
20962 replaced by $p\cdot t+v\cdot u+q$.
20964 @<Declare subroutines needed by |big_trans|@>=
20965 void mp_bilin2 (MP mp,pointer p, pointer t, scaled v,
20966 pointer u, pointer q) {
20967 scaled vv; /* temporary storage for |value(p)| */
20968 vv=value(p); type(p)=mp_proto_dependent;
20969 mp_new_dep(mp, p,mp_const_dependency(mp, 0)); /* this sets |dep_final| */
20971 mp_add_mult_dep(mp, p,vv,t); /* |dep_final| doesn't change */
20972 if ( v!=0 ) mp_add_mult_dep(mp, p,v,u);
20973 if ( q!=null ) mp_add_mult_dep(mp, p,unity,q);
20974 if ( dep_list(p)==mp->dep_final ) {
20975 vv=value(mp->dep_final); mp_recycle_value(mp, p);
20976 type(p)=mp_known; value(p)=vv;
20980 @ @<Transform known by known@>=
20982 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20983 if ( mp->cur_type==mp_transform_type ) {
20984 mp_bilin3(mp, yy_part_loc(r),mp->tyy,value(xy_part_loc(q)),mp->tyx,0);
20985 mp_bilin3(mp, yx_part_loc(r),mp->tyy,value(xx_part_loc(q)),mp->tyx,0);
20986 mp_bilin3(mp, xy_part_loc(r),mp->txx,value(yy_part_loc(q)),mp->txy,0);
20987 mp_bilin3(mp, xx_part_loc(r),mp->txx,value(yx_part_loc(q)),mp->txy,0);
20989 mp_bilin3(mp, y_part_loc(r),mp->tyy,value(x_part_loc(q)),mp->tyx,mp->ty);
20990 mp_bilin3(mp, x_part_loc(r),mp->txx,value(y_part_loc(q)),mp->txy,mp->tx);
20993 @ Finally, in |bilin3| everything is |known|.
20995 @<Declare subroutines needed by |big_trans|@>=
20996 void mp_bilin3 (MP mp,pointer p, scaled t,
20997 scaled v, scaled u, scaled delta) {
20999 delta+=mp_take_scaled(mp, value(p),t);
21002 if ( u!=0 ) value(p)=delta+mp_take_scaled(mp, v,u);
21003 else value(p)=delta;
21006 @ @<Additional cases of binary operators@>=
21008 if ( (mp->cur_type==mp_string_type)&&(type(p)==mp_string_type) ) mp_cat(mp, p);
21009 else mp_bad_binary(mp, p,concatenate);
21012 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_string_type) )
21013 mp_chop_string(mp, value(p));
21014 else mp_bad_binary(mp, p,substring_of);
21017 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21018 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_path_type) )
21019 mp_chop_path(mp, value(p));
21020 else mp_bad_binary(mp, p,subpath_of);
21023 @ @<Declare binary action...@>=
21024 void mp_cat (MP mp,pointer p) {
21025 str_number a,b; /* the strings being concatenated */
21026 pool_pointer k; /* index into |str_pool| */
21027 a=value(p); b=mp->cur_exp; str_room(length(a)+length(b));
21028 for (k=mp->str_start[a];k<=str_stop(a)-1;k++) {
21029 append_char(mp->str_pool[k]);
21031 for (k=mp->str_start[b];k<=str_stop(b)-1;k++) {
21032 append_char(mp->str_pool[k]);
21034 mp->cur_exp=mp_make_string(mp); delete_str_ref(b);
21037 @ @<Declare binary action...@>=
21038 void mp_chop_string (MP mp,pointer p) {
21039 integer a, b; /* start and stop points */
21040 integer l; /* length of the original string */
21041 integer k; /* runs from |a| to |b| */
21042 str_number s; /* the original string */
21043 boolean reversed; /* was |a>b|? */
21044 a=mp_round_unscaled(mp, value(x_part_loc(p)));
21045 b=mp_round_unscaled(mp, value(y_part_loc(p)));
21046 if ( a<=b ) reversed=false;
21047 else { reversed=true; k=a; a=b; b=k; };
21048 s=mp->cur_exp; l=length(s);
21059 for (k=mp->str_start[s]+b-1;k>=mp->str_start[s]+a;k--) {
21060 append_char(mp->str_pool[k]);
21063 for (k=mp->str_start[s]+a;k<=mp->str_start[s]+b-1;k++) {
21064 append_char(mp->str_pool[k]);
21067 mp->cur_exp=mp_make_string(mp); delete_str_ref(s);
21070 @ @<Declare binary action...@>=
21071 void mp_chop_path (MP mp,pointer p) {
21072 pointer q; /* a knot in the original path */
21073 pointer pp,qq,rr,ss; /* link variables for copies of path nodes */
21074 scaled a,b,k,l; /* indices for chopping */
21075 boolean reversed; /* was |a>b|? */
21076 l=mp_path_length(mp); a=value(x_part_loc(p)); b=value(y_part_loc(p));
21077 if ( a<=b ) reversed=false;
21078 else { reversed=true; k=a; a=b; b=k; };
21079 @<Dispense with the cases |a<0| and/or |b>l|@>;
21081 while ( a>=unity ) {
21082 q=link(q); a=a-unity; b=b-unity;
21085 @<Construct a path from |pp| to |qq| of length zero@>;
21087 @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
21089 left_type(pp)=mp_endpoint; right_type(qq)=mp_endpoint; link(qq)=pp;
21090 mp_toss_knot_list(mp, mp->cur_exp);
21092 mp->cur_exp=link(mp_htap_ypoc(mp, pp)); mp_toss_knot_list(mp, pp);
21098 @ @<Dispense with the cases |a<0| and/or |b>l|@>=
21100 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21101 a=0; if ( b<0 ) b=0;
21103 do { a=a+l; b=b+l; } while (a<0); /* a cycle always has length |l>0| */
21107 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21108 b=l; if ( a>l ) a=l;
21116 @ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
21118 pp=mp_copy_knot(mp, q); qq=pp;
21120 q=link(q); rr=qq; qq=mp_copy_knot(mp, q); link(rr)=qq; b=b-unity;
21123 ss=pp; pp=link(pp);
21124 mp_split_cubic(mp, ss,a*010000); pp=link(ss);
21125 mp_free_node(mp, ss,knot_node_size);
21127 b=mp_make_scaled(mp, b,unity-a); rr=pp;
21131 mp_split_cubic(mp, rr,(b+unity)*010000);
21132 mp_free_node(mp, qq,knot_node_size);
21137 @ @<Construct a path from |pp| to |qq| of length zero@>=
21139 if ( a>0 ) { mp_split_cubic(mp, q,a*010000); q=link(q); };
21140 pp=mp_copy_knot(mp, q); qq=pp;
21143 @ @<Additional cases of binary operators@>=
21144 case point_of: case precontrol_of: case postcontrol_of:
21145 if ( mp->cur_type==mp_pair_type )
21146 mp_pair_to_path(mp);
21147 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21148 mp_find_point(mp, value(p),c);
21150 mp_bad_binary(mp, p,c);
21152 case pen_offset_of:
21153 if ( (mp->cur_type==mp_pen_type)&& mp_nice_pair(mp, p,type(p)) )
21154 mp_set_up_offset(mp, value(p));
21156 mp_bad_binary(mp, p,pen_offset_of);
21158 case direction_time_of:
21159 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21160 if ( (mp->cur_type==mp_path_type)&& mp_nice_pair(mp, p,type(p)) )
21161 mp_set_up_direction_time(mp, value(p));
21163 mp_bad_binary(mp, p,direction_time_of);
21166 if ( (type(p) != mp_pen_type) || (mp->cur_type != mp_path_type) )
21167 mp_bad_binary(mp, p,envelope_of);
21169 mp_set_up_envelope(mp, p);
21172 @ @<Declare binary action...@>=
21173 void mp_set_up_offset (MP mp,pointer p) {
21174 mp_find_offset(mp, value(x_part_loc(p)),value(y_part_loc(p)),mp->cur_exp);
21175 mp_pair_value(mp, mp->cur_x,mp->cur_y);
21177 void mp_set_up_direction_time (MP mp,pointer p) {
21178 mp_flush_cur_exp(mp, mp_find_direction_time(mp, value(x_part_loc(p)),
21179 value(y_part_loc(p)),mp->cur_exp));
21181 void mp_set_up_envelope (MP mp,pointer p) {
21182 pointer q = mp_copy_path(mp, mp->cur_exp); /* the original path */
21183 /* TODO: accept elliptical pens for straight paths */
21184 if (pen_is_elliptical(value(p))) {
21185 mp_bad_envelope_pen(mp);
21187 mp->cur_type = mp_path_type;
21190 small_number ljoin, lcap;
21192 if ( mp->internal[mp_linejoin]>unity ) ljoin=2;
21193 else if ( mp->internal[mp_linejoin]>0 ) ljoin=1;
21195 if ( mp->internal[mp_linecap]>unity ) lcap=2;
21196 else if ( mp->internal[mp_linecap]>0 ) lcap=1;
21198 if ( mp->internal[mp_miterlimit]<unity )
21201 miterlim=mp->internal[mp_miterlimit];
21202 mp->cur_exp = mp_make_envelope(mp, q, value(p), ljoin,lcap,miterlim);
21203 mp->cur_type = mp_path_type;
21206 @ @<Declare binary action...@>=
21207 void mp_find_point (MP mp,scaled v, quarterword c) {
21208 pointer p; /* the path */
21209 scaled n; /* its length */
21211 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
21212 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
21215 } else if ( v<0 ) {
21216 if ( left_type(p)==mp_endpoint ) v=0;
21217 else v=n-1-((-v-1) % n);
21218 } else if ( v>n ) {
21219 if ( left_type(p)==mp_endpoint ) v=n;
21223 while ( v>=unity ) { p=link(p); v=v-unity; };
21225 @<Insert a fractional node by splitting the cubic@>;
21227 @<Set the current expression to the desired path coordinates@>;
21230 @ @<Insert a fractional node...@>=
21231 { mp_split_cubic(mp, p,v*010000); p=link(p); }
21233 @ @<Set the current expression to the desired path coordinates...@>=
21236 mp_pair_value(mp, x_coord(p),y_coord(p));
21238 case precontrol_of:
21239 if ( left_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21240 else mp_pair_value(mp, left_x(p),left_y(p));
21242 case postcontrol_of:
21243 if ( right_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21244 else mp_pair_value(mp, right_x(p),right_y(p));
21246 } /* there are no other cases */
21248 @ @<Additional cases of binary operators@>=
21250 if ( mp->cur_type==mp_pair_type )
21251 mp_pair_to_path(mp);
21252 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21253 mp_flush_cur_exp(mp, mp_get_arc_time(mp, mp->cur_exp,value(p)));
21255 mp_bad_binary(mp, p,c);
21258 @ @<Additional cases of bin...@>=
21260 if ( type(p)==mp_pair_type ) {
21261 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p);
21262 mp_pair_to_path(mp); p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
21264 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21265 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_path_type) ) {
21266 mp_path_intersection(mp, value(p),mp->cur_exp);
21267 mp_pair_value(mp, mp->cur_t,mp->cur_tt);
21269 mp_bad_binary(mp, p,intersect);
21273 @ @<Additional cases of bin...@>=
21275 if ( (mp->cur_type!=mp_string_type)||(type(p)!=mp_string_type))
21276 mp_bad_binary(mp, p,in_font);
21277 else { mp_do_infont(mp, p); return; }
21280 @ Function |new_text_node| owns the reference count for its second argument
21281 (the text string) but not its first (the font name).
21283 @<Declare binary action...@>=
21284 void mp_do_infont (MP mp,pointer p) {
21286 q=mp_get_node(mp, edge_header_size);
21287 mp_init_edges(mp, q);
21288 link(obj_tail(q))=mp_new_text_node(mp,str(mp->cur_exp),value(p));
21289 obj_tail(q)=link(obj_tail(q));
21290 mp_free_node(mp, p,value_node_size);
21291 mp_flush_cur_exp(mp, q);
21292 mp->cur_type=mp_picture_type;
21295 @* \[40] Statements and commands.
21296 The chief executive of \MP\ is the |do_statement| routine, which
21297 contains the master switch that causes all the various pieces of \MP\
21298 to do their things, in the right order.
21300 In a sense, this is the grand climax of the program: It applies all the
21301 tools that we have worked so hard to construct. In another sense, this is
21302 the messiest part of the program: It necessarily refers to other pieces
21303 of code all over the place, so that a person can't fully understand what is
21304 going on without paging back and forth to be reminded of conventions that
21305 are defined elsewhere. We are now at the hub of the web.
21307 The structure of |do_statement| itself is quite simple. The first token
21308 of the statement is fetched using |get_x_next|. If it can be the first
21309 token of an expression, we look for an equation, an assignment, or a
21310 title. Otherwise we use a \&{case} construction to branch at high speed to
21311 the appropriate routine for various and sundry other types of commands,
21312 each of which has an ``action procedure'' that does the necessary work.
21314 The program uses the fact that
21315 $$\hbox{|min_primary_command=max_statement_command=type_name|}$$
21316 to interpret a statement that starts with, e.g., `\&{string}',
21317 as a type declaration rather than a boolean expression.
21319 @c void mp_do_statement (MP mp) { /* governs \MP's activities */
21320 mp->cur_type=mp_vacuous; mp_get_x_next(mp);
21321 if ( mp->cur_cmd>max_primary_command ) {
21322 @<Worry about bad statement@>;
21323 } else if ( mp->cur_cmd>max_statement_command ) {
21324 @<Do an equation, assignment, title, or
21325 `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>;
21327 @<Do a statement that doesn't begin with an expression@>;
21329 if ( mp->cur_cmd<semicolon )
21330 @<Flush unparsable junk that was found after the statement@>;
21334 @ @<Declarations@>=
21335 @<Declare action procedures for use by |do_statement|@>;
21337 @ The only command codes |>max_primary_command| that can be present
21338 at the beginning of a statement are |semicolon| and higher; these
21339 occur when the statement is null.
21341 @<Worry about bad statement@>=
21343 if ( mp->cur_cmd<semicolon ) {
21344 print_err("A statement can't begin with `");
21345 @.A statement can't begin with x@>
21346 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod); mp_print_char(mp, '\'');
21347 help5("I was looking for the beginning of a new statement.")
21348 ("If you just proceed without changing anything, I'll ignore")
21349 ("everything up to the next `;'. Please insert a semicolon")
21350 ("now in front of anything that you don't want me to delete.")
21351 ("(See Chapter 27 of The METAFONTbook for an example.)");
21352 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21353 mp_back_error(mp); mp_get_x_next(mp);
21357 @ The help message printed here says that everything is flushed up to
21358 a semicolon, but actually the commands |end_group| and |stop| will
21359 also terminate a statement.
21361 @<Flush unparsable junk that was found after the statement@>=
21363 print_err("Extra tokens will be flushed");
21364 @.Extra tokens will be flushed@>
21365 help6("I've just read as much of that statement as I could fathom,")
21366 ("so a semicolon should have been next. It's very puzzling...")
21367 ("but I'll try to get myself back together, by ignoring")
21368 ("everything up to the next `;'. Please insert a semicolon")
21369 ("now in front of anything that you don't want me to delete.")
21370 ("(See Chapter 27 of The METAFONTbook for an example.)");
21371 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21372 mp_back_error(mp); mp->scanner_status=flushing;
21375 @<Decrease the string reference count...@>;
21376 } while (! end_of_statement); /* |cur_cmd=semicolon|, |end_group|, or |stop| */
21377 mp->scanner_status=normal;
21380 @ If |do_statement| ends with |cur_cmd=end_group|, we should have
21381 |cur_type=mp_vacuous| unless the statement was simply an expression;
21382 in the latter case, |cur_type| and |cur_exp| should represent that
21385 @<Do a statement that doesn't...@>=
21387 if ( mp->internal[mp_tracing_commands]>0 )
21389 switch (mp->cur_cmd ) {
21390 case type_name:mp_do_type_declaration(mp); break;
21392 if ( mp->cur_mod>var_def ) mp_make_op_def(mp);
21393 else if ( mp->cur_mod>end_def ) mp_scan_def(mp);
21395 @<Cases of |do_statement| that invoke particular commands@>;
21396 } /* there are no other cases */
21397 mp->cur_type=mp_vacuous;
21400 @ The most important statements begin with expressions.
21402 @<Do an equation, assignment, title, or...@>=
21404 mp->var_flag=assignment; mp_scan_expression(mp);
21405 if ( mp->cur_cmd<end_group ) {
21406 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21407 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21408 else if ( mp->cur_type==mp_string_type ) {@<Do a title@> ; }
21409 else if ( mp->cur_type!=mp_vacuous ){
21410 exp_err("Isolated expression");
21411 @.Isolated expression@>
21412 help3("I couldn't find an `=' or `:=' after the")
21413 ("expression that is shown above this error message,")
21414 ("so I guess I'll just ignore it and carry on.");
21415 mp_put_get_error(mp);
21417 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
21423 if ( mp->internal[mp_tracing_titles]>0 ) {
21424 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp); update_terminal;
21428 @ Equations and assignments are performed by the pair of mutually recursive
21430 routines |do_equation| and |do_assignment|. These routines are called when
21431 |cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
21432 side is in |cur_type| and |cur_exp|, while the right-hand side is yet
21433 to be scanned. After the routines are finished, |cur_type| and |cur_exp|
21434 will be equal to the right-hand side (which will normally be equal
21435 to the left-hand side).
21437 @<Declare action procedures for use by |do_statement|@>=
21438 @<Declare the procedure called |try_eq|@>;
21439 @<Declare the procedure called |make_eq|@>;
21440 void mp_do_equation (MP mp) ;
21443 void mp_do_equation (MP mp) {
21444 pointer lhs; /* capsule for the left-hand side */
21445 pointer p; /* temporary register */
21446 lhs=mp_stash_cur_exp(mp); mp_get_x_next(mp);
21447 mp->var_flag=assignment; mp_scan_expression(mp);
21448 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21449 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21450 if ( mp->internal[mp_tracing_commands]>two )
21451 @<Trace the current equation@>;
21452 if ( mp->cur_type==mp_unknown_path ) if ( type(lhs)==mp_pair_type ) {
21453 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, lhs); lhs=p;
21454 }; /* in this case |make_eq| will change the pair to a path */
21455 mp_make_eq(mp, lhs); /* equate |lhs| to |(cur_type,cur_exp)| */
21458 @ And |do_assignment| is similar to |do_expression|:
21461 void mp_do_assignment (MP mp);
21463 @ @<Declare action procedures for use by |do_statement|@>=
21464 void mp_do_assignment (MP mp) ;
21467 void mp_do_assignment (MP mp) {
21468 pointer lhs; /* token list for the left-hand side */
21469 pointer p; /* where the left-hand value is stored */
21470 pointer q; /* temporary capsule for the right-hand value */
21471 if ( mp->cur_type!=mp_token_list ) {
21472 exp_err("Improper `:=' will be changed to `='");
21474 help2("I didn't find a variable name at the left of the `:=',")
21475 ("so I'm going to pretend that you said `=' instead.");
21476 mp_error(mp); mp_do_equation(mp);
21478 lhs=mp->cur_exp; mp->cur_type=mp_vacuous;
21479 mp_get_x_next(mp); mp->var_flag=assignment; mp_scan_expression(mp);
21480 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21481 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21482 if ( mp->internal[mp_tracing_commands]>two )
21483 @<Trace the current assignment@>;
21484 if ( info(lhs)>hash_end ) {
21485 @<Assign the current expression to an internal variable@>;
21487 @<Assign the current expression to the variable |lhs|@>;
21489 mp_flush_node_list(mp, lhs);
21493 @ @<Trace the current equation@>=
21495 mp_begin_diagnostic(mp); mp_print_nl(mp, "{("); mp_print_exp(mp,lhs,0);
21496 mp_print(mp,")=("); mp_print_exp(mp,null,0);
21497 mp_print(mp,")}"); mp_end_diagnostic(mp, false);
21500 @ @<Trace the current assignment@>=
21502 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
21503 if ( info(lhs)>hash_end )
21504 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21506 mp_show_token_list(mp, lhs,null,1000,0);
21507 mp_print(mp, ":="); mp_print_exp(mp, null,0);
21508 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
21511 @ @<Assign the current expression to an internal variable@>=
21512 if ( mp->cur_type==mp_known ) {
21513 mp->internal[info(lhs)-(hash_end)]=mp->cur_exp;
21515 exp_err("Internal quantity `");
21516 @.Internal quantity...@>
21517 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21518 mp_print(mp, "' must receive a known value");
21519 help2("I can\'t set an internal quantity to anything but a known")
21520 ("numeric value, so I'll have to ignore this assignment.");
21521 mp_put_get_error(mp);
21524 @ @<Assign the current expression to the variable |lhs|@>=
21526 p=mp_find_variable(mp, lhs);
21528 q=mp_stash_cur_exp(mp); mp->cur_type=mp_und_type(mp, p);
21529 mp_recycle_value(mp, p);
21530 type(p)=mp->cur_type; value(p)=null; mp_make_exp_copy(mp, p);
21531 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q); mp_make_eq(mp, p);
21533 mp_obliterated(mp, lhs); mp_put_get_error(mp);
21538 @ And now we get to the nitty-gritty. The |make_eq| procedure is given
21539 a pointer to a capsule that is to be equated to the current expression.
21541 @<Declare the procedure called |make_eq|@>=
21542 void mp_make_eq (MP mp,pointer lhs) ;
21546 @c void mp_make_eq (MP mp,pointer lhs) {
21547 small_number t; /* type of the left-hand side */
21548 pointer p,q; /* pointers inside of big nodes */
21549 integer v=0; /* value of the left-hand side */
21552 if ( t<=mp_pair_type ) v=value(lhs);
21554 @<For each type |t|, make an equation and |goto done| unless |cur_type|
21555 is incompatible with~|t|@>;
21556 } /* all cases have been listed */
21557 @<Announce that the equation cannot be performed@>;
21559 check_arith; mp_recycle_value(mp, lhs);
21560 mp_free_node(mp, lhs,value_node_size);
21563 @ @<Announce that the equation cannot be performed@>=
21564 mp_disp_err(mp, lhs,"");
21565 exp_err("Equation cannot be performed (");
21566 @.Equation cannot be performed@>
21567 if ( type(lhs)<=mp_pair_type ) mp_print_type(mp, type(lhs));
21568 else mp_print(mp, "numeric");
21569 mp_print_char(mp, '=');
21570 if ( mp->cur_type<=mp_pair_type ) mp_print_type(mp, mp->cur_type);
21571 else mp_print(mp, "numeric");
21572 mp_print_char(mp, ')');
21573 help2("I'm sorry, but I don't know how to make such things equal.")
21574 ("(See the two expressions just above the error message.)");
21575 mp_put_get_error(mp)
21577 @ @<For each type |t|, make an equation and |goto done| unless...@>=
21578 case mp_boolean_type: case mp_string_type: case mp_pen_type:
21579 case mp_path_type: case mp_picture_type:
21580 if ( mp->cur_type==t+unknown_tag ) {
21581 mp_nonlinear_eq(mp, v,mp->cur_exp,false); goto DONE;
21582 } else if ( mp->cur_type==t ) {
21583 @<Report redundant or inconsistent equation and |goto done|@>;
21586 case unknown_types:
21587 if ( mp->cur_type==t-unknown_tag ) {
21588 mp_nonlinear_eq(mp, mp->cur_exp,lhs,true); goto DONE;
21589 } else if ( mp->cur_type==t ) {
21590 mp_ring_merge(mp, lhs,mp->cur_exp); goto DONE;
21591 } else if ( mp->cur_type==mp_pair_type ) {
21592 if ( t==mp_unknown_path ) {
21593 mp_pair_to_path(mp); goto RESTART;
21597 case mp_transform_type: case mp_color_type:
21598 case mp_cmykcolor_type: case mp_pair_type:
21599 if ( mp->cur_type==t ) {
21600 @<Do multiple equations and |goto done|@>;
21603 case mp_known: case mp_dependent:
21604 case mp_proto_dependent: case mp_independent:
21605 if ( mp->cur_type>=mp_known ) {
21606 mp_try_eq(mp, lhs,null); goto DONE;
21612 @ @<Report redundant or inconsistent equation and |goto done|@>=
21614 if ( mp->cur_type<=mp_string_type ) {
21615 if ( mp->cur_type==mp_string_type ) {
21616 if ( mp_str_vs_str(mp, v,mp->cur_exp)!=0 ) {
21619 } else if ( v!=mp->cur_exp ) {
21622 @<Exclaim about a redundant equation@>; goto DONE;
21624 print_err("Redundant or inconsistent equation");
21625 @.Redundant or inconsistent equation@>
21626 help2("An equation between already-known quantities can't help.")
21627 ("But don't worry; continue and I'll just ignore it.");
21628 mp_put_get_error(mp); goto DONE;
21630 print_err("Inconsistent equation");
21631 @.Inconsistent equation@>
21632 help2("The equation I just read contradicts what was said before.")
21633 ("But don't worry; continue and I'll just ignore it.");
21634 mp_put_get_error(mp); goto DONE;
21637 @ @<Do multiple equations and |goto done|@>=
21639 p=v+mp->big_node_size[t];
21640 q=value(mp->cur_exp)+mp->big_node_size[t];
21642 p=p-2; q=q-2; mp_try_eq(mp, p,q);
21647 @ The first argument to |try_eq| is the location of a value node
21648 in a capsule that will soon be recycled. The second argument is
21649 either a location within a pair or transform node pointed to by
21650 |cur_exp|, or it is |null| (which means that |cur_exp| itself
21651 serves as the second argument). The idea is to leave |cur_exp| unchanged,
21652 but to equate the two operands.
21654 @<Declare the procedure called |try_eq|@>=
21655 void mp_try_eq (MP mp,pointer l, pointer r) ;
21658 @c void mp_try_eq (MP mp,pointer l, pointer r) {
21659 pointer p; /* dependency list for right operand minus left operand */
21660 int t; /* the type of list |p| */
21661 pointer q; /* the constant term of |p| is here */
21662 pointer pp; /* dependency list for right operand */
21663 int tt; /* the type of list |pp| */
21664 boolean copied; /* have we copied a list that ought to be recycled? */
21665 @<Remove the left operand from its container, negate it, and
21666 put it into dependency list~|p| with constant term~|q|@>;
21667 @<Add the right operand to list |p|@>;
21668 if ( info(p)==null ) {
21669 @<Deal with redundant or inconsistent equation@>;
21671 mp_linear_eq(mp, p,t);
21672 if ( r==null ) if ( mp->cur_type!=mp_known ) {
21673 if ( type(mp->cur_exp)==mp_known ) {
21674 pp=mp->cur_exp; mp->cur_exp=value(mp->cur_exp); mp->cur_type=mp_known;
21675 mp_free_node(mp, pp,value_node_size);
21681 @ @<Remove the left operand from its container, negate it, and...@>=
21683 if ( t==mp_known ) {
21684 t=mp_dependent; p=mp_const_dependency(mp, -value(l)); q=p;
21685 } else if ( t==mp_independent ) {
21686 t=mp_dependent; p=mp_single_dependency(mp, l); negate(value(p));
21689 p=dep_list(l); q=p;
21692 if ( info(q)==null ) break;
21695 link(prev_dep(l))=link(q); prev_dep(link(q))=prev_dep(l);
21699 @ @<Deal with redundant or inconsistent equation@>=
21701 if ( abs(value(p))>64 ) { /* off by .001 or more */
21702 print_err("Inconsistent equation");
21703 @.Inconsistent equation@>
21704 mp_print(mp, " (off by "); mp_print_scaled(mp, value(p));
21705 mp_print_char(mp, ')');
21706 help2("The equation I just read contradicts what was said before.")
21707 ("But don't worry; continue and I'll just ignore it.");
21708 mp_put_get_error(mp);
21709 } else if ( r==null ) {
21710 @<Exclaim about a redundant equation@>;
21712 mp_free_node(mp, p,dep_node_size);
21715 @ @<Add the right operand to list |p|@>=
21717 if ( mp->cur_type==mp_known ) {
21718 value(q)=value(q)+mp->cur_exp; goto DONE1;
21721 if ( tt==mp_independent ) pp=mp_single_dependency(mp, mp->cur_exp);
21722 else pp=dep_list(mp->cur_exp);
21725 if ( type(r)==mp_known ) {
21726 value(q)=value(q)+value(r); goto DONE1;
21729 if ( tt==mp_independent ) pp=mp_single_dependency(mp, r);
21730 else pp=dep_list(r);
21733 if ( tt!=mp_independent ) copied=false;
21734 else { copied=true; tt=mp_dependent; };
21735 @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
21736 if ( copied ) mp_flush_node_list(mp, pp);
21739 @ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
21740 mp->watch_coefs=false;
21742 p=mp_p_plus_q(mp, p,pp,t);
21743 } else if ( t==mp_proto_dependent ) {
21744 p=mp_p_plus_fq(mp, p,unity,pp,mp_proto_dependent,mp_dependent);
21747 while ( info(q)!=null ) {
21748 value(q)=mp_round_fraction(mp, value(q)); q=link(q);
21750 t=mp_proto_dependent; p=mp_p_plus_q(mp, p,pp,t);
21752 mp->watch_coefs=true;
21754 @ Our next goal is to process type declarations. For this purpose it's
21755 convenient to have a procedure that scans a $\langle\,$declared
21756 variable$\,\rangle$ and returns the corresponding token list. After the
21757 following procedure has acted, the token after the declared variable
21758 will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
21761 @<Declare the function called |scan_declared_variable|@>=
21762 pointer mp_scan_declared_variable (MP mp) {
21763 pointer x; /* hash address of the variable's root */
21764 pointer h,t; /* head and tail of the token list to be returned */
21765 pointer l; /* hash address of left bracket */
21766 mp_get_symbol(mp); x=mp->cur_sym;
21767 if ( mp->cur_cmd!=tag_token ) mp_clear_symbol(mp, x,false);
21768 h=mp_get_avail(mp); info(h)=x; t=h;
21771 if ( mp->cur_sym==0 ) break;
21772 if ( mp->cur_cmd!=tag_token ) if ( mp->cur_cmd!=internal_quantity) {
21773 if ( mp->cur_cmd==left_bracket ) {
21774 @<Descend past a collective subscript@>;
21779 link(t)=mp_get_avail(mp); t=link(t); info(t)=mp->cur_sym;
21781 if ( eq_type(x)!=tag_token ) mp_clear_symbol(mp, x,false);
21782 if ( equiv(x)==null ) mp_new_root(mp, x);
21786 @ If the subscript isn't collective, we don't accept it as part of the
21789 @<Descend past a collective subscript@>=
21791 l=mp->cur_sym; mp_get_x_next(mp);
21792 if ( mp->cur_cmd!=right_bracket ) {
21793 mp_back_input(mp); mp->cur_sym=l; mp->cur_cmd=left_bracket; break;
21795 mp->cur_sym=collective_subscript;
21799 @ Type declarations are introduced by the following primitive operations.
21802 mp_primitive(mp, "numeric",type_name,mp_numeric_type);
21803 @:numeric_}{\&{numeric} primitive@>
21804 mp_primitive(mp, "string",type_name,mp_string_type);
21805 @:string_}{\&{string} primitive@>
21806 mp_primitive(mp, "boolean",type_name,mp_boolean_type);
21807 @:boolean_}{\&{boolean} primitive@>
21808 mp_primitive(mp, "path",type_name,mp_path_type);
21809 @:path_}{\&{path} primitive@>
21810 mp_primitive(mp, "pen",type_name,mp_pen_type);
21811 @:pen_}{\&{pen} primitive@>
21812 mp_primitive(mp, "picture",type_name,mp_picture_type);
21813 @:picture_}{\&{picture} primitive@>
21814 mp_primitive(mp, "transform",type_name,mp_transform_type);
21815 @:transform_}{\&{transform} primitive@>
21816 mp_primitive(mp, "color",type_name,mp_color_type);
21817 @:color_}{\&{color} primitive@>
21818 mp_primitive(mp, "rgbcolor",type_name,mp_color_type);
21819 @:color_}{\&{rgbcolor} primitive@>
21820 mp_primitive(mp, "cmykcolor",type_name,mp_cmykcolor_type);
21821 @:color_}{\&{cmykcolor} primitive@>
21822 mp_primitive(mp, "pair",type_name,mp_pair_type);
21823 @:pair_}{\&{pair} primitive@>
21825 @ @<Cases of |print_cmd...@>=
21826 case type_name: mp_print_type(mp, m); break;
21828 @ Now we are ready to handle type declarations, assuming that a
21829 |type_name| has just been scanned.
21831 @<Declare action procedures for use by |do_statement|@>=
21832 void mp_do_type_declaration (MP mp) ;
21835 void mp_do_type_declaration (MP mp) {
21836 small_number t; /* the type being declared */
21837 pointer p; /* token list for a declared variable */
21838 pointer q; /* value node for the variable */
21839 if ( mp->cur_mod>=mp_transform_type )
21842 t=mp->cur_mod+unknown_tag;
21844 p=mp_scan_declared_variable(mp);
21845 mp_flush_variable(mp, equiv(info(p)),link(p),false);
21846 q=mp_find_variable(mp, p);
21848 type(q)=t; value(q)=null;
21850 print_err("Declared variable conflicts with previous vardef");
21851 @.Declared variable conflicts...@>
21852 help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")
21853 ("Proceed, and I'll ignore the illegal redeclaration.");
21854 mp_put_get_error(mp);
21856 mp_flush_list(mp, p);
21857 if ( mp->cur_cmd<comma ) {
21858 @<Flush spurious symbols after the declared variable@>;
21860 } while (! end_of_statement);
21863 @ @<Flush spurious symbols after the declared variable@>=
21865 print_err("Illegal suffix of declared variable will be flushed");
21866 @.Illegal suffix...flushed@>
21867 help5("Variables in declarations must consist entirely of")
21868 ("names and collective subscripts, e.g., `x[]a'.")
21869 ("Are you trying to use a reserved word in a variable name?")
21870 ("I'm going to discard the junk I found here,")
21871 ("up to the next comma or the end of the declaration.");
21872 if ( mp->cur_cmd==numeric_token )
21873 mp->help_line[2]="Explicit subscripts like `x15a' aren't permitted.";
21874 mp_put_get_error(mp); mp->scanner_status=flushing;
21877 @<Decrease the string reference count...@>;
21878 } while (mp->cur_cmd<comma); /* either |end_of_statement| or |cur_cmd=comma| */
21879 mp->scanner_status=normal;
21882 @ \MP's |main_control| procedure just calls |do_statement| repeatedly
21883 until coming to the end of the user's program.
21884 Each execution of |do_statement| concludes with
21885 |cur_cmd=semicolon|, |end_group|, or |stop|.
21887 @c void mp_main_control (MP mp) {
21889 mp_do_statement(mp);
21890 if ( mp->cur_cmd==end_group ) {
21891 print_err("Extra `endgroup'");
21892 @.Extra `endgroup'@>
21893 help2("I'm not currently working on a `begingroup',")
21894 ("so I had better not try to end anything.");
21895 mp_flush_error(mp, 0);
21897 } while (mp->cur_cmd!=stop);
21899 int mp_run (MP mp) {
21900 @<Install and test the non-local jump buffer@>;
21901 mp_main_control(mp); /* come to life */
21902 mp_final_cleanup(mp); /* prepare for death */
21903 mp_close_files_and_terminate(mp);
21904 return mp->history;
21906 char * mp_mplib_version (MP mp) {
21908 return mplib_version;
21910 char * mp_metapost_version (MP mp) {
21912 return metapost_version;
21915 @ @<Exported function headers@>=
21916 int mp_run (MP mp);
21917 char * mp_mplib_version (MP mp);
21918 char * mp_metapost_version (MP mp);
21921 mp_primitive(mp, "end",stop,0);
21922 @:end_}{\&{end} primitive@>
21923 mp_primitive(mp, "dump",stop,1);
21924 @:dump_}{\&{dump} primitive@>
21926 @ @<Cases of |print_cmd...@>=
21928 if ( m==0 ) mp_print(mp, "end");
21929 else mp_print(mp, "dump");
21933 Let's turn now to statements that are classified as ``commands'' because
21934 of their imperative nature. We'll begin with simple ones, so that it
21935 will be clear how to hook command processing into the |do_statement| routine;
21936 then we'll tackle the tougher commands.
21938 Here's one of the simplest:
21940 @<Cases of |do_statement|...@>=
21941 case mp_random_seed: mp_do_random_seed(mp); break;
21943 @ @<Declare action procedures for use by |do_statement|@>=
21944 void mp_do_random_seed (MP mp) ;
21946 @ @c void mp_do_random_seed (MP mp) {
21948 if ( mp->cur_cmd!=assignment ) {
21949 mp_missing_err(mp, ":=");
21951 help1("Always say `randomseed:=<numeric expression>'.");
21954 mp_get_x_next(mp); mp_scan_expression(mp);
21955 if ( mp->cur_type!=mp_known ) {
21956 exp_err("Unknown value will be ignored");
21957 @.Unknown value...ignored@>
21958 help2("Your expression was too random for me to handle,")
21959 ("so I won't change the random seed just now.");
21960 mp_put_get_flush_error(mp, 0);
21962 @<Initialize the random seed to |cur_exp|@>;
21966 @ @<Initialize the random seed to |cur_exp|@>=
21968 mp_init_randoms(mp, mp->cur_exp);
21969 if ( mp->selector>=log_only && mp->selector<write_file) {
21970 mp->old_setting=mp->selector; mp->selector=log_only;
21971 mp_print_nl(mp, "{randomseed:=");
21972 mp_print_scaled(mp, mp->cur_exp);
21973 mp_print_char(mp, '}');
21974 mp_print_nl(mp, ""); mp->selector=mp->old_setting;
21978 @ And here's another simple one (somewhat different in flavor):
21980 @<Cases of |do_statement|...@>=
21982 mp_print_ln(mp); mp->interaction=mp->cur_mod;
21983 @<Initialize the print |selector| based on |interaction|@>;
21984 if ( mp->log_opened ) mp->selector=mp->selector+2;
21989 mp_primitive(mp, "batchmode",mode_command,mp_batch_mode);
21990 @:mp_batch_mode_}{\&{batchmode} primitive@>
21991 mp_primitive(mp, "nonstopmode",mode_command,mp_nonstop_mode);
21992 @:mp_nonstop_mode_}{\&{nonstopmode} primitive@>
21993 mp_primitive(mp, "scrollmode",mode_command,mp_scroll_mode);
21994 @:mp_scroll_mode_}{\&{scrollmode} primitive@>
21995 mp_primitive(mp, "errorstopmode",mode_command,mp_error_stop_mode);
21996 @:mp_error_stop_mode_}{\&{errorstopmode} primitive@>
21998 @ @<Cases of |print_cmd_mod|...@>=
22001 case mp_batch_mode: mp_print(mp, "batchmode"); break;
22002 case mp_nonstop_mode: mp_print(mp, "nonstopmode"); break;
22003 case mp_scroll_mode: mp_print(mp, "scrollmode"); break;
22004 default: mp_print(mp, "errorstopmode"); break;
22008 @ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
22010 @<Cases of |do_statement|...@>=
22011 case protection_command: mp_do_protection(mp); break;
22014 mp_primitive(mp, "inner",protection_command,0);
22015 @:inner_}{\&{inner} primitive@>
22016 mp_primitive(mp, "outer",protection_command,1);
22017 @:outer_}{\&{outer} primitive@>
22019 @ @<Cases of |print_cmd...@>=
22020 case protection_command:
22021 if ( m==0 ) mp_print(mp, "inner");
22022 else mp_print(mp, "outer");
22025 @ @<Declare action procedures for use by |do_statement|@>=
22026 void mp_do_protection (MP mp) ;
22028 @ @c void mp_do_protection (MP mp) {
22029 int m; /* 0 to unprotect, 1 to protect */
22030 halfword t; /* the |eq_type| before we change it */
22033 mp_get_symbol(mp); t=eq_type(mp->cur_sym);
22035 if ( t>=outer_tag )
22036 eq_type(mp->cur_sym)=t-outer_tag;
22037 } else if ( t<outer_tag ) {
22038 eq_type(mp->cur_sym)=t+outer_tag;
22041 } while (mp->cur_cmd==comma);
22044 @ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
22045 plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
22046 declaration assigns the command code |left_delimiter| to `\.{(}' and
22047 |right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
22048 hash address of its mate.
22050 @<Cases of |do_statement|...@>=
22051 case delimiters: mp_def_delims(mp); break;
22053 @ @<Declare action procedures for use by |do_statement|@>=
22054 void mp_def_delims (MP mp) ;
22056 @ @c void mp_def_delims (MP mp) {
22057 pointer l_delim,r_delim; /* the new delimiter pair */
22058 mp_get_clear_symbol(mp); l_delim=mp->cur_sym;
22059 mp_get_clear_symbol(mp); r_delim=mp->cur_sym;
22060 eq_type(l_delim)=left_delimiter; equiv(l_delim)=r_delim;
22061 eq_type(r_delim)=right_delimiter; equiv(r_delim)=l_delim;
22065 @ Here is a procedure that is called when \MP\ has reached a point
22066 where some right delimiter is mandatory.
22068 @<Declare the procedure called |check_delimiter|@>=
22069 void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim) {
22070 if ( mp->cur_cmd==right_delimiter )
22071 if ( mp->cur_mod==l_delim )
22073 if ( mp->cur_sym!=r_delim ) {
22074 mp_missing_err(mp, str(text(r_delim)));
22076 help2("I found no right delimiter to match a left one. So I've")
22077 ("put one in, behind the scenes; this may fix the problem.");
22080 print_err("The token `"); mp_print_text(r_delim);
22081 @.The token...delimiter@>
22082 mp_print(mp, "' is no longer a right delimiter");
22083 help3("Strange: This token has lost its former meaning!")
22084 ("I'll read it as a right delimiter this time;")
22085 ("but watch out, I'll probably miss it later.");
22090 @ The next four commands save or change the values associated with tokens.
22092 @<Cases of |do_statement|...@>=
22095 mp_get_symbol(mp); mp_save_variable(mp, mp->cur_sym); mp_get_x_next(mp);
22096 } while (mp->cur_cmd==comma);
22098 case interim_command: mp_do_interim(mp); break;
22099 case let_command: mp_do_let(mp); break;
22100 case new_internal: mp_do_new_internal(mp); break;
22102 @ @<Declare action procedures for use by |do_statement|@>=
22103 void mp_do_statement (MP mp);
22104 void mp_do_interim (MP mp);
22106 @ @c void mp_do_interim (MP mp) {
22108 if ( mp->cur_cmd!=internal_quantity ) {
22109 print_err("The token `");
22110 @.The token...quantity@>
22111 if ( mp->cur_sym==0 ) mp_print(mp, "(%CAPSULE)");
22112 else mp_print_text(mp->cur_sym);
22113 mp_print(mp, "' isn't an internal quantity");
22114 help1("Something like `tracingonline' should follow `interim'.");
22117 mp_save_internal(mp, mp->cur_mod); mp_back_input(mp);
22119 mp_do_statement(mp);
22122 @ The following procedure is careful not to undefine the left-hand symbol
22123 too soon, lest commands like `{\tt let x=x}' have a surprising effect.
22125 @<Declare action procedures for use by |do_statement|@>=
22126 void mp_do_let (MP mp) ;
22128 @ @c void mp_do_let (MP mp) {
22129 pointer l; /* hash location of the left-hand symbol */
22130 mp_get_symbol(mp); l=mp->cur_sym; mp_get_x_next(mp);
22131 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
22132 mp_missing_err(mp, "=");
22134 help3("You should have said `let symbol = something'.")
22135 ("But don't worry; I'll pretend that an equals sign")
22136 ("was present. The next token I read will be `something'.");
22140 switch (mp->cur_cmd) {
22141 case defined_macro: case secondary_primary_macro:
22142 case tertiary_secondary_macro: case expression_tertiary_macro:
22143 add_mac_ref(mp->cur_mod);
22148 mp_clear_symbol(mp, l,false); eq_type(l)=mp->cur_cmd;
22149 if ( mp->cur_cmd==tag_token ) equiv(l)=null;
22150 else equiv(l)=mp->cur_mod;
22154 @ @<Declarations@>=
22155 void mp_grow_internals (MP mp, int l);
22156 void mp_do_new_internal (MP mp) ;
22159 void mp_grow_internals (MP mp, int l) {
22163 if ( hash_end+l>max_halfword ) {
22164 mp_confusion(mp, "out of memory space"); /* can't be reached */
22166 int_name = xmalloc ((l+1),sizeof(char *));
22167 internal = xmalloc ((l+1),sizeof(scaled));
22168 for (k=0;k<=l; k++ ) {
22169 if (k<=mp->max_internal) {
22170 internal[k]=mp->internal[k];
22171 int_name[k]=mp->int_name[k];
22177 xfree(mp->internal); xfree(mp->int_name);
22178 mp->int_name = int_name;
22179 mp->internal = internal;
22180 mp->max_internal = l;
22184 void mp_do_new_internal (MP mp) {
22186 if ( mp->int_ptr==mp->max_internal ) {
22187 mp_grow_internals(mp, (mp->max_internal + (mp->max_internal>>2)));
22189 mp_get_clear_symbol(mp); incr(mp->int_ptr);
22190 eq_type(mp->cur_sym)=internal_quantity;
22191 equiv(mp->cur_sym)=mp->int_ptr;
22192 if(mp->int_name[mp->int_ptr]!=NULL)
22193 xfree(mp->int_name[mp->int_ptr]);
22194 mp->int_name[mp->int_ptr]=str(text(mp->cur_sym));
22195 mp->internal[mp->int_ptr]=0;
22197 } while (mp->cur_cmd==comma);
22200 @ @<Dealloc variables@>=
22201 for (k=0;k<=mp->max_internal;k++) {
22202 xfree(mp->int_name[k]);
22204 xfree(mp->internal);
22205 xfree(mp->int_name);
22208 @ The various `\&{show}' commands are distinguished by modifier fields
22211 @d show_token_code 0 /* show the meaning of a single token */
22212 @d show_stats_code 1 /* show current memory and string usage */
22213 @d show_code 2 /* show a list of expressions */
22214 @d show_var_code 3 /* show a variable and its descendents */
22215 @d show_dependencies_code 4 /* show dependent variables in terms of independents */
22218 mp_primitive(mp, "showtoken",show_command,show_token_code);
22219 @:show_token_}{\&{showtoken} primitive@>
22220 mp_primitive(mp, "showstats",show_command,show_stats_code);
22221 @:show_stats_}{\&{showstats} primitive@>
22222 mp_primitive(mp, "show",show_command,show_code);
22223 @:show_}{\&{show} primitive@>
22224 mp_primitive(mp, "showvariable",show_command,show_var_code);
22225 @:show_var_}{\&{showvariable} primitive@>
22226 mp_primitive(mp, "showdependencies",show_command,show_dependencies_code);
22227 @:show_dependencies_}{\&{showdependencies} primitive@>
22229 @ @<Cases of |print_cmd...@>=
22232 case show_token_code:mp_print(mp, "showtoken"); break;
22233 case show_stats_code:mp_print(mp, "showstats"); break;
22234 case show_code:mp_print(mp, "show"); break;
22235 case show_var_code:mp_print(mp, "showvariable"); break;
22236 default: mp_print(mp, "showdependencies"); break;
22240 @ @<Cases of |do_statement|...@>=
22241 case show_command:mp_do_show_whatever(mp); break;
22243 @ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
22244 if it's |show_code|, complicated structures are abbreviated, otherwise
22247 @<Declare action procedures for use by |do_statement|@>=
22248 void mp_do_show (MP mp) ;
22250 @ @c void mp_do_show (MP mp) {
22252 mp_get_x_next(mp); mp_scan_expression(mp);
22253 mp_print_nl(mp, ">> ");
22255 mp_print_exp(mp, null,2); mp_flush_cur_exp(mp, 0);
22256 } while (mp->cur_cmd==comma);
22259 @ @<Declare action procedures for use by |do_statement|@>=
22260 void mp_disp_token (MP mp) ;
22262 @ @c void mp_disp_token (MP mp) {
22263 mp_print_nl(mp, "> ");
22265 if ( mp->cur_sym==0 ) {
22266 @<Show a numeric or string or capsule token@>;
22268 mp_print_text(mp->cur_sym); mp_print_char(mp, '=');
22269 if ( eq_type(mp->cur_sym)>=outer_tag ) mp_print(mp, "(outer) ");
22270 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
22271 if ( mp->cur_cmd==defined_macro ) {
22272 mp_print_ln(mp); mp_show_macro(mp, mp->cur_mod,null,100000);
22273 } /* this avoids recursion between |show_macro| and |print_cmd_mod| */
22278 @ @<Show a numeric or string or capsule token@>=
22280 if ( mp->cur_cmd==numeric_token ) {
22281 mp_print_scaled(mp, mp->cur_mod);
22282 } else if ( mp->cur_cmd==capsule_token ) {
22283 mp->g_pointer=mp->cur_mod; mp_print_capsule(mp);
22285 mp_print_char(mp, '"');
22286 mp_print_str(mp, mp->cur_mod); mp_print_char(mp, '"');
22287 delete_str_ref(mp->cur_mod);
22291 @ The following cases of |print_cmd_mod| might arise in connection
22292 with |disp_token|, although they don't correspond to any
22295 @<Cases of |print_cmd_...@>=
22296 case left_delimiter:
22297 case right_delimiter:
22298 if ( c==left_delimiter ) mp_print(mp, "left");
22299 else mp_print(mp, "right");
22300 mp_print(mp, " delimiter that matches ");
22304 if ( m==null ) mp_print(mp, "tag");
22305 else mp_print(mp, "variable");
22307 case defined_macro:
22308 mp_print(mp, "macro:");
22310 case secondary_primary_macro:
22311 case tertiary_secondary_macro:
22312 case expression_tertiary_macro:
22313 mp_print_cmd_mod(mp, macro_def,c);
22314 mp_print(mp, "'d macro:");
22315 mp_print_ln(mp); mp_show_token_list(mp, link(link(m)),null,1000,0);
22318 mp_print(mp, "[repeat the loop]");
22320 case internal_quantity:
22321 mp_print(mp, mp->int_name[m]);
22324 @ @<Declare action procedures for use by |do_statement|@>=
22325 void mp_do_show_token (MP mp) ;
22327 @ @c void mp_do_show_token (MP mp) {
22329 get_t_next; mp_disp_token(mp);
22331 } while (mp->cur_cmd==comma);
22334 @ @<Declare action procedures for use by |do_statement|@>=
22335 void mp_do_show_stats (MP mp) ;
22337 @ @c void mp_do_show_stats (MP mp) {
22338 mp_print_nl(mp, "Memory usage ");
22339 @.Memory usage...@>
22340 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used);
22342 mp_print(mp, "unknown");
22343 mp_print(mp, " ("); mp_print_int(mp, mp->hi_mem_min-mp->lo_mem_max-1);
22344 mp_print(mp, " still untouched)"); mp_print_ln(mp);
22345 mp_print_nl(mp, "String usage ");
22346 mp_print_int(mp, mp->strs_in_use-mp->init_str_use);
22347 mp_print_char(mp, '&'); mp_print_int(mp, mp->pool_in_use-mp->init_pool_ptr);
22349 mp_print(mp, "unknown");
22350 mp_print(mp, " (");
22351 mp_print_int(mp, mp->max_strings-1-mp->strs_used_up); mp_print_char(mp, '&');
22352 mp_print_int(mp, mp->pool_size-mp->pool_ptr);
22353 mp_print(mp, " now untouched)"); mp_print_ln(mp);
22357 @ Here's a recursive procedure that gives an abbreviated account
22358 of a variable, for use by |do_show_var|.
22360 @<Declare action procedures for use by |do_statement|@>=
22361 void mp_disp_var (MP mp,pointer p) ;
22363 @ @c void mp_disp_var (MP mp,pointer p) {
22364 pointer q; /* traverses attributes and subscripts */
22365 int n; /* amount of macro text to show */
22366 if ( type(p)==mp_structured ) {
22367 @<Descend the structure@>;
22368 } else if ( type(p)>=mp_unsuffixed_macro ) {
22369 @<Display a variable macro@>;
22370 } else if ( type(p)!=undefined ){
22371 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22372 mp_print_char(mp, '=');
22373 mp_print_exp(mp, p,0);
22377 @ @<Descend the structure@>=
22380 do { mp_disp_var(mp, q); q=link(q); } while (q!=end_attr);
22382 while ( name_type(q)==mp_subscr ) {
22383 mp_disp_var(mp, q); q=link(q);
22387 @ @<Display a variable macro@>=
22389 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22390 if ( type(p)>mp_unsuffixed_macro )
22391 mp_print(mp, "@@#"); /* |suffixed_macro| */
22392 mp_print(mp, "=macro:");
22393 if ( (int)mp->file_offset>=mp->max_print_line-20 ) n=5;
22394 else n=mp->max_print_line-mp->file_offset-15;
22395 mp_show_macro(mp, value(p),null,n);
22398 @ @<Declare action procedures for use by |do_statement|@>=
22399 void mp_do_show_var (MP mp) ;
22401 @ @c void mp_do_show_var (MP mp) {
22404 if ( mp->cur_sym>0 ) if ( mp->cur_sym<=hash_end )
22405 if ( mp->cur_cmd==tag_token ) if ( mp->cur_mod!=null ) {
22406 mp_disp_var(mp, mp->cur_mod); goto DONE;
22411 } while (mp->cur_cmd==comma);
22414 @ @<Declare action procedures for use by |do_statement|@>=
22415 void mp_do_show_dependencies (MP mp) ;
22417 @ @c void mp_do_show_dependencies (MP mp) {
22418 pointer p; /* link that runs through all dependencies */
22420 while ( p!=dep_head ) {
22421 if ( mp_interesting(mp, p) ) {
22422 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22423 if ( type(p)==mp_dependent ) mp_print_char(mp, '=');
22424 else mp_print(mp, " = "); /* extra spaces imply proto-dependency */
22425 mp_print_dependency(mp, dep_list(p),type(p));
22428 while ( info(p)!=null ) p=link(p);
22434 @ Finally we are ready for the procedure that governs all of the
22437 @<Declare action procedures for use by |do_statement|@>=
22438 void mp_do_show_whatever (MP mp) ;
22440 @ @c void mp_do_show_whatever (MP mp) {
22441 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
22442 switch (mp->cur_mod) {
22443 case show_token_code:mp_do_show_token(mp); break;
22444 case show_stats_code:mp_do_show_stats(mp); break;
22445 case show_code:mp_do_show(mp); break;
22446 case show_var_code:mp_do_show_var(mp); break;
22447 case show_dependencies_code:mp_do_show_dependencies(mp); break;
22448 } /* there are no other cases */
22449 if ( mp->internal[mp_showstopping]>0 ){
22452 if ( mp->interaction<mp_error_stop_mode ) {
22453 help0; decr(mp->error_count);
22455 help1("This isn't an error message; I'm just showing something.");
22457 if ( mp->cur_cmd==semicolon ) mp_error(mp);
22458 else mp_put_get_error(mp);
22462 @ The `\&{addto}' command needs the following additional primitives:
22464 @d double_path_code 0 /* command modifier for `\&{doublepath}' */
22465 @d contour_code 1 /* command modifier for `\&{contour}' */
22466 @d also_code 2 /* command modifier for `\&{also}' */
22468 @ Pre and postscripts need two new identifiers:
22470 @d with_pre_script 11
22471 @d with_post_script 13
22474 mp_primitive(mp, "doublepath",thing_to_add,double_path_code);
22475 @:double_path_}{\&{doublepath} primitive@>
22476 mp_primitive(mp, "contour",thing_to_add,contour_code);
22477 @:contour_}{\&{contour} primitive@>
22478 mp_primitive(mp, "also",thing_to_add,also_code);
22479 @:also_}{\&{also} primitive@>
22480 mp_primitive(mp, "withpen",with_option,mp_pen_type);
22481 @:with_pen_}{\&{withpen} primitive@>
22482 mp_primitive(mp, "dashed",with_option,mp_picture_type);
22483 @:dashed_}{\&{dashed} primitive@>
22484 mp_primitive(mp, "withprescript",with_option,with_pre_script);
22485 @:with_pre_script_}{\&{withprescript} primitive@>
22486 mp_primitive(mp, "withpostscript",with_option,with_post_script);
22487 @:with_post_script_}{\&{withpostscript} primitive@>
22488 mp_primitive(mp, "withoutcolor",with_option,mp_no_model);
22489 @:with_color_}{\&{withoutcolor} primitive@>
22490 mp_primitive(mp, "withgreyscale",with_option,mp_grey_model);
22491 @:with_color_}{\&{withgreyscale} primitive@>
22492 mp_primitive(mp, "withcolor",with_option,mp_uninitialized_model);
22493 @:with_color_}{\&{withcolor} primitive@>
22494 /* \&{withrgbcolor} is an alias for \&{withcolor} */
22495 mp_primitive(mp, "withrgbcolor",with_option,mp_rgb_model);
22496 @:with_color_}{\&{withrgbcolor} primitive@>
22497 mp_primitive(mp, "withcmykcolor",with_option,mp_cmyk_model);
22498 @:with_color_}{\&{withcmykcolor} primitive@>
22500 @ @<Cases of |print_cmd...@>=
22502 if ( m==contour_code ) mp_print(mp, "contour");
22503 else if ( m==double_path_code ) mp_print(mp, "doublepath");
22504 else mp_print(mp, "also");
22507 if ( m==mp_pen_type ) mp_print(mp, "withpen");
22508 else if ( m==with_pre_script ) mp_print(mp, "withprescript");
22509 else if ( m==with_post_script ) mp_print(mp, "withpostscript");
22510 else if ( m==mp_no_model ) mp_print(mp, "withoutcolor");
22511 else if ( m==mp_rgb_model ) mp_print(mp, "withrgbcolor");
22512 else if ( m==mp_uninitialized_model ) mp_print(mp, "withcolor");
22513 else if ( m==mp_cmyk_model ) mp_print(mp, "withcmykcolor");
22514 else if ( m==mp_grey_model ) mp_print(mp, "withgreyscale");
22515 else mp_print(mp, "dashed");
22518 @ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
22519 updates the list of graphical objects starting at |p|. Each $\langle$with
22520 clause$\rangle$ updates all graphical objects whose |type| is compatible.
22521 Other objects are ignored.
22523 @<Declare action procedures for use by |do_statement|@>=
22524 void mp_scan_with_list (MP mp,pointer p) ;
22526 @ @c void mp_scan_with_list (MP mp,pointer p) {
22527 small_number t; /* |cur_mod| of the |with_option| (should match |cur_type|) */
22528 pointer q; /* for list manipulation */
22529 int old_setting; /* saved |selector| setting */
22530 pointer k; /* for finding the near-last item in a list */
22531 str_number s; /* for string cleanup after combining */
22532 pointer cp,pp,dp,ap,bp;
22533 /* objects being updated; |void| initially; |null| to suppress update */
22534 cp=mp_void; pp=mp_void; dp=mp_void; ap=mp_void; bp=mp_void;
22536 while ( mp->cur_cmd==with_option ){
22539 if ( t!=mp_no_model ) mp_scan_expression(mp);
22540 if (((t==with_pre_script)&&(mp->cur_type!=mp_string_type))||
22541 ((t==with_post_script)&&(mp->cur_type!=mp_string_type))||
22542 ((t==mp_uninitialized_model)&&
22543 ((mp->cur_type!=mp_cmykcolor_type)&&(mp->cur_type!=mp_color_type)
22544 &&(mp->cur_type!=mp_known)&&(mp->cur_type!=mp_boolean_type)))||
22545 ((t==mp_cmyk_model)&&(mp->cur_type!=mp_cmykcolor_type))||
22546 ((t==mp_rgb_model)&&(mp->cur_type!=mp_color_type))||
22547 ((t==mp_grey_model)&&(mp->cur_type!=mp_known))||
22548 ((t==mp_pen_type)&&(mp->cur_type!=t))||
22549 ((t==mp_picture_type)&&(mp->cur_type!=t)) ) {
22550 @<Complain about improper type@>;
22551 } else if ( t==mp_uninitialized_model ) {
22552 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22554 @<Transfer a color from the current expression to object~|cp|@>;
22555 mp_flush_cur_exp(mp, 0);
22556 } else if ( t==mp_rgb_model ) {
22557 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22559 @<Transfer a rgbcolor from the current expression to object~|cp|@>;
22560 mp_flush_cur_exp(mp, 0);
22561 } else if ( t==mp_cmyk_model ) {
22562 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22564 @<Transfer a cmykcolor from the current expression to object~|cp|@>;
22565 mp_flush_cur_exp(mp, 0);
22566 } else if ( t==mp_grey_model ) {
22567 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22569 @<Transfer a greyscale from the current expression to object~|cp|@>;
22570 mp_flush_cur_exp(mp, 0);
22571 } else if ( t==mp_no_model ) {
22572 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22574 @<Transfer a noncolor from the current expression to object~|cp|@>;
22575 } else if ( t==mp_pen_type ) {
22576 if ( pp==mp_void ) @<Make |pp| an object in list~|p| that needs a pen@>;
22578 if ( pen_p(pp)!=null ) mp_toss_knot_list(mp, pen_p(pp));
22579 pen_p(pp)=mp->cur_exp; mp->cur_type=mp_vacuous;
22581 } else if ( t==with_pre_script ) {
22584 while ( (ap!=null)&&(! has_color(ap)) )
22587 if ( pre_script(ap)!=null ) { /* build a new,combined string */
22589 old_setting=mp->selector;
22590 mp->selector=new_string;
22591 str_room(length(pre_script(ap))+length(mp->cur_exp)+2);
22592 mp_print_str(mp, mp->cur_exp);
22593 append_char(13); /* a forced \ps\ newline */
22594 mp_print_str(mp, pre_script(ap));
22595 pre_script(ap)=mp_make_string(mp);
22597 mp->selector=old_setting;
22599 pre_script(ap)=mp->cur_exp;
22601 mp->cur_type=mp_vacuous;
22603 } else if ( t==with_post_script ) {
22607 while ( link(k)!=null ) {
22609 if ( has_color(k) ) bp=k;
22612 if ( post_script(bp)!=null ) {
22614 old_setting=mp->selector;
22615 mp->selector=new_string;
22616 str_room(length(post_script(bp))+length(mp->cur_exp)+2);
22617 mp_print_str(mp, post_script(bp));
22618 append_char(13); /* a forced \ps\ newline */
22619 mp_print_str(mp, mp->cur_exp);
22620 post_script(bp)=mp_make_string(mp);
22622 mp->selector=old_setting;
22624 post_script(bp)=mp->cur_exp;
22626 mp->cur_type=mp_vacuous;
22629 if ( dp==mp_void ) {
22630 @<Make |dp| a stroked node in list~|p|@>;
22633 if ( dash_p(dp)!=null ) delete_edge_ref(dash_p(dp));
22634 dash_p(dp)=mp_make_dashes(mp, mp->cur_exp);
22635 dash_scale(dp)=unity;
22636 mp->cur_type=mp_vacuous;
22640 @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
22644 @ @<Complain about improper type@>=
22645 { exp_err("Improper type");
22647 help2("Next time say `withpen <known pen expression>';")
22648 ("I'll ignore the bad `with' clause and look for another.");
22649 if ( t==with_pre_script )
22650 mp->help_line[1]="Next time say `withprescript <known string expression>';";
22651 else if ( t==with_post_script )
22652 mp->help_line[1]="Next time say `withpostscript <known string expression>';";
22653 else if ( t==mp_picture_type )
22654 mp->help_line[1]="Next time say `dashed <known picture expression>';";
22655 else if ( t==mp_uninitialized_model )
22656 mp->help_line[1]="Next time say `withcolor <known color expression>';";
22657 else if ( t==mp_rgb_model )
22658 mp->help_line[1]="Next time say `withrgbcolor <known color expression>';";
22659 else if ( t==mp_cmyk_model )
22660 mp->help_line[1]="Next time say `withcmykcolor <known cmykcolor expression>';";
22661 else if ( t==mp_grey_model )
22662 mp->help_line[1]="Next time say `withgreyscale <known numeric expression>';";;
22663 mp_put_get_flush_error(mp, 0);
22666 @ Forcing the color to be between |0| and |unity| here guarantees that no
22667 picture will ever contain a color outside the legal range for \ps\ graphics.
22669 @<Transfer a color from the current expression to object~|cp|@>=
22670 { if ( mp->cur_type==mp_color_type )
22671 @<Transfer a rgbcolor from the current expression to object~|cp|@>
22672 else if ( mp->cur_type==mp_cmykcolor_type )
22673 @<Transfer a cmykcolor from the current expression to object~|cp|@>
22674 else if ( mp->cur_type==mp_known )
22675 @<Transfer a greyscale from the current expression to object~|cp|@>
22676 else if ( mp->cur_exp==false_code )
22677 @<Transfer a noncolor from the current expression to object~|cp|@>;
22680 @ @<Transfer a rgbcolor from the current expression to object~|cp|@>=
22681 { q=value(mp->cur_exp);
22686 red_val(cp)=value(red_part_loc(q));
22687 green_val(cp)=value(green_part_loc(q));
22688 blue_val(cp)=value(blue_part_loc(q));
22689 color_model(cp)=mp_rgb_model;
22690 if ( red_val(cp)<0 ) red_val(cp)=0;
22691 if ( green_val(cp)<0 ) green_val(cp)=0;
22692 if ( blue_val(cp)<0 ) blue_val(cp)=0;
22693 if ( red_val(cp)>unity ) red_val(cp)=unity;
22694 if ( green_val(cp)>unity ) green_val(cp)=unity;
22695 if ( blue_val(cp)>unity ) blue_val(cp)=unity;
22698 @ @<Transfer a cmykcolor from the current expression to object~|cp|@>=
22699 { q=value(mp->cur_exp);
22700 cyan_val(cp)=value(cyan_part_loc(q));
22701 magenta_val(cp)=value(magenta_part_loc(q));
22702 yellow_val(cp)=value(yellow_part_loc(q));
22703 black_val(cp)=value(black_part_loc(q));
22704 color_model(cp)=mp_cmyk_model;
22705 if ( cyan_val(cp)<0 ) cyan_val(cp)=0;
22706 if ( magenta_val(cp)<0 ) magenta_val(cp)=0;
22707 if ( yellow_val(cp)<0 ) yellow_val(cp)=0;
22708 if ( black_val(cp)<0 ) black_val(cp)=0;
22709 if ( cyan_val(cp)>unity ) cyan_val(cp)=unity;
22710 if ( magenta_val(cp)>unity ) magenta_val(cp)=unity;
22711 if ( yellow_val(cp)>unity ) yellow_val(cp)=unity;
22712 if ( black_val(cp)>unity ) black_val(cp)=unity;
22715 @ @<Transfer a greyscale from the current expression to object~|cp|@>=
22722 color_model(cp)=mp_grey_model;
22723 if ( grey_val(cp)<0 ) grey_val(cp)=0;
22724 if ( grey_val(cp)>unity ) grey_val(cp)=unity;
22727 @ @<Transfer a noncolor from the current expression to object~|cp|@>=
22734 color_model(cp)=mp_no_model;
22737 @ @<Make |cp| a colored object in object list~|p|@>=
22739 while ( cp!=null ){
22740 if ( has_color(cp) ) break;
22745 @ @<Make |pp| an object in list~|p| that needs a pen@>=
22747 while ( pp!=null ) {
22748 if ( has_pen(pp) ) break;
22753 @ @<Make |dp| a stroked node in list~|p|@>=
22755 while ( dp!=null ) {
22756 if ( type(dp)==mp_stroked_code ) break;
22761 @ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
22762 @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
22763 if ( pp>mp_void ) {
22764 @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
22766 if ( dp>mp_void ) {
22767 @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>;
22771 @ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
22773 while ( q!=null ) {
22774 if ( has_color(q) ) {
22775 red_val(q)=red_val(cp);
22776 green_val(q)=green_val(cp);
22777 blue_val(q)=blue_val(cp);
22778 black_val(q)=black_val(cp);
22779 color_model(q)=color_model(cp);
22785 @ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
22787 while ( q!=null ) {
22788 if ( has_pen(q) ) {
22789 if ( pen_p(q)!=null ) mp_toss_knot_list(mp, pen_p(q));
22790 pen_p(q)=copy_pen(pen_p(pp));
22796 @ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
22798 while ( q!=null ) {
22799 if ( type(q)==mp_stroked_code ) {
22800 if ( dash_p(q)!=null ) delete_edge_ref(dash_p(q));
22801 dash_p(q)=dash_p(dp);
22802 dash_scale(q)=unity;
22803 if ( dash_p(q)!=null ) add_edge_ref(dash_p(q));
22809 @ One of the things we need to do when we've parsed an \&{addto} or
22810 similar command is find the header of a supposed \&{picture} variable, given
22811 a token list for that variable. Since the edge structure is about to be
22812 updated, we use |private_edges| to make sure that this is possible.
22814 @<Declare action procedures for use by |do_statement|@>=
22815 pointer mp_find_edges_var (MP mp, pointer t) ;
22817 @ @c pointer mp_find_edges_var (MP mp, pointer t) {
22819 pointer cur_edges; /* the return value */
22820 p=mp_find_variable(mp, t); cur_edges=null;
22822 mp_obliterated(mp, t); mp_put_get_error(mp);
22823 } else if ( type(p)!=mp_picture_type ) {
22824 print_err("Variable "); mp_show_token_list(mp, t,null,1000,0);
22825 @.Variable x is the wrong type@>
22826 mp_print(mp, " is the wrong type (");
22827 mp_print_type(mp, type(p)); mp_print_char(mp, ')');
22828 help2("I was looking for a \"known\" picture variable.")
22829 ("So I'll not change anything just now.");
22830 mp_put_get_error(mp);
22832 value(p)=mp_private_edges(mp, value(p));
22833 cur_edges=value(p);
22835 mp_flush_node_list(mp, t);
22839 @ @<Cases of |do_statement|...@>=
22840 case add_to_command: mp_do_add_to(mp); break;
22841 case bounds_command:mp_do_bounds(mp); break;
22844 mp_primitive(mp, "clip",bounds_command,mp_start_clip_code);
22845 @:clip_}{\&{clip} primitive@>
22846 mp_primitive(mp, "setbounds",bounds_command,mp_start_bounds_code);
22847 @:set_bounds_}{\&{setbounds} primitive@>
22849 @ @<Cases of |print_cmd...@>=
22850 case bounds_command:
22851 if ( m==mp_start_clip_code ) mp_print(mp, "clip");
22852 else mp_print(mp, "setbounds");
22855 @ The following function parses the beginning of an \&{addto} or \&{clip}
22856 command: it expects a variable name followed by a token with |cur_cmd=sep|
22857 and then an expression. The function returns the token list for the variable
22858 and stores the command modifier for the separator token in the global variable
22859 |last_add_type|. We must be careful because this variable might get overwritten
22860 any time we call |get_x_next|.
22863 quarterword last_add_type;
22864 /* command modifier that identifies the last \&{addto} command */
22866 @ @<Declare action procedures for use by |do_statement|@>=
22867 pointer mp_start_draw_cmd (MP mp,quarterword sep) ;
22869 @ @c pointer mp_start_draw_cmd (MP mp,quarterword sep) {
22870 pointer lhv; /* variable to add to left */
22871 quarterword add_type=0; /* value to be returned in |last_add_type| */
22873 mp_get_x_next(mp); mp->var_flag=sep; mp_scan_primary(mp);
22874 if ( mp->cur_type!=mp_token_list ) {
22875 @<Abandon edges command because there's no variable@>;
22877 lhv=mp->cur_exp; add_type=mp->cur_mod;
22878 mp->cur_type=mp_vacuous; mp_get_x_next(mp); mp_scan_expression(mp);
22880 mp->last_add_type=add_type;
22884 @ @<Abandon edges command because there's no variable@>=
22885 { exp_err("Not a suitable variable");
22886 @.Not a suitable variable@>
22887 help4("At this point I needed to see the name of a picture variable.")
22888 ("(Or perhaps you have indeed presented me with one; I might")
22889 ("have missed it, if it wasn't followed by the proper token.)")
22890 ("So I'll not change anything just now.");
22891 mp_put_get_flush_error(mp, 0);
22894 @ Here is an example of how to use |start_draw_cmd|.
22896 @<Declare action procedures for use by |do_statement|@>=
22897 void mp_do_bounds (MP mp) ;
22899 @ @c void mp_do_bounds (MP mp) {
22900 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22901 pointer p; /* for list manipulation */
22902 integer m; /* initial value of |cur_mod| */
22904 lhv=mp_start_draw_cmd(mp, to_token);
22906 lhe=mp_find_edges_var(mp, lhv);
22908 mp_flush_cur_exp(mp, 0);
22909 } else if ( mp->cur_type!=mp_path_type ) {
22910 exp_err("Improper `clip'");
22911 @.Improper `addto'@>
22912 help2("This expression should have specified a known path.")
22913 ("So I'll not change anything just now.");
22914 mp_put_get_flush_error(mp, 0);
22915 } else if ( left_type(mp->cur_exp)==mp_endpoint ) {
22916 @<Complain about a non-cycle@>;
22918 @<Make |cur_exp| into a \&{setbounds} or clipping path and add it to |lhe|@>;
22923 @ @<Complain about a non-cycle@>=
22924 { print_err("Not a cycle");
22926 help2("That contour should have ended with `..cycle' or `&cycle'.")
22927 ("So I'll not change anything just now."); mp_put_get_error(mp);
22930 @ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
22931 { p=mp_new_bounds_node(mp, mp->cur_exp,m);
22932 link(p)=link(dummy_loc(lhe));
22933 link(dummy_loc(lhe))=p;
22934 if ( obj_tail(lhe)==dummy_loc(lhe) ) obj_tail(lhe)=p;
22935 p=mp_get_node(mp, mp->gr_object_size[stop_type(m)]);
22936 type(p)=stop_type(m);
22937 link(obj_tail(lhe))=p;
22939 mp_init_bbox(mp, lhe);
22942 @ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
22943 cases to deal with.
22945 @<Declare action procedures for use by |do_statement|@>=
22946 void mp_do_add_to (MP mp) ;
22948 @ @c void mp_do_add_to (MP mp) {
22949 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22950 pointer p; /* the graphical object or list for |scan_with_list| to update */
22951 pointer e; /* an edge structure to be merged */
22952 quarterword add_type; /* |also_code|, |contour_code|, or |double_path_code| */
22953 lhv=mp_start_draw_cmd(mp, thing_to_add); add_type=mp->last_add_type;
22955 if ( add_type==also_code ) {
22956 @<Make sure the current expression is a suitable picture and set |e| and |p|
22959 @<Create a graphical object |p| based on |add_type| and the current
22962 mp_scan_with_list(mp, p);
22963 @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
22967 @ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
22968 setting |e:=null| prevents anything from being added to |lhe|.
22970 @ @<Make sure the current expression is a suitable picture and set |e|...@>=
22973 if ( mp->cur_type!=mp_picture_type ) {
22974 exp_err("Improper `addto'");
22975 @.Improper `addto'@>
22976 help2("This expression should have specified a known picture.")
22977 ("So I'll not change anything just now."); mp_put_get_flush_error(mp, 0);
22979 e=mp_private_edges(mp, mp->cur_exp); mp->cur_type=mp_vacuous;
22980 p=link(dummy_loc(e));
22984 @ In this case |add_type<>also_code| so setting |p:=null| suppresses future
22985 attempts to add to the edge structure.
22987 @<Create a graphical object |p| based on |add_type| and the current...@>=
22989 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
22990 if ( mp->cur_type!=mp_path_type ) {
22991 exp_err("Improper `addto'");
22992 @.Improper `addto'@>
22993 help2("This expression should have specified a known path.")
22994 ("So I'll not change anything just now.");
22995 mp_put_get_flush_error(mp, 0);
22996 } else if ( add_type==contour_code ) {
22997 if ( left_type(mp->cur_exp)==mp_endpoint ) {
22998 @<Complain about a non-cycle@>;
23000 p=mp_new_fill_node(mp, mp->cur_exp);
23001 mp->cur_type=mp_vacuous;
23004 p=mp_new_stroked_node(mp, mp->cur_exp);
23005 mp->cur_type=mp_vacuous;
23009 @ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
23010 lhe=mp_find_edges_var(mp, lhv);
23012 if ( (e==null)&&(p!=null) ) e=mp_toss_gr_object(mp, p);
23013 if ( e!=null ) delete_edge_ref(e);
23014 } else if ( add_type==also_code ) {
23016 @<Merge |e| into |lhe| and delete |e|@>;
23020 } else if ( p!=null ) {
23021 link(obj_tail(lhe))=p;
23023 if ( add_type==double_path_code )
23024 if ( pen_p(p)==null )
23025 pen_p(p)=mp_get_pen_circle(mp, 0);
23028 @ @<Merge |e| into |lhe| and delete |e|@>=
23029 { if ( link(dummy_loc(e))!=null ) {
23030 link(obj_tail(lhe))=link(dummy_loc(e));
23031 obj_tail(lhe)=obj_tail(e);
23032 obj_tail(e)=dummy_loc(e);
23033 link(dummy_loc(e))=null;
23034 mp_flush_dash_list(mp, lhe);
23036 mp_toss_edges(mp, e);
23039 @ @<Cases of |do_statement|...@>=
23040 case ship_out_command: mp_do_ship_out(mp); break;
23042 @ @<Declare action procedures for use by |do_statement|@>=
23043 @<Declare the function called |tfm_check|@>;
23044 @<Declare the \ps\ output procedures@>;
23045 void mp_do_ship_out (MP mp) ;
23047 @ @c void mp_do_ship_out (MP mp) {
23048 integer c; /* the character code */
23049 mp_get_x_next(mp); mp_scan_expression(mp);
23050 if ( mp->cur_type!=mp_picture_type ) {
23051 @<Complain that it's not a known picture@>;
23053 c=mp_round_unscaled(mp, mp->internal[mp_char_code]) % 256;
23054 if ( c<0 ) c=c+256;
23055 @<Store the width information for character code~|c|@>;
23056 mp_ship_out(mp, mp->cur_exp);
23057 mp_flush_cur_exp(mp, 0);
23061 @ @<Complain that it's not a known picture@>=
23063 exp_err("Not a known picture");
23064 help1("I can only output known pictures.");
23065 mp_put_get_flush_error(mp, 0);
23068 @ The \&{everyjob} command simply assigns a nonzero value to the global variable
23071 @<Cases of |do_statement|...@>=
23072 case every_job_command:
23073 mp_get_symbol(mp); mp->start_sym=mp->cur_sym; mp_get_x_next(mp);
23077 halfword start_sym; /* a symbolic token to insert at beginning of job */
23082 @ Finally, we have only the ``message'' commands remaining.
23085 @d err_message_code 1
23087 @d filename_template_code 3
23088 @d print_with_leading_zeroes(A) g = mp->pool_ptr;
23089 mp_print_int(mp, (A)); g = mp->pool_ptr-g;
23091 mp->pool_ptr = mp->pool_ptr - g;
23093 mp_print_char(mp, '0');
23096 mp_print_int(mp, (A));
23101 mp_primitive(mp, "message",message_command,message_code);
23102 @:message_}{\&{message} primitive@>
23103 mp_primitive(mp, "errmessage",message_command,err_message_code);
23104 @:err_message_}{\&{errmessage} primitive@>
23105 mp_primitive(mp, "errhelp",message_command,err_help_code);
23106 @:err_help_}{\&{errhelp} primitive@>
23107 mp_primitive(mp, "filenametemplate",message_command,filename_template_code);
23108 @:filename_template_}{\&{filenametemplate} primitive@>
23110 @ @<Cases of |print_cmd...@>=
23111 case message_command:
23112 if ( m<err_message_code ) mp_print(mp, "message");
23113 else if ( m==err_message_code ) mp_print(mp, "errmessage");
23114 else if ( m==filename_template_code ) mp_print(mp, "filenametemplate");
23115 else mp_print(mp, "errhelp");
23118 @ @<Cases of |do_statement|...@>=
23119 case message_command: mp_do_message(mp); break;
23121 @ @<Declare action procedures for use by |do_statement|@>=
23122 @<Declare a procedure called |no_string_err|@>;
23123 void mp_do_message (MP mp) ;
23126 @c void mp_do_message (MP mp) {
23127 int m; /* the type of message */
23128 m=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
23129 if ( mp->cur_type!=mp_string_type )
23130 mp_no_string_err(mp, "A message should be a known string expression.");
23134 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp);
23136 case err_message_code:
23137 @<Print string |cur_exp| as an error message@>;
23139 case err_help_code:
23140 @<Save string |cur_exp| as the |err_help|@>;
23142 case filename_template_code:
23143 @<Save the filename template@>;
23145 } /* there are no other cases */
23147 mp_flush_cur_exp(mp, 0);
23150 @ @<Declare a procedure called |no_string_err|@>=
23151 void mp_no_string_err (MP mp,char *s) {
23152 exp_err("Not a string");
23155 mp_put_get_error(mp);
23158 @ The global variable |err_help| is zero when the user has most recently
23159 given an empty help string, or if none has ever been given.
23161 @<Save string |cur_exp| as the |err_help|@>=
23163 if ( mp->err_help!=0 ) delete_str_ref(mp->err_help);
23164 if ( length(mp->cur_exp)==0 ) mp->err_help=0;
23165 else { mp->err_help=mp->cur_exp; add_str_ref(mp->err_help); }
23168 @ If \&{errmessage} occurs often in |mp_scroll_mode|, without user-defined
23169 \&{errhelp}, we don't want to give a long help message each time. So we
23170 give a verbose explanation only once.
23173 boolean long_help_seen; /* has the long \.{\\errmessage} help been used? */
23175 @ @<Set init...@>=mp->long_help_seen=false;
23177 @ @<Print string |cur_exp| as an error message@>=
23179 print_err(""); mp_print_str(mp, mp->cur_exp);
23180 if ( mp->err_help!=0 ) {
23181 mp->use_err_help=true;
23182 } else if ( mp->long_help_seen ) {
23183 help1("(That was another `errmessage'.)") ;
23185 if ( mp->interaction<mp_error_stop_mode ) mp->long_help_seen=true;
23186 help4("This error message was generated by an `errmessage'")
23187 ("command, so I can\'t give any explicit help.")
23188 ("Pretend that you're Miss Marple: Examine all clues,")
23190 ("and deduce the truth by inspired guesses.");
23192 mp_put_get_error(mp); mp->use_err_help=false;
23195 @ @<Cases of |do_statement|...@>=
23196 case write_command: mp_do_write(mp); break;
23198 @ @<Declare action procedures for use by |do_statement|@>=
23199 void mp_do_write (MP mp) ;
23201 @ @c void mp_do_write (MP mp) {
23202 str_number t; /* the line of text to be written */
23203 write_index n,n0; /* for searching |wr_fname| and |wr_file| arrays */
23204 int old_setting; /* for saving |selector| during output */
23206 mp_scan_expression(mp);
23207 if ( mp->cur_type!=mp_string_type ) {
23208 mp_no_string_err(mp, "The text to be written should be a known string expression");
23209 } else if ( mp->cur_cmd!=to_token ) {
23210 print_err("Missing `to' clause");
23211 help1("A write command should end with `to <filename>'");
23212 mp_put_get_error(mp);
23214 t=mp->cur_exp; mp->cur_type=mp_vacuous;
23216 mp_scan_expression(mp);
23217 if ( mp->cur_type!=mp_string_type )
23218 mp_no_string_err(mp, "I can\'t write to that file name. It isn't a known string");
23220 @<Write |t| to the file named by |cur_exp|@>;
23224 mp_flush_cur_exp(mp, 0);
23227 @ @<Write |t| to the file named by |cur_exp|@>=
23229 @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
23230 |cur_exp| must be inserted@>;
23231 if ( mp_str_vs_str(mp, t,mp->eof_line)==0 ) {
23232 @<Record the end of file on |wr_file[n]|@>;
23234 old_setting=mp->selector;
23235 mp->selector=n+write_file;
23236 mp_print_str(mp, t); mp_print_ln(mp);
23237 mp->selector = old_setting;
23241 @ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
23243 char *fn = str(mp->cur_exp);
23245 n0=mp->write_files;
23246 while (mp_xstrcmp(fn,mp->wr_fname[n])!=0) {
23247 if ( n==0 ) { /* bottom reached */
23248 if ( n0==mp->write_files ) {
23249 if ( mp->write_files<mp->max_write_files ) {
23250 incr(mp->write_files);
23255 l = mp->max_write_files + (mp->max_write_files>>2);
23256 wr_file = xmalloc((l+1),sizeof(void *));
23257 wr_fname = xmalloc((l+1),sizeof(char *));
23258 for (k=0;k<=l;k++) {
23259 if (k<=mp->max_write_files) {
23260 wr_file[k]=mp->wr_file[k];
23261 wr_fname[k]=mp->wr_fname[k];
23267 xfree(mp->wr_file); xfree(mp->wr_fname);
23268 mp->max_write_files = l;
23269 mp->wr_file = wr_file;
23270 mp->wr_fname = wr_fname;
23274 mp_open_write_file(mp, fn ,n);
23277 if ( mp->wr_fname[n]==NULL ) n0=n;
23282 @ @<Record the end of file on |wr_file[n]|@>=
23283 { (mp->close_file)(mp->wr_file[n]);
23284 xfree(mp->wr_fname[n]);
23285 mp->wr_fname[n]=NULL;
23286 if ( n==mp->write_files-1 ) mp->write_files=n;
23290 @* \[42] Writing font metric data.
23291 \TeX\ gets its knowledge about fonts from font metric files, also called
23292 \.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
23293 but other programs know about them too. One of \MP's duties is to
23294 write \.{TFM} files so that the user's fonts can readily be
23295 applied to typesetting.
23296 @:TFM files}{\.{TFM} files@>
23297 @^font metric files@>
23299 The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
23300 Since the number of bytes is always a multiple of~4, we could
23301 also regard the file as a sequence of 32-bit words, but \MP\ uses the
23302 byte interpretation. The format of \.{TFM} files was designed by
23303 Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
23304 @^Ramshaw, Lyle Harold@>
23305 of information in a compact but useful form.
23308 void * tfm_file; /* the font metric output goes here */
23309 char * metric_file_name; /* full name of the font metric file */
23311 @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
23312 integers that give the lengths of the various subsequent portions
23313 of the file. These twelve integers are, in order:
23314 $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
23315 |lf|&length of the entire file, in words;\cr
23316 |lh|&length of the header data, in words;\cr
23317 |bc|&smallest character code in the font;\cr
23318 |ec|&largest character code in the font;\cr
23319 |nw|&number of words in the width table;\cr
23320 |nh|&number of words in the height table;\cr
23321 |nd|&number of words in the depth table;\cr
23322 |ni|&number of words in the italic correction table;\cr
23323 |nl|&number of words in the lig/kern table;\cr
23324 |nk|&number of words in the kern table;\cr
23325 |ne|&number of words in the extensible character table;\cr
23326 |np|&number of font parameter words.\cr}}$$
23327 They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
23329 $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
23330 Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
23331 and as few as 0 characters (if |bc=ec+1|).
23333 Incidentally, when two or more 8-bit bytes are combined to form an integer of
23334 16 or more bits, the most significant bytes appear first in the file.
23335 This is called BigEndian order.
23336 @^BigEndian order@>
23338 @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
23341 The most important data type used here is a |fix_word|, which is
23342 a 32-bit representation of a binary fraction. A |fix_word| is a signed
23343 quantity, with the two's complement of the entire word used to represent
23344 negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
23345 binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
23346 the smallest is $-2048$. We will see below, however, that all but two of
23347 the |fix_word| values must lie between $-16$ and $+16$.
23349 @ The first data array is a block of header information, which contains
23350 general facts about the font. The header must contain at least two words,
23351 |header[0]| and |header[1]|, whose meaning is explained below. Additional
23352 header information of use to other software routines might also be
23353 included, and \MP\ will generate it if the \.{headerbyte} command occurs.
23354 For example, 16 more words of header information are in use at the Xerox
23355 Palo Alto Research Center; the first ten specify the character coding
23356 scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
23357 give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
23358 last gives the ``face byte.''
23360 \yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
23361 the \.{GF} output file. This helps ensure consistency between files,
23362 since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
23363 should match the check sums on actual fonts that are used. The actual
23364 relation between this check sum and the rest of the \.{TFM} file is not
23365 important; the check sum is simply an identification number with the
23366 property that incompatible fonts almost always have distinct check sums.
23369 \yskip\hang|header[1]| is a |fix_word| containing the design size of the
23370 font, in units of \TeX\ points. This number must be at least 1.0; it is
23371 fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
23372 font, i.e., a font that was designed to look best at a 10-point size,
23373 whatever that really means. When a \TeX\ user asks for a font `\.{at}
23374 $\delta$ \.{pt}', the effect is to override the design size and replace it
23375 by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
23376 the font image by a factor of $\delta$ divided by the design size. {\sl
23377 All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
23378 numbers in design-size units.} Thus, for example, the value of |param[6]|,
23379 which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
23380 since many fonts have a design size equal to one em. The other dimensions
23381 must be less than 16 design-size units in absolute value; thus,
23382 |header[1]| and |param[1]| are the only |fix_word| entries in the whole
23383 \.{TFM} file whose first byte might be something besides 0 or 255.
23385 @ Next comes the |char_info| array, which contains one |char_info_word|
23386 per character. Each word in this part of the file contains six fields
23387 packed into four bytes as follows.
23389 \yskip\hang first byte: |width_index| (8 bits)\par
23390 \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
23392 \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
23394 \hang fourth byte: |remainder| (8 bits)\par
23396 The actual width of a character is \\{width}|[width_index]|, in design-size
23397 units; this is a device for compressing information, since many characters
23398 have the same width. Since it is quite common for many characters
23399 to have the same height, depth, or italic correction, the \.{TFM} format
23400 imposes a limit of 16 different heights, 16 different depths, and
23401 64 different italic corrections.
23403 Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
23404 \\{italic}[0]=0$ should always hold, so that an index of zero implies a
23405 value of zero. The |width_index| should never be zero unless the
23406 character does not exist in the font, since a character is valid if and
23407 only if it lies between |bc| and |ec| and has a nonzero |width_index|.
23409 @ The |tag| field in a |char_info_word| has four values that explain how to
23410 interpret the |remainder| field.
23412 \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
23413 \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
23414 program starting at location |remainder| in the |lig_kern| array.\par
23415 \hang|tag=2| (|list_tag|) means that this character is part of a chain of
23416 characters of ascending sizes, and not the largest in the chain. The
23417 |remainder| field gives the character code of the next larger character.\par
23418 \hang|tag=3| (|ext_tag|) means that this character code represents an
23419 extensible character, i.e., a character that is built up of smaller pieces
23420 so that it can be made arbitrarily large. The pieces are specified in
23421 |exten[remainder]|.\par
23423 Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
23424 unless they are used in special circumstances in math formulas. For example,
23425 \TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
23426 operation looks for both |list_tag| and |ext_tag|.
23428 @d no_tag 0 /* vanilla character */
23429 @d lig_tag 1 /* character has a ligature/kerning program */
23430 @d list_tag 2 /* character has a successor in a charlist */
23431 @d ext_tag 3 /* character is extensible */
23433 @ The |lig_kern| array contains instructions in a simple programming language
23434 that explains what to do for special letter pairs. Each word in this array is a
23435 |lig_kern_command| of four bytes.
23437 \yskip\hang first byte: |skip_byte|, indicates that this is the final program
23438 step if the byte is 128 or more, otherwise the next step is obtained by
23439 skipping this number of intervening steps.\par
23440 \hang second byte: |next_char|, ``if |next_char| follows the current character,
23441 then perform the operation and stop, otherwise continue.''\par
23442 \hang third byte: |op_byte|, indicates a ligature step if less than~128,
23443 a kern step otherwise.\par
23444 \hang fourth byte: |remainder|.\par
23447 additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
23448 between the current character and |next_char|. This amount is
23449 often negative, so that the characters are brought closer together
23450 by kerning; but it might be positive.
23452 There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
23453 $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
23454 |remainder| is inserted between the current character and |next_char|;
23455 then the current character is deleted if $b=0$, and |next_char| is
23456 deleted if $c=0$; then we pass over $a$~characters to reach the next
23457 current character (which may have a ligature/kerning program of its own).
23459 If the very first instruction of the |lig_kern| array has |skip_byte=255|,
23460 the |next_char| byte is the so-called right boundary character of this font;
23461 the value of |next_char| need not lie between |bc| and~|ec|.
23462 If the very last instruction of the |lig_kern| array has |skip_byte=255|,
23463 there is a special ligature/kerning program for a left boundary character,
23464 beginning at location |256*op_byte+remainder|.
23465 The interpretation is that \TeX\ puts implicit boundary characters
23466 before and after each consecutive string of characters from the same font.
23467 These implicit characters do not appear in the output, but they can affect
23468 ligatures and kerning.
23470 If the very first instruction of a character's |lig_kern| program has
23471 |skip_byte>128|, the program actually begins in location
23472 |256*op_byte+remainder|. This feature allows access to large |lig_kern|
23473 arrays, because the first instruction must otherwise
23474 appear in a location |<=255|.
23476 Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
23478 $$\hbox{|256*op_byte+remainder<nl|.}$$
23479 If such an instruction is encountered during
23480 normal program execution, it denotes an unconditional halt; no ligature
23481 command is performed.
23484 /* value indicating `\.{STOP}' in a lig/kern program */
23485 @d kern_flag (128) /* op code for a kern step */
23486 @d skip_byte(A) mp->lig_kern[(A)].b0
23487 @d next_char(A) mp->lig_kern[(A)].b1
23488 @d op_byte(A) mp->lig_kern[(A)].b2
23489 @d rem_byte(A) mp->lig_kern[(A)].b3
23491 @ Extensible characters are specified by an |extensible_recipe|, which
23492 consists of four bytes called |top|, |mid|, |bot|, and |rep| (in this
23493 order). These bytes are the character codes of individual pieces used to
23494 build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
23495 present in the built-up result. For example, an extensible vertical line is
23496 like an extensible bracket, except that the top and bottom pieces are missing.
23498 Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
23499 if the piece isn't present. Then the extensible characters have the form
23500 $TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
23501 in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
23502 The width of the extensible character is the width of $R$; and the
23503 height-plus-depth is the sum of the individual height-plus-depths of the
23504 components used, since the pieces are butted together in a vertical list.
23506 @d ext_top(A) mp->exten[(A)].b0 /* |top| piece in a recipe */
23507 @d ext_mid(A) mp->exten[(A)].b1 /* |mid| piece in a recipe */
23508 @d ext_bot(A) mp->exten[(A)].b2 /* |bot| piece in a recipe */
23509 @d ext_rep(A) mp->exten[(A)].b3 /* |rep| piece in a recipe */
23511 @ The final portion of a \.{TFM} file is the |param| array, which is another
23512 sequence of |fix_word| values.
23514 \yskip\hang|param[1]=slant| is the amount of italic slant, which is used
23515 to help position accents. For example, |slant=.25| means that when you go
23516 up one unit, you also go .25 units to the right. The |slant| is a pure
23517 number; it is the only |fix_word| other than the design size itself that is
23518 not scaled by the design size.
23520 \hang|param[2]=space| is the normal spacing between words in text.
23521 Note that character 040 in the font need not have anything to do with
23524 \hang|param[3]=space_stretch| is the amount of glue stretching between words.
23526 \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
23528 \hang|param[5]=x_height| is the size of one ex in the font; it is also
23529 the height of letters for which accents don't have to be raised or lowered.
23531 \hang|param[6]=quad| is the size of one em in the font.
23533 \hang|param[7]=extra_space| is the amount added to |param[2]| at the
23537 If fewer than seven parameters are present, \TeX\ sets the missing parameters
23542 @d space_stretch_code 3
23543 @d space_shrink_code 4
23546 @d extra_space_code 7
23548 @ So that is what \.{TFM} files hold. One of \MP's duties is to output such
23549 information, and it does this all at once at the end of a job.
23550 In order to prepare for such frenetic activity, it squirrels away the
23551 necessary facts in various arrays as information becomes available.
23553 Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
23554 are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
23555 |tfm_ital_corr|. Other information about a character (e.g., about
23556 its ligatures or successors) is accessible via the |char_tag| and
23557 |char_remainder| arrays. Other information about the font as a whole
23558 is kept in additional arrays called |header_byte|, |lig_kern|,
23559 |kern|, |exten|, and |param|.
23561 @d max_tfm_int 32510
23562 @d undefined_label max_tfm_int /* an undefined local label */
23565 #define TFM_ITEMS 257
23567 eight_bits ec; /* smallest and largest character codes shipped out */
23568 scaled tfm_width[TFM_ITEMS]; /* \&{charwd} values */
23569 scaled tfm_height[TFM_ITEMS]; /* \&{charht} values */
23570 scaled tfm_depth[TFM_ITEMS]; /* \&{chardp} values */
23571 scaled tfm_ital_corr[TFM_ITEMS]; /* \&{charic} values */
23572 boolean char_exists[TFM_ITEMS]; /* has this code been shipped out? */
23573 int char_tag[TFM_ITEMS]; /* |remainder| category */
23574 int char_remainder[TFM_ITEMS]; /* the |remainder| byte */
23575 char *header_byte; /* bytes of the \.{TFM} header */
23576 int header_last; /* last initialized \.{TFM} header byte */
23577 int header_size; /* size of the \.{TFM} header */
23578 four_quarters *lig_kern; /* the ligature/kern table */
23579 short nl; /* the number of ligature/kern steps so far */
23580 scaled *kern; /* distinct kerning amounts */
23581 short nk; /* the number of distinct kerns so far */
23582 four_quarters exten[TFM_ITEMS]; /* extensible character recipes */
23583 short ne; /* the number of extensible characters so far */
23584 scaled *param; /* \&{fontinfo} parameters */
23585 short np; /* the largest \&{fontinfo} parameter specified so far */
23586 short nw;short nh;short nd;short ni; /* sizes of \.{TFM} subtables */
23587 short skip_table[TFM_ITEMS]; /* local label status */
23588 boolean lk_started; /* has there been a lig/kern step in this command yet? */
23589 integer bchar; /* right boundary character */
23590 short bch_label; /* left boundary starting location */
23591 short ll;short lll; /* registers used for lig/kern processing */
23592 short label_loc[257]; /* lig/kern starting addresses */
23593 eight_bits label_char[257]; /* characters for |label_loc| */
23594 short label_ptr; /* highest position occupied in |label_loc| */
23596 @ @<Allocate or initialize ...@>=
23597 mp->header_last = 0; mp->header_size = 128; /* just for init */
23598 mp->header_byte = xmalloc(mp->header_size, sizeof(char));
23599 mp->lig_kern = NULL; /* allocated when needed */
23600 mp->kern = NULL; /* allocated when needed */
23601 mp->param = NULL; /* allocated when needed */
23603 @ @<Dealloc variables@>=
23604 xfree(mp->header_byte);
23605 xfree(mp->lig_kern);
23610 for (k=0;k<= 255;k++ ) {
23611 mp->tfm_width[k]=0; mp->tfm_height[k]=0; mp->tfm_depth[k]=0; mp->tfm_ital_corr[k]=0;
23612 mp->char_exists[k]=false; mp->char_tag[k]=no_tag; mp->char_remainder[k]=0;
23613 mp->skip_table[k]=undefined_label;
23615 memset(mp->header_byte,0,mp->header_size);
23616 mp->bc=255; mp->ec=0; mp->nl=0; mp->nk=0; mp->ne=0; mp->np=0;
23617 mp->internal[mp_boundary_char]=-unity;
23618 mp->bch_label=undefined_label;
23619 mp->label_loc[0]=-1; mp->label_ptr=0;
23621 @ @<Declarations@>=
23622 scaled mp_tfm_check (MP mp,small_number m) ;
23624 @ @<Declare the function called |tfm_check|@>=
23625 scaled mp_tfm_check (MP mp,small_number m) {
23626 if ( abs(mp->internal[m])>=fraction_half ) {
23627 print_err("Enormous "); mp_print(mp, mp->int_name[m]);
23628 @.Enormous charwd...@>
23629 @.Enormous chardp...@>
23630 @.Enormous charht...@>
23631 @.Enormous charic...@>
23632 @.Enormous designsize...@>
23633 mp_print(mp, " has been reduced");
23634 help1("Font metric dimensions must be less than 2048pt.");
23635 mp_put_get_error(mp);
23636 if ( mp->internal[m]>0 ) return (fraction_half-1);
23637 else return (1-fraction_half);
23639 return mp->internal[m];
23643 @ @<Store the width information for character code~|c|@>=
23644 if ( c<mp->bc ) mp->bc=c;
23645 if ( c>mp->ec ) mp->ec=c;
23646 mp->char_exists[c]=true;
23647 mp->tfm_width[c]=mp_tfm_check(mp, mp_char_wd);
23648 mp->tfm_height[c]=mp_tfm_check(mp, mp_char_ht);
23649 mp->tfm_depth[c]=mp_tfm_check(mp, mp_char_dp);
23650 mp->tfm_ital_corr[c]=mp_tfm_check(mp, mp_char_ic)
23652 @ Now let's consider \MP's special \.{TFM}-oriented commands.
23654 @<Cases of |do_statement|...@>=
23655 case tfm_command: mp_do_tfm_command(mp); break;
23657 @ @d char_list_code 0
23658 @d lig_table_code 1
23659 @d extensible_code 2
23660 @d header_byte_code 3
23661 @d font_dimen_code 4
23664 mp_primitive(mp, "charlist",tfm_command,char_list_code);
23665 @:char_list_}{\&{charlist} primitive@>
23666 mp_primitive(mp, "ligtable",tfm_command,lig_table_code);
23667 @:lig_table_}{\&{ligtable} primitive@>
23668 mp_primitive(mp, "extensible",tfm_command,extensible_code);
23669 @:extensible_}{\&{extensible} primitive@>
23670 mp_primitive(mp, "headerbyte",tfm_command,header_byte_code);
23671 @:header_byte_}{\&{headerbyte} primitive@>
23672 mp_primitive(mp, "fontdimen",tfm_command,font_dimen_code);
23673 @:font_dimen_}{\&{fontdimen} primitive@>
23675 @ @<Cases of |print_cmd...@>=
23678 case char_list_code:mp_print(mp, "charlist"); break;
23679 case lig_table_code:mp_print(mp, "ligtable"); break;
23680 case extensible_code:mp_print(mp, "extensible"); break;
23681 case header_byte_code:mp_print(mp, "headerbyte"); break;
23682 default: mp_print(mp, "fontdimen"); break;
23686 @ @<Declare action procedures for use by |do_statement|@>=
23687 eight_bits mp_get_code (MP mp) ;
23689 @ @c eight_bits mp_get_code (MP mp) { /* scans a character code value */
23690 integer c; /* the code value found */
23691 mp_get_x_next(mp); mp_scan_expression(mp);
23692 if ( mp->cur_type==mp_known ) {
23693 c=mp_round_unscaled(mp, mp->cur_exp);
23694 if ( c>=0 ) if ( c<256 ) return c;
23695 } else if ( mp->cur_type==mp_string_type ) {
23696 if ( length(mp->cur_exp)==1 ) {
23697 c=mp->str_pool[mp->str_start[mp->cur_exp]];
23701 exp_err("Invalid code has been replaced by 0");
23702 @.Invalid code...@>
23703 help2("I was looking for a number between 0 and 255, or for a")
23704 ("string of length 1. Didn't find it; will use 0 instead.");
23705 mp_put_get_flush_error(mp, 0); c=0;
23709 @ @<Declare action procedures for use by |do_statement|@>=
23710 void mp_set_tag (MP mp,halfword c, small_number t, halfword r) ;
23712 @ @c void mp_set_tag (MP mp,halfword c, small_number t, halfword r) {
23713 if ( mp->char_tag[c]==no_tag ) {
23714 mp->char_tag[c]=t; mp->char_remainder[c]=r;
23716 incr(mp->label_ptr); mp->label_loc[mp->label_ptr]=r;
23717 mp->label_char[mp->label_ptr]=c;
23720 @<Complain about a character tag conflict@>;
23724 @ @<Complain about a character tag conflict@>=
23726 print_err("Character ");
23727 if ( (c>' ')&&(c<127) ) mp_print_char(mp,c);
23728 else if ( c==256 ) mp_print(mp, "||");
23729 else { mp_print(mp, "code "); mp_print_int(mp, c); };
23730 mp_print(mp, " is already ");
23731 @.Character c is already...@>
23732 switch (mp->char_tag[c]) {
23733 case lig_tag: mp_print(mp, "in a ligtable"); break;
23734 case list_tag: mp_print(mp, "in a charlist"); break;
23735 case ext_tag: mp_print(mp, "extensible"); break;
23736 } /* there are no other cases */
23737 help2("It's not legal to label a character more than once.")
23738 ("So I'll not change anything just now.");
23739 mp_put_get_error(mp);
23742 @ @<Declare action procedures for use by |do_statement|@>=
23743 void mp_do_tfm_command (MP mp) ;
23745 @ @c void mp_do_tfm_command (MP mp) {
23746 int c,cc; /* character codes */
23747 int k; /* index into the |kern| array */
23748 int j; /* index into |header_byte| or |param| */
23749 switch (mp->cur_mod) {
23750 case char_list_code:
23752 /* we will store a list of character successors */
23753 while ( mp->cur_cmd==colon ) {
23754 cc=mp_get_code(mp); mp_set_tag(mp, c,list_tag,cc); c=cc;
23757 case lig_table_code:
23758 if (mp->lig_kern==NULL)
23759 mp->lig_kern = xmalloc((max_tfm_int+1),sizeof(four_quarters));
23760 if (mp->kern==NULL)
23761 mp->kern = xmalloc((max_tfm_int+1),sizeof(scaled));
23762 @<Store a list of ligature/kern steps@>;
23764 case extensible_code:
23765 @<Define an extensible recipe@>;
23767 case header_byte_code:
23768 case font_dimen_code:
23769 c=mp->cur_mod; mp_get_x_next(mp);
23770 mp_scan_expression(mp);
23771 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<half_unit) ) {
23772 exp_err("Improper location");
23773 @.Improper location@>
23774 help2("I was looking for a known, positive number.")
23775 ("For safety's sake I'll ignore the present command.");
23776 mp_put_get_error(mp);
23778 j=mp_round_unscaled(mp, mp->cur_exp);
23779 if ( mp->cur_cmd!=colon ) {
23780 mp_missing_err(mp, ":");
23782 help1("A colon should follow a headerbyte or fontinfo location.");
23785 if ( c==header_byte_code ) {
23786 @<Store a list of header bytes@>;
23788 if (mp->param==NULL)
23789 mp->param = xmalloc((max_tfm_int+1),sizeof(scaled));
23790 @<Store a list of font dimensions@>;
23794 } /* there are no other cases */
23797 @ @<Store a list of ligature/kern steps@>=
23799 mp->lk_started=false;
23802 if ((mp->cur_cmd==skip_to)&& mp->lk_started )
23803 @<Process a |skip_to| command and |goto done|@>;
23804 if ( mp->cur_cmd==bchar_label ) { c=256; mp->cur_cmd=colon; }
23805 else { mp_back_input(mp); c=mp_get_code(mp); };
23806 if ((mp->cur_cmd==colon)||(mp->cur_cmd==double_colon)) {
23807 @<Record a label in a lig/kern subprogram and |goto continue|@>;
23809 if ( mp->cur_cmd==lig_kern_token ) {
23810 @<Compile a ligature/kern command@>;
23812 print_err("Illegal ligtable step");
23813 @.Illegal ligtable step@>
23814 help1("I was looking for `=:' or `kern' here.");
23815 mp_back_error(mp); next_char(mp->nl)=qi(0);
23816 op_byte(mp->nl)=qi(0); rem_byte(mp->nl)=qi(0);
23817 skip_byte(mp->nl)=stop_flag+1; /* this specifies an unconditional stop */
23819 if ( mp->nl==max_tfm_int) mp_fatal_error(mp, "ligtable too large");
23821 if ( mp->cur_cmd==comma ) goto CONTINUE;
23822 if ( skip_byte(mp->nl-1)<stop_flag ) skip_byte(mp->nl-1)=stop_flag;
23827 mp_primitive(mp, "=:",lig_kern_token,0);
23828 @:=:_}{\.{=:} primitive@>
23829 mp_primitive(mp, "=:|",lig_kern_token,1);
23830 @:=:/_}{\.{=:\char'174} primitive@>
23831 mp_primitive(mp, "=:|>",lig_kern_token,5);
23832 @:=:/>_}{\.{=:\char'174>} primitive@>
23833 mp_primitive(mp, "|=:",lig_kern_token,2);
23834 @:=:/_}{\.{\char'174=:} primitive@>
23835 mp_primitive(mp, "|=:>",lig_kern_token,6);
23836 @:=:/>_}{\.{\char'174=:>} primitive@>
23837 mp_primitive(mp, "|=:|",lig_kern_token,3);
23838 @:=:/_}{\.{\char'174=:\char'174} primitive@>
23839 mp_primitive(mp, "|=:|>",lig_kern_token,7);
23840 @:=:/>_}{\.{\char'174=:\char'174>} primitive@>
23841 mp_primitive(mp, "|=:|>>",lig_kern_token,11);
23842 @:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
23843 mp_primitive(mp, "kern",lig_kern_token,128);
23844 @:kern_}{\&{kern} primitive@>
23846 @ @<Cases of |print_cmd...@>=
23847 case lig_kern_token:
23849 case 0:mp_print(mp, "=:"); break;
23850 case 1:mp_print(mp, "=:|"); break;
23851 case 2:mp_print(mp, "|=:"); break;
23852 case 3:mp_print(mp, "|=:|"); break;
23853 case 5:mp_print(mp, "=:|>"); break;
23854 case 6:mp_print(mp, "|=:>"); break;
23855 case 7:mp_print(mp, "|=:|>"); break;
23856 case 11:mp_print(mp, "|=:|>>"); break;
23857 default: mp_print(mp, "kern"); break;
23861 @ Local labels are implemented by maintaining the |skip_table| array,
23862 where |skip_table[c]| is either |undefined_label| or the address of the
23863 most recent lig/kern instruction that skips to local label~|c|. In the
23864 latter case, the |skip_byte| in that instruction will (temporarily)
23865 be zero if there were no prior skips to this label, or it will be the
23866 distance to the prior skip.
23868 We may need to cancel skips that span more than 127 lig/kern steps.
23870 @d cancel_skips(A) mp->ll=(A);
23872 mp->lll=qo(skip_byte(mp->ll));
23873 skip_byte(mp->ll)=stop_flag; mp->ll=mp->ll-mp->lll;
23874 } while (mp->lll!=0)
23875 @d skip_error(A) { print_err("Too far to skip");
23876 @.Too far to skip@>
23877 help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
23878 mp_error(mp); cancel_skips((A));
23881 @<Process a |skip_to| command and |goto done|@>=
23884 if ( mp->nl-mp->skip_table[c]>128 ) { /* |skip_table[c]<<nl<=undefined_label| */
23885 skip_error(mp->skip_table[c]); mp->skip_table[c]=undefined_label;
23887 if ( mp->skip_table[c]==undefined_label ) skip_byte(mp->nl-1)=qi(0);
23888 else skip_byte(mp->nl-1)=qi(mp->nl-mp->skip_table[c]-1);
23889 mp->skip_table[c]=mp->nl-1; goto DONE;
23892 @ @<Record a label in a lig/kern subprogram and |goto continue|@>=
23894 if ( mp->cur_cmd==colon ) {
23895 if ( c==256 ) mp->bch_label=mp->nl;
23896 else mp_set_tag(mp, c,lig_tag,mp->nl);
23897 } else if ( mp->skip_table[c]<undefined_label ) {
23898 mp->ll=mp->skip_table[c]; mp->skip_table[c]=undefined_label;
23900 mp->lll=qo(skip_byte(mp->ll));
23901 if ( mp->nl-mp->ll>128 ) {
23902 skip_error(mp->ll); goto CONTINUE;
23904 skip_byte(mp->ll)=qi(mp->nl-mp->ll-1); mp->ll=mp->ll-mp->lll;
23905 } while (mp->lll!=0);
23910 @ @<Compile a ligature/kern...@>=
23912 next_char(mp->nl)=qi(c); skip_byte(mp->nl)=qi(0);
23913 if ( mp->cur_mod<128 ) { /* ligature op */
23914 op_byte(mp->nl)=qi(mp->cur_mod); rem_byte(mp->nl)=qi(mp_get_code(mp));
23916 mp_get_x_next(mp); mp_scan_expression(mp);
23917 if ( mp->cur_type!=mp_known ) {
23918 exp_err("Improper kern");
23920 help2("The amount of kern should be a known numeric value.")
23921 ("I'm zeroing this one. Proceed, with fingers crossed.");
23922 mp_put_get_flush_error(mp, 0);
23924 mp->kern[mp->nk]=mp->cur_exp;
23926 while ( mp->kern[k]!=mp->cur_exp ) incr(k);
23928 if ( mp->nk==max_tfm_int ) mp_fatal_error(mp, "too many TFM kerns");
23931 op_byte(mp->nl)=kern_flag+(k / 256);
23932 rem_byte(mp->nl)=qi((k % 256));
23934 mp->lk_started=true;
23937 @ @d missing_extensible_punctuation(A)
23938 { mp_missing_err(mp, (A));
23939 @.Missing `\char`\#'@>
23940 help1("I'm processing `extensible c: t,m,b,r'."); mp_back_error(mp);
23943 @<Define an extensible recipe@>=
23945 if ( mp->ne==256 ) mp_fatal_error(mp, "too many extensible recipies");
23946 c=mp_get_code(mp); mp_set_tag(mp, c,ext_tag,mp->ne);
23947 if ( mp->cur_cmd!=colon ) missing_extensible_punctuation(":");
23948 ext_top(mp->ne)=qi(mp_get_code(mp));
23949 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23950 ext_mid(mp->ne)=qi(mp_get_code(mp));
23951 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23952 ext_bot(mp->ne)=qi(mp_get_code(mp));
23953 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23954 ext_rep(mp->ne)=qi(mp_get_code(mp));
23958 @ The header could contain ASCII zeroes, so can't use |strdup|.
23960 @<Store a list of header bytes@>=
23962 if ( j>=mp->header_size ) {
23963 int l = mp->header_size + (mp->header_size >> 2);
23964 char *t = xmalloc(l,sizeof(char));
23966 memcpy(t,mp->header_byte,mp->header_size);
23967 xfree (mp->header_byte);
23968 mp->header_byte = t;
23969 mp->header_size = l;
23971 mp->header_byte[j]=mp_get_code(mp);
23972 incr(j); incr(mp->header_last);
23973 } while (mp->cur_cmd==comma)
23975 @ @<Store a list of font dimensions@>=
23977 if ( j>max_tfm_int ) mp_fatal_error(mp, "too many fontdimens");
23978 while ( j>mp->np ) { incr(mp->np); mp->param[mp->np]=0; };
23979 mp_get_x_next(mp); mp_scan_expression(mp);
23980 if ( mp->cur_type!=mp_known ){
23981 exp_err("Improper font parameter");
23982 @.Improper font parameter@>
23983 help1("I'm zeroing this one. Proceed, with fingers crossed.");
23984 mp_put_get_flush_error(mp, 0);
23986 mp->param[j]=mp->cur_exp; incr(j);
23987 } while (mp->cur_cmd==comma)
23989 @ OK: We've stored all the data that is needed for the \.{TFM} file.
23990 All that remains is to output it in the correct format.
23992 An interesting problem needs to be solved in this connection, because
23993 the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
23994 and 64~italic corrections. If the data has more distinct values than
23995 this, we want to meet the necessary restrictions by perturbing the
23996 given values as little as possible.
23998 \MP\ solves this problem in two steps. First the values of a given
23999 kind (widths, heights, depths, or italic corrections) are sorted;
24000 then the list of sorted values is perturbed, if necessary.
24002 The sorting operation is facilitated by having a special node of
24003 essentially infinite |value| at the end of the current list.
24005 @<Initialize table entries...@>=
24006 value(inf_val)=fraction_four;
24008 @ Straight linear insertion is good enough for sorting, since the lists
24009 are usually not terribly long. As we work on the data, the current list
24010 will start at |link(temp_head)| and end at |inf_val|; the nodes in this
24011 list will be in increasing order of their |value| fields.
24013 Given such a list, the |sort_in| function takes a value and returns a pointer
24014 to where that value can be found in the list. The value is inserted in
24015 the proper place, if necessary.
24017 At the time we need to do these operations, most of \MP's work has been
24018 completed, so we will have plenty of memory to play with. The value nodes
24019 that are allocated for sorting will never be returned to free storage.
24021 @d clear_the_list link(temp_head)=inf_val
24023 @c pointer mp_sort_in (MP mp,scaled v) {
24024 pointer p,q,r; /* list manipulation registers */
24028 if ( v<=value(q) ) break;
24031 if ( v<value(q) ) {
24032 r=mp_get_node(mp, value_node_size); value(r)=v; link(r)=q; link(p)=r;
24037 @ Now we come to the interesting part, where we reduce the list if necessary
24038 until it has the required size. The |min_cover| routine is basic to this
24039 process; it computes the minimum number~|m| such that the values of the
24040 current sorted list can be covered by |m|~intervals of width~|d|. It
24041 also sets the global value |perturbation| to the smallest value $d'>d$
24042 such that the covering found by this algorithm would be different.
24044 In particular, |min_cover(0)| returns the number of distinct values in the
24045 current list and sets |perturbation| to the minimum distance between
24048 @c integer mp_min_cover (MP mp,scaled d) {
24049 pointer p; /* runs through the current list */
24050 scaled l; /* the least element covered by the current interval */
24051 integer m; /* lower bound on the size of the minimum cover */
24052 m=0; p=link(temp_head); mp->perturbation=el_gordo;
24053 while ( p!=inf_val ){
24054 incr(m); l=value(p);
24055 do { p=link(p); } while (value(p)<=l+d);
24056 if ( value(p)-l<mp->perturbation )
24057 mp->perturbation=value(p)-l;
24063 scaled perturbation; /* quantity related to \.{TFM} rounding */
24064 integer excess; /* the list is this much too long */
24066 @ The smallest |d| such that a given list can be covered with |m| intervals
24067 is determined by the |threshold| routine, which is sort of an inverse
24068 to |min_cover|. The idea is to increase the interval size rapidly until
24069 finding the range, then to go sequentially until the exact borderline has
24072 @c scaled mp_threshold (MP mp,integer m) {
24073 scaled d; /* lower bound on the smallest interval size */
24074 mp->excess=mp_min_cover(mp, 0)-m;
24075 if ( mp->excess<=0 ) {
24079 d=mp->perturbation;
24080 } while (mp_min_cover(mp, d+d)>m);
24081 while ( mp_min_cover(mp, d)>m )
24082 d=mp->perturbation;
24087 @ The |skimp| procedure reduces the current list to at most |m| entries,
24088 by changing values if necessary. It also sets |info(p):=k| if |value(p)|
24089 is the |k|th distinct value on the resulting list, and it sets
24090 |perturbation| to the maximum amount by which a |value| field has
24091 been changed. The size of the resulting list is returned as the
24094 @c integer mp_skimp (MP mp,integer m) {
24095 scaled d; /* the size of intervals being coalesced */
24096 pointer p,q,r; /* list manipulation registers */
24097 scaled l; /* the least value in the current interval */
24098 scaled v; /* a compromise value */
24099 d=mp_threshold(mp, m); mp->perturbation=0;
24100 q=temp_head; m=0; p=link(temp_head);
24101 while ( p!=inf_val ) {
24102 incr(m); l=value(p); info(p)=m;
24103 if ( value(link(p))<=l+d ) {
24104 @<Replace an interval of values by its midpoint@>;
24111 @ @<Replace an interval...@>=
24114 p=link(p); info(p)=m;
24115 decr(mp->excess); if ( mp->excess==0 ) d=0;
24116 } while (value(link(p))<=l+d);
24117 v=l+halfp(value(p)-l);
24118 if ( value(p)-v>mp->perturbation )
24119 mp->perturbation=value(p)-v;
24122 r=link(r); value(r)=v;
24124 link(q)=p; /* remove duplicate values from the current list */
24127 @ A warning message is issued whenever something is perturbed by
24128 more than 1/16\thinspace pt.
24130 @c void mp_tfm_warning (MP mp,small_number m) {
24131 mp_print_nl(mp, "(some ");
24132 mp_print(mp, mp->int_name[m]);
24133 @.some charwds...@>
24134 @.some chardps...@>
24135 @.some charhts...@>
24136 @.some charics...@>
24137 mp_print(mp, " values had to be adjusted by as much as ");
24138 mp_print_scaled(mp, mp->perturbation); mp_print(mp, "pt)");
24141 @ Here's an example of how we use these routines.
24142 The width data needs to be perturbed only if there are 256 distinct
24143 widths, but \MP\ must check for this case even though it is
24146 An integer variable |k| will be defined when we use this code.
24147 The |dimen_head| array will contain pointers to the sorted
24148 lists of dimensions.
24150 @<Massage the \.{TFM} widths@>=
24152 for (k=mp->bc;k<=mp->ec;k++) {
24153 if ( mp->char_exists[k] )
24154 mp->tfm_width[k]=mp_sort_in(mp, mp->tfm_width[k]);
24156 mp->nw=mp_skimp(mp, 255)+1; mp->dimen_head[1]=link(temp_head);
24157 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_wd)
24160 pointer dimen_head[5]; /* lists of \.{TFM} dimensions */
24162 @ Heights, depths, and italic corrections are different from widths
24163 not only because their list length is more severely restricted, but
24164 also because zero values do not need to be put into the lists.
24166 @<Massage the \.{TFM} heights, depths, and italic corrections@>=
24168 for (k=mp->bc;k<=mp->ec;k++) {
24169 if ( mp->char_exists[k] ) {
24170 if ( mp->tfm_height[k]==0 ) mp->tfm_height[k]=zero_val;
24171 else mp->tfm_height[k]=mp_sort_in(mp, mp->tfm_height[k]);
24174 mp->nh=mp_skimp(mp, 15)+1; mp->dimen_head[2]=link(temp_head);
24175 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ht);
24177 for (k=mp->bc;k<=mp->ec;k++) {
24178 if ( mp->char_exists[k] ) {
24179 if ( mp->tfm_depth[k]==0 ) mp->tfm_depth[k]=zero_val;
24180 else mp->tfm_depth[k]=mp_sort_in(mp, mp->tfm_depth[k]);
24183 mp->nd=mp_skimp(mp, 15)+1; mp->dimen_head[3]=link(temp_head);
24184 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_dp);
24186 for (k=mp->bc;k<=mp->ec;k++) {
24187 if ( mp->char_exists[k] ) {
24188 if ( mp->tfm_ital_corr[k]==0 ) mp->tfm_ital_corr[k]=zero_val;
24189 else mp->tfm_ital_corr[k]=mp_sort_in(mp, mp->tfm_ital_corr[k]);
24192 mp->ni=mp_skimp(mp, 63)+1; mp->dimen_head[4]=link(temp_head);
24193 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ic)
24195 @ @<Initialize table entries...@>=
24196 value(zero_val)=0; info(zero_val)=0;
24198 @ Bytes 5--8 of the header are set to the design size, unless the user has
24199 some crazy reason for specifying them differently.
24201 Error messages are not allowed at the time this procedure is called,
24202 so a warning is printed instead.
24204 The value of |max_tfm_dimen| is calculated so that
24205 $$\hbox{|make_scaled(16*max_tfm_dimen,internal[mp_design_size])|}
24206 < \\{three\_bytes}.$$
24208 @d three_bytes 0100000000 /* $2^{24}$ */
24211 void mp_fix_design_size (MP mp) {
24212 scaled d; /* the design size */
24213 d=mp->internal[mp_design_size];
24214 if ( (d<unity)||(d>=fraction_half) ) {
24216 mp_print_nl(mp, "(illegal design size has been changed to 128pt)");
24217 @.illegal design size...@>
24218 d=040000000; mp->internal[mp_design_size]=d;
24220 if ( mp->header_byte[4]<0 ) if ( mp->header_byte[5]<0 )
24221 if ( mp->header_byte[6]<0 ) if ( mp->header_byte[7]<0 ) {
24222 mp->header_byte[4]=d / 04000000;
24223 mp->header_byte[5]=(d / 4096) % 256;
24224 mp->header_byte[6]=(d / 16) % 256;
24225 mp->header_byte[7]=(d % 16)*16;
24227 mp->max_tfm_dimen=16*mp->internal[mp_design_size]-mp->internal[mp_design_size] / 010000000;
24228 if ( mp->max_tfm_dimen>=fraction_half ) mp->max_tfm_dimen=fraction_half-1;
24231 @ The |dimen_out| procedure computes a |fix_word| relative to the
24232 design size. If the data was out of range, it is corrected and the
24233 global variable |tfm_changed| is increased by~one.
24235 @c integer mp_dimen_out (MP mp,scaled x) {
24236 if ( abs(x)>mp->max_tfm_dimen ) {
24237 incr(mp->tfm_changed);
24238 if ( x>0 ) x=three_bytes-1; else x=1-three_bytes;
24240 x=mp_make_scaled(mp, x*16,mp->internal[mp_design_size]);
24246 scaled max_tfm_dimen; /* bound on widths, heights, kerns, etc. */
24247 integer tfm_changed; /* the number of data entries that were out of bounds */
24249 @ If the user has not specified any of the first four header bytes,
24250 the |fix_check_sum| procedure replaces them by a ``check sum'' computed
24251 from the |tfm_width| data relative to the design size.
24254 @c void mp_fix_check_sum (MP mp) {
24255 eight_bits k; /* runs through character codes */
24256 eight_bits B1,B2,B3,B4; /* bytes of the check sum */
24257 integer x; /* hash value used in check sum computation */
24258 if ( mp->header_byte[0]==0 && mp->header_byte[1]==0 &&
24259 mp->header_byte[2]==0 && mp->header_byte[3]==0 ) {
24260 @<Compute a check sum in |(b1,b2,b3,b4)|@>;
24261 mp->header_byte[0]=B1; mp->header_byte[1]=B2;
24262 mp->header_byte[2]=B3; mp->header_byte[3]=B4;
24267 @ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
24268 B1=mp->bc; B2=mp->ec; B3=mp->bc; B4=mp->ec; mp->tfm_changed=0;
24269 for (k=mp->bc;k<=mp->ec;k++) {
24270 if ( mp->char_exists[k] ) {
24271 x=mp_dimen_out(mp, value(mp->tfm_width[k]))+(k+4)*020000000; /* this is positive */
24272 B1=(B1+B1+x) % 255;
24273 B2=(B2+B2+x) % 253;
24274 B3=(B3+B3+x) % 251;
24275 B4=(B4+B4+x) % 247;
24279 @ Finally we're ready to actually write the \.{TFM} information.
24280 Here are some utility routines for this purpose.
24282 @d tfm_out(A) do { /* output one byte to |tfm_file| */
24283 unsigned char s=(A);
24284 (mp->write_binary_file)(mp->tfm_file,(void *)&s,1);
24287 @c void mp_tfm_two (MP mp,integer x) { /* output two bytes to |tfm_file| */
24288 tfm_out(x / 256); tfm_out(x % 256);
24290 void mp_tfm_four (MP mp,integer x) { /* output four bytes to |tfm_file| */
24291 if ( x>=0 ) tfm_out(x / three_bytes);
24293 x=x+010000000000; /* use two's complement for negative values */
24295 tfm_out((x / three_bytes) + 128);
24297 x=x % three_bytes; tfm_out(x / unity);
24298 x=x % unity; tfm_out(x / 0400);
24301 void mp_tfm_qqqq (MP mp,four_quarters x) { /* output four quarterwords to |tfm_file| */
24302 tfm_out(qo(x.b0)); tfm_out(qo(x.b1));
24303 tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
24306 @ @<Finish the \.{TFM} file@>=
24307 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24308 mp_pack_job_name(mp, ".tfm");
24309 while ( ! mp_b_open_out(mp, &mp->tfm_file, mp_filetype_metrics) )
24310 mp_prompt_file_name(mp, "file name for font metrics",".tfm");
24311 mp->metric_file_name=xstrdup(mp->name_of_file);
24312 @<Output the subfile sizes and header bytes@>;
24313 @<Output the character information bytes, then
24314 output the dimensions themselves@>;
24315 @<Output the ligature/kern program@>;
24316 @<Output the extensible character recipes and the font metric parameters@>;
24317 if ( mp->internal[mp_tracing_stats]>0 )
24318 @<Log the subfile sizes of the \.{TFM} file@>;
24319 mp_print_nl(mp, "Font metrics written on ");
24320 mp_print(mp, mp->metric_file_name); mp_print_char(mp, '.');
24321 @.Font metrics written...@>
24322 (mp->close_file)(mp->tfm_file)
24324 @ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
24327 @<Output the subfile sizes and header bytes@>=
24329 LH=(k+3) / 4; /* this is the number of header words */
24330 if ( mp->bc>mp->ec ) mp->bc=1; /* if there are no characters, |ec=0| and |bc=1| */
24331 @<Compute the ligature/kern program offset and implant the
24332 left boundary label@>;
24333 mp_tfm_two(mp,6+LH+(mp->ec-mp->bc+1)+mp->nw+mp->nh+mp->nd+mp->ni+mp->nl
24334 +lk_offset+mp->nk+mp->ne+mp->np);
24335 /* this is the total number of file words that will be output */
24336 mp_tfm_two(mp, LH); mp_tfm_two(mp, mp->bc); mp_tfm_two(mp, mp->ec);
24337 mp_tfm_two(mp, mp->nw); mp_tfm_two(mp, mp->nh);
24338 mp_tfm_two(mp, mp->nd); mp_tfm_two(mp, mp->ni); mp_tfm_two(mp, mp->nl+lk_offset);
24339 mp_tfm_two(mp, mp->nk); mp_tfm_two(mp, mp->ne);
24340 mp_tfm_two(mp, mp->np);
24341 for (k=0;k< 4*LH;k++) {
24342 tfm_out(mp->header_byte[k]);
24345 @ @<Output the character information bytes...@>=
24346 for (k=mp->bc;k<=mp->ec;k++) {
24347 if ( ! mp->char_exists[k] ) {
24348 mp_tfm_four(mp, 0);
24350 tfm_out(info(mp->tfm_width[k])); /* the width index */
24351 tfm_out((info(mp->tfm_height[k]))*16+info(mp->tfm_depth[k]));
24352 tfm_out((info(mp->tfm_ital_corr[k]))*4+mp->char_tag[k]);
24353 tfm_out(mp->char_remainder[k]);
24357 for (k=1;k<=4;k++) {
24358 mp_tfm_four(mp, 0); p=mp->dimen_head[k];
24359 while ( p!=inf_val ) {
24360 mp_tfm_four(mp, mp_dimen_out(mp, value(p))); p=link(p);
24365 @ We need to output special instructions at the beginning of the
24366 |lig_kern| array in order to specify the right boundary character
24367 and/or to handle starting addresses that exceed 255. The |label_loc|
24368 and |label_char| arrays have been set up to record all the
24369 starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
24370 \le|label_loc|[|label_ptr]|$.
24372 @<Compute the ligature/kern program offset...@>=
24373 mp->bchar=mp_round_unscaled(mp, mp->internal[mp_boundary_char]);
24374 if ((mp->bchar<0)||(mp->bchar>255))
24375 { mp->bchar=-1; mp->lk_started=false; lk_offset=0; }
24376 else { mp->lk_started=true; lk_offset=1; };
24377 @<Find the minimum |lk_offset| and adjust all remainders@>;
24378 if ( mp->bch_label<undefined_label )
24379 { skip_byte(mp->nl)=qi(255); next_char(mp->nl)=qi(0);
24380 op_byte(mp->nl)=qi(((mp->bch_label+lk_offset)/ 256));
24381 rem_byte(mp->nl)=qi(((mp->bch_label+lk_offset)% 256));
24382 incr(mp->nl); /* possibly |nl=lig_table_size+1| */
24385 @ @<Find the minimum |lk_offset|...@>=
24386 k=mp->label_ptr; /* pointer to the largest unallocated label */
24387 if ( mp->label_loc[k]+lk_offset>255 ) {
24388 lk_offset=0; mp->lk_started=false; /* location 0 can do double duty */
24390 mp->char_remainder[mp->label_char[k]]=lk_offset;
24391 while ( mp->label_loc[k-1]==mp->label_loc[k] ) {
24392 decr(k); mp->char_remainder[mp->label_char[k]]=lk_offset;
24394 incr(lk_offset); decr(k);
24395 } while (! (lk_offset+mp->label_loc[k]<256));
24396 /* N.B.: |lk_offset=256| satisfies this when |k=0| */
24398 if ( lk_offset>0 ) {
24400 mp->char_remainder[mp->label_char[k]]
24401 =mp->char_remainder[mp->label_char[k]]+lk_offset;
24406 @ @<Output the ligature/kern program@>=
24407 for (k=0;k<= 255;k++ ) {
24408 if ( mp->skip_table[k]<undefined_label ) {
24409 mp_print_nl(mp, "(local label "); mp_print_int(mp, k); mp_print(mp, ":: was missing)");
24410 @.local label l:: was missing@>
24411 cancel_skips(mp->skip_table[k]);
24414 if ( mp->lk_started ) { /* |lk_offset=1| for the special |bchar| */
24415 tfm_out(255); tfm_out(mp->bchar); mp_tfm_two(mp, 0);
24417 for (k=1;k<=lk_offset;k++) {/* output the redirection specs */
24418 mp->ll=mp->label_loc[mp->label_ptr];
24419 if ( mp->bchar<0 ) { tfm_out(254); tfm_out(0); }
24420 else { tfm_out(255); tfm_out(mp->bchar); };
24421 mp_tfm_two(mp, mp->ll+lk_offset);
24423 decr(mp->label_ptr);
24424 } while (! (mp->label_loc[mp->label_ptr]<mp->ll));
24427 for (k=0;k<=mp->nl-1;k++) mp_tfm_qqqq(mp, mp->lig_kern[k]);
24428 for (k=0;k<=mp->nk-1;k++) mp_tfm_four(mp, mp_dimen_out(mp, mp->kern[k]))
24430 @ @<Output the extensible character recipes...@>=
24431 for (k=0;k<=mp->ne-1;k++)
24432 mp_tfm_qqqq(mp, mp->exten[k]);
24433 for (k=1;k<=mp->np;k++) {
24435 if ( abs(mp->param[1])<fraction_half ) {
24436 mp_tfm_four(mp, mp->param[1]*16);
24438 incr(mp->tfm_changed);
24439 if ( mp->param[1]>0 ) mp_tfm_four(mp, el_gordo);
24440 else mp_tfm_four(mp, -el_gordo);
24443 mp_tfm_four(mp, mp_dimen_out(mp, mp->param[k]));
24446 if ( mp->tfm_changed>0 ) {
24447 if ( mp->tfm_changed==1 ) mp_print_nl(mp, "(a font metric dimension");
24448 @.a font metric dimension...@>
24450 mp_print_nl(mp, "("); mp_print_int(mp, mp->tfm_changed);
24451 @.font metric dimensions...@>
24452 mp_print(mp, " font metric dimensions");
24454 mp_print(mp, " had to be decreased)");
24457 @ @<Log the subfile sizes of the \.{TFM} file@>=
24461 if ( mp->bch_label<undefined_label ) decr(mp->nl);
24462 snprintf(s,128,"(You used %iw,%ih,%id,%ii,%il,%ik,%ie,%ip metric file positions)",
24463 mp->nw, mp->nh, mp->nd, mp->ni, mp->nl, mp->nk, mp->ne,mp->np);
24467 @* \[43] Reading font metric data.
24469 \MP\ isn't a typesetting program but it does need to find the bounding box
24470 of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
24471 well as write them.
24476 @ All the width, height, and depth information is stored in an array called
24477 |font_info|. This array is allocated sequentially and each font is stored
24478 as a series of |char_info| words followed by the width, height, and depth
24479 tables. Since |font_name| entries are permanent, their |str_ref| values are
24480 set to |max_str_ref|.
24483 typedef unsigned int font_number; /* |0..font_max| */
24485 @ The |font_info| array is indexed via a group directory arrays.
24486 For example, the |char_info| data for character~|c| in font~|f| will be
24487 in |font_info[char_base[f]+c].qqqq|.
24490 font_number font_max; /* maximum font number for included text fonts */
24491 size_t font_mem_size; /* number of words for \.{TFM} information for text fonts */
24492 memory_word *font_info; /* height, width, and depth data */
24493 char **font_enc_name; /* encoding names, if any */
24494 boolean *font_ps_name_fixed; /* are the postscript names fixed already? */
24495 int next_fmem; /* next unused entry in |font_info| */
24496 font_number last_fnum; /* last font number used so far */
24497 scaled *font_dsize; /* 16 times the ``design'' size in \ps\ points */
24498 char **font_name; /* name as specified in the \&{infont} command */
24499 char **font_ps_name; /* PostScript name for use when |internal[mp_prologues]>0| */
24500 font_number last_ps_fnum; /* last valid |font_ps_name| index */
24501 eight_bits *font_bc;
24502 eight_bits *font_ec; /* first and last character code */
24503 int *char_base; /* base address for |char_info| */
24504 int *width_base; /* index for zeroth character width */
24505 int *height_base; /* index for zeroth character height */
24506 int *depth_base; /* index for zeroth character depth */
24507 pointer *font_sizes;
24509 @ @<Allocate or initialize ...@>=
24510 mp->font_mem_size = 10000;
24511 mp->font_info = xmalloc ((mp->font_mem_size+1),sizeof(memory_word));
24512 memset (mp->font_info,0,sizeof(memory_word)*(mp->font_mem_size+1));
24513 mp->font_enc_name = NULL;
24514 mp->font_ps_name_fixed = NULL;
24515 mp->font_dsize = NULL;
24516 mp->font_name = NULL;
24517 mp->font_ps_name = NULL;
24518 mp->font_bc = NULL;
24519 mp->font_ec = NULL;
24520 mp->last_fnum = null_font;
24521 mp->char_base = NULL;
24522 mp->width_base = NULL;
24523 mp->height_base = NULL;
24524 mp->depth_base = NULL;
24525 mp->font_sizes = null;
24527 @ @<Dealloc variables@>=
24528 for (k=1;k<=(int)mp->last_fnum;k++) {
24529 xfree(mp->font_enc_name[k]);
24530 xfree(mp->font_name[k]);
24531 xfree(mp->font_ps_name[k]);
24533 xfree(mp->font_info);
24534 xfree(mp->font_enc_name);
24535 xfree(mp->font_ps_name_fixed);
24536 xfree(mp->font_dsize);
24537 xfree(mp->font_name);
24538 xfree(mp->font_ps_name);
24539 xfree(mp->font_bc);
24540 xfree(mp->font_ec);
24541 xfree(mp->char_base);
24542 xfree(mp->width_base);
24543 xfree(mp->height_base);
24544 xfree(mp->depth_base);
24545 xfree(mp->font_sizes);
24549 void mp_reallocate_fonts (MP mp, font_number l) {
24551 XREALLOC(mp->font_enc_name, l, char *);
24552 XREALLOC(mp->font_ps_name_fixed, l, boolean);
24553 XREALLOC(mp->font_dsize, l, scaled);
24554 XREALLOC(mp->font_name, l, char *);
24555 XREALLOC(mp->font_ps_name, l, char *);
24556 XREALLOC(mp->font_bc, l, eight_bits);
24557 XREALLOC(mp->font_ec, l, eight_bits);
24558 XREALLOC(mp->char_base, l, int);
24559 XREALLOC(mp->width_base, l, int);
24560 XREALLOC(mp->height_base, l, int);
24561 XREALLOC(mp->depth_base, l, int);
24562 XREALLOC(mp->font_sizes, l, pointer);
24563 for (f=(mp->last_fnum+1);f<=l;f++) {
24564 mp->font_enc_name[f]=NULL;
24565 mp->font_ps_name_fixed[f] = false;
24566 mp->font_name[f]=NULL;
24567 mp->font_ps_name[f]=NULL;
24568 mp->font_sizes[f]=null;
24573 @ @<Declare |mp_reallocate| functions@>=
24574 void mp_reallocate_fonts (MP mp, font_number l);
24577 @ A |null_font| containing no characters is useful for error recovery. Its
24578 |font_name| entry starts out empty but is reset each time an erroneous font is
24579 found. This helps to cut down on the number of duplicate error messages without
24580 wasting a lot of space.
24582 @d null_font 0 /* the |font_number| for an empty font */
24584 @<Set initial...@>=
24585 mp->font_dsize[null_font]=0;
24586 mp->font_bc[null_font]=1;
24587 mp->font_ec[null_font]=0;
24588 mp->char_base[null_font]=0;
24589 mp->width_base[null_font]=0;
24590 mp->height_base[null_font]=0;
24591 mp->depth_base[null_font]=0;
24593 mp->last_fnum=null_font;
24594 mp->last_ps_fnum=null_font;
24595 mp->font_name[null_font]="nullfont";
24596 mp->font_ps_name[null_font]="";
24597 mp->font_ps_name_fixed[null_font] = false;
24598 mp->font_enc_name[null_font]=NULL;
24599 mp->font_sizes[null_font]=null;
24601 @ Each |char_info| word is of type |four_quarters|. The |b0| field contains
24602 the |width index|; the |b1| field contains the height
24603 index; the |b2| fields contains the depth index, and the |b3| field used only
24604 for temporary storage. (It is used to keep track of which characters occur in
24605 an edge structure that is being shipped out.)
24606 The corresponding words in the width, height, and depth tables are stored as
24607 |scaled| values in units of \ps\ points.
24609 With the macros below, the |char_info| word for character~|c| in font~|f| is
24610 |char_info(f)(c)| and the width is
24611 $$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
24613 @d char_info_end(A) (A)].qqqq
24614 @d char_info(A) mp->font_info[mp->char_base[(A)]+char_info_end
24615 @d char_width_end(A) (A).b0].sc
24616 @d char_width(A) mp->font_info[mp->width_base[(A)]+char_width_end
24617 @d char_height_end(A) (A).b1].sc
24618 @d char_height(A) mp->font_info[mp->height_base[(A)]+char_height_end
24619 @d char_depth_end(A) (A).b2].sc
24620 @d char_depth(A) mp->font_info[mp->depth_base[(A)]+char_depth_end
24621 @d ichar_exists(A) ((A).b0>0)
24623 @ The |font_ps_name| for a built-in font should be what PostScript expects.
24624 A preliminary name is obtained here from the \.{TFM} name as given in the
24625 |fname| argument. This gets updated later from an external table if necessary.
24627 @<Declare text measuring subroutines@>=
24628 @<Declare subroutines for parsing file names@>;
24629 font_number mp_read_font_info (MP mp, char *fname) {
24630 boolean file_opened; /* has |tfm_infile| been opened? */
24631 font_number n; /* the number to return */
24632 halfword lf,tfm_lh,bc,ec,nw,nh,nd; /* subfile size parameters */
24633 size_t whd_size; /* words needed for heights, widths, and depths */
24634 int i,ii; /* |font_info| indices */
24635 int jj; /* counts bytes to be ignored */
24636 scaled z; /* used to compute the design size */
24638 /* height, width, or depth as a fraction of design size times $2^{-8}$ */
24639 eight_bits h_and_d; /* height and depth indices being unpacked */
24640 unsigned char tfbyte; /* a byte read from the file */
24642 @<Open |tfm_infile| for input@>;
24643 @<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
24644 otherwise |goto bad_tfm| or |goto done| as appropriate@>;
24646 @<Complain that the \.{TFM} file is bad@>;
24648 if ( file_opened ) (mp->close_file)(mp->tfm_infile);
24649 if ( n!=null_font ) {
24650 mp->font_ps_name[n]=mp_xstrdup(mp,fname);
24651 mp->font_name[n]=mp_xstrdup(mp,fname);
24656 @ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
24657 precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
24658 @.TFtoPL@> @.PLtoTF@>
24659 and \.{PLtoTF} can be used to debug \.{TFM} files.
24661 @<Complain that the \.{TFM} file is bad@>=
24662 print_err("Font ");
24663 mp_print(mp, fname);
24664 if ( file_opened ) mp_print(mp, " not usable: TFM file is bad");
24665 else mp_print(mp, " not usable: TFM file not found");
24666 help3("I wasn't able to read the size data for this font so this")
24667 ("`infont' operation won't produce anything. If the font name")
24668 ("is right, you might ask an expert to make a TFM file");
24670 mp->help_line[0]="is right, try asking an expert to fix the TFM file";
24673 @ @<Read data from |tfm_infile|; if there is no room, say so...@>=
24674 @<Read the \.{TFM} size fields@>;
24675 @<Use the size fields to allocate space in |font_info|@>;
24676 @<Read the \.{TFM} header@>;
24677 @<Read the character data and the width, height, and depth tables and
24680 @ A bad \.{TFM} file can be shorter than it claims to be. The code given here
24681 might try to read past the end of the file if this happens. Changes will be
24682 needed if it causes a system error to refer to |tfm_infile^| or call
24683 |get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
24684 @^system dependencies@>
24685 of |tfget| could be changed to
24686 ``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
24690 void *tfbyte_ptr = &tfbyte;
24691 (mp->read_binary_file)(mp->tfm_infile,&tfbyte_ptr,&wanted);
24692 if (wanted==0) goto BAD_TFM;
24694 @d read_two(A) { (A)=tfbyte;
24695 if ( (A)>127 ) goto BAD_TFM;
24696 tfget; (A)=(A)*0400+tfbyte;
24698 @d tf_ignore(A) { for (jj=(A);jj>=1;jj--) tfget; }
24700 @<Read the \.{TFM} size fields@>=
24701 tfget; read_two(lf);
24702 tfget; read_two(tfm_lh);
24703 tfget; read_two(bc);
24704 tfget; read_two(ec);
24705 if ( (bc>1+ec)||(ec>255) ) goto BAD_TFM;
24706 tfget; read_two(nw);
24707 tfget; read_two(nh);
24708 tfget; read_two(nd);
24709 whd_size=(ec+1-bc)+nw+nh+nd;
24710 if ( lf<(int)(6+tfm_lh+whd_size) ) goto BAD_TFM;
24713 @ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
24714 necessary to apply the |so| and |qo| macros when looking up the width of a
24715 character in the string pool. In order to ensure nonnegative |char_base|
24716 values when |bc>0|, it may be necessary to reserve a few unused |font_info|
24719 @<Use the size fields to allocate space in |font_info|@>=
24720 if ( mp->next_fmem<bc) mp->next_fmem=bc; /* ensure nonnegative |char_base| */
24721 if (mp->last_fnum==mp->font_max)
24722 mp_reallocate_fonts(mp,(mp->font_max+(mp->font_max>>2)));
24723 while (mp->next_fmem+whd_size>=mp->font_mem_size) {
24724 size_t l = mp->font_mem_size+(mp->font_mem_size>>2);
24725 memory_word *font_info;
24726 font_info = xmalloc ((l+1),sizeof(memory_word));
24727 memset (font_info,0,sizeof(memory_word)*(l+1));
24728 memcpy (font_info,mp->font_info,sizeof(memory_word)*(mp->font_mem_size+1));
24729 xfree(mp->font_info);
24730 mp->font_info = font_info;
24731 mp->font_mem_size = l;
24733 incr(mp->last_fnum);
24737 mp->char_base[n]=mp->next_fmem-bc;
24738 mp->width_base[n]=mp->next_fmem+ec-bc+1;
24739 mp->height_base[n]=mp->width_base[n]+nw;
24740 mp->depth_base[n]=mp->height_base[n]+nh;
24741 mp->next_fmem=mp->next_fmem+whd_size;
24744 @ @<Read the \.{TFM} header@>=
24745 if ( tfm_lh<2 ) goto BAD_TFM;
24747 tfget; read_two(z);
24748 tfget; z=z*0400+tfbyte;
24749 tfget; z=z*0400+tfbyte; /* now |z| is 16 times the design size */
24750 mp->font_dsize[n]=mp_take_fraction(mp, z,267432584);
24751 /* times ${72\over72.27}2^{28}$ to convert from \TeX\ points */
24752 tf_ignore(4*(tfm_lh-2))
24754 @ @<Read the character data and the width, height, and depth tables...@>=
24755 ii=mp->width_base[n];
24756 i=mp->char_base[n]+bc;
24758 tfget; mp->font_info[i].qqqq.b0=qi(tfbyte);
24759 tfget; h_and_d=tfbyte;
24760 mp->font_info[i].qqqq.b1=h_and_d / 16;
24761 mp->font_info[i].qqqq.b2=h_and_d % 16;
24765 while ( i<mp->next_fmem ) {
24766 @<Read a four byte dimension, scale it by the design size, store it in
24767 |font_info[i]|, and increment |i|@>;
24771 @ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
24772 interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
24773 we can multiply it by sixteen and think of it as a |fraction| that has been
24774 divided by sixteen. This cancels the extra scale factor contained in
24777 @<Read a four byte dimension, scale it by the design size, store it in...@>=
24780 if ( d>=0200 ) d=d-0400;
24781 tfget; d=d*0400+tfbyte;
24782 tfget; d=d*0400+tfbyte;
24783 tfget; d=d*0400+tfbyte;
24784 mp->font_info[i].sc=mp_take_fraction(mp, d*16,mp->font_dsize[n]);
24788 @ This function does no longer use the file name parser, because |fname| is
24789 a C string already.
24790 @<Open |tfm_infile| for input@>=
24792 mp_ptr_scan_file(mp, fname);
24793 if ( strlen(mp->cur_area)==0 ) { xfree(mp->cur_area); mp->cur_area=xstrdup(MP_font_area);}
24794 if ( strlen(mp->cur_ext)==0 ) { xfree(mp->cur_ext); mp->cur_ext=xstrdup(".tfm"); }
24796 mp->tfm_infile = (mp->open_file)( mp->name_of_file, "rb",mp_filetype_metrics);
24797 if ( !mp->tfm_infile ) goto BAD_TFM;
24800 @ When we have a font name and we don't know whether it has been loaded yet,
24801 we scan the |font_name| array before calling |read_font_info|.
24803 @<Declare text measuring subroutines@>=
24804 font_number mp_find_font (MP mp, char *f) {
24806 for (n=0;n<=mp->last_fnum;n++) {
24807 if (mp_xstrcmp(f,mp->font_name[n])==0 ) {
24812 n = mp_read_font_info(mp, f);
24817 @ One simple application of |find_font| is the implementation of the |font_size|
24818 operator that gets the design size for a given font name.
24820 @<Find the design size of the font whose name is |cur_exp|@>=
24821 mp_flush_cur_exp(mp, (mp->font_dsize[mp_find_font(mp, str(mp->cur_exp))]+8) / 16)
24823 @ If we discover that the font doesn't have a requested character, we omit it
24824 from the bounding box computation and expect the \ps\ interpreter to drop it.
24825 This routine issues a warning message if the user has asked for it.
24827 @<Declare text measuring subroutines@>=
24828 void mp_lost_warning (MP mp,font_number f, pool_pointer k) {
24829 if ( mp->internal[mp_tracing_lost_chars]>0 ) {
24830 mp_begin_diagnostic(mp);
24831 if ( mp->selector==log_only ) incr(mp->selector);
24832 mp_print_nl(mp, "Missing character: There is no ");
24833 @.Missing character@>
24834 mp_print_str(mp, mp->str_pool[k]);
24835 mp_print(mp, " in font ");
24836 mp_print(mp, mp->font_name[f]); mp_print_char(mp, '!');
24837 mp_end_diagnostic(mp, false);
24841 @ The whole purpose of saving the height, width, and depth information is to be
24842 able to find the bounding box of an item of text in an edge structure. The
24843 |set_text_box| procedure takes a text node and adds this information.
24845 @<Declare text measuring subroutines@>=
24846 void mp_set_text_box (MP mp,pointer p) {
24847 font_number f; /* |font_n(p)| */
24848 ASCII_code bc,ec; /* range of valid characters for font |f| */
24849 pool_pointer k,kk; /* current character and character to stop at */
24850 four_quarters cc; /* the |char_info| for the current character */
24851 scaled h,d; /* dimensions of the current character */
24853 height_val(p)=-el_gordo;
24854 depth_val(p)=-el_gordo;
24858 kk=str_stop(text_p(p));
24859 k=mp->str_start[text_p(p)];
24861 @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
24863 @<Set the height and depth to zero if the bounding box is empty@>;
24866 @ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
24868 if ( (mp->str_pool[k]<bc)||(mp->str_pool[k]>ec) ) {
24869 mp_lost_warning(mp, f,k);
24871 cc=char_info(f)(mp->str_pool[k]);
24872 if ( ! ichar_exists(cc) ) {
24873 mp_lost_warning(mp, f,k);
24875 width_val(p)=width_val(p)+char_width(f)(cc);
24876 h=char_height(f)(cc);
24877 d=char_depth(f)(cc);
24878 if ( h>height_val(p) ) height_val(p)=h;
24879 if ( d>depth_val(p) ) depth_val(p)=d;
24885 @ Let's hope modern compilers do comparisons correctly when the difference would
24888 @<Set the height and depth to zero if the bounding box is empty@>=
24889 if ( height_val(p)<-depth_val(p) ) {
24894 @ The new primitives fontmapfile and fontmapline.
24896 @<Declare action procedures for use by |do_statement|@>=
24897 void mp_do_mapfile (MP mp) ;
24898 void mp_do_mapline (MP mp) ;
24900 @ @c void mp_do_mapfile (MP mp) {
24901 mp_get_x_next(mp); mp_scan_expression(mp);
24902 if ( mp->cur_type!=mp_string_type ) {
24903 @<Complain about improper map operation@>;
24905 mp_map_file(mp,mp->cur_exp);
24908 void mp_do_mapline (MP mp) {
24909 mp_get_x_next(mp); mp_scan_expression(mp);
24910 if ( mp->cur_type!=mp_string_type ) {
24911 @<Complain about improper map operation@>;
24913 mp_map_line(mp,mp->cur_exp);
24917 @ @<Complain about improper map operation@>=
24919 exp_err("Unsuitable expression");
24920 help1("Only known strings can be map files or map lines.");
24921 mp_put_get_error(mp);
24924 @ To print |scaled| value to PDF output we need some subroutines to ensure
24927 @d max_integer 0x7FFFFFFF /* $2^{31}-1$ */
24930 scaled one_bp; /* scaled value corresponds to 1bp */
24931 scaled one_hundred_bp; /* scaled value corresponds to 100bp */
24932 scaled one_hundred_inch; /* scaled value corresponds to 100in */
24933 integer ten_pow[10]; /* $10^0..10^9$ */
24934 integer scaled_out; /* amount of |scaled| that was taken out in |divide_scaled| */
24937 mp->one_bp = 65782; /* 65781.76 */
24938 mp->one_hundred_bp = 6578176;
24939 mp->one_hundred_inch = 473628672;
24940 mp->ten_pow[0] = 1;
24941 for (i = 1;i<= 9; i++ ) {
24942 mp->ten_pow[i] = 10*mp->ten_pow[i - 1];
24945 @ The following function divides |s| by |m|. |dd| is number of decimal digits.
24947 @c scaled mp_divide_scaled (MP mp,scaled s, scaled m, integer dd) {
24951 if ( s < 0 ) { sign = -sign; s = -s; }
24952 if ( m < 0 ) { sign = -sign; m = -m; }
24954 mp_confusion(mp, "arithmetic: divided by zero");
24955 else if ( m >= (max_integer / 10) )
24956 mp_confusion(mp, "arithmetic: number too big");
24959 for (i = 1;i<=dd;i++) {
24960 q = 10*q + (10*r) / m;
24963 if ( 2*r >= m ) { incr(q); r = r - m; }
24964 mp->scaled_out = sign*(s - (r / mp->ten_pow[dd]));
24968 @* \[44] Shipping pictures out.
24969 The |ship_out| procedure, to be described below, is given a pointer to
24970 an edge structure. Its mission is to output a file containing the \ps\
24971 description of an edge structure.
24973 @ Each time an edge structure is shipped out we write a new \ps\ output
24974 file named according to the current \&{charcode}.
24975 @:char_code_}{\&{charcode} primitive@>
24977 This is the only backend function that remains in the main |mpost.w| file.
24978 There are just too many variable accesses needed for status reporting
24979 etcetera to make it worthwile to move the code to |psout.w|.
24981 @<Internal library declarations@>=
24982 void mp_open_output_file (MP mp) ;
24984 @ @c void mp_open_output_file (MP mp) {
24985 integer c; /* \&{charcode} rounded to the nearest integer */
24986 int old_setting; /* previous |selector| setting */
24987 pool_pointer i; /* indexes into |filename_template| */
24988 integer cc; /* a temporary integer for template building */
24989 integer f,g=0; /* field widths */
24990 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24991 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
24992 if ( mp->filename_template==0 ) {
24993 char *s; /* a file extension derived from |c| */
24997 @<Use |c| to compute the file extension |s|@>;
24998 mp_pack_job_name(mp, s);
25000 while ( ! mp_a_open_out(mp, (void *)&mp->ps_file, mp_filetype_postscript) )
25001 mp_prompt_file_name(mp, "file name for output",s);
25002 } else { /* initializations */
25003 str_number s, n; /* a file extension derived from |c| */
25004 old_setting=mp->selector;
25005 mp->selector=new_string;
25007 i = mp->str_start[mp->filename_template];
25008 n = rts(""); /* initialize */
25009 while ( i<str_stop(mp->filename_template) ) {
25010 if ( mp->str_pool[i]=='%' ) {
25013 if ( i<str_stop(mp->filename_template) ) {
25014 if ( mp->str_pool[i]=='j' ) {
25015 mp_print(mp, mp->job_name);
25016 } else if ( mp->str_pool[i]=='d' ) {
25017 cc= mp_round_unscaled(mp, mp->internal[mp_day]);
25018 print_with_leading_zeroes(cc);
25019 } else if ( mp->str_pool[i]=='m' ) {
25020 cc= mp_round_unscaled(mp, mp->internal[mp_month]);
25021 print_with_leading_zeroes(cc);
25022 } else if ( mp->str_pool[i]=='y' ) {
25023 cc= mp_round_unscaled(mp, mp->internal[mp_year]);
25024 print_with_leading_zeroes(cc);
25025 } else if ( mp->str_pool[i]=='H' ) {
25026 cc= mp_round_unscaled(mp, mp->internal[mp_time]) / 60;
25027 print_with_leading_zeroes(cc);
25028 } else if ( mp->str_pool[i]=='M' ) {
25029 cc= mp_round_unscaled(mp, mp->internal[mp_time]) % 60;
25030 print_with_leading_zeroes(cc);
25031 } else if ( mp->str_pool[i]=='c' ) {
25032 if ( c<0 ) mp_print(mp, "ps");
25033 else print_with_leading_zeroes(c);
25034 } else if ( (mp->str_pool[i]>='0') &&
25035 (mp->str_pool[i]<='9') ) {
25037 f = (f*10) + mp->str_pool[i]-'0';
25040 mp_print_str(mp, mp->str_pool[i]);
25044 if ( mp->str_pool[i]=='.' )
25046 n = mp_make_string(mp);
25047 mp_print_str(mp, mp->str_pool[i]);
25051 s = mp_make_string(mp);
25052 mp->selector= old_setting;
25053 if (length(n)==0) {
25057 mp_pack_file_name(mp, str(n),"",str(s));
25058 while ( ! mp_a_open_out(mp, (void *)&mp->ps_file, mp_filetype_postscript) )
25059 mp_prompt_file_name(mp, "file name for output",str(s));
25063 @<Store the true output file name if appropriate@>;
25064 @<Begin the progress report for the output of picture~|c|@>;
25067 @ The file extension created here could be up to five characters long in
25068 extreme cases so it may have to be shortened on some systems.
25069 @^system dependencies@>
25071 @<Use |c| to compute the file extension |s|@>=
25074 snprintf(s,7,".%i",(int)c);
25077 @ The user won't want to see all the output file names so we only save the
25078 first and last ones and a count of how many there were. For this purpose
25079 files are ordered primarily by \&{charcode} and secondarily by order of
25081 @:char_code_}{\&{charcode} primitive@>
25083 @<Store the true output file name if appropriate@>=
25084 if ((c<mp->first_output_code)&&(mp->first_output_code>=0)) {
25085 mp->first_output_code=c;
25086 xfree(mp->first_file_name);
25087 mp->first_file_name=xstrdup(mp->name_of_file);
25089 if ( c>=mp->last_output_code ) {
25090 mp->last_output_code=c;
25091 xfree(mp->last_file_name);
25092 mp->last_file_name=xstrdup(mp->name_of_file);
25096 char * first_file_name;
25097 char * last_file_name; /* full file names */
25098 integer first_output_code;integer last_output_code; /* rounded \&{charcode} values */
25099 @:char_code_}{\&{charcode} primitive@>
25100 integer total_shipped; /* total number of |ship_out| operations completed */
25103 mp->first_file_name=xstrdup("");
25104 mp->last_file_name=xstrdup("");
25105 mp->first_output_code=32768;
25106 mp->last_output_code=-32768;
25107 mp->total_shipped=0;
25109 @ @<Dealloc variables@>=
25110 xfree(mp->first_file_name);
25111 xfree(mp->last_file_name);
25113 @ @<Begin the progress report for the output of picture~|c|@>=
25114 if ( (int)mp->term_offset>mp->max_print_line-6 ) mp_print_ln(mp);
25115 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
25116 mp_print_char(mp, '[');
25117 if ( c>=0 ) mp_print_int(mp, c)
25119 @ @<End progress report@>=
25120 mp_print_char(mp, ']');
25122 incr(mp->total_shipped)
25124 @ @<Explain what output files were written@>=
25125 if ( mp->total_shipped>0 ) {
25126 mp_print_nl(mp, "");
25127 mp_print_int(mp, mp->total_shipped);
25128 mp_print(mp, " output file");
25129 if ( mp->total_shipped>1 ) mp_print_char(mp, 's');
25130 mp_print(mp, " written: ");
25131 mp_print(mp, mp->first_file_name);
25132 if ( mp->total_shipped>1 ) {
25133 if ( 31+strlen(mp->first_file_name)+
25134 strlen(mp->last_file_name)> (unsigned)mp->max_print_line)
25136 mp_print(mp, " .. ");
25137 mp_print(mp, mp->last_file_name);
25141 @ @<Internal library declarations@>=
25142 boolean mp_has_font_size(MP mp, font_number f );
25145 boolean mp_has_font_size(MP mp, font_number f ) {
25146 return (mp->font_sizes[f]!=null);
25149 @ The \&{special} command saves up lines of text to be printed during the next
25150 |ship_out| operation. The saved items are stored as a list of capsule tokens.
25153 pointer last_pending; /* the last token in a list of pending specials */
25156 mp->last_pending=spec_head;
25158 @ @<Cases of |do_statement|...@>=
25159 case special_command:
25160 if ( mp->cur_mod==0 ) mp_do_special(mp); else
25161 if ( mp->cur_mod==1 ) mp_do_mapfile(mp); else
25165 @ @<Declare action procedures for use by |do_statement|@>=
25166 void mp_do_special (MP mp) ;
25168 @ @c void mp_do_special (MP mp) {
25169 mp_get_x_next(mp); mp_scan_expression(mp);
25170 if ( mp->cur_type!=mp_string_type ) {
25171 @<Complain about improper special operation@>;
25173 link(mp->last_pending)=mp_stash_cur_exp(mp);
25174 mp->last_pending=link(mp->last_pending);
25175 link(mp->last_pending)=null;
25179 @ @<Complain about improper special operation@>=
25181 exp_err("Unsuitable expression");
25182 help1("Only known strings are allowed for output as specials.");
25183 mp_put_get_error(mp);
25186 @ On the export side, we need an extra object type for special strings.
25188 @<Graphical object codes@>=
25191 @ @<Export pending specials@>=
25193 while ( p!=null ) {
25194 hq = mp_new_graphic_object(mp,mp_special_code);
25195 gr_pre_script(hq) = str(value(p));
25196 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25200 mp_flush_token_list(mp, link(spec_head));
25201 link(spec_head)=null;
25202 mp->last_pending=spec_head
25204 @ We are now ready for the main output procedure. Note that the |selector|
25205 setting is saved in a global variable so that |begin_diagnostic| can access it.
25207 @<Declare the \ps\ output procedures@>=
25208 void mp_ship_out (MP mp, pointer h) ;
25210 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25213 struct mp_edge_object *mp_gr_export(MP mp, pointer h) {
25214 pointer p; /* the current graphical object */
25215 integer t; /* a temporary value */
25216 struct mp_edge_object *hh; /* the first graphical object */
25217 struct mp_graphic_object *hp; /* the current graphical object */
25218 struct mp_graphic_object *hq; /* something |hp| points to */
25219 mp_set_bbox(mp, h, true);
25220 hh = mp_xmalloc(mp,1,sizeof(struct mp_edge_object));
25222 hh->_minx = minx_val(h);
25223 hh->_miny = miny_val(h);
25224 hh->_maxx = maxx_val(h);
25225 hh->_maxy = maxy_val(h);
25226 @<Export pending specials@>;
25227 p=link(dummy_loc(h));
25228 while ( p!=null ) {
25229 hq = mp_new_graphic_object(mp,type(p));
25232 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25233 if ((pen_p(p)==null) || pen_is_elliptical(pen_p(p))) {
25234 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25237 pc = mp_copy_path(mp, path_p(p));
25238 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25239 gr_path_p(hq) = mp_export_knot_list(mp,pp);
25240 mp_toss_knot_list(mp, pp);
25241 pc = mp_htap_ypoc(mp, path_p(p));
25242 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25243 gr_htap_p(hq) = mp_export_knot_list(mp,pp);
25244 mp_toss_knot_list(mp, pp);
25246 @<Export object color@>;
25247 @<Export object scripts@>;
25248 gr_ljoin_val(hq) = ljoin_val(p);
25249 gr_miterlim_val(hq) = miterlim_val(p);
25251 case mp_stroked_code:
25252 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25253 if (pen_is_elliptical(pen_p(p))) {
25254 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25257 pc=mp_copy_path(mp, path_p(p));
25259 if ( left_type(pc)!=mp_endpoint ) {
25260 left_type(mp_insert_knot(mp, pc,x_coord(pc),y_coord(pc)))=mp_endpoint;
25261 right_type(pc)=mp_endpoint;
25265 pc=mp_make_envelope(mp,pc,pen_p(p),ljoin_val(p),t,miterlim_val(p));
25266 gr_path_p(hq) = mp_export_knot_list(mp,pc);
25267 mp_toss_knot_list(mp, pc);
25269 @<Export object color@>;
25270 @<Export object scripts@>;
25271 gr_ljoin_val(hq) = ljoin_val(p);
25272 gr_miterlim_val(hq) = miterlim_val(p);
25273 gr_lcap_val(hq) = lcap_val(p);
25274 gr_dash_scale(hq) = dash_scale(p);
25275 gr_dash_p(hq) = mp_export_dashes(mp,dash_p(p));
25278 gr_text_p(hq) = str(text_p(p));
25279 gr_font_n(hq) = font_n(p);
25280 @<Export object color@>;
25281 @<Export object scripts@>;
25282 gr_width_val(hq) = width_val(p);
25283 gr_height_val(hq) = height_val(p);
25284 gr_depth_val(hq) = depth_val(p);
25285 gr_tx_val(hq) = tx_val(p);
25286 gr_ty_val(hq) = ty_val(p);
25287 gr_txx_val(hq) = txx_val(p);
25288 gr_txy_val(hq) = txy_val(p);
25289 gr_tyx_val(hq) = tyx_val(p);
25290 gr_tyy_val(hq) = tyy_val(p);
25292 case mp_start_clip_code:
25293 case mp_start_bounds_code:
25294 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25296 case mp_stop_clip_code:
25297 case mp_stop_bounds_code:
25298 /* nothing to do here */
25301 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25308 @ @<Exported function ...@>=
25309 struct mp_edge_object *mp_gr_export(MP mp, int h);
25310 extern void mp_gr_ship_out (MP mp, struct mp_edge_object *hh) ;
25312 @ This function is now nearly trivial.
25315 void mp_ship_out (MP mp, pointer h) { /* output edge structure |h| */
25316 (mp->shipout_backend) (mp, h);
25317 @<End progress report@>;
25318 if ( mp->internal[mp_tracing_output]>0 )
25319 mp_print_edges(mp, h," (just shipped out)",true);
25322 @ @<Declarations@>=
25323 void mp_shipout_backend (MP mp, pointer h);
25326 void mp_shipout_backend (MP mp, pointer h) {
25327 struct mp_edge_object *hh; /* the first graphical object */
25328 hh = mp_gr_export(mp,h);
25329 mp_gr_ship_out (mp, hh);
25333 @ @<Exported types@>=
25334 typedef void (*mp_backend_writer)(MP, int);
25337 mp_backend_writer shipout_backend;
25339 @ @<Option variables@>=
25340 mp_backend_writer shipout_backend;
25342 @ @<Allocate or initialize ...@>=
25343 set_callback_option(shipout_backend);
25347 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25349 @<Export object color@>=
25350 gr_color_model(hq) = color_model(p);
25351 gr_cyan_val(hq) = cyan_val(p);
25352 gr_magenta_val(hq) = magenta_val(p);
25353 gr_yellow_val(hq) = yellow_val(p);
25354 gr_black_val(hq) = black_val(p);
25355 gr_red_val(hq) = red_val(p);
25356 gr_green_val(hq) = green_val(p);
25357 gr_blue_val(hq) = blue_val(p);
25358 gr_grey_val(hq) = grey_val(p)
25361 @ @<Export object scripts@>=
25362 if (pre_script(p)!=null)
25363 gr_pre_script(hq) = str(pre_script(p));
25364 if (post_script(p)!=null)
25365 gr_post_script(hq) = str(post_script(p));
25367 @ Now that we've finished |ship_out|, let's look at the other commands
25368 by which a user can send things to the \.{GF} file.
25370 @ @<Determine if a character has been shipped out@>=
25372 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
25373 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
25374 boolean_reset(mp->char_exists[mp->cur_exp]);
25375 mp->cur_type=mp_boolean_type;
25381 @ @<Allocate or initialize ...@>=
25382 mp_backend_initialize(mp);
25385 mp_backend_free(mp);
25388 @* \[45] Dumping and undumping the tables.
25389 After \.{INIMP} has seen a collection of macros, it
25390 can write all the necessary information on an auxiliary file so
25391 that production versions of \MP\ are able to initialize their
25392 memory at high speed. The present section of the program takes
25393 care of such output and input. We shall consider simultaneously
25394 the processes of storing and restoring,
25395 so that the inverse relation between them is clear.
25398 The global variable |mem_ident| is a string that is printed right
25399 after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
25400 string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
25401 for example, `\.{(mem=plain 90.4.14)}', showing the year,
25402 month, and day that the mem file was created. We have |mem_ident=0|
25403 before \MP's tables are loaded.
25409 mp->mem_ident=NULL;
25411 @ @<Initialize table entries...@>=
25412 mp->mem_ident=xstrdup(" (INIMP)");
25414 @ @<Declare act...@>=
25415 void mp_store_mem_file (MP mp) ;
25417 @ @c void mp_store_mem_file (MP mp) {
25418 integer k; /* all-purpose index */
25419 pointer p,q; /* all-purpose pointers */
25420 integer x; /* something to dump */
25421 four_quarters w; /* four ASCII codes */
25423 @<Create the |mem_ident|, open the mem file,
25424 and inform the user that dumping has begun@>;
25425 @<Dump constants for consistency check@>;
25426 @<Dump the string pool@>;
25427 @<Dump the dynamic memory@>;
25428 @<Dump the table of equivalents and the hash table@>;
25429 @<Dump a few more things and the closing check word@>;
25430 @<Close the mem file@>;
25433 @ Corresponding to the procedure that dumps a mem file, we also have a function
25434 that reads~one~in. The function returns |false| if the dumped mem is
25435 incompatible with the present \MP\ table sizes, etc.
25437 @d off_base 6666 /* go here if the mem file is unacceptable */
25438 @d too_small(A) { wake_up_terminal;
25439 wterm_ln("---! Must increase the "); wterm((A));
25440 @.Must increase the x@>
25445 boolean mp_load_mem_file (MP mp) {
25446 integer k; /* all-purpose index */
25447 pointer p,q; /* all-purpose pointers */
25448 integer x; /* something undumped */
25449 str_number s; /* some temporary string */
25450 four_quarters w; /* four ASCII codes */
25452 @<Undump constants for consistency check@>;
25453 @<Undump the string pool@>;
25454 @<Undump the dynamic memory@>;
25455 @<Undump the table of equivalents and the hash table@>;
25456 @<Undump a few more things and the closing check word@>;
25457 return true; /* it worked! */
25460 wterm_ln("(Fatal mem file error; I'm stymied)\n");
25461 @.Fatal mem file error@>
25465 @ @<Declarations@>=
25466 boolean mp_load_mem_file (MP mp) ;
25468 @ Mem files consist of |memory_word| items, and we use the following
25469 macros to dump words of different types:
25471 @d dump_wd(A) { WW=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25472 @d dump_int(A) { int cint=(A); (mp->write_binary_file)(mp->mem_file,&cint,sizeof(cint)); }
25473 @d dump_hh(A) { WW.hh=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25474 @d dump_qqqq(A) { WW.qqqq=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25475 @d dump_string(A) { dump_int(strlen(A)+1);
25476 (mp->write_binary_file)(mp->mem_file,A,strlen(A)+1); }
25479 void * mem_file; /* for input or output of mem information */
25481 @ The inverse macros are slightly more complicated, since we need to check
25482 the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
25483 read an integer value |x| that is supposed to be in the range |a<=x<=b|.
25486 size_t wanted = sizeof(A);
25488 (mp->read_binary_file)(mp->mem_file,&A_ptr,&wanted);
25489 if (wanted!=sizeof(A)) goto OFF_BASE;
25493 size_t wanted = sizeof(A);
25495 (mp->read_binary_file)(mp->mem_file,&A_ptr,&wanted);
25496 if (wanted!=sizeof(A)) goto OFF_BASE;
25499 @d undump_wd(A) { mgetw(WW); A=WW; }
25500 @d undump_int(A) { int cint; mgeti(cint); A=cint; }
25501 @d undump_hh(A) { mgetw(WW); A=WW.hh; }
25502 @d undump_qqqq(A) { mgetw(WW); A=WW.qqqq; }
25503 @d undump_strings(A,B,C) {
25504 undump_int(x); if ( (x<(A)) || (x>(B)) ) goto OFF_BASE; else C=str(x); }
25505 @d undump(A,B,C) { undump_int(x); if ( (x<(A)) || (x>(int)(B)) ) goto OFF_BASE; else C=x; }
25506 @d undump_size(A,B,C,D) { undump_int(x);
25507 if (x<(A)) goto OFF_BASE;
25508 if (x>(B)) { too_small((C)); } else { D=x;} }
25509 @d undump_string(A) do {
25514 A = xmalloc(XX,sizeof(char));
25515 (mp->read_binary_file)(mp->mem_file,(void **)&A,&wanted);
25516 if (wanted!=(size_t)XX) goto OFF_BASE;
25519 @ The next few sections of the program should make it clear how we use the
25520 dump/undump macros.
25522 @<Dump constants for consistency check@>=
25523 dump_int(mp->mem_top);
25524 dump_int(mp->hash_size);
25525 dump_int(mp->hash_prime)
25526 dump_int(mp->param_size);
25527 dump_int(mp->max_in_open);
25529 @ Sections of a \.{WEB} program that are ``commented out'' still contribute
25530 strings to the string pool; therefore \.{INIMP} and \MP\ will have
25531 the same strings. (And it is, of course, a good thing that they do.)
25535 @<Undump constants for consistency check@>=
25536 undump_int(x); mp->mem_top = x;
25537 undump_int(x); if (mp->hash_size != x) goto OFF_BASE;
25538 undump_int(x); if (mp->hash_prime != x) goto OFF_BASE;
25539 undump_int(x); if (mp->param_size != x) goto OFF_BASE;
25540 undump_int(x); if (mp->max_in_open != x) goto OFF_BASE
25542 @ We do string pool compaction to avoid dumping unused strings.
25545 w.b0=qi(mp->str_pool[k]); w.b1=qi(mp->str_pool[k+1]);
25546 w.b2=qi(mp->str_pool[k+2]); w.b3=qi(mp->str_pool[k+3]);
25549 @<Dump the string pool@>=
25550 mp_do_compaction(mp, mp->pool_size);
25551 dump_int(mp->pool_ptr);
25552 dump_int(mp->max_str_ptr);
25553 dump_int(mp->str_ptr);
25555 while ( (mp->next_str[k]==k+1) && (k<=mp->max_str_ptr) )
25558 while ( k<=mp->max_str_ptr ) {
25559 dump_int(mp->next_str[k]); incr(k);
25563 dump_int(mp->str_start[k]); /* TODO: valgrind warning here */
25564 if ( k==mp->str_ptr ) {
25571 while (k+4<mp->pool_ptr ) {
25572 dump_four_ASCII; k=k+4;
25574 k=mp->pool_ptr-4; dump_four_ASCII;
25575 mp_print_ln(mp); mp_print(mp, "at most "); mp_print_int(mp, mp->max_str_ptr);
25576 mp_print(mp, " strings of total length ");
25577 mp_print_int(mp, mp->pool_ptr)
25579 @ @d undump_four_ASCII
25581 mp->str_pool[k]=qo(w.b0); mp->str_pool[k+1]=qo(w.b1);
25582 mp->str_pool[k+2]=qo(w.b2); mp->str_pool[k+3]=qo(w.b3)
25584 @<Undump the string pool@>=
25585 undump_int(mp->pool_ptr);
25586 mp_reallocate_pool(mp, mp->pool_ptr) ;
25587 undump_int(mp->max_str_ptr);
25588 mp_reallocate_strings (mp,mp->max_str_ptr) ;
25589 undump(0,mp->max_str_ptr,mp->str_ptr);
25590 undump(0,mp->max_str_ptr+1,s);
25591 for (k=0;k<=s-1;k++)
25592 mp->next_str[k]=k+1;
25593 for (k=s;k<=mp->max_str_ptr;k++)
25594 undump(s+1,mp->max_str_ptr+1,mp->next_str[k]);
25595 mp->fixed_str_use=0;
25598 undump(0,mp->pool_ptr,mp->str_start[k]);
25599 if ( k==mp->str_ptr ) break;
25600 mp->str_ref[k]=max_str_ref;
25601 incr(mp->fixed_str_use);
25602 mp->last_fixed_str=k; k=mp->next_str[k];
25605 while ( k+4<mp->pool_ptr ) {
25606 undump_four_ASCII; k=k+4;
25608 k=mp->pool_ptr-4; undump_four_ASCII;
25609 mp->init_str_use=mp->fixed_str_use; mp->init_pool_ptr=mp->pool_ptr;
25610 mp->max_pool_ptr=mp->pool_ptr;
25611 mp->strs_used_up=mp->fixed_str_use;
25612 mp->pool_in_use=mp->str_start[mp->str_ptr]; mp->strs_in_use=mp->fixed_str_use;
25613 mp->max_pl_used=mp->pool_in_use; mp->max_strs_used=mp->strs_in_use;
25614 mp->pact_count=0; mp->pact_chars=0; mp->pact_strs=0;
25616 @ By sorting the list of available spaces in the variable-size portion of
25617 |mem|, we are usually able to get by without having to dump very much
25618 of the dynamic memory.
25620 We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
25621 information even when it has not been gathering statistics.
25623 @<Dump the dynamic memory@>=
25624 mp_sort_avail(mp); mp->var_used=0;
25625 dump_int(mp->lo_mem_max); dump_int(mp->rover);
25626 p=0; q=mp->rover; x=0;
25628 for (k=p;k<= q+1;k++)
25629 dump_wd(mp->mem[k]);
25630 x=x+q+2-p; mp->var_used=mp->var_used+q-p;
25631 p=q+node_size(q); q=rlink(q);
25632 } while (q!=mp->rover);
25633 mp->var_used=mp->var_used+mp->lo_mem_max-p;
25634 mp->dyn_used=mp->mem_end+1-mp->hi_mem_min;
25635 for (k=p;k<= mp->lo_mem_max;k++ )
25636 dump_wd(mp->mem[k]);
25637 x=x+mp->lo_mem_max+1-p;
25638 dump_int(mp->hi_mem_min); dump_int(mp->avail);
25639 for (k=mp->hi_mem_min;k<=mp->mem_end;k++ )
25640 dump_wd(mp->mem[k]);
25641 x=x+mp->mem_end+1-mp->hi_mem_min;
25643 while ( p!=null ) {
25644 decr(mp->dyn_used); p=link(p);
25646 dump_int(mp->var_used); dump_int(mp->dyn_used);
25647 mp_print_ln(mp); mp_print_int(mp, x);
25648 mp_print(mp, " memory locations dumped; current usage is ");
25649 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used)
25651 @ @<Undump the dynamic memory@>=
25652 undump(lo_mem_stat_max+1000,hi_mem_stat_min-1,mp->lo_mem_max);
25653 undump(lo_mem_stat_max+1,mp->lo_mem_max,mp->rover);
25656 for (k=p;k<= q+1; k++)
25657 undump_wd(mp->mem[k]);
25659 if ( (p>mp->lo_mem_max)||((q>=rlink(q))&&(rlink(q)!=mp->rover)) )
25662 } while (q!=mp->rover);
25663 for (k=p;k<=mp->lo_mem_max;k++ )
25664 undump_wd(mp->mem[k]);
25665 undump(mp->lo_mem_max+1,hi_mem_stat_min,mp->hi_mem_min);
25666 undump(null,mp->mem_top,mp->avail); mp->mem_end=mp->mem_top;
25667 for (k=mp->hi_mem_min;k<= mp->mem_end;k++)
25668 undump_wd(mp->mem[k]);
25669 undump_int(mp->var_used); undump_int(mp->dyn_used)
25671 @ A different scheme is used to compress the hash table, since its lower region
25672 is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
25673 words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
25674 packed for |p>=hash_used|, so the remaining entries are output in~a~block.
25676 @<Dump the table of equivalents and the hash table@>=
25677 dump_int(mp->hash_used);
25678 mp->st_count=frozen_inaccessible-1-mp->hash_used;
25679 for (p=1;p<=mp->hash_used;p++) {
25680 if ( text(p)!=0 ) {
25681 dump_int(p); dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); incr(mp->st_count);
25684 for (p=mp->hash_used+1;p<=(int)hash_end;p++) {
25685 dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]);
25687 dump_int(mp->st_count);
25688 mp_print_ln(mp); mp_print_int(mp, mp->st_count); mp_print(mp, " symbolic tokens")
25690 @ @<Undump the table of equivalents and the hash table@>=
25691 undump(1,frozen_inaccessible,mp->hash_used);
25694 undump(p+1,mp->hash_used,p);
25695 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25696 } while (p!=mp->hash_used);
25697 for (p=mp->hash_used+1;p<=(int)hash_end;p++ ) {
25698 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25700 undump_int(mp->st_count)
25702 @ We have already printed a lot of statistics, so we set |mp_tracing_stats:=0|
25703 to prevent them appearing again.
25705 @<Dump a few more things and the closing check word@>=
25706 dump_int(mp->max_internal);
25707 dump_int(mp->int_ptr);
25708 for (k=1;k<= mp->int_ptr;k++ ) {
25709 dump_int(mp->internal[k]);
25710 dump_string(mp->int_name[k]);
25712 dump_int(mp->start_sym);
25713 dump_int(mp->interaction);
25714 dump_string(mp->mem_ident);
25715 dump_int(mp->bg_loc); dump_int(mp->eg_loc); dump_int(mp->serial_no); dump_int(69073);
25716 mp->internal[mp_tracing_stats]=0
25718 @ @<Undump a few more things and the closing check word@>=
25720 if (x>mp->max_internal) mp_grow_internals(mp,x);
25721 undump_int(mp->int_ptr);
25722 for (k=1;k<= mp->int_ptr;k++) {
25723 undump_int(mp->internal[k]);
25724 undump_string(mp->int_name[k]);
25726 undump(0,frozen_inaccessible,mp->start_sym);
25727 if (mp->interaction==mp_unspecified_mode) {
25728 undump(mp_unspecified_mode,mp_error_stop_mode,mp->interaction);
25730 undump(mp_unspecified_mode,mp_error_stop_mode,x);
25732 undump_string(mp->mem_ident);
25733 undump(1,hash_end,mp->bg_loc);
25734 undump(1,hash_end,mp->eg_loc);
25735 undump_int(mp->serial_no);
25737 if (x!=69073) goto OFF_BASE
25739 @ @<Create the |mem_ident|...@>=
25741 xfree(mp->mem_ident);
25742 mp->mem_ident = xmalloc(256,1);
25743 snprintf(mp->mem_ident,256," (mem=%s %i.%i.%i)",
25745 (int)(mp_round_unscaled(mp, mp->internal[mp_year]) % 100),
25746 (int)mp_round_unscaled(mp, mp->internal[mp_month]),
25747 (int)mp_round_unscaled(mp, mp->internal[mp_day]));
25748 mp_pack_job_name(mp, mem_extension);
25749 while (! mp_w_open_out(mp, &mp->mem_file) )
25750 mp_prompt_file_name(mp, "mem file name", mem_extension);
25751 mp_print_nl(mp, "Beginning to dump on file ");
25752 @.Beginning to dump...@>
25753 mp_print(mp, mp->name_of_file);
25754 mp_print_nl(mp, mp->mem_ident);
25757 @ @<Dealloc variables@>=
25758 xfree(mp->mem_ident);
25760 @ @<Close the mem file@>=
25761 (mp->close_file)(mp->mem_file)
25763 @* \[46] The main program.
25764 This is it: the part of \MP\ that executes all those procedures we have
25767 Well---almost. We haven't put the parsing subroutines into the
25768 program yet; and we'd better leave space for a few more routines that may
25769 have been forgotten.
25771 @c @<Declare the basic parsing subroutines@>;
25772 @<Declare miscellaneous procedures that were declared |forward|@>;
25773 @<Last-minute procedures@>
25775 @ We've noted that there are two versions of \MP. One, called \.{INIMP},
25777 has to be run first; it initializes everything from scratch, without
25778 reading a mem file, and it has the capability of dumping a mem file.
25779 The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
25781 to input a mem file in order to get started. \.{VIRMP} typically has
25782 a bit more memory capacity than \.{INIMP}, because it does not need the
25783 space consumed by the dumping/undumping routines and the numerous calls on
25786 The \.{VIRMP} program cannot read a mem file instantaneously, of course;
25787 the best implementations therefore allow for production versions of \MP\ that
25788 not only avoid the loading routine for \PASCAL\ object code, they also have
25789 a mem file pre-loaded.
25792 boolean ini_version; /* are we iniMP? */
25794 @ @<Option variables@>=
25795 int ini_version; /* are we iniMP? */
25797 @ @<Set |ini_version|@>=
25798 mp->ini_version = (opt->ini_version ? true : false);
25800 @ Here we do whatever is needed to complete \MP's job gracefully on the
25801 local operating system. The code here might come into play after a fatal
25802 error; it must therefore consist entirely of ``safe'' operations that
25803 cannot produce error messages. For example, it would be a mistake to call
25804 |str_room| or |make_string| at this time, because a call on |overflow|
25805 might lead to an infinite loop.
25806 @^system dependencies@>
25808 This program doesn't bother to close the input files that may still be open.
25810 @<Last-minute...@>=
25811 void mp_close_files_and_terminate (MP mp) {
25812 integer k; /* all-purpose index */
25813 integer LH; /* the length of the \.{TFM} header, in words */
25814 int lk_offset; /* extra words inserted at beginning of |lig_kern| array */
25815 pointer p; /* runs through a list of \.{TFM} dimensions */
25816 @<Close all open files in the |rd_file| and |wr_file| arrays@>;
25817 if ( mp->internal[mp_tracing_stats]>0 )
25818 @<Output statistics about this job@>;
25820 @<Do all the finishing work on the \.{TFM} file@>;
25821 @<Explain what output files were written@>;
25822 if ( mp->log_opened ){
25824 (mp->close_file)(mp->log_file);
25825 mp->selector=mp->selector-2;
25826 if ( mp->selector==term_only ) {
25827 mp_print_nl(mp, "Transcript written on ");
25828 @.Transcript written...@>
25829 mp_print(mp, mp->log_name); mp_print_char(mp, '.');
25837 @ @<Declarations@>=
25838 void mp_close_files_and_terminate (MP mp) ;
25840 @ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
25841 if (mp->rd_fname!=NULL) {
25842 for (k=0;k<=(int)mp->read_files-1;k++ ) {
25843 if ( mp->rd_fname[k]!=NULL ) {
25844 (mp->close_file)(mp->rd_file[k]);
25848 if (mp->wr_fname!=NULL) {
25849 for (k=0;k<=(int)mp->write_files-1;k++) {
25850 if ( mp->wr_fname[k]!=NULL ) {
25851 (mp->close_file)(mp->wr_file[k]);
25857 for (k=0;k<(int)mp->max_read_files;k++ ) {
25858 if ( mp->rd_fname[k]!=NULL ) {
25859 (mp->close_file)(mp->rd_file[k]);
25860 mp_xfree(mp->rd_fname[k]);
25863 mp_xfree(mp->rd_file);
25864 mp_xfree(mp->rd_fname);
25865 for (k=0;k<(int)mp->max_write_files;k++) {
25866 if ( mp->wr_fname[k]!=NULL ) {
25867 (mp->close_file)(mp->wr_file[k]);
25868 mp_xfree(mp->wr_fname[k]);
25871 mp_xfree(mp->wr_file);
25872 mp_xfree(mp->wr_fname);
25875 @ We want to produce a \.{TFM} file if and only if |mp_fontmaking| is positive.
25877 We reclaim all of the variable-size memory at this point, so that
25878 there is no chance of another memory overflow after the memory capacity
25879 has already been exceeded.
25881 @<Do all the finishing work on the \.{TFM} file@>=
25882 if ( mp->internal[mp_fontmaking]>0 ) {
25883 @<Make the dynamic memory into one big available node@>;
25884 @<Massage the \.{TFM} widths@>;
25885 mp_fix_design_size(mp); mp_fix_check_sum(mp);
25886 @<Massage the \.{TFM} heights, depths, and italic corrections@>;
25887 mp->internal[mp_fontmaking]=0; /* avoid loop in case of fatal error */
25888 @<Finish the \.{TFM} file@>;
25891 @ @<Make the dynamic memory into one big available node@>=
25892 mp->rover=lo_mem_stat_max+1; link(mp->rover)=empty_flag; mp->lo_mem_max=mp->hi_mem_min-1;
25893 if ( mp->lo_mem_max-mp->rover>max_halfword ) mp->lo_mem_max=max_halfword+mp->rover;
25894 node_size(mp->rover)=mp->lo_mem_max-mp->rover;
25895 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
25896 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null
25898 @ The present section goes directly to the log file instead of using
25899 |print| commands, because there's no need for these strings to take
25900 up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
25902 @<Output statistics...@>=
25903 if ( mp->log_opened ) {
25906 wlog_ln("Here is how much of MetaPost's memory you used:");
25907 @.Here is how much...@>
25908 snprintf(s,128," %i string%s out of %i",(int)mp->max_strs_used-mp->init_str_use,
25909 (mp->max_strs_used!=mp->init_str_use+1 ? "s" : ""),
25910 (int)(mp->max_strings-1-mp->init_str_use));
25912 snprintf(s,128," %i string characters out of %i",
25913 (int)mp->max_pl_used-mp->init_pool_ptr,
25914 (int)mp->pool_size-mp->init_pool_ptr);
25916 snprintf(s,128," %i words of memory out of %i",
25917 (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2,
25918 (int)mp->mem_end+1);
25920 snprintf(s,128," %i symbolic tokens out of %i", (int)mp->st_count, (int)mp->hash_size);
25922 snprintf(s,128," %ii, %in, %ip, %ib stack positions out of %ii, %in, %ip, %ib",
25923 (int)mp->max_in_stack,(int)mp->int_ptr,
25924 (int)mp->max_param_stack,(int)mp->max_buf_stack+1,
25925 (int)mp->stack_size,(int)mp->max_internal,(int)mp->param_size,(int)mp->buf_size);
25927 snprintf(s,128," %i string compactions (moved %i characters, %i strings)",
25928 (int)mp->pact_count,(int)mp->pact_chars,(int)mp->pact_strs);
25932 @ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
25935 @<Last-minute...@>=
25936 void mp_final_cleanup (MP mp) {
25937 small_number c; /* 0 for \&{end}, 1 for \&{dump} */
25939 if ( mp->job_name==NULL ) mp_open_log_file(mp);
25940 while ( mp->input_ptr>0 ) {
25941 if ( token_state ) mp_end_token_list(mp);
25942 else mp_end_file_reading(mp);
25944 while ( mp->loop_ptr!=null ) mp_stop_iteration(mp);
25945 while ( mp->open_parens>0 ) {
25946 mp_print(mp, " )"); decr(mp->open_parens);
25948 while ( mp->cond_ptr!=null ) {
25949 mp_print_nl(mp, "(end occurred when ");
25950 @.end occurred...@>
25951 mp_print_cmd_mod(mp, fi_or_else,mp->cur_if);
25952 /* `\.{if}' or `\.{elseif}' or `\.{else}' */
25953 if ( mp->if_line!=0 ) {
25954 mp_print(mp, " on line "); mp_print_int(mp, mp->if_line);
25956 mp_print(mp, " was incomplete)");
25957 mp->if_line=if_line_field(mp->cond_ptr);
25958 mp->cur_if=name_type(mp->cond_ptr); mp->cond_ptr=link(mp->cond_ptr);
25960 if ( mp->history!=mp_spotless )
25961 if ( ((mp->history==mp_warning_issued)||(mp->interaction<mp_error_stop_mode)) )
25962 if ( mp->selector==term_and_log ) {
25963 mp->selector=term_only;
25964 mp_print_nl(mp, "(see the transcript file for additional information)");
25965 @.see the transcript file...@>
25966 mp->selector=term_and_log;
25969 if (mp->ini_version) {
25970 mp_store_mem_file(mp); return;
25972 mp_print_nl(mp, "(dump is performed only by INIMP)"); return;
25973 @.dump...only by INIMP@>
25977 @ @<Declarations@>=
25978 void mp_final_cleanup (MP mp) ;
25979 void mp_init_prim (MP mp) ;
25980 void mp_init_tab (MP mp) ;
25982 @ @<Last-minute...@>=
25983 void mp_init_prim (MP mp) { /* initialize all the primitives */
25987 void mp_init_tab (MP mp) { /* initialize other tables */
25988 integer k; /* all-purpose index */
25989 @<Initialize table entries (done by \.{INIMP} only)@>;
25993 @ When we begin the following code, \MP's tables may still contain garbage;
25994 the strings might not even be present. Thus we must proceed cautiously to get
25997 But when we finish this part of the program, \MP\ is ready to call on the
25998 |main_control| routine to do its work.
26000 @<Get the first line...@>=
26002 @<Initialize the input routines@>;
26003 if ( (mp->mem_ident==NULL)||(mp->buffer[loc]=='&') ) {
26004 if ( mp->mem_ident!=NULL ) {
26005 mp_do_initialize(mp); /* erase preloaded mem */
26007 if ( ! mp_open_mem_file(mp) ) return mp_fatal_error_stop;
26008 if ( ! mp_load_mem_file(mp) ) {
26009 (mp->close_file)(mp->mem_file);
26010 return mp_fatal_error_stop;
26012 (mp->close_file)( mp->mem_file);
26013 while ( (loc<limit)&&(mp->buffer[loc]==' ') ) incr(loc);
26015 mp->buffer[limit]='%';
26016 mp_fix_date_and_time(mp);
26017 if (mp->random_seed==0)
26018 mp->random_seed = (mp->internal[mp_time] / unity)+mp->internal[mp_day];
26019 mp_init_randoms(mp, mp->random_seed);
26020 @<Initialize the print |selector|...@>;
26021 if ( loc<limit ) if ( mp->buffer[loc]!='\\' )
26022 mp_start_input(mp); /* \&{input} assumed */
26025 @ @<Run inimpost commands@>=
26027 mp_get_strings_started(mp);
26028 mp_init_tab(mp); /* initialize the tables */
26029 mp_init_prim(mp); /* call |primitive| for each primitive */
26030 mp->init_str_use=mp->str_ptr; mp->init_pool_ptr=mp->pool_ptr;
26031 mp->max_str_ptr=mp->str_ptr; mp->max_pool_ptr=mp->pool_ptr;
26032 mp_fix_date_and_time(mp);
26036 @* \[47] Debugging.
26037 Once \MP\ is working, you should be able to diagnose most errors with
26038 the \.{show} commands and other diagnostic features. But for the initial
26039 stages of debugging, and for the revelation of really deep mysteries, you
26040 can compile \MP\ with a few more aids, including the \PASCAL\ runtime
26041 checks and its debugger. An additional routine called |debug_help|
26042 will also come into play when you type `\.D' after an error message;
26043 |debug_help| also occurs just before a fatal error causes \MP\ to succumb.
26045 @^system dependencies@>
26047 The interface to |debug_help| is primitive, but it is good enough when used
26048 with a \PASCAL\ debugger that allows you to set breakpoints and to read
26049 variables and change their values. After getting the prompt `\.{debug \#}', you
26050 type either a negative number (this exits |debug_help|), or zero (this
26051 goes to a location where you can set a breakpoint, thereby entering into
26052 dialog with the \PASCAL\ debugger), or a positive number |m| followed by
26053 an argument |n|. The meaning of |m| and |n| will be clear from the
26054 program below. (If |m=13|, there is an additional argument, |l|.)
26057 @<Last-minute...@>=
26058 void mp_debug_help (MP mp) { /* routine to display various things */
26065 mp_print_nl(mp, "debug # (-1 to exit):"); update_terminal;
26068 aline = (mp->read_ascii_file)(mp->term_in, &len);
26069 if (len) { sscanf(aline,"%i",&m); xfree(aline); }
26073 aline = (mp->read_ascii_file)(mp->term_in, &len);
26074 if (len) { sscanf(aline,"%i",&n); xfree(aline); }
26076 @<Numbered cases for |debug_help|@>;
26077 default: mp_print(mp, "?"); break;
26082 @ @<Numbered cases...@>=
26083 case 1: mp_print_word(mp, mp->mem[n]); /* display |mem[n]| in all forms */
26085 case 2: mp_print_int(mp, info(n));
26087 case 3: mp_print_int(mp, link(n));
26089 case 4: mp_print_int(mp, eq_type(n)); mp_print_char(mp, ':'); mp_print_int(mp, equiv(n));
26091 case 5: mp_print_variable_name(mp, n);
26093 case 6: mp_print_int(mp, mp->internal[n]);
26095 case 7: mp_do_show_dependencies(mp);
26097 case 9: mp_show_token_list(mp, n,null,100000,0);
26099 case 10: mp_print_str(mp, n);
26101 case 11: mp_check_mem(mp, n>0); /* check wellformedness; print new busy locations if |n>0| */
26103 case 12: mp_search_mem(mp, n); /* look for pointers to |n| */
26107 aline = (mp->read_ascii_file)(mp->term_in, &len);
26108 if (len) { sscanf(aline,"%i",&l); xfree(aline); }
26109 mp_print_cmd_mod(mp, n,l);
26111 case 14: for (k=0;k<=n;k++) mp_print_str(mp, mp->buffer[k]);
26113 case 15: mp->panicking=! mp->panicking;
26117 @ Saving the filename template
26119 @<Save the filename template@>=
26121 if ( mp->filename_template!=0 ) delete_str_ref(mp->filename_template);
26122 if ( length(mp->cur_exp)==0 ) mp->filename_template=0;
26124 mp->filename_template=mp->cur_exp; add_str_ref(mp->filename_template);
26128 @* \[48] System-dependent changes.
26129 This section should be replaced, if necessary, by any special
26130 modification of the program
26131 that are necessary to make \MP\ work at a particular installation.
26132 It is usually best to design your change file so that all changes to
26133 previous sections preserve the section numbering; then everybody's version
26134 will be consistent with the published program. More extensive changes,
26135 which introduce new sections, can be inserted here; then only the index
26136 itself will get a new section number.
26137 @^system dependencies@>
26140 Here is where you can find all uses of each identifier in the program,
26141 with underlined entries pointing to where the identifier was defined.
26142 If the identifier is only one letter long, however, you get to see only
26143 the underlined entries. {\sl All references are to section numbers instead of
26146 This index also lists error messages and other aspects of the program
26147 that you might want to look up some day. For example, the entry
26148 for ``system dependencies'' lists all sections that should receive
26149 special attention from people who are installing \MP\ in a new
26150 operating environment. A list of various things that can't happen appears
26151 under ``this can't happen''.
26152 Approximately 25 sections are listed under ``inner loop''; these account
26153 for more than 60\pct! of \MP's running time, exclusive of input and output.